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1 Introduction
The aim of this PHD thesis is to prove an Atiyah Patodi Singer index formula for a Dirac
operator on a manifold with cylindrical ends which is foliated by a foliation that respects the
cylindrical structure........

Geometric setting
The whole geometric structure is introduced. We speak about cylindrical foliations and all
the data needed to define the longitudinal Dirac operator associated to a Clifford bundle.
Every cylindrical foliation arises from a gluing process starting from a foliated manifold with
boundary and the foliation transverse to the boundary. The first geometrical invariant of
a foliation is its holonomy. It enters into index theory in essential way providing a natural
desingularization of the leaf space where doing analysis. Following Ramachandran we work
at level of the equivalence relation of being on the same leaf. This is the most elementar level
of desingularization.

Von Neumann algebras, foliations and index theory

Von Neumann algebras and Breuer Fredholm theory with traces. In this sec-
tion generalities about Von Neumann algebras are given. These are particular ∗–
subalgebras of all bounded operators acting on an Hilbert space. We specialize to
Von Neumann algebras that can be equipped with a semi–finite normal faithful traces
likewise Von Neumann algebras arising from foliations admitting a holonomy invariant
transverse measure.

With a trace τ : M+ −→ [0,∞] one has a natural notion of dimension of a closed
subspace affiliated to M , i.e. a subspace V whose projection PrV belongs to M . This
is the relative dimension τ(PrV ). Relative dimension is the cornerstone of a theory of
Fredholm operators insideM. This story goes back to the general seminal work of Breuer
[14, 15]. For this reason relatively Fredholm operators are called Breuer–Fredholm. A
Breuer–Fredholm operator has a finite real index with some stability properties as in
the classical theory.

Transverse measures and Von Neumann algebras. In the spirit of Alain Connes
non commutative geometry Von Neumann algebras stand for measure spaces while C∗–
algebras describes topological spaces. In the seminal work [24] has shown that a foliation
with a given transverse measure gives rise to a Von Neumann algebra whose properties
reflect the properties of the measure. First we define transverse measures as measures
on the sigma ring of all Borel transversals. This is acted by the holonomy pseudogroup.
When the measure is invariant w.r.t. this action one has a holonomy invariant measures.

If a holonomy invariant measure exists then the associated W ∗– algebra is type I or
type II (the first type appears only in the ergodic case). In particular there’s a natural
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trace whose definition is explicitly given as an integral of suitable objects living along
leaves against the transverse measure.
Then transverse measures appear as some kind of measure on the space of the leaves.
In this section we define the Von Neumann algebra associated to the transverse measure
and a square representation of the Borel equivalence relation xRy iff x and y are in the
same leave. For a vector bundle E this is the algebra of uniformly bounded fields of
operators x 7−→ Ax : L2(Lx;E) −→ L2(Lx;E) (Lx is the leave of x) acting on the
Borel field of Hilbert spaces x 7−→ L2(X;E) suitably identified using the transverse
measure. Thinking of an operator as a family of leafwise operators the trace has a
natural meaning, it is the integral against the transverse measure of a family of leafwise
measures called local traces.

For self adjoint intertwining operators, using the spectral theorem and the trace on
M (coming from a transverse measure Λ) one can define a measure on R called the
spectral measure (depending on the trace). Breuer–Fredholm properties of the operator
are easily described in terms of this spectral measure. In particular one can define
some kind of essential spectrum called the Λ–essential spectrum. Belonging of zero to
the essential spectrum is equivalent for the operator to be Breuer–Fredholm. We show
also that for elliptic operators the essential spectrum is governed by the behavior of
the operator outside compact subsets on the ambient manifold. Actually if one fix a
compact set K on X every leave can intersect K infinite times then our notion of "lieing
outside K" must be explained with care. We call this result the Splitting principle. It
will be useful in the study of the Dirac operator.

Analysis of the Dirac operator. Consider the leafwise Dirac operator on X associated
to the geometric datas of the first section. This is obtained from the collection of all Dirac
operators {Dx}x one for each leave Lx. If the foliation is assumed even dimensional this is
Z2–graded D = D+⊕D− with respect to a natural involution on the bundle E. This is called
the Chiral Dirac operator.
This leafwise family of operators gives an operator affiliated to the Von Neumann algebra
M (the transverse measure gives the glue to join all the operators together). In particular
each spectral projection of D defines a projection in M . If the foliated manifold is compact
Connes shown this is Breuer–Fredholm and the index, the relative dimension of Kernel minus
CoKernel is related to topological invariants of the foliation by the Connes index formula.

indΛ(D+) = 〈Ch(D+) Td(X), [CΛ]〉

At right handside one finds the coupling with longitudinal characteristic classes and the
homology class of a closed current CΛ associated to the transverse measure by the Ruelle–
Sullivan method.

Finite dimensionality of the index problem. In our cylindrical case, the operator
is in general non Breuer–Fredholm. As a general philosophical principle for manifolds
with cylindrical ends and product–structure operators, Fredholm properties of the op-
erator on the natural L2 space are essentially captured by the spectrum at zero of the
operator on the cross section (the base of the cylinder). Thanks to the splitting principle
the Philosophy

invertibility at boundary ⇐⇒ Freholm property

carries on to the foliated case if one looks at the Λ–essential spectrum of the leafwise
operator on the foliation induced on the transverse section of the cylinder (this is to be
thinked the foliation at infinity).
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Now it’s a well known fact that lots of Dirac type operators of capital importance in
Physics and Geometry are not invertible at the boundary. One example for all is the
Signature operator, our main application here.

However some work on elliptic regularity and the use of the generalized eigenfunction
expansion of Browder and Gårding shows that the Λ–dimension of the projection on
the L2 kernel of D+ and D− are finite projections of the V.N. algebra M . In particular
we can define the L2 chiral index of D+ as

indL2,Λ(D+) = dimΛ KerL2(D+)− dimΛ KerL2(D−).

On a compact foliated manifold, if a family of operators is implemented by a family of
leafwise uniformly smoothing schwartz kernels the finite trace property follows immedi-
ately from the remarkable fact that integrating a longitudinal Radon measure against a
transverse measure gives a finite mass measure on the ambient. Now the ambient is a
manifold with a cylinder, hence Radon longitudinal measures do not give finite measures
in general. Our strategy to prove the finite dimensionality of the L2 index problem is to
show that the field of L2 projections on the kernel of D+

x enjoys the additional property
to be locally traceable with respect to a bigger family of Borel sets. To be more precise
we prove that for every compact set K on the boundary of the cylinder of a leave the
operator χK×R+ΠKerL2 (D+)χK×R+ is trace class on L2(Lx). This is completely sufficient
(by the integration process) to assure finite dimensionality.

Breuer–Fredholm perturbation. Once finite dimensionality of kernels is proven we
perform a perturbation argument to change the Dirac operator into a Breuer–Fredholm
one. This is done following very closely Boris Vaillant master thesis [?] where the same
problem is studied for Galois coverings of manifolds with cylindrical ends. Since we are
working with Von Neumann algebras the possibilty to use Borel functional calculus gives
a great help in a way that we can define our two parameters perturbation essentially
by subtracting, on the cylinder the boundary operator restricted to some small spectral
interval near zero

D ; Dε,u, Dε,0 := Dε

Next we prove (through the splitting principle) that Dε,u is Breuer–Fredholm for small
parameters and its index approximates the chiral index. Actually we have to consider
separately the two parameters limits.

The analysis of the relation between the perturbed Fredholm index and the chiral L2

index requires the introduction of weighted L2 spaces along the leaves, euθL2 for u > 0
(r is the cylindrical coordinate). Smooth solutions belonging to each weighted space are
called Extended Solutions, Ext(D±). They enter naturally into the A.P.S index formula
naturally but do not form a closed subspace in L2. Some care is needed in showing their
finite Λ–dimensionality.

The remaining part of the section is devoted in the proof of the fundamental asymptotic
relations

lim
ε→0

indL2,Λ(D+
ε ) = indL2,Λ(D+), lim

ε→0
dimΛ Ext(D±ε ) = Ext(D±).

Cylindrical finite propagation speed and Cheeger Gromov Taylor type estimates.
To prove the index formula we need some pointwise estimates on the Schwartz kernels of
functions of the leafwise Dirac operator. Our perturbation on the cylinder has the shape
D + Q where Q is some selfadjoint order zero pseudodifferential operator on the base of the
cylinder (actually Q is just a sum of a uniformly smoothing operator and u Id) in particular
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one can repeat the proof of energy estimates as in the Book by John Roe for example [65]
for the wave equation no more on a small geodesic ball but on a strip ∂Lx × (a, b) (∂Lx is
the base of the cylinder) finding out that unitary cylindrical diffusion speed holds i.e. if ξ0
is supported in ∂Lx × (a, b) then the solution of the wave equation eiQξ0 is supported in
∂Lx× (a−|t|, b+ |t|). This is sufficient to extimate kernels of class schwartz spectral functions
of D and Q following the method of Cheeger, Gromov and Taylor [21] obtaining decaying
estimates as in the next example for the heat kernel where [·] is the Schwartz kernel,

|∇lz1∇
k
z2 [Tme−tT

2
](z1, z2)| ≤ C(k, l,m, T )e(|s1−s2|−r1)2/6t. (1)

Here r1 is some positive number and zi = (xi, si) are two points on the cylinder with |s1−s2| >
2r1. It is clear why one calls these Chegeer Gromov Taylor estimates on the cylindrical
direction. There is also an extremely useful relative version of estimate (1) where one can
estimate the difference of the kernels of spectral functions of two operators that agree on some
open subset of the cylinder.
In practice we shall collect all these estimates, one for each leaf. Thanks to the uniformly
bounded geometry of the leaves the constants are independent. This is an extremely important
fact.

The foliated eta invariant.
Since its first apparition in [4] the eta invariant of a Dirac operator as the difference between
the local and global term on the Atiyah Patodi Singer index formula

1/2η(D0) =
∫
X

ωD − {ind(D+) + 1/2 dimKer(D0)}

or the spectral asimmetry defined as the regular value at zero of the meromorphic function
(summation over eigenvalues)

ηD0(s) :=
∑
λ6=0

signλ
|λ|s

, Re(s) > dim ∂X (2)

has becomed a central character of Spectral geometry and modern Physics.
The foliation eta invariant on a compact manifold (when a transverse invariant measure is
fixed) was defined independently and essentially in the same way by Peric [58] and Ramachan-
dran [62] and enters into our A.P.S index formula exactly in the way it enters classically. It
should be strongly remarked that Peric and Ramachandran numbers are not the same. The
reason is simple. Peric uses the holonomy groupoid to desingularize the space of the leaves
while Ramachandran works directly on the Borel equivalence relation. Due to their global
nature the eta invariants obtained are not the same. As a striking consequence one get the
awareness that on a cylindrical foliated manifold every choice of desingularization from the
equivalence relation to the holonomy (or the monodromy groupoid ) leads to different index
formulas with different eta invariants. This is a genuine feature of the boundary (cylindrical)
case.
Since we work with the Borel equivalence relation our eta–invariant is that of Ramachandran.
So consider the base Dirac operator DF∂ the eta function1 of DF∂ is defined for Re(s) ≤ 0 by

η(DF∂ , s) :=
1

Γ((s+ 1)/2)

∫ ∞
0

t
s−1

2 trΛ(DF∂e−D
F∂ )dt, |λ| > 0, s > −1.

It can be shown that this is meromorphic for Re(λ) ≤ 0 with eventually simple poles at
(dimF∂ − k)/2, k = 0, 1, ... and a regular value at zero.

1the relation with (2) comes from the identity sign(λ)|λ|−1 = Γ
`
s+1
2

´−1 R∞
0 t

s−1
2 λe−tλ

2
dt
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In this section we describe this result extending the result to some classes of perturbations of
the operator needed in the proof of the index formula. We shall consider perturbations of the
form Q = DF∂ + K with K some uniformly smoothing spectral function K = f(DF∂ ), f :
(−a, a) −→ R. For f = χ(−ε,ε) more can be said about the family Qu := DF∂+DF∂f(DF∂ )+u
in fact we can define

ηΛ(Qu) = LIMδ→0

∫ k

δ

t−1/2

Γ(1/2)
trΛ(Que−tQ

2
u)dt+

∫ ∞
k

t−1/2

Γ(1/2)
trΛ(Que−tQ

2
u)dt

where LIM is the constant term in the asymptotic development in powers of δ near zero of
the function δ 7−→

∫ k
δ
. Moreover two important formulas hold true

• ηΛ(Qu)− ηΛ(Q0) = sign(u) trΛ(f(DF∂ )

•
ηΛ(Q0) = 1/2(ηΛ(Qu) + ηΛ(Q−u)). (3)

This only requires a minimal modification of Vaillant proof.

The index formula.
Finally we prove the index formula

indL2,Λ(D+) = 〈Â(X) Ch(E/S), [CΛ]〉+ 1/2[ηΛ(DF0 )− h+
Λ + h+

Λ ]

where h±Λ := dimΛ(Ext(D±)−dimΛ(KerL2(D±). Our proof is a modification of Vaillant proof
that in turn is inspired by Müller proof of the L2–index formula on manifolds with corners of
codimension two [54]. This is a (of course) a proof based on the heat equation.
The starting point is the identity

indL2,Λ(D+
ε ) = lim

u↓0
1/2{indΛ(D+

ε,u) + indΛ(D+
ε,−u) + h−Λ,ε − h

+
Λ,ε} (4)

where
h±Λ,ε := dimΛ Ext(D±ε )− dimΛ KerL2(D±ε )

definition also valid for ε = 0.
Next we prove

indΛ(D+
ε,u) = 〈Â(X) Ch(E/S), [CΛ]〉+ 1/2ηΛ(DF∂ε,u) + g(u) (5)

with g(u) −→ 0.
Equation (5) combined with (4) and (3) becomes, after the u–limit

indL2,Λ(D+
ε ) = 〈Â(X) Ch(E/S), [CΛ]〉+ 1/2ηΛ(DF0) + h−ε − h−ε .

The last step is to assure that under ε → 0 each ε–depending object in the above equation
goes to the corresponding value for ε = 0.

Some words about the proof of (5). This is inspired from the work of Müller [54]. We
start from the convergence into the space of leafwise smoothing kernels of [exp(−tD2

ε,u)] to
[KerL2(Dε,u)]. The choice of cut off functions φk supported in Xk+1 (Xm is the manifold
truncated at r = m) gives an exaustion of X into compact pieces. Consider the equation

indΛ(D+
ε,u) = strΛ χ{0}(Dε,u) = lim

k→+∞
lim

t→+∞
strΛ(φke−tD

2
ε,uφk) =

lim
k→∞

strΛ(φke−sD
2
ε,uφk)−

∫ ∞
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt. (6)
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The t–integral is splitted into
∫√k
s

+
∫∞√

k
the second one going to zero thanks to the Breuer–

Fredholm property of Dε,u. More work is needed in the study of the first one, the responsible
of the presence of the eta invariant in the formula. Using heavily the relative version of the
Cheeger–Gromov–Taylor estimate (1) one shows that

lim
k→∞

LIMs→0

∫ √k
s

= 1/2ηΛ(DF0
ε,u).

The first addendum in (6) will lead to the well known local term

lim
k→∞

LIMs→0 strΛ(φke−sD
2
ε,uφk) = 〈Â(X) Ch(E/S), [CΛ]〉.

This requires some work in developing the asymptotic expansion, we have to consider three
pieces of X separately again making use of relative kernel estimates.

Comparison with Ramachandran index formula.
In this section.......

The signature formula.
The main application....
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2 Geometric Setting

Definition 2.1 — A p–dimensional foliation F on a manifold with boundary X0 is transverse
to the boundary if it is given by a foliated atlas {Uα} with homeomorphisms φα : Uα −→ Vα×Wα

with Vα open in Hp := {(x1, ..., xp) ∈ Rp : x1 ≥ 0} andW q open in Rq with change of coordinated
φα(u, v) in the shape

v′ = φ(v, w), w′ = ψ(w) (7)

(ψ is a local diffeomorphism). Such an atlas is supposed maximal among all collections of this
type. The integer p is the dimension of the foliation, q its codimension and p+ q = dim(X0).

In each foliated chart, connected components of subsets as φ−1
α (Vα × {w}) are called

plaques. The plaques coalesce (thanks to the change of coordinate condition (7)) to give
maximal connected injectively immersed (not embedded !) submanifolds called leaves. One
uses the notation F for the set of leaves. Note that in general each leaf passes infinitely times
trough a foliated chart so a foliation is only locally a fibration. Taking the tangent spaces to
the leaves one gets an integrable subbundle TF ⊂ TX0 that’s transverse to the boundary i.e
T∂X0 + TF = TX0 in other words the boundary is a submanifold that’s transverse to the
foliation.

2.1 Holonomy

We skip the definition of a foliation on a manifold without boundary recall only that is defined
by foliated charts as in the definition 2.1 above with local models U × V where U is an open
set in Rp Let X a manifold equipped with a (p, q)–foliation. If X has boundary the foliation
is assumed transverse to the boundary according to definition 2.1.

Definition 2.2 — A function f : X −→ R is called distinguished if each point x is in the

domain of a foliated chart U
φ−→ V ×Wα such that f|U = φ ◦PrV where PrV : U × V −→ V is

the projection on the second factor.

Let D the collection of all the germs of distinguished maps with the obvious projection σ :
D −→ X sending the germ of f at x onto x. Consider a foliated chart (U, φ) and P a
plaque of U , then P individuates the set P̃ ⊂ D of the distinguished germs {[φ ◦ PrV ]x}x∈P .
When P varies over all the possible foliated charts these sets form the base of a topology
of a p–dimensional manifold on D called the leaf topology. The mapping σ : D −→ F is
a covering ([36])where F is the non paracompact manifold of the disjoint union of all the
leaves (equivalently use the plaques to give X a topology where the connected components
are exactly the leaves with their natural topology). Let γ : x −→ y a continuous leafwise
path. Since σ is a covering map there’s a holonomy map hγ : σ−1(x) −→ σ−1(y) sending the
point π ∈ σ−1(x) into the endpoint of the unique lifting γ̃ of γ starting from π.

Definition 2.3 — A q–dimensional submanifold Z ⊂ X is a transversal if for every z ∈ Z
there exists a distinguished map π : U −→ Rq such that π|Z∩U is an homeomorphism.

There are many equivalent definitions of transverse submanifold for example at infinitesimal
level, one can ask, TzZ ⊕ TzF = TzX. The definition given here makes possible to realize
that holonomy acts in a natural way on the disjoint union of all transversals [59].
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First we give a slight different version of holonomy. For a continuous leafwise path γ : x −→ y
we can choose a path of foliated charts (U0, φ1), ..., (Uk, φm) associated to a decomposition
0 = s0, ..., 1 = sm of [0, 1] such that γ|[sl,sl+1] ⊂ Ul and each plaque of Ul meets at only a plaque
of Ul+1. Following the plaques along γ one obtain a mapping of the plaques of U0 to the plaques
Um hence, composing with the distinguished maps associated a germ of diffeomorphism of Rq.
Since the inclusion of a transversal compose with a distinguished mapping to give coordinates
on the transversal this is also a germ of diffeomorphism HT0T1(γ) of transversals T0 around x
and T1 around y.
The connection with the holonomy map given before in terms of the holonomy covering is given
as follows. Let π ∈ σ−1(x) and f a distinguished map defined around x. The diffeomorphism
HT0T1(γ) allows to define a local coordinate system on T1 defined around y and in turn a
distinguished map f1 : V −→ Rq defined around y. Then the germ of f1 at y coincides with
hγ(π) ∈ σ−1(y).
It is clear that the relation

γ ∼ τ iff hγ = hγ(τ) (8)

is weaker than homotopy (obvious by the definition in terms of lifting).

Definition 2.4 — The holonomy groupoid G of the foliation is the quotient of the homotopy
groupoid (the set of all equivalence fixed points homotopy classes of leafwise continuous paths)
under the relation (8).

One can show that this procedure gives a finite dimensional reduction of the homotopy
groupoid. In fact in the case ∂X = ∅ G is a smooth, in general non–Hausdorff 2p + q–
dimensional manifold where the local coordinates are given by mappings in the form of
(U × V ) ×hγ (U ′ × V ′) where x ∈ U × V , y ∈ U ′ × V ′, γ : x −→ y is a leafwise path
and one uses the graph of the holonomy hγ : V −→ V ′ ([77, 24, 53]). Finally

Definition 2.5 — A pseudogroup of a manifold X is a family Γ of diffeomorphisms defined
on open subsets of X such that

1. if Φ ∈ Γ then Φ−1 ∈ Γ

2. Γ is closed under composition when possible (depending on domains and ranges).

3. If Φ : U −→W is in Γ then every restriction of Φ to open subsets V ⊂ U is in Γ.

4. If Φ : U −→ W is a diffeomorphism such that every point in U has a neighborhood on
which Φ restricts to an alement of Γ then Φ ∈ Γ.

5. The identity belongs to Γ.

The holonomy pseudogroup of a foliation is the pseudogroup Γ acting on the disjoint union of all
(regular) whose germs at every point are germs of holonomy mappings defined by some leafwise
path.

2.2 Longitudinal Dirac operator
Let X = X0 ∪Z be a connected manifold with cylindrical end meaning that X0 is a compact
manifold with boundary and Z = ∂X0 × [0,∞)r is the cylindrical end. Suppose that X has
a Riemannian metric g that is product type on the cylinder g|Z = g∂X0 + dr ⊗ dr.
Let given on X a smooth oriented foliation F with leaves of dimension 2p respecting the
cylindrical structure i.e.
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1. The submanifold ∂X0 is transversal to the foliation and inherits a (2p − 1, q) foliation
F∂ = F|∂X0 with foliated atlas given by φα : Uα ∩ ∂X0 −→ ∂Vα ×Wα. Note that the
codimension is the same.

2. The restriction of the foliation on the cylinder is product type F|Z = F∂ × [0,∞).

The orientation we choose is the one given by (e1, .., e2p−1, ∂r) where (e1, .., e2p−1) is a positive
leafwise frame for the induced boundary foliation. Let E −→ X be a leafwise Clifford bundle
with leafwise Clifford connection ∇E and Hermitian metric hE . Suppose each geometric
structure is of product type on the cylinder meaning that if ρ : ∂X0 × [0,∞) −→ ∂X0 is the
base projection

E|Z ' ρ∗(E|∂X0), hE|∂X0
= ρ∗(hE|∂X0

), ∇E|Z = ρ∗(∇E|∂X0
).

Each geometric object restricts to the leaves to give a longitudinal Clifford module that’s
canonically Z2 graded by the leafwise chirality element. One can check immediately that the
positive and negative boundary eigenbundles E+

∂X0
and E−∂X0

are both modules for the Clifford
structure of the boundary foliation (see Appendix A.2 for more informations). Leafwise
Clifford multiplication by ∂r induces an isomorphism of leafwise Clifford modules between
the positive and negative eigenbundles

c(∂r) : E+
∂X0
−→ E−∂X0

.

Put F = E+
|∂X0

the whole Clifford module on the cylinder E|Z can be identified with the
pullback ρ∗(F ⊕ F ) with the following action: tangent vectors to the boundary foliation

v ∈ TF∂ acts as cE(v) ' cF (v)Ω with Ω =
(

0 1
1 0

)
while in the cylindrical direction

cF (∂r) '
(

0 −1
1 0

)
. In particular one can form the longitudinal Dirac operator assuming

under the above identification the shape2

D = c(∂r)∂r + c|F0∇
E|F∂ = c(∂r)∂r + ΩDF∂ = c(−∂r)[−∂r − c(−∂r)ΩDF∂ ]. (9)

Here DF∂ is the leafwise Dirac operator on the boundary foliation. In the following these
identifications will be omitted letting D act directly on F ⊕ F according to(

0 D−

D+ 0

)
: F ⊕ F −→ F ⊕ F(

0 D−

D+ 0

)
=
(

0 −∂r +DF∂

∂r +DF∂ 0

)
=
(

0 ∂u +DF∂

−∂u +DF∂ 0

)
where u = −r, ∂u = −∂r (interior unit normal) note this is the opposite of A.P.S. notation.
We are using the notation X = Xk∪Zk with Zk = ∂X0× [k,∞) and Xk = X0∪ (∂X0× [0, k])
also Zba := ∂X0× [a, b] and where there’s no danger of confusion Zx is the cylinder of the leaf
passing trough x, Zx = Lx ∩ Z0.

3 The Atiyah Patodi Singer index theorem
We are going to recall the classical Atiyah–Patodi–Singer index theorem in [4] So let X0 a
compact 2p dimensional manifold with boundary ∂X0 and a Clifford bundle E with all the
geometric structure as in the previous section. We take, here the opposite orientation of A.P.S

2we choose to insert −∂r the inward pointing normal to help the comparison with the orientation of A.P.S
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i.e. we use the exterior unit normal to induce the boundary operator instead of the interior
one as pointed out by A.P.S this is a way to declare what is the positive eigenbundle for the
natural splitting. In other words

D+
here = D−APS.

The operator writes in a collar around the boundary(
0 D−

D+ 0

)
=
(

0 −∂r +D0

∂r +D0 0

)
where ∂r is the exterior unit normal and D0 is a Dirac operator on the boundary. It is shown
in [3] that the K–theory of the boundary manifold contains topological obstructions to the
existence of elliptic boundary value conditions of local type (for the signature operator they
are always non zero). If one enlarges the point of view to admit global boundary conditions
a Fredholm problem can properly set up. More precisely consider the boundary operator D0

acting on the boundary manifold ∂X0. This is a first order elliptic differential operator with
discrete spectrum on L2(∂X0;F ). Let P = χ[0,∞)(D0) be the spectral projection on the non
negative part of the spectrum. This is a pseudo–differential operator ([4]). Atiyah Patodi and
Singer prove the following facts

• The (unbounded) operator D+ : C∞(X;E+, P ) −→ C∞(X,E−) with domain

C∞(X;E+, P ) := {s ∈ C∞(X;E+) : P (s|∂X0) = 0}

is Fredholm and the index is given by the formula

indAPS(D+) =
∫
X0

Â(X) Ch(E)− h/2 + η(0)/2

with the standard Atiyah–Singer Â integrand (exactly as in the closed case) and two
correcting terms:

1. h := Ker(D0) is the dimension of the kernel of the boundary operator
2. η(0), the eta invariant of D0 gives a measure of the asymmetry of the spectrum of

the boundary operator D0. This is extensively explained in section 7.

• The index formula can be interpreted as a natural L2 problem on the manifold with a
cylinder attached, X = X0 ∪∂X0 (∂X0× [0,∞)) with every structure pulled back. More
precisely the kernel of D+ : C∞(X;E+, P ) −→ C∞(X,E−) is naturally isomorphic to
the kernel of D+ extended to an ubounded operator on L2(X) while to describe the
kernel of its Hilbert space adjoint i.e. the closure of D− with the adjoint boundary
condition D− : C∞(X;E−, 1 − P ) −→ C∞(X,E+) we have to introduce the space of
extended L2 solutions.
A locally square integrable solution s of the equationD−s = 0 onX is called an extended
solution if for large positive r

s(y, r) = g(y, r) + s∞(y) (10)

where y is the coordinate on the base ∂X0 and g ∈ L2 while s∞ solves D0s∞ = 0 and
is called the limiting value of s.
APS prove that the kernel of (D+)∗ (Hilbert space adjoint of D+ with domain given
by the APS boundary condition) is naturally isomorphic to the space of L2 extended
solution of D− on X. Moreover

indAPS(D+) = dimL2(D+)− dimL2(D−)− h∞(D−) = indL2(D+)− h∞(D−) (11)
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where indL2(D+) := dimL2(D+)−dimL2(D−) and the number h∞(D−) is the dimension
of the space of limiting values of the extended solutions of D−. In this sense the APS
index can be interpreted as an L2–index. The number at right in (11) is called often
the L2 extended index. Along the proof of (11) the authors prove that

h = h∞(D+) + h∞(D−) (12)

and conjecture that it must be true at level of the kernel of D0 i.e.

every section in Ker(D0) is uniquely expressible as a sum of limiting values coming from
D+ and D−.

The conjecture was solved by Melrose with the invention of the b–calculus, a pseudo–
differential calculus on a compactification of X that furnished a totally new point of
view on the APS problem [50].

With (11) and (12) the index formula is

indL2(D+) =
∫
X0

Â(X) Ch(E) +
η(0)

2
+
h∞(D−)− h∞(D+)

2
.

Finally a naive remark about the introduction of extended solutions in order to motivate
our definition of h∞(D±) (equation (34) and (75)) in our Von Neumann setting. For a real
parameter u say that a distributional section s on the cylinder is in the weighted L2–space
eurL2(∂X0 × [0,∞);E±) if e−urs ∈ L2. The operator D± trivially esxtends to act on each
weighted space. Now it is evident from (10) that an L2–extended solution of the equation
D+s = 0 is in each eurL2 for positive u. Viceversa let s ∈

⋂
u>0 KereurL2(D+). Keep u fixed,

then e−urs ∈ L2 can be represented in terms of a complete eigenfunction expansion for the
boundary operator D0,

e−urs =
∑
λ

φλ(y)g(r).

Solving D+s = 0 together with the condition e−urs ∈ L2 leads to the representation (on the
cylinder) s(y, r) =

∑
λ>−u φλ(y)g0λ(y)e−λr. Since u is arbitrary we see that s should have a

representation as a sum
s(y, r) =

∑
λ≥0

φλ(y)g0λe
−λr

over the non negative eigenvalues of D0, i.e. s is an extended solution with limiting value∑
λ=0 φ0(y)g00. We have proved that

Ext(D±) =
⋂
u>0

KereurL2(D±).

4 Von Neumann algebras, foliations and index theory

4.1 Non–commutative integration theory.

The measure–theoretical framework of non–commutative integration theory is particular fruit-
ful when applied to measured foliations. The non–commutative integration theory of Alain
Connes [25] provides us a measure theory on every measurable groupoid (G,B) with G(0)

the space of unities. In our applications G will be the mostly the equivalence relation R or
sometimes the holonomy groupoid of a foliation. Transverse measures will be defined from
holonomy invariant transverse measures. Below a list of fundamental objects and facts. This
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very contained and simplified survey in fact the general theory admits the existence of a mod-
ular function that says, in the case of foliations how transverse measure of sets changes under
holonomy(under flows generated by fields tangent to the foliation). Hereafter our modular
function is everywhere 1, corresponding to the geometrical case of a foliation equipped with
a holonomy invariant transverse measure (this is a definition we give below).

Measurable groupoids . A groupoid is a small cathegory G where every arrow is invertible.
The set of objects is denoted by G(0) and there are two maps s, r : G −→ G(0) where
γ : s(γ) −→ r(γ). Two arrows γ1, γ2 can be composed if r(γ2) = s(γ1) and the result
is γ1 · γ2. The set of composable arrows is G(2) = {(γ1, γ2) : r(γ2) = s(γ1)}. As
a notation Gx = r−1(x), Gx = s−1(x) for x ∈ G(0). An equivalence relation R ⊂
X × X is a groupoid with r(x, y) = x and s(x, y) = y, in this manner (z, x) · (x, y) =
(z, y). The range of the map (r, s) : G −→ G(0) × G(0) is an equivalence relation
called the principal groupoid associated to G. In this sense groupoids desingularize
equivalence relations. A measurable groupoid is a pair (G,B) where G is a groupoid
and B is a σ–field on G making measurable the structure maps r, s, composition ◦ :
G(2) −→ G and the inversion γ 7−→ γ−1.

Kernels are mappings x 7−→ λx where λx is a positive measure on G, supported on the
r–fiber Gx = r−1(x) with a measurability property i.e. for every set A ∈ B the function
y 7−→ λy(A) ∈ [0,+∞] must be measurable.

A kernel λ is called proper if there exists an increasing family of measurable sets (An)n∈N

with G = ∪nAn making the functions γ 7−→ λs(γ)(γ−1(A)) bounded for every n ∈ N.
The point here is that every element γ : x −→ y in G defines by left traslation a measure
space isomorphism Gx −→ Gy and calling R(λ)γ := γλx (push–forward measure) one
has a kernel in the usual sense i.e. a mapping with value measures. The definition of
properness is in fact properness for R(λ).

The space of proper kernels is denoted by C+.

Transverse functions are kernels (νx)x∈X with the left invariance property γνs(γ) = νr(γ)

for every γ ∈ G. One checks at once that properness is equivalent to the existence of
an increasing family of measurable sets (An)n with G = ∪nAn such that the functions
x 7−→ νx(An) are bounded for every n ∈ N. The space of proper transverse functions is
denoted E+.

The support of a transverse function ν is the measurable set supp(ν) = {x ∈ G(0) :
νx 6= 0}. This is saturated w.r.t. the equivalence relation induced by G on G(0), xRy
iff there exists γ : x −→ y. If supp(ν) = G(0) we say that ν is faithful.

When G = R or the holonomy groupoid these gives families of positive measures one
for each leaf in fact in the first case the invariance property is trivial, in the second
case we are giving a measure νx on each holonomy cover Gx with base point x but the
invariance property says that these are invariant under the deck trasformations together
with the change of base points then push forward on the leaf under r : Gx −→ Lx.

Convolution. The groupoid structure provides an operation on kernels. For fixed kernels λ1

and, λ2 on G their convolution product is the kernel λ1 ∗ λ2 defined by

(λ1 ∗ λ2)y =
∫

(γλx2)dλy1(γ), y ∈ X.

It is a fact that if λ is a kernel and ν is a transverse function then ν ∗ λ is a transverse
function. Clearly R(λ1 ∗ λ2) = R(λ1) ◦ R(λ) the standard composition of kernels on a
measure space.
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Transverse invariant measures (actually are transverse measures of modulo δ = 1). These
are linear mappings Λ : E+ −→ [0,+∞] such that

1. Λ is normal i.e Λ(sup νn) = sup Λ(νn) for every increasing sequence νn in E+

bounded by a transverse function. Since the sequence is bounded by an element of
E+ the expression sup νn makes sense in E+.

2. Λ is invariant under the right traslation of G on E+. This means that

Λ(ν) = Λ(ν ∗ λ)

for every ν ∈ E+ and kernel λ such that λy(1) = 1 for every y ∈ G(0).

A transverse measure is called semi–finite if it is determined by its finite values i.e
Λ(ν) = sup{Λ(ν′), ν′ ≤ ν, Λ(ν′) <∞}. We shall consider only semi–finite measures.

A transverse measure is σ–finite if there exists a faithful transverse function ν of kind
ν = sup νn with λ(νn) <∞.

The coupling of a transverse function ν ∈ E+ and a transverse measure Λ produces a
positive measure Λν on G(0) through the equation Λν(f) := Λ((f ◦ s)ν the invariance
property reflects downstairs in the property Λν(λ) = Λ(ν ∗ λ) for ν ∈ E+ and λ ∈ C+.

Measures on the base G(0) that can be represented as Λν are characterized by a theorem
of disintegration of measures.

Theorem 4.5 — (Connes [24]) Let ν a transverse proper function with support A.

The mapping Λ 7−→ Λν is a bijection between the set of transverse measures on GAA =
r−1(A)∪ s−1(A) and the set of positive measures µ on G(0) satisfying the following equiv-
alent relations

1. (µ ◦ ν)˜ = µ ◦ ν
2. λ, λ′ ∈ C+, ν ∗ λ = ν ∗ λ′ ∈ ε+ =⇒ µ(λ(1)) = µ(λ′(1)).

Nex we shall explain this procedure of disintegration in a geometrical way for foliations.

We shall see that what is important here is the class of null–measure subsets of G(0). A
saturated set A ⊂ G(0) is called Λ–trascurable if Λν(A) = 0 for every ν ∈ E+.

Representations. Let H be a measurable field of Hilbert spaces by definition this is a
mapping x 7−→ Hx from G(0) with values Hilbert spaces. The measurability structure
is assigned by a linear subspace of the free product vector space of the whole family
M⊂ Πx∈G(0)Hx meaning that

1. For every ξ ∈M the function x 7−→ ‖ξ(x)‖ is measurable.
2. A section η ∈ Πx∈G(0)Hx belongs to M if and only if the function 〈η(x), ξ(x)〉 is

measurable for every ξ ∈M.
3. There exists a sequence {ξi}i∈N ⊂M such that {ξi(x)}i∈N ⊂M is dense in Hx for

every x.

Elements ofM are called measurable sections of H.

Suppose a measure µ on G(0) has been chosen. One can keep together the Hilbert spaces
Hx taking their direct integral ∫

Hxdµ(x).
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This is defined as follows, first select the set of square integrable sections in M. This
is the set of sections s such that the integral

∫
G(0) ‖s(x)‖2Hxdµ(x) < ∞ then identitify

two square integrable sections if they are equal outside a µ–null set. The direct integral
comes equipped with a natural hilbert space structure with product

〈s, t〉 :=
∫
G(0)
〈s(x), t(x)〉Hxdµ(x).

The notation s =
∫
G(0) s(x)dµ(x) for an element of the direct integral is clear. A field

of bounded operators x 7−→ Bx ∈ B(Hx) is called measurable if sends measurable
sections to measurable sections. A mesurable family of operators with operator norms
uniformely bounded esssup ‖Bx‖ <∞ defines a bounded operator called decomposable
B :=

∫
G(0) Bxdµ(x) on the direct integral in the simplest way

Bs :=
∫
G(0)

Bxdµ(x) s =
∫
G(0)

Bxs(x)dµ(x).

For example each element of the abelian Von Neumann algebra L∞µ (G(0)) defines a
decomposable operator acting by pointwise multiplication. One gets an involutive al-
gebraic isomorphism of L∞µ (G(0)) onto its image in B(

∫
Hxdµ(x)) called the algebra

of diagonal operators. One can ask when a bounded operator T ∈ B(
∫
Hxdµ(x)) is

decomposable i.e. when T =
∫
Txdµ(x) for a family of uniformely bounded operators

(Tx)x. The answer is precisely when it belongs to the commutant of the diagonal algebra.
A representation of G on H is the datum of an Hilbert space isomorphism U(γ) :
Hs(γ) −→ Hr(γ) for every γ ∈ G with

1. U(γ−1
1 γ2) = U(γ1)−1U(γ2), ∀γ1, γ2 ∈ G, r(γ1) = r(γ2).

2. For every couple ξ, η of measurable section the function defined on G according to
γ 7−→ 〈ηr(γ), U(γ)ηs(γ)〉, is measurable.

A fundamental example is given by the left regular representation of G defined by a
proper transverse function ν ∈ E+ in the following way. The measurable field of Hilbert
space is L2(G, ν) defined by x 7−→ L2(Gx, νx) with the unique measurable structure
making measurable the family of sections of kind y 7−→ f|Gx obtained from every mea-
surable f on G such that each

∫
|f |2dνx is finite. For every γ : x −→ y in G one has the

left traslation L(γ) : L2(Gx, νx) −→ L2(Gy, νy), (L(γ)f)(γ′) = f(γ−1γ′), γ′ ∈ Gy.

Intertwining operators are morphisms between representations. If (H,U), (H ′, U ′) are
representations ofG an intertwining operator is a measurable family of operators (Tx)x∈G(0)

of bounded operators Tx : Hx −→ H ′x such that

1. Uniform boundedness, sup ‖Tx‖ <∞.
2. For every γ ∈ G there follows U ′(γ)Ts(γ) = Tr(γ)U(γ).

Looking at a representation as a measurable functor, an intertwining operator gives a
natural transformation between representations. The vector space of intertwing opera-
tors from H to H ′ is denoted by HomG(H,H ′).

Square integrable representations. Fix some transverse function ν ∈ E+. For a represen-
tation of G the property of being equivalent to some sub–representation of the infinite
sum of the regular left representation Lν is independent from ν and is the definition
of square integrability for representations. Actually, due to measurability issues much
care is needed here to define sub representations (see section 4 in [24]) but the next
fundamental remark assures that square integrable representations are very commons
in applications.



16 Paolo Antonini

Measurable functors and representations. Let R̃+ be the cathegory of (standard) mea-
sure spaces without atoms i.e. objects are triples (Z,A, α) where (Z,A) is a standard
measure space and α is a σ–finite positive measure.

Measurability of a functor F : G −→ R̃+ is a measure structure on the disjoint union
Y =

⋃
x∈G(0) F (x) making the following structural mappings measurable

1. The projection π : Y −→ G(0).

2. The natural bijection π−1(x) −→ F (x).

3. The map x 7−→ αx, a σ–finite measure on F (x).

4. The map sending (γ, z) ∈ G×X with s(γ) = π(z) into F (γ)z ∈ Y .

Usually one assumes that Y is union of a denumerable collection (Yn)n making every
function αx(Yn) bounded. With a measurable functor F one has an associated repre-
sentation of G denoted by L2 •F defined in the following way: the field of Hilbert space
is x 7−→ L2(F (x), αx) and if γ : x −→ y define U(γ) : L2(F (x), αx) −→ L2(F (y), αy)
by f 7−→ F (γ−1) ◦ f. Proposition 20 in [24] shows that this is a square–integrable
representation.

Random hilbert spaces and Von Neumann algebras. We have seen that every fixed
transverse measure Λ defines a notion of Λ–null measure sets (for saturated sets) hence
an equivalence relation on EndG(H1, H2) the vector space of all intertwining operators
T, S : H1 −→ H2 between two square integrable representations Hi. Each equiva-
lence class is called a random operator and the set of random operators is denoted
by EndΛ(H1, H2). Also square integrable representations can be identified modulo Λ–
null sets. An equivalence class of square integrable representations is by definition a
random hilbert space.

Theorem 2 in [24] says that EndΛ(H) is a Von Neumann algebra for every random
Hilbert space.

More precisely choose some ν ∈ E+ and put µ = Λν and m := µ • ν to form the
Hilbert space H = L2(G,m). For a function f on G denote Jf = f ](γ) = ¯f(γ−1),
consider the space A of measurable functions f on G such that f, f ] ∈ L2(G,m) and
sup(ν|f ]|) <∞. Equip A with the product f ∗ν g = fν ∗ g. The structure A has is that
of an Hilbert algebra (a left–Hilbert algebra in the modular case) i.e A is a ∗–algebra
with positive definite (separable) pre–Hilbert structure such that

1. 〈x, y〉 = 〈y∗, x∗〉, ∀x, y ∈ A.
2. The representation of A on A by left multiplication is bounded, involutive and

faithful.

With such structure one can speak about the left regular representation λ of A on
the Hilbert space completion H of A itself. The double commutant λ′′(A) of this
representation is the Von Neumann algebra W (A) associated to the Hilbert algebra A.
It is a remarkable fact that W (A) comes equipped with a semifinite faithful normal
trace τ such that

τ(λ(y∗)τ(x)) = 〈x, y〉 ∀x, y ∈ A.

Furthermore one knows that the commutant of λ(A) in H is generated by the algebra
of right multiplications λ′(A) = Jλ(A)J for the conjugate–linear isometry J : H −→ H
defined by the involution in A. For every Λ–random Hilbert space H one can use
the measure Λν on G(0) to form the direct integral ν(H) =

∫
HxdΛν(x). Remember

that the direct integral is the set of equivalence classes modulo Λν zero measure of
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square integrable measurable sections. Now, directly from the definition, an intertwining
operator T ∈ HomΛ(H1, H2) is a decomposable operator defining a bounded operator
ν(T ) : ν(H1) −→ ν(H2).

Put W (ν) for the Von Neumann algebra associated to the Hilbert algebra L2(G,m),
m = Λν • ν, ν ∈ E+.

Theorem 4.5 — (Connes) Fix some transverse function ν ∈ E+

1. For every Λ–random Hilbert space H there exists a unique normal representation
of W (ν) in ν(H) such that Uν(f) = U(fν) f ∈ Aν . Here U(fν) is defined by
(U(fν)ξ)y =

∫
U(γ)ξxd(fνy)(γ).

2. The correspondence H 7−→ ν(H), T 7−→ ν(T ) is a functor from the (W ∗)–cathegory
CΛ of random Hilbert spaces and intertwining operators to the cathegory of W (ν)
modules.

3. If the transverse measure ν is faithful the functor above is an equivalence of cathegories.

Then in the case of faithful transverse measures one gets an isometry of EndΛ(H) on
the commutant of W (ν) on the direct integral ν(H). In particular EndΛ(H) is a Von
Neumann algebra.

Transverse integrals. The most important notion of non commutative integration theory
is the integral of a random variable against a transverse measure. A positive random
variable on (G,B,Λ) is nothing but a measurable functor F as defined above. Let X :=⋃
x∈G(0) F (x) disjoint union measure space and F̄+ the space of measurable functions

with values in [0,+∞] while F+ is for functions with values on (0,+∞]. Kernels λ
on G acts as convolution kernels on F̄+ according to (λ ∗ f)(z) =

∫
f(γ−1z)dλy(γ),

y = π(z) ∈ G(0). This is an associative operation (λ1 ∗ λ2) ∗ f = λ1 ∗ (λ2 ∗ f).

Now to define the integral
∫
Fdλ choose some ν faithful and put∫

Fdλ = sup{Λν(α(f)), f ∈ F+, ν ∗ f ≤ 1},

this is independent from ν and enjoys the following properties

1. there exist random variables F1, F2 with F = F1 ⊕F2 such that
∫
F1dΛ = 0 and a

function f2 ∈ F+(X2) with X2 =
⋃
x∈G(0) F2(x) with ν ∗ f2 = 1.

2. Monotony. If f, f ′ ∈ F(X) satisfy ν ∗ f ≤ ν ∗ f ′ ≤ 1 then

Λν((α(f)) ≤ Λν((α(f ′))

in particular for F2 as in 1. ∫
F2dΛ = Λν((α(f ′)).

Traces. Let A be a Von Neumann algebra with the cone of positive elements A+.

A weight on a A is a functional φ : A+ −→ [0,∞] such that

1. φ(a+ b) = φ(a) + φ(b), a, b ∈ A+

2. φ(αa) = αφ(a), α ∈ R+, a ∈ A+.
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a weight is a trace if φ(a∗a) = φ(aa∗), a ∈ A+. A weight is called

• faithful if φ(a) = 0⇒ a = 0, a ∈ A+.

• normal if for every increasing net aii of positive elements with least upper bound
a then

φ(a) = sup{φ(ai)}.

• Semifinite if the linear span of a the set of φ–finite elements, {a ∈ A+ : φ(a) <∞}
is σ–weak dense.

Every V.N algebra has a semifinite normal faithful weight.

The Von Neumann algebra EndΛ(H) associated to a square integrable representation
comes equipped with a bijection T 7−→ ΦT between positive operators and semifinite
normal weights ΦT : EndΛ(H) −→ [0,+∞] where ΦT is faithful if and only if Tx is
not singular Λ–a.e. The construction of this correspondence uses the fact, for a faithful
transverse function ν the direct integral ν(H) =

∫
HxdΛν(x) is a module over the Von

Neumann algebra W (ν) associated to the Hilbert algebra A above described.

The notation of Connes is

ΦT (1) :=
∫

Trace(Tx)dΛ(x)

i.e. the mapping T 7−→ ΦT (1) is the canonical trace on EndΛ(H). In fact this is related
to the type I Von Neumann algebra P of classes modulo equality Λν almost everywhere
of measurable fields (Bx)x∈G(0) , Bx ∈ B(Hx) of bounded operators. Remember that P
has a canonical trace ρ(B) =

∫
Trace(Bx)dΛν(x) hence we can define

ρT (B) :=
∫

Trace(TxBx)dΛν(x).

The next lemma will be important in our applications

Lemma 4.6 — For a faithful transverse function ν there’s a unique operator valued
weight3 Eν from P to EndΛ(H) such that the diagram

P+

Eν
��

ρT (·)=
R

Trace(Tx·)dΛν(x)

##HH
HH

HH
HH

HH

EndΛ(H)
ΦT

// C

is commutative. Moreover Eν is such that if B = (Bx)x∈G(0) , B ∈ P+ if an operator
making bounded the corresponding family

Cy :=
∫
U(γ)BxU(γ)−1dνy

then Eν(B) = C.

Let F be a random variable and put H = L2 • F . The integration process above
defines a semi–finite faithful trace on the Von Neumann algebra EndΛ(H). In fact, for
T ∈ End+

Λ(H) let FT the new random variable defined by x 7→ (F (x), αT (x)) where
3see [74] for the definition
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αT (x) is the measure on F (x) such that αT (x)(f) = TraceL2(T 1/2
x M(f)T 1/2

x ) where f
is a bounded measurable function on F (x) and M(f) the corresponding multiplication
operator on L2(F (x)). The trace is

ΦT (1) =
∫
FT dΛ.

In the following we shall use often the notation trΛ(T ) = ΦT (1) to emphasize the
dependence on Λ.

With a trace one can develop a dimesion theory for square integrable representation
i.e. a dimension theory for random Hilbert spaces that’s very similar to the dimension
theory of Γ–Hilbert modules.

The formal dimension of the random Hilbert space H is

dimΛ(H) =
∫

Trace(1Hx)dΛ(x)

here some fundamental properties

Lemma 4.7 —

1. If HomΛ(H1, H2) contains an invertible element then dimΛ(H1) = dimΛ(H2).

2. dimΛ(⊕Hi) =
∑

dimΛ(Hi).

3. dimP
Λi(⊕H) =

∑
dimΛi(H).

4.2 Holonomy invariant transverse measures

The main example of a non–commutative measure space is the space of leaves of a foliation.
It is, in general impossible to look at the space of leaves as the quotient measure space. A
famous example is the Cronecker foliation on the thorus T2 given by irrational flows ([25]).
The foliation is ergodic i.e. a function almost everywhere constant along the leaves must
be constant on the ambient. In particular every Lebesgue space of classical analysis is one
dimensional. A central concept is that of holonomy invariant transverse measure introduced
by Plante [59] and Ruelle and Sullivan [68]. According to Connes [24] a transverse measure
provides a measure on the space of leaves. Actually there’s a most general modular theory.
Holonomy invariant measures correspond to the simplest case.

4.2.1 Measures and currents

Let X be a manifold equipped with a foliation of dimension p and codimension q. We suppose
always that the foliation is oriented i.e. the bundle of p–dimensional leafwise forms ∧pCTF
is trivial. This is not truly a restrictive assumption, in fact in the non–orientable case one
can make use of densities instead of forms to define currents. Currents are directly related
to holonomy invariant transverse measures by the Ruelle–Sullivan isomorphism. The goal of
this section is to introduce all these notions and prove the relations between them.
There is a weak version of the concept of a transversal
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Definition 4.8 — A Borel subset T ⊂ X is called a Borel transversal if the intersection of T
with each leaf is (finite) denumerable.

The set of all Borel transversals T is a σ–ring i.e it is closed under the operation of relative
complementation and denumerable union. Recall that a σ–ring is a σ–algebra if contains the
entire space. This is in general clearly not the case of the set of all Borel transversals hence
holonomy measures will be defined only on σ–rings.

Definition 4.9 — A holonomy invariant transverse measure is a σ–additive map µ : T −→
[0,+∞] such that

1. For a Borel bijection ψ : B1 −→ B2 with ψ(x) ∼ x (the relation of being on the same leaf)
then µ(B1) = µ(B2).

2. µ is Radon i.e. for every compact K ⊂ B then µ(K) <∞.

Definition 4.10 — A holonomy invariant transverse distribution is the datum for every
transverse submanifold T of a linear and continuous4 map δT : C∞c (T ) −→ C such that if
ψ : T1 −→ T2 is the holonomy of a path γ on X,

〈δT1 , f〉 = 〈δT2 , f ◦ ψ〉.

Now let Homcont(C∞c (∧dT ∗CX),C) the space of d–dimensional currents on X. This is the dual
space of the t.v.s. given by the compactly supported d–forms equipped with the topology of
the direct limit of Frechet spaces. The operations of Lie derivative LV and contraction iV
w.r.t. a vector field V and the De Rham exterior derivative d extends to distribution just by
duality [25].
Note that a d–differential form ω can be restricted to a subbundle S of the tangent bundle
just by evaluation of ω to the d–vectors belonging to ∧dS∗C ⊂ ∧pT ∗XC.

Definition 4.11 — A d–dimensional current (d is the dimension of the leaves) C is said a
foliated current if it is invariant under the operation of restriction i.e 〈C,ω〉 = 0 for every p–form
ω such that ω|TF = 0.

Notice that for a d–dimensional foliated current C the condition of being closed is equivalent
to require ∂XC = 0 for every section X ∈ C∞(X;TF).

Proposition 4.12 — For a manifold X equipped with a d–dimensional foliation is equivalent
to give

1. A holonomy invariant transverse distribution.

2. A closed foliated d–current.

Proof— We define first holonomy invariant transverse distributions relative to regular
4w.r.t. the usual topology of the direct limit i.e. a distribution in the usual sense
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atlas and show they define closed foliated d–currents. Since the definition of current does not
depend on the atlas and every h.i.t. distribution restricts to a h.i.t. distribution relative to
each regular atlas the proof will be complete. For a foliated chart Ω −→ V ⊂ Rn−d × Rd the
local transversal associated is the quotient space defined by the relation x ∼ y if x, y belongs
to the same plaque of Ω. In particular a local transversal is the space of plaques in Ω. We say
that the inclusion Ω ↪→ Ω′ of distinct open sets is regular and write Ω C Ω′ if the inclusion
mapping i : Ω ↪→ Ω′ passes to the quotient to define a smooth mapping on the transversals.
In particular each plaque of Ω meets only a plaque of Ω′.
We say that a foliated atlas {(Ωi, φi)}i of (X,F) of foliated charts Ωi is a good cover if

1. {Ωi}i is locally finite

2. for every i, j such that Ωi ∩ Ωj 6= ∅ there exist a distinct open set Ω such that Ωi C Ω
and Ωj C Ω.

Standard methods show that a regular atlas always exists.
Now define a transverse distribution related to a regular cover to be a distribution on every
local transversal TΩ of each finite intersection Ω = Ω1∩ ...∩Ωk with the property of (relative)
holonomy invariance i.e the distribution associated to TΩ∩Ω′ is equal to the restriction of the
distribution associated to TΩ and the distribution associated to TΩ′ .
So let C be a closed foliated current and {Ωi}i a regular atlas for F . For every i choose a
differential d–form ωi compactly supported in some neighborhood of Ωi ' Li × Ti such that∫
L(t)

ωi = 1 for every t ∈ Ti. A transverse distribution δi on the local transversal Ti is now
defined by

〈δi, f〉 := 〈C, fωi〉 f ∈ C∞c (Ti).

This definition is independent from the choice of the forms ωi in fact if
∫
L(t)

ωi =
∫
L(t)

ω′i = 1
there must be some family d + 1–forms t 7−→ σ(t) such that dL(t)σ(t) = ω(t) − ω′(t). This
family can be extended to a form σ on Ωi using the trivial connection. But C is foliated and
closed then,

〈C,ωi − ω′i〉 = 〈C, dfσ〉 = 0.

The independence from the choice of ωi also proves the relative holonomy invariance in fact,
for two distinct sets Ωi ∪ Ωj one can choose ωij such that

∫
Li(t)

ωij =
∫
Lj(t)

ωij = 1 for
t ∈ Ti ∩ Tj .
Viceversa let δ a holonomy invariant transverse distribution relative to a good cover. Define
first a closed foliated d–current CΩ on Ω for every Ωi ' Li × Ti of the cover then patch
together using a smooth partition of the unity.
If ω is a compactly supported d–form on Ω define

〈CΩ, ω〉 := 〈δ,
∫
L

ω|F 〉,

in other words we let δ act on the function on T defined by t 7−→
∫
L(t)

ωF (l, t). This collection
of local currents is coherent with intersections by means of the holonomy invariance in fact
CΩ = CΩ′ on Ω∩Ω′. Furthermore every CΩ is closed since 〈CΩ, dω〉 = 〈δT ,

∫
L
dω|F 〉 = 〈δT , 0〉

The property of being foliated is immediate since by costruction they depend only on the
values of the forms on the foliation. 2

Remark — Actually there is also another interesting geometric definition of a holonomy
invariant measure as a (Radon) measure on X that is invariant in the direction of the leaves
i.e. a measures on the ambient manifold that is invariant under flows generated by vector
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fields tangent to the foliation. Also a notion of distribution invariant in the direction of the
leaves can be defined (see [24]).

To complete the picture one has to speak about positivity. Recall that our foliation is ori-
ented.

Definition 4.13 — A closed d–current C is positive in the direction of the leaves if 〈C,ω〉 ≥ 0
for every d–form that restricts to a positive form on the leaves.

Theorem 4.13 — Is equivalent to give on an manifold X with an oriented foliation

1. A holonomy invariant transverse measure i.e. a (Radon) measure on the σ–ring of all
transversals invariant under the action of the holonomy pseudogroup Γ.

2. An measure on X invariant in the direction of the leaves.

3. A closed foliated current positive in the direction of the leaves.

Proof— Apart for the case of invariant measures on X that are positive in the direction of
the leaves for whose we make reference to [24] the only observation to do here is that a foliated
current that is positive in the direction of the leaves defines a positive transverse distribution.
2

4.2.2 Tangential cohomology

Let ∧kT ∗F the bundle of exterior forms of the foliation. In the terminology of Moore and
Schochet this is a tangential vector bundle i.e. it has a canonical foliation compatible with
the vector bundle structure. In a local trivialization over a foliated chart

∧kT ∗F

π

��

//
U × R(pk)

yyrrrrrrrrrrr

L× T ' // U

this foliation is given by the product foliation
(
L × R(pq)

)
× T , in particular the bundle

projection maps leaves into leaves.

Definition 4.14 — A continuous section of ∧kT ∗F is called a tangential k differential form
if in every trivialization as above it restricts to be a smooth section on every plaque L×{t}. The
space of tangential k–differential forms is denoted with Ωkτ (X) and Ωkτ,c(X) is the subspace of
compactly supported ones.

In a foliated chart with leafwise cordinates x1, ..., xp and transversal coordinate t, a tangen-
tially smooth differential form can be written

ω =
∑
il

ail(x1, ..., xp, t)dxi1 ∧ · · · ∧ dxik (13)
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with ail and all of its derivatives w.r.t. x1, ..., xp continuous in all its variables. One can hence
form the tangential De Rham operator dτ : Ωkτc(X) −→ Ωkτc(X) just applying the standard
De Rham operator plaque by plaque. We have defined the complex (Ω∗τc(X), dτ ) of tangential
forms with compact support (dτ is an example of leafwise differential operator, it decrease
supports).

Definition 4.15 — The homology of the complex (Ω∗τc(X), dτ ) is called the tangential
cohomology with compact support and denoted by H∗τc(X).

We can naturally define also tangential cohomology starting with forms without the condition
of compactness of the support. In general the tangential cohomology has infinite dimension
this is due to the fact that the continuous transverse control is much more relaxing than
smoothness in every direction. In fact there is an interesting question on how the dimension
of these spaces changes passing from tangential continuity (also measurability) to smoothness.
In Chapter III of [53] there are examples. In the case the foliation is given by the fibers of
a trivially local fiber bundle F ↪→ M −→ X the tangential cohomology turns out to be
naturally isomorphic to the space of continuous sections of the bundle H −→ X where the
fiber Hx = H∗dR(Mx) is the De Rham cohomology of the fiber above x.
Let’s topologize each space Ω•τc(X) by requiring uniform convergence of every coefficient
function ail in (13) with its tangential derivatives in every compact subset of each foli-
ated chart. It often happens that the topological vector space H•τc(X) is not Hausdorff,
this is the reason why it is convenient to take its maximal Haudorff quotient to define the
closed tangential cohomology5

H
k

τ (X) := Hk
τ (X)/{0} = Ker(dτ : Ωkτc −→ Ωk+1

τc )/Range(dτ : Ωk−1
τc −→ Ωkτc).

In general this leads to different spaces, for the irrational flow on the torus H
1

τ (T,R) ∼= R
while H1

τ (T,R) is infinite dimensional ([53]).

Definition 4.16 — Elements of the topological dual of Ω•τc(X) i.e. continuous linear func-
tionals C : Ω•τc(X) −→ C are called tangential currents. The space of tangential currents is
denoted by

Ωτk := Homcon.(Ωkτc(X); C).

Note that a foliated current of definition 4.11 is a current in the ordinary sense that passes
to define a tangential current under the restriction morphism (·)|F : Ωk(X) −→ Ωkτ (X).
The differential dτ : Ω•τ (X) −→ Ω•+1

τ (X) (omit the subscript τ by simplicity of notation) is
continuous and extends by duality to currents, d∗ : Ωτ•(X) −→ Ωτ•−1(X) according to the sign
convention 〈ω, d∗〉 = (−1)k−1〈dτω, c〉. There is an isomorphism

Homcon.(Hk
τc(X); R) ∼= Hτ

k (X; R)

and theorem 4.3, page 22 is essentially the Ruelle–Sullivan isomorphism6

MT(X) −→ Homcon.(Hp
τc,R)

between the vector space of signed holonomy invariant transverse Radon measures and the
topological dual space of the top degree tangential homology. The tangential current defined
by a measure Λ is called the Ruelle Sullivan current CΛ.

5sometimes is called the tangential reduced cohomology
6at this level this is only a vector space iso. but one can consider the ∗–weak topology on the space of

measures to force this to be a topological iso. However we don’t need continuity.
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4.2.3 Transverse measures and non commutative integration theory

At this point we have used the name transverse measure for at least two objects, measures
on the union of all transversals and transverse measures in the equivalence relation R (or the
holonomy groupoid, G is the same) according to definition 4.1. In the rest of the section we
clarify the relationship between them. First we need a couple of definitions

Definition 4.17 — A transverse measure Λ in the sense of non commutative integration
theory for the equivalence relation R (or the holonomy groupoid G) is called locally finite if
Λ(ν) <∞ for every ν ∈ E+ with

1. ν is locally bounded i.e. sup νx(K) <∞ for every K compact in R

2. ν is compactly supported i.e. νx is supported in s−1(K) for a compact K ⊂ X.

Definition 4.18 — The characteristic function νA of a subset A ⊂ X is the transverse
function defined by νxA(B) = |s−1(A) ∩Gx ∩ B| or equivalently ν(f)(y) :=

∑
γ∈Gy, s(γ)∈A f(γ)

for a Borel function f on G.

Note that the characteristic function is nothing but the lift s−1(µA) of the counting measure
concentrated in A. This actually shows that γνxA = νyA, γ ∈ Gyx.

Theorem 4.18 — (Connes [24]) Let Λ be a locally finite transverse measure for R (G). Let Z
a transverse submanifold, for a compact set K ⊂ Z define τ(K) := Λ(νK). This is the definition
of a Positive Radon measure on Z that is holonomy invariant.
In other words the correspondence Λ 7−→ τ is a bijection

{Locally finite transverse measures on R} −→ {Holonomy invariant transverse measures on X}.

Remember that there is a coupling between transverse measures Λ on R and transverse
functions ν to produce a measure on X defined by Λν(f) = Λ((s ◦ f)ν) then ΛνK (1) =
Λ(νk) = τ(K).

Definition 4.19 — Choose some Radon measure α on the ambient X call the lift of α is the
transverse measure νx := s∗(α) where s : Gx −→ X. We say that a lift is transversally measurable
if for every foliated chart Ω ∼= U×T it is represented as a weakly measurable mapping T −→ Ra(U)
from T to the space of Radon measures on U , bounded if Ω is relatively compact.

Proposition 4.20 — (Connes [24] ) The map α 7−→ s∗(α) is a bijection transversally
measurable Radon measures on X and transverse functions ν suc that sup ν(K) < ∞ for every
compact K ⊂ G.

Proposition 4.21 — Choose some Radon measure α on X with support X. Let ν = s∗(α).
The mapping Λ 7−→ Λν is a bijection between locally finite transverse measures on G and Radon
measures µ on X with the property:



25

for every disintegration of µ on a foliated chart along the fibers of the distinct mapping Ω ∼=
U × T −→ T the conditional measures satisfy

dµt = dαt.

In practice the above propositions furnishes a geometrical recipe to recognize the measure Λν
on the base X if Λ is a transverse measure on the foliation i.e. a measure on the σ–ring of all
Borel transversals. In fact choose some foliated atlas Ωi ' Ui×Ti with the set of coordinates
(x, t) and a subordinate smooth partition of the unit ϕi. Then for a function f

Λν(f) =
∑
i

∫
Ti

∫
Ui

ϕi(x, t)f(x, t)dνt(x)dΛTi(t)

where νt(x) is the longitudinal measure ν restricted to the plaque Ui × {t}. We shall refer to
this Fubini type decomposition as to the integration process according to the terminology of
the book by Moore and Schochet [53].

4.3 Von Neumann algebras and Breuer Fredholm theory for folia-
tions

Let R the equivalence relation of the foliation. For square integrable representations on the
measurable fields of Hilbert spaces Hi let HomR(H1, H2) the vector space of all intertwining
operators. The choice of a holonomy invariant measure Λ on the foliation gives rise to a
transverse measure on R in the sence of non commutative integration theory hence a quotient
projection

HomR(H1, H2) −→ HomΛ(H1, H2)

given by identification modulo Λ-a.e. equality. Elements of HomΛ(H1, H2) are called Random
operators. If H1 = H2 = H, then HomR(H,H) = EndR(H) is an involutive algebra, the
quotient via Λ is a Von Neumann algebra7

HomR(H) −→ EndΛ(H).

For a vector bundle E −→ X let L2(E) be the Borel field of Hilbert spaces on X, of leafwise
square integrable sections {L2(Lx, E|Lx)}x∈X . There is a natural square integrable represen-
tation of R on L2(E) the one given by (x, y) 7−→ Id : L2(Lx, E) −→ L2(Ly, E). Denote
EndR(E) the vectorspace of all intertwining operators and HomΛ(E) the corresponding Von
Neumann algebra.
Since we need unbounded operators we have to define measurability for fields of closed un-
bounded operators. Remember that the polar decomposition T = u|T | is determined by the
couple of bounded operators u and (1 + T ∗T )−1.

Definition 4.22 — We say that a field of unbounded closed operators Tx is measurable if
are measurable the fields of bounded operators ux and |Tx|.

Remark — .In the paper [56] about unbounded reduction theory. An unbounded field of
7to be precise this is a W ∗ algebra in fact it is not naturally represented on some Hilbert space. The choice

of a longitudinal measure ν gives however a representation EndR(H) −→ B(
R
X HxdΛν(x)) on the direct

integral of the field Hx
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closed operators A is said measurable if the family corresponding to the projection on the
graph is measurable on H⊕H with the direct sum measure structure. Writing the projection
on the graph as

(ξ, η) 7−→ ((1 +A∗A)−1(ξ +A∗η), A(1 +A∗A)−1(ξ +A∗η))

we can see that these definition is equivalent to the one given here

Next, we review some ingredients from Breuer theory of Fredholm operators on Von Neumann
algebras, adapted to our weight–theory case with some notions translated in the language of
the essential Λ–spectrum, a straightforward generalization of the essential spectrum of a self–
adjoint operator. Main references are [14, 15] and [18] and [19].

Remember that the set of projections P := {A ∈ EndΛ(E), A∗ = A,A2 = A} of a Von
Neumann algebra, has the structure of a complete lattice i.e. for every family {Ai}i of
projections one can form their join ∨Ai and their meet ∧Ai. Then for a random operator A ∈
EndΛ(E) we can define its projection on the range R(A) ∈ P(EndΛ(E)) and the projection
on its kernel N(A) ∈ P(EndΛ(E)) according to R(A) := ∨{P ∈ P(EndΛ(E)) : PA = A} and
N(A) := ∧{P ∈ P(EndΛ(E)) : PA = P}. If A is the class of the measurable field of operators
Ax, it is clear that R(A) and N(A) are the classes of R(A)x and N(A)x.

Definition 4.23 — Let Hi, i = 1, .., 3 be square integrable representations of R define

1. Λ–finite rank random operators. BfΛ(H1, H2) := {A ∈ HomΛ(H1, H2) : trΛR(A) <∞}

2. Λ–compact random operators. B∞Λ (H1, H2) is the norm closure of finite rank operators.

3. Λ–Hilbert–Schmidt random operators

B2
Λ(H1, H2) := {A ∈ HomΛ(H1, H2) : trΛ(A∗A) <∞}.

4. Λ–trace class operators. B1
Λ(H) = B2

Λ(H)B2
Λ(H)∗ = {

∑n
i=1 SiT

∗
i : Si, Ti ∈ B2

Λ(H)}.

Lemma 4.24 — B∗Λ(H) is a ∗–ideal in EndΛ(E). An element A ∈ B∗Λ(H) iff |A| ∈ B∗Λ(H),
∗ = f, 1, 2,∞. The following inclusion holds

BfΛ(E) ⊂ B1
Λ(E) ⊂ B2

Λ(E) ⊂ B∞Λ (E).

Furthermore
B1

Λ(E) = {A ∈ EndΛ(E) : trΛ |A| <∞}.

Proof— The proof is very similar to the standard case. 2

An important inequality is the following, take A ∈ B1
Λ(E) and C ∈ EndΛ(H). We have polar

decompositions A = U |A|, C = V |C| then |A| = U∗A ∈ B1
Λ(E), |A|1/2 ∈ B2

Λ(E) and

| trΛ(CA)| ≤ ‖C‖ trΛ |A|. (14)

For the proof, being a very standard calculation in Von Neumann algebras can be found in
chapter V of [74].
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Definition 4.25 — A random operator F ∈ HomΛ(E1, E2) is Λ–Fredholm (Breuer–Fredholm)
if there exist G ∈ HomΛ(E2, E1) such that FG− Id ∈ B∞Λ (E2) and GF − Id ∈ B∞Λ (E1).

Definition 4.26 — For an unbounded field of closed operators Tx : H1 −→ H2 between two
measurable fields of Hilbert spaces Hi the field of bounded operators

Tx : (Domain(Tx), ‖ · ‖Tx) −→ H2

where ‖·‖Tx is the graph norm is measurable by Remark 4.3. We say that T is Λ–Breuer–Fredholm
when this field of bounded operators is Λ–Breuer–Fredholm.

Proposition 4.27 — A random operator F ∈ HomΛ(H1, H2) is Λ–Fredholm if and only
if N(F ) is Λ–finite rank and there exist some finite rank projection S ∈ EndΛ(H2) such that
R(Id−S) ⊂ R(F ).

Hence from the proposition above Λ–Fredholm operators F have a finite Λ–index. In fact
trΛ(N(F )) <∞ and

trΛ(1−R(F )) ≤ trΛ(S) <∞,

making clear the next definition.

Definition 4.28 — Let F ∈ HomΛ(H1, H2) be Λ–Fredholm. The Λ index of F is defined by

indΛ(F ) := trΛ(N(F ))− trΛ(1−R(F )).

The next result contained in The Shubin book [69] motivates the definition of an useful
instrument called the Λ–essential spectrum

Lemma 4.29 — Let M be a Von Neumann algebra endowed with a semi–finite faithful trace
τ , S = S∗ ∈ M . Then S is τ–Breuer–Fredholm if and only if there exists ε > 0 such that
τ(E(−ε, ε)) < ∞, where E(∆) is the spectral projection of S corresponding to a Borel set ∆.
Besides if S = S∗ is τ–Breuer–Fredholm then indτ S = 0.

So consider a measurable field T of unbounded intertwining operators. If T is selfadjoint
(every Tx is self–adjoint a.e.) the parametrized (measurable) spectral Theorem (cf. Theorem
XIII.85 in [63]) shows that for every bounded Borel function f the family x 7−→ f(Tx) is
a measurable field of uniformely bounded intertwining operators defining a unique random
operator. In other words

{f(Tx)}x ∈ EndΛ(H).

For a Borel set U ⊂ R let χT (U) be the family of spectral projections x 7−→ χU (Tx). Denote
HT (U) the measurable field of Hilbert spaces corresponding to the family of the images
(HT (U))x = χU (T )Hx. Let trΛ : End+

Λ(H) −→ [0,+∞] the semifinite normal faithful trace
defined by Λ. The formula

µΛ,T (U) := trΛ(χT (U)) = dimΛ(HU (T ))

defines a Borel measure on R.
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Definition 4.30 — We call the Borel measure defined above the Λ–spectral measure of T .

Remark — Clearly this is not in general a Radon measure (i.e. finite on compact sets). In
fact due to the non–compactness of the ambient manifold a spectral projection of a relatively
compact set of an (even elliptic) operator is not trace class. In the case of elliptic self adjoint
operators with spectrum bounded by below this is the Lebesgue–Stiltijes measure associated
with the spectrum distribution function relative to the Λ–trace. This is the (not decreasing)
function λ 7−→ trΛ χ(−∞,λ)(T ). A good reference on this subject is the work of Kordyukov
[38].

Notice the formula ∫
fdµΛ,T = trΛ(f(T ))

for each bounded Borel function f : R −→ [0,∞). The proof of this fact easily follows starting
from characteristic functions. Here the normality property of the trace plays a fundamental
role. A detailed argument can be found in [58]. Next we introduce, inspired by [76] the hero
of this section.

Definition 4.31 — The essential Λ–spectrum of the measurable field of unbounded self–
adjoint operators T is

specΛ,e(T ) := {λ ∈ R : µΛ,T (λ− ε, λ+ ε) =∞,∀ε > 0}.

Lemma 4.32 — For Random operators the Λ–essential spectrum is stable under compact
perturbation. If A ∈ EndΛ(E) is selfadjoint A = A∗ and S = S∗ ∈ B∞Λ (E) then

specΛ,e(A+ S) = specΛ,e(A).

Then if trΛ is infinite i.e. trΛ(1) =∞ we have specΛ,e(A) = {0} for every A = A∗ ∈ B∞Λ (E).

Proof— Let λ ∈ specΛ,e(A), by definition dimΛHA(λ− ε, λ+ ε) =∞. Then consider the
field of Hilbert spaces

Gε,x :=
{
t ∈ χ(−λ−ε,λ+ε)(Ax)Hx; ‖Sxt‖ < ε‖t‖

}
= HSx(−ε, ε) ∩HAx(−λ− ε, λ+ ε).

This actually shows that Gε is Λ–finite dimensional infact HAx(−λ − ε, λ + ε) is Λ–infinite
dimensional whileHSx(−ε, ε) is Λ–finite codimensional. This showing that λ ∈ specΛ,e(A+S).
The second statement is immediate. 2

There is a spectral characterization of Λ–Fredholm random operators as expected after Lemma
[?].

Proposition 4.33 — For a random operator F ∈ HomΛ(H1, H2) the following are equivalent

1. F is Λ–Fredholm.

2. 0 /∈ specΛ,e(F ∗F ) and 0 /∈ specΛ,e(FF ∗).
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3. 0 /∈ specΛ,e

(
0 F ∗

F 0

)
4. N(F ) is Λ–finite rank and there exist some finite rank projection S ∈ EndΛ(H2) such that
R(Id−S) ⊂ R(F ).

4.3.1 Splitting principle

Let E −→ X be a vector bundle. For every x ∈ X and integer k consider the Sobolev
space Hk(Lx, E) of sections of E, obtained by completion of C∞c (Lx, E) with respect to the
k Sobolev norm

‖s‖2Hk(Lx;E) :=
k∑
i=0

‖∇ks‖2L2(⊗kT∗Lx;E),

here the longitudinal Riemannian connection has been used. This is the definition of a Borel
field of Hilbert spaces with natural Borel structure given by the inclusion into L2. In fact,
by Proposition 4 of Dixmier [27] p.167 to prescribe a measure structure on a field of hilbert
spaces H it is enough to give a countable sequence {sj} of sections with the property that
for x ∈ X the countable set {sj(x)} is complete orthonormal. In the appendix of Heitsch and
Lazarov paper [33] is shown, making use of holonomy that a family with the property that
each sj is smooth and compactly supported on each leaf can be choosen.

Definition 4.34 — Consider a field T = {Tx}x∈X (not necessarily Borel by now) of continuous
intertwining operators Tx : C∞c (Lx;E|Lx) −→ C∞c (Lx;E|Lx).

• We say that T is of order k ∈ Z if Tx extends to a bounded operator

Hm(Lx, E|Lx) −→ Hm−k(Lx, E|Lx)

for each m ∈ Z and for x a.e.

• We say that the T is elliptic if each Tx satisfies a Garding inequality

‖s‖Hm+k
x
≤ C(Lx,m, k)[‖s‖Hmx + ‖Txs‖Hmx ],

and the family {C(Lx,m, k)}x∈X is bounded outside a null set in X.

Since each leaf Lx is a manifold with bounded geometry for a family of elliptic selfadjoint
intertwining operators {Tx}x∈X every Tx is essentially selfadjoint with domain Hk(Lx;E|Lx).
It makes sense again to speak of measurability of such a family.

Definition 4.35 — For two fields of operators P and P ′ say that P = P ′ outside a compact
K ⊂ X if for every leaf Lx and every section s ∈ C∞c (Lx \K;E) then Ps = P ′s. This property
holding x a.e in X with respect to the standard Lebesgue measure class.

Theorem 4.35 — The splitting principle. Let P and P ′ two Borel fields of (unbounded)
selfadjoint order 1 elliptic intertwining operators. If P = P ′ outside a compact set K ⊂ X then

specΛ,e(P ) = specΛ,e(P
′).
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Proof— Let λ ∈ specΛ,e(P ), for each ε > 0 put χλε := χ(λ−ε,λ+ε) put Gε := χλε (P ), then
trΛ(Gε) = ∞. The projection Gε amounts to the Borel field of projections {χλε (Px)}x∈X .
By elliptic regularity on each Hilbert space Gε,x every Sobolev norm is equivalent in fact the
spectral theorem and Gårding inequality show that for s ∈ Gε,x and k ∈ N

‖s‖Hk+2
x
≤ C(P1, k + 2){‖s‖L2

x
+ ‖(P1 − λ)ks‖L2

x
} ≤ (C + εk)‖s‖L2

x

where C(P1, k + 2) is a constant bigger than each leafwise Gårding constant.
Now choose two cut–off functions φ, ψ ∈ C∞c (X) with φK = 1 and ψ|suppφ = 1. Consider the
following fields of operators

Bφ : L2
x

χελ // Gε,x
φ // L2

x, (15)

Cψ : L2
x

χελ // (Gε,x, ‖ · ‖L2) // (Gε,x, ‖ · ‖Hk)
ψ // H1

x (16)

for a k sufficiently big in order to have the Sobolev embedding theorem. We declare that
C∗ψCψ ∈ EndΛ(E) is Λ–compact. In fact consider by simplicity the case in which ψ is sup-
ported in a foliation chart U × T . The integration process shows that the trace of C∗ψCψ is
given by integration on T of the local trace on each plaque Ut = U × {t}. Now the operator
C∗ψ,xCψ,x is locally traceable by Theorem 1.10 in Moore and Schochet [53] since by Sobolev
embedding the range of CΨ is made of continuous sections (the fact that each sobolev norm
is equivalent on Gε makes the teorem appliable i.e don’t care in forming the adjoint w.r.t. H1

norm or L2). These local traces are uniformly bounded in U × T from the uniformity of the
Gårding constants for the family since we are multiplying by a compactly supported function
ψ. Actually we have shown that C∗ψCψ is Λ–trace class. There follows from Lemma 4.32 about
Λ–compact operators that the projection G̃ε := χ(−ε2,ε2)(C∗ψCψ) is Λ–infinite dimensional in
fact specΛ,e(C∗ψCψ) = {0}.
Now 1−Bφ is Λ–Fredholm ( also Bφ is Λ–compact ) then its kernel has finite Λ–dimension.
Also since C∗ψCψχ

λ
ε = C∗ψCψ then G̃εχλε = G̃ε hence (1 − Bφ)G̃ε = (1 − φ)G̃ε ⊂ domain(P ′)

is Λ–infinite dimensional.
Take s ∈ G̃ε, from the definition

‖ψs‖2H1 = 〈Cψs, Cψs〉H1 = 〈C∗ψCψs, s〉L2 ≤ ε2‖s‖2L2

then

‖(P ′ − λ)(1− φ)s‖L2 ≤ ‖[P, φ]s‖L2 + ‖(1− φ)(P − λ)s‖L2 ≤ C‖ψs‖H1+
‖(P − λ)s‖L2 ≤ ε(1 + C)‖s‖L2 .

The second chain of inequalities follows from

(P ′ − λ)(1− φ)s = (P − λ)(1− φ)s = ([P − λ, 1− φ]− (1− φ)(P − λ))s
= −([P, φ] + (1− φ)(P − λ))s.

Finally the spectral theorem for (unbounded) self adjoint operators shows that (1 − φ)G̃ε ⊂
χ(σ,τ)(P ′) with σ = λ− ε(1 + C), τ = λ+ ε(1 + C). In particular λ ∈ specΛ,e(P ′). 2

Corollary 4.36 — Consider two foliated manifolds X and Y (with cylindrical ends or
bounded geometry) with holonomy invariant measures Λ1, Λ2 and bounded geometry vector
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bundles E1 −→ X and E2 −→ Y . Suppose there exist compact sets K1 ⊂ X and K2 ⊂ Y such
that outside X \K1 and Y \K2 are isometric with an isometry that identifyies every geometric
structure as the bundles and the foliation with the transverse measure. If P and P ′ are operators
as in Theorem 4.5, page 29 with P = P ′ on X \K1 ' Y \K2 in the sense of definition 4.35 then

specΛ1,e(P ) = specΛ2,e(P
′).

Proof— The proof of 4.5, page 29 can be repeated word by word till the introduction of
the element (1− φ)G̃ε that can be considered as an element of EndΛ2(E2) through the fixed
isometry. 2

5 Analysis of the Dirac operator

5.1 Finite dimensionality of the index problem

Consider the leafwise Dirac operator D. This is a measurable field of unbounded first order
differential operators {Dx}x∈X . Its measurability property is easily checked observing that is
equivalent to prove the measurability of the field of bounded operators

(Dx + i)−1 : L2(Lx;E) −→ H1(Lx;E).

Here the field of natural Sobolev spaces has the canonical structure given by inclusion into
L2. Now, the self–adjointness of Dx with domain H1(Lx;E) shows that

(Dx + i) : H1(Lx;E) −→ L2(Lx;E)

is a Hilbert space isomorphism. Choose two sections s, t of the domain and range respectively
with the additional property that are smooth when restricted to each leaf then

〈(Dx + i)s(x), t(x)〉L2(Lx;E) = 〈s(x), (Dx − i)t(x)〉L2(Lx;E)

and the measurability of the right–hand side is clear. Now it remains to apply the Example
2. in Dixmier [27] p-180 to have that the leafwise inverse family is measurable (Borel).

Since the foliation is even dimensional there is a canonical involution τ = ipc(e1 · · ·e2p) giving
a parallel hortonormal ±1 eigenbundles splitting E = E+⊕E−. Moreover the Dirac operator
is odd with respect to this splitting. That’s to say that D anticommutes with τ giving a pair
of first order leafwise differential elliptic operators D±x : C∞c (Lx;E±) −→ C∞c (Lx;E∓). We
continue to use the same notation for their unique L2–closure and we have D = D+ ⊕ D−
with D+ = (D−)∗.

The operator D+ is called the chiral longitudinal Dirac operator, in general this is not a
Breuer–Fredholm operator. In fact Fredholm properties are governed by its behavior at the
boundary i.e its restriction to the base of the cylinder ∂X0. Just in the one leaf situation D+

is Fredholm in the usual sense if and only if 0 is not in the continuous spectrum of D−D+ or
equivalently if the continuous spectrum has a positive lower bound. However the L2 kernels
of D+ and D− are finite dimensional and made of smooth sections. The difference

dimΛ KerL2(D+)− dimΛ KerL2(D−)
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is the definition of the L2–chiral index of D+ giving the usual fredholm index when the
operator is Fredholm. Notice that in the non Fredholm case the L2 index is not stable under
compactly supported perturbations making difficult its computation.

We are going to show that in our foliation case the chiral index problem is Λ–finite dimensional
in the following sense exlpained in four steps.

• By an application of the parametrized measurable spectral theorem the projections
on the L2–kernels of D± belong to the Von Neumann algebras of the corresponding
bundles, χ{0}(D+) ∈ EndΛ(E±) and decompose as a Borel family of bounded operators
{χ{0}(D±)x}x corresponding to the projections on the L2 kernels of D±x . Furthermore
they are implemented by a Borel family of uniformly smoothing Schwartz kernels.

• The family of projections above give rise to a longitudinal measure on the foliation.
These measure are the local traces U 7−→ trL2(Lx)[χU · χ{0}(D±)x · χU ] where for a
Borel U ⊂ Lx the operator χU acts on L2(Lx) by multiplication. In terms of the smooth
longitudinal Riemannian density these measures are represented by the pointwise traces
of the leafwise Schwartz kernels. We prove that these local traces has the following
finiteness property completely analog to the Radon property for compact foliated spaces.

Finiteness property for local traces of projections on the kernel.

Consider a leaf Lx. This is a bounded geometry manifold with a cylindrical end ∂Lx ×
R+. We claim that for every compact K ⊂ ∂Lx

trL2(Lx)[χK×R+ · χ{0}(D±)x · χK×R+ ].

Since this list is aimed to the definition of the index the (rather long) proof of this
statement is postponed immediately after.

• The integration process of a longitudinal measure against a transverse holonomy invari-
ant measure immediately shows that the integrability condition above is sufficient to
assure finite Λ–dimensionality of the L2 kernels of D±. Here the proof.

First one has to choose a complete compact transversal S and a Borel map f : X −→ S
that respects the leaf equivalence relation displayingX as measure–theoretically fibering
over S. Thanks to our assuptions on the foliation we can choose S composed by two
pieces S1 and S2 where S1 = ∂X0×{0} on the cylinder while S2 is an interior transversal.
Since we are working in the Borel world we can surely think that f restricts to U with
values on S1 and outside U with values on S2. Now the integral ha two terms. The first
integral, on S1 is finite thanks to the finiteness property above in fact the situation here
is a fibered integral of a standard Radon measure on the base times a finite measure.
The interior term is finite thanks to proposition 4.22 in [53].

•
Definition 5.37 — Define the chiral Λ–L2–index

IndL2,Λ(D+) := trΛ(χ{0}(D+))− trΛ(χ{0}(D−)) ∈ R.

Proof of finiteness property of the local trace of kernel projections

Proof— It is clear that it suffices to prove the property for each operator (·)|∂x×R+χ{0}(D+
x ).
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Let us consider the operator D+ on a fixed leaf Lx. This is a bounded geometry manifold
with a cylindrical end ∂Lx × R+ = {y ∈ Lx : r(y) ≥ 1} where the operator can be written
in the form B + ∂/∂t acting on sections of F −→ ∂Lx × R+. The boundary operator B is
essentially selfadjoint on L2(∂Lx;F ) on the complete manifold ∂Lx (see [22] and [21] for a
proof of self–adjointness using finite speed tecniques).
We are going to remind the Browder–Gårding type generalized eigenfunction expansion for B
(see [26] 11, 300–307, [28] and [62] for an application to a A.P.S foliated and Galois covering
index problems).
According to Browder–Gårding there exist

1. A sequence of smooth sectional maps ej : R× ∂Lx −→ F i.e. ej is measurable and for
every λ ∈ R, ej(λ, ·) is a smooth section of F over ∂Lx such that Bej(λ, x) = λej(λ, x).

2. A sequence of measures µj on R such that the map V : C∞c (∂Lx;F ) −→
⊕

j L
2(R, µj)

defined by (V s)j(λ) = 〈s, ej(λ, ·)〉L2(∂Lx) (integration w.r.t Riemannian density) extends
to an Hilbert space isometry

V : L2(∂Lx;F ) −→
⊕
j

L2(R, µj) =: HB

sending Borel spectral functions f(B) into multiplication by f(λ) with domain given
by dom f(B) =

{
s :

∑
j

∫
R |f(λ)|2|(V s)j(λ)|2dµj(λ) < ∞

}
. In particular beying an

isometry means
∫
∂Lx

|s(x)|2dg =
∑
j

∫
R
|(V s)j |2dµj(λ).

Notice that ej(λ, ·) need not be square integrable on Lx. Taking tensor product with L2(R)
we have the isomorphism

L2(∂Lx × R+, F ) ' L2(∂Lx, F )⊗ L2(R) ∼−→ [⊕jL2(R, µj)]⊗ L2(R+) = HB ⊗ L2(R+) (17)

where R+ = (0,∞)r. Under the identification W := V ⊗ Id the operator D+ is sent into
λ + ∂r acting on the space HB ⊗ L2(R+). Now let s be an L2–solution of Dxs = 0. By
elliptic regularity it restricts to the cylinder as an element s(x, r) ∈ C∞(R+, H∞(∂Lx;F )) ∩
L2(R+;L2(∂Lx, F )) solution of (∂r +B)s = 0 then

∂r(V s)j(λ, t) = ∂r

∫
∂Lx

〈s(x, r), ej(x, r)〉dg =
∫
∂Lx

〈dr s(x, r), ej(λ, x)〉dg (18)

= −
∫
∂Lx

〈Bs(x, r), ej(λ, x)〉dg =
∫
∂Lx

〈s(x, r), Bej(x, r)〉dg

= −λ
∫
∂Lx

〈Bs(x, r), ej(λ, x)〉dg = −λ(V s)j(λ, r).

Equation (18) says that all L2 solutions of D+ = 0 under the representation V on the cylinder
are zero µj(λ)–a.e. for λ ≤ 0 for every j. Decompose, for fixed a > 0

L2(∂Lx × R+;F ) = L2(R+;HB([−a, a]))⊕ L2(R+,HB(R \ [−a, a])) (19)

where the notation is HB(∆) for the spectral projection associated to χ∆. Let Π≤a and Π>a

respectively be the hortogonal projections corresponding to (19). Let χ{0}(D+
x ) be the L2

projection on the kernel, there’s a composition

Πa := Π≤a ◦ (·)|∂Lx×R+ ◦ χ{0}(D+
x )
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defined trough

L2(Lx) // KerL2(D+
x ) // L2(∂Lx × R+) // L2(R+;HB([−a, a])). (20)

Thanks to the Browder–Garding expansion and equation (18) we can see that elements ξ
belonging to the space ΠaL2(Lx) are in the form

ξ = χ(0,∞)(λ)e−λtζ0 (21)

with ζ0 = ζ0j ∈ H∞(∂Lx;F ) to be univoquely determined using boundary conditions. For-
mula (21) allows to define8 the "boundary datas" mapping

BD : ΠaL2(Lx;F ) −→ HB((0, a])
W−1(χ(0,a](λ)ζ0e−λt) 7−→W−1(χ(0,a](λ)ζ0)

This is continuous and injective in fact injectivity is obvious while continuity follows at once
from

‖ξ‖L2(∂Lx×R+) =
∑
j

∫
R

∫ ∞
0

e−2λt|ζ0j(λ)|2dtdµj(λ) ≥
∑
j

∫
[−a,a]

∫ ∞
0

e−2λt|ζ0j(λ)|2dtdµj(λ)

≥
∑
j

∫
[−a,a]

∫ ∞
0

e−2at|ζ0j(λ)|2dtdµj(λ) = 1/(2a)
∑
j

∫
R
|χ[−a,a]ζ0j(λ)|2dµj(λ)

= 1/(2a)‖χ[−a,a]ζ0‖HB .

Now choose an orthonormal basis sm = fm⊗ gm ∈ L2(∂Lx×R+, F ) and a compact set of the
boundary A ⊂ ∂Lx, then put χA� = χA×(0,∞)(x, r). Consider the operator χA�ΠaχA� acting
on L2(Lx;F ), now notice that Πa acts on sm via the natural embedding L2(∂Lx) ⊂ L2(Lx)
then

tr(χA�ΠaχA�) =
∑
m

〈χA�ΠaχA�sm, sm〉L2(∂Lx×R+). (22)

Write BD[ΠaχA�sm] = W−1[χ(0,a](λ)ζ(m)
0 ] hence [ΠaχA�sm] = χ(0,a](λ)ζ(m)

0 e−λt. By conti-
nuity of BD the sequence χ(0,a]ζ

(m)
0 is bounded. Then (22) becomes

tr(χA�ΠaχA�) =
∑
m

〈W−1[χ(0,a](λ)ζ(m)
0 e−λt], χA�sm〉

=
∑
m

〈χ(0,a](λ)ζ(m)
0 e−λt,W (χA�sm)〉 (23)

=
∑
m

∫
R+

∫
R×N

χ(0,a](λ)ζ(m)
0 e−λt

{
W (χA�sm)

}
dµ(λ)dt (24)

where µ is the direct sum of the µj ’s.
Last term of (23) can be estimated using Cauchy–Schwartz inequality and the trivial identity

8this is clearly inspired by Melrose definition [50] Chapter 6
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W (χA�sm)W (χA�fm ⊗ gm) = V (χA(x)fm(x))gm(t),

∑
m

∫
R+

∫
R×N

χ(0,a](λ)ζ(m)
0 e−λr

{
w(χA�sm)

}
dµ(λ)dr

≤
∑
m

{∫
R+

∫
R×N
|gm(r)|2|ζ(m)

0 |2dµ(λ)dr
}1/2{∫

R+
e−2ar

∫
R×N

χ(0,a]e
−2(λ−a)|V (χAfm)|2dµ(λ)dr

}1/2

≤
∑
m

C
{∫

R×N
χ(0,a]|V (χAfm)|2dµ(λ)dr

}1/2

= C
∑
m

‖χAHB((0, a])χAfm‖L2(∂Lx)

≤ C
∑
m

〈χAHB((0, a])χAfm, fm〉 = Ctr(χAHB((0, a])χA) <∞. (25)

In the last step we used the fact that for a projection on a closed subspace K one can compute
its trace as, tr(K) =

∑
m〈Kfm, fm〉 =

∑
m ‖Kfm‖ together with the fact that HB((0, a]) is

a spectral projection of B hence uniformely smoothing. Let us now pass to examine the
operator

Πa := Π≥a◦(·)|∂Lx×R+ ◦ χ{0}(D+
x )

defined by

L2(Lx) // KerL2(D+
x ) // L2(∂Lx × R+) // L2(R+;HB(R \ [−a, a])). (26)

arising from the second addendum of the splitting (19). Let ϕk be the characteristic function
of r ≤ k and

Λk := Π≥a ◦ ϕk ◦ (·)|∂x×R+ ◦ χ{0}(D+
x ).

Now

‖(Πa − Λk)ξ‖ = ‖Π≥a(ϕk − 1)(·)|∂Lx×R+χ{0}(D+
x )ξ‖L2(∂Lx×R+) (27)

=
∫ ∞
k

∫
(a,∞)×N

e−2λr|ζ0|2dµ(λ)dt ≤ e−2ak

∫
(a,∞)×N

∫ ∞
0

e−2λr|ζ0|2dµ(λ)dr

≤ e−2ak‖ξ‖L2(∂Lx×R+).

Finally choose a compact A ⊂ ∂Lx, estimate (27) shows that Sk := χA�ΛkχA� converges
uniformly to χA�ΠaχA� . Observe that Sk is compact by Rellich theorem and regularity the-
ory in fact ΠKer(T+) is obtained by functional calculus from a rapid Borel function hence
has a uniformly smoothing Schwartz–kernel (see the appendix for more informations). Since
χA×ΛkΠ>aΠKer(T+)χA× is norm–limit of compact operators is compact but a compact pro-
jection is finite rank. 2

5.2 Breuer–Fredholm perturbation
Our main application of the splitting principle is the construction of a Λ–Breuer Fredholm
perturbation of the leafwise Dirac operator. Let θ be a smooth function satisfying θ = θ(r) = r
on Z1 while θ(r) = 0 on X1/2, put θ̇ = dθ/dr. Let Πε := χIε(D

F∂ ) for Iε := (−ε, 0) ∪ (0, ε).
Our perturbation will be the leafwise operator

Dε,u := D + θ̇Ω(u−DF∂Πε) for ε > 0, u ∈ R (28)

that is Z2 odd as D. We write Dε,u = D+
ε,u ⊕D−ε,u and Dε,u,x for its restriction to Lx, also

for brevity Dε,0 := Dε.
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Notice that the perturbed boundary operator is DF∂ε,u = DF∂ (1 − Πε) + u = DF∂ε,0 + u. Since
for ε > 0, 0 is an isolated point in the spectrum of DF∂ε,0 then DF∂ε,u is invertible for 0 < |u| < ε.
For further application let us compute the essential spectrum of B2

ε,u where

Bε,u = D + Ω(u−DF∂Πε)

on the foliated cylinder X0 × R with product foliation F∂ × R. The Von Neumann algebra
becomes EndΛ0(E) ⊗ B(L2(R)) where EndΛ0(E) is the Von Neumann algebra of the base
i.e. the foliation induced on the transversal X0 × {0}. The integration process shows that
the trace is nothing but trΛ = trΛ0 ⊗ tr where the second factor is the canonical trace on

B(L2(R)). We can write B2
ε,u =

(
0 −∂r + u+DF∂ (1−Πε)

∂r + u+DF∂ (1−Πε) 0

)2

=(
−∂2

r 0
0 −∂2

r

)
+
(

0 u+DF∂ (1−Πε)
u+DF∂ (1−Πε) 0

)2

= −∂2
r Id +V 2.

Consider the spectral measure µΛ0,V 2 of V 2 on the tranversal section X0×{0}. We claim the
following facts

1. ω := inf supp(µΛ0,V 2) > 0

2. µΛ,B2
ε,u

(a, b) =∞, 0 ≤ a < b, ω < b

3. µΛ,B2
ε,u

(a, b) = 0, 0 ≤ a < b ≤ ω.

First of all 1. is obvious since spec(DF∂ε,u) ⊂ [(ε + u)2,∞). To prove the second one observe
first that we can use the Fourier transform in the cylindrical direction. This gives a spectral
representation of −∂2

r as the multiplication by y2 on L2(R). Choose some γ < (b− ω)/2. We
can prove the following inclusion for the spectral projections

χ(a,γ+ω)(V 2)⊗ χ(0,γ)(−∂2
r ) ⊂ χ(a,b)(B2

ε,u). (29)

In fact (29) follows from a (leafwise) spectral representation for V as the multiplication op-
erator by x together with the implication a < x2 < γ + ω, 0 < y2 < γ ⇒ a < x2 + y2 < b.
From (29) follows

µΛ,B2
ε,u

(a, b) ≥ µΛ0,V 2(a, γ + ω) · trB(L2(R)) χ(0,γ)(−∂2
r ) =∞

in fact the first factor is non zero and the second is clearly infinite. Finally the third statement
is very similar in the proof. We have shown that

specΛ,e(B
2
ε,u) = [ω,∞).

The perturbed boundary operator is DF∂ε,u = DF∂ (1 − Πε) + u = DF∂ε,0 + u. Since for ε > 0, 0
is an isolated point in the spectrum of DF∂ε,0 then DF∂ε,u is invertible for 0 < |u| < ε.

Proposition 5.38 — The operator Dε,u is Λ–Breuer–Fredholm if 0 < |u| < ε.

Proof— The splitting principle (actually for order 2 operators but it makes no difference)
says that the essential spectrum is determined by the operator on the cylinder for r > 1. The
above calculation ends up the proof. 2

In the next we shall investigate the relations between the index of the perturbed operator and
the Dirac operator. At this aim the use of weighted L2–spaces is fruitful as Melrose shows in
[50].
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Definition 5.39 — For u ∈ R, denote euθL2 the Borel field of Hilbert spaces (with ob-
vious Borel structure given by euθ · L2 − Borel structure. {euθL2(Lx;E)}x where, for x ∈ X,
euθL2(Lx;E) is the space of section–distributions w such that e−uθω ∈ L2(Lx;E). Analog
definition for weighted Sobolev spaces euθHk can be written.

Notice that euθL2(Lx;E) = L2(Lx;E, e−2uθdg|Lx) where dg is the leafwise Riemannian den-
sity so these Hilbert fields correspond to the representation ofR with the longitudinal measure
x ∈ X 7−→ e−2uθdg|Lx = r∗(e−2uθdg) (transverse function, in the language of the non com-
mutative integration theory [24]).
The operatorsD and its perturbationDε,u extend to a field of unbounded operators euθL2 −→
euθL2 with domain euθH1. Put

e∞θL2
x := ∪δ>0e

δθL2
x.

In the next we will use, for brevity the following notation: ∂Lx := Lx ∩ (∂X0 × {0}) and

Zx := ∂Lx × [0,∞)

for the cylindrical end of the leaf Lx.

For a smooth section s± such that D±ε,u,xs± = 0 we have (D±ε,u,x)|∂Lx×R+(s±)|∂Lx×R+ = 0 that
can be easily seen choosing smooth r–functions φ, ψ with φX0 = 1, ψZ1/4 = 1, supp(ψ ⊂ Z1/8)
and evaluating [D±ε,u,x(φ(1− ψ)s+ φψs) = 0]|∂Lx×R+ .
The isomorphism W defined in (17) used in the proof of finiteness property for the kernel
projection, can be defined also as an isomorphism euθL2(∂Lx × R+, F ) ' HB ⊗ euθL2(R+)
in a way that solutions of D±ε,u,xs± = 0 with conditions s± ∈ e∞θ ∩ L2

x can be represented as
solutions of [±∂r + λ + θ̇(r)(u − χε(λ)λ)]Ws± = 0 with χε(λ) = χ(−ε,0)∪(ε,0)(λ) acting as a
multiplier on

⊕
j L

2(R, µj). In particular (forgetting for brevity the restriction symbol)

Ws± = ζ±j (λ) exp{∓uθ(r)∓ λ[r − θ(r)χε(λ)]} (30)

with suitable choosen ζ±j (λ) ∈ L2(µj).

Proposition 5.40 — Let ε > δ > 0 and δ′ ∈ R then

1. ξ ∈ Kereδ′θL2(D+
x ) Z=⇒ ξZx = e−rD

F∂
x h with h ∈ χ(DF∂x )(−δ′,∞)L

2
x.

2. ξ ∈ KerL2(D+
ε,x) Z=⇒ ξZx = e−rD

F∂
x +θ(r)D

F∂
x Πε,xh, with h ∈ χ(DF∂x )(ε,∞)L

2
x

3. ξ ∈ KereδθL2(D+
ε,x) Z=⇒ ξ|Zx = e−rD

F∂
x +θ(r)D

F∂
x Πε,xh, h ∈ χ(DF∂x )(−ε,∞)L

2
x,

recall that Πε,x = χ(−ε,ε)−{0}(DF∂x ). Moreover the following identity (as fields of operators) holds
true

D±e∓θ(r)D
F∂Πε = e∓θ(r)D

F∂ΠεD±ε .

Proof—

1. From the representation formula (30) of formal solutions for u = 0, ε = 0 it remains
ξ = ξj(λ)e−λr. Then e−δ

′θξ must be square integrable hence clearly ξj(λ) = hj(λ) ∈
χ(−δ′,∞)(DF∂x ).
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The remaining are proved in a very similar way. The last statement is merely a computation.
2

Solutions of D±ε,xs± = 0 belonging to the space
⋂
u>0 e

uθL2(Lx;E±) are called L2–extended
solutions, in symbols Ext(D±ε,x). Next we study this space of solutions as x varies.

Proposition 5.41 — For every x ∈ X and 0 < u < ε

1. KerL2(D±ε,x) = Kere−uθL2(D±ε,x) = KerL2(D±ε,∓u,x) (31)

2. Ext(D±ε,x) = KereuθL2(D±ε,x) = KerL2(D±ε,±u,x). (32)

3. KerL2(D±ε,x) ⊂ Ext(D±ε,x) (33)

Proof— We show only the first equality of (31) the others being very similar. This is a
simple application of equation (30). In fact, for u = 0, Ws± = ζ±j (λ) exp{∓λ[r − θ(r)χε(λ)]}.
The condition of being square integrable in (R, µj) ⊗ (R+, dr) is easily seen to be equiva-
lent to ζ+

j (λ) = 0 λ < ε, λ–a.e and ζ−j (λ) = 0 λ > −ε in particular, for r ≥ 1 Ws± =
ζ±j (λ)e∓λrχ±λ≥ε(λ) then euθs± ∈ L2 if u < ε. For the reverse inclusion the proof is the
same. For the third stament note that euθL2 ⊂ evθL2 for every u, v ∈ R with u ≤ v then
KerL2 ⊂ Ext. 2

Proposition 5.41 shows at a single time that the mapping x 7−→ Ext(D±ε,x) gives a Borel field
of closed subspaces of L2. No difference in notation between the space Ext and Ker and
the corresponding projection in the Von Neumann algebra will be done in future. Inclusion
(33) together with 5.38 and the finiteness property of the L2–kernel projection says that the
difference

h±Λ,ε = dimΛ(Ext(D±ε ))− dimΛ(KerL2(D±ε )) = trΛ(Ext(D±ε ))− trΛ(KerL2(D±ε )) ∈ R (34)

is a finite number.

Lemma 5.42 — For ε > 0

1. dimΛKerL2(D±ε ) = limu↓0 dimΛKerL2(D±ε,∓u) = limu↓0 dimΛKerL2(D±ε,±u)− h±Λ,ε,

2. IndL2,Λ(D+
ε ) = limu↓0 IndΛ(D+

ε,u)− h+
Λ,ε = limu↓0 IndΛ(D+

ε,−u) + h−Λ,ε

Proof— Nothing to prove here, proposition 5.41 says that the limit is constant for u
sufficiently small, the second one in the statement follows from the first by summation. 2

Now define the extended solutions Ext(D±x ) in the same way i.e. distributional solution of the
differential operator D±x : C∞c (Lx;E±) −→ C∞c (E∓;E) belonging to each weighted L2–space
with positive weights,

Ext(D±x ) =
⋂
u>0

KereuθL2(D±) = {s ∈ C−∞(Lx;E±); D±s = 0; e−uθs ∈ L2 ∀u > 0}.

Here we have made use of the longitudinal Riemannian density to to identify sections with
sections with values on density and the Hermitian metric on E, in a way that one has the
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isomorphism C−∞(Lx;E±) ' C∞c (Lx; (E±)∗ ⊗ Ω(Lx)) to simplify the notation with distri-
butional sections of the bundle E.
It is clear by standard elliptic regularity that extended solutions of D± are smooth on each
leaf. In fact D± a first order differential elliptic operator and one can construct a parametrix
i.e. an inverse of D± modulo a smoothing operator i.e. an operator sending each Sobolev
space onto each Sobolev space (of the new, weighted metric).

Remark — By definition Ext(D±) ⊂ euθL2 for every u > 0, define dim(u)
Λ (Ext) as the trace

in EndΛ(euθL2) of the projection on the closure of Ext, now we must check that under the
natural inclusion euθL2 ⊂ eu

′θL2 if u < u′, these dimensions are preserved. This is done at
once in fact the inclusion Ext(D±) ⊂ euθL2 ↪→ Ext(D±) ⊂ eu′θL2 is bounded and extends to
a bounded mapping

Ext(D±)
euθL2

−→ Ext(D±)
eu
′θL2

with dense range. Now the unitary part of its polar decomposition is an unitary isomorphism
then the Λ dimensions are the same by 1. in 4.7.

Definition 5.43 — The Λ–dimension of the space of extended solution is

dimΛ Ext(D±) := dimΛ Ext(D±)
euθL2

for some u > 0.

Proposition 5.44 —

1. limε↓0 dimΛ KerL2(D±ε ) = dimΛ KerL2(D±)

2. limε↓0 IndL2,ΛD
+
ε = IndL2,ΛD

+

3. limε↓0 dimΛ Ext(D±ε ) = dimΛ Ext(D±)

Proof—

1. Let ξ ∈ KerL2(D+
ε,x) thanks to Proposition 5.40

ξZx = e−rD
F∂
x +θ(r)D

F∂
x Π−ε,xh, h ∈ χ(ε,∞)(DF∂x )

from Πε,xh = 0 we get

D+
x ξ|Zx = (D+

ε,x + θ(r)DF∂x Πε,x)ξ|Zx = θ(r)DF∂x Πε,x(ξ|Zx)

= θ(r)DF∂x Πε,x(e−rD
F∂
x +θ(r)D

F∂
x Πε,xh) = 0

meaning that KerL2(D+
ε,x) ⊂ KerL2(D+). Moreover

D+
ε (KerL2(D+))

= θ̇DF∂x Πε,x(KerL2(D+) ⊂ −θ̇DF∂x e−rD
F∂
x χ(−ε,ε)(DF∂x )(L2(∂Lx ⊗ L2(R+)).
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Note that clearly dimΛ

[
θ̇DF∂x e−rD

F∂
x χ(−ε,ε)(DF∂x )(L2(∂Lx⊗L2(R+))

]
−→ε→0 0 by the

normality of the trace. Then the family of operators

D+
ε |KerL2 (D+) : KerL2(D+) −→ L2

has kernel KerL2(D+
ε,x) and range with Λ dimension going to zero, 1. follows looking at

an hortogonal decomposition KerL2(D+) = KerL2(D+
ε )⊕KerL2(D+)/KerL2(D+

ε ).

2. Follows immediately from 1.

3. Consider the following commutative diagram

KereδθL2(D+) //

Ψ+
ε

((RRRRRRRRRRRRR
Kere(δ+ε)θL2(D+)

KereδθL2(D+
ε )

Ψ−ε

OO

where Ψ±ε = e±θΠεD
F∂ . It is easily seen thanks to the representation of solutions in

proposition 5.40 that each arrow is injective and bounded with respect to the inclusions

eδθL2 //

%%LLLLLLLLLL e(δ+2ε)θL2

e(δ+ε)θL2

OO .

Then joining together the two diagrams,

KereδθL2(D+) //

Ψ+
ε

((RRRRRRRRRRRRR
Kere(δ+ε)θL2(D+) // e(δ+2ε)θL2

��
KereδθL2(D+

ε )

Ψ−ε

OO

// e(δ+ε)θL2

and using the last column to measure dimensions one gets the inequality

dimΛ KereδθL2(D+) ≤ dimΛ KereδθL2(D+
ε ) ≤ dimΛ Kere(δ+ε)θL2(D+)

from which 3. immediately follows.

2

6 Cylindrical finite propagation speed and Cheeger Gro-
mov Taylor type estimates.

6.1 The standard case
A very important property of the Dirac operator on a manifold of bounded geometry X is
finite propagation speed for the associated wave equation. Let P ∈ UDiff1(X,E) uniformly
elliptic first order (formally) self–adjoint operator.

Definition 6.45 — The diffusion speed of P in x is the norm of the principal symbol

sup
v∈S∗x

|σpr(P )(x)|
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(S∗x) is the fibre of cosphere bundle at x). Taking the supremum on x in M one gets the
maximal diffusion speed c = c(P ).
We say that an operator has finite propagation speed if its maximal diffusion speed is finite.

Remark — A (generalized) Dirac operator associated to bounded geometry datas (manifold
and clifford structure) has finite propagation speed in fact its principal symbol is Clifford
multiplication.

The starting point is an application of the spectral theorem to show that for every initial
data ξ0 ∈ C∞c (X,E) there is a unique solution t 7→ ξ(t) of the Cauchy problem for the wave
equation associated with P , {

∂ξ/∂t− iPξ = 0,
ξ(0) = ξ0,

(35)

this solution is given by the application of the one parameter group of unitaries ξ(t) = eitP ξ0.
By the Stone theorem the domain of P is invariant under each unitary eitP and eitP is bounded
from each Sobolev space Hs into itself. In particular the domain of P is invariant under each
unitary eitP .

Lemma 6.46 — For θ suitably small and x ∈ M , ‖ξ(t)‖L2B(x,θ−ct) is decreasing in t. In
particular supp(ξ0) ⊂ B(x, r) Z=⇒ supp(eitP ξ0) ⊂ B(x, r + ct).

Proof— The proof is in J. Roe’s book [65] Prop. 5.5 and lemma 5.1. Next we shall prove
something similar in the cylindrical end. First one proves that for a small geodesic ball of
radius r the function ‖eitP ξ0‖L2(B(x,r−ct)) is decreasing, this is called energy estimate then
the second step follows easily. 2

Finite propagation speed tecniques provides us with the construction of a functional calculus,
a morphism of algebras S(R) −→ B(L2(X,E)), f 7−→ f(P ) with properties

• Continuity, ‖f(P )‖ ≤ sup|f | hence it can be extended to C0(R), the space of continuous
functions vanishing at infinity.

• If f(x) = xg(x) then f(P ) = Pg(P ).

• We have the representation formula in terms of the inverse Fourier transform

f(P ) =
∫

R
f̂(t)eitP dt/2π, (36)

here ·̂ is Fourier transform and the integral converges in the weak operator topology,
namely 〈f(P )x, y〉 =

∫
f̂(t)〈eitPx, y〉dt/2π, for every x, y ∈ L2(X;E). If X = S1 this is

just Poisson summation formula.

Representation (36) leads further, as an example we recount how John Roe, using ideas
contained in [21] used to build a pseudodifferential calculus.
Let Sm(R) be the space of symbols of order ≤ m on the real line i.e. smooth functions such
that |fλ(k)| ≤ Ck(1 + |λ|)m−k. This is a Fréchet space with best constants Ck as seminorms
and S(R) =

⋂
Sm(R).

Roe proves in [66] that for a bounded geometry Dirac operator D every spectral function
f(D) with f a symbol of order ≤ m is a uniform pseudodifferential operator of order m. The
proof of this fact uses formula (36) together with a convolution smoothing technique.
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Now formula (36) leads us to an easy method to obtain pointwise extimates of the Schwatz
kernel [f(P )] for a class Schwartz function f . In fact due to the ellipticity of P , f(P ) is
a uniformly smoothing operator and [f(P )] ∈ UC∞(X × X; End(E)) (see the appendix A)
here we have used the Riemannian density to remove the density coefficient in the Schwartz
kernels.

Proposition 6.47 — Take some section ξ ∈ L2(X;E) supported into a geodesic ball B(x, r)
then the following estimate holds true

‖f(P )ξ‖L2(X−B(x,R)) ≤ (2π)−1/2‖ξ‖L2(X)

∫
R−IR

|f̂(s)|ds, (37)

where IR := (− r−Rc , r−Rc ) with the convention that IR = ∅ if R ≤ r.

Proof— From the finite propagation speed

supp(eitP ξ) ⊂ B(x, r + c|t|). (38)

From the identity (36),

‖f(P )ξ‖L2(X−B(x,R)) =

∥∥∥∥∥(2π)−1/2

∫
R
f̂(s)eisP ξds

∥∥∥∥∥
L2(X−B(x,R))

≤

∥∥∥∥∥(2π)−1/2

∫
R−IR

f̂(s)eisP ξds

∥∥∥∥∥
L2(X)

≤ (2π)−1/2‖ξ‖L2(X)

∫
R−IR

|f̂(s)|ds

where IR := (− r−Rc , r−Rc ) with the convention that IR = ∅ if R ≤ r. In fact

‖f(P )ξ‖2L2(X−B(x,R)) = (2π)−1

∫
R

|f̂(s)|2‖eisP ξ‖2L2(X−B(x,R))ds

and the function s 7−→ ‖eisP ξ‖2L2(X−B(x,R)) is zero if |s| < r−R
c from (38). 2

So the point of view is that more far from the support of the section we want the L2

norm of the image, larger pieces of the Fourier transform around zero can we remove. The
extreme point of view is that spectral functions made by functions with compactly supported
Fourier transforms will produce properly supported operators i.e. operators whose kernel lies
within a δ–neighborhood of the diagonal. Estimate (37) is the starting point. The following
proposition shows how to work out pointwise estimates on the kernel from this mapping
properties. This is a very rough version of the ideas contained in [21]

Proposition 6.48 — Let r1 > 0 sufficiently small, x, y ∈ X put

R(x, y) := max{0, d(x, y)− r1}

and n̄ := [n/2+1], n = dimX, I(x, y) := (−R(x, y)/c,R(x, y)/c). For a class Schwartz function
f ∈ S(R) ∣∣∣∇lx∇ky [f(P )](x,y)

∣∣∣ ≤ C(P, l, k, r1)
2n̄+l+k∑
j=0

∫
R−I(x,y)

∣∣∣f̂ (j)(s)
∣∣∣ds. (39)
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Proof— |∇lx∇ky [f(P )](x0,y0)| ≤ C0‖∇lx[f(P )](x0,•)‖Hn̄+k(B(y0,r1/3)) where C0 is the con-
stant9 of the Sobolev embedding H n̄+k(B(y0, r1/3)) −→ UCk(B(y0, r1/3)) applied to the
function ∇lx[f(P )](x0,•).
Then we have to apply the Gårding inequality of P

‖∇lx[f(P )](x0,•)‖Hn̄+k(B(y0,r1/3)) ≤ C1

n̄+k∑
j=0

‖∇lxPy[f(P )](x0,•)‖L2(B(y0,r1/2))

= C1

n̄+k∑
j=0

‖∇lx[f(P )P ](x0,•)‖L2(B(x0,r1/2))

in fact by self adjointness Py[f(P )](x0,•) = [f(P )P ](x0,•). No problem here in localizing the
Gårding inequality we can choose in fact for each y0 a function χ supported in B(y0, r1)
with χ|B(y0,r1/2) = 1. Then since the coefficients of P in normal coordinates are uniformly
bounded, each [P, χ] is uniformly bounded. Let ξj(y) := χB(y0,r1/2)(y)∇lx[P jf(P )](x0,y) the
inequality becomes |∇lx∇ky [f(P )](x0,y0)| ≤ C0C1

∑n̄+k
j=0 ‖ξj‖L2(X).

Now

‖ξj‖2L2(X) =
∫
χB(y0,r1/2)∇[P jf(P )](x0,•)ξj(y)dy = |(∇lxP jf(P )ξj)(x0)|

≤ C2‖P jf(P )ξj‖Hn̄+l(B(x0,r1/3)) ≤ C2C3

n̄+l∑
i=0

‖P j+if(P )ξj‖L2(B(x0,r1/2))

again by Sobolev embedding and Gårding inequality. The choice to keep every constant is
motivated to control their dependence in order to apply these extimates leaf by leaf.
Finally putting everything together

|∇lx∇ky [f(P )](x0,y0)| ≤ C
n̄+k∑
j=0

n̄+l∑
i=0

‖P j+if(P )‖L2(B(x0,r1/2)),L2(B(y0,r1/2))

≤ C︸︷︷︸
(37)

2n̄+l+k∑
j=0

∫
R−I(x0,y0)

|f̂ (j)(s)|ds

2

For the heat kernel [f(P )] = [e−tP
2
] when f(x) = e−tx

2
, f̂(s) = (2t)−1/2e−s

2/4t,

f̂(s)(k) =
1

(2t)1/2(4t)k/2
((4t)1/2∂s)ke

−
( s

(4t)1/2

)2

=
C(k)
t(k+1)/2

Hk

( s

(4t)1/2

)
e
−
( s

(4t)1/2

)2

,

where Hk is the k–th Hermite polynomial. Then using the simple inequalities∫ ∞
u

e−xdx ≤ e−u
2
, yseay

2
≤
( s

2ae

)s/2
, a, s, u, y ∈ R+,∫ ∞

u

yse−y
2
dy =

∫ ∞
u

yse−εy
2
e−(1−ε)y2

dy ≤ C(s, ε)e−(1−ε)u2

9if preferable one can suppose B(y0, r1) a geodesic ball and multiply a multiply a cut off ϕ supported
within distance r1/3 from y0 and use the global Sobolev embedding. In that case the constant depends on ϕ
but using normal coordinates ϕ can be used well for each y0
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with R = R(x, y) and η = 2n̄+ l + k

|∇lx∇ky [Pme−tP
2
](x,y)| ≤ C

η+n∑
j=m

t−j/2
∫ ∞
R/c

∣∣∣Hj

( s

(4t)1/2

)∣∣∣e−
( s

(4t)1/2

)2

(4t)−1/2ds (40)

≤ C
η+m∑
j=m

t−j/2
∫ ∞
R/2c

√
t

|Hj(x)|e−x
2
dx

≤ C
η+m∑
j=m

t−j/2
∫ ∞
R/2c

√
t

(1 + xj)e−x
2
dx

≤ Ce−R
2/5c2t

λ+m∑
j=m

t−j/2

≤

{
C(k, l,m, P )t−m/2e−R

2/6c2t, t > T

C(k, l,m, P )eR
2/6c2t, d(x, y) > 2r1

t ∈ R+.

There’s also a relative version of Proposition 6.48 in which two differential, formally self–
adjoint uniformly elliptic operators P1 and P2 are considered. More precisely relative means
that P1 acts on E1 −→ X1 and P2 acts on E2 −→ X2 with open sets U1 ⊂ X1, U2 ⊂ X2 and
isometries ϕ,Φ

E1|U1

��

Φ // E2|U2

��
U1

ϕ // U2

making possible to identify P1 with P2 upon U = U1 = U2 i.e.

Φ(P1s) = P2(Φs), s ∈ C∞c (U1;E1)

where Φ is again used to denote the mapping induced on sections

Φ : C∞c (U1;E1) −→ C∞c (U2;E2), (Φs)(y) := Φϕ−1(y)s(ϕ−1(y)).

Thanks to the identification one calls P = P1 = P2 over U . Then the relative version of the
estimate (39) is contained in the following proposition.

Proposition 6.49 — Choose r2 > 0 and let x, y be in U . Set

Q(x, y) := max{min{d(x, ∂U); d(y, ∂U)} − r2; 0}, J(x, y) :=
(−Q(x, y)

c
,
Q(x, y)

c

)
.

For f ∈ S(R),

|∇lx∇ky([f(P1)]− [f(P2)])(x,y)| ≤ C(P1, k, l, r2)
2n̄+l+k∑
j=0

∫
R−J(x,y)

|f̂ (j)(s)|ds.

More precisely the reason of the dependence of the constant only to P1 is that it depends upon
P1|U where the operators coincide.
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Proof— This is very similar to the proof of 37. Choose x0, y0 ∈ U then

|∇lx∇ky([f(P1)]− [f(P2)])(x0,y0)| ≤ C‖∇lx([f(P1)]− [f(P2)](x0,•)‖Hn̄+k(B(y0,r2/3)) (41)

≤ C
n̄+k∑
j=0

‖∇lx([P j1 f(P1)]− [P j2 f(P2)])(x0,•)‖L2(B(y0,r2/2)).

Where the first step is Sobolev embedding H n̄+k −→ UCk, again no problem in reducing the
Sobolev norm to be computed on the ball B(y0, r2/3) in fact one can suppose r2 is smaller
than the injectivity radius and build a cut off function χ. The Sobolev embedding is applied
then to the section χ∇kx[f(P1) − f(P2)] and the resulting constant C will be depending also
on χ but uniform geometry assumption makes χ universal in that can be used on each normal
coordinate. For example in order one the argument one applies is

‖∇yχt‖H1 ≤ ‖(∇yχ)t‖L2 + ‖χ∇yt‖L2 ≤ D(χ, 1)‖t‖H1(B(y0,r2/3))

if χ is supported in B(y0, r2/3).
The second step is Gårding inequality of P1 and P2 together with the fact that they

coincide on U1. The same argument with a cut off function χ2 also works well with Gårding
inequality. Let ξj(y) := χB(y0,r2/2)(y)∇lx{[P

j
1 f(P1)](x0,y) − [P j2 f(P2)](x0,y)} then

‖ξj‖2L2(B(y0,r2/2)) =|(∇lx(P j1 f(P1)− P j2 f(P2))ξj)(x0)| (42)

≤ C‖P j1 f(P1)− P j2 f(P2)ξj‖Hn̄+l(B(x0,r2/3))

≤ C
n̄+l∑
i=0

‖P j+i1 f(P1)− P j+i2 f(P2)‖L2(B(x0,r2/2))

≤ C‖ξj‖L2(U)

n̄+l∑
i=0

∫
R−J(x,y)

|f̂ i(s)|ds

in fact for a class Schwartz function g,

‖(g(P1)− g(P2))ξj‖L2(B(x0,r2/2)) =
∥∥∥(2π)−1/2

∫
R
ĝ(s)(eisP1 − eisP2)ξjds

∥∥∥
L2(B(x0,r2/2))

=
∥∥∥(2π)−1/2

∫
R−J(x0,y0)

ĝ(s)(eisP1 − eisP2)ξjds
∥∥∥
L2(B(x0,r2/2))

since supp(eiPisξj) ⊂ B(y0, r2/2 + c|s|) then eisP1ξj and eisP2ξj remain supported in U then
eisP1ξj = eisP2ξj by the uniqueness of the solution of the Cauchy problem for the wave
equation. 2

Proposition 6.50 — The relative version of (40) is

|∇lx∇ky([Pm1 e−tP
2
1 ]− [Pm2 e−tP

2
2 ])(x,y)| ≤

{
C(k, l,m, P1)t−m/2e−Q(x,y)2/6c2t, t > T

C(k, l,m, P1)e−Q(x,y)2/6c2t,
.

for x, y ∈ U , d(x, ∂U), d(y, ∂U) > r2 and t ∈ R+.
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6.2 The cylindrical case
In this section our manifold L will be the generic leaf of the foliation i.e. start with a manifold
with bounded geometry L0 with boundary ∂L0 composed of possibly infinite components
and a product type Riemannian metric near the boundary. Glue an infinite cylinder Z0 =
∂L0 × [0,∞) with product metric and denote L := L0 ∪∂L0 Z0. Let E −→ L an Hermitian
Clifford bundle. Every notation of section 2 is keeped on with the slight abuse that Z0 is the
cylinder here and in X. Recall that E|Z0 = F ⊕ F .

Definition 6.51 — We say that a first order uniformly elliptic (formally) selfadjoint operator
T ∈ Op1(L;E) has product structure if

1. T restricts to L0 and Z0 i.e. supp(Ts) ⊂ L0(Z0) if s is supported on L0 (Z0).

2. T|L0 is a uniformly elliptic differential operator.

3. T restricts to the cylinder to have the form

T|Z0 = c(∂r)∂r + ΩB(r) =
(

0 B(r)− ∂r
B(r) + ∂(r) 0

)
for a smooth10 mapping B : R+ −→ Op1(∂L0;E) with values on the subspace of uniformly
elliptic and selfadjoint operators. Furthermore suppose that B(r) ∼= B is constant for r ≥ 2.

However this is only a model embracing our Breuer–Fredholm perturbation of the Dirac
operator in fact

(Dε,u,x)|∂x×R+ = c(∂r)∂r + Ω (θ̇u− θ̇DF∂Πε +DF∂ )︸ ︷︷ ︸
B(r)

. (43)

In this sense every result from here to the end of the section has to be thought applied to
Dε,u.
Again the spectral theorem shows that for a compactly supported section ξ0 ∈ C∞c (L;E) there
is a unique solution t 7→ ξ(t) of the Cauchy problem (35) for the wave equation associated
with T . This solution is given by the application of the wave one parameter group eitT with
the same properties written above in the standard case.

Proposition 6.52 — Cylindrical finite propagation speed. Let U = ∂L0 × (a, b)
0 < a < b and B(U, l) = {x ∈ L : d(x, U) < l}. For ξ0 ∈ C∞c (L;E) let ξ(t) = eitT ξ0 the
solution of the wave equation. If α < a the function ‖ξ(t)‖L2(B(U,α−t)) is not increasing in t. In
particular

supp(ξ0) ⊂ U Z=⇒ supp(ξ(t)) ⊂ B(U, t).

Proof— The product structure of the operator makes us possible to repeat the standard
10Some words about the smoothness condition on the mapping B. Here we shall make use only of pseudod-

ifferential operators with uniformly bounded symbols, (almost everywhere they will be smoothing operators)
hence the smoothness condition of the family is the usual one. In particular this is the smoothness of the family
of operators acting on the fibers of ∂L0 × R+ −→ R+, B(t) ∈ Op1(∂L0 × {t};E). If U is a coordinate set for
∂L0 such a family is determined by a smooth mapping p : R+ −→ S1

hom(U) in the space of polihomogeneous
symbols. Here smooth means that each derivative t 7−→ dkσ/dtk is continuous as a mapping with values in
the space of symbols (with the symbols topology, see [77])
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proof of the energy estimates and finite propagation speed that can be found in John Roe’s
book [65]. So let us consider

d

dt
‖ξ(t)‖2L2(B(U,α−t)) =

d

dt

∫
B(U,α−t)

|ξ(t)|2(z)dz

≤

∣∣∣∣∣
∫
B(U,α−t)

(
〈ξ(t), iT ξ(t)〉+ 〈iT ξ(t), ξ(t)〉

)
(z)dz

∣∣∣∣∣−
∫
∂B(U,α−t)

|ξ(t)|2(z)dz.

Since the operator T has product structure, the integration domain is a product and the
operator B(t) is selfadjoint on the base∫
B(U,α−t)

〈ξ(t), iT ξ(t)〉+〈iT ξ(t), ξ(t)〉dz =
∫
B(U,α−t)

〈ξ(t), ic(∂r)∂rξ(t)〉+〈ic(∂r)∂rξ(t), ξ(t)〉dz.

Here the fact that the function

r 7−→
∫
∂L0

(
〈iΩB(r)ξ(t)|∂L0×{r}, ξ(t)|∂L0×{r}〉+ 〈ξ(t)|∂L0×{r}, iΩB(r)ξ(t)|∂L0×{r}〉

)
(x)dx

is identically zero by the self–adjointness of B has been used. Note that ξ(t)|∂L0×{r} is in the
domain of B(r) by the Stone theorem (however it is certainly true for operators in the form
of our perturbation (43)). Finally

d

dt
‖ξ(t)‖2L2(B(U,α−t)) ≤

∣∣∣∣∣
∫
B(U,α−t)

(
〈ξ(t), ic(∂r)∂rξ(t)〉+ 〈ic(∂r)∂rξ(t), ic(∂r)∂rξ(t)〉(z)

)
dz

∣∣∣∣∣
−
∫
∂B(U,α−t)

|ξ(t)|2(z) =

∣∣∣∣∣
∫
B(U,α−t)

∂r〈ξ(t), c(∂r)ξ(t)〉(z)dz

∣∣∣∣∣−
∫
∂B(U,α−t)

|ξ(t)|2(z) ≤ 0

2

As a notation for a subset H ∈ L and t ≥ 0 put H ∗ t := B(H, t)∪ ∂L0 × (α− t, β + t) where
α := inf{r(z) : z ∈ H ∩ Z0} and β := max{r(z) : z ∈ H ∩ Z0} in other words H ∗ t is the set
of points at distance t from H in the cylindrical direction.
It is clear from (6.52) that the support of the solution of the wave problem satisfies

supp(eitT ξ) ⊂ supp(ξ) ∗ |t|.

Then the cylindrical basic Cheeger–Gromov–Taylor estimate similar to (37) is obtained in the
following way:
first note that proposition 6.52 is certainly true if the propagation speed is c, for a section ξ
supported into a ball B(x, r0) and f ∈ S(R) let IR := (−(R− r0)/c, (R− r0)/c) if R > r0 and
IR = ∅ if r ≤ R then,

‖f(P )ξ‖L2(L−B(x,r0)∗R) =
∥∥∥(2π)−1/2

∫
R
f̂(s)eisP ξds

∥∥∥
L2(L−B(x,r0)∗R)

(44)

≤
∥∥∥(2π)−1/2

∫
R−IR

f̂(s)eisP ξds
∥∥∥
L2(L)

≤ (2π)−1/2‖ξ‖L2(L)

∫
R−IR

|f̂ |ds, (45)

since supp eisP ξ ∩ (L−B ∗R) = ∅ for |t| < (R− r0)/c.



48 Paolo Antonini

Proposition 6.53 — Choose two points on the cylinder z1 = (x1, s1) and z2 = (x2, s2) with

si > r1, |s1 − s2| > 2r1, put I(z1, z2) :=
(
− |s1 − s2|+ r1

c
,
|s1 − s2| − r1

c

)
then for f ∈ S(R),

|∇lz1∇
k
z2 [f(P )](z1.z2)| ≤ C(P, l, k)

2n̄+l+k∑
j=0

∫
R−I(z1,z2)

|f̂(s)(j)|ds

with n̄ := [n/2 + 1]

Proof—
Imitate the proof of 6.48 till the estimate

|∇lx∇ky [f(P )](x,y)| ≤ C
n̄+k∑
j=0

‖ξj‖L2(L)

where ξj := χB(y,r1=2)∇lx[P jf(P )](x,•) and x, y ∈ L .
There is a subtle point to concentrate, it is when one let P j act on [f(P )](x,•). This is perfectly
granted by the smoothing properties of f(P ) in fact, let the bundle be L × R and identify
distributions with functions through the Riemannian density. The operator f(P ) extends to
and operator from compactly supported distributions to distributions (actually takes values
on smooth functions). Consider the family of Dirac masses δy(·) concentrated at y, first note
that

[f(P )](x,y) = (f(P )δy(·))(x) (46)

in fact by selfadjointness

〈f(P )δy, s〉 = 〈δy, f(P )s〉 =
∫

[f(P )](z,y)t(z)dz,

that’s to say (46). Now the Sobolev embedding theorem says that δy ∈ Hk(X) with k < −n/2
with norms uniformly (in y) bounded. Since f(P ) maps every Sobolev space into each other
Sobolev space, every section [f(P )](x,•) (and the symmetric one by selfadjointness) is in the
domain of P j .
Again

‖ξj‖2L2(L) = ‖χB(y,r1/2)∇lx[P jf(P )](x,•)‖2L2(B(y,r1/2))

= |∇lxP jf(P )ξj(x)| ≤ C‖P jf(P )ξj‖Hn̄+lB(x,r1/3)

≤ C
n̄+l∑
i=0

‖P jf(P )ξj‖L2(B(x,r1/2)). (47)

It’s time to move on the cylindrical end, so let x = (x2, s2), y = (x1, s1) with si > r1 and
|s1 − s2| > 2r1, then last term in (47) can be estimated by

n̄+l∑
i=0

‖P j+if(P )ξj‖L2(V )

with V = L−B(y, r1/2) ∗ c(|s1 − s2| − r1)/2 so we can conclude by application of (45). 2

Corollary 6.54 — With the notations of the proposition above
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1. If |s1 − s2| > 2r1, si > r1

|∇lz1∇
k
z2 [Pme−tP

2
](z1,z2)| ≤ C(k, l,m, P )e

−
(|s1 − s2| − r1)2

6t (48)

2. Let ψ1, ψ2 compactly supported with supports at r–distance d on the cylinder, then for the
operator norm and t > 0

‖ψ1P
me−tP

2
ψ2‖ ≤ C(m,ψ1, ψ2)e−d

2/6t. (49)

3. The relative version of (48) is

|∇lz1∇
k
z2 [Pme−tP

2
− Tme−tT

2
](z1,z2)| ≤ C(k, l,m, P )e{−(min{s1,s2}−r2)2/6t}. (50)

Proof— The second statement follows immediately from the first one while the third can
be proven exactly in the way proposition 86 is proven. 2

7 The eta invariant

7.1 The classical eta invariant

The eta invariant of Atiyah Patodi and Singer appears for the first time in the following
theorem that we write in the cylindrical case.

Theorem 7.54 — Let X a compact manifold with boundary Y and product type metric
on a collar Y × [0, 1], attach an infinite cylinder Y × [−∞, 0] to get the elongated manifold
X̂ := X ∪ Y × [−∞, 0]. Let D : C∞(X;E) −→ C∞(X;F ) a first order differential elliptic
operator with product structure near the boundary i.e.

D = σ(∂u +A)

where σE|Y −→ F|Y E is a bundle isomorphism, ∂u is the normal interior coordinate and A is the
boundary self–adjoint elliptic operator. Then the operator D extends to sections of the bundles
extended to X̂ and has a finite L2 index i.e the space of L2 solutions of the equations Ds = 0
and D∗s = 0 and

ind(D) = dimL2(X̂,E)(D)− dimL2(X̂,E)(D
∗) =

∫
X

α0(x)dx− η(0)/2− h∞(E)− h∞(F )
2

where

1. h∞(E) is the dimension of the space of limiting values of the extended L2 solutions. More
precisely one says that s is an L2 extended solution of the equation Ds = 0 with limiting
value s∞ if s is locally square integrable and for large u < 0

s(y, u) = g(y, u) + s∞(y), s∞(y) ∈ Ker(A).

Analog definition for h∞(F ).
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2. α0(x) is the constant term in the asymptotic expansion as t→ 0 of∑
e−tµ

′
|φ′µ(x)|2 −

∑
e−tµ

′′

|φ
′′

µ(x)|2 (51)

where µ′, φ′µ are the eigenvalues and eigenfunctions of D∗D on the double of X and µ
′′
, φ
′′

µ

are the corresponding objects for DD∗.

3. The number η(0), is called the spectral asymmetry or the eta invariant of A is obtained as
follows:

the summation on the non negative eigenvalues of A,

η(s) :=
∑
λ6=0

sign(λ)|λ|−s

converges absolutely for Re(s) >> 0 extends to a meromorphic function on the whole s–
plane with regular value at s = 0. Moreover if the asymptotic expansion at (51) has no
negative powers of t then η(s) is holomorphic for Re(s) > −1/2. That’s the case of the
Dirac operator of a Riemannian manifold.

7.2 The foliation case
The existence of the eta invariant for the leafwise Dirac operator on a closed foliated manifold
was shown by Peric [58] and Ramachandran [62]. In fact they build different invariants, Peric
works with the holonomy groupoid of the foliation and Ramachandran with the equivalence
relation but the methods are essentially the same. So consider a compact manifold Y with a
foliation and a longitudinal Dirac structure i.e. every geometrical structure needed to form
a longitudinal Dirac–type operator acting on the tangentially smooth sections of the bundle
S, D : C∞τ (Y ;S) −→ (Y ;S). In our index formula Y will be a transverse section of the
cylinder sufficiently far from the compact piece and D is the operator at infinity. Suppose
also a transverse holonomy invariant measure Λ is fixed.
Here the first issue to solve is to pass to the summation η(s) =

∑
λ sign(λ)|λ|−s which deals

with the discrete spectrum to a continuous spectrum and family version. The link is offered
by the definition of Euler gamma function

sign(λ)|λ|−s =
1

Γ( s+1
2 )

∫ ∞
0

t
s−1

2 λe−tλ
2
dt.

Each bounded spectral function of D belongs to the Von Neumann algebra of the foliation
arising from the regular representation of the equivalence relation on the Borel field of L2

spaces of sections of S. Replace the summation by integration w.r.t. the spectral measure of
D (definition 4.30) and (formally) change the integration to define the eta function of D as

ηΛ(D; s) :=
∫ ∞
−∞

sign(λ)|λ|−sdµD(λ) =
1

Γ( s+1
2 )

∫ ∞
0

t
s−1

2 trΛ(De−tD
2
)dt. (52)

We shall use also the notation

ηΛ(D; s)k :=
∫ ∞
k

t
s−1

2 trΛ(De−tD
2
)dt, ηΛ(D; s)k :=

∫ k

0

t
s−1

2 trΛ(De−tD
2
)dt

Theorem 7.54 — (Ramachandran) The eta function (52) is a well defined meromorphic
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function for Re(s) ≤ 0 with eventually simple poles at (dimF − k)/2, k = 0, 1, 2, ...., ηΛ(D; s) is
regular at 0 and its value ηΛ(D; 0) is called the foliated eta invariant of D.

Proof— Here a trace of the proof.

First step. For every s ∈ C with Re(s) ≤ 0 the integral∫ ∞
1

t
s−1

2 trΛ(De−tD
2
)dt (53)

is convergent then in some sense the most important piece of the eta function is the
integral

∫ 1

0
.

This is reminescent of the remark in the paper of Atiyah Patodi and Singer [4] where
they define the function K(t) to be the integral on the cylinder of the difference of the
heat kernels e−t∆1 − e−t∆2 of D and D∗,

K(t) =
∫ ∞

0

∫
∂Y

K(t, y, u)dydu = −
∑
λ

sign(λ)/2 erf(|λ|
√
t) ∼t→0

∑
k≥−n

akt
k/2

where ∂Y is the boundary manifold of dimension n. The remark they do is that the
asymptotic expansion is the same replacing the integral with an integral on

∫
[0,δ]

.

The convergence of (53) is proven by simple estimates and the use of the spectral
measure. In particular here, by compactness the spectral measure µΛ,D is tempered i.e.∫

1
(1 + |x|l)

dµΛ,D <∞

for some positive l. In fact this measure corresponds to a positive functional [62]

I : S(R) −→ R, I(f) := trΛ(f(D)).

The same is obviously true for the square D2 = |D|2. Here the estimate. Start with
|t(s−1)/2| ≤ t(Re(s)-1)/2 ≤ t−1/2, 0 ≤ t ≤ ∞ then∫ ∞

1

|t(s−1)/2 trΛ(De−tD
2
)dt| ≤

∫ ∞
1

|t−1/2| trΛ(De−tD
2
)dt|

≤
∫ ∞

1

t(s−1)/2 trΛ(|D|e−tD
2
)dt.

The last integral is equal to∫ ∞
1

t−1/2dt

∫ ∞
0

λ1/2e−tλdµD2(λ)

hence∫ ∞
0

λ1/2dµD2(λ)
∫ ∞

1

t−1/2e−tλdt =
∫ ∞

0

λ1/2e−λdµD2(λ)
∫ ∞

1

t−1/2e−λ(t−1)dt (54)

=
∫ ∞

0

e−λdµD2(λ)
∫ ∞

0

(u+ λ)−1/2e−udu

≤
∫ ∞

0

e−λdµD2(λ)
∫ ∞

0

u−1/2e−udu

= π1/2

∫ ∞
0

e−λdµD2(λ) = π1/2 trΛ(e−D
2
) <∞
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Second step. The examination of the finite piece∫ 1

0

t
s−1

2 trΛ(De−tD
2
)dt (55)

is done using the expansion of the Schwartz kernel of the leafwise operatorDe−tD
2
in fact

one can prove that there exists a family of tangentially smooth and locally computable
functions {Ψm}m≥0

11 so that the kernel Kt(x, y, n) (n the transverse parameter) of the
leafwise bounded operator De−tD

2
has the asymptotic expansion

Kt(x, x, n) ∼
∑
m≥0

t(m−dimF−1)/2Ψm(x, n). (56)

Moreover Ψm = 0 for m even. The proof is an adaptation of the classical situation, for
example can be found in [66] and [24]. Now, thanks to the expansion (56), since the
operator De−tD

2
is Λ trace class and the trace is the integral of the Schwartz kernel

against the transverse measure we get the corresponding expansion for the trace

1
Γ( s+1

2 )

∫ 1

0

t
s−1

2 trΛ(De−tD
2
)dt ∼

∑
m≥0

2
s+m− dimF

∫
Y

Ψmdλ (57)

where
∫

Ψmdλ = Λ(Ψmdg) i.e. is the effect of the integration of the tangential measures
x 7−→ Ψm|lx × dg|lx . From (57) we see that the eta function has a meromorphic contin-
uation to the whole plane with simple (at most) poles at (dimF − k)/2, k = 0, 1, 2, ....

Third step, regularity at the origin.

If P = dimF is even we have said that the coefficients Ψm of the development (56) are
zero for m even, then the eta function is regular at 0. If p is odd the regularity at zero
follows from a very deep result of Bismut and Fried [12]. In fact they showed that the
ordinary Dirac operator satisfies a remarkable cancellation property,

tr(De−tD
2
) = O(t1/2).

Since the Λ–trace can be, as pointed out by Connes ([24]), locally approximated by the
regular trace their result applies to our setting to give

Kt(x, x, n) ∼
∑

m≥p+2

t(m−p−1)/2Ψ(x, n)︸ ︷︷ ︸
almost everywhere

,

and the regularity at the origin follows immediately.

2

7.3 Eta invariant for perturbations of the Dirac operator

Let Let us consider slightly more general operators

1. P = D + K where K ∈ Op-∞ is leafwise uniformly smoothing obtained by functional
calculus K = f(D) where f is bounded Borel function supported in (−a, a).

11in the case of the holonomy groupoid the Ψm are locally bounded i.e. bounded on every set in the form
of r−1K for K compact in Y
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Start with the computation

Qe−tQ
2
−De−tD

2
= De−t(D+K)2

+Ke−t(D+K)2
−De−tD

2
(58)

= D

∫ 1

0

∂se
−s(D+K)2−(t−s)D2

dt+Ke−t(D+K)2

= Ke−t(D+K)2
−D

∫ 1

0

e−s(D+K)2
(KD +DK +K2)e(t−s)D2

ds.

The family (58) converges to 0 as t→ 0 in the Frechet topology of kernels in Op−∞ with
uniform transverse control i.e. for kernels K(x, y, n) (n is the transverse parameter) one
uses foliated charts to define seminorms that involve derivatives w.r.t. x, y. From (58)
one gets the development

trΛ(Qe−tQ
2
) ∼t→0

∑
m=0

t
m−dimF−1

2

∫
Y

ΨjdΛ + trΛ(K) + g(t)

where g ∈ C[0,∞) with g(0) = 0. Then an asymptotic development for ηΛ(Q)(0)1 as
(57) follows. For the non finite integral ηΛ(Q, 0)1 no problem in carrying on the estimate
(54).

2. The smooth family u 7−→ Qu := D+K+u. The function trΛ(Que−tQ
2
u) is smooth then

∂u trΛ(Que−tQ
2
u) = trΛ(Q

′

ue
−tQ2

u − tQu(Q
′

uQu +QuQ
′

u)e−tQ
2
u) (59)

= (1 + 2t∂t) trΛ(Q
′

ue
−tQ2

u)

in fact Q
′

u = I . By integration

∂uηΛ(Qu, s)1 = ∂u

∫ 1

0

t(s−1)/2

Γ( s+1
2 )

trΛ(Que−tQ
2
u)dt =

∫ 1

0

t(s−1)/2

Γ( s+1
2 )

(1 + 2t∂t) trΛ(Q
′

ue
−tQ2

u)dt

=
∫ 1

0

t(s−1)/2

Γ( s+1
2 )

trΛ(Q
′

ue
−Q2

u)− s

Γ( s+1
2 )

∫ 1

0

t(s−1)/2 trΛ(Q
′

ue
−tQ2

u)dt. (60)

Now, from Q
′

u = I proceed as before using the asymptotic development of the heat
kernel for D + u 12

trΛ(Q
′

ue
−tQ2

u = trΛ(Q
′

ue
−tQ2

u ∼
∑
m≥0

am(D + u)t(m−dimF)/2 + g(t)

where g ∈ C[0,∞), g(0) = 0. We see that the integral in (60) admits a meromorphic
expansion around zero in C with zero as a pole of almost first order. Then the derivative
∂uηΛ(Qu, s)1 is holomorphic around zero. The identity

∂u Res|s=0 ηΛ(Qu, s)1 = Res|s=0 ∂uηΛ(Qu, s)1 = 0

says that Res|s=0 ηΛ(Qu, s)1 is constant in u then the function ηΛ(Qu, s)1 is holomorphic
at zero since ηΛ(Q0, s)1 is holomorphic in 0.

3. Families in the form Qu = D + u+ ΠD for a spectral projection Π = χ(−a,a)(D).

12(D + u)2 is a generalized Laplacian
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Proposition 7.55 — The eta invariant for Qu exists and satisfies

ηΛ(Qu) = LIMδ→0

∫ 1

δ

t−1/2

γ(1/2)
trΛ(Que−tQ

2
u)dt+

∫ ∞
1

t−1/2

γ(1/2)
trΛ(Que−tQ

2
u)dt

where LIM is the constant term in the asimptotic development in powers of δ as t → 0.
Moreover for every u ∈ R and a > 0,

a. ηΛ(Qu)− ηΛ(Q0) = sign(u) trΛ(Π)

b. ηΛ(Q0) = 1/2ηΛ(Qu) + 1/2ηΛ(Q−u)

c. |ηΛ(D)− ηΛ(Q0)| = |ηΛ(ΠD)| ≤ µΛ,D((−a, a)).

Proof— The first statement can be proved as above. a. using the spectral measure we
have to compute the difference∫ ∞

0

t−1/2

∫
R

(x+ u− χx)e−t(x+u−χx)2
dµΛ,D(x)

dt

Γ(1/2)

−
∫ ∞

0

t−1/2

∫
R

(x− χx)e−t(x−χx)2
dµΛ,D(x)

dt

Γ(1/2)

where χ = χ(−a,a)(x). Split the integral on R into two pieces, |x| > a and |x| ≤ a.
First case |x| > a changing the integration order the first integral is

Γ(1/2)−1

∫
|x|>a

∫ ∞
0

(x+ u)t−1/2e−t(x+u)2
dtdµΛ,D(x)

and performing the substitution σ := t(x + u)2 in the second we see that the difference is
zero.
Second case |x| < a, the second integral is zero, the first∫ ∞

0

t−1/2

∫ a

−a
ue−tu

2
dµΛ,D(x)

dt

Γ(1/2)
=
∫ ∞

0

t−1/2ue−tu
2 dt

Γ(1/2)
trΛ(Π)

=
∫ ∞

0

u|u|σ−1/2e−σ
dσ

|u|2︸ ︷︷ ︸
tu2=σ

trΛ(Π)
Γ(1/2)

= sign(u)
trΛ(Π)
Γ(1/2)

∫ ∞
0

σ−1/2e−σ
2
dσ (61)

= sign(u) trΛ(Π).

b. and c. follows easily from a. 2

8 The index formula
First we introduce the supertrace notation. Since the bundle E = E+ ⊕ E− is Z2–graded,
there is a canonical Random operator τ obtained by passing to the Λ–class of the family of
involutions τx : L2(Lx;E) −→ L2(Lx;E) represented w.r.t. the splitting by matrices

τx :=
(

IdL2(Lx;E+) 0
0 − IdL2(Lx;E−)

)
.
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Definition 8.56 — The Λ–supertrace of B ∈ EndΛ(E) is strΛ(B) := trΛ(τB).

Now according to proposition 5.38 for 0 < |u| < ε the perturbed operator Dε,u is Λ–Breuer–
Fredholm. Consider the heat operator e−tD

2
ε,u,x on the leaf Lx. This is a uniformly smoothing

operator with a Schwartz kernel (remember that metric trivializes densities and [•] means
Schwartz kernel)

[e−tD
2
ε,u,x ] ∈ UC∞(Lx × Lx; End(E)).

It is a well know fact the convergence for t −→ ∞ in the Frechet space of UC∞ sections of
the heat kernel to the kernel of the projection on the L2–Kernel,

lim
t→∞

[e−tD
2
ε,u,x ] = [χ{0}(Dε,u,x)].

This is explained in proposition A.16, page 89 and is a consequence of continuity of the
functional calculus RB(R) −→ UC∞(End(E)) applied to the sequence of functions e−tλ

2 −→
χ{0} in RB(R). Choose cut–off functions φk ∈ C∞c (X) such that φk|Xk = 1, φk|Zk+1

= 0. The
measurable family of bounded operators {φke−tD

2
ε,u,xφk}x∈X gives an intertwining operator

φke
−tD2

ε,uφk ∈ EndR(L2(E)) hence a random operator φke−tD
2
ε,uφk ∈ EndΛ(L2(E)).

Lemma 8.57 — The random operator φke−tD
2
ε,uφk ∈ EndΛ(L2(E)) is Λ–trace class. The

following formula (iterated limit) holds true

indΛ(D+
ε,u) = strΛ(χ{0}(Dε,u)) = lim

k→∞
lim
t→∞

strΛ(φke−tD
2
ε,uφk). (62)

Proof— For the first statement there’s nothing to proof, it is essentially the closed foliated
manifold case. The local traces define a tangential measure that are C∞ in the leaves direction
while Borel and uniformely bounded (by the uniform ellipticity of the operator) and we are
integrating against the transverse measure on a compact set. More precisely we are evaluating
the mass of a compact set through the measure Λh where h is the longitudinal measure that
on the leaf Lx is given by

A 7−→
∫
A

strEnd(E)[e−tD
2
ε,u ]diagdg|Lx ,

with strEnd(E) the pointwise supertrace defined on the space of sections of End(E) → X by
(strEnd(E) γ)(x) := trend(Ex)(τ(x)γ(x)).
The limit formula (62) is nothing that the Lebesgue dominated convergence theorem applied
two times, first strΛ(χ{0}(Dε,u)) = limk→∞ strΛ(φkχ{0}(Dε,u)φk) but for fixed k one finds
strΛ(φkχ{0}(Dε,u))φk) = limt→∞ strΛ(φke−tD

2
ε,uφk). The possibility to apply the dominated

convergence theorem is given again by the integration process in fact as written above every
tangential measure has smooth density w.r.t to the Riemannian metric and convergence is
within the Frechet topology of C∞ functions.

2

Now, Duhamel formula d/dt strΛ(φke−tD
2
ε,uφk) = − strΛ(φkD2

ε,ue
−tD2

ε,uφk) integrated be-
tween s and ∞ leads to the identity

lim
t→∞

strΛ(φke−tD
2
ε,uφk) = strΛ(φke−sD

2
ε,uφk)−

∫ ∞
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt.
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Note that the right–hand side is independent from s > 0. Then

indΛ(D+
ε,u) = lim

k→∞

[
strΛ(φke−sD

2
ε,uφk)−

∫ ∞
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt
]
. (63)

Split the integral into∫ ∞
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt =
∫ √k
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt+
∫ ∞
√
k

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt.

For future ease of reading make the following definitions

α0(k, s) = strΛ(φke−sD
2
ε,uφk), β0(k, s) =

∫∞
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt

β01(k, s) =
∫√k
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt, β02(k, s) =
∫∞√

k
strΛ(φkD2

ε,ue
−tD2

ε,uφk)dt

Then β0(k, s) = β01(k, s) + β02(k, s) and

indΛ(D+
ε,u) = lim

k→∞
[α0(k, s)− β0(k, s)] = [α0(k, s)− β01(k, s)− β02(k, s)]. (64)

Let us start with β01.

Lemma 8.58 — Let ηΛ(DF∂ε,u) be the Ramachandran eta–invariant for the perturbed operator
DF∂ε,u on the foliation at the infinity. Then the following limit formula is true

lim
k→∞

LIMs→0 β01(k, s) = lim
k→∞

LIMs→0

∫ √k
s

strΛ(φkD2
ε,ue
−tD2

ε,uφk)ds,= 1/2ηΛ(DF∂ε,u)

where as usual LIMs→0 g(s) is the constant term in the expansion of g(s) in powers of s near
zero.

Proof— The integrand can be written as follows

strΛ(φkD2
ε,ue
−tD2

ε,uφk) =1/2 strΛ(φk[Dε,u, Dε,ue
−tD2

ε,u ]φk) (65)

=1/2 strΛ([Dε,u, φkDε,ue
−tD2

ε,uφk]− [Dε,u, φ
2
k]Dε,ue

−tD2
ε,u) (66)

=1/2 strΛ(−[Dε,u, φ
2
k]Dε,ue

−tD2
ε,u)

= −1/2 strΛ(c(∂r)∂r(φ2
k)Dε,ue

−tD2
ε,u).

In the next we shall use the notation [a, b] := ab− (−1)|a|·|b|ba for the Lie–superbracket13 on
the Lie–superalgebra of C–linear endomorphisms of L2(X,E+⊕E−) while, when the standard
bracket is needed we write [a, b]◦ := ab− ba. notice that

[α, ab] = [α, a]b+ (−1)|α|·|a|a[α, b].

Remember the definition of Dε,u, in the cylinder it can be written

Dε,u = D + θ̇Ω(u−DF∂ε,u) = c(∂r)∂r +Q

13everything we say about super–algebras can be found in [9]
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with the Clifford multiplication c(∂r) =
(

0 −1
1 0

)
and Q is R+–invariant in fact acts on

the transverse section. The next identities are also useful

Dε,u =
(

0 D−ε,u
D+
ε,u 0

)
, e−tD

2
ε,u =

(
e−tD

−
ε,uD

+
ε,u 0

0 e−tD
+
ε,uD

−
ε,u

)
,

D−ε,ue
−tD+

ε,uD
−
ε,u = e−tD

−
ε,uD

+
ε,uD−ε,u, D+

ε,ue
−tD−ε,uD

+
ε,u = e−tD

+
ε,uD

−
ε,uD+

ε,u.

These are nothing but a rephrasing of the identity

Dε,ue
−tD2

ε,u = e−tD
2
ε,uDε,u

granted by the spectral theorem. Now it’s time to use the Cheeger–Gromov–Taylor relative
estimates. Consider the leafwise operator

Sε,u := c(∂r)∂r + Ω(u−DF∂ε,u) (67)

on the infinite foliated cylinder (in both directions) Y = ∂X0 × R with the product foliation
F∂ × R. Choose some point z0 = (x0, r) on the cylinder. Estimate (50) says that we can
compare the two kernels at the diagonal leaf by leaf for large r and this estimate is uniform
on the leaves,

‖[Dε,u,z0e
−tD2

ε,u,x0 ]− [Sε,u,z0e
−tS2

ε,u,z0 ]‖(z,z) ≤ Ce−(r−r2)2/(6t) (68)

for z = (x, r) ∈ Lz0 . From (68), since the derivatives of φk are supported on the cylindrical
portion Zk+1

k = ∂X0 × [k, k + 1],

∫ √k
s

| strΛ(c(∂r)∂rφ2
kDε,ue

−tD2
ε,u)− strΛ(c(∂r)∂rφ2

kSε,ue
−tS2

ε,u)|dt =
∫ √k
s

∫
Zk+1
k

Θ(z, t)dΛgdt

where Λg is the coupling of Λ with the tangential Riemannian measure and Θ(z, r) is the
function

Θ(z, r) := ‖c(∂r)∂rφ2
k[Dε,u,ze

−tD2
ε,u,z − Sε,u,ze−tS

2
ε,u,z ]‖(z,z).

Let Tk be a transversal of the foliation Fk induced on the slice {r = k} then Tk is also
transversal for F (since the boundary foliation has the same codimension of F). The trans-
verse measure Λ defines also a transverse measure on the boundary foliation. Then the
foliation F|Zk+1

k
is fibering on Tk as in the diagram ∂F × [k, k + 1] −→ Tk. Use this fi-

bration to disintegrate the measure Λg. This is splitted into dΛ∂ × dr where Λ∂ is the
measure obtained applying the integration process of Λ (restricted to Fk ) to the g|∂ . In
local coordinates (r, x1, ..., x2p−1) × (x2p, ..., xn) the transversal is decomposed into pieces
Tk = {(k, x0

1, ..., x
0
2p−1)} × {(x2p, ..., xn)} and we are taking integrals∫

Tk×{x1,...,x2p−1}

∫
[k,k+1]

Θ(r, x1, ..., x2p−1, x2p, ..., xn)dr dx1 · · · dx2p−1dΛ(x2p, .., xn)︸ ︷︷ ︸
this is dΛ∂

(69)

=:
∫
Fk

∫
[k,k+1]

Θ(x, r)dΛ∂dr.

Equation (69) can be taken as a definition of a notation that will be used next. Notice that∫
Fk contains a slight abuse of notation, in fact to follow rigorously the integration receipt one
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should write
∫
∂X0×{k}. We prefer the first to stress the fact that we are splitting w.r.t the

foliation induced on the transversal. With this notation in mind,

∫ √k
s

| strΛ(c(∂r)∂rφ2
kDε,ue

−tD2
ε,u)− strΛ(c(∂r)∂rφ2

kSε,ue
−tS2

ε,u)|dt

=
∫ √k
s

∫
Fz

∫
[k,k+1]

‖c(∂r)∂rφ2
k[Dε,ue

−tD2
ε,u − Sε,ue−tS

2
ε,u ]‖((x,r),(x,r))drdΛ∂dt (70)

≤ C
∫ √k
s

∫ k+1

k

e−(r−3)2/6tdrdt ≤ C
∫ √k
s

e−(k−3)2/6tdt

≤ C
∫ 1/s

1/
√
k

y−2e−(k−3)2y/6dy ≤ C(e−k
3/2/c1 + e−c2/s)

for sufficiently small14 s and large k. This estimate says that

lim
k→+∞

LIMs→0 β01(k, s) = lim
k→+∞

LIMs→0

∫ √k
s

strΛ(c(∂r)∂rφ2
kSε,ue

−tS2
ε,u)dt.

Now the second integral (on the cylinder) is explicitly computable in fact the Schwartz kernel
of the operator Sε,u,z0e

−tS2
ε,u,z0 on the diagonal is easily checked to be

[
Sε,u,z0e

−tS2
ε,u,z0

]
(z,z)

=
(
DF∂ε,u,x0

Ω + c(∂r)∂r
)([

e−t(D
F∂
ε,u,x0Ω)2]

(x,y)

e−(r−s)2/(4t)

√
4πt

)∣∣∣∣∣
y=x, s=r

=
1√
4πt

Ω
[
DF∂ε,u,x0

e−tD
F∂
ε,u,x0

]
(x,x)

, z = (x, r)

i.e. it does not depend on the cylindrical coordinate r. Now the pointwise supertrace on
End(E) is related to the trace on the positive boundary eigenbundle F via the identity (see
the appendix on Clifford algebras)

strE(c(∂r)Ω•) = −2 trF (•),

then∫ √k
s

strΛ(c(∂r)∂rφ2
kSε,ue

−tS2
ε,u)dt

=− 2
∫ √k
s

∫ k+1

k

∂rφ
2
kdr

∫
F0

1√
4πt

trF [DF∂ε,u,xe
−t(DF∂ε,u,x)2

](x,x) · dΛ∂dt

=2
∫ √k
s

∫
F0

1√
4πt

trF [DF∂ε,u,xe
−t(DF∂ε,u,x)2

](x,x) · dΛ∂dt

=
∫ √k
s

∫
F0

1√
πt

trF [DF∂ε,u,xe
−t(DF∂ε,u,x)2

](x,x) · dΛ∂dt,

14 yse−ay
2 ≤ (

s

2ae
)s/2 for s, u, y, a > 0
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with the same argument on the splitting of measures as above. Finally it is clear from our
discussion on the η–invariant (exactly proposition 7.55)

lim
k→∞

LIMs→0 β01(k, s)

= lim
k→∞

LIMs→0

∫ √k
s

∫
F0

1√
πt

trF [DF∂ε,u,xe
−t(DF∂ε,u,x)2

](x,x) · dΛ∂dt = 1/2ηΛ(DF∂ε,u).

2

Lemma 8.59 — Since Dε,u is Λ–Breuer–Fredholm for 0 < |u| < ε then

lim
k→∞

β02(k, s) = lim
k→∞

∫ ∞
√
k

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt = 0.

Proof— From the very definition of the Λ–essential spectrum ( see also lemma 4.29) there
exists some σ = σ(u) > 0 such that the projection Πσ = χ[−σ,σ](Dε,u) has finite Λ–trace.
Then

|β02(k, s)| =
∣∣∣ ∫ ∞√

k

strΛ(φkD2
ε,ue
−tD2

ε,uφk)dt
∣∣∣

≤
∫ ∞
√
k

| strΛ[φkDε,ue
−D2

ε,u/2(1−Πσ)e−(t−1)D2
ε,ue−D

2
ε,u/2Dε,uφk]|dt

+
∫ ∞
√
k

| strΛ[e−tD
2
ε,u/2ΠσDε,uφ

2
kDε,uΠσe

−tD2
ε,u/2]|dt

≤
∫ ∞
√
k

e−(t−1)σ| strΛ(φkD2
ε,ue
−D2

ε,uφk)|dt︸ ︷︷ ︸
β021(k,s)

+
∫ ∞
√
k

| strΛ(D2
ε,ue
−tD2

ε,uΠσ)|dt︸ ︷︷ ︸
β022(k,s)

.

Now the Schwartz kernel of (D2
ε,ue
−D2

ε,u)x is uniformely bounded in x and varies in a Borel
fashion transversally. When forming the Λ–supertrace we are integrating a longitudinal mea-
sure with C∞–density w.r.t. the longitudinal measure given by the Riemannian density. Let
as usual Λg the measure given by the integration of the Riemannian longitudinal measure
with the transverse measure Λ. If A is a uniform bound on the leafwise Schwartz kernels of
(D2

ε,ue
−D2

ε,u), and T0 is a complete transversal contained in the normal section of the cylinder
(the same in lemma 8.58), we can extimate

β021(k, s) ≤
∫ ∞
√
k

A(Λg(X0) + Λ(T′)k)e−(t−1)σdt −→k→∞ 0.

For the second addendum,

β022(k, s) =
∫ ∞
√
k

| strΛ(D2
ε,ue
−tD2

ε,uΠσ)|dt ≤
∫ ∞
√
k

∫ σ

−σ
x2e−tx

2
dµΛ,Dε,u(x)dt

=
∫ σ

−σ
e−
√
kx2
∫ ∞

0

x2e−tx
2
dtdµΛ,Dε,u(x)

≤ C
∫ σ

−σ
e−
√
kx2

dµΛ,Dε,u(x) ≤ CµΛ,Dε,u(x)([−σ, σ]) −→k→∞ 0
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since the Λ–essential spectrum of Dε,u has a gap around zero and the normality property of
the trace. 2

It is time to update equation (64),

indΛ(D+
ε,u) = lim

k→∞
[α0(k, s)− β0(k, s)] = lim

k→∞
[α0(k, s)− β01(k, s)− β02(k, s)]

= lim
k→∞

LIMs→0 α0(k, s)− 1/2ηΛ(DF∂ε,u). (71)

Lemma 8.60 — There exists a function g(u) with limu→0 g(u) = 0 such that for 0 < ε < u,

lim
k→∞

LIMs→0 α0(k, s) = lim
k→∞

LIMs→0 strΛ(φke−sD
2
ε,uφk) = 〈Â(X) Ch(E/S), CΛ〉+ g(u).

Here the leafwise characteristic form Â(X) Ch(E/S) is supported on X0, in particular it belongs
to the domain of the Ruelle–Sullivan current CΛ associated to the transverse measure Λ.

Proof— This is the investigation of the behavior of the local supertrace of the family of
the leafwise heat kernels

strE [e−sD
2
ε,u ]| diag

on the leafwise diagonals. We can do it dividing into three separate cases

1. For z ∈ X0 everything goes as in the classical computation by Atiyah Bott and Patodi
[2],

LIMs→0 strE [e−sD
2
ε,u,z ](x,x)dgz = Â(X) Ch(E/S)(x),

where dgz is the Riemannian density on the leaf Lz.

2. In the middle, z ∈ ∂X0 × [0, 4] there’s the cause of the presence of the defect function
g(u), more precisely we show that the asymptotic development of the local supertrace
is the same for the comparison operator S0,u defined above

strE([e−sD
2
ε,u,z ])(z,z) '

∑
j∈N

aj(S0,u)(z)s
(j−dimF)/2

with coefficients aj(S0,u) smoothly depending on u satisfying aj(S0,u) = 0 for j ≤
dimF/2

3. Away from the base of the cylinder z = (y, r) ∈ Z r > 4 we find

[e−D
2
ε,u,z ](y,r) = 0.

Below the proves of these facts.

1. We can consider the doubled manifold 2X0 so that we can apply the relative estimate of
type Cheeger–Gromov–Taylor in the non–cylindrical case (the perturbation starts from
the cylinder) i.e. proposition 6.50 shows that the two Schwartz kernels of the Dirac
operator and the perturbed operator Dε,u have the same development as t→ 0,

‖[e−tD
2
ε,u − e−tD

2
](x,x)‖ ≤ Ke−α/(6t).

And the local computation of Atiyah Bott and Patodi, or the Getzler rescaling ([50],[30])
can be performed as in the classical situation.
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2. We are going to use an argument of comparison with the leafwise operator

Sε,u := c(∂r)∂r + Ω(DF∂ + θ̇(u−ΠεD
F∂ ))

on the infinite cylinder ∂X0×R equipped with the product foliation F∂×R. Notice that,
due to the presence of θ̇ this is a slightly different form of the operator (67). Choose
some function ψ1 supported in ∂X0 × [−1, 5] and ψ1|∂X0×[0,4] = 1. The first fact we
show is

lim
s→0

strΛ(ψ1(e−sS
2
ε,u − e−sS

2
0,u)ψ1) = 0.

Now, Sε,u = S0,u − ΩΠεD
F∂ = c(∂r)∂r +H with H = ΩDF∂ + Ωθ̇u hence

S2
ε,u − S2

0,u =− [S0,u,Ωθ̇ΠεD
F∂ ] + (Ωθ̇ΠεD

F∂ )2 (72)

=− [c(∂r)∂r,Ωθ̇ΠεD
F∂ ]− [H,Ωθ̇ΠεD

F∂ ] + (Ωθ̇ΠεD
F∂ )2

=− Φθ̇ΠεD
F∂ − 2(DF∂ + θ̇u)(θ̇ΠεD

F∂ ) + (Ωθ̇ΠεD
F∂ )2.

Apply the Duhamel formula

| strΛ(ψ1(S2
ε,u − S2

0,u)ψ1|

=
∣∣ strΛ(ψ1e

−δS2
0,ue−(s−δ)S2

ε,uψ1)(δ=s) − strΛ(ψ1e
−δS2

0,ue−(s−δ)S2
ε,uψ1)(δ=0)

∣∣
=
∣∣∣ ∫ s

0

strΛ(ψ2
1Πε)e−δS

2
0,u(S2

ε,u − S2
0,u)Πεe

−(s−δ)S2
ε,udδ

∣∣∣.
Again from the Cheeger–Gromov relative estimates (49)

| trΛ(ψ1e
−δS2

uΠεψ1)| ≤ Cδ−1/2

‖(S2
ε,u − S2

0,u)Πεe
−(s−δ)S2

ε,u‖ ≤ C(s− δ)−1/2

with the constants independent from |u| < ε. Then the integral of the supertrace (72)
can be estimated by the function of s, h(s) = C

∫ s
0

(s − δ)−1/2δ−1/2dδ −→s→0 0. .
To see this first split the integral into

∫ s/2
0

+
∫ s
s/2

to prove finiteness then use the
absolutely continuity of the integral for convergence to zero. Now from the limit
lims→0 strΛ(ψ1(e−sS

2
ε,u − e−sS

2
0,u)ψ1) = 0 and the comparison argument we get that

the asymptotic expansion for s→ 0 of strΛ(φke−sD
2
ε,uφk) is the same of the comparison

operator
S0,u = c(∂r)∂r + ΩDF∂︸ ︷︷ ︸

D

+ ϑ̇uΩ︸ ︷︷ ︸
bounded perturbation

on the infinite cylinder. This is a very simple u–family of generalized laplacians (see [9]
Chapter 2.7) and the Duhamel formula

e−tS
2
0,u − e−tS

2
0,0 = −

∫ u

0

tϑ̇Ωe−tS0,vdvds

shows what is written in the statement i.e.

strE([e−sD
2
ε,u,z ])(z,z) '

∑
j∈N

aj(S0,u)(z)s
(j−dimF)/2

where the coefficients aj(S0,u) depend smoothly on u and satisfy aj(S0,u) = 0 for j ≤
dimF/2 since S0,0 is the Cylindrical Dirac operator. One can take for the definition of
g,

g(u) :=
dimF/2∑
j=0

∫
∂X0×[0,4]

aj(S0,u)(z)s
(j−dimF)/2dΛg.
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3. This is done again by comparison with Sε,u consider the r–depending family of tangential
tangential measures (y, r) ∈ ∂X0 × [a, b] 7−→ strE e−sD

2
ε,u,(x,r)dxdr where x ∈ L(y,r),

once coupled with dΛ gives a measure on X µ := strE e−sD
2
ε,u,(x,r)dxdr · dΛ. The Fubini

theorem can certainly used during the integration process to find out that the mass
of µ can be computed integrating first the r–depending tangential measures y 7−→
strE e−sD

2
ε,u,(y,r)dy against Λ on the foliation at infinity (∂X0,F∂) then the resulting

function of r on [a, b],

LIMs→0

∫
∂X0×[a,b]

dµ = LIMs→0

∫ b

a

∫
∂X0

strE([e−sS
2
ε,u ])(y,r),(y,r))dy · dΛdx

= LIMs→0
b− a√

4πs
strΛ(e−s(D

F∂
ε,u)2

) = 0

in fact the boundary operator DF∂ε,u is invertible and the well–known Mc–Kean–Singer
formula for foliations on compact ambient manifolds (formula (7.39) in [53]) says that
indΛ(DF∂ε,u) = strΛ e

−s(DF∂ε,u)2
independently from s.

2

Finally (71) becomes

indΛ(D+
ε,u) = 〈Â(X) Ch(E/S), CΛ〉 − 1/2ηΛ(DF∂ε,u) + g(u). (73)

Theorem 8.60 — The Dirac operator has finite dimensional L2 − Λ–index and the following
formula holds

indL2,Λ(D+) = 〈Â(X) Ch(E/S), [CΛ]〉+ 1/2[ηΛ(DF∂ )− h+
Λ + h−Λ ] (74)

where

h±Λ := dimΛ(Ext(D±)− dimΛ(KerL2(D±) (75)

with the dimension of the space of extended solutions as defined in the definition ?? after the
remark i.e.

dimΛ Ext(D±) := dimΛ Ext(D±)
euθL2

independently from small u > 0.

Proof— Start from

indL2,Λ(D+
ε ) = lim

u↓0
1/2{indΛ(D+

ε,u) + indΛ(D+
ε,−u) + h−Λ,ε − h

+
Λ,ε}, (76)

here h±Λ,ε = dimΛ(Ext(D±ε ))− dimΛ(KerL2(D±ε )) for now proposition 5.41 says that

Ext(D±ε ) = KerL2(D±ε,±) = KereuθL2(D±ε ).
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Use the identity indΛ(D+
ε,u) = 〈 ˆA(X) Ch(E/S), [CΛ]〉+ 1/2ηΛ(DF∂ε,u) + g(u) into (76),

indL2,Λ(D+
ε ) = lim

u↓0
1/2
{

2〈Â(X) Ch(E/S), [CΛ]〉+ h−Λ,ε − h
+
Λ,ε + g(u) + g(−u) (77)

+1/2ηΛ(DF∂ε,u) + 1/2ηΛ(DF∂ε,−u)︸ ︷︷ ︸
ηΛ(D

F∂
ε ) by proposition 7.55

}

=〈Â(X) Ch(E/S), [CΛ]〉+
h−Λ,ε − h

+
Λ,ε

2
+
ηΛ(DF∂ε )

2
.

It remains to pass to the ε–limit remembering that:

• limε↓0 indL2,Λ(D+
ε ) = indL2,Λ(D+) (Proposition 5.44),

• limε↓0 h
−
Λ,ε − h

+
Λ,ε = h− − h+ (again proposition 5.44)

• limε↓0 ηΛ(DF∂ε ) = ηΛ(DF∂ ) (proposition 7.55).

2

9 Comparison with Ramachandran index formula
The Ramachandran index formula [62] stands into index theory for foliations exactly as the
Atiyah–Patodi–Singer formula in the boundary value problem form stays classically. Our
formula is in some sense the cylindrical point of view of this formula. In this section we prove
that the two formulas are compatible and we do it exactly in the way it is done for the single
leaf case by APS. First we recall the Ramachandran Theorem

9.1 The Ramachandran index
Since we have chosen an opposite orientation for the boundary foliation the Ramachandran
index formula here written differs from the original in [62] exactly for its sign (as in section
3 for the APS formula). So let us consider the Dirac operator builded in section 2 but acting
only on the foliation restricted to the compact manifold with boundary X0. To be precise with
notation let us call F0 the foliation restricted to X0 with leaves {L0

x}x, equivalence relation
R0 and DF0 the Dirac operator acting on the field of Hilbert spaces {L2(L0

x;E)}x∈X0 . Near
the boundary

DF0 =

(
0 DF

−
0

DF
+
0 0

)
=
(

0 −∂r +DF∂

∂r +DF∂ 0

)
with the boundary operator DF∂ . Let us consider the field of APS boundary conditions

B =
(
χ[0,∞)(DF∂ ) 0

0 χ(−∞,0)(DF∂ )

)
=
(
P 0
0 I−P

)
acting on the boundary foliation. In the order of ideas of Ramachandran paper (coming back
from an idea of John Roe) this is a self adjoint boundary condition i.e. its interacts with the
Dirac operator in the following way:

1. B is a field of bounded self–adjoint operators with σB + Bσ = σ where σ is Clifford
multiplication by the unit (interior) normal.
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2. If b is the operator of restriction to the boundary acting on smooth sections then
(s1, D

F0s2) = (DF0s1, s2) for every couple of smooth sections s1 and s2 such that
Bbs1 = 0 and Bbs2 = 0.

Next Ramachandran proves using the generalized eigenfunction expansion of Browder and
Gårding, that there’s a field of restriction operators

Hk(X0;E) −→ Hk−1/2(X0;E)

extending b where the Sobolev spaces are defined taking into account the boundary i.e. for
a leaf L0

x, the space Hk(L0
x;E) is the completion of C∞c (L0

x;E) (compact support possi-
bly meeting the boundary) w.r.t. the usual L2–based Sobolev norms. It follows from the
restriction theorem that one can define the domain of D with boundary condition B as
H∞(X0;E,B) := {s ∈ H∞(X0;E) : Bbs = 0}.

Theorem 9.60 — (Ramachandran [62]) The family of unbounded operators D with domain
H∞(X0;E,B) is essentially self–adjoint and Breuer–Fredholm in the Von Neumann algebra of the
foliation with finite Λ–index in the sense of indΛ(DF0) = dimΛ(Ker(DF

+
0 ))− dimΛ(Ker(DF

−
0 ))

given by the formula

indΛ(DF0) = 〈Â(X) Ch(E/S), [CΛ]〉+ 1/2[ηΛ(DF0 )− h] (78)

Now we are going to prove compatibility between formula (78) and (74). First of all we
have to relate the two Von Neumann algebras in play. Denote (according to our notation)
with EndR0(E) the space of intertwining operators of the representation of R0 on L2(E)
and, only in this section EndR0,Λ(E) the resulting Von Neumann algebra with trace trR0,Λ

in order to make distinction from EndR,Λ(E) the Von Neumann algebra of random operators
associated with the representation of R. Start with a measurable fields of bounded operators
X0 3 Bx 7−→ Bx : L2(L0

x;E) −→ L2(L0
x;E) with Bx = By a.e. if (x, y) ∈ R0. There’s a

natural way to extend B to a field of operators in EndR(E).

1. If x ∈ X0 simply let ıBx act to L2(Lx;E) to be zero on the cylinder

ıBx : L2(L0
x;E)⊕ L2(∂L0

x × (0,∞);E) −→ L2(L0
x;E)⊕ L2(∂L0

x × (0,∞);E)

ıBx(s, t) := (Bxs, 0).

2. If x ∈ ∂X0 × (0,∞) define ıBx := ıBp(x) where p : ∂X0 × (0,∞) −→ ∂X0 is the base
projection and ıBp(x) is defined by point 1.

Proposition 9.61 — The map ı : EndR0(E) −→ EndR(E) as defined above passes to the
quotient to an injection

ı : EndR0,Λ(E) −→ EndR,Λ(E)

between the Von Neumannn algebras of Random operators preserving the two natural traces

trR,Λ(ıB) = trR0,Λ(B).

Proof— The first part is clear. An intertwining operator B = {Bx}x∈X0 is zero Λ–a.e.
in X=0 then also does ıB in X for any transversal T contained in the cylinder can slide by
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holonomy to a transversal contained in X0. About the identity on traces remember the link
between the direct integral algebras and the algberas of random operators i.e. Lemma 4.6.
Choose ν to be the longitudinal Riemannnian metric then Λν is the integration of ν against
Λ. Let P0 be the Von Neumann algebra of Λν–a.e. classes of measurable fields of operators
X0 3 x 7−→ Bx ∈ B(L2(L0

x;E)) and P the corresponding algebra builded replacing X0 with
X and B(L2(L0

x;E)) with B(L2(L0
x;E)). Notice that the family

X 3 y 7−→
∫
ıBxdν

y (79)

is bounded for B in the domain of ı then Lemma 4.6 says that

trR,Λ(ıB) =
∫
X

Trace(Bx)dΛν(x) =
∫
X0

Trace(Bx)dΛν(x) = trR0,Λ(B).

2

Theorem 9.61 — Let Pr Ker(DF
±
0 ) ∈ EndR0,Λ(E) the projection on the Kernel of DF

±
0 with

domain given by the boundary condition Px = 0, (I−P = 0) as in Ramachandran formula. Let
also Pr KerL2(D±) ∈ EndR,Λ(E) be the projection on the L2–kernel of the leafwise operator on
the foliation with the cylinder attached and Pr Ext(D±) ∈ EndR,Λ(euθL2E) be the projection
on the closure of the space of extended solution seen in euθ for sufficiently small positive u.

1. ıPr Ker(DF
+
0 ) is equivalent to Pr KerL2(D+) in EndR,Λ(E) i.e. there exists a partial

isometry u ∈ EndR,Λ(E) such that

u∗u = ıPr Ker(DF
+
0 ), uu∗ = Pr KerL2(D+)

. In particular

dimR0,Λ Ker(DF
+
0 ) = dimR,Λ KerL2(D+).

2.

ıPr KerL2(DF
−
0 ) ∼ Pr Ext(D−)

euθL2

,

for sufficiently small u and equivalence in EndΛ(euθL2(E)) with the inclusion

ı : EndR0,Λ(E) −→ EndΛ(euθL2(E))

defined as in proposition 9.61.

As a consequence

dimΛ Ker(DF
−
0 ) = dimΛ Ext(D−).

Proof— The idea is contained in A.P.S. [4] when they prove the equivalence between
the boundary value problem and the L2 cylindrical problem. Their main instrument is the
eigenfunction expansion of the operator at the boundary, now we use the Browder–Garding
generalized expansion to see that any solution of the boundary value problems extends to a
solution of the operator on the cylinder.
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1. Use the Browder–Gårding expansion as in the proof of the finiteness of the projection
on the kernel 5.1. For a single leaf, the isomorphism

L2(∂L0
x × (−1, 0]) −→

⊕
j∈N

L2(R, µj)⊗ L2((−1, 0])

represents a solution of the boundary value problem as hj(r, λ) = χ(−∞,0)(λ)e−λrhj0(r)
hence the solution can be extended to the cylinder of the leaf ∂L0

x× (0,∞). This clearly
gives a field of linear isomorphisms Tx : Ker(DF

+
0

x ) −→ KerL2(D+
x ) for x ∈ X0, first

extend Tx to all L2(L0
x;E) to be zero on Ker(DF

+
0 )⊥ then let x take values also in X

according to the method explained before i.e. put Tx := Tp(x) for x in the cylinder.
Take the polar decomposition Tx = ux|Tx|, then ux is a partial isometry with initial
space Ker(DF

+
0

x ) and range Ker(D+
x ), i.e

u∗xux = Pr Ker(DF
+
0

x ), uxu
∗
x = Pr Ker(D+

x ).

We have to look at this relation into the Von Neumann algebra of the foliation on X.
Split every L2 space of the leaves as L2(L0

p(x);E)⊕L2(∂L0
p(x)×(0,∞);E). With respect

to the splitting, forgetting the indexes x downstairs, we have u =
(
u11 0
u21 0

)
acting

on the field of L2(X;E) spaces of the leaves. Then u∗ =
(
u∗11 u∗21

0 0

)
with conditions

u11u
∗
21 = 0 and u21u

∗
11 = 0. Finally

uu∗ =
(
u11u

∗
11 + u21u

∗
21 0

0 0

)(
Pr(DF

+
0 ) 0

0 0

)
= ıPr(DF

+
0 )

and similarly u∗u = Pr(D+).

2. It is very similar to statement 1. in fact writing the Browder–Gårding expansion and
imposing the adjoint boundary condition one ends directly into the space of extended
solutions.

2

To conclude now we can compare Ramachandran index with our index, let’s compare formula
(78) with (74) keeping in mind that, the index of Ramachandran is now our extended index
(see section 3 )

indΛ(DF0) = ˜indΛ,L2(D+) = dimΛ KerL2(D+)− dimΛ Ext(D−)

to obtain the equation

dimΛ Ext(D−)− dimΛ KerL2(D−) = (h−Λ − h
+
Λ )/2 + h/2.

The same argument applied to the (formal) adjoint of D+ leads to the equation

dimΛ Ext(D+)− dimΛ KerL2(D+) = (h+
Λ − h

−
Λ )/2 + h/2,

then
h = h+

Λ + h−Λ

as in A.P.S.



67

10 The signature formula

10.1 The classical signature formula
The reference for the notation about the signature operator is the book bt Berline Getzler
and Vergne [9]. Let X be an oriented Riemannian manifold and |dvol| the volume the unique
volume form compatible with the metric i.e. the one assuming the value 1 on each positive
oriented orthonormal frame. In other words |dvol = |√gdx|. One can define the Hodge ∗
operator in the usual way

∗ei1 ∧ · · · ∧ eik = sign(σ)ej1 ∧ · · · ∧ ein−k
where (e1, ..., en) is an oriented orthonormal basis, (i1, ..., ik) and (ji, ..., jk) are complementary

multindices and σ is the permutation σ :=
(

1 . . . . n
i1 . ik j1 . jn−k

)
.

Since ∗2 = (−1)|·|(n−|·|) this is an involution on even dimensional manifolds.
The bundle ΛT ∗X of exterior algebras of X is a natural Clifford module under the action
defined by

c(ei) := ε(ei)− ι(ei) (80)
where ε(ei)ω = ei ∧ ω is the exterior multiplication by ei and ι(ei) is the contraction by
the tangent vector ei. In other words it is the metric adjoint of exterior multiplication,
ε(ei)∗ = ι(ei). The chirality involution

τ := i[(n+1)/2]c(e1) · · · c(en)

is related to the Hodge duality operator by

τ = i[(n+1)/2] ∗ (−1)n|·|+
|·|(|·|−1)

2 ,

following from the identity (same deegree forms)∫
X

α ∧ τβ = (−1)n|·|+|·|(|·|−1)/2i[2n+1]/2

∫
X

(α, β)|dx|

while
∫
X
α ∧ ∗β =

∫
X

(α, β)|dx|. As a consequence one can write the adjoint of d in two
different ways,

d∗ = − ∗ d ∗ (−1)n|·|+n = −(−1)nτdτ.

Sections of the positive and negative eigenbundles of τ are called the self–dual and anti self–dual
differential forms respectively and denoted by Ω±(X).
Now suppose n is even, and X is compact. The bilinear form on the middle cohomolgy
Hn/2(X; R) defined by (α, β) 7−→

∫
X
α ∧ β satisfies the identity∫

X

α ∧ β = (−1)n/2
∫
X

β ∧ α.

In particular if n is divisible by four this is symmetric and has a signature σ(X) i.e. the
number p− q related to the representation

Q(x) = x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

q

of the associated quadratic form (this is independent by the choosen basis). In this situa-
tion the chiral Dirac operator d + d∗ acting on the space of differential forms is called the
Signature operator15

(d+ d∗) = Dsign =
(

0 Dsign,−

Dsign,+ 0

)
: Ω+(X)⊕ Ω−(X) −→ Ω+(X)⊕ Ω−(X)

15it differs from the Gauss–Bonnet operator d+ d∗ only for the choice of the involution
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The Atiyah–Singer index theorem in this case becomes the Hirzebruch signature theorem

ind(Dsign,+) = σ(X) =
∫
X

L(X)

where L(X) is the L–genus, L(X) = (πi)−n/2 det1/2
( R

tanh(R/2)

)
for the Riemannian cur-

vature R. The proof uses the Hodge theorem stating a natural isomorphism between the
space of harmonic forms Hq(X) i.e. the kernel of the forms laplacian ∆ = (d+ d∗)2 and the
cohomology Hq(X) together with Poincaré duality.

Now on a ∂–manifold with product structure near the bounday the situation is much more
complicated. The signature formula is the most important application of the index theorem
in the A.P.S. paper. The operator writes on a collar around the boundary as

Dsign,+ = σ(∂u +B)

where the isomorphism σ : Ω(∂X) −→ Ω+(X) and B is the self–adjoint operator on Ω(∂X)
given by Bα = (−1)k+p+1(∗∂d− d∗∂)α where here and in the next dim(X) = 4k, ε(α) = ±1
according to α is even or odd degree and ∗∂ is the Hodge duality operator on ∂X. Since B
commutes with α 7−→ (−1)|α| ∗∂ α and preserves the parity of forms, B = Bev⊕Bodd and the
dimension of the kernel at the boundary as the η invariant are twice that of Bev. The A.P.S
index theorem says

ind(Dsign,+) = h+ − h− − h−∞ =
∫
X

L− h(Bev)− η(Bev)

or
indL2(Dsign,+)− h−∞ =

∫
X

L− h(Bev)− η(Bev)

where h± are the dimensions of the L2–harmonic forms on the manifold X̂ with a cylinder
attached and h−∞ is the dimension of the limiting values of extended L2 harmonic forms in
Ω−(X).
The identifications of all these numbers with topological quantities require some work.

1. The space H(X̂) of L2 harmonic forms on X̂ is naturally isomorphic to the image Ĥ(X)
of

H∗0 (X̂) −→ H∗(X̂).

Equivalently one can use the relative De Rham cohomology H∗(X, ∂X) −→ H∗(X) de-
fined imposing boundary conditions ω|∂X = 0 on the De Rham complex. This statement
plays in the ∂–case the role played by Hodge theory.

2. The signature σ(X) of a ∂–manifold is defined to be the signature of the non–degenerate
quadratic form on the middle–cohomology Ĥ2k(X). This is induced by the degenerate
quadratic form given by the cup–product on the relative cohomology H2k(X, ∂X). By
Lefshetz duality the radical of this quadratic form is exactly the kernel of the mapping
H2k(X, ∂X) −→ H2k(X) then

σ(X) = h+ − h− = indL2(A).

3. Then A.P.S get rid of the third number h−∞ proving that h−∞ = h+
∞ = h(Bev) that

together with h+
∞ + h−∞ = 2h(Bev) gives the final signature formula

σ(X) =
∫
X

L− η(Bev).
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10.2 The foliation signature
Now we pass to our foliated case following the paper of Luck and Schick [48] signature are
given for a Galois covering of a compact manifold with boundary and proven to be equivalent.
So let X0 be a compact manifold with boundary equipped with an oriented 4k–dimensional
foliation transverse to the boundary and every geometric structure of product type near the
boundary. As usual attach an infinite cylinder Z0 = ∂X0 × [0,∞)r and extend every The
leafwise signature operator corresponds to the leafwise Clifford action (80) on the leafwise
exterior bundle ΛT ∗F . If (e1, ..., e4k−1, ∂r) is a leafwise positive orthonormal frame near the
boundary, the leafwise chirality element 16 satisfies

τ := i2kc(e1) · · · c(e4k−1)c(dr) = i2k ∗ (−1)|·|(|·|−1)/2

= −i2kc(dr)c∂ = −i2kc(dr) ∗∂ (−1)|·|+|·|(|·|−1)/2

where ∗ is leafwise Hodge duality operator, c∂ = c(e1) · · · c(e4k−1) is, a part for the i2k factor
the leafwise boundary chirality operator and ∗∂ is the leafwise boundary Hodge operator. On
the cylinder the leafwise bundle ΛT ∗F is isomorphic to the pulled back bundle ρ∗(∧T ∗F∂X0)
(the projection on the base ρ will be omitted throughout) while separating the dr component
on leafwise forms α = ω + β ∧ dr yields an isomorphism

(ΛT ∗F)∂X0 −→ (ΛT ∗∂F)⊕ (ΛT ∗∂F), (81)

sometimes we shall write (ΛT ∗∂F) ∧ dr for the second addendum in (81) to remember this
isomorphism. An easy computation involving rules as

dω = d∂ω + (−1)|ω|∂rω ∧ dr

for ω ∈ C∞([0,∞); ΛT ∗∂F) and c(dr)(ω+α∧ dr) = (−1)|ω|ω ∧ dr− (−1)|α|α shows that the
operator can be written on the direct sum (ΛT ∗∂F)⊕ (ΛT ∗∂F) as the matrix

Dsign =
(
d∂ + c∂d∂c∂ −(−1)|·|∂r

(−1)|·|∂r c∂d∂c∂

)
= c(dr)∂r + (d∂ + c∂d∂c∂)⊕ (d∂ + c∂d∂c∂) (82)

and

τ = i2k
(

0 c∂(−1)|·|

−c∂(−1)|·| 0

)
. (83)

Since d∗∂ = τ∂d∂τ∂ = c∂d∂c∂ formula (82) is equivalent to

Dsign = c(dr)∂r + (d∂ + d∗∂)⊕ (d∂ + d∗∂).

There’s also another important formula corresponding to the fact that d + d∗ anticommutes
with τ . Denote Ω±(F) the positive (negative) eigenbundles i.e. the bundles of leafwise auto–
dual (anti auto–dual) forms. We can write the operator on the cylinder as an operator on
sections of the direct sum ρ∗(Ω+(F)∂X0 ⊕ Ω+(F)∂X0) as the matrix(

0 −(−1)|·|∂r + (∗∂d∂ − d∂∗∂)i2k(−1)|·|(|·|−1)/2

(−1)|·|∂r + (∗∂d∂ − d∂∗∂)i2k(−1)|·|(|·|−1)/2 0

)
= c(dr)∂r + (∗∂d∂ − d∂∗∂)i2k(−1)|·|(|·|−1)/2Ω. (84)

To pass from one representation to another we have to consider the following compositions

ΛT ∗∂F
i1 // (ΛT ∗∂F)

⊕
(ΛT ∗∂F) ∧ dr 1+τ // Ω+(F)

d+d∗ // Ω−(F)
Pr2 // ΛT ∗∂F .

16we omit simbols denoting leafwise action for ease of reading



70 Paolo Antonini

and

ΛT ∗∂F
i2 // Λ(T ∗∂F)

⊕
(ΛT ∗∂F) ∧ dr 1−τ // Ω−(F)

d+d∗ // Ω+(F)
Pr1 // ΛT ∗∂F .

where ij is the inclusion on the j–th factor and Prj is the corresponding projection.
The first definition we give is the most simple. It is merely the L2 index of the signature
operator on the foliated manifold with a cylinder attached.

Definition 10.62 — The Λ–analytic signature of the foliated manifold with boundary X0 is
the measured L2 index of the signature operator on the foliated manifold with a cylinder attached,

σΛ,an(X0, ∂X0) := indL2,Λ(Dsign,+).

Now, by the standard identification of the Atiyah–Singer integrand for the signature operator
[9], formula (74) becomes

σν,an(X0, ∂X0) = 〈L(X), [CΛ]〉+ 1/2[ηΛ(DF∂ )− h+
Λ + h−Λ ]

where L(X) is the tangential L–characteristic class and the numbers h±Λ and the foliation
eta–invariant are referred to the boundary signature operator.
As in [4] first we have to identify these numbers. Minor modifications of the proof of Vaillant
[76] are needed in order to prove the following.

Proposition 10.63 — For the foliated signature operator

h+
Λ = h−Λ . (85)

Consequently the formula for the analytical signature is

σν, an(X0, ∂X0) = 〈L(X), [CΛ]〉+ 1/2[ηΛ(DF∂ )].

Proof— Use the representation (82) of the operator on the cylinder on the bundle
(ΛT ∗∂F)⊕ (ΛT ∗∂F), here we can easily write the one parameter perturbation

Dsign
ε = c(dr)∂r + (d∂ + d∗∂)⊕ (d∂ + d∗∂)− θ̇Πε[(d∂ + d∗∂)⊕ (d∂ + d∗∂)]

where Πε the spectral projection Πε = χ(−ε,ε)((d∂ + d∗∂)⊕ (d∂ + d∗∂)) of the leafwise boundary
(signature) operator and θ is the function considered above in (28). For much clarity we make
the position

d∂ + d∗∂ = Dsign
∂ = S∂

for the boundary signature operator. Now pass to the antidiagonal form

c(dr)∂r + (∗∂d∂ − d∂∗∂)i2k(−1)|·|(|·|−1)/2Ω. (86)

It is a well known fact that only the middle dimension forms contribute to form the index in
fact the leafwise kernel of the signature operator is the space of leafwise harmonic forms and
decompose

ker ∆x = ⊕pi=0 ker ∆(i)
x
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where ∆(i)
x : Ωi(Lx) −→ Ωi(Lx). The subspace ker ∆(r)

x ⊕ ∆(n−r)
x is τ–invariant for each

0 ≤ r ≤ n and there is a field of unitary equivalences

[ker ∆(r)
x ⊕∆(n−r)

x ]+ −→ [ker ∆(r)
x ⊕∆(n−r)

x ]−

given by ω + τω 7−→ ω − τω. Now choose a leaf and apply the Browder–Gårding expansion
exactly as in section 5 to the boundary operator in (86). We forget the subscript indicating
we are on a single leaf and the isomorphisms coming from the eigenfunction expansion. A
section ξ ∈ Ext(Dsign,±

ε,x ) can be written on the cylinder r ≥ 3,

ξ±(λ, r) = ζ±(λ, i)[χ(−ε,ε)(λ) + (1− χ(−ε,ε)(λ))e∓λr]

with the fundamental fact that the boundary datas ζ±(λ, i) ∈ L2(±[0,∞) × N, µ) are uni-
voquely determined by r = 0. Now there’s a coefficient that’s constant in r. It is precisely
ζ±(λ, i)χ(−ε,ε)(λ) and can be seen (under the spectral isomorphism) to belong to the image
of the spectral projection χ(−ε,ε)(S∂ ⊕S∂). This subspace of L2(∂Lx; ΛT ∗∂Lx) is naturally Z2

graded in fact the chirality operator τ commutes with the boundary operator.
In particular

ζ±(λ, i)χ(−ε,ε)(λ) ∈ [χ(−ε,ε)(S∂ ⊕S∂)L2]±

The splitting becomes more evident looking at the decomposition (82)

χ(−ε,ε)(S∂ ⊕S∂) = χ(−ε,ε)(S∂)⊕ χ(−ε,ε)(S∂)

with τ acting on the right–hand side according to

τ =
(

0 −τ∂(−1)|·|

τ∂(−1)|·| 0

)
,

exactly formula (83). So we have defined a measurable family of maps

J±x : Ext(Dsign,±
ε,x ) −→ [χ(−ε,ε)(S∂)L2 ⊕ χ(−ε,ε)(S∂)L2]±, ξ± 7−→ ζ±(λ, i)χ(−ε,ε)(λ).

Now proposition 5.41 says that if we choose δ small, say 0 < δ < ε then Kere−δθL2(Dsign,±
ε,x ) is

closed in each e−δθL2 and Ext(Dsign,±
ε,x ) is closed into each eδθL2. It follows that

• We have a Borel family of continuous and middle–exact sequences

(KerL2(Dsign,±
ε,x ), ‖ · ‖e−δθL2) −→ (Ext(Dsign,±

ε,x ), ‖ · ‖eδθL2) (87)

−→ [χ(−ε,ε)(S∂)L2 ⊕ χ(−ε,ε)(S∂)L2]±

where the last arrow is J±x .

• h±Λ,ε = dimΛ(range(J±)).

Now join togheter Jx := J +
x + J−x assume that

range(Jx) ⊂ χ(−ε,ε)(S∂)L2
x ⊕ χ(−ε,ε)(S∂)L2

x

splits into a direct sum
range(Jx) = Vx ⊕Wx. (88)

Then in this case the proof ends because the chirality element acts on range(Jx) sending Vx
into Wx and vice–versa then the ± eigenspaces must be isomorphic. 2

So it remains to prove (88). First we need a lemma,
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Lemma 10.64 — If 0 < δ < ε The family of spaces rangeeδθL2(Dsign
ε ) is Λ–closed this

property meaning that for every γ > 0 there exists a Borel family of closed subspaces M ⊂
rangeeδθL2(Dsign

ε ) such that

dimΛ range(Dsign
ε )

eδθL2

− dimΛ(M) < γ.

Proof— The first is a direct consequence of the Λ–Fredholm of the perturbed operator
Dsignε on the field eδθL2 in fact the commutative diagram

eδθL2
Dsign,±
ε // eδθL2

L2
Dsign,±
ε +δθ//

eδθ

OO

D

eδθ

OO (89)

and lemma 5.38 show that the operator on field of weighted spaces eδθL2 is Breuer–Fredholm
than 0 is not contained in the Λ–essential spectrum of TT ∗ where T = Dsign,±

ε and T ∗ is the
adjoint w.r.t the eδθ norm and the spaces Mη := χ(−∞,η)(TT ∗) ∪ (χ(η,+∞)(TT ∗) are Λ–finite
codimensional in the closure of the image of T in L2 (L2 because the vertical arrows in (89)
are isomorphisms that preserve the Λ–dimension). 2

Proposition 10.65 — For every x the image of J splits,

range(Jx) = Vx ⊕Wx.

Proof— Consider the first row of (87) i.e

(KerL2(Dsign,±
ε,x ), ‖ · ‖e−δθL2) −→ (Ext(Dsign,±

ε,x ), ‖ · ‖eδθL2)

with the non–degenerate pairing e−δθ × eδθ −→ C on each leaf,

(KerL2(Dsign,±
ε,x ), ‖ · ‖e−δθL2)⊥ = (Kere−δθL2(Dsign,±

ε,x ))⊥ = range(Dsign,±
ε,x )

eδθL2

then extend J to be zero on the eδθ–hortocomplement of Ext(Dsign,±
ε,x ) then

range(Jx) = J̃x
(

range(Dsign,±
ε,x )

eδθL2)
.

Hence by continuity we can restric ourselves
range(J ) = J (K) by the continuity of J we can restrict our attention to elements in

K0
x := rangeeδθL2(Dsign

ε,x ) ∩ Ext(Dsign
ε,x )︸ ︷︷ ︸

eδθ−closed

for each x. So let ξ ∈ K0, by definition there exist α ∈ eδθL2(ΛT ∗Lx) such that ξ = Dsign
ε

and (Dsign
ε )2ξ = 0. On the cylinder we can write α = α0 + α1 ∧ dr with αi ∈ H∞(∂Lx ×

[0,∞); ΛT ∗Lx). Using again Browder–Gårding (or a spectral resulution, it’s the same) of the
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boundary operator S∂ we can see that in the region r ≥ 3 these section satisfy the differential
equation

−(∂r)2αl + (1− χ(−ε,ε)(λ))λ2αl = 0

with solutions in the general form

αl(x, r) = rβl,1(x) + βl,2 +O(e−εr)

and βl,i ∈ χ(−ε,ε)(S∂). Keeping in mind the identities d + d∗ = dε + d∗ε with dε := d − dθΠε

and d∗ε := d∗ − d∗θΠε, using the identity (1−Πε)β0,j = 0

dεα0(x, r) = (ε(dr)∂r + d(1−Πε))(rβ0,1(x) + β(0,2)(x) +O(e−εr)

= dr ∧ β0,1(x) +O(e−εr).

The calculation to show that the second piece dεα1(x, r)∧ dr = O(e−εr) can be performed in
the same way.
For the second piece of the signature operator

dεα1(x, r) ∧ dr = (−ι(dr)∂r + d∗(1−Πε))(rβ1,1 ∧ dr + β1,2(x) +O(e−εr))

= −(−1)|β1,1|β1,1(x) +O(e−εr)

with dεα0(x, r) = e−εr. This shows that

J (ξ) = J (dεα+ d∗εα) = 0⊕ (−1)|β0,1|β0,1 + (−1)|β1,1|β1,1(x, r)⊕ 0

and concludes the proof. 2

It remains to apply 10.64 to prove (85).

Remark — Everythig works with coeficients on a rankm leafwise flat bundle, the signature
formula in this case becames

σν, an(X0, ∂X0) = m〈L(X), [CΛ]〉+ 1/2[ηΛ(DF∂ )].

Consider the measurable field of Hilbert spaces of L2–harmonic forms

x 7−→ Hx := ker{∆q
x : L2(ΛqT ∗Lx) −→ L2(ΛqT ∗Lx)}

where Lx is a leaf of the foliation on the manifold X with cylindrical ends. Since leafwise
harmonic forms are closed this is a field of subspaces of the fields of De Rham cohomologies
H∗(Lx) hence inherits the structure of a measurable field of Hilbert spaces futhermore it
makes sence to speak about the space of tangentially continuous sections Hqτ .
So if the dimension of the foliation is dim(F) = 4k as above, we have a well defined bilinear
form on the middle–degree leafwise transversally continuous (transversally measurable also
goes well)

s∞Λ : H2k
τ ×H2k

τ −→ C, (α, β) 7−→
∫
X

α ∧ βdΛ =
∫
X

(α, ∗β)dΛ. (90)

given by the wedge product followed by integration against the transverse measure. This
bilinear form is defined on forms (and here is simmetric) with real coefficients and extended
to be sesquilinear (C–antilinear in the second variable) on forms with complex coefficients in
the usual way, s∞Λ (α, β ⊗ γ) := γ̄ s∞Λ (α, β ⊗ γ). For sesquilinear forms to be simmetric means

s∞Λ (α, β) = s∞Λ (β, α).
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This field of bilinear forms corresponds, by Riesz Lemma to a continuous (measurable) field
of self–adjoint bounded operators Ax : H2k

τ,x −→ H2k
τ,x univoquely defined by the property

s∞Λ (α, β) = (α,Aβ)

where at the right–hand side the scalar product of the field of Hilbert spaces i.e., the L2 scalar
product on forms. Now A determines a field of hortogonal splittings H2k

τ,x = V +
x ⊕V 0

x ⊕V −x of
Hilbert spaces where V ±x is the image of the spectral projection χ(0,∞)(Ax) (χ(−∞, 0)(Ax))
and V 0

x is the kernel of Ax. The pairing on the leaf passing trough x is non degenerate if and
only if A0

x = 0 but we are interested in the general behaviour using the transverse measure to
integrate.

Definition 10.66 — The signature on harmonic forms on the foliated elongated manifold is

σ∞Λ (X) := dimΛ V
+ − dimΛ V

−.

Theorem 10.66 — The analytical signature of the compact ∂–manifold and the signature on
harmonic forms on the manifold with cylinder attached coincide,

σΛ,an(X0, ∂X0) = σ∞Λ (X) = 〈L(X), [CΛ]〉+ 1/2[ηΛ(DF∂ )]. (91)

Proof— Just the definition (90) says that B = ∗|Ω2k but since the dimension of the foliation
is 4k we have τ|Ω2k = ∗|Ω2k . It follows that

V ± = kerL2(Dsign,±).

2

11 Random Hilber complexes
We prove some results we shall need next in the Chapter about the signature.

11.1 ∂–manifolds with bounded geometry
The generic leaf of (X0,F) is a Riemannian manifold with boundary with bounded geometry
as those examined by Schick [70, 71, 72].

Definition 11.67 — We say that a ∂–manifold with a Riemannian metric has bounded
geometry if the following holds

Normal collar : there exists rC > 0 so that the geodesic collar

N := [0, rC)× ∂M : (t, x) 7−→ expx(tνx)

is a diffeomorphism onto its image, where νx is the unit inward normal vector at x ∈ ∂M .
Equip N with the induced metric. In the sequel N and its image will be identified. Denote
im[0, rC/3)× ∂M by N1/3 and similarly N2/3.
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Injectivity radius of ∂M : the injectivity radius of ∂M is positive, rinj(∂M) > 0

Injectivity radius of M : there is ri > 0 so that for x ∈M −N1/3 the exponential mapping
is a diffeomorphism on B(0, r1) ⊂ TxM . In particular if we identify TxM with Rm via an
orthonormal frame we have Gaussian coordinates Rm ⊃ B(0, ri) −→ M around any point
in M −N1/3

Curvature bounds : for every K ∈ N there is some CK > 0 so that |∇iR| ≤ CK and
|∇∂ l| ≤ CK , 0 ≤ i ≤ K. Here ∇ is the Levi–Civita connection onM , ∇∂ is the Levi–Civita
connection on ∂M and l is the second fundamental form tensor with respect to ν.

Choose some 0 < rC1 < rinj(∂M), near points x′ ∈ ∂M on the boundary one can define
normal collar coordinates by iteration of the exponential mapping of ∂M and that of M ,

kx′ : B(0, rCi )︸ ︷︷ ︸
⊂Rm−1

×[0, rC) −→M, (v, t) 7−→ expMexp∂M
x′ (v)(tν).

For points x ∈ M − N1/3 standard Gaussian coordinates are defined via the exponential
mapping. In the following we shall call both normal coordinates. It is a non trivial fact
that the condition on curvature bounds in definition 11.67 can be substituted by uniform
control of each derivative of the metric tensor gij and its inverse gij on normal coordinates.
The definition extends to bounded geometry vector bundles on δ–manifolds with bounded
geometry and each object of uniform analysis like i.e. uniformly bounded differential operators
can be defined [72]. In particular, using a suitable partition of the unity adapted to normal
coordinates one can define uniform Sobolev spaces (different coordinates give equivalent norms
so we get hilbertable spaces) and every basic result continues to hold.

Proposition 11.68 — Let E −→M a bundle of bounded geometry over M . Suppose F is
bounded vector bundle over ∂M . Then the following hold for the Sobolev spaces Hs(E), Ht(F ),
s, t ∈ R of sections.

1. Hs(E), Ht(F ) is an Hilbert space (inner product depending on the choices).

2. The usual (bounded) Sobolev embedding theorem holds with values on the Banach space
Ckb (E) of all sections with the first k derivatives uniformly bounded,

Hs(E) ↪→ Ckb (E), whenever s > m/2 + k.

3. For the bundle of differential forms one can use as Sobolev norm the one coming from the
integral of the norm of covariant differentials

‖ω‖2k :=
k∑
i=0

∫
M

‖∇iω(x)‖2T∗xM⊗ΛT∗M |dx|.

4. For s < t we have a bounded embedding with dense image Ht(E) ⊂ Hs(E). The map is
compact if and only if M is compact. We define

H∞(E) :=
⋂
s

Hs(E), H−∞(E) :=
⋃
s

Hs(E).
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5. Let p : C∞(E) −→ C∞(F ) a k–bounded boundary differential operator i.e the composition
of an order k bounded differential operator on E with the morphism of restriction to the
boundary. Then p extends to be a bounded operator

p : Hs(E) −→ Hs−k−1/2(F ), s > k + 1/2.

In particular we have the bounded restriction map Hs(E) −→ Hs−1/2(E|∂M ), s > 1/2.

6. Hs(E) and H−s(E) are dual to each other by extension of the pairing

(f, g) =
∫
M

g(f(x))|dx|; f ∈ C∞0 (E), g ∈ C∞0 (E∗)

where E∗ is the dual bundle of E. If E is a bounded Hermitian or Riemannian bundle, then
the norm on L2(E) defined by charts is equivalent to the usual L2–norm

|f |2 :=
∫
M

(f, f)x|dx|, f ∈ C∞0 (E).

MoreoverHs(E) andH−s(E) are dual to each other by extension of (f, g) =
∫
M

(f, g)x|dx|.

11.2 Random Hilbert complexes
Now we define the De Rham L2 complexes along the leaves. These are particular examples
of Hilbert complexes studied in complete generality in [16].
So let x ∈ X0, consider the unbounded operator with Dirichlet boundary conditions

dL0
x

: Ωkd,x = {ω ∈ C∞0 (ΛT kL0
x);ω|∂M = 0} ⊂ L2

x(ΛT kL0
x) −→ L2

x(ΛT kL0
x).

Being a differential operator it is closable, let Akx(L0
x, ∂L

0
x) the domain of its closure i.e the set

of L2 limits ω of sequences ωn such that also the dωn converges in L2 to some η =: dω. The
graph norm ‖ · ‖2A := ‖ · ‖2L2 + ‖d · ‖2L2 gives ‖ · ‖2L2 the structure of an Hilbert space making
d bounded. It is easily checked that d(Akx) ⊂ ker(d : Ak+1

x ) −→ L2
x) then we have a Hilbert

cochain complex
· · · −→ Ak−1

x −→ Akx −→ Ak+1
x −→ · · ·

with cycles Zkx(L0
x, ∂L

0
x) := ker(d : Akx −→ Ak+1

x ) and boundaries Bkx(L0
x, ∂L

0
x) := range(d :

Ak−1
x −→ Akx).

Definition 11.69 — The L2 (reduced )17 relative De Rham cohomology of the leaf L0
x is

defined by the quotients

Hk,x
dR,(2)(L

0
x, ∂L

0
x) :=

Zkx(L0
x, ∂L

0
x)

Bkx(L0
x, ∂L

0
x)
.

Clearly the closure is to assure the quotient to be an Hilbert space. Similar L2–De Rham
cohomologies of the whole leaf, Hk,x

dR,(2)(L
0
x) and of the boundary Hk,x

dR,(2)(∂L
0
x) are defined

using no (Dirichlet) boundary conditions. In particular Akx(L0
x) will be used to denote the do-

main of the closure of the differential as unbounded operator on L2(L0
x) defined on compactly

17the word reduced stands for the fact we use the closure to make the quotient, also the non reduced
cohomology can be defined. For a Γ covering of a compact manifold the examination of the difference re-
duced/unreduced cohomology leads to the definition of interesting invariants
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supported sections (the support possibly meeting the boundary). The subscript dR helps to
make distinction with Sobolev spaces. Each one of this spaces is naturally isomorphic to a
corresponding space of harmonic forms. More precisely

Definition 11.70 — The space of k–L2 harmonic forms which fulfill Dirichlet boundary
conditions on ∂L0

x is

Hk(2)(L
0
x, ∂L

0
x) := {ω ∈ C∞ ∩ L2, ω|∂L0

x
= 0, (δω)|∂L0

x
= 0, (dω)|∂L0

x
= 0︸ ︷︷ ︸

gratis

}

We shall see that the boundary conditions are exactly the square of the Dirichlet boundary
condition on the Dirac operator d+ δ. Since each leaf is complete a generalization of an idea
of Gromov shows that these forms are closed and co–closed, [70, 71]

Hk(2)(L
0
x, ∂L

0
x) = {ω ∈ C∞ ∩ L2(ΛkL0

x), dω = 0, δω = 0, ω|∂L0
x

= 0}.

Furthermore there’s the L2–orthogonal Hodge decomposition [70, 71]

L2(ΛkT ∗L0
x) = Hk(2)(L

0
x, ∂L

0
x)⊕ dk−1Ωk−1

d,x (L0
x, ∂L

0
x)
L2

⊕ δk+1Ωk+1
δ,x (L0

x, ∂L
0
x)
L2

where Ωk−1
d,x := {ω ∈ C∞0 (Λk−1T ∗L0

x), ω|∂L0
x

= 0} and the corresponding one for δ with no
boundary conditions Ωk+1

δ,x := {ω ∈ C∞0 (Λk+1T ∗L0
x)}. These decompositions shows with a

little work that the inclusion Hk(L0
x, ∂L

0
x) ↪→ Akx induces isomorphism in cohomology

Hk(L0
x, ∂L

0
x) ∼= Hk

dR,(2)(L
0
x, ∂L

0
x).

This is a consequence of the fact that the graph norm (of d) and the L2 norm coincide on the
space of cycles Zkx .

For further use we mention also the specular Hodge decomposition where one imposes
Neumann boundary conditions on L2 harmonic forms and Dirichlet conditions on the domain
of δ,

L2(ΛkT ∗L0
x) = ker(∆k|{ω : (∗ω)|∂ = 0 = (δω)|∂}) (92)

dk−1C∞0 (Λk−1T ∗L0
x)
L2

⊕ δk+1{ω ∈ C∞0 (Λk−1T ∗L0
x) : ω|∂ = 0}

L2

Then we can write the sequence of cochain complexes

d

��
d

��
d

��
0 // Ak−1

x (L0
x, ∂L

0
x) i //

d

��

Ak−1
x (L0

x) r //

d

��

Ak−1
x (∂L0

x) //

d

��

0

0 // Akx(L0
x, ∂L

0
x) i //

d

��

Akx(L0
x) r //

d

��

Akx(∂L0
x) //

d

��

0

where each morphism must be considered as an unbounded operator on the corresponding
L2, i is bounded since is merely the restriction of the identity mapping on L2(L0

x,ΛT
∗L0

x)
and r is restriction to the boundary.
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Proposition 11.71 —

1. For every k the domain Akx(L0
x) is contained in the Sobolev space of forms H1(L0

x,ΛT
∗L0

x)
then the composition with r makes sense.

2. The rows are (weakly) exact i.e. one has to take closure of the images of i and r in the L2

topology in the Akx’s.

Proof— 1. An element ω in Akx(L0
x) is an L2–limit of smooth compactly supported forms

ωn with differential also convergent in L2. Then since the Hodge ? is an isometry on L2

also δωn = ± ∗ ω∗ converges. In particular we can control the L2–norm of dω and δω this
means we have control of the first covariant derivative, in fact d + δ = c ◦ ∇ where c is the
(unitary) Clifford action then the second term can made less that the norm of ∇ by bounded
geometry. In particular we have control on the order one Sobolev norm by proposition 11.68.
The remaining part follows from the fact that the restriction morphism is bounded from
H1 to H1/2 ↪→ L2. 2. The only non–trivial point is exactness in the middle but as a
consequence of the bounded geometry the boundary condition on the first space extends to
H1 (see proposition 5.4 in the thesis of Thomas Schick [70] that together with point 1. is
exactness. 2

Remark — Note that the proof of the proposition above says also that the induced mor-
phisms i∗ and r∗ are bounded.

Every arrow induces morphisms on the reduced L2 cohomology. Miming the algebraic con-
struction of the connecting morphism (everything works thanks to the remark above) we have,
for every x the long sequence of square integrable representations of the equivalence relation
R

· // Hk,x
dR,(2)(L

0
x, ∂L

0
x)

i∗ // Hk,x
dR,(2)(L

0
x)

r∗ // Hk,x
dR,(2)(∂L

0
x) δ // Hk−1,x

dR,(2)(L
0
x, ∂L

0
x) // · .

As x varies in X0 they form measurable fields of Hilbert spaces. We discuss this aspect in
a slightly more general way applicable to other situations. Remember that a measurable
structure on a field of Hilbert spaces over X0 is given by a fundamental sequence of sections,
(sx)x∈X0 , sn(x) ∈ Hx such that x 7−→ ‖sn(x)‖Hx is measurable and {s(x)}n is total in Hx

(see chapter IV in [74] ).

Proposition 11.72 — If for a family of closed densely defined operators (Px) with minimal
domain D(Px) a fundamental sequence sn(x) ∈ D(Px) is a core for Px and Pxsn(x) is measurable
for every x and n then the family Px is measurable in the sense of closed unbounded operators
(definition 4.22 and the remark below ) i.e. the family of projections Πg

x on the graph is measurable
in the square field Hx ⊕Hx with product measurable structure.

Proof— It is trivial in fact the graph is generated by vectors (sn(x), Pxsn(x)) then the
projections is measurable. 2

The lemma above can be applied to the (Akx(L0
x∂L

0
x))x in fact in the appendix of [33] a

fundamental sequence ϕn of sections with the property that each (ϕn(·))|L0
x
is smooth and
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compactly supported. Now the same proof works for manifold with boundary and, since the
boundary has zero measure one can certainly require to each ϕn to be zero on the boundary.

In particular we have defined complexes of square integrable representations. Reduction
modulo Λ–a.e. gives complexes of random Hilbert spaces (with unbounded differentials) for
which we introduce the following notations,

• (L2(Ω•X0), d) is the complex of Random Hilbert spaces obtained by Λ a.e. reduction
from the field of Hilbert complexes

· · · // L2(ΛkT ∗L0
x) d // L2(Λk+1T ∗L0

x) // · · · (93)

• (H•dR,(2)(X0), d) is the complex of Random Hilbert spaces obtained by Λ a.e. reduction
from the reduced L2 cohomology of (93)

• (L2(Ω•X0, ∂X0), d) is the complex of Random Hilbert spaces obtained by Λ a.e. reduc-
tion from the field of Hilbert complexes with Dirichlet boundary condition

· · · // L2(ΛkT ∗L0
x) d // L2(Λk+1T ∗L0

x) // · · · (94)

with differentials considered as unbounded operators with domains Akx(L0
x, ∂L

0
x).

• (H•dR,(2)(X0, ∂X0), d) is the complex of Random Hilbert spaces of the cohomologies of
the above complex.

• For the boundaries we have the corresponding complexes of Random Hilbert spaces
(L2(Ω•∂X0), d) and (H•dR,(2)(∂X0), d)

• The Borel field of weakly exact sequences

0 // Ak−1
x (L0

x, ∂L
0
x) i // Ak−1

x (L0
x) r // Ak−1

x (∂L0
x) // 0

gives rise to a long sequence of Random Hilbert spaces

H•dR,(2)(X0, ∂X0) i∗ // H•dR,(2)(X0)

r∗

��
H•dR,(2)(∂X0).

δ

hhQQQQQQQQQQQQQ

(95)

The meaning of this construction is clear first one builds the long L2 leafwise sequence of the
pairs (L0

x, ∂L
0
x) then uses the transverse measure to collect the informations together.

Remark — The notation HdR,(2)(∂X0) must not be confusing. This is not obtained by the
De Rham square integrable representation of the boundary foliation. This is deduced from
Λ–equivalence from the square integrable representation of the equivalence relation R of the
whole foliation.

Now we follow the paper by Cheeger and Gromov to a notion of exactness for the long sequence
(95) and the right assumption assuring it.

Definition 11.73 — We say that a sequence of Random Hilbert spaces as (95) is Λ–weakly
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exact at a point if in the correspondig Von Neumann algebra of Endomorphisms the projection on
the closure of the range of coming arrow coincide with the projection on the kernel of the starting

one. These means i.e at point i∗ // Hk
dR,(2)(X0) r∗ // ,

range i∗ = ker i∗ ∈ EndΛ(Hk
dR,(2)(X0)).

11.3 Spectral density functions and Fredholm complexes.

Let U ,V two Random Hilbert spaces on R0 (for these consideration also the holonomy
groupoid or, more generally a Borel groupoid should work) and an unbounded Random
operator f : D(f) ⊂ U −→ V i.e start with a Borel family of closed densely defined op-
erators fx : Ux −→ Vx intertwining the representation of R0. Since f is closable, the question
of measurability is addressed in definition4.22. For every µ ≥ 0 put L(f, λ) as the set of
measurable fields of subspaces Lx ⊂ D(fx) ⊂ Ux (measurability is measurability of the family
of the closures) such that for every x ∈ X0 and φ ∈ Lx, ‖fx(φ)‖ ≤ µ‖φ‖. After reduction
modulo Λ a.e. this becomes a set of Random Pre–Hilbert spaces we call LΛ(f, µ)

Definition 11.74 — The Λ–spectral density function of f is the monotone increasing function

µ 7−→ FΛ(f, µ) := sup{dimΛ : L ∈ LΛ(f, µ)}.

Where of course one has to pass to the closure to apply the Λ–dimension. We say f Fredholm if
for some ε > 0, FΛ(f, ε) <∞

We want to show that this definition actually coincides with the definition given in term of
the spectral measure of the positive self–adjoint operator f∗f .

Lemma 11.75 — In the situation above

FΛ(f, µ) = trΛ χ[0,µ2](f∗f) = dimΛ range(χ[0,µ2](f∗f))

as a projection in EndΛ(U).
Notice that since f∗f is a positive operator χ[0,µ2](f∗f) = χ(−∞,µ2](f∗f) is the spectral projection
associated to the spectral resolution f∗f =

∫∞
−∞ µdχ(−∞,µ].

Proof— The spectral Theorem ( a parametrized measurable version) shows that the ranges
of the family of projections χ[0,µ2](f∗f) belong to the class L(f, µ), then

dimΛ(range(χ[0,µ2)(f∗f))) ≤ FΛ(f, µ).

In fact it’s clear that χ[0,µ2)(f∗xfx)ω = ω ⇒ ‖fω‖ ≤ µ‖ω‖. But now for every L ∈ L(f, µ) we
get a family of injections χµ2(f∗xfx)|Lx −→ range(χµ2(f∗xfx)) that after reduction modulo Λ
and with the crucial property of the formal dimension 3 in lemma 4.7 says

dimΛ(L) ≤ dimΛ(range(χ[0,µ2](f∗f)).

2
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Definition 11.76 — A complex of random Hilbert cochains as (L2(Ω•X0), d) and its relative
and boundary versions is said Λ–Fredholm at point k if the differential induced on the quotient

D(dk)

range(dk−1)
d // L2(Ωk+1X0)

gives by Λ a.e. reduction a left Fredholm unbounded operator in the sence of definition 11.74. In
particular the condition involving the spectrum distribution function is

FΛ

(
d| : D(dk) ∩ range(dk−1)⊥ −→ L2(Ωk+1X0), µ

)
<∞ (96)

for some positive number µ.
For this reasin one calls the left hand–side of (96)

FΛ

(
L2(ΩkX0, ∂X0), µ

)
:= FΛ

(
d| : D(dk) ∩ range(dk−1)⊥ −→ L2(Ωk+1X0), µ

)
the spectral density function of the complex at point k.

Remark — Definition above combined with lemma 11.75 says that we have to compute the
formal dimension of χ[0,µ2](f∗f) where f = d

|D(d)∩range(dk−1)⊥ but f is an injective restriction

of dk then every spectral projection χB(f∗f) projects onto a subspace that’s orthogonal to
ker(dk) then

FΛ

(
d| : D(dk) ∩ range(dk−1)⊥ −→ L2(Ωk+1X0), µ

)
= supL⊥Λ (f, µ) (97)

where L⊥Λ (f, µ) is the set of Random fields of subspaces of D(d)∩ker(d)⊥ where d is bounded
by µ (see Definition 11.74 )

Theorem 11.76 — All the three complexes of Random Hilbert spaces (L2(Ω•X0), d),
(L2(Ω•∂X0), d) and (L2(Ω•X0, ∂X0), d) considered above are Λ–Fredholm.

Proof— The proof follows by an accurate inspection of the relation between the differ-
entials (with or without boundary conditions) and the Laplace operator trough the theory
of selfadjoint boundary differential problems developed in [70]. To make the notation lighter
let M = L0

x with ∂M = ∂L0
x the generic leaf. We concentrate on the relative sequence at

point d : Ak(M,∂M) −→ Ak+1(M,∂M) where the differential is an unbounded operator on
L2 with Dirichlet boundary conditions. Let D(d) = Ak+1(M,∂M). The following Lemma is
inspired by Lemma 5.11 in [47] where Neumann boudary conditions are imposed.

Lemma 11.77 — Let ker(d) the kernel of d as unbounded operator with Dirichlet boundary
conditions, then

D(d) ∩ ker(d)⊥ = H1
Dir ∩ δk+1C∞0 (Λk+1T ∗M)

L2

where H1
Dir is the space of order 1 Sobolev k–forms ω such that ω|∂M = 0.

Proof— First of all remember that the differential operator d + δ : C∞(Λ•T ∗M) −→
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C∞(Λ•T ∗M) with either Dirichlet or Neumann boundary conditions is formally self–adjoint
with respect to the greenian formula

(drω, η)− (ω, δp+1η) =
∫
∂M

(ω ∧ ∗p+1η)|η

and uniformly elliptic [70]. This means that this is an elliptic boundary value problem in the
classical sense according to the definition of Lopatinski and Shapiro [57], Appendix I, together
with a uniform condition on the local fundamental solutions. Now let ω ∈ C∞0 and η ∈ ker(d)

i.e. ηn ∈ C∞0 , (ηn)|∂M = 0, ηn L2
// η , dηn

L2
// 0 then

(η, δω) = lim
n

(ηn, δω) = lim
n

(dηn, ω)︸ ︷︷ ︸
0

±
∫
∂M

(ηn ∧ ∗ω)|∂M︸ ︷︷ ︸
η|∂M=0

= 0,

showing that δC∞0 ⊂ D(d) ∩ ker(d)⊥. For the reverse inclusion take ω ∈ D(d) ∩ ker(d)⊥ i.e.

ωn ∈ C∞0 , ωn L2
// ω , dωn

L2
// 0 . For fixed η ∈ C∞0 ,

((d+ δ)η, ω)︸ ︷︷ ︸
dη∈ker(d),ω∈ker(d)⊥

= (δη, ω) = lim
n

(δη, ωn) =︸︷︷︸
ωn|∂M=0

= lim
n

(η, dω).

Then we can apply the adjoint regularity theorem of Hörmander [70] Lemma 4.19, cor 4.22
saying that ω ∈ H1

loc then (δω, η) = (ω, dη) holds because for every η ∈ C∞0 (M − ∂M),
dη ∈ ker(d) then δω = 0. It follows that for every σ ∈ C∞0

0 =︸︷︷︸
dσ∈ker(d)

(dσ, ω) = (σ, δω)︸ ︷︷ ︸
0

±
∫
∂M

(σ ∧ ∗ω)|∂M = ±
∫
∂M

(ω ∧ ∗σ)|∂M .

The last passage coming from the definition of the Hodge ∗ operator, σ ∧ ∗ω = (σ, ω)dvol =
(ω, σ)dvol = ω ∧ ∗σ, where · is the complex conjugate in ΛT ∗M ⊗ C. Now from the density
of {i∗(∗σ)}σ∈C∞0 in L2(∂M), i : ∂M ↪→ M the boundary condition ω|∂M = 0 follows in
particular ω ∈ H1

Dir. Now it remains to apply the Hodge decomposition

L2(ΛkT ∗M) = Hk(2)(M,∂M)⊕ dk−1Ωk−1
d (M,∂M)

L2

⊕ δk+1 Ωk+1
δ (M,∂M)︸ ︷︷ ︸

no ∂−conditions

L2

to deduce ω ∈ δk+1C∞0 (Λk+1T ∗M)
L2

. 2

Consider again the formally selfadjoint boundary value problem d+δ with Dirichlet boundary
conditions i.e D(d+ δ) = H1

Dir. Its square in the sense of unbounded operators on L2 is the
laplacian ∆ with domain

H2
Dir := {ω ∈ H2 : ω|∂M = 0, ((d+ δ)ω)|∂M = (δω)|∂M = 0}.

Let ∆⊥k the operator obtained from ∆ on k–forms restricted to the orthogonal complement
of its kernel, it is easy to see that the splitting

L2(ΛkT ∗M) = Hk(2)(M,∂M)⊕ dk−1Ωk−1
d (M,∂M)

L2

⊕ δk+1 Ωk+1
δ (M,∂M)︸ ︷︷ ︸

no ∂−conditions

L2
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induces the following splitting on ∆k,

∆⊥k = (δk+1dp)
|δk+1Ωk+1

δ

⊕ (dk−1δk)
|dk−1Ωk−1

d

.

Lemma 11.78 — The following identies of unbounded operators hold

(δk+1dp)
|δk+1Ωk+1

δ

= (dk
|δk+1Ωk+1

δ

)∗(dk
|δk+1Ωk+1

δ

),

(dk−1δk)
|dk−1Ωk−1

d

= (dk−1

|δkΩkδ
)(dk−1

|δkΩkδ
)∗

where the dk
|δk+1Ωk+1

δ

is the unbounded operator on the subspace δk+1Ωk+1
δ of L2 with domain

H1
Dir ∩ δk+1Ωk+1

δ and range dk+1Ωk+1
d .

Proof— This is again the dual (in the sense of boundary conditions) statement of Lemma
5.16 in [47]. We first state that the Hilbert space adjoint of the operator dk with domain
H1

Dir ∩ δk+1Ωk+1
δ and range dk+1Ωk+1

d is exactly δk+1 with domain H1
Dir ∩ dkΩkd. We shall

omit grades of forms and call d this restricted operator. Thanks to the intersection with
H1 this is also the restriction of d + δ to the same subspace, in particular ω ∈ D(d∗) ⊂
dC∞0 implies ω ∈ D(d) and dω = 0. Take arbitrary η ∈ H1

Dir ∩ δC∞0 , then since δη = 0,
((d + δ)η, ω) = (dη, ω) = (η, d∗ω) and if η ∈ H1

Dir ∩ dΩd, ((d + δ)η, ω) = (δη, ω) = 0. Since
δH1

Dir⊥dΩd this is immediately checked,
σ ∈ dΩd, σ = dλ, λ|∂M = 0, (σ, δγ) = (dσ, γ)︸ ︷︷ ︸

=0

+
∫
|∂M (σ ∧ ∗γ)|∂M︸ ︷︷ ︸

=0

.

Also (η, d∗ω) = 0 since d∗ω ∈ δC∞0 and dΩDir⊥δC∞0 . Then we can apply again the adjoint
regularity theorem [70], Lemma 4.19 to deduce ω ∈ H1

loc. The next goal is to show ω ∈ H1
Dir

i.e. dω, δω ∈ L2, ω|∂M = 0 but dx = 0 ∈ L2, δω = (d+ δ)ω = d∗ω ∈ L2 and
(ω, dδη) = (d∗ω, δη) = (δω, δη) = (ω, dδη) ±

∫
∂M

(δη ∧ ∗ω)|∂M for every η ∈ C∞0 . Then
0 =

∫
∂M

(δη ∧ ∗ω)|∂M =
∫
∂M

(ω̄ ∧ ∗δη)|∂M =︸︷︷︸
=0

∫
∂M

(ω ∧ ∗δη)|∂M for every η. The boundary

condition follows by density. Finally it is clear that δd|D(d∗d) = ∆ = ∆⊥ but we have to prove
the coincidence of the domains

D(∆) ∩ δC∞0 = D(d∗(d|δC∞0 )),

now D(∆) = H2
Dir = {ω ∈ H2, ω|∂M , (δω)|∂M = 0} ⊂ D(d∗d|δC∞0 ). Clearly

ω ∈ D(d∗d|δC∞0 )⇒ ω ∈ H1
Dir ∩ δC∞0 ,

dω ∈ H1
Dir then (d + δ)ω ∈ H1 and since ω|∂M = 0 by elliptic regularity (for the boundary

value problem (d + δ) with Dirichlet conditions [70]) ω ∈ H2. We have just checked the
boundary conditions, finally ω ∈ H2

Dir = D(∆). The second equality in the statement is
proven in a very similar way. 2

Now that the relation of d with Dirichlet boundary condition restricted to the complement of
its kernel with the Laplacian (∆⊥) is clear we can use elliptic regularity to deduce that the
relative Random Hilbert complex is Λ–Fredholm. This has to be done in two steps, the first
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is to show that the spectral function of the Laplacian controls the spectral function of the
complex

FΛ(∆⊥k ,
√
µ) = FΛ(L2(ΩkX0, ∂X0), µ) + FΛ(L2(Ωk−1X0, ∂X0), µ) (98)

in fact

FΛ(∆⊥k ,
√
µ) = FΛ

(
(δk+1dk)

|δk+1Ωk+1
δ

),
√
µ
)

+ FΛ

(
(dk−1δk)

|dk−1Ωk−1
d

),
√
µ
)

= FΛ

(
(dk
|δk+1Ωk+1

δ

)∗(dk
|δk+1Ωk+1

δ

),
√
µ
)

+ FΛ

(
(dk−1

|δkΩkδ
)(dk−1

|δkΩkδ
)∗,
√
µ
)

= FΛ

(
dk
|δk+1Ωk+1

δ

, µ
)

+ FΛ(dk−1
|δkΩkδ

, µ
)

where, at first step we have used the obvious fact that the spectral functions behave additively
under direct sum of operators togheter with the remark after (11.76) , at the second step there
are lemmas 11.77 and 11.78 together with the following properties of the spectral functions

• FΛ

(
f∗f,

√
λ
)

= FΛ(f, λ)

• FΛ(φ, λ) = Fλ(φ∗, λ)

that can be adapted to hold in our situation with unbounded operators. Good references are
the paper of Lott and Lück [44] and the paper of Lück and Schick [47] that inspired completely
this treatment.
Thanks to (98) it remains to show that ∆⊥k is left Λ–Fredholm. We can use the heat kernel, in
fact by elliptic regularity for each leaf the heat kernel e−t∆k,x

⊥
(z, z′) is smooth and uniformly

bounded along the leaf on intervals [t0,∞) [70] Theorem 2.35. As x varies in X0 these bounds
can made uniform by the uniform geometry (in fact the constants depend on the metric tensor,
its inverse and a finite number of their derivatives in normal coordinates) and we get a family
of smooth kernels that varies transversally in a measurable fashion since it is obtained by
functional calculus from a measurable family of operators. Then they give a Λ–trace class
element in the Von neumann algebra. Now the projections χ[0,µ](f∗f) in definition 11.76
where f is the differential restricted to the complement of its kernel are obtained from the
heat kernel as

χ[0,µ](f∗f) = χ[0,µ](∆⊥k )e∆⊥k︸ ︷︷ ︸
bounded

χ[0,µ](∆⊥k )e−∆⊥k︸ ︷︷ ︸
Λ−trace class

.

2

Remark — The same argument of elliptic regularity for b.v. problems togheter with
the various Hodge decompositions shows that each term of the long sequence (95) is a finite
Random Hilbert space.

12 L2– De Rham signature
Let dim(F) = 4k Consider the measurable field of Hilbert spaces Akx(L0

x, ∂L
0
x) of the minimal

domains of the De Rham leafwise differential with Dirichlet boundary conditions ω|∂L0
x

= 0 as
in section 11.2 with the graph Hilbert structure and the induce Borel structure. This square
integrable representation ofR0 carries a field of bounded symmetric sesquilinear forms defined
by

s0
x : A2k

x (L0
x, ∂L

0
x)×A2k

x (L0
x, ∂L

0
x) −→ C, (ω, η) 7−→

∫
L0
x

ω ∧ η =
∫
L0
x

(ω, ∗η)dνx
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i.e. the C–antilinear in the second variable extension of the wedge product on forms , σ ⊗ γ =
σ⊗ γ̄ is the complex conjugate and νx is the Leafwise Riemannian metric. Note that also the
scalar product (·, ·) on forms is extended to be sesquilinear.

Lemma 12.79 — The sesquilinear form s0
x passes to the L2 relative cohomology of the leaf

H2k
dR,(2)(L

0
x, ∂L

0
x) factorizing through the image of the map H2k

dR,(2)(L
0
x, ∂L

0
x) −→ H2k

dR,(2)(L
0
x)

of the L2 relative de Rham cohomology to the L2 de Rham cohomology exactly as in the compact
(one leaf) case.

Proof— The first assertion is simply Stokes theorem, in fact let ω ∈ A2k
x (L0

x, ∂L
0
x) i.e.

ωn
L2

// ω , dωn
L2

// 0 and θm ∈ C∞0 (ΛT 2k−1L0
x), dθm

L2
// ϕ then

s0
x(ω, ϕ) = lim

n,m

∫
L0
x

ωn ∧ dθm = lim
n,m

∫
L0
x

d(ωn ∧ θm) = lim
n,m

∫
∂L0

x

(ωn ∧ θm)|∂L0
x

= 0.

The second one is clear and follows exactly from the classical case i.e. if β1 = β2 + limn dρn
with ρn compactly supported with no boundary conditions write

s0
x([α], [β]) = s0

x([α], [β2]) + lim
n

∫
α ∧ ρn,

represent α as a L2 limit of forms with Dirichlet boundary conditions than apply Stokes
theorem again. 2

For every x the sesquilinear form s0
x on the cohomology corresponds to a bounded selfadjoint

operator Bx ∈ B(H2k
dR,(2)(L

0
x, ∂L

0
x)) (a proof in [63]) univoquely determined by the condition

s0
x(α, β) = (α,Bxβ). Measurability properties of (s0

x)x∈X0 are by definition (for us) measur-
ability properties of the family (Bx)x. It is clear that everything varies in a Borel fashion
(use again a smooth fundamental sequence of vector fields as in [33]) then the Bx’s define a
self–adjoint random operator B ∈ EndΛ(H2k

dR,(2)(X0, ∂X0)).

Definition 12.80 — The Λ–L2 De Rham signature of the foliated manifold X0 with boundary
∂X0 is

σΛ,dR(X0, ∂X0) := trΛ χ(0,∞)(B)− trΛ χ(−∞,0)(B)

as random operators in EndΛ(H2k
dR,(2)(X0, ∂X0)).

Theorem 12.80 — We have

σΛ,dR(X0, ∂X0) = σΛ,an(X, ∂X0)

then together with formula (91) w.rt. the manifold with cylinder attached X all the three signa-
tures we have defined agree

σΛ,dR(X0, ∂X0) = σΛ,an(X0, ∂X0) = σ∞Λ (X) = 〈L(X), [CΛ]〉+ 1/2[ηΛ(DF∂ )]

Proof—
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First step.This is done. We have just proved, following the method of Vaillant the equality
σΛ,an(X0, ∂X0) = σ∞Λ (X) where at right the signature on harmonic leafwise L2–forms on
the elonged manifold with elonged foliation i.e. the Λ signature of the Poincarè product on
leafwise harmonic forms. Our reference is then the harmonic signature.

Second step. We shall prove σΛ,dR(X0, ∂X0) = σ∞Λ (X). Remember the notation x ∈ X0, L0
x

is the leaf of the compact foliated manifold with boundary, Lx is the leaf of the foliation on the
manifoldX with a cylinder attached. Consider the random Hilbert spaceH2k

dr,(2)(X0) obtained
from the various L2 cohomologies of the leaves with no boundary conditions (this is called in
[48] the L2–homology since it naturally pairies with forms with Dirichlet boundary conditions).
We have a family of restriction maps X0 3 x 7−→ rpx : H2k(Lx) −→ H2k

dR,(2)(L
0
x) where we

stress the fundamental fact that the variable x is the compact piece X0 in order to obtain
an intertwining operator (H2k(Lx))x∈X0 :7−→ H2k

dR,(2)(L
0
x) where the first is seen as a square

integrable representation of R0. There are also natural mappings i2kx : H2k
dR,(2)(L

0
x, ∂L

0
x) −→

H2k
dR,(2)(Lx). The program of Lück and Schick fits well here and is:

1. Λ a.e. range(r2k
x ) = range(i2kx ) and the signature can be computed looking the fields of

sesquilinear Poincarè products on the images of i2kx as square integrable representations
of R0,

H2k
dR,(2)(L

0
x, ∂L

0
x)

i2kx // H2k
dR,(2)(L

0
x)

H2k(Lx)

r2k
x

66nnnnnnnnnnnn

. (99)

2. The signature of the field of products on the image of i2kx concides with the signature of
the fields of Poincaré products on (Hx)x∈X0 as square integrable representations of R0.

1.
2

A Analysis on Manifolds with bounded geometry
Hereafter we review some essential results about differential operators, and the Dirac one
in particular, on manifolds with bounded geometry. This theory was developed by J. Roe
[65, 66, 67], M. Shubin [69] and J. Lott [?] among others.

Let M be an oriented Riemannian manifold of bounded geometry, by definition,

1. the injectivity radius of M , inj(M), defined as the infimum on M of radii of regular
geodesic balls is finite.

2. The Riemann curvature tensor is uniformly bounded with every covariant derivative.

Definition A.81 — For an vector bundle to be of bounded geometry will mean that it is
given a connection with uniformly bounded curvature together with every covariant derivative.

Natural examples are, compact manifolds, Galois covering of compact manifolds, the interior
of a compact manifold with boundary equipped with a b–metric and finally leaves of a compact
foliated manifold. An obvious but important property is that compact perturbations, i.e.
connected sum preserve bounded geometry.



87

Note that a non–compact manifold with bounded geometry has infinite volume. Directly from

the definition one finds that if dim(M) = n there exists a positive number r such that the
eclidean ball B(0, r) ⊂ Rn is the domain of exponential coordinates for every point inM . The
Christoffel symbols of M regarded as a family of smooth functions depending on i, j, k and
points m in B are a bounded subset of the Fréchet space C∞(B). These geodetic balls can be
used also to trivialize bundles by parallel traslation along geodesic rays of a fixed orthonormal
basis at the center. Such frames are called synchronous. With a "good coordinate ball" one
refers to this situation.

We shall consider till the end of this section Clifford modules of bounded geometry with
Z2 graduated structure denoted generally by S and call D the associated Dirac operator.

Definition A.82 —

1. For k ∈ N the Sobolev space of sections of Hk(S) is the completion of C∞c (S) under the
norm

‖s‖k = (‖s‖2L2 + ‖∇s‖2L2 + · · ·‖∇ks‖2L2)1/2.

2. For negative k, Hk(S) is the dual space of H−k(S) regarded as a distributional sections
space.

3. Put H∞(S) =
⋂
kH

k(S) equipped with its natural Fréchet topology, H∞(S) =
⋃
Hk(S)

with the weak topology that it inherits as as the dual of H∞(S).

Definition A.83 —

1. Let r ∈ N, the uniform Cr space is the Banach space of all Cr sections s of S such that
the norm

‖|s‖|r = sup
{
|∇v1 · · · ∇vrs(m)|

}
is finite, supremum taken over points m ∈M and collections {v1, ..., vq, 0 ≤ q ≤ r} of unit
vectors at m.

2. Also, UC∞(S) is the Fréchet space
⋂
r UC

r(S).

The algebra of differential operators Diff∗(M,S) acting on S contains the subalgebra
UDiff∗(M,S) of uniform differential operators generated by the uniform space UC∞(End(S))
together with covariant derivatives ∇SX (as differential operators) along uniform vector fields
X ∈ UC∞(TM).

It turns out that for a differential operator to be uniformly elliptic is necessary and suffi-
cient to have every derivative (also 0 order of course) of its symbol uniformly bounded on every
good coordinate ball. A k–order uniform differential operator naturally defines continuous
mappings, Hr(M,S) −→ Hr−k(M,S) and UCl(M,S) −→ UCl−k(M,S).

Definition A.84 — An uniform differential operator P ∈ UDiff∗(M,S) is uniformly elliptic
if its principal symbol

σpr(P ) ∈ UC(T ∗M,π∗(End(S))

has an uniform inverse in an ε–neightborhood of the zero section in T ∗M .
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Theorem A.84 — (uniform Gårding’s inequality) For an uniformly elliptic operator T ∈
UDiffk(M,S), for every l there exists a positive constant C(l) such that

‖s‖Hs+k ≤ C(l){‖s‖Hs + ‖Ps‖Hs}, (100)

for every s ∈ C∞c (M,S).

Proof— A straightforward generalization of compact case. 2

Here a list of properties
In this framework the Sobolev embedding theorem reads as follows,

Theorem A.84 — For k, s ∈ N, s > k + (dim(M))/2 There is a continuous inclusion
Hs(M,S) −→ UCk(M,S) hence also a continuous inclusion of Fréchet spaces

H∞(S) −→ UC∞(S)

.

Proof— As observed by J. Roe, this is an adaption of the standard compact case, in fact
thanks to bounded geometry assumption the family of local Sobolev constant on good balls
is bounded. 2

Now by Schwartz kernel theorem a continuous linear operator18 T : C∞c (M,S) −→ C−∞(M, s)
is univoquely represented by its Schwartz kernel, the unique distribution–section KT ∈
C−∞(M ×M,END(S)⊗ Pr∗1Ω(M)) satisfying the distributional equation

〈KTu, v〉 = 〈KT , v4u〉

for every u, v ∈ C∞c (M,S). Here the big endomorphism bundle END(S) −→M ×M has fiber
Hom(Sx, Sy) over (x, y). the following is a group of definitions.

Definitions A.85 —

1. We say that T has order k ∈ Z if it extends to an operator in B(Hs(M,S), Hs−k(M, s))
for every s.

2. The space of k–order operators is denoted by Opk(M,S). with seminorms given by
B(Hs(M,S), Hs−k(M, s)).

3. The space Op−∞(M,S) =
⋂
k<0 Opk(M,S) is called the space of uniformly smoothig

operators. In fact we shall see it is the space of operators with uniformly smooth kernels.

4. An element T ∈ Opk(M,S), k ≥ 1 is called elliptic if it satisfies the uniform Gårding
inequality (100).

Below a list of properties that can be found in the papers cited at the beginning.

Proposition A.86 —
18If T is not a pseudo–differential operator it is customary to require that it respects all the connected

components of M .
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• Ellipticity is stable under order 0 perturbations, if T ∈ Opk(M,S) elliptic and Q ∈
Op0(M,S) then T +Q is elliptic.

• If ∈ Opk(M,S) is elliptic and formally self–adjoint then every its spectral projection belongs
to Op0(M, s).

• It follows from the completeness of M that an elliptic and formally self–adjoint element
T ∈ Opk(M,S) (k ≥ 1 as required by the definition of elliptic element) is essentially
selfadjoint on L2(M,S).

If T denotes its closure also one finds that dom(T ) = Hk(M,S). In particular this is true
for the Dirac operator D.

A.1 Spectral functions of elliptic operators
Last theorem says that an uniformly elliptic operator on a manifold with bounded geometry
is essentially self–adjoint. We need some considerations about spectral functions of T . Let

RB(R) := {f : R −→ C, Borel; |(1 + x2)k/2f(x)|∞ <∞ ∀k ∈ N}

be the space of rapidly decreasing Borel functions with Fréchet structure induce by the semi-
norms |(1 + x2)k/2 · |∞
Let RC(R) denote the closed subspace of continuous functions.

Proposition A.87 — For an elliptic element T and l ∈ N and rapid Borel functions f ,
T lf(T ) is bounded in L2 and the following Gårding inequality holds true,

‖f(T )ψ‖Hl ≤ C(l)
l∑
i=0

‖T if(T )ψ‖L2 ≤ C(l)‖ψ‖L2

l∑
i=0

|xif |∞ (101)

for every ψ ∈ C∞c (M,S). Suppose now, by simplicity of writing that T has order 1, making use
of the duality

(Hs)∗ = H−s

one finds, for k, l ∈ Z, l ≥ k,

‖f(T )ψ‖Hl ≤ C(l, k)
l−k∑
i=0

‖T if(T )ψ‖Hk ≤ C(l, k)‖ψ‖Hk
l−k∑
i=0

|xif |∞. (102)

Proof— Observe first that the operator T lf(T ) is the spectral function of T corresponding
to the function xlf(x) on R hence is bounded. Again, since f is bounded no problem here
in commuting relations, in particular T lf(T ) = f(T )T l (equality in the sense of unbounded
operators) in particular f(T ) : L2 −→ H l+k. Now from Gårding’s inequality for T ,

‖f(T )ψ‖Hl ≤ C(l)
l∑
i=0

‖T if(T )ψ‖L2 ≤ C(l)‖ψ‖L2

l∑
i=0

|xif |∞.

Inequality (102) follows at once from the first one (101) in fact the first step is to consider the
transpose of T lf(T ) : H−l −→ H−k while the second step is based on our very dual definition
of Sobolev space of order negative. 2



90 Paolo Antonini

Hence, we get continuity of the functional calculus RB(R) −→ B(H l(M,S), Hk(M,S))
for each l, k then continuity of RB(R) −→ Op−∞(M,S). With a little work, using Sobolev
embedding one can prove the following theorem.

Theorem A.87 — Let T ∈ Opk(M,S) uniformly elliptic and formally selfadjoint.

• If L = [n/2 + 1], n = dimM and l ∈ N then the kernel mapping

Op−2L−l(M,S) −→ UCl(M ×M,END(S)⊗ Pr∗1Ω(M)), T 7−→ KT ,

is continuous.

• For f ∈ RB(R) the kernel of f(T ) is uniformly smoothing,

KT ∈ UC∞(M ×M,END(S)⊗ Pr∗1Ω(M)).

and the kernel mapping RB(R) −→ UC∞(M ×M,END(S)⊗ Pr∗1Ω(M)) is continuous.

Remark — Combining A.16, page 89 and ?? we see that every spectral projection ΠA of
the Dirac operator obtained by a bounded Borel set A ⊂ R is represented by a uniformly
smoothing kernel hence is locally traceable (in the usual sense on L2(M,S) w.r.t the Abelian
Von Neumann algebra L∞(M)). This means that for every Borel set B ⊂ M with compact
closure the operator χBΠAχB is trace class, one gets a Radon measure B 7−→ traceχBΠAχB
called the local trace of ΠA.

A.2 Some computations on Clifford algebras
Let Cl(k) the (complex) Clifford algebra over the euclidean space Rk, with generators c1, . . . , ck
and relations (cj orthonormal basis)

cicj + cjci = −2δij .

The algebra Cl(k) is Z2-graded: Cl(k) = Cl+(k) ⊕ Cl−(k), being Cl+(k) the subalgebra
spanned by products of even sets of generators.
The map ci 7−→ cick+1 defines an isomorphism Cl(k) ∼→ Cl+(k + 1).
The volume element τk := i[(k+1)/2]c1 . . . ck ∈ Cl(k) satisfies τ2

k = 1 and thus induces a
Z2-grading on each representation of Cl(k). Due to the fact

τkc = −(−1)kcτk

for c ∈ Rk ⊂ Cl(k) this induced grading is trivial if k is odd. Cl(2l) has a unique irreducible
representation, called its spinor space and we denote it by S(2l). Its dimension is dimS(2l) =
2l. Decomposing into the ±1-Eigenspaces of τ2l we write S(2l) = S+(2l) ⊕ S−(2l). Via the
identification Cl(2l − 1) ∼= Cl+(2l) the spaces S+(2l), S−(2l) are non-equivalent irreducible
representations of Cl(2l − 1), which can be considered as being isomorphic representations
of Cl(2l − 2) ∼= Cl+(2l − 1) via the map S+(2l) c2l→ S−(2l). This of course is then just the
representation S(2l − 2) of Cl(2l − 2).
Notation: for S±(2l) we also write S±(2l − 1) when these spaces are seen as representations
of Cl(2l − 1).

Cl(2l − 1) oo // Cl+(2l) oo // End+(S+(2l)
⊕
S−(2l)) +3 End(S±(2l)) =: End(S±(2l − 1)) .
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It is easily seen that Cl(2l) acts injectively on S(2l). Comparison of dimensions then yields
C(2l) ∼= End(S(2l)), and, using Cl(2l − 1) ∼= Cl+(2l) also

Cl(2l − 1) ∼= Cl+(2l) ∼= End+(S(2l)).

The identification Cl(2l − 1) −→ End(S±(2l − 1)) maps τ2l−1 to ±1 and one can show that
the null space is (1∓ τ2l−1)C(2l − 1).

End(S+(2l)
⊕
S−(2l)) oo // Cl(2l) = Cl+(2l)︸ ︷︷ ︸ ⊕

Cl−(2l)

︷ ︸︸ ︷
Cl(2l − 1) =

ss

33hhhhhhhhhhhhhhhhhhhhhhhhhhh
Cl+(2l − 1)︸ ︷︷ ︸ ⊕

Cl−(2l − 1)

︷ ︸︸ ︷
Cl(2l − 2)

vv

66nnnnnnnnnnnn

The traces tr± on End(S±(2l−1)) and the graded trace str on End(S(2l)) then induce traces
on C(2l − 1) and C(2l). On elements of the form cI := ci1 . . . ci|I| where I = {i1 ≤ . . . ≤
i|I|} ⊂ {1, . . . , k} these can be computed as follows

Lemma A.88 —

(a) In Cl(2l) we have str(τ2l) = 2l and str(1) = str(cI) = 0 for I 6= {1, . . . , k}.

(b) In Cl(2l − 1) we have str(τ2l−1) = − tr−(τ2l−1) = tr±(1) = 2l−1 and for I 6= {1, . . . , k}
we have tr±(c1) = 0.

On (Cl(2l − 1) − C) ⊂ Cl(2l) therefore tr±(•) = ∓ 1
2 str(c2l•) and on Cl(2l) ⊂ Cl(2l + 1)

we have str(•) = ±i tr±(c2l+1•)

Proof— Cf. [9], Proposition 3.21 2

The map S+(2l) c2l−→ S−(2l) gives an identification S(2l) ∼= S±(2l − 1) ⊕ S±(2l − 1). In this
representation, Cl(2l) acts on S(2l) as follows

ci ∈ Cl(2l − 1) '
(

0 ±ci
±ci 0

)
c2l '

(
0 −1
1 0

)
and str

(
φ1 φ2

φ3 φ4

)
= tr±(φ1)− tr±(φ4)
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