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1 Introduction

The aim of this PHD thesis is to prove an Atiyah Patodi Singer index formula for a Dirac
operator on a manifold with cylindrical ends which is foliated by a foliation that respects the
cylindrical structure........

Geometric setting

The whole geometric structure is introduced. We speak about cylindrical foliations and all
the data needed to define the longitudinal Dirac operator associated to a Clifford bundle.
Every cylindrical foliation arises from a gluing process starting from a foliated manifold with
boundary and the foliation transverse to the boundary. The first geometrical invariant of
a foliation is its holonomy. It enters into index theory in essential way providing a natural
desingularization of the leaf space where doing analysis. Following Ramachandran we work
at level of the equivalence relation of being on the same leaf. This is the most elementar level
of desingularization.

Von Neumann algebras, foliations and index theory

Von Neumann algebras and Breuer Fredholm theory with traces. In this sec-
tion generalities about Von Neumann algebras are given. These are particular —
subalgebras of all bounded operators acting on an Hilbert space. We specialize to
Von Neumann algebras that can be equipped with a semi—finite normal faithful traces
likewise Von Neumann algebras arising from foliations admitting a holonomy invariant
transverse measure.

With a trace 7 : Mt — [0,00] one has a natural notion of dimension of a closed
subspace affiliated to M, i.e. a subspace V whose projection Pry belongs to M. This
is the relative dimension 7(Pry). Relative dimension is the cornerstone of a theory of
Fredholm operators inside M. This story goes back to the general seminal work of Breuer
[14, 15]. For this reason relatively Fredholm operators are called Breuer—Fredholm. A
Breuer—Fredholm operator has a finite real index with some stability properties as in
the classical theory.

Transverse measures and Von Neumann algebras. In the spirit of Alain Connes
non commutative geometry Von Neumann algebras stand for measure spaces while C*—
algebras describes topological spaces. In the seminal work [24] has shown that a foliation
with a given transverse measure gives rise to a Von Neumann algebra whose properties
reflect the properties of the measure. First we define transverse measures as measures
on the sigma ring of all Borel transversals. This is acted by the holonomy pseudogroup.
When the measure is invariant w.r.t. this action one has a holonomy invariant measures.

If a holonomy invariant measure exists then the associated W*— algebra is type I or
type I (the first type appears only in the ergodic case). In particular there’s a natural



trace whose definition is explicitly given as an integral of suitable objects living along
leaves against the transverse measure.

Then transverse measures appear as some kind of measure on the space of the leaves.

In this section we define the Von Neumann algebra associated to the transverse measure
and a square representation of the Borel equivalence relation xRy iff x and y are in the
same leave. For a vector bundle F this is the algebra of uniformly bounded fields of
operators © —— A, : L?(L,; E) — L?(L.; E) (L, is the leave of x) acting on the
Borel field of Hilbert spaces  — L?(X; E) suitably identified using the transverse
measure. Thinking of an operator as a family of leafwise operators the trace has a
natural meaning, it is the integral against the transverse measure of a family of leafwise
measures called local traces.

For self adjoint intertwining operators, using the spectral theorem and the trace on
M (coming from a transverse measure A) one can define a measure on R called the
spectral measure (depending on the trace). Breuer—Fredholm properties of the operator
are easily described in terms of this spectral measure. In particular one can define
some kind of essential spectrum called the A—essential spectrum. Belonging of zero to
the essential spectrum is equivalent for the operator to be Breuer—Fredholm. We show
also that for elliptic operators the essential spectrum is governed by the behavior of
the operator outside compact subsets on the ambient manifold. Actually if one fix a
compact set K on X every leave can intersect K infinite times then our notion of "lieing
outside K" must be explained with care. We call this result the Splitting principle. It
will be useful in the study of the Dirac operator.

Analysis of the Dirac operator. Consider the leafwise Dirac operator on X associated

to the geometric datas of the first section. This is obtained from the collection of all Dirac
operators {D,}, one for each leave L,. If the foliation is assumed even dimensional this is
Zo—graded D = DT @ D~ with respect to a natural involution on the bundle E. This is called
the Chiral Dirac operator.
This leafwise family of operators gives an operator affiliated to the Von Neumann algebra
M (the transverse measure gives the glue to join all the operators together). In particular
each spectral projection of D defines a projection in M. If the foliated manifold is compact
Connes shown this is Breuer—Fredholm and the index, the relative dimension of Kernel minus
CoKernel is related to topological invariants of the foliation by the Connes index formula.

inds (D) = (Ch(D) Td(X), [CA])

At right handside one finds the coupling with longitudinal characteristic classes and the
homology class of a closed current C\ associated to the transverse measure by the Ruelle—
Sullivan method.

Finite dimensionality of the index problem. In our cylindrical case, the operator
is in general non Breuer—Fredholm. As a general philosophical principle for manifolds
with cylindrical ends and product—structure operators, Fredholm properties of the op-
erator on the natural L? space are essentially captured by the spectrum at zero of the
operator on the cross section (the base of the cylinder). Thanks to the splitting principle
the Philosophy

invertibility at boundary <= Freholm property

carries on to the foliated case if one looks at the A—essential spectrum of the leafwise
operator on the foliation induced on the transverse section of the cylinder (this is to be
thinked the foliation at infinity).
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Now it’s a well known fact that lots of Dirac type operators of capital importance in
Physics and Geometry are not invertible at the boundary. One example for all is the
Signature operator, our main application here.

However some work on elliptic regularity and the use of the generalized eigenfunction
expansion of Browder and Garding shows that the A—dimension of the projection on
the L? kernel of Dt and D~ are finite projections of the V.N. algebra M. In particular
we can define the L? chiral index of Dt as

indLa’A(D"') = dimp Kerz2(D") — dimp Kerz2 (D).

On a compact foliated manifold, if a family of operators is implemented by a family of
leafwise uniformly smoothing schwartz kernels the finite trace property follows immedi-
ately from the remarkable fact that integrating a longitudinal Radon measure against a
transverse measure gives a finite mass measure on the ambient. Now the ambient is a
manifold with a cylinder, hence Radon longitudinal measures do not give finite measures
in general. Our strategy to prove the finite dimensionality of the L? index problem is to
show that the field of L? projections on the kernel of D enjoys the additional property
to be locally traceable with respect to a bigger family of Borel sets. To be more precise
we prove that for every compact set K on the boundary of the cylinder of a leave the
operator X g xr+1lKer, » (D)X K xR+ 18 trace class on L?(L,). This is completely sufficient
(by the integration process) to assure finite dimensionality.

Breuer—Fredholm perturbation. Once finite dimensionality of kernels is proven we
perform a perturbation argument to change the Dirac operator into a Breuer—Fredholm
one. This is done following very closely Boris Vaillant master thesis [?] where the same
problem is studied for Galois coverings of manifolds with cylindrical ends. Since we are
working with Von Neumann algebras the possibilty to use Borel functional calculus gives
a great help in a way that we can define our two parameters perturbation essentially
by subtracting, on the cylinder the boundary operator restricted to some small spectral
interval near zero

DMDE,U) De,O =D,

Next we prove (through the splitting principle) that D, ,, is Breuer-Fredholm for small
parameters and its index approximates the chiral index. Actually we have to consider
separately the two parameters limits.

The analysis of the relation between the perturbed Fredholm index and the chiral L?
index requires the introduction of weighted L? spaces along the leaves, e“YL? for u > 0
(r is the cylindrical coordinate). Smooth solutions belonging to each weighted space are
called Extended Solutions, Ext(D¥). They enter naturally into the A.P.S index formula
naturally but do not form a closed subspace in L?. Some care is needed in showing their
finite A—dimensionality.

The remaining part of the section is devoted in the proof of the fundamental asymptotic
relations

lim indp:, A(DF) =indge 5 (D), lim dimy Ext(DF) = Ext(D%).

Cylindrical finite propagation speed and Cheeger Gromov Taylor type estimates.
To prove the index formula we need some pointwise estimates on the Schwartz kernels of
functions of the leafwise Dirac operator. Our perturbation on the cylinder has the shape
D + @ where @ is some selfadjoint order zero pseudodifferential operator on the base of the
cylinder (actually @ is just a sum of a uniformly smoothing operator and wId) in particular



one can repeat the proof of energy estimates as in the Book by John Roe for example [65]
for the wave equation no more on a small geodesic ball but on a strip 0L, x (a,b) (0L, is
the base of the cylinder) finding out that unitary cylindrical diffusion speed holds i.e. if &y
is supported in L, x (a,b) then the solution of the wave equation @ is supported in
OLy x (a—[t]|, b+ |t]). This is sufficient to extimate kernels of class schwartz spectral functions
of D and @ following the method of Cheeger, Gromov and Taylor [21] obtaining decaying
estimates as in the next example for the heat kernel where [-] is the Schwartz kernel,

VL, VA [T ] (21, 25)] < C(k, 1,m, T)ell =s2l =m0/t (1)

Here 7 is some positive number and z; = (x;, s;) are two points on the cylinder with |s; —sa2| >
2ry. It is clear why one calls these Chegeer Gromov Taylor estimates on the cylindrical
direction. There is also an extremely useful relative version of estimate (1) where one can
estimate the difference of the kernels of spectral functions of two operators that agree on some
open subset of the cylinder.

In practice we shall collect all these estimates, one for each leaf. Thanks to the uniformly
bounded geometry of the leaves the constants are independent. This is an extremely important
fact.

The foliated eta invariant.

Since its first apparition in [4] the eta invariant of a Dirac operator as the difference between
the local and global term on the Atiyah Patodi Singer index formula

1/2n(Dy) = /X wp — {ind(D*) + 1/2 dimKer(Dg)}

or the spectral asimmetry defined as the regular value at zero of the meromorphic function
(summation over eigenvalues)

3 A )
po(s) = > Sﬁl . Re(s) > dim9X (2)
A#£0

has becomed a central character of Spectral geometry and modern Physics.

The foliation eta invariant on a compact manifold (when a transverse invariant measure is
fixed) was defined independently and essentially in the same way by Peric [58] and Ramachan-
dran [62] and enters into our A.P.S index formula exactly in the way it enters classically. It
should be strongly remarked that Peric and Ramachandran numbers are not the same. The
reason is simple. Peric uses the holonomy groupoid to desingularize the space of the leaves
while Ramachandran works directly on the Borel equivalence relation. Due to their global
nature the eta invariants obtained are not the same. As a striking consequence one get the
awareness that on a cylindrical foliated manifold every choice of desingularization from the
equivalence relation to the holonomy (or the monodromy groupoid ) leads to different index
formulas with different eta invariants. This is a genuine feature of the boundary (cylindrical)
case.

Since we work with the Borel equivalence relation our eta—invariant is that of Ramachandran.
So consider the base Dirac operator D72 the eta function! of D72 is defined for Re(s) < 0 by

1
I'((s+1)/2)

It can be shown that this is meromorphic for Re(A) < 0 with eventually simple poles at
(dim Fp — k)/2, k=0,1,... and a regular value at zero.

n(D7?,s) = / t trA(Df"’e*Dfa)dt, Al >0, s>-—1.
0

—1

lthe relation with (2) comes from the identity sign(A)[A|~! = T'(££L) -1 J5 t77 Ae~tNdt
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In this section we describe this result extending the result to some classes of perturbations of
the operator needed in the proof of the index formula. We shall consider perturbations of the
form Q = D¥? + K with K some uniformly smoothing spectral function K = f(D%?), f :
(—a,a) — R. For f = x(_,) more can be said about the family Q,, := D"+ D% f(D72)+u
in fact we can define

kE 4—1/2 - 00 4—1/2 10
A (@) = LIMs_, / ——— tra(Que v dlf-i—/ ———tra(Que” "vu)dt
where LIM is the constant term in the asymptotic development in powers of § near zero of
the function § — f 6k. Moreover two important formulas hold true

o 7A(Qu) —na(Qo) = sign(u) tra (f (D7)

na(Qo) = 1/2(na(Qu) +1a(Q—-u))- (3)

This only requires a minimal modification of Vaillant proof.

The index formula.
Finally we prove the index formula

indz (D) = (A(X) Ch(E/S),[Ch]) + 1/2lna (D) — b, + h]]

where hE := dimy (Ext(D¥) —dimy (Kerz2 (D*). Our proof is a modification of Vaillant proof
that in turn is inspired by Miiller proof of the L?~index formula on manifolds with corners of
codimension two [54]. This is a (of course) a proof based on the heat equation.

The starting point is the identity

indg2 A (D) = “{g 1/2{indr(D{,) +inda(DF_,) + hy . — h} .} (4)

€,—U

where
his := dimp Ext(DF) — dimp Ker2(DZF)

definition also valid for € = 0.
Next we prove

inda (D7) = (A(X) Ch(E/S), [Chl) + 1/20a(D73) + 9(u) (5)

with g(u) — 0.
Equation (5) combined with (4) and (3) becomes, after the u-limit

indps A(DF) = (A(X) Ch(B/S), [Cal) + 1/20a (D7) + hZ — h7.

The last step is to assure that under ¢ — 0 each e-depending object in the above equation
goes to the corresponding value for € = 0.

Some words about the proof of (5). This is inspired from the work of Miiller [54]. We
start from the convergence into the space of leafwise smoothing kernels of [exp(—tD? )] to
[Kerpz2(De)]. The choice of cut off functions ¢ supported in Xj11 (X, is the manifold
truncated at r = m) gives an exaustion of X into compact pieces. Consider the equation

indA(D:u) = stra {0} (Dew) = lim  lim StrA(gZ)ke*th-rugbk) =

k—-+o0 t—-+o00

Jim stra (e Pengy) — / stra(¢rD2 e Py ) dt. (6)



The t—integral is splitted into fsﬁ + f\j% the second one going to zero thanks to the Breuer—
Fredholm property of D ,. More work is needed in the study of the first one, the responsible
of the presence of the eta invariant in the formula. Using heavily the relative version of the
Cheeger—Gromov—Taylor estimate (1) one shows that

Vk
lim LIM, .o = 1/2n(DT2).
k—oo ’

S

The first addendum in (6) will lead to the well known local term

lim LIM,_qstra (dre "Pougr) = (A(X) Ch(E/S), [Ca)).

k—oo
This requires some work in developing the asymptotic expansion, we have to consider three

pieces of X separately again making use of relative kernel estimates.

Comparison with Ramachandran index formula.
In this section.......

The signature formula.
The main application....
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2 Geometric Setting

DEFINITION 2.1 — A p—dimensional foliation F on a manifold with boundary X is transverse
to the boundary if it is given by a foliated atlas {U,, } with homeomorphisms ¢,, : U, — V, x W,
with V,, open in H? := {(z1,...,x,) € RP : 1 > 0} and W open in R? with change of coordinated
®a(u,v) in the shape

v = ¢(v7w)7 w' = 1/}(10) (7)

(¢ is a local diffeomorphism). Such an atlas is supposed maximal among all collections of this
type. The integer p is the dimension of the foliation, ¢ its codimension and p 4+ ¢ = dim(Xj).

In each foliated chart, connected components of subsets as ¢, (V, x {w}) are called
plaques. The plaques coalesce (thanks to the change of coordinate condition (7)) to give
maximal connected injectively immersed (not embedded !) submanifolds called leaves. One
uses the notation F for the set of leaves. Note that in general each leaf passes infinitely times
trough a foliated chart so a foliation is only locally a fibration. Taking the tangent spaces to
the leaves one gets an integrable subbundle TF C T'X that’s transverse to the boundary i.e
TOXy+ TF = TXy in other words the boundary is a submanifold that’s transverse to the
foliation.

2.1 Holonomy

We skip the definition of a foliation on a manifold without boundary recall only that is defined
by foliated charts as in the definition 2.1 above with local models U x V' where U is an open
set in RP Let X a manifold equipped with a (p, ¢)—foliation. If X has boundary the foliation
is assumed transverse to the boundary according to definition 2.1.

DEFINITION 2.2 — A function f : X — R is called distinguished if each point z is in the

domain of a foliated chart U -2+ V x Wy such that fij; = ¢ o Pry where Pry : U xV — V' is
the projection on the second factor.

Let D the collection of all the germs of distinguished maps with the obvious projection o :
D — X sending the germ of f at = onto z. Consider a foliated chart (U,¢) and P a
plaque of U, then P individuates the set P C D of the distinguished germs {[poPrv]s}acp-
When P varies over all the possible foliated charts these sets form the base of a topology
of a p-dimensional manifold on D called the leaf topology. The mapping ¢ : D — F is
a covering ([36])where F is the non paracompact manifold of the disjoint union of all the
leaves (equivalently use the plaques to give X a topology where the connected components
are exactly the leaves with their natural topology). Let v : x — y a continuous leafwise
path. Since o is a covering map there’s a holonomy map h, : 0~ (z) — 07!(y) sending the
point m € o~ 1(z) into the endpoint of the unique lifting 7 of v starting from 7.

DEFINITION 2.3 — A ¢—dimensional submanifold Z C X is a transversal if for every z € Z
there exists a distinguished map 7 : U — R? such that 7|~y is an homeomorphism.

There are many equivalent definitions of transverse submanifold for example at infinitesimal
level, one can ask, T,Z & T,F = T,X. The definition given here makes possible to realize
that holonomy acts in a natural way on the disjoint union of all transversals [59].



First we give a slight different version of holonomy. For a continuous leafwise path v:x — y
we can choose a path of foliated charts (Up, ¢1), ..., (Uk, &) associated to a decomposition
0 = s0,...,1 = 5, of [0, 1] such that 7[5, s,,,] C Ui and each plaque of U; meets at only a plaque
of Uj41. Following the plaques along v one obtain a mapping of the plaques of Uy to the plaques
U, hence, composing with the distinguished maps associated a germ of diffeomorphism of R?.
Since the inclusion of a transversal compose with a distinguished mapping to give coordinates
on the transversal this is also a germ of diffeomorphism Hr,r, () of transversals Ty around z
and 737 around y.
The connection with the holonomy map given before in terms of the holonomy covering is given
as follows. Let m € o0~!(z) and f a distinguished map defined around z. The diffeomorphism
Hryr, (77) allows to define a local coordinate system on 7; defined around y and in turn a
distinguished map f1 : V — R? defined around y. Then the germ of f; at y coincides with
hy(m) € 071 (y).
It is clear that the relation

y~1 Mf hy = hy(7) (8)

is weaker than homotopy (obvious by the definition in terms of lifting).

DEFINITION 2.4 — The holonomy groupoid G of the foliation is the quotient of the homotopy
groupoid (the set of all equivalence fixed points homotopy classes of leafwise continuous paths)
under the relation (8).

One can show that this procedure gives a finite dimensional reduction of the homotopy
groupoid. In fact in the case X = 0 G is a smooth, in general non-Hausdorff 2p + ¢—
dimensional manifold where the local coordinates are given by mappings in the form of
(U xV)xp, (U xV')wherex € UxV,y e U xV', v:x — yis a leafwise path
and one uses the graph of the holonomy h, : V. — V' ([77, 24, 53|). Finally

DEFINITION 2.5 — A pseudogroup of a manifold X is a family " of diffeomorphisms defined
on open subsets of X such that

1.if® €Tl then® el
2. T'is closed under composition when possible (depending on domains and ranges).
3. f ®: U — W isin T then every restriction of ® to open subsets V C U isin I

4. If ® : U — W is a diffeomorphism such that every point in U has a neighborhood on
which @ restricts to an alement of " then ® € T.

5. The identity belongs to T'.

The holonomy pseudogroup of a foliation is the pseudogroup I" acting on the disjoint union of all
(regular) whose germs at every point are germs of holonomy mappings defined by some leafwise
path.

2.2 Longitudinal Dirac operator

Let X = Xy U Z be a connected manifold with cylindrical end meaning that X is a compact
manifold with boundary and Z = X, X [0, 00),. is the cylindrical end. Suppose that X has
a Riemannian metric g that is product type on the cylinder g,z = gax, + dr @ dr.

Let given on X a smooth oriented foliation F with leaves of dimension 2p respecting the
cylindrical structure i.e.
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1. The submanifold 90X, is transversal to the foliation and inherits a (2p — 1, ¢) foliation
Fo = Flax, with foliated atlas given by ¢, : U, N 0Xqg — 9V, x W,. Note that the
codimension is the same.

2. The restriction of the foliation on the cylinder is product type F|z = Fy x [0, 0).

The orientation we choose is the one given by (eq, .., e2p—1, 0,) where (e1, .., e9,—1) is a positive
leafwise frame for the induced boundary foliation. Let E — X be a leafwise Clifford bundle
with leafwise Clifford connection V¥ and Hermitian metric h¥. Suppose each geometric
structure is of product type on the cylinder meaning that if p : 90Xy x [0,00) — 09X is the
base projection

Eiz ~ p*(E\aXo)a h\%Xo = p*(hI%Xo)7 V\EZ = p*(VI%Xo)'

Each geometric object restricts to the leaves to give a longitudinal Clifford module that’s
canonically Zs graded by the leafwise chirality element. One can check immediately that the
positive and negative boundary eigenbundles EgXO and Ejy are both modules for the Clifford
structure of the boundary foliation (see Appendix A.2 for more informations). Leafwise
Clifford multiplication by 0, induces an isomorphism of leafwise Clifford modules between
the positive and negative eigenbundles

c(0y) : ngo — Eyx,-

Put F = E"g Xo the whole Clifford module on the cylinder Ej; can be identified with the
pullback p*(F @& F) with the following action: tangent vectors to the boundary foliation

v € TFy acts as cP(v) ~ F'(v)Q with Q = ( (1) (1)
0

-1 . . . .
cF(0,) ~ < 1 0 ) In particular one can form the longitudinal Dirac operator assuming

> while in the cylindrical direction

under the above identification the shape?
D = ¢(9,)0 + ¢|5,VF170 = ¢(0,)0, + QD72 = ¢(=0,)[-0, — c(—0,)2D7?]. (9)

Here D72 is the leafwise Dirac operator on the boundary foliation. In the following these
identifications will be omitted letting D act directly on F' @ F according to

( 0 D):F@F—>F@F

Dt 0
0 D™\ 0 -0, + D%\ 0 Oy + D72
Dt 0 )\ 0.+ D% 0 ~\ -0, + D70 0
where u = —r, 9,, = —0, (interior unit normal) note this is the opposite of A.P.S. notation.

We are using the notation X = X}, U Zy, with Z, = 0X( x [k, 00) and X}, = XqU (90X, x [0, k])
also Z° := 90Xy x [a,b] and where there’s no danger of confusion Z, is the cylinder of the leaf
passing trough z, Z, = L, N Zj.

3 The Atiyah Patodi Singer index theorem

We are going to recall the classical Atiyah—Patodi-Singer index theorem in [4] So let X a
compact 2p dimensional manifold with boundary 90Xy and a Clifford bundle E with all the
geometric structure as in the previous section. We take, here the opposite orientation of A.P.S

2we choose to insert —&, the inward pointing normal to help the comparison with the orientation of A.P.S
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i.e. we use the exterior unit normal to induce the boundary operator instead of the interior
one as pointed out by A.P.S this is a way to declare what is the positive eigenbundle for the
natural splitting. In other words
+ _ —_
Dhere - DAPS'

The operator writes in a collar around the boundary

0 D~ . 0 —0, + Dy

(0. % )=(ain ™)
where 0, is the exterior unit normal and Dy is a Dirac operator on the boundary. It is shown
in [3] that the K—theory of the boundary manifold contains topological obstructions to the
existence of elliptic boundary value conditions of local type (for the signature operator they
are always non zero). If one enlarges the point of view to admit global boundary conditions
a Fredholm problem can properly set up. More precisely consider the boundary operator Dy
acting on the boundary manifold dX. This is a first order elliptic differential operator with
discrete spectrum on L?(0X; F). Let P = X[0,00) (Do) be the spectral projection on the non
negative part of the spectrum. This is a pseudo—differential operator ([4]). Atiyah Patodi and
Singer prove the following facts

e The (unbounded) operator Dt : C>®(X; ET, P) — C*°(X, E~) with domain
COO(X;E+,P) ={s € COO(X;E+) : P(S\BXO) =0}

is Fredholm and the index is given by the formula

indaps(DV) = /X A(X)Ch(E) — h/2 +n1(0)/2

with the standard Atiyah-Singer A integrand (exactly as in the closed case) and two
correcting terms:

1. h:=Ker(Dy) is the dimension of the kernel of the boundary operator

2. 1n(0), the eta invariant of Dy gives a measure of the asymmetry of the spectrum of
the boundary operator Dy. This is extensively explained in section 7.

e The index formula can be interpreted as a natural L? problem on the manifold with a
cylinder attached, X = Xy Ugx, (0Xo x [0,00)) with every structure pulled back. More
precisely the kernel of DT : C*°(X; BT, P) — C°°(X, E™) is naturally isomorphic to
the kernel of DT extended to an ubounded operator on L?(X) while to describe the
kernel of its Hilbert space adjoint i.e. the closure of D~ with the adjoint boundary
condition D~ : C*®°(X; E~,1 — P) — C*(X, E™) we have to introduce the space of
extended L? solutions.

A locally square integrable solution s of the equation D~ s = 0 on X is called an extended
solution if for large positive r

s(y,r) = g(y, ) + 800 (y) (10)

where 7 is the coordinate on the base Xy and g € L? while s, solves Dyso, = 0 and
is called the limiting value of s.
APS prove that the kernel of (DT)* (Hilbert space adjoint of DT with domain given
by the APS boundary condition) is naturally isomorphic to the space of L? extended
solution of D~ on X. Moreover

indaps(D*) = dimy2(D*) — dimyz (D7) — heo(D™) = indp2(DF) — hoo (D7) (11)
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where indzz (D7) := dimzz (DT)—dimg2 (D) and the number A, (D7) is the dimension
of the space of limiting values of the extended solutions of D~. In this sense the APS
index can be interpreted as an L?-index. The number at right in (11) is called often
the L? extended index. Along the proof of (11) the authors prove that

h'=heo(D") + heo(D™) (12)

and conjecture that it must be true at level of the kernel of Dy i.e.

every section in Ker(Dy) is uniquely expressible as a sum of limiting values coming from

Dt and D~

The conjecture was solved by Melrose with the invention of the b—calculus, a pseudo—
differential calculus on a compactification of X that furnished a totally new point of
view on the APS problem [50].

With (11) and (12) the index formula is

insz(D+):/)( A(X)Ch(E)+77(20) _’_hoo(D_);hoo(D“‘)-

Finally a naive remark about the introduction of extended solutions in order to motivate
our definition of ho,(D*) (equation (34) and (75)) in our Von Neumann setting. For a real
parameter u say that a distributional section s on the cylinder is in the weighted L?-space
e L2(0X( x [0,00); EF) if e7%"s € L2. The operator D¥ trivially esxtends to act on each
weighted space. Now it is evident from (10) that an L2?-extended solution of the equation
DFs=0is in each e""L? for positive u. Viceversa let s € (0,5 Kereurp2(DT). Keep u fixed,
then e “"s € L? can be represented in terms of a complete eigenfunction expansion for the
boundary operator Dy,

es =Y x(y)g(r).
A

Solving D*s = 0 together with the condition e~“"s € L? leads to the representation (on the
cylinder) s(y,7) = > s _, éx(y)gox(y)e~". Since u is arbitrary we see that s should have a
representation as a sum

s(y,r) = Z oA(y)gore "

A>0

over the non negative eigenvalues of Dy, i.e. s is an extended solution with limiting value
> a0 0(¥)goo. We have proved that

Ext(D*) = (] Kereu,2(D*).
u>0

4 Von Neumann algebras, foliations and index theory

4.1 Non—commutative integration theory.

The measure-theoretical framework of non—-commutative integration theory is particular fruit-
ful when applied to measured foliations. The non—commutative integration theory of Alain
Connes [25] provides us a measure theory on every measurable groupoid (G, B) with G(©)
the space of unities. In our applications G will be the mostly the equivalence relation R or
sometimes the holonomy groupoid of a foliation. Transverse measures will be defined from
holonomy invariant transverse measures. Below a list of fundamental objects and facts. This
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very contained and simplified survey in fact the general theory admits the existence of a mod-
ular function that says, in the case of foliations how transverse measure of sets changes under
holonomy(under flows generated by fields tangent to the foliation). Hereafter our modular
function is everywhere 1, corresponding to the geometrical case of a foliation equipped with
a holonomy invariant transverse measure (this is a definition we give below).

Measurable groupoids . A groupoid is a small cathegory G where every arrow is invertible.
The set of objects is denoted by G(©) and there are two maps s,7 : G — G©) where
v : 8(y) — r(v). Two arrows 71,72 can be composed if r(y2) = s(71) and the result
is 71 - 72. The set of composable arrows is G2 = {(y1,7) : 7(72) = s(y1)}. As
a notation G, = r~'(z), G* = s '(z) for € G. An equivalence relation R C
X x X is a groupoid with r(z,y) =  and s(z,y) = y, in this manner (z,z) - (z,y) =
(2,y). The range of the map (r,5) : G — G© x G is an equivalence relation
called the principal groupoid associated to G. In this sense groupoids desingularize
equivalence relations. A measurable groupoid is a pair (G, B) where G is a groupoid
and B is a o—field on G making measurable the structure maps r, s, composition o :
G® — @G and the inversion v — 1.

Kernels are mappings  —— A\* where A\* is a positive measure on G, supported on the
r—fiber G* = r~!(z) with a measurability property i.e. for every set A € B the function
y — ANY(A) € [0, +00] must be measurable.

A kernel ) is called proper if there exists an increasing family of measurable sets (A, )nen
with G = U, A,, making the functions v — A*()(y~1(A)) bounded for every n € N.
The point here is that every element v :  — y in G defines by left traslation a measure
space isomorphism G* — GY and calling R(\), := yA" (push—forward measure) one
has a kernel in the usual sense i.e. a mapping with value measures. The definition of
properness is in fact properness for R(\).

The space of proper kernels is denoted by C™.

Transverse functions are kernels (v%),cx with the left invariance property s = ()
for every 7 € G. One checks at once that properness is equivalent to the existence of
an increasing family of measurable sets (4, ), with G = U, A,, such that the functions
x +— v*(A,,) are bounded for every n € N. The space of proper transverse functions is
denoted £7T.

The support of a transverse function v is the measurable set supp(v) = {z € G :

v® # 0}. This is saturated w.r.t. the equivalence relation induced by G on G(®), xRy
iff there exists v : o — y. If supp(r) = G(©) we say that v is faithful.

When G = R or the holonomy groupoid these gives families of positive measures one
for each leaf in fact in the first case the invariance property is trivial, in the second
case we are giving a measure v* on each holonomy cover G* with base point x but the
invariance property says that these are invariant under the deck trasformations together
with the change of base points then push forward on the leaf under r : G* — L.

Convolution. The groupoid structure provides an operation on kernels. For fixed kernels Ay
and, Ay on G their convolution product is the kernel A; * Ay defined by

(s # Ao = / (BN (1), y € X.

It is a fact that if A is a kernel and v is a transverse function then v x \ is a transverse
function. Clearly R(\ x A\3) = R(A1) o R(\) the standard composition of kernels on a
measure space.
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Transverse invariant measures (actually are transverse measures of modulo § = 1). These
are linear mappings A : £ — [0, +oc] such that

1. A is normal i.e A(supvy,) = sup A(v,) for every increasing sequence v, in ET
bounded by a transverse function. Since the sequence is bounded by an element of
ET the expression sup v, makes sense in £7.

2. A is invariant under the right traslation of G on £¥. This means that
Alw) =A== ))
for every v € £ and kernel X such that \¥(1) = 1 for every y € G(©).
A transverse measure is called semi-finite if it is determined by its finite values i.e

A(v) = sup{A(V'), V' < v, A(V') < 0o}. We shall consider only semi—finite measures.

A transverse measure is o—finite if there exists a faithful transverse function v of kind
v = sup v, with A(v,) < oo.

The coupling of a transverse function v € £t and a transverse measure A produces a
positive measure A, on G(®) through the equation A, (f) := A((f o s)v the invariance
property reflects downstairs in the property A,(A) = A(v x A) for v € £ and X € CT.

Measures on the base G(©) that can be represented as A, are characterized by a theorem
of disintegration of measures.

THEOREM 4.5 — (Connes [24]) Let v a transverse proper function with support A.

The mapping A — A, is a bijection between the set of transverse measures on G4 =
r~1(A)Us™1(A) and the set of positive measures 1 on G(°) satisfying the following equiv-
alent relations

1. (pov)=pov
20N eCtvxd=vx N e€et = p(A1)) = p(N(1)).

Nex we shall explain this procedure of disintegration in a geometrical way for foliations.

We shall see that what is important here is the class of null-measure subsets of G(9). A
saturated set A C G(¥) is called A-trascurable if A, (A) = 0 for every v € £F.

Representations. Let H be a measurable field of Hilbert spaces by definition this is a
mapping = — H, from G©) with values Hilbert spaces. The measurability structure
is assigned by a linear subspace of the free product vector space of the whole family
M C 11, cg Hy meaning that

1. For every £ € M the function z — ||¢(z)]| is measurable.

2. A section n € II ¢ H, belongs to M if and only if the function (n(x),{(x)) is
measurable for every & € M.

3. There exists a sequence {&; };en € M such that {&;(z)};eny C M is dense in H, for
every .
Elements of M are called measurable sections of H.

Suppose a measure g on G(©) has been chosen. One can keep together the Hilbert spaces
H, taking their direct integral

/ Hodpu(z).
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This is defined as follows, first select the set of square integrable sections in M. This
is the set of sections s such that the integral [, [ls(x)[|% du(z) < oo then identitify
two square integrable sections if they are equal outside a p—null set. The direct integral
comes equipped with a natural hilbert space structure with product

)= [ (s(@). e ).

The notation s = [, 5(x)du(z) for an element of the direct integral is clear. A field
of bounded operators © —— B, € B(H,) is called measurable if sends measurable
sections to measurable sections. A mesurable family of operators with operator norms
uniformely bounded esssup || B, || < oo defines a bounded operator called decomposable
B = fG(U> B.du(z) on the direct integral in the simplest way

Bs:= B.du(z) s = / By s(x)du(x).
GO GO
For example each element of the abelian Von Neumann algebra LﬁO(G(O)) defines a
decomposable operator acting by pointwise multiplication. One gets an involutive al-
gebraic isomorphism of L2 (G) onto its image in B([ Hydpu(z)) called the algebra
of diagonal operators. One can ask when a bounded operator T' € B( [ H,du(z)) is
decomposable i.e. when T' = [ T,du(x) for a family of uniformely bounded operators
(T:)z. The answer is precisely when it belongs to the commutant of the diagonal algebra.

A representation of G on H is the datum of an Hilbert space isomorphism U(y) :

Hgyyy — H, () for every v € G with

LU ") =Um)"UM), Y12 €G, r(n) =r1(12).

2. For every couple &, of measurable section the function defined on G according to
v — <77,.(7), U(’y)ns(v)), is measurable.

A fundamental example is given by the left regular representation of G defined by a
proper transverse function v € £T in the following way. The measurable field of Hilbert
space is L?(G,v) defined by z — L?(G®,v*) with the unique measurable structure
making measurable the family of sections of kind y —— f|g= obtained from every mea-
surable f on G such that each [ |f|?dv® is finite. For every v : # — y in G one has the
left traslation L(v) : L?(G*,v*) — L*(GY,vY), (L())(Y) = f(v 1), v € GY.

Intertwining operators are morphisms between representations. If (H,U), (H',U’) are
representations of G an intertwining operator is a measurable family of operators (T};) e
of bounded operators T, : H, — H_, such that

1. Uniform boundedness, sup |7, || < co.
2. For every v € G there follows U’ (v)Ty(y) = Tr () U(7).

Looking at a representation as a measurable functor, an intertwining operator gives a
natural transformation between representations. The vector space of intertwing opera-

tors from H to H' is denoted by Homg(H, H').

Square integrable representations. Fix some transverse function v € £+. For a represen-
tation of G the property of being equivalent to some sub-representation of the infinite
sum of the regular left representation L” is independent from v and is the definition
of square integrability for representations. Actually, due to measurability issues much
care is needed here to define sub representations (see section 4 in [24]) but the next
fundamental remark assures that square integrable representations are very commons
in applications.
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Measurable functors and representations. Let 7~€+ be the cathegory of (standard) mea-
sure spaces without atoms i.e. objects are triples (Z, A, a) where (Z,.A) is a standard
measure space and « is a o—finite positive measure.

Measurability of a functor F' : G — 7~2+ is a measure structure on the disjoint union
Y = U,cqo F(z) making the following structural mappings measurable

1. The projection 7 : Y — G,

2. The natural bijection 7=1(x) — F(x).

3. The map = — a®, a o—finite measure on F(x).

4. The map sending (v, z) € G x X with s(y) = m(z) into F(vy)z € Y.

Usually one assumes that Y is union of a denumerable collection (Y;,), making every
function a*(Y,,) bounded. With a measurable functor F' one has an associated repre-
sentation of G denoted by L? e F defined in the following way: the field of Hilbert space
is * — L%(F(z),a®) and if v :  — y define U(y) : L?(F(x),a*) — L?(F(y),aY)
by f —— F(y7!) o f. Proposition 20 in [24] shows that this is a square-integrable
representation.

Random hilbert spaces and Von Neumann algebras. We have seen that every fixed
transverse measure A defines a notion of A-—null measure sets (for saturated sets) hence
an equivalence relation on Endg(Hy, Hs) the vector space of all intertwining operators
T,S : HH — H, between two square integrable representations H;. FEach equiva-
lence class is called a random operator and the set of random operators is denoted
by Enda (Hi, H2). Also square integrable representations can be identified modulo A—
null sets. An equivalence class of square integrable representations is by definition a
random hilbert space.

Theorem 2 in [24] says that Enda(H) is a Von Neumann algebra for every random
Hilbert space.

More precisely choose some v € £ and put 4 = A, and m := u e v to form the
Hilbert space H = L?(G,m). For a function f on G denote Jf = fi(y) = f(y~1),
consider the space A of measurable functions f on G such that f, f* € L?(G, m) and
sup(v|f¥|) < co. Equip A with the product f *, g = fv*g. The structure A has is that
of an Hilbert algebra (a left—Hilbert algebra in the modular case) i.e A is a x—algebra
with positive definite (separable) pre-Hilbert structure such that

1’ <(I/‘,y> = <y*’$*>, any 6 A'

2. The representation of A on A by left multiplication is bounded, involutive and
faithful.

With such structure one can speak about the left regular representation A of A on
the Hilbert space completion H of A itself. The double commutant \’(A) of this
representation is the Von Neumann algebra W (.A) associated to the Hilbert algebra A.
It is a remarkable fact that W (A) comes equipped with a semifinite faithful normal
trace 7 such that

TAy")7(@)) = (z,y) Vo,ye A

Furthermore one knows that the commutant of A(A) in H is generated by the algebra
of right multiplications X' (A) = JA(A)J for the conjugate-linear isometry J : H — H
defined by the involution in A. For every A-random Hilbert space H one can use
the measure A, on G(©) to form the direct integral v(H) = [ H,dA,(r). Remember
that the direct integral is the set of equivalence classes modulo A, zero measure of
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square integrable measurable sections. Now, directly from the definition, an intertwining
operator T' € Homp (Hy, Hs) is a decomposable operator defining a bounded operator
v(T) :v(Hy) — v(H3).

Put W(v) for the Von Neumann algebra associated to the Hilbert algebra L%(G,m),
m=A,ev, vEET.

THEOREM 4.5 — (Connes) Fix some transverse function v € £

1. For every A-random Hilbert space H there exists a unique normal representation
of W( ) in v(H) such that U,(f) = U(fv) f € A,. Here U(fv) is defined by
w( = JUM)&A(fr¥) (7).

2. The correspondence Hv+—v(H), T — v(T) is a functor from the (W*)—cathegory
Ca of random Hilbert spaces and intertwining operators to the cathegory of W (v)
modules.

3. If the transverse measure v is faithful the functor above is an equivalence of cathegories.

Then in the case of faithful transverse measures one gets an isometry of Enda(H) on
the commutant of W (v) on the direct integral v(H). In particular Enda(H) is a Von
Neumann algebra.

Transverse integrals. The most important notion of non commutative integration theory
is the integral of a random variable against a transverse measure. A positive random
variable on (G, B, A) is nothing but a measurable functor F' as defined above. Let X :=
U.eqo F(z) disjoint union measure space and F* the space of measurable functions
with values in [0, +o0] while F* is for functions with values on (0, +oo] Kernels A
on G acts as convolution kernels on F+ according to (A x f)(z) = [ f(v~12)d\Y(v),
y = m(z) € G, This is an associative operation (A; * Ag) * f = )\1 x (Ao * f).

Now to define the integral [ Fd\ choose some v faithful and put

[ Fix=sw{Aufalh). feFvaf <),

this is independent from v and enjoys the following properties

1. there exist random variables F, Fp with F' = F} @ F5 such that f FidA =0 and a
function fy € F*(X2) with X5 = U, cqo Fo(z) with vx fo = 1.

2. Monotony. If f, f' € F(X) satisfy v+ f < v« f' <1 then

Av((alf) < Av((alf)

in particular for F5 as in 1.
/ngA = A, ((a(f").
Traces. Let A be a Von Neumann algebra with the cone of positive elements A™.

A weight on a A is a functional ¢ : AT — [0, oo] such that

1. ¢(a+b) = ¢(a) + ¢(b), a,b e AT
2. ¢(aa) = ap(a), « e R, a € A*.
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a weight is a trace if ¢(a*a) = ¢(aa*), a € AT. A weight is called

e faithful if ¢(a) =0=a=0,a € AT.

e normal if for every increasing net a;; of positive elements with least upper bound
a then

¢(a) = sup{o(as)}.

e Semifinite if the linear span of a the set of ¢—finite elements, {a € A" : ¢(a) < co}
is o-weak dense.

Every V.N algebra has a semifinite normal faithful weight.

The Von Neumann algebra Enda(H) associated to a square integrable representation
comes equipped with a bijection T' —— ®7 between positive operators and semifinite
normal weights ®7 : Endp(H) — [0, +00] where @1 is faithful if and only if T, is
not singular A—a.e. The construction of this correspondence uses the fact, for a faithful
transverse function v the direct integral v(H) = [ HydA,(z) is a module over the Von
Neumann algebra W (v) associated to the Hilbert algebra A above described.

The notation of Connes is

Op(l) := /Trace(Tm)dA(x)
i.e. the mapping T —— ®p(1) is the canonical trace on Enda (H). In fact this is related
to the type I Von Neumann algebra P of classes modulo equality A, almost everywhere

of measurable fields (B;),cq© , By € B(H,) of bounded operators. Remember that P
has a canonical trace p(B) = [ Trace(B,)dA, (z) hence we can define

pr(B) = /Trace(TmBm)dAl,(x).

The next lemma will be important in our applications

LEMMA 4.6 — For a faithful transverse function v there's a unique operator valued
weight® E, from P to Enda(H) such that the diagram

pt
l pT(-):f Trace(Ty-)dA, (z)
E,
Endy (H) P C

is commutative. Moreover E,, is such that if B = (B,),cqw, B € Pt if an operator
making bounded the corresponding family

Cyi= [U)BUG) v
then E,(B) = C.
Let F be a random variable and put H = L? ¢ F. The integration process above

defines a semi-finite faithful trace on the Von Neumann algebra Ends (H). In fact, for
T € End}(H) let Fr the new random variable defined by 2 + (F(z),ar(x)) where

3see [74] for the definition
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ar(z) is the measure on F(z) such that ar(z)(f) = Tracerz (Ti/zM(f)Ti/Q) where f
is a bounded measurable function on F(x) and M (f) the corresponding multiplication
operator on L?(F(x)). The trace is

Br(1) = /FTdA.

In the following we shall use often the notation try(7) = ®7(1) to emphasize the
dependence on A.

With a trace one can develop a dimesion theory for square integrable representation
i.e. a dimension theory for random Hilbert spaces that’s very similar to the dimension
theory of I'-Hilbert modules.

The formal dimension of the random Hilbert space H is

dimy (H) = / Trace(15, )dA(z)

here some fundamental properties

LEMMA 4.7 —

1. If Homy (Hy, Ho) contains an invertible element then dimp (H;) = dimy (Hs).
2. dimA(EBHi) = EdlmA(Hz)
3. dlmZAl(@H) = Zdim/\i (H)

4.2 Holonomy invariant transverse measures

The main example of a non—commutative measure space is the space of leaves of a foliation.
It is, in general impossible to look at the space of leaves as the quotient measure space. A
famous example is the Cronecker foliation on the thorus T? given by irrational flows (|25]).
The foliation is ergodic i.e. a function almost everywhere constant along the leaves must
be constant on the ambient. In particular every Lebesgue space of classical analysis is one
dimensional. A central concept is that of holonomy invariant transverse measure introduced
by Plante [59] and Ruelle and Sullivan [68]. According to Connes [24] a transverse measure
provides a measure on the space of leaves. Actually there’s a most general modular theory.
Holonomy invariant measures correspond to the simplest case.

4.2.1 Measures and currents

Let X be a manifold equipped with a foliation of dimension p and codimension q. We suppose
always that the foliation is oriented i.e. the bundle of p-dimensional leafwise forms AZTF
is trivial. This is not truly a restrictive assumption, in fact in the non—orientable case one
can make use of densities instead of forms to define currents. Currents are directly related
to holonomy invariant transverse measures by the Ruelle-Sullivan isomorphism. The goal of
this section is to introduce all these notions and prove the relations between them.

There is a weak version of the concept of a transversal
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DEFINITION 4.8 — A Borel subset 7' C X is called a Borel transversal if the intersection of T’
with each leaf is (finite) denumerable.

The set of all Borel transversals 7 is a o-ring i.e it is closed under the operation of relative
complementation and denumerable union. Recall that a o-ring is a o—algebra if contains the
entire space. This is in general clearly not the case of the set of all Borel transversals hence
holonomy measures will be defined only on o-rings.

DEFINITION 4.9 — A holonomy invariant transverse measure is a o—additive map p: 7 —
[0, 4+00] such that

1. For a Borel bijection ¢ : By — Bs with t(x) ~ x (the relation of being on the same leaf)
then p(B1) = pu(Bz).

2. pis Radon i.e. for every compact K C B then pu(K) < oo.

DEFINITION 4.10 — A holonomy invariant transverse distribution is the datum for every
transverse submanifold 7' of a linear and continuous! map 67 : C°(T) — C such that if
1 : Ty — T is the holonomy of a path v on X,

<5T17f> = <5T27f0¢>~

Now let Homcont(Cgo(/\dTéX ), C) the space of d—dimensional currents on X. This is the dual
space of the t.v.s. given by the compactly supported d—forms equipped with the topology of
the direct limit of Frechet spaces. The operations of Lie derivative Ly and contraction iy
w.r.t. a vector field V and the De Rham exterior derivative d extends to distribution just by
duality [25].

Note that a d—differential form w can be restricted to a subbundle S of the tangent bundle
just by evaluation of w to the d—vectors belonging to /\dSé C NPT* Xc.

DEFINITION 4.11 — A d—-dimensional current (d is the dimension of the leaves) C' is said a
foliated current if it is invariant under the operation of restriction i.e (C,w) = 0 for every p—form
w such that wjrr = 0.

Notice that for a d—dimensional foliated current C' the condition of being closed is equivalent
to require dxC' = 0 for every section X € C®(X;TF).
PROPOSITION 4.12 — For a manifold X equipped with a d—dimensional foliation is equivalent
to give

1. A holonomy invariant transverse distribution.

2. A closed foliated d—current.

PROOF—  We define first holonomy invariant transverse distributions relative to regular

4w.r.t. the usual topology of the direct limit i.e. a distribution in the usual sense
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atlas and show they define closed foliated d—currents. Since the definition of current does not
depend on the atlas and every h.i.t. distribution restricts to a h.i.t. distribution relative to
each regular atlas the proof will be complete. For a foliated chart Q — V € R*~% x R? the
local transversal associated is the quotient space defined by the relation x ~ y if x,y belongs
to the same plaque of 2. In particular a local transversal is the space of plaques in 2. We say
that the inclusion Q — ' of distinct open sets is regular and write Q <1 Q' if the inclusion
mapping ¢ : Q — Q' passes to the quotient to define a smooth mapping on the transversals.
In particular each plaque of € meets only a plaque of .

We say that a foliated atlas {(£2;, ¢:)}: of (X, F) of foliated charts €; is a good cover if

1. {Q;}; is locally finite

2. for every i, such that Q; N ﬁj # () there exist a distinct open set © such that Q; <1 Q
and Q; < Q.

Standard methods show that a regular atlas always exists.

Now define a transverse distribution related to a regular cover to be a distribution on every
local transversal Tq, of each finite intersection 2 = Q4 N...N QY with the property of (relative)
holonomy invariance i.e the distribution associated to Tong is equal to the restriction of the
distribution associated to T and the distribution associated to Tgq:.

So let C be a closed foliated current and {€;}; a regular atlas for F. For every i choose a
differential d—form w; compactly supported in some neighborhood of €; ~ L; x T; such that
f LW = 1 for every t € T;. A transverse distribution §; on the local transversal T; is now
defined by

This definition is independent from the choice of the forms w; in fact if [, (1 Wi = / L(t) wi=1
there must be some family d + 1-forms t — o(t) such that dpo(t) = w(t) — w'(t). This
family can be extended to a form ¢ on €; using the trivial connection. But C' is foliated and

closed then,
(Cyw; —wiy = (C,dfo) = 0.

The independence from the choice of w; also proves the relative holonomy invariance in fact,
for two distinct sets §2; U €2; one can choose w;; such that fLi(t) wij = ij(t) w;j = 1 for
teT;NT;.

Viceversa let § a holonomy invariant transverse distribution relative to a good cover. Define
first a closed foliated d—current Cq on €2 for every €; ~ L; x T; of the cover then patch
together using a smooth partition of the unity.

If w is a compactly supported d—form on €2 define

(Cq,w) = <5,/Lw|p>,

in other words we let § act on the function on T" defined by t — fL(t) wp(l,t). This collection
of local currents is coherent with intersections by means of the holonomy invariance in fact
Cq = Cq on QN Q. Furthermore every Cg is closed since (Cq, dw) = (07, [; dwp) = (d7,0)
The property of being foliated is immediate since by costruction they depend only on the
values of the forms on the foliation. O

REMARK — Actually there is also another interesting geometric definition of a holonomy
invariant measure as a (Radon) measure on X that is invariant in the direction of the leaves
i.e. a measures on the ambient manifold that is invariant under flows generated by vector
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fields tangent to the foliation. Also a notion of distribution invariant in the direction of the
leaves can be defined (see [24]).

To complete the picture one has to speak about positivity. Recall that our foliation is ori-
ented.

DEFINITION 4.13 — A closed d—current C is positive in the direction of the leaves if (C,w) > 0
for every d—form that restricts to a positive form on the leaves.

THEOREM 4.13 — |s equivalent to give on an manifold X with an oriented foliation

1. A holonomy invariant transverse measure i.e. a (Radon) measure on the o-ring of all
transversals invariant under the action of the holonomy pseudogroup T'.

2. An measure on X invariant in the direction of the leaves.

3. A closed foliated current positive in the direction of the leaves.

PROOF — Apart for the case of invariant measures on X that are positive in the direction of
the leaves for whose we make reference to [24] the only observation to do here is that a foliated
current that is positive in the direction of the leaves defines a positive transverse distribution.
O

4.2.2 Tangential cohomology

Let AFT*F the bundle of exterior forms of the foliation. In the terminology of Moore and
Schochet this is a tangential vector bundle i.e. it has a canonical foliation compatible with
the vector bundle structure. In a local trivialization over a foliated chart

AT F— 17 x R()

|

LxT——U
this foliation is given by the product foliation (L X R(Z)) x T, in particular the bundle

projection maps leaves into leaves.

DEFINITION 4.14 — A continuous section of A¥T*F is called a tangential k differential form
if in every trivialization as above it restricts to be a smooth section on every plaque L x {t}. The
space of tangential k—differential forms is denoted with Q%(X) and QF (X) is the subspace of
compactly supported ones.

In a foliated chart with leafwise cordinates x1,...,x, and transversal coordinate ¢, a tangen-
tially smooth differential form can be written

szail(xl,...,mp,t)dmil A ANdx, (13)
i
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with a;, and all of its derivatives w.r.t. z1,...,x, continuous in all its variables. One can hence
form the tangential De Rham operator d, : Q% (X) — QF_(X) just applying the standard
De Rham operator plaque by plaque. We have defined the complex (QF.(X), d,) of tangential
forms with compact support (d, is an example of leafwise differential operator, it decrease
supports).

DEFINITION 4.15 — The homology of the complex (2%.(X),d;) is called the tangential
cohomology with compact support and denoted by H*,.(X).

We can naturally define also tangential cohomology starting with forms without the condition
of compactness of the support. In general the tangential cohomology has infinite dimension
this is due to the fact that the continuous transverse control is much more relaxing than
smoothness in every direction. In fact there is an interesting question on how the dimension
of these spaces changes passing from tangential continuity (also measurability) to smoothness.
In Chapter IIT of [53] there are examples. In the case the foliation is given by the fibers of
a trivially local fiber bundle FF — M — X the tangential cohomology turns out to be
naturally isomorphic to the space of continuous sections of the bundle H — X where the
fiber H, = Hjy (M) is the De Rham cohomology of the fiber above .

Let’s topologize each space Q2.(X) by requiring uniform convergence of every coefficient
function a;, in (13) with its tangential derivatives in every compact subset of each foli-
ated chart. It often happens that the topological vector space H?.(X) is not Hausdorff,
this is the reason why it is convenient to take its maximal Haudorff quotient to define the
closed tangential cohomology®

Hy(X) == H¥(X)/{0} = Ker(d, : ¥, — Q) /Range(d, : Q51 — OF,).

In general this leads to different spaces, for the irrational flow on the torus Hi (T,R) ¥R
while H!(T,R) is infinite dimensional ([53]).

DEFINITION 4.16 — Elements of the topological dual of 22.(X) i.e. continuous linear func-
tionals C' : Q2.(X) — C are called tangential currents. The space of tangential currents is
denoted by

71; = Homcon.(Qﬁc(X); C)

Note that a foliated current of definition 4.11 is a current in the ordinary sense that passes
to define a tangential current under the restriction morphism (-)z : Q¥(X) — QF(X).
The differential d, : Q2(X) — Q2T1(X) (omit the subscript 7 by simplicity of notation) is
continuous and extends by duality to currents, d, : Q7 (X) — Q7_;(X) according to the sign
convention (w,d,) = (—1)*~!(d,w, c). There is an isomorphism

Homeon (HF,(X);R) = HI (X;R)

and theorem 4.3, page 22 is essentially the Ruelle-Sullivan isomorphism®

MT(X) —> Homeon, (H?,, R)

TC?

between the vector space of signed holonomy invariant transverse Radon measures and the
topological dual space of the top degree tangential homology. The tangential current defined
by a measure A is called the Ruelle Sullivan current Cy.

5sometimes is called the tangential reduced cohomology

6at this level this is only a vector space iso. but one can consider the *—weak topology on the space of
measures to force this to be a topological iso. However we don’t need continuity.
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4.2.3 Transverse measures and non commutative integration theory

At this point we have used the name transverse measure for at least two objects, measures
on the union of all transversals and transverse measures in the equivalence relation R (or the
holonomy groupoid, G is the same) according to definition 4.1. In the rest of the section we
clarify the relationship between them. First we need a couple of definitions

DEFINITION 4.17 — A transverse measure A in the sense of non commutative integration
theory for the equivalence relation R (or the holonomy groupoid G) is called locally finite if
A(v) < oo for every v € ET with

1. v is locally bounded i.e. sup v*(K) < oo for every K compact in R

2. v is compactly supported i.e. v* is supported in s~(K) for a compact K C X.

DEFINITION 4.18 — The characteristic function v, of a subset A C X is the transverse
function defined by v%(B) = |s71(A4) N G® N B| or equivalently v(f)(y) := > ovecr, s(tneat ()
for a Borel function f on G.

Note that the characteristic function is nothing but the lift s7!(u4) of the counting measure
concentrated in A. This actually shows that yv% = v, v € GY.

THEOREM 4.18 — (Connes [24]) Let A be a locally finite transverse measure for R (G). Let Z
a transverse submanifold, for a compact set K C Z define 7(K) := A(vk). This is the definition
of a Positive Radon measure on Z that is holonomy invariant.

In other words the correspondence A — 7 is a bijection

{Locally finite transverse measures on R} — {Holonomy invariant transverse measures on X}.

Remember that there is a coupling between transverse measures A on R and transverse
functions v to produce a measure on X defined by A,(f) = A((s o f)v) then A, (1) =
Alw) = 1(K).

DEFINITION 4.19 — Choose some Radon measure « on the ambient X call the lift of « is the
transverse measure 1”7 := s*(a)) where s : G — X. We say that a lift is transversally measurable
if for every foliated chart 2 = U X T it is represented as a weakly measurable mapping 7' — Ra(U)
from T to the space of Radon measures on U, bounded if 2 is relatively compact.

PROPOSITION 4.20 — (Connes [24] ) The map a —— s*(a) is a bijection transversally
measurable Radon measures on X and transverse functions v suc that sup v(K) < oo for every
compact K C G.

PROPOSITION 4.21 — Choose some Radon measure a on X with support X. Let v = s*(a).
The mapping A — A, is a bijection between locally finite transverse measures on GG and Radon
measures 1 on X with the property:
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for every disintegration of u on a foliated chart along the fibers of the distinct mapping =
U x T — T the conditional measures satisfy

d,LLt = dO{t .

In practice the above propositions furnishes a geometrical recipe to recognize the measure A,
on the base X if A is a transverse measure on the foliation i.e. a measure on the o-ring of all
Borel transversals. In fact choose some foliated atlas 2; ~ U; x T; with the set of coordinates
(z,t) and a subordinate smooth partition of the unit ¢;. Then for a function f

2 =3 [ ] etwnsnan@isn o

where v;(x) is the longitudinal measure v restricted to the plaque U; x {t}. We shall refer to
this Fubini type decomposition as to the integration process according to the terminology of
the book by Moore and Schochet [53].

4.3 Von Neumann algebras and Breuer Fredholm theory for folia-
tions

Let R the equivalence relation of the foliation. For square integrable representations on the
measurable fields of Hilbert spaces H; let Homg (H;, Hs) the vector space of all intertwining
operators. The choice of a holonomy invariant measure A on the foliation gives rise to a
transverse measure on R in the sence of non commutative integration theory hence a quotient
projection

HOI’HR(Hl, HQ) — HOI’HA(Hl, HQ)

given by identification modulo A-a.e. equality. Elements of Hom (H;, H2) are called Random
operators. If H; = Hy = H, then Homg (H, H) = Endg(H) is an involutive algebra, the
quotient via A is a Von Neumann algebra”

Hompg (H) — Enda (H).

For a vector bundle E — X let L?(E) be the Borel field of Hilbert spaces on X, of leafwise
square integrable sections {L?(L,, E\r,)}zex. There is a natural square integrable represen-
tation of R on L?(E) the one given by (z,y) — Id : L?*(L,, E) — L?*(Ly, E). Denote
Endg (FE) the vectorspace of all intertwining operators and Homy (E) the corresponding Von
Neumann algebra.

Since we need unbounded operators we have to define measurability for fields of closed un-
bounded operators. Remember that the polar decomposition T' = u|T| is determined by the
couple of bounded operators u and (1 + 7*T)~1L.

DEFINITION 4.22 — We say that a field of unbounded closed operators T, is measurable if
are measurable the fields of bounded operators u, and |T,|.

REMARK — .In the paper [56] about unbounded reduction theory. An unbounded field of

"to be precise this is a W* algebra in fact it is not naturally represented on some Hilbert space. The choice
of a longitudinal measure v gives however a representation Endg (H) — B( [y HzdA,(z)) on the direct
integral of the field H
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closed operators A is said measurable if the family corresponding to the projection on the
graph is measurable on H @ H with the direct sum measure structure. Writing the projection
on the graph as

(&m) — (L+A"A)TH(E+ A™), A1+ A" A)TH(E+ A™p))

we can see that these definition is equivalent to the one given here

Next, we review some ingredients from Breuer theory of Fredholm operators on Von Neumann
algebras, adapted to our weight—theory case with some notions translated in the language of
the essential A—spectrum, a straightforward generalization of the essential spectrum of a self—
adjoint operator. Main references are [14, 15] and [18] and [19].

Remember that the set of projections P := {A € End,(E),A* = A, A% = A} of a Von
Neumann algebra, has the structure of a complete lattice i.e. for every family {A;}; of
projections one can form their join VA; and their meet AA;. Then for a random operator A €
Endy (E) we can define its projection on the range R(A) € P(End,(E)) and the projection
on its kernel N(A) € P(Enda(E)) according to R(A) := V{P € P(Ends(FE)): PA = A} and
N(A):= AN{P € P(Enda(E)) : PA = P}. If A is the class of the measurable field of operators
Az, it is clear that R(A) and N(A) are the classes of R(A), and N(A4),.

DEFINITION 4.23 — Let H;, i = 1,..,3 be square integrable representations of R define
1. A—finite rank random operators. B[{(Hl,Hg) := {A € Homp (Hy, Ha) : try R(A) < oo}
2. A—compact random operators. BY°(H;, H3) is the norm closure of finite rank operators.

3. A-Hilbert-Schmidt random operators

B3 (Hy, Hy) := {A € Homp (Hy, Hy) : tra(A*A) < oo}.

4. A-trace class operators. B} (H) = Bi(H)B%(H)* ={>__, SiT; : S;,T; € Bi(H)}.

LEMMA 4.24 — B} (H) is a #—ideal in Enda(E). An element A € B} (H) iff |A| € B} (H),
x = f,1,2,00. The following inclusion holds

Bl (E) c BL(E) C BX(E) C BY(E).

Furthermore
BA(E) = {A € Enda(E) : trp |A| < oo}

PROOF — The proof is very similar to the standard case. O

An important inequality is the following, take A € B} (E) and C € End,(H). We have polar
decompositions A = U|A|, C = V|C| then |A| = U*A € BY(E), |A|'/? € B3(F) and

[tra(CA)| < [[Cl tra |A]. (14)

For the proof, being a very standard calculation in Von Neumann algebras can be found in
chapter V' of [74].
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DEFINITION 4.25 — A random operator F' € Homy (E1, Es) is A-Fredholm (Breuer—Fredholm)
if there exist G € Homy (Es, Eq) such that FG —1d € B (E2) and GF —1d € B (En).

DEFINITION 4.26 — For an unbounded field of closed operators T, : H; — Hy between two
measurable fields of Hilbert spaces H; the field of bounded operators

T, : (Domain(Ty), | - [I7,) — H2

where ||- ||, is the graph norm is measurable by Remark 4.3. We say that T" is A-Breuer—Fredholm
when this field of bounded operators is A—Breuer—Fredholm.

PROPOSITION 4.27 — A random operator F' € Homy (Hy, Hy) is A—Fredholm if and only
if N(F) is A-finite rank and there exist some finite rank projection S € Enda(Hs3) such that
R(Id—S) C R(F).

Hence from the proposition above A—Fredholm operators F' have a finite A—index. In fact
tra(N(F)) < oo and
tra(l — R(F)) < tra(S) < oo,

making clear the next definition.

DEFINITION 4.28 — Let F' € Homp (H1, Ha) be A—Fredholm. The A index of F is defined by

indp (F) :=tra(N(F)) — tra(1 — R(F)).

The next result contained in The Shubin book [69] motivates the definition of an useful
instrument called the A—essential spectrum

LEMMA 4.29 — Let M be a Von Neumann algebra endowed with a semi—finite faithful trace
7, S =8* € M. Then S is 7—Breuer—Fredholm if and only if there exists € > 0 such that
T(E(—€,€)) < 0o, where E(A) is the spectral projection of S corresponding to a Borel set A.
Besides if S = S* is 7—Breuer—Fredholm then ind. S = 0.

So consider a measurable field T' of unbounded intertwining operators. If T is selfadjoint
(every T, is self-adjoint a.e.) the parametrized (measurable) spectral Theorem (cf. Theorem
XII1.85 in [63]) shows that for every bounded Borel function f the family x — f(T}) is
a measurable field of uniformely bounded intertwining operators defining a unique random
operator. In other words

{f(Ty)}» € Endp(H).

For a Borel set U C R let x7(U) be the family of spectral projections x — xy (T%). Denote
Hp(U) the measurable field of Hilbert spaces corresponding to the family of the images
(Hr(U))e = xvu(T)H,. Let try : End{(H) — [0, +00] the semifinite normal faithful trace
defined by A. The formula

MA,T(U) = tI‘A<XT(U)) = dimA(HU(T)>

defines a Borel measure on R.
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DEFINITION 4.30 — We call the Borel measure defined above the A—spectral measure of T

REMARK — Clearly this is not in general a Radon measure (i.e. finite on compact sets). In
fact due to the non—compactness of the ambient manifold a spectral projection of a relatively
compact set of an (even elliptic) operator is not trace class. In the case of elliptic self adjoint
operators with spectrum bounded by below this is the Lebesgue—Stiltijes measure associated
with the spectrum distribution function relative to the A—trace. This is the (not decreasing)
function A —— tra X (—00,n)(T). A good reference on this subject is the work of Kordyukov
[38].

Notice the formula

/fduA,T =tra(f(T))

for each bounded Borel function f : R — [0, 00). The proof of this fact easily follows starting
from characteristic functions. Here the normality property of the trace plays a fundamental
role. A detailed argument can be found in [58]. Next we introduce, inspired by [76] the hero
of this section.

DEFINITION 4.31 — The essential A—spectrum of the measurable field of unbounded self-
adjoint operators 7' is

specy o(T) :={A € R: pupy (A — €, A+ ¢€) = 00, Ve > 0}.

LEMMA 4.32 — For Random operators the A—essential spectrum is stable under compact
perturbation. If A € Endy(F) is selfadjoint A = A* and S = S* € B (FE) then

SpecA’e(A +95)= specA!e(A).

Then if try is infinite i.e. tra(1) = oo we have spec, .(A) = {0} for every A = A* € B°(E).

PROOF— Let \ € specy (A), by definition dimy H4 (A — €, A + €) = 0o. Then consider the
field of Hilbert spaces

Ge,w = {t € X(*A*E,)\Jre)(Ai)Hw; ||SItH < EHt”} = HSm(_eaG) n HAm(_)\ - Ev)‘ + 6)'

This actually shows that G is A-finite dimensional infact Ha, (—A — €, A + €) is A-infinite
dimensional while Hg, (—¢, €) is A-finite codimensional. This showing that A € spec, .(A+S).
The second statement is immediate. O

There is a spectral characterization of A—Fredholm random operators as expected after Lemma

[7].

PROPOSITION 4.33 — For a random operator F' € Homp (H1, H2) the following are equivalent
1. F'is A—Fredholm.

2. 0 ¢ specy (F*F') and 0 ¢ specy (FF*).
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3. OgéspecA,e( 1(; F(; )

4. N(F) is A-finite rank and there exist some finite rank projection S € End(Hz) such that
R(Id—S) C R(F).

4.3.1 Splitting principle

Let E — X be a vector bundle. For every x € X and integer k consider the Sobolev
space H¥(L,, E) of sections of E, obtained by completion of C2°(L,, E) with respect to the

k Sobolev norm i

HSH?{’C(LI;E) = Z HkaH%?(@’CT*LI;E)v
i=0
here the longitudinal Riemannian connection has been used. This is the definition of a Borel
field of Hilbert spaces with natural Borel structure given by the inclusion into L2. In fact,
by Proposition 4 of Dixmier [27] p.167 to prescribe a measure structure on a field of hilbert
spaces H it is enough to give a countable sequence {s;} of sections with the property that
for 2 € X the countable set {s;(x)} is complete orthonormal. In the appendix of Heitsch and
Lazarov paper [33] is shown, making use of holonomy that a family with the property that
each s; is smooth and compactly supported on each leaf can be choosen.

DEFINITION 4.34 — Consider a field T = {7 } e x (not necessarily Borel by now) of continuous
intertwining operators T, : C°(Ly; By, ) — C&(La; By, ).

e We say that T is of order k € Z if T,, extends to a bounded operator
H™(Ly, ELg) — H™ *(Ly, B|2)
for each m € Z and for = a.e.
e We say that the T is elliptic if each T}, satisfies a Garding inequality
[l gm+re < C(La,m, K)[||s]l e + (| To s ],
and the family {C(L.,m, k)},cx is bounded outside a null set in X.
Since each leaf L, is a manifold with bounded geometry for a family of elliptic selfadjoint

intertwining operators {7}, },cx every T} is essentially selfadjoint with domain H*(L,; Ey,).
It makes sense again to speak of measurability of such a family.

DEFINITION 4.35 — For two fields of operators P and P’ say that P = P’ outside a compact
K C X if for every leaf L, and every section s € C>°(L, \ K; F) then Ps = P’s. This property
holding = a.e in X with respect to the standard Lebesgue measure class.

THEOREM 4.35 — The splitting principle. Let P and P’ two Borel fields of (unbounded)
selfadjoint order 1 elliptic intertwining operators. If P = P’ outside a compact set K C X then

specy (P) = specAye(P’).
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PROOF— Let A € specy (P), for each € > 0 put X2 := X(x—erte) Put Ge := x2(P), then
tra(Ge) = oo. The projection G. amounts to the Borel field of projections {x}(Py)}zex-
By elliptic regularity on each Hilbert space G, every Sobolev norm is equivalent in fact the
spectral theorem and Garding inequality show that for s € G, and kK € N

Isll gz < C(Pyk +2){0Isll 2z + 1(Pr = X)*sllzz} < (C+ €M)lsllre

where C(Py, k + 2) is a constant bigger than each leafwise Garding constant.
Now choose two cut—off functions ¢, € C2°(X) with ¢x =1 and |supp ¢ = 1. Consider the
following fields of operators

@

By: L1225 Gey 12, (15)

X5 b
Cy: L2 —=3 (Geas |l l22) — (Ge, | - | v) — H: (16)

for a k sufficiently big in order to have the Sobolev embedding theorem. We declare that
CyCy € End (F) is A—compact. In fact consider by simplicity the case in which 1 is sup-
ported in a foliation chart U x T'. The integration process shows that the trace of C7,Cy is
given by integration on T of the local trace on each plaque U; = U x {t}. Now the operator
Cy +Cyp,z 1s locally traceable by Theorem 1.10 in Moore and Schochet [53] since by Sobolev
embedding the range of Cy is made of continuous sections (the fact that each sobolev norm
is equivalent on G, makes the teorem appliable i.e don’t care in forming the adjoint w.r.t. H?!
norm or L?). These local traces are uniformly bounded in U x T from the uniformity of the
Garding constants for the family since we are multiplying by a compactly supported function
. Actually we have shown that CjC'y is A-trace class. There follows from Lemma 4.32 about
A-compact operators that the projection G, := X(_Ez)ez)(C’q’ZCﬁ,) is A—infinite dimensional in
fact spec, .(C;,Cy) = {0}.

Now 1 — By is A-Fredholm ( also By is A—compact ) then its kernel has finite A-dimension.
Also since C,Cyx2 = C;,Cy then Gex) = G hence (1 — By)Ge = (1 — ¢)G. C domain(P’)
is A—infinite dimensional.

Take s € G., from the definition

[s|F = (Cys, Cys)ar = (CyCys, 8) 12 < €|s]|72
then

I(P" =21 = ¢)sllzz < I[P, dlsllzz + |1 = @)(P = Nsllzz < Cllbs] g+
[(P—=N)sl[r2 < e(1+C)|s| 2.

The second chain of inequalities follows from

(P =N1=¢)s=(P=N{1=¢)s=(P-A\1-¢] - (1-9)(P—N))s
= —([Po]+ (1 = ¢)(P = A))s.

Finally the spectral theorem for (unbounded) self adjoint operators shows that (1 — ¢)G. C
X(o,r)(P') with 0 = A —€(1+ C),7 = A+ ¢(1 + C). In particular A € specy .(P'). O

COROLLARY 4.36 — Consider two foliated manifolds X and Y (with cylindrical ends or
bounded geometry) with holonomy invariant measures Ay, Ay and bounded geometry vector
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bundles £y — X and E5 — Y. Suppose there exist compact sets K1 C X and K5 C Y such
that outside X \ K7 and Y \ K5 are isometric with an isometry that identifyies every geometric
structure as the bundles and the foliation with the transverse measure. If P and P’ are operators
as in Theorem 4.5, page 29 with P = P’ on X \ K1 ~ Y \ K> in the sense of definition 4.35 then

specy, o(P) = specy, .(P').

PROOF—  The proof of 4.5, page 29 can be repeated word by word till the introduction of
the element (1 — ¢)G. that can be considered as an element of Endy, (E2) through the fixed
isometry. O

5 Analysis of the Dirac operator

5.1 Finite dimensionality of the index problem

Consider the leafwise Dirac operator D. This is a measurable field of unbounded first order
differential operators { D, },ecx. Its measurability property is easily checked observing that is
equivalent to prove the measurability of the field of bounded operators

(Dy +i)" ' : L*(Ly; E) — HY (L, E).

Here the field of natural Sobolev spaces has the canonical structure given by inclusion into
L?. Now, the self-adjointness of D, with domain H'(L,; E) shows that

(Dy +1i): HY(Ly; E) — L*(Ly; E)

is a Hilbert space isomorphism. Choose two sections s, t of the domain and range respectively
with the additional property that are smooth when restricted to each leaf then

(De +1)s(@), t(2)) L2(L,:8) = (s(x), (D2 — )t(2)) L2(L,:B)

and the measurability of the right—hand side is clear. Now it remains to apply the Example
2. in Dixmier [27] p-180 to have that the leafwise inverse family is measurable (Borel).

Since the foliation is even dimensional there is a canonical involution 7 = iPc¢(e; - - - eap) giving
a parallel hortonormal &1 eigenbundles splitting £ = ET @ E~. Moreover the Dirac operator
is odd with respect to this splitting. That’s to say that D anticommutes with 7 giving a pair
of first order leafwise differential elliptic operators DF : C°(L,; E*) — C°(L,; ET). We
continue to use the same notation for their unique L?—closure and we have D = Dt @& D~
with DT = (D™)*.

The operator DV is called the chiral longitudinal Dirac operator, in general this is not a
Breuer—Fredholm operator. In fact Fredholm properties are governed by its behavior at the
boundary i.e its restriction to the base of the cylinder X,. Just in the one leaf situation DT
is Fredholm in the usual sense if and only if 0 is not in the continuous spectrum of D~ D% or
equivalently if the continuous spectrum has a positive lower bound. However the L? kernels
of DT and D~ are finite dimensional and made of smooth sections. The difference

dimp Kery2(D1) — dimy Kerp:(D™)



32 PAOLO ANTONINI

is the definition of the L?-chiral index of Dt giving the usual fredholm index when the
operator is Fredholm. Notice that in the non Fredholm case the L? index is not stable under
compactly supported perturbations making difficult its computation.

We are going to show that in our foliation case the chiral index problem is A—finite dimensional
in the following sense exlpained in four steps.

e By an application of the parametrized measurable spectral theorem the projections
on the L2 kernels of D* belong to the Von Neumann algebras of the corresponding
bundles, X0} (D) € Enda (E*) and decompose as a Borel family of bounded operators
{x101(D*)z}2 corresponding to the projections on the L? kernels of DE. Furthermore
they are implemented by a Borel family of uniformly smoothing Schwartz kernels.

e The family of projections above give rise to a longitudinal measure on the foliation.
These measure are the local traces U —— trLz(Lm)[XU © X{0} (Di)$ - xu] where for a
Borel U C L, the operator i acts on L?(L,) by multiplication. In terms of the smooth
longitudinal Riemannian density these measures are represented by the pointwise traces
of the leafwise Schwartz kernels. We prove that these local traces has the following
finiteness property completely analog to the Radon property for compact foliated spaces.

Finiteness property for local traces of projections on the kernel.

Consider a leaf L,. This is a bounded geometry manifold with a cylindrical end 0L, x
R*. We claim that for every compact K C 0L,

trrz(n,) XK xr+ * X{0} (DF)a - Xxexret]-

Since this list is aimed to the definition of the index the (rather long) proof of this
statement is postponed immediately after.

e The integration process of a longitudinal measure against a transverse holonomy invari-
ant measure immediately shows that the integrability condition above is sufficient to
assure finite A-dimensionality of the L? kernels of D*. Here the proof.

First one has to choose a complete compact transversal S and a Borel map f: X — S
that respects the leaf equivalence relation displaying X as measure—theoretically fibering
over S. Thanks to our assuptions on the foliation we can choose S composed by two
pieces S7 and S where S; = 90Xy x {0} on the cylinder while Sy is an interior transversal.
Since we are working in the Borel world we can surely think that f restricts to U with
values on S; and outside U with values on S3. Now the integral ha two terms. The first
integral, on S is finite thanks to the finiteness property above in fact the situation here
is a fibered integral of a standard Radon measure on the base times a finite measure.
The interior term is finite thanks to proposition 4.22 in [53].

DEFINITION 5.37 — Define the chiral A—L2—index

Insz,A(D+) = trA(X{O}(D+)) —tralxqo3(D7)) € R.

Proof of finiteness property of the local trace of kernel projections

PROOF — It is clear that it suffices to prove the property for each operator (-)a, xr+x {0} (D3 )-
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Let us consider the operator D' on a fixed leaf L,. This is a bounded geometry manifold
with a cylindrical end 0L, x RT = {y € L, : r(y) > 1} where the operator can be written
in the form B + 9/t acting on sections of F — 9L, x RT. The boundary operator B is
essentially selfadjoint on L?(0L,; F) on the complete manifold L, (see [22] and [21] for a
proof of self-adjointness using finite speed tecniques).

We are going to remind the Browder-Garding type generalized eigenfunction expansion for B
(see [26] 11, 300-307, [28] and [62] for an application to a A.P.S foliated and Galois covering
index problems).

According to Browder—Garding there exist

1. A sequence of smooth sectional maps e; : R x 0L, — F i.e. e; is measurable and for
every A € R, (A, -) is a smooth section of F' over 0L, such that Be;(\, z) = Ae;(A, z).

2. A sequence of measures 4i; on R such that the map V' : C2°(0Ly; F) — € L2(R, )
defined by (V's);(X) = (s,¢ej(X, ")) 12(s1,) (integration w.r.t Riemannian density) extends
to an Hilbert space isometry

V :L*L,; F) — @B =

sending Borel spectral functions f(B) into multiplication by f(A) with domain given
by dom f(B) = { S Ja [FOVRIV ) ()2 dpas (A) < oo}. In particular beying an

isometry means / |s(z)|*dg = Z/ |(V3)j|2d,“j (A).
AL, i JR
j

Notice that e;(], -) need not be square integrable on L,. Taking tensor product with L?(R)
we have the isomorphism

L*(0L, x RY,F) ~ L*(0L,, F) ® L*(R) = [@,L*(R, uj)] ® L*(RT) = Hp ® L*(R") (17)

where RT = (0,00),. Under the identification W := V ® Id the operator D7 is sent into
A + 0, acting on the space Hp ® L?(R*). Now let s be an L?*-solution of D,s = 0. By
elliptic regularity it restricts to the cylinder as an element s(z,r) € C®° (R, H>®(0L,; F)) N
L*(R*; L*(OLy, F)) solution of (9, + B)s = 0 then

0r(Vs)j(At) =0, (s(z,r),ej(z,r))dg = / (drs(z,7),e;(A x))dg (18)

L OL,

. / (Bs(z,7), 5(\, 2))dg = / (s(2,7), Be; (z,))dg
OL,

OL,

= —)\/ (Bs(z,r),ej(A\ z))dg = —A(Vs),; (A1),
oL

Equation (18) says that all L? solutions of D™ = 0 under the representation V on the cylinder
are zero pj(A)-a.e. for A <0 for every j. Decompose, for fixed a > 0

L*(0L, x RT; F) = L*(R*; Hp([~a,a])) ® L*(RT, Hp(R\ [~a,a])) (19)
where the notation is Hp(A) for the spectral projection associated to xa. Let II<, and IIs,

respectively be the hortogonal projections corresponding to (19). Let xo3(D;) be the L?
projection on the kernel, there’s a composition

% :=T<q 0 (1) a1, x&+ © X{0} (D)
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defined trough
12(L,) —> Kery2(DF) —= I2(0Ly x RY) — = (R Hp([~aya])).  (20)

Thanks to the Browder—Garding expansion and equation (18) we can see that elements ¢
belonging to the space II1°L?(L,) are in the form

€ = X(0,00)(N)e (21)

with (o = (o; € H*(0Ly; F) to be univoquely determined using boundary conditions. For-
mula (21) allows to define® the "boundary datas" mapping

BD: I°L?(L,; F) — Hp((0,a])
W (X 0,0 (A)Coe™™) — W (x (0,0 (A)0)

This is continuous and injective in fact injectivity is obvious while continuity follows at once
from

illzon,ne) = 3 L] e P 23 /

[—a,al

>Z/ a,al / _QatK ‘ dtdp; (A /(2a) Z/ ‘X[ aa]CO] | dpj(N)

1/(2a)[IX[-a,a1C0 I -

/ ey () Pty (V)

Now choose an orthonormal basis s,, = fi, @ gm € L*(0L, x RT, F) and a compact set of the
boundary A C 0L, then put x 40 = X ax(0,00) (%, 7). Consider the operator x ,o0II*x 40 acting
on L?(L,; F), now notice that II* acts on s, via the natural embedding L?(0L,) C L*(L,)
then

tr(x a0ll"x40) = Z<XAD X A0 Sms Sm) L2(0L, xR+)- (22)

m

Write BD[II%X 408m] = W‘l[x(o’a]()\)(ém | hence [TI%x q08m] = X(0,q1(A)Co (m)e=xt By conti-
nuity of BD the sequence x(g,q) gém) is bounded. Then (22) becomes

tr(XADH“XAD):Z<W 0N ™ e, X 405m)

fZ X0, (NG e W (x 4050m) (23)

= Z/}R+ /]RXNX(O a] (A (m) 7’\tmdu(/\)dt (24)

where p is the direct sum of the 1 ’s

Last term of (23) can be estimated using Cauchy—Schwartz inequality and the trivial identity

8this is clearly inspired by Melrose definition [50] Chapter 6
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W (X A08m)W (X 40 fm @ gm) = V(XA(@) frn(2)) g (2),
Z/R+/ X0,/ (W™ 7Mmdp(>\)dr
<>{[. /M'g’” PG Pavar} [ e [ e W g Py}

< ;C{ /RXN X(O,a]|V(XAfm)|2dM()\)dr}1/2 _ C; IxaMB((0,a))xafml L2 (0L
< CZ<XAHB((O,G])XAfm7fm> = Ctr(xaH5((0,a])xa) < co. (25)

In the last step we used the fact that for a projection on a closed subspace K one can compute
its trace as, tr(K) = >, (K fm, fm) = >, |l I fm| together with the fact that Hp((0,a]) is
a spectral projection of B hence uniformely smoothing. Let us now pass to examine the
operator

I, := I>40(")joL, <&+ © X{0} (D7 )
defined by

L*(L,) — Kerp2 (D) — L2(0L, x RY) —= L2(RT; Hp(R\ [~a,a])).  (26)

arising from the second addendum of the splitting (19). Let ¢ be the characteristic function
of r <k and

A :=TI>4 0 g 0 ()jo, xr+ © X{0}(DF).

Now

1T = Ap)Ell = [Tza(0x — D()jor, <z Xqop (D€l L2 (oL, xr+) (27)

/ [ eiaPaas et [ T emgaar
(a,00)x (a,00) xN

< ek Hf”L?(aL XR+)

Finally choose a compact A C 9L, estimate (27) shows that Sy := x o0Arx40 converges
uniformly to x 4o0ll,x 40. Observe that Sy is compact by Rellich theorem and regularity the-
ory in fact Ilkey(r+) is obtained by functional calculus from a rapid Borel function hence
has a uniformly smoothing Schwartz—kernel (see the appendix for more informations). Since
Xax ApIls o Hger(r+)Xax is norm-limit of compact operators is compact but a compact pro-
jection is finite rank. O

5.2 Breuer—Fredholm perturbation

Our main application of the splitting principle is the construction of a A—Breuer Fredholm
perturbation of the leafwise Dirac operator. Let 6 be a smooth function satisfying 6 = 6(r) = r
on Z; while 6(r) = 0 on X5, put 0 = df/dr. Let TI, := x.(D”?) for I. := (—¢,0) U (0, ).
Our perturbation will be the leafwise operator

Deo = D +60Q(u — DPI1,) for e >0, uecR (28)

that is Zo odd as D. We write D, = D:u ® D, and D, , for its restriction to L,, also
for brevity D, := D..
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Notice that the perturbed boundary operator is ng =D%(1-1) +u= ng + u. Since
for € > 0, 0 is an isolated point in the spectrum of ng then ng is invertible for 0 < |u| < e.

For further application let us compute the essential spectrum of Biu where
B.., = D+ Q(u— D”°11,)

on the foliated cylinder Xy x R with product foliation F5 x R. The Von Neumann algebra
becomes Endy, (E) @ B(L*(R)) where Endy,(E) is the Von Neumann algebra of the base
i.e. the foliation induced on the transversal X, x {0}. The integration process shows that
the trace is nothing but try = tra, ® tr where the second factor is the canonical trace on

. 0 —0, +u+D%(1—11) \°

2 2 _ T € _

B(L*(R)). We can write BZ, = ( B, +u+ DFo(1 —11,) 0 =
—52 0 0 ut+DFo(1-1) \° ., )

( 0 -0 >+<u—|—Df6(1—H€) 0 = o L4V

Consider the spectral measure py, 2 of V2 on the tranversal section X x {0}. We claim the
following facts

1. w:=infsupp(pa, vz) >0
2. pap2, (a,b) =00, 0<a<b w<b
3. pa,p2 (a,0) =0, 0<a<b<w.

First of all 1. is obvious since spec(foj) C [(e +u)?,00). To prove the second one observe
first that we can use the Fourier transform in the cylindrical direction. This gives a spectral
representation of —9? as the multiplication by y? on L?(R). Choose some v < (b — w)/2. We
can prove the following inclusion for the spectral projections

X(a,’y+w)(v2) ® X(O,'y)(_ag) - X(a,b) (Bz,u) (29)

In fact (29) follows from a (leafwise) spectral representation for V' as the multiplication op-
erator by x together with the implication a < 2?2 < y+w, 0<y? <~y =a<z?+y? <b.
From (29) follows

pamz, (a,0) > pa, ve(a,y 4+ w) - trprem) X(0,q) (—07) = 00

in fact the first factor is non zero and the second is clearly infinite. Finally the third statement
is very similar in the proof. We have shown that

specy (B2 ,) = [w,00).

The perturbed boundary operator is D73 = D72(1 —1I.) + u = ng + u. Since for € > 0, 0
Fo

€, U

is an isolated point in the spectrum of ng then D72 is invertible for 0 < |u| < e.

PROPOSITION 5.38 — The operator D, ,, is A—Breuer—Fredholm if 0 < |u| < e.

PROOF— The splitting principle (actually for order 2 operators but it makes no difference)
says that the essential spectrum is determined by the operator on the cylinder for » > 1. The
above calculation ends up the proof. O

In the next we shall investigate the relations between the index of the perturbed operator and
the Dirac operator. At this aim the use of weighted L?-spaces is fruitful as Melrose shows in
[50].
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DEFINITION 5.39 — For u € R, denote ¢“Y L2 the Borel field of Hilbert spaces (with ob-
vious Borel structure given by ¢“? - L2 — Borel structure. {e“YL?(L,; E)}, where, for z € X,
e"I2(L,; F) is the space of section—distributions w such that e %%w € L?(L,;E). Analog
definition for weighted Sobolev spaces ¢“? H* can be written.

Notice that €“’L?(L,; E) = L?(Ly; E, e *"%dg1,,) where dg is the leafwise Riemannian den-
sity so these Hilbert fields correspond to the representation of R with the longitudinal measure
z € X r— 6*2“9d9|Lm = r*(e72%0dg) (transverse function, in the language of the non com-
mutative integration theory [24]).

The operators D and its perturbation D, ,, extend to a field of unbounded operators er? —
e 2 with domain e H'. Put

X012 = Ussoe® L2.
In the next we will use, for brevity the following notation: L, := L, N (90X, x {0}) and
Zy = 0L, x [0,00)
for the cylindrical end of the leaf L,.

For a smooth section s* such that DE, ,s* = 0 we have (DZE, ,)jor, xr+ (%) o1, xr+ = 0 that
=1,

€,U,T
can be easily seen choosing smooth r—functions ¢, ¢ with ¢x, =1, ¢z, , supp(y C Zy/s)

and evaluating [DF, ,(¢(1 — ¢)s + ¢1s) = 0]joL, xr+-

The isomorphism W defined in (17) used in the proof of finiteness property for the kernel
projection, can be defined also as an isomorphism ¢*?L?(0L, x RT, F) ~ Hp ® e L?(R*)
in a way that solutions of DX,  s* = 0 with conditions s* € ¢>? N L2 can be represented as

solutions of [+d, + A + H(T)(u— Xe(MA)]WsE = 0 with xe(A) = X(—e,0)u(e,0)(A) acting as a
multiplier on € ; L3(R, p1;). In particular (forgetting for brevity the restriction symbol)

Ws™ = G (N) exp{Fud(r) F Alr — 0(r)xe(V)]} (30)

with suitable choosen {;—L()\) € L?(p;).

PROPOSITION 5.40 — Let € > ¢ > 0 and ¢’ € R then
1. & € Kerywopa(DF) = €7, = e hwith h € x(D70) Ly o) L2
2. ¢ € Kerpa(DY,) = &y, = e D7 H0ODT e with h € X(DT0)(, o0y L2
3. & € Ketgooga(DY,) = &z, = e~ DI H0WDI ey e \(DF0) (o) L2,
recall that ITe ; = X(—c.e)— {0} (DZ?). Moreover the following identity (as fields of operators) holds

true
Dj:e$9(r)D]:8H‘ _ €$0(r)D]:6H6D;|:.

PROOF —

1. From the representation formula (30) of formal solutions for v = 0, € = 0 it remains
€ = &j(N)e . Then e~%?¢ must be square integrable hence clearly &;(\) = h;(\) €
' ooy (DZ2).
X(=8',00) T
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The remaining are proved in a very similar way. The last statement is merely a computation.
O

Solutions of DZ, s* = 0 belonging to the space (), ¢"L?(Ly; E*) are called L*-extended
solutions, in symbols Ext(Dejfw). Next we study this space of solutions as x varies.

PROPOSITION 5.41 — Foreveryx € X and 0 < u < ¢

1. KerLz(Dfm) =Ker,—uoz2 (D}I) = KerLz(Dei’¢u7z) (31)
2. Ext(DZ,) = Kerpuop2(DZE,) = Kerp2 (DL, ). (32)
3. Ker2(DZ,) C Ext(DZ,) (33)

PROOF— We show only the first equality of (31) the others being very similar. This is a
simple application of equation (30). In fact, for u = 0, Ws* = Cji()\) exp{FA[r — 0(r)x.(\)]}
The condition of being square integrable in (R, ;) ® (R*,dr) is easily seen to be equiva-
lent to (;r()\) =0 A <e¢ Aaeand (5 () =0 A > —¢ in particular, for r > 1 Wst =
jS()\)ejF)‘TXiAZE(A) then e“/s* € L? if u < e. For the reverse inclusion the proof is the
same. For the third stament note that e“’L? C e"?L? for every u,v € R with u < v then
Kery: C Ext. O

Proposition 5.41 shows at a single time that the mapping x —— Ext(Dé%x) gives a Borel field
of closed subspaces of L2. No difference in notation between the space Ext and Ker and
the corresponding projection in the Von Neumann algebra will be done in future. Inclusion
(33) together with 5.38 and the finiteness property of the L?~kernel projection says that the
difference

hie = dimp (Ext(DZ)) — dimp (Ker2(DF)) = try (Bxt(DF)) — try (Kerp2 (D)) e R (34)

is a finite number.

LEMMA 5.42 — Fore >0
1. dimp Kerpa(DZF) = limy o dimp Kerpz2(DZ;,) = limy o dimy Kerp2(DIL,) — by,

2. Indp> 5 (DF) = limy o Inda(DF,) — hy, = limy o Inda(D}_,) + by,

€,—u

PROOF— Nothing to prove here, proposition 5.41 says that the limit is constant for wu
sufficiently small, the second one in the statement follows from the first by summation. O

Now define the extended solutions Ext(DZ) in the same way i.e. distributional solution of the
differential operator D : C°(L,; E¥) — C°(ET; F) belonging to each weighted L?-space
with positive weights,

Ext(DF) = )| Kereuop2(D*) = {s € C™°(Ly; E*); D*s = 0; e "%s € L*Vu > 0}.
u>0

Here we have made use of the longitudinal Riemannian density to to identify sections with
sections with values on density and the Hermitian metric on E, in a way that one has the
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isomorphism C~(L,; E¥) ~ C(L,; (E*)* @ Q(L,)) to simplify the notation with distri-
butional sections of the bundle E.

It is clear by standard elliptic regularity that extended solutions of D* are smooth on each
leaf. In fact D a first order differential elliptic operator and one can construct a parametrix
i.e. an inverse of D* modulo a smoothing operator i.e. an operator sending each Sobolev
space onto each Sobolev space (of the new, weighted metric).

REMARK — By definition Ext(D*) C e“YL? for every u > 0, define dim&u)(Ext) as the trace
in End (e“?L?) of the projection on the closure of Ext, now we must check that under the
natural inclusion e*?L2? C e*L? if u < v’ , these dimensions are preserved. This is done at
once in fact the inclusion Ext(D¥) c e*?L? — Ext(D*) c e*'?L? is bounded and extends to
a bounded mapping

’ -
eu,G 2 u QLZ

Ext(DE)° © — Ext(DF)"

with dense range. Now the unitary part of its polar decomposition is an unitary isomorphism
then the A dimensions are the same by 1. in 4.7.

DEFINITION 5.43 — The A—dimension of the space of extended solution is

8149 L2

dim Ext(D¥) := dimy Ext(D¥)

for some u > 0.

PROPOSITION 5.44 —
L. lim,jo dimp Kerz2(DZ) = dimp Kerpz (D)
2. limelo InszyA D:_ = InszyA D+

3. lime o dima Ext(DF) = dimy Ext(D*)

PROOF —

1. Let ¢ € Kerg2(DJ,) thanks to Proposition 5.40

€7 = eferaJrG(r)Df@er,zh? he X(e,oo)(Dfa)
from Il ;h = 0 we get
Df€ z, = (DF, + 0(r)DI*Meo)€ 2, = 0(r) DI Meu(§)2,)
= 0(r) DTOTL, , (e~"P7 HOCIDT e py —
meaning that Kerz»(DZ,) C Kerp2(DT). Moreover
D (Kery:(D)
= 0DT?11, . (Ker 2 (DY) € ~0D%2e 2"y, o (DZ?)(L* (9L, ® L*(RY)).
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Note that clearly dima {éDfa e*TDTf/ax(_“) (DZo)(L*(0L, ® L*(R*))| —c_0 0 by the

normality of the trace. Then the family of operators

D+

€| Ker; 2

(D+) Kerz2(D") — L?

has kernel Kery2 (D::m) and range with A dimension going to zero, 1. follows looking at
an hortogonal decomposition Kerpz(D") = Kerp2(DF) @ Kerzz(D1)/Kerpe (D).

. Follows immediately from 1.

. Consider the following commutative diagram

KereaeLz (D+) —_— Kere(a+e)eL2 (DJr)

vt
€ v

KereaeLz (D:_)

where UF = A (T easily seen thanks to the representation of solutions in
proposition 5.40 that each arrow is injective and bounded with respect to the inclusions
669[/2 - s e(6+25)9L2 .
e(6+e)9L2

Then joining together the two diagrams,

Kergsop2 (D) —— Ker 1002 (DT) —— (6+26)0 12
wt
\ \PET l
Kergsor2 (D) ——— ¢(0+e)0 2
and using the last column to measure dimensions one gets the inequality
dimp Kersop2 (DJr) < dimp Kerso 2 (Dj) < dimp Ker s+oop2 (D+)

from which 3. immediately follows.

Cylindrical finite propagation speed and Cheeger Gro-
mov Taylor type estimates.

6.1 The standard case

A very important property of the Dirac operator on a manifold of bounded geometry X is
finite propagation speed for the associated wave equation. Let P € UDiﬂl(X , E) uniformly
elliptic first order (formally) self-adjoint operator.

DEFINITION 6.45 — The diffusion speed of P in x is the norm of the principal symbol

sup |ope (P)(z)]
vESH
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(S*) is the fibre of cosphere bundle at z). Taking the supremum on z in M one gets the
maximal diffusion speed ¢ = ¢(P).
We say that an operator has finite propagation speed if its maximal diffusion speed is finite.

REMARK — A (generalized) Dirac operator associated to bounded geometry datas (manifold
and clifford structure) has finite propagation speed in fact its principal symbol is Clifford
multiplication.

The starting point is an application of the spectral theorem to show that for every initial
data & € C°(X, E) there is a unique solution ¢ — £(t) of the Cauchy problem for the wave
equation associated with P,
0¢/0t —iPE=0
’ 35
{ e (35)

this solution is given by the application of the one parameter group of unitaries £(t) = e"F¢.
By the Stone theorem the domain of P is invariant under each unitary e**”” and e?*"is bounded
from each Sobolev space H*® into itself. In particular the domain of P is invariant under each
unitary e®”.

LEMMA 6.46 — For 0 suitably small and x € M, [|{(t)||12B(z,0—ct) is decreasing in t. In
particular supp (&) C B(x,7) = supp(e’’&y) C B(x,r + ct).

PrOOF— The proof is in J. Roe’s book [65] Prop. 5.5 and lemma 5.1. Next we shall prove
something similar in the cylindrical end. First one proves that for a small geodesic ball of
radius 7 the function |\eitP§0||Lz(B(m7T_ct)) is decreasing, this is called energy estimate then
the second step follows easily. O

Finite propagation speed tecniques provides us with the construction of a functional calculus,
a morphism of algebras S(R) — B(L?*(X, E)), f — f(P) with properties

e Continuity, ||f(P)|| < sup|f| hence it can be extended to Cy(R), the space of continuous
functions vanishing at infinity.

o If f(z) = xg(x) then f(P) = Pg(P).

e We have the representation formula in terms of the inverse Fourier transform

F(P) = /R F(t)eiPat o, (36)

here * is Fourier transform and the integral converges in the weak operator topology,
namely (f(P)z,y) = [ f(t){e"Fx,y)dt/2m, for every z,y € L*(X; E). If X = S this is

just Poisson summation formula.

Representation (36) leads further, as an example we recount how John Roe, using ideas
contained in [21] used to build a pseudodifferential calculus.

Let S™(R) be the space of symbols of order < m on the real line i.e. smooth functions such
that |2 (k)| < Cr(1 +|A\[)™*. This is a Fréchet space with best constants Cj, as seminorms
and S(R) =N S™(R).

Roe proves in [66] that for a bounded geometry Dirac operator D every spectral function
f(D) with f a symbol of order < m is a uniform pseudodifferential operator of order m. The
proof of this fact uses formula (36) together with a convolution smoothing technique.
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Now formula (36) leads us to an easy method to obtain pointwise extimates of the Schwatz
kernel [f(P)] for a class Schwartz function f. In fact due to the ellipticity of P, f(P) is
a uniformly smoothing operator and [f(P)] € UC™®(X x X;End(FE)) (see the appendix A)
here we have used the Riemannian density to remove the density coefficient in the Schwartz
kernels.

PROPOSITION 6.47 — Take some section ¢ € L?(X; E) supported into a geodesic ball B(z,)
then the following estimate holds true

Pl < ) Pl [ IF9lds (37)

where I := (—2=£ "=E) with the convention that Iz = if R < r.

C c

PROOF— From the finite propagation speed
supp(ef'¢) € B(x,r + c|t]). (38)
From the identity (36),

| f(P)¢llL2(x—B(2,R)) =

(2#)71/2/]1%]5(5)6“1356[5

L2(X—B(z,R))

< (277)_1/2/ f(s)eispfds
#-In L2(X)
< 2m) V2 €]y / 1 (s)lds
R—IR

where I := (—=2=£ =) with the convention that Iz = 0 if R <r. In fact

1F(PIENZ2 (x - By = (27)71\/}%|]E(5)|2Heispé.”%,Z(X—B(m,R))ds

and the function s — HeingH%Z(X_B(m’R)) is zero if |s| < =R from (38). O

(&

So the point of view is that more far from the support of the section we want the L2
norm of the image, larger pieces of the Fourier transform around zero can we remove. The
extreme point of view is that spectral functions made by functions with compactly supported
Fourier transforms will produce properly supported operators i.e. operators whose kernel lies
within a d—neighborhood of the diagonal. Estimate (37) is the starting point. The following
proposition shows how to work out pointwise estimates on the kernel from this mapping
properties. This is a very rough version of the ideas contained in [21]

PROPOSITION 6.48 — Let r; > 0 sufficiently small, z,y € X put
R(SL', y) = max{O, d(:L', y) - 7'1}

and 7 :=[n/2+1], n =dim X, I(z,y) := (—R(x,y)/c, R(x,y)/c). For a class Schwartz function
feSR)

2n+1+k

VEVEF(P) (wan | < C(P, LK, | F)(s)|ds. 39
S Plew| <CPikn) Y Lo [l (39)



43

ProOOF — |VéV’;[f(P)](moyyo)\ < C()Hvlz[f<P>](mo,o)||Hﬁ+k(B(yg,r1/3)) where Cj is the con-
stant® of the Sobolev embedding H"**(B(yo,r1/3)) — UCF(B(yo,71/3)) applied to the
function VL[f(P)](z0.e)-

Then we have to apply the Géarding inequality of P

n+k

||le[f(P)](.'Eo,O)||Hﬁ+k(B(y0,r1/3)) < Cl Z ||lepy[f(P)}(mo7°)HL2(B(y0,r1/2))
j=0
n+k

=0 Z Hvl (IUa’)HLQ(B (x0,r1/2))

in fact by self adjointness P,[f(P)](zy,0) = [f(P) l(z0,0)- No problem here in localizing the
Garding inequality we can choose in fact for each yo a function x supported in B(yo,r1)
with X|B(ye,r1/2) = 1. Then since the coefficients of P in normal coordinates are uniformly
bounded, each [P, x] is uniformly bounded. Let §j( ) = XB(yo,r1/2) W) VEIPI f(P)](zg,y) the
inequality becomes |VLVE[f(P)](zy.40)| < CoC1 X570 1€ 22 0x)-

Now

1651172 (x) = /XB(yo,n/2)V[ij(P)](m,.)€j(y)dy = [(VLP! f(P)&)(x0)|
< CollPY £ (Pl et (Blaor /3)) < C2Cs 3 IIPTH F(P)E | L2(Bwo.r /2))
i=0
again by Sobolev embedding and Géarding inequality. The choice to keep every constant is

motivated to control their dependence in order to apply these extimates leaf by leaf.
Finally putting everything together

n+k n+l
IVEVEF(P) ool S C DD P F(P)|2(Bwor /2).22(Blyours 2))
=0 i=0
2n+l+k
< c Z / |£9) (s)|ds
—1I(x0,y0)

2

For the heat kernel [f(P)] = [e=*F"] when f(z) = e='*", f(s) = (2t)"1/2e5"/4¢

f(s)(k:) _ W((4t)1/285)k6((4t)1/2>

)

i) ()

e )

where Hy, is the k—th Hermite polynomial. Then using the simple inequalities
o s s/2
/ e Tdx < 67“2, yse“y2 < (—) ,a,s,u,y € RT,
” 2ae

/ ysenydy :/ yse%er*(l*e)dey < 0(576)67(176)13

9if preferable one can suppose B(yo,71) a geodesic ball and multiply a multiply a cut off ¢ supported
within distance r1/3 from yo and use the global Sobolev embedding. In that case the constant depends on ¢
but using normal coordinates ¢ can be used well for each yo
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with R = R(z,y) and n =2n+1+k

S 2
n+n Y
— S 1/2 _
VLVEPTe ] < C Dt 3/2/ Hj( 4 1/2)‘e ((4t) ) (4t)"/%ds  (40)
j=m R/c ( )
n+m ,
<Cy t ]/2/ |Hj(x)|e™™ dx
Z R/Q(,\/ !
n+m ,
<C t~ 3/2/ (1+27)e " da
Z R/2cVt
A+m
< Ce—R2/5c2t Z +=9/2
j=m

—m/2 ,—R?/6c%t
<{ C(k,1,m, P)t~™/%¢ A

C(k;,l,m,P)eRz/ﬁCQt, d(z,y) > 2m

There’s also a relative version of Proposition 6.48 in which two differential, formally self-
adjoint uniformly elliptic operators P, and P» are considered. More precisely relative means
that P; acts on F; — X7 and P; acts on Fy — X5 with open sets U; C Xy, U C X5 and
isometries ¢, ®

P
E1|U1 > EQ\Uz

L,

U14¢>U2

making possible to identify P; with P, upon U = U; = Us i.e.
O(P1s) = Po(®Ps), se Cr(Up; Er)
where @ is again used to denote the mapping induced on sections
©: CF(U; Er) — CZ(Us; Ba), (Bs)(y) = Pym1()8(07 ' (1))

Thanks to the identification one calls P = P; = P, over U. Then the relative version of the
estimate (39) is contained in the following proposition.

PROPOSITION 6.49 — Choose r5 > 0 and let x,y be in U. Set

Q(z,y) == max{min{d(x,dU);d(y,U)} — ro; 0}, J(z,y) := (—Q(Cx,y)7 Q(i’ y))
For f € S(R),
2n+i+k
VETSIP) = P < CP L) 3 | o s

More precisely the reason of the dependence of the constant only to P; is that it depends upon
Py where the operators coincide.
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PROOF— This is very similar to the proof of 37. Choose xg,yo € U then

VeV ([f(PO)] = [f (P oo < CUIVL(f(PO)] = [f (Pl oo ltmt (Byorayzyy  (41)
n+k

< CY VLR (PO = [PLF(P2))) (o) |22 (Blaora/2))-
j=0

Where the first step is Sobolev embedding H"** — UC*, again no problem in reducing the
Sobolev norm to be computed on the ball B(yg,r2/3) in fact one can suppose ro is smaller
than the injectivity radius and build a cut off function x. The Sobolev embedding is applied
then to the section xVE[f(P1) — f(P»)] and the resulting constant C' will be depending also
on x but uniform geometry assumption makes y universal in that can be used on each normal
coordinate. For example in order one the argument one applies is

IVyxtllas < 1(Vyx)tllze + IxVytliz < DOG DIt Bwo,ra/s))

if x is supported in B(yg,r2/3).
The second step is Garding inequality of P; and P, together with the fact that they
coincide on U;. The same argument with a cut off function y» also works well with Garding

inequality. Let fj (y) ‘= XB(yo,r2/2) (y)vi{[Pljf(Pl)](wo,y) - [ng(PQ)}(zo,y)} then
€012 Byo,ra/2)) =|(VL(P] f(P1) — P f(P2))&;) (o) (42)
S CIP{f(Py) — P) f(P2)& |l antt(B(ao,ra/3))
S CY NPT F(P) = PP |2 (B (oo /2)
1=0
At

< Ollé; 1l / 1Fi(s)lds
! ; R—J(z,y)

in fact for a class Schwartz function g,

1(9(P1) = g(P2)E |12 (Bwouras2) = (27) 772 / Gs)(P = e P2)gds|

L2(B(x0,r2/2))

:H(2ﬂ,)71/2/ g(s)(eisPl _ eing)gde‘
R—J(z0,y0)

L2(B(xo,r2/2))

since supp(ei*¢;) C B(yo,r2/2 + c|s|) then e**"1% and e**F2% remain supported in U then
etsPig; = eP2¢; by the uniqueness of the solution of the Cauchy problem for the wave
equation. O

PROPOSITION 6.50 — The relative version of (40) is

Clk, 1, m, P )t~ /2= Q) /6% ¢ 5
C(k,l,m, Pl)e_Q(£C7y)2/602t7

VeV ([Ple™ 5] = [Pe™ 2 ]) 4| < {

for z,y € U, d(x,0U), d(y,0U) > ry and t € RT.
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6.2 The cylindrical case

In this section our manifold L will be the generic leaf of the foliation i.e. start with a manifold
with bounded geometry Lo with boundary 0Ly composed of possibly infinite components
and a product type Riemannian metric near the boundary. Glue an infinite cylinder Zy =
OLgy x [0,00) with product metric and denote L := Lq Usr, Zo. Let E — L an Hermitian
Clifford bundle. Every notation of section 2 is keeped on with the slight abuse that Z; is the
cylinder here and in X. Recall that Ejz, = F ® F.

DEFINITION 6.51 — We say that a first order uniformly elliptic (formally) selfadjoint operator
T € Op'(L; E) has product structure if

1. T restricts to Ly and Zj i.e. supp(T's) C Lo(Zy) if s is supported on Lg (Zp).
2. T\, is a uniformly elliptic differential operator.

3. T restricts to the cylinder to have the form

T\, = c(0,)d, + QB(r) = ( . (r)0+a(r) B(r) -0, >

for a smooth!® mapping B : Rt — Op*(8L¢; E) with values on the subspace of uniformly
elliptic and selfadjoint operators. Furthermore suppose that B(r) = B is constant for r > 2.
However this is only a model embracing our Breuer—Fredholm perturbation of the Dirac

operator in fact

(De,u,x)\ame+ = C(ar)ar + 0 (9u - éD}-BHe + D]:a) . (43)

B(r)

In this sense every result from here to the end of the section has to be thought applied to
De .

Again the spectral theorem shows that for a compactly supported section §y € C2°(L; E) there
is a unique solution ¢ +— &(¢) of the Cauchy problem (35) for the wave equation associated
with T. This solution is given by the application of the wave one parameter group e*” with
the same properties written above in the standard case.

PROPOSITION 6.52 — Cylindrical finite propagation speed. Let U = 0L X (a,b)
0<a<band BU,l) = {x € L:d(xU) <l}. For & € C*(L;E) let £(t) = e'T¢, the
solution of the wave equation. If o < a the function ||£(t)||L2(B(v,a—¢)) is not increasing in . In
particular

supp(&o) C U = supp({(t)) C B(U,t).

PROOF— The product structure of the operator makes us possible to repeat the standard

10Some words about the smoothness condition on the mapping B. Here we shall make use only of pseudod-
ifferential operators with uniformly bounded symbols, (almost everywhere they will be smoothing operators)
hence the smoothness condition of the family is the usual one. In particular this is the smoothness of the family
of operators acting on the fibers of Lo x RT — RT, B(t) € Op'(dLo x {t}; E). If U is a coordinate set for
OLg such a family is determined by a smooth mapping p : Rt — Sll‘om(U) in the space of polihomogeneous
symbols. Here smooth means that each derivative t — dka/dtk is continuous as a mapping with values in
the space of symbols (with the symbols topology, see [77])
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proof of the energy estimates and finite propagation speed that can be found in John Roe’s
book [65]. So let us consider

d 2 d 2
—_ t 2 = — t d
ltHf( )” L2(B(U,a—t)) dt /( o) ‘5( )| (Z) z

<

[ (te.mea) + (e, 60)) ()i
B(U,a—t)

- / £ (2)d=.
OB(U,a—t)

Since the operator T has product structure, the integration domain is a product and the
operator B(t) is selfadjoint on the base

/ (E(8),TE()+(TE(), £(1))dz = / (), ie(D,)0,E(1) + (ic(0,)0,€(1), £(1) .
B(U,a—t) B(U,a—t)

Here the fact that the function

andl ((iQB(T)f(t)wLox{r},§(t)\aLox{r}> + <§(t)\0Lox{r},iQB(T)f(t)mLox{r}))(x)dl“

is identically zero by the self-adjointness of B has been used. Note that £(t) s, x(r} is in the
domain of B(r) by the Stone theorem (however it is certainly true for operators in the form
of our perturbation (43)). Finally

[ (60,000,600 + (ie(0)0r€(0),c(0,)0,6(0)(2) )z
B(U,a—t)

- / EB)(2) <0
OB(U,a—t)

a

d
%Hf(t)H%Z(B(U,a—t)) <

- / €0 (z) =
OB(U,a—t)

/ B, (1), c(D,)E(D)) (2)dz
B(U,a—t)

As a notation for a subset H € L and ¢ > 0 put H xt := B(H,t) ULy X (o —t, 3+ t) where
a:=inf{r(z) : z € HN Zy} and § := max{r(z) : z € HN Zy} in other words H =t is the set
of points at distance ¢ from H in the cylindrical direction.

It is clear from (6.52) that the support of the solution of the wave problem satisfies

supp(e””€) C supp(§) * |t].

Then the cylindrical basic Cheeger—Gromov—Taylor estimate similar to (37) is obtained in the
following way:

first note that proposition 6.52 is certainly true if the propagation speed is ¢, for a section &
supported into a ball B(x,rg) and f € S(R) let Ig := (—(R—7¢)/c, (R—10)/c) if R > rg and
Ir = 0 if r < R then,

P 2([—Blz.rsR) = 2%‘1/2/Aseispds 44
1P ryery =) 72 [ flo)etPeds]| o (44)
< —1/2 p isP

<l [ foerren,
< @0 el [ s (45)
R—1Ig

since supp e*P¢ N (L — B x R) = () for |t| < (R — 1) /c.



48 PAOLO ANTONINI

PROPOSITION 6.53 — Choose two points on the cylinder z; = (1, 1) and 22 = (2, $2) with
(_ |s1 — so| +7r1 |81 — s2f

, _Tl) then for f € S(R),

8; > 11, |81 — 82| > 2ry, put I(z1,29) :=

c c
2n+l+k
v vk L (P 2120y S C(P LK) Z / @)ds
R— I 21,22
with 72 := [n/2 + 1]
Proor —
Imitate the proof of 6.48 till the estimate
n+k
VeVl (Plewl < C D lIg e
j=0

where & := X5(y,r1=2) V5P f(P)](z,e) and z,y € L . 4

There is a subtle point to concentrate, it is when one let P7 act on [f(P)](z,s). This is perfectly
granted by the smoothing properties of f(P) in fact, let the bundle be L x R and identify
distributions with functions through the Riemannian density. The operator f(P) extends to
and operator from compactly supported distributions to distributions (actually takes values
on smooth functions). Consider the family of Dirac masses d,(-) concentrated at y, first note
that

[f(P)l@y) = (F(P)dy(-))(2) (46)

in fact by selfadjointness
FPIB5) = (6, £(P)s) = [1FP) e},

that’s to say (46). Now the Sobolev embedding theorem says that §, € H*(X) with k < —n/2
with norms uniformly (in y) bounded. Since f(P) maps every Sobolev space into each other
Sobolev space, every section [f(P)](z,) (and the symmetric one by selfadjointness) is in the
domain of P7.

Again

1€51172 2y = IXBwr/2) VEIP? F(P) @)1z 50y /2))

= [VLPIF(P)E;(2)] < CIIP? F(P)E; | ot o 3)
n+l
< O3 P F(PYE N 1 (Blars 20 (47)

1=0

It’s time to move on the cylindrical end, so let x = (22, 82), ¥y = (x1,51) with s; > r; and
|s1 — s2| > 21, then last term in (47) can be estimated by

n+l

S IPT (P Lo
1=0

with V.= L — B(y,71/2) % ¢(|s1 — s2| — r1)/2 so we can conclude by application of (45). O

COROLLARY 6.54 — With the notations of the proposition above
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1. If [s1 — 8o > 211, 85, > 1

(|sg — 82| —71)?
. 2 -
VL VE [Pme 7)., o] < C(k,1,m, P)e 6t (48)

2. Let 11,19 compactly supported with supports at r—distance d on the cylinder, then for the
operator norm and ¢t > 0

ln P e | < Cm, oy, )e /0, (49)
3. The relative version of (48) is

|Vlz1 V}; [PmeftP’" . TmeftTQ](thzﬂ < C(k, l,m, p)e{*(min{m,sz}frz)Q/Gt}. (50)

PROOF— The second statement follows immediately from the first one while the third can
be proven exactly in the way proposition 86 is proven. O

7 The eta invariant

7.1 The classical eta invariant

The eta invariant of Atiyah Patodi and Singer appears for the first time in the following
theorem that we write in the cylindrical case.

THEOREM 7.54 — Let X a compact manifold with boundary Y and product type metric
on a collar Y x [0,1], attach an infinite cylinder ¥ x [—00,0] to get the elongated manifold
X = XUY x [~00,0]. Let D : C®(X;E) — C®(X;F) a first order differential elliptic
operator with product structure near the boundary i.e.

D=0(0,+A)

where 0By — F|y E is a bundle isomorphism, 9, is the normal interior coordinate and A is the
boundary self-adjoint elliptic operator. Then the operator D extends to sections of the bundles
extended to X and has a finite L2 index i.e the space of L2 solutions of the equations Ds = 0
and D*s =0 and

(E) = heo(F)
2

. . . . heo
ind(D) = dim s ¢ s (D) — dim ¢ o) (D) = /X ao()dz — (0)/2 —

where

1. hoo(E) is the dimension of the space of limiting values of the extended L? solutions. More
precisely one says that s is an L? extended solution of the equation Ds = 0 with limiting
value sy if s is locally square integrable and for large u < 0

s(y,u) = g(y,u) + 500 (¥), So0(y) € Ker(A).

Analog definition for ho (F).
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2. ap(z) is the constant term in the asymptotic expansion as t — 0 of

S e g @) =3 e g () 2 (51)

where 1/, ¢, are the eigenvalues and eigenfunctions of D*D on the double of X and w, (b;;
are the corresponding objects for DD*.

3. The number 7(0), is called the spectral asymmetry or the eta invariant of A is obtained as
follows:

the summation on the non negative eigenvalues of A,

n(s) ==Y sign(A)[A|~°

A#£0

converges absolutely for Re(s) >> 0 extends to a meromorphic function on the whole s—
plane with regular value at s = 0. Moreover if the asymptotic expansion at (51) has no
negative powers of ¢ then 7(s) is holomorphic for Re(s) > —1/2. That's the case of the
Dirac operator of a Riemannian manifold.

7.2 The foliation case

The existence of the eta invariant for the leafwise Dirac operator on a closed foliated manifold
was shown by Peric [58] and Ramachandran [62]. In fact they build different invariants, Peric
works with the holonomy groupoid of the foliation and Ramachandran with the equivalence
relation but the methods are essentially the same. So consider a compact manifold Y with a
foliation and a longitudinal Dirac structure i.e. every geometrical structure needed to form
a longitudinal Dirac—type operator acting on the tangentially smooth sections of the bundle
S, D :C>*(Y;S) — (YV;95). In our index formula Y will be a transverse section of the
cylinder sufficiently far from the compact piece and D is the operator at infinity. Suppose
also a transverse holonomy invariant measure A is fixed.

Here the first issue to solve is to pass to the summation n(s) = _, sign(A)|A|~* which deals
with the discrete spectrum to a continuous spectrum and family version. The link is offered
by the definition of Euler gamma function

1 > s—1 )\2
sign( M)A\ 7° = 7/ t= Ae N dt.
L(*54) Jo
Each bounded spectral function of D belongs to the Von Neumann algebra of the foliation
arising from the regular representation of the equivalence relation on the Borel field of L2
spaces of sections of S. Replace the summation by integration w.r.t. the spectral measure of
D (definition 4.30) and (formally) change the integration to define the eta function of D as

(D)= [ SO = gy [0 a0 (62)
—00 2 0

We shall use also the notation

> k
(D 5)k ::/ 7 tra(De™P)dt, na(D;s)* ::/ 57 trp (De~tP%)dt
0

k

THEOREM 7.54 — (Ramachandran) The eta function (52) is a well defined meromorphic
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function for Re(s) < 0 with eventually simple poles at (dimF —k)/2, k =0,1,2,...., na(D; s) is
regular at 0 and its value na(D;0) is called the foliated eta invariant of D.

PROOF— Here a trace of the proof.
First step. For every s € C with Re(s) < 0 the integral

/ 77 tra(De 0% dt (53)
1

is convergent then in some sense the most important piece of the eta function is the
integral fol.

This is reminescent of the remark in the paper of Atiyah Patodi and Singer [4] where
they define the function K (¢) to be the integral on the cylinder of the difference of the
heat kernels e~ t21 — ¢=*22 of D and D*,

K(t) = / K(t,y,u)dydu = - sign(A)/2erf(A[VE) ~o > axt™?
0 Yy N k>—n

where Y is the boundary manifold of dimension n. The remark they do is that the
asymptotic expansion is the same replacing the integral with an integral on f[o 5"

The convergence of (53) is proven by simple estimates and the use of the spectral
measure. In particular here, by compactness the spectral measure pa p is tempered i.e.

JA——

— 00

(+ ) ™7

for some positive [. In fact this measure corresponds to a positive functional [62]
I:S8(R) — R, I(f) := tra(f(D)).

The same is obviously true for the square D? = |D|?. Here the estimate. Start with
|t(s—1)/2| g t(Re(s)—l)/Q g t_1/2, 0 S t g 0o then

/ =D/ 41, (De="P%)dt] < / 1= 1/2) trp (De="P%)d]
1 1

< / (502 g (|D]e=tD ).
1

The last integral is equal to

(oo} o0
/ t=1/2qt / A6 s (A)
1 0

hence
/ Al/%sz(A)/ t*l/%*”dt:/ A1/2e*AduD2(A)/ t712e7 2D (54)
0 1 0 1

:/ e*AdﬂDQ(A)/ (u+\) "2 du
0 0
S/ efAd,quz()\)/ w1 2e du

0 0

= 7T1/2/ e Mup2(\) = 7'/? trA(e_Dz) < 00
0



52

PAOLO ANTONINI

Second step.

Third step,

7.3

The examination of the finite piece
1 s—1 2
/ t = trp(De P7)at (55)
0

is done using the expansion of the Schwartz kernel of the leafwise operator De~t" * in fact
one can prove that there exists a family of tangentially smooth and locally computable
functions {U,, },n>0 ! so that the kernel K;(z,y,n) (n the transverse parameter) of the
leafwise bounded operator De~tP” has the asymptotic expansion

Ki(x,z,mn) ~ Z m=dim F=1/2y (1 n). (56)

m>0

Moreover W,,, = 0 for m even. The proof is an adaptation of the classical situation, for
example can be found in [66] and [24]. Now, thanks to the expansion (56), since the
operator De~tP ® is A trace class and the trace is the integral of the Schwartz kernel
against the transverse measure we get the corresponding expansion for the trace

1 1 s—1 2 2
t = trp(De tP)dt ~ - = [ U,d\ 57
F(Sgl)/o ra(De™) mzzos+m—dimf v (57)

where [U,,d\ = A(¥,,dg) i.e. is the effect of the integration of the tangential measures
x> W, X dg);, . From (57) we see that the eta function has a meromorphic contin-
uation to the whole plane with simple (at most) poles at (dim F — k)/2, k =0,1,2, ....

regularity at the origin.

If P = dim F is even we have said that the coefficients ¥,, of the development (56) are
zero for m even, then the eta function is regular at 0. If p is odd the regularity at zero
follows from a very deep result of Bismut and Fried [12]. In fact they showed that the
ordinary Dirac operator satisfies a remarkable cancellation property,

tr(De™tP%) = O(t1/2).

Since the A—trace can be, as pointed out by Connes ([24]), locally approximated by the
regular trace their result applies to our setting to give

Ki(z,z,n) ~ Z tm=pP=D/2g (g p),
m>p+2

almost everywhere

and the regularity at the origin follows immediately.

Eta invariant for perturbations of the Dirac operator

Let Let us consider slightly more general operators

1.

P =D + K where K € Op ™ is leafwise uniformly smoothing obtained by functional
calculus K = f(D) where f is bounded Borel function supported in (—a, a).

11in the case of the holonomy groupoid the WU, are locally bounded i.e. bounded on every set in the form
of r~1K for K compact in Y
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Start with the computation
Qe‘tQZ — De~tP? = De~tDPHE)? | [o—tD+K)* _ po—tD* (58)

1
:D/ Be—s(DHEP~(t=5)D* gy | feo—t(D+K)?
0
1
= Ke '(PHE) _p / e sPHE (KD 4 DK + K2)e=9)P g,
0

The family (58) converges to 0 as ¢ — 0 in the Frechet topology of kernels in Op™ > with
uniform transverse control i.e. for kernels K (x,y,n) (n is the transverse parameter) one
uses foliated charts to define seminorms that involve derivatives w.r.t. z,y. From (58)
one gets the development

tra(Qe ') ~pg D tTTETT / WdA + tra (K) + g(t)
m=0 Y

where g € C[0,00) with g(0) = 0. Then an asymptotic development for 74 (Q)(0); as
(57) follows. For the non finite integral 74 (Q, 0)* no problem in carrying on the estimate
(54).

2. The smooth family u — @, := D+ K +u. The function trA(Que’tQi) is smooth then

B tra (Que™ ') = tra(Qle ™" — tQu(QQu + QuQ.,)e %) (59)
= (14 2t0,) tra(Q, e 19%)

in fact Q; = 1. By integration

t(s—1)/2 ((s—1)/2 ,
Ouna (Qus $)1 = Ou / T tra (Que ™" %) dt = / o (14 2t0,) tra (Qe "9 dt
0

L(%5)
e 1)/ : 2 b ey -
_ /0 iy @) - s /0 HD2 0y Qe )t (60)
2

2

VA

Now, from Q; = I proceed as before using the asymptotic development of the heat
kernel for D + u 2

tI’A<Q;€_ u —trA Q e Qu ~ Z am D+ (Tn—dimf)/Q +g(t>

m>0

where g € C[0,0), g(0) = 0. We see that the integral in (60) admits a meromorphic
expansion around zero in C with zero as a pole of almost first order. Then the derivative
OunA(Qu, $)1 is holomorphic around zero. The identity

Oy ReS\s:O NA(Qu, 8)1 = Res\s:O Ouna(Qu;8)1 =0

says that Res|s—o 74 (Qu, 5)1 is constant in u then the function 74 (Qu, 5)1 is holomorphic
at zero since 75 (Qo, s)1 is holomorphic in 0.

3. Families in the form Q, = D +u + IID for a spectral projection Il = x(_g,q)(D).

12(D 4 u)? is a generalized Laplacian
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PROPOSITION 7.55 — The eta invariant for Q,, exists and satisfies

—1/2 —1/2

1 [es)
- L —tQ7 L —tQ7
M(Qu) = LMy [ L (@ue @it + [ T (@ue

where LIM is the constant term in the asimptotic development in powers of § as ¢t — 0.
Moreover for every u € R and a > 0,

a. Na(Qu) — na(Qo) = sign(u) tra(II)
b. nA(QO) = 1/277A(Qu) + 1/277A(Q—u)
¢ [na(D) = na(Qo)l = [na(IID)| < pa,p((—a; a)).

PROOF— The first statement can be proved as above. a. using the spectral measure we
have to compute the difference

o dt
t—1/2/ T+ u— e—t(ac+u—x;c)2dluA D) —2

° dt
— t_l/z/ z — xz)e X g b (2) ——
where x = X(—a,q)(2). Split the integral on R into two pieces, |z| > a and |z| < a.
First case |z| > a changing the integration order the first integral is
e 2
F(1/2)_1/ / (z + u)t™Y2e T dtdpy p(z)
|z|>a JO
and performing the substitution o := t(x + u)? in the second we see that the difference is
zZero.
Second case |z| < a, the second integral is zero, the first
° “ dt ° > dt
til/z/ ue*tu2d AD(x)=——— :/ 12t tra (1T
foo [ @i = oz
> _ _, do tra(I) . tra(ID) [ /9 _o2
= ululo ™ 2e™7 — = sign(u) / o V27 do (61)
/0 u? T(1/2) I(1/2) Jo
tu?=c
= sign(u) tra (II).
b. and c. follows easily from a. O

8 The index formula

First we introduce the supertrace notation. Since the bundle £ = E+ @ E~ is Zy—graded,
there is a canonical Random operator 7 obtained by passing to the A—class of the family of
involutions 7, : L?(L,; F) — L*(L,; E) represented w.r.t. the splitting by matrices

Ty ' = ( IdLQ(Lz"'EJr) 0 ) .
0 7IdL2(LI;E*)
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DEFINITION 8.56 — The A—supertrace of B € Endy (E) is stra(B) := tra(7B).

Now according to proposition 5.38 for 0 <

u| < € the perturbed operator D, , is A-Breuer—

Fredholm. Consider the heat operator e~*P ¢ws on the leaf L. This is a uniformly smoothing
operator with a Schwartz kernel (remember that metric trivializes densities and [e] means
Schwartz kernel)

[e D] € UC™ (L, x Ly; End(E)).
It is a well know fact the convergence for ¢ — oo in the Frechet space of UC* sections of
the heat kernel to the kernel of the projection on the L?~Kernel,

tD?

cuwr] = [X{O} (De}u@)]'

lim e~
t—oo

This is explained in proposition A.16, page 89 and is a consequence of continuity 02f the
functional calculus RB(R) — UC>(End(E)) applied to the sequence of functions e=**" —
X{o} in RB(R). Choose cut-off functions ¢y € C2°(X) such that ¢y x, =1, ¢z, = 0. The

measurable family of bounded operators {qbke_tD z»uwgbk}ze x gives an intertwining operator

pre Py, € Endg (L?(E)) hence a random operator qﬁke_tDezvum € Endy (L3(E)).

LEMMA 8.57 — The random operator (bke_tDzv/u(bk € Enda(L?(E)) is A-trace class. The
following formula (iterated limit) holds true

inda(Df,) = stra(x(0) (De.)) = lim lim stra (gre Do gy,). (62)

€,u
— o0 t—00

PROOF — For the first statement there’s nothing to proof, it is essentially the closed foliated
manifold case. The local traces define a tangential measure that are C* in the leaves direction
while Borel and uniformely bounded (by the uniform ellipticity of the operator) and we are
integrating against the transverse measure on a compact set. More precisely we are evaluating
the mass of a compact set through the measure A;, where h is the longitudinal measure that
on the leaf L, is given by

2

A'—’/StrEnd(E)[eitDe’“]diagdngvy
A

with strgnq(g) the pointwise supertrace defined on the space of sections of End(E) — X by
(strEna() 1) (T) = trena(z,) (T(2)7(2)).
The limit formula (62) is nothing that the Lebesgue dominated convergence theorem applied
two times, first stra(x{o)(Dewu)) = limg oo stra(PrX (o} (De,u)dr) but for fixed &k one finds
stra (@rx {01 (Dew))dr) = limg oo strA(qbke_tD?’uqbk). The possibility to apply the dominated
convergence theorem is given again by the integration process in fact as written above every
tangential measure has smooth density w.r.t to the Riemannian metric and convergence is
within the Frechet topology of C'*° functions.

O

Now, Duhamel formula d/dt strA(gbke_thvud)k) = —strA(qSkDiue_tDzwuqSk) integrated be-
tween s and oo leads to the identity

o0
tlim StrA(¢k67tD3”L¢k) = StrA((ka*SDi“’%) - / StrA(¢kD?u87th*“¢k)dt-
Hm ,

S
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Note that the right-hand side is independent from s > 0. Then

indx (D7) = klijgo |:StrA(¢k€SDg’”¢k) - /:O strA(¢kDf7uetDz>U¢k)dt} . (63)
Split the integral into
00 vk s
/5 stra(¢p D2 e~ Peugpy)dt = / stra(¢p D2 e~ Do gyy)di+ /@ stra(¢pD2 e~ Peugy)dt.
For future ease of reading make the following definitions
ag(k,s) = strA(qSke’SD?,ugbk), Bo(k,s) = [ strA(¢kD€27ue*tD3=1l¢k)dt
Boi(k, s) = fsﬁ StrA(éﬁkD?,u@_th’“%)dt, Boa(k,s) = [ 7% StrA(éka?,ue_th’“%)dt
Then Sy (k, s) = Bo1(k, s) + Bo2(k, s) and
indp(Df,) = ler{:O[ao(k, s) — Bo(k, )] = [ao(k, s) — Bo1(k, s) — Boz(k, s)]. (64)
Let us start with Gp;.
LEMMA 8.58 — Let 75 (D73) be the Ramachandran eta—invariant for the perturbed operator

ng on the foliation at the infinity. Then the following limit formula is true

N
Jim LIM, o o1 (k. 5) = lim LIM, stra(¢p D2 e Peugy)ds, = 1/2n5(D72)

S

where as usual LIM_,q g(s) is the constant term in the expansion of g(s) in powers of s near
zero.

PROOF— The integrand can be written as follows
stra(¢pD2 e~ Peudy) =1/2tra (S Do, Dewe ™ Pon] ) (65)
:1/2 StrA([De,ua ¢kDe,ue_tDz’“ ¢k] - [De,ua ¢i}De,u6_tD?‘u) (66)
=1/28trA (= [De.u, G3]De e Pn)
= —1/2strp (c(0,)0p(¢2) Deye o).

In the next we shall use the notation [a, b] := ab — (—1)!/'!lpa for the Lie-superbracket'? on
the Lie-superalgebra of C-linear endomorphisms of L?(X, ET@® E~) while, when the standard
bracket is needed we write [a, b]o := ab — ba. notice that

[, ab] = [av, alb + (1)1l g [, B].
Remember the definition of D, ., in the cylinder it can be written

Dew =D +0Q(u— DI2) = c(0,)0, + Q

I3everything we say about super—algebras can be found in [9]
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0 -1
1 0
the transverse section. The next identities are also useful

_tD- D+
0 D- s e—tDou D1 0
D _ €,U e tDC, —
“v T\ DF 0 ’ - 0 e tPILDo, )7
€u ) )

D;ueftDj',uD;u — PPl D

€,

with the Clifford multiplication ¢(9,) = and @ is RT-invariant in fact acts on

+ o=tD DY — o—tDL, Do, Dt
De u® ’ m=e ’ ' De,u
These are nothing but a rephrasing of the identity

2 2
D67u6_tD6’“ — e_tDe,uDE7u

granted by the spectral theorem. Now it’s time to use the Cheeger—Gromov—Taylor relative
estimates. Consider the leafwise operator

Seu = ¢(0;)0; + Qu— DT2) (67)

on the infinite foliated cylinder (in both directions) ¥ = 80Xy x R with the product foliation
Fo x R. Choose some point zg = (zo,7) on the cylinder. Estimate (50) says that we can
compare the two kernels at the diagonal leaf by leaf for large r and this estimate is uniform
on the leaves,

||[D67u’206—th,u,zo] _ [Se,u,zoe_tsiu’z()]||(z,z) < Ce—(r=r2)*/(61) (68)

for z = (x,r) € L,,. From (68), since the derivatives of ¢, are supported on the cylindrical
portion Z,’j“ = 0Xo x [k, k+ 1],

vk . ) vk
/ | stra (c(8,)0,¢3 Dewe™Pen) — stra(c(0,) 07 Se ye ™t dt = / / L., Oz, t)dAgdt
s s ZkJrl

where A4 is the coupling of A with the tangential Riemannian measure and ©(z,r) is the
function
P2 Q2
@(Z7r) = ”c(ar)ar¢i[De,u’ze Dz — Seu,z€ tSE’"’z]H(Z,Z%

Let 7} be a transversal of the foliation Fj induced on the slice {r = k} then 7} is also
transversal for F (since the boundary foliation has the same codimension of F). The trans-
verse measure A defines also a transverse measure on the boundary foliation. Then the
foliation lelI§+1 is fibering on 7; as in the diagram OF x [k,k + 1] — 7T;. Use this fi-
bration to disintegrate the measure A,. This is splitted into dAp X dr where Ay is the
measure obtained applying the integration process of A (restricted to Fj ) to the gj. In
local coordinates (7,1, ...,Z2p—1) X (T2p, ..., Tr) the transversal is decomposed into pieces
T = {(k,29,...,29, 1)} x {(22p, ..., zn)} and we are taking integrals

/ / O(r,z1, ..., Tap—1,L2p, ..., T )dr dxy - - - dTop_1dA(Top, .., Tn)  (69)
TkX{wl,...,Izpfl} [k},k+1]

this is dAs

=: / / O(x,r)dAadr.
Fio Sk k1]

Equation (69) can be taken as a definition of a notation that will be used next. Notice that
J #, contains a slight abuse of notation, in fact to follow rigorously the integration receipt one
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should write f@XUX{k}' We prefer the first to stress the fact that we are splitting w.r.t the
foliation induced on the transversal. With this notation in mind,

dt

vk , .
/ | StrA(C(ar)ard)istueitD&u) - StrA (C(ar)arqsise,ueitsg’u)

/ / / T ’l‘¢k}[ €, ue_tDz’u - Se,ue_tsf'“]||((w,r),(z,r))drdA8dt (70)
k k+1]

k—+1
<C/ / e~ (r=3) /thrdt<0/ —(k=3)>/6t gy

<C y—z ~(k=3)0/6 gy < O(e=*"? /1 4 mc2/s)
1/Vk

for sufficiently small'* s and large k. This estimate says that

VR
Jim LIM. o fou (k,s) = lim LIM, o stra (c(0y)0y @2 Se e t5eu)dt.

S
Now the second integral (on the cylinder) is explicitly computable in fact the Schwartz kernel

2
of the operator S 2, e "Scuz0 on the diagonal is easily checked to be

2

[S@U,Zoe_tsswu’zo] (2,2)

(r—s)7/(4t)
—t(D{2a0% ¢
_( eu'on—i—C(a )8 )<|:e 0 }(I’y) \/m ) y=x, s=r
= Q[ 53@0 _thngO](z,z)’ Z= (l‘,?")

- Vart

i.e. it does not depend on the cylindrical coordinate r. Now the pointwise supertrace on
End(FE) is related to the trace on the positive boundary eigenbundle F' via the identity (see
the appendix on Clifford algebras)

strf(c(9,)Qe) = —21trf (o),

then

\/E 2
/ StrA(c(@r)ﬁrgb%Se,ue*tSw)dt

VEk  pk+1 1 o (D722
=—2 Oy 2dr/ trf'[Dfo 7t Peua)™] . dApdt
/ / ¢k fo\/m [ €,U,T ] (z,z) 9

> / / D% e Py - gt
]-'0
/ / DE]:Z e 7t(D§3,m)2](Lm) . dAadt7
]:0

14 s o—ay® < (— )‘3/2 for s,u,y,a >0
2ae
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with the same argument on the splitting of measures as above. Finally it is clear from our
discussion on the n-invariant (exactly proposition 7.55)

klim LIMS*,O 601(]{57 S)

vE L . FripF Dl3 .)? F
= kh_)Il;.lo LIMS_yO / /}— ﬁ tr [D€7’Lal,,$e_t( 6,,u,av:) ](:L’,CE) . dAadt = 1/2']7A (DE,S)'
s 0

LEMMA 8.59 — Since D, ,, is A—Breuer-Fredholm for 0 < |u| < € then

o0

lim [ stra(¢pD2, e Piugy)dt = 0.
" ,

- k—o0

khm ﬂog(k, S)

PROOF — From the very definition of the A—essential spectrum ( see also lemma 4.29) there
exists some 0 = o(u) > 0 such that the projection Il, = X[_s4](Dc) has finite A-trace.
Then

|Boz (K, s)| :’ /@ strA(mDiue’tDz’u(;Sk)dt

< / | stra [gkaE,ue*Diu/Q(l - Hg)ef(tfl)D?’“67D§~“/2De,u¢k]|dt
Vi

—+ /\/E | StI‘A [eithJ‘/QHgDe,ud)iDe,uHUeitDz’u/z] ‘dt

< / e~ (=D strp (¢ D2 e~ Perughy )| dt + / | stra (D2, e~ PeuTl,)|dt .
VE ’ VE ’

Bo21(k,s) Bo22(k,s)

Now the Schwartz kernel of (Daue_D 2u)m is uniformely bounded in x and varies in a Borel
fashion transversally. When forming the A—supertrace we are integrating a longitudinal mea-
sure with C*°—density w.r.t. the longitudinal measure given by the Riemannian density. Let
as usual A, the measure given by the integration of the Riemannian longitudinal measure
with the transverse measure A. If A is a uniform bound on the leafwise Schwartz kernels of
(Dz,ue_D f,u)7 and 7 is a complete transversal contained in the normal section of the cylinder
(the same in lemma 8.58), we can extimate

Boz1 (K, s) < /f A(Ay(Xo) + AM(T)k)e D7t — o 0.
k

For the second addendum,

) o po
ﬂogg(lﬁs) :/\f \strA(Df’ue_tDi'uHUHdt < /f / xge_t$2d,UzA,DE,u (l‘)dt
k k J—o
= 67\/&72/ x2€7tzzdtdu/\,]_‘)syu (1‘)
—0 0

<C [ eV dupp, ,(x) < Cuap, . (@)([~0,0]) — ko0 0

—0
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since the A—essential spectrum of D, , has a gap around zero and the normality property of
the trace. O

It is time to update equation (64),
indA(D:u) = klirgo[ao(k, s) — Po(k,s)] = kllngo[ao(k, s) — Bo1(k, s) — Boa(k, s)]
= lim LIM; o ao(k, 5) - 1/2n(DL3). (71)

LEMMA 8.60 — There exists a function g(u) with lim,_,9 g(u) = 0 such that for 0 < € < u,

klim LIM;_qap(k,s) = klim LIM;_ strA(d)ke*SDiuqSk) = (A(X) Ch(E/S),Cp) + g(u).

Here the leafwise characteristic form A(X) Ch(E/S) is supported on X, in particular it belongs
to the domain of the Ruelle=Sullivan current C, associated to the transverse measure A.

ProOF— This is the investigation of the behavior of the local supertrace of the family of
the leafwise heat kernels ,
str?[e ™ Peu]| giag

on the leafwise diagonals. We can do it dividing into three separate cases

1. For z € X everything goes as in the classical computation by Atiyah Bott and Patodi
(2],
LIM, g str®[e™*P2us] , ydg. = A(X) Ch(E/S)(2),

where dg, is the Riemannian density on the leaf L,.

2. In the middle, z € 90X, x [0, 4] there’s the cause of the presence of the defect function
g(u), more precisely we show that the asymptotic development of the local supertrace
is the same for the comparison operator Sy, defined above

StrE([estiu,z])(w) ~ Zaj(gw)(z)s(j—dimf)/z
jEN
with coefficients a;(Sp,,) smoothly depending on u satisfying a;(Sp.) = 0 for j <
dim F/2

3. Away from the base of the cylinder z = (y,r) € Z r > 4 we find
2

[e_De’u’z](y,’l") e O

Below the proves of these facts.

1. We can consider the doubled manifold 2.X so that we can apply the relative estimate of
type Cheeger—Gromov—Taylor in the non—cylindrical case (the perturbation starts from
the cylinder) i.e. proposition 6.50 shows that the two Schwartz kernels of the Dirac
operator and the perturbed operator D, , have the same development as t — 0,

Y _ip2 —a
||[6 tDZ , —e tD ](z,m)H < Ke /(Gt).

And the local computation of Atiyah Bott and Patodi, or the Getzler rescaling ([50],[30])
can be performed as in the classical situation.
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2. We are going to use an argument of comparison with the leafwise operator
Sew = c(8,)0r + QDT + b(u — 1. DT?))

on the infinite cylinder X, X R equipped with the product foliation F5 xR. Notice that,
due to the presence of 6 this is a slightly different form of the operator (67). Choose
some function 1 supported in 0Xo x [—1,5] and ¥1|5x,x[0,4) = 1. The first fact we
show is

lim st (v (5% — e™*S0 Yoy ) = 0,
Now, Se.u = So.u — QLD = ¢(8,)d, + H with H = QD”? 4 Qfu hence
SZ., = 88, = — [Sou, WI.D"?] + (1. D7) (72)
= — [¢(8,)8,, Q0TI D”7?] — [H, QO DT?] + (QO1I.D7?)?
= — &I, DT> — 2(D%? 4 Gu) (011, D”?) + (QOTI D”?)2.
Apply the Duhamel formula
| stra(¢1(SZ, — S5.u)¥1
= | StrA(%/116_553“6_(8_6)53“1/}1)(5:5) _ strA(wle—”g«ue—(s—‘”sf«qul)(g:o)|

= ’/ stra (21 )e 050w (52, — §2 )ee™ =5udg).
0

Again from the Cheeger—Gromov relative estimates (49)
| tra (e 0SuTl )| < C51/2

(82, = S5 Mee™ =5 || < C(s — 8) 7/

with the constants independent from |u| < e. Then the integral of the supertrace (72)
can be estimated by the function of s, h(s) = C [/ (s — §)"V26712d5 —, o 0. .
To see this first split the integral into fos / 4 f:/2 to prove finiteness then use the
absolutely continuity of the integral for convergence to zero. Now from the limit
limg o stra (¢ (e‘ssiu
the asymptotic expansion for s — 0 of strA(qﬁke*SDiu‘ﬁ’“) is the same of the comparison
operator

- e‘ssé,u)wl) = 0 and the comparison argument we get that

So,u = ¢(0r)0r + D% 4 Ju
—_——
D bounded perturbation

on the infinite cylinder. This is a very simple u—family of generalized laplacians (see [9]
Chapter 2.7) and the Duhamel formula

U
2 2 .
etS3. _ o—tSTo — _ / 1Qe™ 50 duds
0

shows what is written in the statement i.e.

str? ([e 7 Pew]) ooy = Y 05(S0.u) () sU I/
JEN
where the coefficients a;(Sy,.,) depend smoothly on u and satisfy a;(So.) = 0 for j <
dim F/2 since Sy o is the Cylindrical Dirac operator. One can take for the definition of

9,
dim F/2

g(u) := Z aj(So7u)(z)s(j_dim]:)/Qd/\g.

iz Joxox[0.4]
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3. This is done again by comparison with S, ,, consider the r—depending family of tangential

—sD?

tangential measures (y,r) € 0Xg x [a,b] — strf e *Peu.@n drdr where x € Ly,

once coupled with dA gives a measure on X p := str? ¢=*Duem drdr - dA. The Fubini
theorem can certainly used during the integration process to find out that the mass
of p can be computed integrating first the r—depending tangential measures y ——
strf eiSngWw)dy against A on the foliation at infinity (0Xo, Fs) then the resulting
function of r on [a, ],

b
LIM, g dp = LIM, g / / str? ([e™*52])) (yry. (wor) )Y - dNd
90X x[a,b] a JO0Xo

b— .
= LIM,_o ——ZL strp(e=*P7D*) = o

Vars

in fact the boundary operator D72 is invertible and the well-known Mc-Kean-Singer

€,

formula for foliations on compact ambient manifolds (formula (7.39) in [53]) says that

F,
inda (D7) = stra e=s(P2* independently from s.

Finally (71) becomes

inds (D7) = (A(X) Ch(E/S), Ca) — 1/20a(D73) + g(u). (73)

THEOREM 8.60 — The Dirac operator has finite dimensional L? — A-index and the following
formula holds

indzz 5 (D) = (A(X) Ch(E/S), [CA]) + 1/2[na(D7?) — B + hy] (74)

where
hi = dimp (Ext(D*) — dimy (Kerz2 (D¥) (75)
with the dimension of the space of extended solutions as defined in the definition 77 after the

remark i.e.

eu@ L2

dimp Ext(D¥) := dimy Ext(D¥)

independently from small u > 0.

PROOF— Start from
indzz2 A(DF) = 1%1 1/2{inda(D{,) + inda(DF_,) + hy . — h} .}, (76)

here hie = dimy (Ext(DZ)) — dimy (Kerp2 (D)) for now proposition 5.41 says that

Ext(DF) = Kerr2 (D7) = Keruop2(DF).
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Use the identity indx(D/,) = (A(X) Ch(E/S), [C]) + 1/2na(DZ2) + g(u) into (76),
indzz A (DY) = Lim 1/2{2</1(X ) Ch(E/S),[CAl) + hy . — Iy + g(u) + g(~u) (77)

+1/200(DZ) +1/208(D22,) }

nA(Dfa) by proposition 7.55

(4G Cu(E/5), [Cal) + e e | DTY)

It remains to pass to the e-limit remembering that:
e lim,|gind2 5 (D) =indg2 o (D) (Proposition 5.44),
e limcjohy . — hj\',e =h~ — h™ (again proposition 5.44)

e lim,|ona(D7?) = nx(D7?) (proposition 7.55).

9 Comparison with Ramachandran index formula

The Ramachandran index formula [62] stands into index theory for foliations exactly as the
Atiyah—Patodi—Singer formula in the boundary value problem form stays classically. Our
formula is in some sense the cylindrical point of view of this formula. In this section we prove
that the two formulas are compatible and we do it exactly in the way it is done for the single
leaf case by APS. First we recall the Ramachandran Theorem

9.1 The Ramachandran index

Since we have chosen an opposite orientation for the boundary foliation the Ramachandran
index formula here written differs from the original in [62] exactly for its sign (as in section
3 for the APS formula). So let us consider the Dirac operator builded in section 2 but acting
only on the foliation restricted to the compact manifold with boundary Xy. To be precise with
notation let us call Fy the foliation restricted to X, with leaves {L2},, equivalence relation
Ro and D”° the Dirac operator acting on the field of Hilbert spaces {L?(L%; E)},ex,. Near

the boundary
DFo _ 0 D% _ 0 —0, + D70
D0 0, + D72 0

with the boundary operator D7?. Let us consider the field of APS boundary conditions

B (w0 =8 0)
0 X(—oo,O)(D]:a) 0 I-P

acting on the boundary foliation. In the order of ideas of Ramachandran paper (coming back
from an idea of John Roe) this is a self adjoint boundary condition i.e. its interacts with the
Dirac operator in the following way:

1. B is a field of bounded self-adjoint operators with 0B + Bo = ¢ where ¢ is Clifford
multiplication by the unit (interior) normal.



64 PAOLO ANTONINI

2. If b is the operator of restriction to the boundary acting on smooth sections then
(Sl,D}—USQ) = (D]:OSl,SQ) for every couple of smooth sections s; and s, such that
Bbs; = 0 and Bbsy = 0.

Next Ramachandran proves using the generalized eigenfunction expansion of Browder and
Garding, that there’s a field of restriction operators

H*(Xo; E) — H¥'/2(Xo; E)

extending b where the Sobolev spaces are defined taking into account the boundary i.e. for
a leaf L2, the space H¥(L2; E) is the completion of C2°(LY; E) (compact support possi-
bly meeting the boundary) w.r.t. the usual L?-based Sobolev norms. It follows from the
restriction theorem that one can define the domain of D with boundary condition B as
H>(Xo; E,B) :={s € H*(Xy; E) : Bbs = 0}.

THEOREM 9.60 — (Ramachandran [62]) The family of unbounded operators D with domain
H>(Xy; E, B) is essentially self-adjoint and Breuer—Fredholm in the Von Neumann algebra of the

foliation with finite A—index in the sense of ind, (D7°) = dimA(Ker(D}T)) — dimy (Ker(D”0 ))
given by the formula

inda (D7°) = (A(X)Ch(E/S),[CA]) + 1/2[na(DE) — h] (78)

Now we are going to prove compatibility between formula (78) and (74). First of all we
have to relate the two Von Neumann algebras in play. Denote (according to our notation)
with Endg,(E) the space of intertwining operators of the representation of Ry on L?(E)
and, only in this section Endg, a(E) the resulting Von Neumann algebra with trace trr, a
in order to make distinction from Endg A (E) the Von Neumann algebra of random operators
associated with the representation of R. Start with a measurable fields of bounded operators
Xo 2 By — B, : L*(L% E) — L*(L% E) with B, = B, ae. if (z,y) € Ro. There’s a
natural way to extend B to a field of operators in Endg (E).

1. If 2 € X simply let 1B, act to L?(L,; E) to be zero on the cylinder
1B, : L*(LY; E) ® L*(OL] x (0,00); E) — L*(LY; E) ® L*(OL] x (0,00); E)
1By (s, 1) :== (Bgs,0).

2. If z € 90Xy x (0,00) define 1B, := 1B, where p : 90Xy x (0,00) — 90Xy is the base
projection and 1B, is defined by point 1.

PROPOSITION 9.61 — The map ¢ : Endg,(F) — Endg(F) as defined above passes to the
quotient to an injection
v: Endg, A (E) — Endg a(E)

between the Von Neumannn algebras of Random operators preserving the two natural traces

trr A (1B) = trr,.a(B).

PROOF— The first part is clear. An intertwining operator B = {B,}.ex, 1S zero A-a.e.
in X_0 then also does B in X for any transversal T' contained in the cylinder can slide by
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holonomy to a transversal contained in Xy. About the identity on traces remember the link
between the direct integral algebras and the algberas of random operators i.e. Lemma 4.6.
Choose v to be the longitudinal Riemannnian metric then A, is the integration of v against
A. Let Py be the Von Neumann algebra of A,—a.e. classes of measurable fields of operators
Xo >z B, € B(L*>(L% E)) and P the corresponding algebra builded replacing X, with
X and B(L*(LY; E)) with B(L?*(L%; E)). Notice that the family

Xoyr— /szduy (79)
is bounded for B in the domain of 2 then Lemma 4.6 says that

Trace(By)dA, (z) = /X Trace(B;)dA, (x) = trg, a(B).

trr.A(eB) = /

X

THEOREM 9.61 — Let PrKer(D”0 ) € Endg, 4 (E) the projection on the Kernel of D7 with
domain given by the boundary condition Pz = 0, (I—P = 0) as in Ramachandran formula. Let
also PrKer:(D*) € Endg A (E) be the projection on the L?—kernel of the leafwise operator on

the foliation with the cylinder attached and PrExt(D*) € Endg s (e“L?*E) be the projection
on the closure of the space of extended solution seen in ¢ for sufficiently small positive w.

1. +PrKer(D70 ) is equivalent to PrKer,»(D%) in Endg A(E) i.e. there exists a partial
isometry u € Endg A(E) such that

u'u = zPrKer(Df;r), uu* = PrKerz2 (D7)

. In particular
dimg, A Ker(Df;) = dimg A Kerz2 (D).

614,9 L2

1PrKery2 (D70 ) ~ PrExt(D-) ,

for sufficiently small u and equivalence in End (e*? L?(E)) with the inclusion
2: Endg, A(E) — Endp(e*L2(E))

defined as in proposition 9.61.

As a consequence
dimp Ker(D%0 ) = dimp Ext(D 7).

PROOF— The idea is contained in A.P.S. [4] when they prove the equivalence between
the boundary value problem and the L? cylindrical problem. Their main instrument is the
eigenfunction expansion of the operator at the boundary, now we use the Browder—Garding
generalized expansion to see that any solution of the boundary value problems extends to a
solution of the operator on the cylinder.
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1.

Use the Browder—Géarding expansion as in the proof of the finiteness of the projection
on the kernel 5.1. For a single leaf, the isomorphism

L*(OLY x (=1,0]) — P L* (R, ;) ® L*((—1,0))
JEN

represents a solution of the boundary value problem as h;(r, \) = X(_Ooyo)()\)e*)""hjo(r)
hence the solution can be extended to the cylinder of the leaf 9L x (0, 00). This clearly

gives a field of linear isomorphisms T}, : Ker(ngr) — Kerp2(DF) for x € X, first
extend T}, to all L2(LY%; E) to be zero on Ker(D}-Jr)J- then let x take values also in X
according to the method explained before i.e. put T, := T,) for x in the cylinder.
Take the polar decomposition T, = u,|T,|, then u, is a partial isometry with initial

"
space Ker(DfO ) and range Ker(D}), i.e
* f+ * =+
uyuy = PrKer(D3°), wuzu) = PrKer(D]).

We have to look at this relation into the Von Neumann algebra of the foliation on X.
Split every L? space of the leaves as L2 (Lg( E) @LQ(aLg(m) x (0,00); E). With respect

to the splitting, forgetting the indexes x downstairs, we have u = ( 311 8 ) acting
21
ujy uy,

on the field of L?(X; F) spaces of the leaves. Then u* = ( 0 0

> with conditions

u1iuy; = 0 and wugyui; = 0. Finally

* * +
w® — ( uuiy +ugrud; 0 ) < Pr(D%)

0 . Ft
0 0 0 O)zPr(D 0)

and similarly u*u = Pr(DT).

. It is very similar to statement 1. in fact writing the Browder—Garding expansion and

imposing the adjoint boundary condition one ends directly into the space of extended
solutions.

d

To conclude now we can compare Ramachandran index with our index, let’s compare formula
(78) with (74) keeping in mind that, the index of Ramachandran is now our extended index
(see section 3 )

inda (D7) = indy 12(D+) = dimp Kerz> (D) — dimy Ext(D™)

to obtain the equation

dimp Ext(D™) — dimpy Kerp2 (D7) = (hy — h})/2+ h/2.

The same argument applied to the (formal) adjoint of DT leads to the equation

then

dimp Ext(D1) — dimp Kerp2 (D1) = (b — hy)/2 + h/2,

h=hy +hy

as in A.P.S.
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10 The signature formula

10.1 The classical signature formula

The reference for the notation about the signature operator is the book bt Berline Getzler
and Vergne [9]. Let X be an oriented Riemannian manifold and |dvol| the volume the unique
volume form compatible with the metric i.e. the one assuming the value 1 on each positive
oriented orthonormal frame. In other words |dvol = |,/gdz|. One can define the Hodge *
operator in the usual way

el A - A etk = sign(o)ej, A---Nej,_,

where (ey, ..., €,) is an oriented orthonormal basis, (i1, ..., %) and (j;, ..., jx ) are complementary
r . . .. n

i ik J1- Jn—k

Since 2 = (—1)I'1(»=I'D this is an involution on even dimensional manifolds.

The bundle AT*X of exterior algebras of X is a natural Clifford module under the action
defined by

multindices and o is the permutation o := (

c(e") == e(e;) — 1(e") (80)
where e(e’)w = €' A w is the exterior multiplication by e and t(e;) is the contraction by

the tangent vector e;. In other words it is the metric adjoint of exterior multiplication,
e(e")* = u(e;). The chirality involution

T = i[("+1)/2]c(61) N C(@n)
is related to the Hodge duality operator by

7=l D/2 (qynl G

following from the identity (same deegree forms)
[ anms = otz [ o g
X X

while [, o A %8 = [y (a,B)|dz|. As a consequence one can write the adjoint of d in two
different ways,

d* = —sdx (=) = —(=1)"rdr.
Sections of the positive and negative eigenbundles of 7 are called the self-dual and anti self-dual
differential forms respectively and denoted by Q¥ (X).
Now suppose n is even, and X is compact. The bilinear form on the middle cohomolgy
H™?(X;R) defined by (o, 8) — [y a A 3 satisfies the identity

/Xa/\ﬂ:(—l)"/Z/Xﬂ/\a.

In particular if n is divisible by four this is symmetric and has a signature o(X) i.e. the
number p — ¢ related to the representation

Q(I):x¥+."+1:[2)7z]27+17.'.7x(2]

of the associated quadratic form (this is independent by the choosen basis). In this situa-
tion the chiral Dirac operator d + d* acting on the space of differential forms is called the
Signature operator!®

X sign,—
(d+d*) = Dien = ( Dsign# b . ) O (X) @ Q7 (X) — QH(X) @0 (X)

15it differs from the Gauss-Bonnet operator d 4+ d* only for the choice of the involution
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The Atiyah—Singer index theorem in this case becomes the Hirzebruch signature theorem

ind(D%e"t) = o(X) = /X L(X)

where L(X) is the L-genus, L(X) = (mi)~™/2 det'/? ( for the Riemannian cur-

)
tanh(R/2)

vature R. The proof uses the Hodge theorem stating a natural isomorphism between the
space of harmonic forms H9(X) i.e. the kernel of the forms laplacian A = (d + d*)? and the

cohomology H?(X) together with Poincaré duality.

Now on a 0-manifold with product structure near the bounday the situation is much more
complicated. The signature formula is the most important application of the index theorem
in the A.P.S. paper. The operator writes on a collar around the boundary as

D¥et = 5(d, + B)

where the isomorphism o : Q(8X) — Q7 (X) and B is the self-adjoint operator on Q(9X)
given by Ba = (—1)**P+1(x5d — dxp)a where here and in the next dim(X) = 4k, e(a) = +1
according to « is even or odd degree and *y is the Hodge duality operator on 0X. Since B
commutes with o — (—1)1%l x5 & and preserves the parity of forms, B = B @ B! and the
dimension of the kernel at the boundary as the 7 invariant are twice that of B¢V. The A.P.S
index theorem says

ind(D¥e™t) =t —h” —h = / L — h(B®) —n(B%)
X

or
indy2(D¥enT) — h = / L — h(B®%) —n(B%)
X
where h* are the dimensions of the L2~harmonic forms on the manifold X with a cylinder
attached and hZ is the dimension of the limiting values of extended L? harmonic forms in
Q= (X).
The identifications of all these numbers with topological quantities require some work.

1. The space H(X) of L? harmonic forms on X is naturally isomorphic to the image H(X)
of
H:(X) — H*(X).
Equivalently one can use the relative De Rham cohomology H*(X,0X) — H*(X) de-
fined imposing boundary conditions wjpx = 0 on the De Rham complex. This statement

plays in the 0—case the role played by Hodge theory.

2. The signature o(X) of a —manifold is defined to be the signature of the non—degenerate
quadratic form on the middle—cohomology H2F (X). This is induced by the degenerate
quadratic form given by the cup-product on the relative cohomology H?**(X,9X). By
Lefshetz duality the radical of this quadratic form is exactly the kernel of the mapping
H?*(X,0X) — H?*(X) then

o(X)=ht —h™ =indz2(A).

3. Then A.P.S get rid of the third number h_ proving that hyy = hl = h(B°) that
together with hY, + hy = 2h(B*®) gives the final signature formula

o(X) = /XL—n(BeV).
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10.2 The foliation signature

Now we pass to our foliated case following the paper of Luck and Schick [48] signature are
given for a Galois covering of a compact manifold with boundary and proven to be equivalent.
So let Xy be a compact manifold with boundary equipped with an oriented 4k—dimensional
foliation transverse to the boundary and every geometric structure of product type near the
boundary. As usual attach an infinite cylinder Zy = 90Xy x [0,00), and extend every The
leafwise signature operator corresponds to the leafwise Clifford action (80) on the leafwise
exterior bundle AT*F. If (e, ..., €461, 0,) is a leafwise positive orthonormal frame near the
boundary, the leafwise chirality element '© satisfies

T = i2kc(el) cee c(e4k—1)c(d7~) — 2k 4 (_1)|‘|(|'\—1)/2
= fi%c(dr)ca — —ich(dr) 5 (f1)|'|+|~|(\-\*1)/2
where * is leafwise Hodge duality operator, cg = c(e') - - - c(e**~1) is, a part for the i?* factor
the leafwise boundary chirality operator and g is the leafwise boundary Hodge operator. On
the cylinder the leafwise bundle AT*F is isomorphic to the pulled back bundle p*(AT* Fsx,)

(the projection on the base p will be omitted throughout) while separating the dr component
on leafwise forms o = w + 8 A dr yields an isomorphism

(AT*Fox, — (AT*OF) & (AT"OF), (81)

sometimes we shall write (AT*0F) A dr for the second addendum in (81) to remember this
isomorphism. An easy computation involving rules as

dw = dpw + (=1)1*19,w A dr
for w € C*([0,00); AT*0F) and c(dr)(w +a Adr) = (—1)I*lw A dr — (=1)1*la shows that the
operator can be written on the direct sum (AT*0F) & (AT*0F) as the matrix

psien — ( dy + codycy _(_1)H8T

(—1)H8 codacs ) = C(d?‘)&« + (da + CadaCQ) &) (da + CadaCa) (82)

and

(1)
T—i2k< —ca(O—l)"‘ 6(01) > (83)

Since df) = TodaTs = cpdaco formula (82) is equivalent to
DY = ¢(dr)0, + (dp + db) @ (dp + dj).

There’s also another important formula corresponding to the fact that d + d* anticommutes
with 7. Denote QF(F) the positive (negative) eigenbundles i.e. the bundles of leafwise auto—
dual (anti auto—dual) forms. We can write the operator on the cylinder as an operator on
sections of the direct sum p*(Q1(F)ox, ® Q2T (F)ox,) as the matrix

0 —(=D)M8, + (xady — doxa)i?F (—1)FI(-1=1)/2
(—=1)H8, + (xody — doxa)i?* (—1)I1(H1=1)/2 0
= ¢(dr)d, + (xady — dgxp)i?F(—1)1I1=D/2q (84)

To pass from one representation to another we have to consider the following compositions

d+d*
_—

AT*0F —s (AT*OF) @(AT*0F) A dr —=7= QO+ (F) 0 (F) P AoF

16we omit simbols denoting leafwise action for ease of reading
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and

d+d*
E—

AT*OF —2 N(T*0F) @(AT*OF) A dr ——> 0~ (F) 0+ (F) e ATeoF,

where 7; is the inclusion on the j-th factor and Pr; is the corresponding projection.
The first definition we give is the most simple. It is merely the L? index of the signature
operator on the foliated manifold with a cylinder attached.

DEFINITION 10.62 — The A-analytic signature of the foliated manifold with boundary X is
the measured L? index of the signature operator on the foliated manifold with a cylinder attached,

O'A7an(X0, 6X0) = indL2}A(DSign’+).

Now, by the standard identification of the Atiyah—Singer integrand for the signature operator
[9], formula (74) becomes

Tv,an(Xo, 0Xo) = (L(X), [Chl) +1/2[na (D7) — hy + hy]

where L(X) is the tangential L—characteristic class and the numbers hf and the foliation
eta—invariant are referred to the boundary signature operator.

As in [4] first we have to identify these numbers. Minor modifications of the proof of Vaillant
[76] are needed in order to prove the following.

PROPOSITION 10.63 — For the foliated signature operator
hl =hy. (85)
Consequently the formula for the analytical signature is

0v,an(Xo, 0X0) = (L(X), [Chl) + 1/2[na(D7?)].

PrROOF—  Use the representation (82) of the operator on the cylinder on the bundle
(AT*OF) @ (AT*OF), here we can easily write the one parameter perturbation

DS = ¢(dr)d, + (dy + df)) @ (do + diy) — OTL[(do + dy) @ (dp + d}y)]

where T, the spectral projection ITc = x(_¢ ) ((do +d}) ® (do +dj)) of the leafwise boundary
(signature) operator and 6 is the function considered above in (28). For much clarity we make
the position ‘

dy +d} = D(Salgn =Sy

for the boundary signature operator. Now pass to the antidiagonal form
c(dr)dy + (xady — dgxg)i2F (—1)HUH=1/2q) (86)

It is a well known fact that only the middle dimension forms contribute to form the index in
fact the leafwise kernel of the signature operator is the space of leafwise harmonic forms and
decompose

ker A, = ®F_ ker AW



71

where AY) : Qi(L,) — Qi(L,). The subspace ker AY) @ A" is 7-invariant for each
0 <7 < n and there is a field of unitary equivalences

ker Al @ A=)+ — [ker Al @ AP~

given by w + 7w — w — 7w. Now choose a leaf and apply the Browder-Garding expansion
exactly as in section 5 to the boundary operator in (86). We forget the subscript indicating
we are on a single leaf and the isomorphisms coming from the eigenfunction expansion. A
section & € Ext(D§f§n’i) can be written on the cylinder r > 3,

5:‘:(/\’ T) = g:ﬁ:()\, i)[X(fe,e) ()‘) + (1 - X(fe,e)(/\))eikr]

with the fundamental fact that the boundary datas (*(\,i) € L?(£[0,00) x N, 1) are uni-
voquely determined by r = 0. Now there’s a coefficient that’s constant in r. It is precisely
¢F(X, )X (=, (A) and can be seen (under the spectral isomorphism) to belong to the image
of the spectral projection x(_c.)(Ss @®Ss). This subspace of L?(0L,; AT*OL,) is naturally Zo
graded in fact the chirality operator 7 commutes with the boundary operator.

In particular

Ci ()‘7 i)X(fe,e) ()‘> € [X(fe,e) (SO @ Sa)LQ}i
The splitting becomes more evident looking at the decomposition (82)

X(—e,e) (Sa S2) S@) = X(—¢,¢) (S@) D X(,E’e)(Sa)

with 7 acting on the right—hand side according to

T ( 73(91)\4 _Ta(o_l)H )

exactly formula (83). So we have defined a measurable family of maps
\73?: : EXt(D:?%n’i) - [X(—e,e) (Sa)L2 S3) X(—¢,¢€) (Sa)L2]i7 g:l: L Ci(Aa i)X(—e,e) ()‘)

Now proposition 5.41 says that if we choose § small, say 0 < § < € then Ker_-s072 (Dif%nvi) is
closed in each e %Y L? and Ext(Dif%“’i) is closed into each e%?L2. It follows that

e We have a Borel family of continuous and middle—exact sequences

(Kerp2 (DEE ), || - [lo-s012) — (Bxt(DEEE), || - [|esor2) (87)
— [X(—ee)(S9)L? @ X(—e.0)(So) L] *

where the last arrow is jxi.
. hie = dimy (range(J¥)).
Now join togheter 7, := jj + J, assume that
range(Jz) C X(—e,e)(Sa) L2 @ X (—e,0(Sa) L2

splits into a direct sum

range(Jy) = Vo & W, (88)
Then in this case the proof ends because the chirality element acts on range(J,) sending V,
into W, and vice—versa then the £ eigenspaces must be isomorphic. O

So it remains to prove (88). First we need a lemma,
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LEMMA 10.64 — If 0 < § < € The family of spaces range,ss 2 (D8") is A—closed this
property meaning that for every v > 0 there exists a Borel family of closed subspaces M C
range,ss ;2 (DS'") such that

656L2

dimy range(DE'E") —dimp (M) < 7.

PROOF— The first is a direct consequence of the A—Fredholm of the perturbed operator
Dsee on the field e?? L? in fact the commutative diagram

Dsign,i
eSO [2 ——> 02 (89)

eJGT e&GT
DeisnE | 50

L?—D
and lemma 5.38 show that the operator on field of weighted spaces €? L? is Breuer-Fredholm
than 0 is not contained in the A-essential spectrum of T7* where T' = D% and T* is the
adjoint w.r.t the % norm and the spaces M,, := X(=o00,m) (TT*) U (X (n,+00) (TT*) are A-finite
codimensional in the closure of the image of T'in L? (L? because the vertical arrows in (89)
are isomorphisms that preserve the A—dimension). O

PROPOSITION 10.65 — For every x the image of 7 splits,

range(Jz) = Vo & Wy

PrROOF— Consider the first row of (87) i.e
(Ker 2 (DIE), || ||,-s02) —> (Exct(DIE), |- [l oo0 1)
with the non-degenerate pairing e =% x ¢’ — C on each leaf,
. . —_—— %12
(Kerp2 (DEE ), || - [le-so2)" = (Kerg-so 2 (D" %))* = range( DEE™™)

then extend J to be zero on the e*’~hortocomplement of Ext(Dﬁf%n’i) then

~ - 859L2
range(J;) = Jx( range( D8 F) )

Hence by continuity we can restric ourselves
range(J) = J(K) by the continuity of J we can restrict our attention to elements in

Kg ‘= range,seyz2 (D:in) N EX‘D(D:%‘,H)
————

e%% —closed

for each x. So let ¢ € K°, by definition there exist o € e’ L2(AT*L,) such that £ = Dsien
and (D8")2¢ = 0. On the cylinder we can write o = g + a1 A dr with a; € H*® (0L, x
[0,00); AT*L,). Using again Browder—Gérding (or a spectral resulution, it’s the same) of the



73

boundary operator Sy we can see that in the region r > 3 these section satisfy the differential
equation
_(ar)Qal + (1 - X(fe,e)()‘))AQ(ll =0

with solutions in the general form
a(x,r) =101(x) + B2+ O™ )
and B € X(—e,)(Sa). Keeping in mind the identities d + d* = d. + d; with dc := d — df1l,
and d} := d* — d*0Il,, using the identity (1 —IL:)Gp; =0
deao(z,7) = (€(dr)0r 4+ d(1 = IL)) (rfBo,1 (x) + Bo,2)(x) + O(e™ ")
=dr A Bo1(z)+0(e™ ).

The calculation to show that the second piece deavy(z,7) Adr = O(e™ ") can be performed in
the same way.
For the second piece of the signature operator

dear (z,7) Ndr = (—u(dr)0, + d* (1 = IL))(rB11 A dr + Br2(z) + O(e™ "))
= ()8 (a) + O )
with dcag(z,7) = e~¢". This shows that
J(€) = I (dear +die) = 0@ (—=1)*118g 1 + (=1)1P115y 4 (w,7) €0
and concludes the proof. O

It remains to apply 10.64 to prove (85).

REMARK — Everythig works with coeficients on a rank m leafwise flat bundle, the signature
formula in this case becames

0. an(X0,0X0) = m{L(X), [CA]) + 1/2[na(D”2)).

Consider the measurable field of Hilbert spaces of L?~harmonic forms
x+— M, = ker{AY : L*(AT*L,) — L*(AT*L,)}

where L, is a leaf of the foliation on the manifold X with cylindrical ends. Since leafwise
harmonic forms are closed this is a field of subspaces of the fields of De Rham cohomologies
H*(L,) hence inherits the structure of a measurable field of Hilbert spaces futhermore it
makes sence to speak about the space of tangentially continuous sections HZ.

So if the dimension of the foliation is dim(F) = 4k as above, we have a well defined bilinear
form on the middle-degree leafwise transversally continuous (transversally measurable also
goes well)

s HE x H2R — €, (a,f) — /X a A BdA = /X(a, *()dA. (90)

given by the wedge product followed by integration against the transverse measure. This
bilinear form is defined on forms (and here is simmetric) with real coefficients and extended
to be sesquilinear (C—antilinear in the second variable) on forms with complex coefficients in
the usual way, s3°(a, 5 ® ) := s (a, B ® 7). For sesquilinear forms to be simmetric means

ST (@, 8) = s (8, 0).
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This field of bilinear forms corresponds, by Riesz Lemma to a continuous (measurable) field
of self-adjoint bounded operators A, : HZ’“I — H2¥, univoquely defined by the property

S/O\o(avﬁ) = (O‘7Aﬁ)

where at the right-hand side the scalar product of the field of Hilbert spaces i.e., the L? scalar
product on forms. Now A determines a field of hortogonal splittings H2X = Ve VO® V.~ of
Hilbert spaces where V, is the image of the spectral projection x(0, 00)(A,) (x(—00,0)(Az))
and V2 is the kernel of A,. The pairing on the leaf passing trough z is non degenerate if and
only if A% = 0 but we are interested in the general behaviour using the transverse measure to
integrate.

DEFINITION 10.66 — The signature on harmonic forms on the foliated elongated manifold is

O’XO(X) = dimy vVt — dimp V™.

THEOREM 10.66 — The analytical signature of the compact d—manifold and the signature on
harmonic forms on the manifold with cylinder attached coincide,

a,an(Xo,0X0) = 0% (X) = (L(X), [Ca]) + 1/2[na (D72)]. (91)

PROOF — Just the definition (90) says that B = *|g2» but since the dimension of the foliation
is 4k we have Tjg2r = *|q2x. It follows that

VE = kerp2 (DS18E),

11 Random Hilber complexes

We prove some results we shall need next in the Chapter about the signature.

11.1 O-manifolds with bounded geometry

The generic leaf of (Xp, F) is a Riemannian manifold with boundary with bounded geometry
as those examined by Schick [70, 71, 72].

DEFINITION 11.67 — We say that a d-manifold with a Riemannian metric has bounded
geometry if the following holds

Normal collar : there exists ¢ > 0 so that the geodesic collar
N :=1[0,r¢) x OM : (t,x) — exp, (tvy)

is a diffeomorphism onto its image, where v, is the unit inward normal vector at z € OM.
Equip NV with the induced metric. In the sequel N and its image will be identified. Denote
im[0,7¢/3) x OM by Ny,3 and similarly Ny /3.
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Injectivity radius of OM : the injectivity radius of OM is positive, rin;(OM) > 0

Injectivity radius of M : there is 7; > 0 so that for z € M — N /3 the exponential mapping
is a diffeomorphism on B(0,71) C T, M. In particular if we identify T, M with R™ via an
orthonormal frame we have Gaussian coordinates R™ O B(0,7;) — M around any point
in M — N1/3

Curvature bounds : for every K € N there is some Cx > 0 so that [V'R| < Ck and
|VP1| < Ok, 0 <i< K. Here V is the Levi-Civita connection on M, V? is the Levi-Civita
connection on OM and [ is the second fundamental form tensor with respect to v.

Choose some 0 < ¢ < 73,;(9M), near points 2/ € dM on the boundary one can define
normal collar coordinates by iteration of the exponential mapping of M and that of M,

exp?

ky = B(0,79) x[0,7¢) — M, (v,t) — exp™ on () (tV).
—— 4

CRm-1

For points x € M — N;/3 standard Gaussian coordinates are defined via the exponential
mapping. In the following we shall call both normal coordinates. It is a non trivial fact
that the condition on curvature bounds in definition 11.67 can be substituted by uniform
control of each derivative of the metric tensor g;; and its inverse g*/ on normal coordinates.
The definition extends to bounded geometry vector bundles on §—manifolds with bounded
geometry and each object of uniform analysis like i.e. uniformly bounded differential operators
can be defined [72]. In particular, using a suitable partition of the unity adapted to normal
coordinates one can define uniform Sobolev spaces (different coordinates give equivalent norms
so we get hilbertable spaces) and every basic result continues to hold.

PROPOSITION 11.68 — Let E — M a bundle of bounded geometry over M. Suppose F' is
bounded vector bundle over M. Then the following hold for the Sobolev spaces H*(E), H(F),
5,1t € R of sections.

1. H%(E), HY(F) is an Hilbert space (inner product depending on the choices).

2. The usual (bounded) Sobolev embedding theorem holds with values on the Banach space
CF(E) of all sections with the first k derivatives uniformly bounded,

H*(E) — Cf(E), whenever s>m/2+ k.

3. For the bundle of differential forms one can use as Sobolev norm the one coming from the
integral of the norm of covariant differentials

k
2. iw i
||w||k.—;/M IViw(@)]

Temear-arldel.

4. For s < t we have a bounded embedding with dense image H'(E) C H*(E). The map is
compact if and only if M is compact. We define

H>*(E):=(\H*(E), H *(E):=|JH(E).
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5. Let p: C®°(E) — C*°(F') a k—bounded boundary differential operator i.e the composition
of an order k bounded differential operator on E with the morphism of restriction to the
boundary. Then p extends to be a bounded operator

p:HY(E) — HFY2(F), s>k+1/2.
In particular we have the bounded restriction map H*(E) — H*"'/2(Eg5),s > 1/2.

6. H°(E) and H~*(E) are dual to each other by extension of the pairing

(f.9) = /Mg(f(x))ldarl; feCR(B), g e (B

where E* is the dual bundle of E. If E is a bounded Hermitian or Riemannian bundle, then
the norm on L?(E) defined by charts is equivalent to the usual L?-norm

P = /M(f,f)mlde f e CE(E).

Moreover H*(E) and H*(E) are dual to each other by extension of (f,g) = [,,(f, 9)z|dz|.

11.2 Random Hilbert complexes

Now we define the De Rham L? complexes along the leaves. These are particular examples
of Hilbert complexes studied in complete generality in [16].
So let x € Xy, consider the unbounded operator with Dirichlet boundary conditions

dro : Q% . ={w € C(AT*LY);wionr = 0} C LE(ATFLY) — L2(AT*LY).

Being a differential operator it is closable, let A¥(L% OLY) the domain of its closure i.e the set
of L? limits w of sequences w,, such that also the dw,, converges in L? to some n =: dw. The
graph norm || - [|4 := || - |22 + [|d - ||22 gives || - |22 the structure of an Hilbert space making
d bounded. It is easily checked that d(A*) C ker(d : A¥*1) — L2) then we have a Hilbert
cochain complex

..‘HA’;%HA’;HA’;“—W..

with cycles Z¥(L% 0LY) := ker(d : Ak — A**+1) and boundaries B¥(L2,0LY) := range(d :
ApT— AD).

DEFINITION 11.69 — The L? (reduced )'7 relative De Rham cohomology of the leaf LY is
defined by the quotients
_ Z3(L3,0LY)

H%  (L0,0L0) = S e el
By (LY, 0LY)

dR,(2)

Clearly the closure is to assure the quotient to be an Hilbert space. Similar L?-De Rham

cohomologies of the whole leaf, Hsg @ (LY%) and of the boundary HCIL’; (2)(8L2) are defined

using no (Dirichlet) boundary conditions. In particular A¥(L%) will be used to denote the do-
main of the closure of the differential as unbounded operator on L?(L2) defined on compactly

17the word reduced stands for the fact we use the closure to make the quotient, also the non reduced
cohomology can be defined. For a I' covering of a compact manifold the examination of the difference re-
duced/unreduced cohomology leads to the definition of interesting invariants
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supported sections (the support possibly meeting the boundary). The subscript dR helps to
make distinction with Sobolev spaces. Each one of this spaces is naturally isomorphic to a
corresponding space of harmonic forms. More precisely

DEFINITION 11.70 — The space of k—L? harmonic forms which fulfill Dirichlet boundary
conditions on ALY is

Hiay (LY, 0L)) := {w € C® N L%, wigro =0, (6w) o0 = 0, (dw)jare = 0}
—_——

gratis

We shall see that the boundary conditions are exactly the square of the Dirichlet boundary
condition on the Dirac operator d + §. Since each leaf is complete a generalization of an idea
of Gromov shows that these forms are closed and co—closed, [70, 71]

Hipy (LY, 0L)) = {w e C™ N L*(A*LY),dw = 0, bw = 0, wjpro = 0}.

Furthermore there’s the L?-orthogonal Hodge decomposition [70, 71]

2 L2

L2(AMT L) = My (L0, 010) & d* 105 H(L9,010) @ 31Ok (LY, OLY)

T

where QZ; = {w € C°(AF1T*LY), wipro = 0} and the corresponding one for § with no
boundary conditions Q’g;l = {w € C(AFT*L2)}. These decompositions shows with a

little work that the inclusion H*(L2, OL2) < A¥ induces isomorphism in cohomology
H*(LY,0LY) = Hjp o) (LY,0LY).

This is a consequence of the fact that the graph norm (of d) and the L? norm coincide on the
space of cycles ZF.

For further use we mention also the specular Hodge decomposition where one imposes
Neumann boundary conditions on L? harmonic forms and Dirichlet conditions on the domain
of ¢,

LA(APT*LY) =ker(Ag[{w : (xw)jg = 0= (0w)|a}) (92)

2 2
=IO (N—IT7L0) . @ 0+ {w € Cgo(AF—1T7L0) - wpp = 0}

Then we can write the sequence of cochain complexes

d d d
0 —— A¥L(L9, OLY) —— AR~Y(LY) — > AE-L(9L9) — 0
d d d
0 — AK(LY,0L) —— AK(LY) —— AK(OLY) —=0

d d d

where each morphism must be considered as an unbounded operator on the corresponding
L?, i is bounded since is merely the restriction of the identity mapping on L?(L%, AT*L?)
and r is restriction to the boundary.
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PRroOPOSITION 11.71 —

1. For every k the domain A¥(L%) is contained in the Sobolev space of forms H (L AT*L9)
then the composition with » makes sense.

2. The rows are (weakly) exact i.e. one has to take closure of the images of i and 7 in the L?
topology in the A*’s.

PROOF— 1. An element w in A¥(LY) is an L?-limit of smooth compactly supported forms
w, with differential also convergent in L?. Then since the Hodge % is an isometry on L?
also dw, = =+ * w* converges. In particular we can control the L? norm of dw and dw this
means we have control of the first covariant derivative, in fact d + § = ¢ o V where ¢ is the
(unitary) Clifford action then the second term can made less that the norm of V by bounded
geometry. In particular we have control on the order one Sobolev norm by proposition 11.68.
The remaining part follows from the fact that the restriction morphism is bounded from
H' to H'/? — L2, 2. The only non-trivial point is exactness in the middle but as a
consequence of the bounded geometry the boundary condition on the first space extends to
H?' (see proposition 5.4 in the thesis of Thomas Schick [70] that together with point 1. is
exactness. O

REMARK — Note that the proof of the proposition above says also that the induced mor-
phisms i, and 7, are bounded.

Every arrow induces morphisms on the reduced L? cohomology. Miming the algebraic con-
struction of the connecting morphism (everything works thanks to the remark above) we have,
for every = the long sequence of square integrable representations of the equivalence relation
R

= HYY o (L0, 0L9) — = Hjt o (L9) —= Hj¥ o (OL9) — = Hljp (5 (L9, OLY) —— -
As z varies in Xy they form measurable fields of Hilbert spaces. We discuss this aspect in
a slightly more general way applicable to other situations. Remember that a measurable
structure on a field of Hilbert spaces over X is given by a fundamental sequence of sections,
(82)zexo, Sn(r) € Hy such that x —— ||s, ()|, is measurable and {s)}, is total in H,
(see chapter IV in [74] ).

PROPOSITION 11.72 — If for a family of closed densely defined operators (P,) with minimal
domain D(P,) a fundamental sequence s, (z) € D(P,) is a core for P, and P, s, (z) is measurable
for every x and n then the family P, is measurable in the sense of closed unbounded operators
(definition 4.22 and the remark below ) i.e. the family of projections II¢ on the graph is measurable
in the square field H, & H, with product measurable structure.

PrROOF— It is trivial in fact the graph is generated by vectors (s, (z), Pys,(x)) then the
projections is measurable. O

The lemma above can be applied to the (A¥(L2OLY)), in fact in the appendix of [33] a
fundamental sequence ¢, of sections with the property that each (¢, (-))Lo is smooth and
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compactly supported. Now the same proof works for manifold with boundary and, since the
boundary has zero measure one can certainly require to each ¢,, to be zero on the boundary.

In particular we have defined complexes of square integrable representations. Reduction
modulo A-a.e. gives complexes of random Hilbert spaces (with unbounded differentials) for
which we introduce the following notations,

o (L?(2°Xy),d) is the complex of Random Hilbert spaces obtained by A a.e. reduction
from the field of Hilbert complexes

> L2(ART*L0) — L L2(AFHTHLO) —> - (93)

(H3g,(2)(Xo0), d) is the complex of Random Hilbert spaces obtained by A a.e. reduction
from the reduced L? cohomology of (93)

(L?(Q° Xy, 0Xp),d) is the complex of Random Hilbert spaces obtained by A a.e. reduc-
tion from the field of Hilbert complexes with Dirichlet boundary condition

. > L2(ART*LY) d | L2(AF+H1T*L0) - (94)

with differentials considered as unbounded operators with domains A*(L% 0LY).

(H3g (2)(X0,0X0),d) is the complex of Random Hilbert spaces of the cohomologies of
the above complex.

For the boundaries we have the corresponding complexes of Random Hilbert spaces
(L?(Q°0Xy),d) and (H(;R’@)(GXO),d)

The Borel field of weakly exact sequences
0 ——= AL(L8, 0LY) — = AL (1Y) — = ALH (9L —=0
gives rise to a long sequence of Random Hilbert spaces

H(;R,(z) (Xo,0Xo) s JR,(z) (Xo) (95)

|

H(;R,(z) (0Xo).

The meaning of this construction is clear first one builds the long L? leafwise sequence of the
pairs (L%, L) then uses the transverse measure to collect the informations together.

REMARK — The notation Hyp,(2)(0X0o) must not be confusing. This is not obtained by the
De Rham square integrable representation of the boundary foliation. This is deduced from
A—equivalence from the square integrable representation of the equivalence relation R of the
whole foliation.

Now we follow the paper by Cheeger and Gromov to a notion of exactness for the long sequence
(95) and the right assumption assuring it.

DEFINITION 11.73 — We say that a sequence of Random Hilbert spaces as (95) is A—weakly
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exact at a point if in the correspondig Von Neumann algebra of Endomorphisms the projection on
the closure of the range of coming arrow coincide with the projection on the kernel of the starting

one. These means i.e at point . HffR,(g) (Xo) ——,

range* = ker¢* € EndA(H§R7(2) (X0))-

11.3 Spectral density functions and Fredholm complexes.

Let U,V two Random Hilbert spaces on Ro (for these consideration also the holonomy
groupoid or, more generally a Borel groupoid should work) and an unbounded Random
operator f : D(f) C U — V i.e start with a Borel family of closed densely defined op-
erators f, : U, — V, intertwining the representation of Ry. Since f is closable, the question
of measurability is addressed in definition4.22. For every pu > 0 put L(f,A) as the set of
measurable fields of subspaces L, C D(f;) C U, (measurability is measurability of the family
of the closures) such that for every z € X and ¢ € Ly, || f.(¢)] < wpll¢|l. After reduction
modulo A a.e. this becomes a set of Random Pre-Hilbert spaces we call Lx(f, i)

DEFINITION 11.74 — The A—spectral density function of f is the monotone increasing function

wr— Fa(f,p) :=sup{dimp : L € LA(f, p)}.

Where of course one has to pass to the closure to apply the A—dimension. We say f Fredholm if
for some € > 0, Fa(f,¢€) < o

We want to show that this definition actually coincides with the definition given in term of

the spectral measure of the positive self-adjoint operator f*f.

LEMMA 11.75 — In the situation above

FA(f, 1) = tra x[o,u2)(f* f) = dimp range(x(o,,2)(f* f))

as a projection in Endy (U).
Notice that since f* f is a positive operator x[o .21 (f*f) = X(—oo,u2](f* f) is the spectral projection
associated to the spectral resolution f*f = ffooo HAX (—o0,]-

PROOF— The spectral Theorem ( a parametrized measurable version) shows that the ranges
of the family of projections x[o,,2)(f* f) belong to the class L(f, 1), then

dima (range(xo,.2)(f* f))) < Fa(f, p).

In fact it’s clear that x[g ,2)(f; fo)w = w = ||fw]| < pl|w|]. But now for every L € L(f, ) we
get a family of injections X2 (fy fz)r, — range(x,2(f; fz)) that after reduction modulo A
and with the crucial property of the formal dimension 3 in lemma 4.7 says

dimy (L) < dima (range(x[o,.2) (f* f))-
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DEFINITION 11.76 — A complex of random Hilbert cochains as (L?(2° Xy), d) and its relative
and boundary versions is said A—Fredholm at point k if the differential induced on the quotient

D(d") d
range(dk—1)

L2 (Qk-‘rl XO)

gives by A a.e. reduction a left Fredholm unbounded operator in the sence of definition 11.74. In
particular the condition involving the spectrum distribution function is

F(d| : D(d*) Nrange(d* 1)+ — L2(9k+1X0)7u) < 0 (96)

for some positive number f.
For this reasin one calls the left hand-side of (96)

Fr <L2(Q’“X0,6X0),u) = Fy(d| : D(d*) Nrange(d*~ 1)+ — LX(QM1X,), )

the spectral density function of the complex at point k.

REMARK — Definition above combined with lemma 11.75 says that we have to compute the

formal dimension of x[q,,2)(f* f) where f = dID (d)rrange(@ D but f is an injective restriction

of d* then every spectral projection xpz(f*f) projects onto a subspace that’s orthogonal to
ker(d*) then

Fa(d] : D(d*) N eamge(d" )" — L2(Q Xo), 1) = sup L& (f. 1) (97)

where L3 (f, 1) is the set of Random fields of subspaces of D(d) Nker(d)* where d is bounded
by p (see Definition 11.74 )

THEOREM 11.76 — All the three complexes of Random Hilbert spaces (L?(2°Xy), d),
(L2(2°0X0),d) and (L?*(Q2* X, 9Xy), d) considered above are A—Fredholm.

PrOOF— The proof follows by an accurate inspection of the relation between the differ-
entials (with or without boundary conditions) and the Laplace operator trough the theory
of selfadjoint boundary differential problems developed in [70]. To make the notation lighter
let M = L% with OM = OL? the generic leaf. We concentrate on the relative sequence at
point d : A¥(M,0M) — A*T1(M,0M) where the differential is an unbounded operator on
L? with Dirichlet boundary conditions. Let D(d) = A**1(M,0M). The following Lemma is
inspired by Lemma 5.11 in [47] where Neumann boudary conditions are imposed.

LEMMA 11.77 — Let ker(d) the kernel of d as unbounded operator with Dirichlet boundary

conditions, then
2

D(d) Nker(d)* = H,, N oFT 10 (AFIT M)

where H. is the space of order 1 Sobolev k—forms w such that wjga; = 0.

PROOF—  First of all remember that the differential operator d + § : C*°(A*T*M) —



82 PAOLO ANTONINI

C®(A*T*M) with either Dirichlet or Neumann boundary conditions is formally self-adjoint
with respect to the greenian formula

(d"w,m) = (w, 6" ) :/ (w A=)y,
oM
and uniformly elliptic [70]. This means that this is an elliptic boundary value problem in the
classical sense according to the definition of Lopatinski and Shapiro [57], Appendix I, together
with a uniform condition on the local fundamental solutions. Now let w € C§° and n € ker(d)

2 2
ie. n, € Cg°, (nn)lal\/f =0, n L>77’ dny, L>0 then

(1, 0w) = lim(ny,, ow) = lim(dn,,w) :I:/ (Mn N *w)jonr = 0,
n n BM
0

Mor=0

showing that 6C§° C D(d) Nker(d)L. For the reverse inclusion take w € D(d) Nker(d)* i.e.

2 2
wp, € CF°, wnL>W, dwnL>0.Forﬁxedn€C’8°,

((d+0)nw) = (0nw)=lim(én,w,) =, = lim(n,dw).
N———— n ~~~ n
dneker(d),weker(d)+ wnam=0

Then we can apply the adjoint regularity theorem of Hérmander [70] Lemma 4.19, cor 4.22
saying that w € H_ then (dw,n) = (w,dn) holds because for every n € C§°(M — dM),
dn € ker(d) then dw = 0. It follows that for every o € C§°

(0 A xw)yonr = i/ @ A%
OM

0 = (do,w) = (U,(Su)):l:/

oM
doeker(d) 0

The last passage coming from the definition of the Hodge * operator, o A *w = (o, w)dvol =
(w,7)dvol = w A %7, where - is the complex conjugate in AT*M @ C. Now from the density
of {i*(¥0)}oecge in L*(OM), i : OM — M the boundary condition wjgy; = 0 follows in
particular w € H{, . Now it remains to apply the Hodge decomposition

L? L?

LP(AFT* M) = Hyy (M, 0M) & d¥=1Q~ (M, 0M) & ok+1 Qi+ (M, 0M)
N———

no a—conditions

2

L
to deduce w € FHLCE(ARTIT*M) . O

Consider again the formally selfadjoint boundary value problem d+§ with Dirichlet boundary
conditions i.e D(d + §) = H]IZ)ir' Its square in the sense of unbounded operators on L? is the
laplacian A with domain

Hpy = {w e H? twion = 0, ((d + 8)w)jom = (0w)jonr = 0}

Let Aj- the operator obtained from A on k—forms restricted to the orthogonal complement
of its kernel, it is easy to see that the splitting

L? L?
LP(AFT*M) = Hyy (M, 0M) & d*=1Q5~H (M, 0M) & ok+1 Qf+! (M, 0M)
N————

no a—conditions
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induces the following splitting on A,

Aé_ _ (5k+1dp)|w o) (dkflék)

—1ok—1°
|dk—1Qk

LEMMA 11.78 — The following identies of unbounded operators hold

k+1 _ k k
(5 dp)‘5k+19§+1 - (d‘(gk-#lQ’ngl)*(d‘5k+19§+1)’

k—1 5k (k-1 k=1 \x
(d 5 )ldk,195—1 _( ‘m)( ‘@)
where the d:m is the unbounded operator on the subspace 5k+1ﬂ’§+1 of L? with domain
[

HY, N oFH1QET! and range dF 1041

PrOOF— This is again the dual (in the sense of boundary conditions) statement of Lemma
5.16 in [47]. We first state that the Hilbert space adjoint of the operator d* with domain
HY, N ORI and range db+1QFT! is exactly 6! with domain HJ, N dkQE. We shall
omit grades of forms and call d this restricted operator. Thanks to the intersection with
H*! this is also the restriction of d + § to the same subspace, in particular w € D(d*) C
dCg° implies w € D(d) and dw = 0. Take arbitrary n € H}, N 6CE°, then since o1 = 0,
((d+ 0)n,w) = (dn,w) = (n,d*w) and if n € HE. N dQy, ((d+ 8)n,w) = (dn,w) = 0. Since
SHL, LdQ, this is immediately checked,
o€ dea 0= dAa )‘|61\/I = 0’ (05 67) = (d07 7) +f‘8M (U A *’7)|8M .

S~—— ——

=0 =0
Also (n,d*w) = 0 since d*w € dCF° and dQp;i, LICF°. Then we can apply again the adjoint
regularity theorem [70], Lemma 4.19 to deduce w € H}. .. The next goal is to show w € H},
ie. dw,éw € L?, wiom =0 but dv =0 € L?, 6w = (d+ 6§)w = d*w € L? and
(w,don) = (d*w,0n) = (dw,dn) = (w,don) = [5,,(0n A +w)ar for every n € C§°. Then
0= [on (0 Axw)ionr = [o0,(@ A x0n) o0 = [0, (@ A %0n)jops for every 1. The boundary
=0

condition follows by density. Finally it is clear that dd|pg-q) = A = A+ but we have to prove
the coincidence of the domains

D(A) NG = D(d™(dze=)),
now D(A) = HE, = {w € H?, wjgnr, (0w)jgnr = 0} C D(d*le). Clearly
w € D(d"djsgm) = w € Hp, N 6CEE,

dw € Hp, then (d+ d)w € H! and since wjam = 0 by elliptic regularity (for the boundary
value problem (d + &) with Dirichlet conditions [70]) w € H2. We have just checked the
boundary conditions, finally w € H2,, = D(A). The second equality in the statement is
proven in a very similar way. O

Now that the relation of d with Dirichlet boundary condition restricted to the complement of
its kernel with the Laplacian (A1) is clear we can use elliptic regularity to deduce that the
relative Random Hilbert complex is A—Fredholm. This has to be done in two steps, the first
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is to show that the spectral function of the Laplacian controls the spectral function of the
complex

Fa(Ar, Vi) = FA(L* (9% Xo,0X0), 1) + FA(L* (25" X, 0Xo), 1) (98)

in fact
Fo(Ag v = FA<(5k+1dk)‘W)’ \/ﬁ) + Fa ((dk*ltsk)lw)y \/ﬁ)
k *( gk k—1 k—1 \*
(@ rgre) @ragree). Vi) + B (L) (@) V)

k k—1
(g ) + Paldigy )

I
=

I
=

where, at first step we have used the obvious fact that the spectral functions behave additively
under direct sum of operators togheter with the remark after (11.76) , at the second step there
are lemmas 11.77 and 11.78 together with the following properties of the spectral functions

o F(F7£.VA) = F(£.N)

o Fa(,A) = Fa(97, A)

that can be adapted to hold in our situation with unbounded operators. Good references are
the paper of Lott and Liick [44] and the paper of Liick and Schick [47] that inspired completely
this treatment.

Thanks to (98) it remains to show that Aj is left A-Fredholm. We can use the heat kernel, in
fact by elliptic regularity for each leaf the heat kernel e~ tBrat (z,2") is smooth and uniformly
bounded along the leaf on intervals [tg, 00) [70] Theorem 2.35. As x varies in X, these bounds
can made uniform by the uniform geometry (in fact the constants depend on the metric tensor,
its inverse and a finite number of their derivatives in normal coordinates) and we get a family
of smooth kernels that varies transversally in a measurable fashion since it is obtained by
functional calculus from a measurable family of operators. Then they give a A-trace class
element in the Von neumann algebra. Now the projections Xxo,,(f*f) in definition 11.76
where f is the differential restricted to the complement of its kernel are obtained from the
heat kernel as

" 1 AL
X[O,u](.f f) = X[O,/x](Akl)eAlC X[O,u](Aé)e A% .

bounded A—trace class

REMARK — The same argument of elliptic regularity for b.v. problems togheter with
the various Hodge decompositions shows that each term of the long sequence (95) is a finite
Random Hilbert space.

12 L?- De Rham signature

Let dim(F) = 4k Consider the measurable field of Hilbert spaces A¥(LY, OLY) of the minimal
domains of the De Rham leafwise differential with Dirichlet boundary conditions wjgro = 0 as
in section 11.2 with the graph Hilbert structure and the induce Borel structure. This square

integrable representation of R carries a field of bounded symmetric sesquilinear forms defined
by

o1 AZV(LO,0L0) x AZH(LO,0L0) — C, (wyn) — | wAT= / (w0, #m)dv*
Lo Lo
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i.e. the C—antilinear in the second variable extension of the wedge product on forms , c ® v =
0 ®7% is the complex conjugate and v* is the Leafwise Riemannian metric. Note that also the
scalar product (-, -) on forms is extended to be sesquilinear.

LEMMA 12.79 — The sesquilinear form s! passes to the L? relative cohomology of the leaf
HJjh () (LY, OLY) factorizing through the image of the map Hypy o\ (LY, 9LY) — Hip o) (LY)
of the L? relative de Rham cohomology to the L? de Rham cohomology exactly as in the compact
(one leaf) case.

PrROOF—  The first assertion is simply Stokes theorem, in fact let w € A2¥(LY 9LY) i.e.
2 2 2
wn > W, dw, X0 and 6,, € C°(AT**~1LY), df,, “— ¢ then

s2(w, ) = lim Wy A df,, = lim d(wy A B,,) = lim (wn A Om)jaro = 0.

n,m Jro n,m Jro n,m J5r,0
x z x

The second one is clear and follows exactly from the classical case i.e. if §; = G2 + lim,, dp,,
with p,, compactly supported with no boundary conditions write

$2((a). (9 = s2((a). (32 + lin [ @

represent o as a L? limit of forms with Dirichlet boundary conditions than apply Stokes
theorem again. O

For every z the sesquilinear form s on the cohomology corresponds to a bounded selfadjoint
operator B, € B(HJ}, ,)(Lg,9LY)) (a proof in [63]) univoquely determined by the condition

s%(a, B) = (o, B.3). Measurability properties of (s%),¢cx, are by definition (for us) measur-
ability properties of the family (B,),. It is clear that everything varies in a Borel fashion
(use again a smooth fundamental sequence of vector fields as in [33]) then the B,’s define a
self-adjoint random operator B € EndA(H(?]’%’@)(XO, 0Xo)).

DEFINITION 12.80 — The A-L? De Rham signature of the foliated manifold X, with boundary
5‘X0 is
oa,ar(Xo0,0X0) := tTA X(0,00)(B) = trA X(=o00,0)(B)

as random operators in End (HJ} ) (Xo, 9X0)).

THEOREM 12.80 — We have
oa,dr(Xo,0Xo) = op,an(X,0X0)

then together with formula (91) w.rt. the manifold with cylinder attached X all the three signa-
tures we have defined agree

onar(Xo,0X0) = oaan(Xo,0X0) = o0 (X) = (L(X),[Ca]) + 1/2[na(D7?)]

PROOF —
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First step.This is done. We have just proved, following the method of Vaillant the equality
opan(X0,0X0) = 03°(X) where at right the signature on harmonic leafwise L?-forms on
the elonged manifold with elonged foliation i.e. the A signature of the Poincaré product on
leafwise harmonic forms. Our reference is then the harmonic signature.

Second step. We shall prove o5 4z (Xo,0X0) = 0 (X). Remember the notation z € X, L?
is the leaf of the compact foliated manifold with boundary, L., is the leaf of the foliation on the
manifold X with a cylinder attached. Consider the random Hilbert space H gf ) (Xo) obtained
from the various L? cohomologies of the leaves with no boundary conditions (this is called in
[48] the L?~homology since it naturally pairies with forms with Dirichlet boundary conditions).
We have a family of restriction maps Xg > z +—— 72 : H?*(L,) — Hgg(z)(Lg) where we
stress the fundamental fact that the variable = is the compact piece X in order to obtain
an intertwining operator (H2*(L,))zex, Hflg(g)(Lg) where the first is seen as a square

integrable representation of Ro. There are also natural mappings 2% : H2% (2)(L2, oLY) —
H2k (2)(Lz). The program of Liick and Schick fits well here and is:

1. A a.e. range(r2*) = range(i2*) and the signature can be computed looking the fields of
sesquilinear Poincaré products on the images of i2* as square integrable representations
of Ro,

i2k
)(Lga 8Lg) - Hglké,(z)(l’g) . (99)

2k
T

2k
HdR,(z

H2k (Lz)

2. The signature of the field of products on the image of i2* concides with the signature of
the fields of Poincaré products on (H,)zex, as square integrable representations of Ry.

A Analysis on Manifolds with bounded geometry

Hereafter we review some essential results about differential operators, and the Dirac one
in particular, on manifolds with bounded geometry. This theory was developed by J. Roe
[65, 66, 67|, M. Shubin [69] and J. Lott [?] among others.

Let M be an oriented Riemannian manifold of bounded geometry, by definition,

1. the injectivity radius of M, inj(M), defined as the infimum on M of radii of regular
geodesic balls is finite.

2. The Riemann curvature tensor is uniformly bounded with every covariant derivative.

DEFINITION A.81 — For an vector bundle to be of bounded geometry will mean that it is
given a connection with uniformly bounded curvature together with every covariant derivative.

Natural examples are, compact manifolds, Galois covering of compact manifolds, the interior
of a compact manifold with boundary equipped with a b—metric and finally leaves of a compact
foliated manifold. An obvious but important property is that compact perturbations, i.e.
connected sum preserve bounded geometry.
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Note that a non—compact manifold with bounded geometry has infinite volume. Directly from

the definition one finds that if dim(M) = n there exists a positive number r such that the
eclidean ball B(0,r) C R™ is the domain of exponential coordinates for every point in M. The
Christoffel symbols of M regarded as a family of smooth functions depending on i, j, k and
points m in B are a bounded subset of the Fréchet space C*°(B). These geodetic balls can be
used also to trivialize bundles by parallel traslation along geodesic rays of a fixed orthonormal
basis at the center. Such frames are called synchronous. With a "good coordinate ball" one
refers to this situation.

We shall consider till the end of this section Clifford modules of bounded geometry with
Zo graduated structure denoted generally by S and call D the associated Dirac operator.

DEFINITION A.82 —

1. For k € N the Sobolev space of sections of H*(S) is the completion of C2°(S) under the
norm
Islle = (lsIZ2 + 1Vsl72 + - V5] 7)1/,

2. For negative k, H%(S) is the dual space of H*(S) regarded as a distributional sections
space.

3. Put H>®(S) =0, H*(S) equipped with its natural Fréchet topology, H>°(S) = |J H*(S)
with the weak topology that it inherits as as the dual of H>°(S).

DEFINITION A.83 —

1. Let r € N, the uniform C" space is the Banach space of all C" sections s of S such that
the norm

sl = sup {|Vu, -V, 5(m)|}

is finite, supremum taken over points m € M and collections {v, ..., v4,0 < g < r} of unit
vectors at m.

2. Also, UC®(S) is the Fréchet space (), UC" ().

The algebra of differential operators Diff*(M, S) acting on S contains the subalgebra
UDiff* (M, S) of uniform differential operators generated by the uniform space UC>(End(S5))
together with covariant derivatives Vi (as differential operators) along uniform vector fields
X eUC>®(TM).

It turns out that for a differential operator to be uniformly elliptic is necessary and suffi-
cient to have every derivative (also 0 order of course) of its symbol uniformly bounded on every
good coordinate ball. A k—order uniform differential operator naturally defines continuous
mappings, H" (M, S) — H"¥(M,S) and UCY(M, S) — UC'*"F(M, S).

DEFINITION A.84 — An uniform differential operator P € UDiff* (M, S) is uniformly elliptic
if its principal symbol
ope(P) € UC(T* M, 7" (End(S))

has an uniform inverse in an e—neightborhood of the zero section in T*M.
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THEOREM A.84 — (uniform Gé&rding's inequality) For an uniformly elliptic operator T' €
UDIff* (M, S), for every [ there exists a positive constant C(1) such that
[l e+ < CO{ sl + [|Psllm=}, (100)

for every s € C°(M, S).

PROOF— A straightforward generalization of compact case. O

Here a list of properties
In this framework the Sobolev embedding theorem reads as follows,

THEOREM A.84 — For k,s € N, s > k + (dim(M))/2 There is a continuous inclusion
H*(M,S) — UC*(M, S) hence also a continuous inclusion of Fréchet spaces

H>®(S) — UC™(S)

PrROOF— As observed by J. Roe, this is an adaption of the standard compact case, in fact
thanks to bounded geometry assumption the family of local Sobolev constant on good balls
is bounded. 0

Now by Schwartz kernel theorem a continuous linear operator'® T : C°(M, S) — C~°°(M, s)
is univoquely represented by its Schwartz kernel, the unique distribution—section Kp €
C°°(M x M,END(S) ® PriQ(M)) satisfying the distributional equation

(Kru,v) = (K1, vRu)

for every u,v € C3°(M, S). Here the big endomorphism bundle END(S) — M x M has fiber
Hom(S,, Sy) over (z,y). the following is a group of definitions.

DEFINITIONS A.85 —

1. We say that 7" has order k € Z if it extends to an operator in B(H*(M,S), H*=*(M, s))
for every s.

2. The space of k-order operators is denoted by Op”(M,S). with seminorms given by
B(H*(M,S), H"*(M, s)).

3. The space Op™ (M, S) = (<o Op"(M, S) is called the space of uniformly smoothig
operators. In fact we shall see it is the space of operators with uniformly smooth kernels.

4. An element T € Op*(M,S), k > 1 is called elliptic if it satisfies the uniform Garding
inequality (100).

Below a list of properties that can be found in the papers cited at the beginning.

PROPOSITION A.86 —

18If T is not a pseudo-differential operator it is customary to require that it respects all the connected
components of M.
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e Ellipticity is stable under order O perturbations, if T' € Opk(M7 S) elliptic and Q €
Op°(M, S) then T + Q is elliptic.

o If e Opk(M, S) is elliptic and formally self-adjoint then every its spectral projection belongs
to Op° (M, s).

e It follows from the completeness of M that an elliptic and formally self-adjoint element
T € Op"(M,S) (k > 1 as required by the definition of elliptic element) is essentially
selfadjoint on L?(M, S).

If T denotes its closure also one finds that dom(7") = H*(M, S). In particular this is true
for the Dirac operator D.

A.1 Spectral functions of elliptic operators

Last theorem says that an uniformly elliptic operator on a manifold with bounded geometry
is essentially self-adjoint. We need some considerations about spectral functions of T'. Let

RB(R) := {f :R — C, Borel; |(1+2%)*2f(z)|oo < oo Vk e N}

be the space of rapidly decreasing Borel functions with Fréchet structure induce by the semi-
norms |(1 4 z2)*/2 .|
Let RC(R) denote the closed subspace of continuous functions.

PROPOSITION A.87 — For an elliptic element 7' and [ € N and rapid Borel functions f,
T'f(T) is bounded in L? and the following Garding inequality holds true,

(D)l < CU Z IT*F(T)ell e < CON]l 22 Z 2" floo (101)

= =0

for every ¢ € C°(M, S). Suppose now, by simplicity of writing that 7" has order 1, making use
of the duality

(H*)* = H
one finds, for k.l € Z, | > k,
I—k
IF (D)l < CUF) ZHTI TYllan < CUR) @l Y 12" floo- (102)
i=0 i=0

PROOF— Observe first that the operator 7! f(T)) is the spectral function of T’ corresponding
to the function z!f(x) on R hence is bounded. Again, since f is bounded no problem here
in commuting relations, in particular T'f(T) = f(T)T" (equality in the sense of unbounded
operators) in particular f(T): L? — H!**. Now from Garding’s inequality for T,

(Tl < CU ZIITl Tyllrz < CO[Y 22 leifloo

=0 =0

Inequality (102) follows at once from the first one (101) in fact the first step is to consider the
transpose of T f(T) : H~' — H~" while the second step is based on our very dual definition
of Sobolev space of order negative. O
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Hence, we get continuity of the functional calculus RB(R) — B(H!(M, S), H*(M, S))
for each [, k then continuity of RB(R) — Op~*°(M, S). With a little work, using Sobolev
embedding one can prove the following theorem.

THEOREM A.87 — Let T e Op”*(MM, S) uniformly elliptic and formally selfadjoint.
o If L =[n/2+1], n=dimM and [ € N then the kernel mapping

Op~**7Y(M, §) — UC'(M x M,END(S) ® PrjQ(M)),T — Kr,
is continuous.

e For f € RB(R) the kernel of f(T) is uniformly smoothing,
Ky e UC™(M x M,END(S) @ PriQ(M)).

and the kernel mapping RB(R) — UC>(M x M,END(S) ® PriQ(M)) is continuous.

REMARK — Combining A.16, page 89 and 7?7 we see that every spectral projection II14 of
the Dirac operator obtained by a bounded Borel set A C R is represented by a uniformly
smoothing kernel hence is locally traceable (in the usual sense on L?(M, S) w.r.t the Abelian
Von Neumann algebra L>°(M)). This means that for every Borel set B C M with compact
closure the operator xpIl4xp is trace class, one gets a Radon measure B — trace xgllaxp
called the local trace of I14.

A.2 Some computations on Clifford algebras

Let Cl(k) the (complex) Clifford algebra over the euclidean space R*, with generators cq, . . . , ¢k
and relations (c; orthonormal basis)

C;Cj + C;C; = _25ij-

The algebra Cl(k) is Zs-graded: Cl(k) = Cit(k) @ Cl~(k), being CIT (k) the subalgebra
spanned by products of even sets of generators.

The map c; — ¢;cx41 defines an isomorphism CI(k) = CI*(k +1).

The volume element 73, := il*+1/2l¢c; .. ¢, € Cl(k) satisfies 72 = 1 and thus induces a
Zs-grading on each representation of Cl(k). Due to the fact

TLC = 7(71)}607%

for ¢ € R¥ ¢ Ci(k) this induced grading is trivial if & is odd. CI(2) has a unique irreducible
representation, called its spinor space and we denote it by S(2l). Its dimension is dim S(21) =
2!. Decomposing into the +1-Eigenspaces of mo; we write S(21) = S+(21) @ S~(2l). Via the
identification CI(2] — 1) = CI*(2l) the spaces ST(2l), S~ (2l) are non-equivalent irreducible
representations of CI(2! — 1), which can be considered as being isomorphic representations
of CI(21 —2) = CIT (2] — 1) via the map S*(21) 2 S~(21). This of course is then just the
representation S(2] — 2) of CI(2] — 2).

Notation: for S*(2[) we also write ST (2] — 1) when these spaces are seen as representations
of Cl(21 —1).

Cl(2l = 1) <— CIT(2]) <— End " (S*(21) @ S~ (21)) == End(5*(2{)) =: End(S*(2l — 1)) .
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It is easily seen that CI(2[) acts injectively on S(2[). Comparison of dimensions then yields
C(2l) = End(S(2l)), and, using Cl(2] — 1) = CI*(21) also

Cl(20 — 1) = CIT(21) = End ™t (S(21)).

The identification Cl(2] — 1) — End(S* (2] — 1)) maps 79;_; to +1 and one can show that
the null space is (1 F 79;—-1)C(2] — 1).

End(S+(20) @ S~ (21)) < CI(2l) = Cl*(21) o) Cl—(20)
Tli—1) = cre-y > Cl- (20— 1)
’_/%/
Ci(21 - 2)

The traces tr* on End(S*(2/ — 1)) and the graded trace str on End(S(2/)) then induce traces
on C(2l — 1) and C(2l). On elements of the form ¢y := ¢;1...¢;; where [ = {i; < ... <
i1} € {1,...,k} these can be computed as follows

LEMMA A.88 —
(a) In CI(21) we have str(ry;) = 2! and str(1) = str(c;) =0 for I # {1,...,k}.
(b) In Ci(20 — 1) we have StI‘(Tgl 1) = —tr (rg_1) = tr¥(1) = 271 and for I # {1,...,k}
(

we have tr¥(c;) =

On (Ci(21 — 1) — (C) C CI(21) therefore tr*(e) = F1 str(cye) and on CI(2l) C CI(2l + 1)
we have str(e) = i tr*(co4 1)

Proor— Cf. [9], Proposition 3.21 O

The map ST (21) 2% S~ (21) gives an identification S(21) = S*(21 — 1) ® S*(21 — 1). In this
representation, CI(20) acts on S(21) as follows

Cc; € (Cl(2l — 1) >~ (:l:OC :tocl> Co; X~ ((1) _01)

and str (i; j;z) = tri(ﬁﬁl) - tri(@)
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