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Chapter 1

Introduction

Cellular automata were conceived by John von Neumann in the 1950s as
models for self-reproduction.
The basilar idea was the following: A regular mesh (the “support space”)
hosts an array of identical devices, which evolve at discrete time steps by
changing their internal state (by a “local evolution function”) according to
those of a finite number of other ones (the “neighborhood”) whose relative
displacement is the same for all points. This induces a transformation (the
“global evolution function”) of the set of the “snapshots” of the whole mesh,
taken at different times (the “configurations”). Interest was focused on finite
portions of configurations (the “patterns”): considerations were made about
the possibility that a pattern, initially present in a given region, could later
spawn again, possibly in another region. With time, other uses for cellular
automata emerged: from simulation of population dynamics, to implemen-
tation of general-purpose computing machines: the latter followed from the
observation of a “natural” way to simulate in real-time an arbitrary Turing
machine (which, according to Church’s Thesis, is capable of universal com-
putation) with a one-dimensional cellular automaton.
The fundamental concept underlying cellular automata dynamics is local-
ity : that is, the future state of a single point of the space can be exactly
computed from the current states of all points of the space within a certain
distance from the first one. Since this is the observed behavior of most phys-
ical phenomena, the use of cellular automata as models of physical systems
was immediate; indeed, the first attempts to simulate the evolution of a set
of gas particles by means of a device similar to a cellular automaton (named
“lattice gas”) dates at least from mid-1970s. However, an emerging prob-
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lem appeared: physical laws are not only local, but also invertible (at least
on the microscopic scale); and any representation of a dynamical system by
means of a local law, necessarily conceals some of its global properties: this
is exactly what happens to invertibility itself, as well as to other properties
that depend on it, like conservation laws. In other words: invertibility is not
immediately evident from the standard “shape” of a cellular automaton.
Actually, the study of invertibility in cellular automata can be tracked down
to the 1972 papers by Richardson [24] and Amoroso and Patt [1]. The first
one expanded previous papers by Moore [21] and Myhill [22] that related the
existence of Garden-of-Eden configurations (that can only be initial, but can-
not be reached) to that of mutually erasable patterns (finite subconfigurations
that “are forgotten” in the evolution): Richardson gave a wider portrait of
the argument by proving that any injective cellular automaton is invertible,
and that the inverse of a cellular automaton is a cellular automaton. On the
other hand, Amoroso and Patt developed an algorithm to decide invertibility
for one-dimensional cellular automata; later, Patt applied the technique to
determine which one-dimensional cellular automata with “small” range were
both invertible and nontrivial, indeed discovering that they were rare.
Since then, studies on invertible cellular automata flourished. However, these
objects were considered somewhat exotic as well as probably uncapable of
universal computation, until Toffoli [30] proved that invertible cellular au-
tomata are both computation- and construction-universal. On the same line,
Fredkin developed a universal computation model (the Billiard Ball Model)
that is immediately realizable as an invertible cellular automaton.
With time, new ideas emerged in cellular automata theory. Studying invert-
ibility of large systems as a consequence of invertibility of their components,
Fredkin and Toffoli [10] devised two classes of universal invertible logical
ports; and actually, the search for complete sets of invertible primitives is an
important field of research (see [16], [17], or also [31]). On the lattice gas
front, aiming to overcome the limitations of a prevoius model, Frisch, Hassla-
cher and Pomeau [11] introduced a lattice gas model based on an hexagonal
grid rather than a square one: this was perhaps the first major extension of
the usual definition, which only considered hypercubic grids. Other special-
ized kinds of cellular automata appeared, such as second-order ones (see [2]
for an example). The question about decidability of cellular automata re-
mained open until 1990, when Kari [18] proved its undecidability in dimension
2, which implies undecidability in greater dimensions. Kari’s result showed
that the existence of a general-purpose computer program capable to decide
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if an arbitrary cellular automaton is invertible, only looking at its standard-
form description, is strictly linked to the geometry of the support space. The
fundamental work of Toffoli and Margolus [32] is a compendium of everything
that had been said about invertibility and cellular automata, and asks new
questions about that, thus representing a true milestone in the field.
At the same time, people started to consider broader contexts where locality
could still be defined, namely, Cayley graphs of finitely generated groups:
this class includes both hypercubic and hexagonal meshes. Also, in analogy
with symbolic dynamics (see [19] for a complete treaty on this subject), works
like [14] appeared, studying the effects of one-dimensional cellular automata
over one-dimensional shift subspaces, that is, closed, translation-invariant sets
of configurations over Z. The work of Fiorenzi [8] suggested that a larger
class of dynamical systems, whose configuration space was not “full”, but
whose evolution function still changed the value in a point only according to
the values of the points in a finite neighborhood, were still worth to be called
cellular automata: her thesis work deals with extensions to these broader
families of known results about the links between injectivity and invertibil-
ity [24], and between the existence of Garden-of-Eden configurations and
mutually erasable patterns [21, 22]. Also very interesting are the works of
Formenti [9] about quotient topologies and Kolmogorov complexity for one-
dimensional cellular automata.

The present work started as an attempt to study the invertibility problem
for cellular automata in contexts different (and possibly broader) than the
most used one, both by considerations on local structure and with the tools
described by [8]. When the search for an extension of Amoroso and Patt’s
theorem led to an isomorphism result for configuration spaces, more focus
was put on the conditions that a dynamical system must satisfy to have a
presentation as a cellular automaton, and on the possibility of employing the
modern formalism also to describe specialized objects such as lattice gas and
second-order cellular automata.

This work is divided as follows. In Chapter 2 we introduce the tools we
are going to use: dynamical systems, finitely generated groups, configuration
spaces, and uniformly locally definable functions. In Chapter 3 we discuss
cellular automata according to recent formalizations, examine its advantages
and disadvantages with respect to the original one, show a characterization
result for dynamical systems that can be presented as cellular automata,
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and explain the invertibility problem. In Chapter 4 we deal with the special
subfamily of lattice gases, showing that, with the modern formulation, they
are presentations of the same dynamical systems as cellular automata. In
Chapter 5 we deal with the problem of transferring part of the complexity
of a cellular automaton from its group to its alphabet: this is done when the
group is a semi-direct product of a finitely generated group and a finite one,
extending the subject of [3] to a more general case; the application of this
technique yields a nontrivial example of a class of cellular automata where
the invertibility problem is decidable. In Chapter 6 we introduce second-
order dynamics and show an interesting similarity between lattice gases and
second-order cellular automata, which occurs at structural (rather than func-
tional) level.



Chapter 2

Fundamental notions

This section is meant to prepare the ground for our constructions. It can ei-
ther be read before entering the actual thesis, or be skipped now and referred
later.

2.1 Semigroups and actions

A semigroup is a set with an associative binary operation; a semigroup having
an identity element is called a monoid. A group is a monoid where for all s
there exists the inverse s−1.
The binary operation of a semigroup can be extended to its subsets in the
Frobenius sense: if H,K ⊆ S, then:

HK = {s ∈ S : ∃h ∈ H, k ∈ K : s = hk}

If H = {h} is a singleton, then hK is a shortcut for {h}K: similarly if
K = {k}.
If S is a group, another operation on subsets is given by:

U−1 = {s ∈ S : ∃u ∈ U : s = u−1}

If U = U−1 we say that U is symmetric.

Definition 2.1.1 Let X be a set. Let S be a semigroup. A right action of
S over X is a map ϕ : X × S → X such that:

1. ϕ(ϕ(x, s1), s2) = ϕ(x, s1s2) for all x ∈ X, s1, s2 ∈ S;
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2. if S is a monoid with identity 1S, then ϕ(x, 1S) = x for all x ∈ X.

When ϕ is clear from the context, the element ϕ(x, s) is indicated by with
xs.
A right action ϕ : X×S → X induces a family of transformations {ϕs}s∈S ⊆
XX defined by ϕs(x) = ϕ(x, s): this family has the property that ϕs1s2

=
ϕs2

◦ ϕs1
, that is, the semigroup operation between maps is analogous to

the semigroup operation between indices (we are using the convention that
the product fg is the composition g ◦ f); moreover, if S is a monoid, then
ϕ1S

= idX . On the other hand, if {Ts}s∈S ⊆ XX satisfies Ts1s2
= Ts2

◦Ts1
for

all s1, s2 ∈ S (and T1S
= idX if S is a monoid), then ϕ : X × S → X defined

by ϕ(x, s) = Ts(x) is a right action of S over X.
Left actions can be defined in a similar way as maps ψ : S × X → X
such that ψ(s1, ψ(s2, x)) = ψ(s1s2, x) for all x ∈ X, s1, s2 ∈ S. If the
semigroup is commutative, then there is a one-to-one correspondance between
left and right actions obtained by putting ψ(s, x) = ϕ(x, s); if the semigroup
is a group, then there is a one-to-one correspondance between left and right
actions obtained by putting ψ(s, x) = ϕ(x, s−1).
Since a right action is a collection of transformations, the definitions given
for transformations can be extended to actions by saying that the action has
property P if and only if all the induced maps have property P . We do this
in some important cases.

Definition 2.1.2 Let X be a set. Let S be a semigroup. Let ϕ be a right
action of S over X. We say that Y ⊆ X is invariant under ϕ if ϕs(Y ) ⊆ Y
for all s ∈ S.

Definition 2.1.3 Let X be a set. Let S be a semigroup. Let ϕ be a right
action of S over X. A map F : X → X commutes with ϕ if for every s ∈ S,
x ∈ X we have ϕ(F (x), s) = F (ϕ(x, s)).

Definition 2.1.4 Let X be a topological space. Let S be a semigroup. A
right action ϕ of S over X is continuous if ϕs is continuous for all s ∈ S.

2.2 Dynamical systems

A dynamics can be seen as the action of a semigroup on a space. Some
dynamics show enough regularity to be presented as follows.
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Definition 2.2.1 A discrete dynamical system is a pair (X,F ) where X is
a compact metrizable space and F : X → X is a continuous function.
The set X is called the phase space of the dynamical system. The map F is
called the evolution or transition function of the dynamical system.

The word “discrete” in Definition 2.2.1 refers to time, whose flow is repre-
sented by repeated applications of the evolution function; and actually, a
dynamical system with phase space X can be seen as a continuous right ac-
tion over X of the monoid N, defined by ϕ(x, n) = F n(x). On the other
hand, if ϕ : X × N → X is a right action, then by putting F = ϕ(·, 1) one
obtains ϕ(·, n) as F n.
As an example, put X = [0, 1] with the Euclidean topology and F (x) = x2:
then (X,F ) is a dynamical system.
In general, for every metrizable space X, there are many distances inducing
the topology of X: we fix one of these distances dX and always refer to it.

Definition 2.2.2 Let (X,F ) be a dynamical system. A dynamical subsys-
tem of (X,F ) is a pair (Y, F ) where Y ⊆ X is topologically closed and
satisfies F (Y ) ⊆ Y .

Since X is both metrizable and compact, a subset of X is compact iff it is
closed, so in Definition 2.2.2 (Y, F ) is itself a dynamical system.

Definition 2.2.3 Let (X,F ) and (X ′, F ′) be dynamical systems. A mor-
phism from (X,F ) to (X ′, F ′) is a continuous map ϑ : X → X ′ such that
ϑ ◦ F = F ′ ◦ ϑ.
An injective morphism is called an embedding. A surjective morphism is
called a factor map. A bijective morphism is called a conjugacy. Two dy-
namical systems are conjugate if there exist a conjugacy between them.

As an example, let X be obtained from the interval [0, 1] by identifying 0 and
1, and let F (x) = 2x mod 1; let X ′ be the unit circle in the complex plane
and let F ′(α) = α2. Then ϑ : X → X ′ given by ϑ(x) = e2πix is a conjugacy
from (X,F ) to (X ′, F ′).
A result in General Topology says that, if X and Y are topological spaces
with X compact and Y metrizable, then ϕ(K) is closed in Y for every closed
K ⊆ X and continuous ϕ : X → Y ; in particular, if ϕ is continuous and
bijective, then ϕ−1 is continuous too, and ϕ is a homeomorphism. This allows
to define invertible dynamical systems.
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Definition 2.2.4 A dynamical system (X,F ) is invertible if F is bijective.
The dynamical system (X,F−1) is called the inverse of (X,F ).

An invertible dynamical system with phase space X can be seen as a contin-
uous right action on X of the group Z, defined by ϕ(x, k) = F k(x).

2.3 Configuration spaces

Definition 2.3.1 An alphabet is a finite set with at least two elements.

Alphabets are always seen as discrete topological spaces.

Definition 2.3.2 Let G be a group. Let S ⊆ G. The subgroup of G gener-
ated by S is the set:

〈S〉 = {g ∈ G : ∃n ∈ N : ∃{s1, . . . , sn} ⊆ S ∪ S−1 : g = s1 . . . sn}

A set of generators for G is a subset S of G such that 〈S〉 = G. The group
G is finitely generated (briefly f.g.) if it has a finite set of generators.

The group G = Z2 is finitely generated, S = {e1.e2} being a finite set
of generators for G. On the other hand, the group (Q,+) is not finitely
generated, because if a1, b1, . . . , an, bn ∈ Z \ {0}, GCD(ai, bi) = 1 for all

i ∈ {1, . . . , n}, and p > |b1 . . . bn| is prime, then 1
p
6∈
〈

a1

b1
, . . . , an

bn

〉

.

Every f.g. group G has a finite symmetric set of generators that does not
contain 1G: from now on, unless stated otherwise, only sets of generators of
this kind will be considered.

Definition 2.3.3 Let G be a f.g. group. Let S be a finite set of generators
for G. The Cayley graph of G w.r.t. S is the graph Cay(G,S) whose nodes
are the elements of G and whose set of arcs is E = {(g, gs), g ∈ G, s ∈ S}.

As an example, if G = Z2 and S = {e1, e2,−e1,−e2}, then Cay(G,S) is the
square grid on the plane.

Definition 2.3.4 Let G be a f.g. group. Let S be a finite set of generators
for G. The length of g ∈ G with respect to S is the smallest number n such
that g is the product of n elements of S, and is indicated by ‖g‖G

S .
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It is not difficult to prove that ‖ · ‖G
S is a metric, whose value is strongly

dependent from the set of generators S.
As an example, put G = Z2, g = (−3, 5): if:

S = {e1, e2,−e1,−e2}

and:
S ′ = S ∪ {e1 + e2, e1 − e2 − e1 − e2,−e1 + e2}

then ‖g‖G
S = 8 and ‖g‖G

S′ = 5.
Since ‖ · ‖G

S is a metric, the quantity:

dG
S (g, h) = ‖g−1h‖G

S (2.1)

defines a distance, called the distance between g and h w.r.t. S.
Observe that ‖g−1h‖G

S is the length of a shortest path from g to h in Cay(G,S);
the disk of center g and radius r w.r.t. S is the set:

DG
r,S(g) = {h ∈ G : dG

S (g, h) ≤ r}

We write DG
r,S for DG

r,S(1G). Observe that DG
n,S(g) = gDG

n,S, and that dG
S

induces the discrete topology over G.
Other quantities are the diameter of U w.r.t. S:

diam U = sup{dG
S (u1, u2), u1, u2 ∈ U}

and the range of U w.r.t. S:

rG
S (U) = sup{‖g‖G

S , g ∈ U} = inf{n ∈ N : U ⊆ DG
n,S}

If X is a set and A is an alphabet, a configuration of A over X is a function
c : X → A, and cx indicates the value of c ∈ AX at the point x ∈ X.

Theorem 2.3.5 Let A be an alphabet. Let G be a f.g. group. If G is infinite,
then AG is a Cantor space.

Proof:
G is infinite but finitely generated, hence it is countable: since A has at
least two distinct elements, AG has the power of continuum. But AG is
a topological product of compact and totally disconnected spaces, hence is
itself compact and totally disconnected.
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Let S be a finite set of generators for G. Define the distance of c1 and c2
w.r.t. S as:

dS(c1, c2) = 2− inf{n≥0: ∃g∈DG
n,S : (c1)g 6=(c2)g} (2.2)

with the conventions inf ∅ = ∞, 2−∞ = 0. It is easy to prove that dS is
a distance. To prove that dS induces the product topology, observe first
that the projections are continuous w.r.t. dS: actually, if ‖g‖G

S = n and
dG(c1, c2) < 2−n, then (c1)g = (c2)g. Furthermore, any topology where the
projections are continuous must contain all the sets of AG obtained by fixing
c ∈ AG and a finite E ⊆ G and taking all the configurations that coincide
with c over E: in particular, the open disks of dS. Therefore the topology
induced by dS is the coarser between those where the projections are contin-
uous, that is, it is the product topology: hence AG is metrizable.
To prove that AG is a Cantor space one only needs to prove that every con-
figuration is an accumulation point. Fix c ∈ AG; for every n ∈ N, let cn be
a configuration that coincides with c in every point, except one single point
gn such that ‖gn‖

G
S = n. Then dS(c, cn) = 2−n, limn→∞ cn = c, and {cn} is

not ultimately constant. ¤

Definition 2.3.6 Let A be an alphabet. Let G be a finitely generated group.
The natural right action of G over AG is the action σG : AG × G → AG

defined by:
(σG(c, g))i = cgi ∀g, i ∈ G ∀c ∈ AG (2.3)

For g ∈ G, the induced map σg : X → X defined by σg(c) = σG(c, g) is called
the shift map in the direction g.

If A = {0, 1} and G = Z, then σ1 is simply called the shift map.
The map defined by (2.3) is actually a right action: for every g, h, i ∈ G,
c ∈ AG:

((cg)h)i = (cg)hi = cghi = (cgh)i

Proposition 2.3.7 Let A be an alphabet. Let G be a finitely generated group.
The natural right action of G over AG is continuous.

Proof:
Let ε > 0. Let n ∈ N be such that 2−n < ε. Fix a finite set of generators S
for G. Fix g ∈ G. Choose c1, c2 ∈ AG such that dS(c1, c2) < 2−(n+‖g‖G

S ). If
i ∈ DG

n,S , then surely gi ∈ DG
n+‖g‖G

S
,S

, therefore:

((c1)
g)i = (c1)gi = (c2)gi = ((c2)

g)i
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hence dS((c1)
g, ((c2)

g)) < 2−n < ε. ¤

2.4 Shift subspaces and patterns

Symbolic dynamics studies the properties of the subsystems of the shift dy-
namical system (AZ, σ1): the phase spaces of these subsystems are called
shift subspaces. The definition extends to more general configuration spaces,
as is done in [8].

Definition 2.4.1 Let A be an alphabet. Let G be a f.g. group. A shift
subspace of AG is a closed subspace X ⊆ AG invariant under the natural
right action of G over AG.

If X ⊆ AG is a shift subspace, then the restriction to X of the natural action
of G over AG is a (continuous) right action of G over X: we keep on calling
it the natural right action.
An example of a shift subspace is the set X ⊆ AG of those configurations
that assume the value a at most at one point: in fact, X is invariant under
the natural action of G, and is topologically closed because, if ci = cj = 1
with i 6= j, given a set of generators S for X and n ∈ N such that i, j ∈ DG

n,S,
no configuration that coincides with c on DG

n,S can be inside X.
Observe that not all subsets are shift subspaces, nor any of the two conditions
implies the other one. To see this, fix a ∈ A: if G is nontrivial, then the set
X ′ = {c ∈ AG : c1G

= a} is closed but not translation invariant; and if G is
infinite, then the set X ′′ of those c ∈ AG such that cg 6= a for at most finitely
many g ∈ G is translation invariant but not closed.

Definition 2.4.2 Let A be an alphabet. Let G be a f.g. group. Let E ⊆ G
be finite. A pattern over AG with support E is a function p : E → A.
A pattern p with support E occurs in c ∈ AG if there exists g ∈ G such that
(cg)i = pi for all i ∈ E. A pattern p is forbidden for X ⊆ AG if it does not
occur in any of the elements of X.

The support of a pattern p can be indicated by supp p.
Let F be a set of patterns over AG: the set of all the configurations c ∈ AG

such that no p ∈ F occurs in c is indicated by XF .

Proposition 2.4.3 Let A be an alphabet. Let G be a f.g. group. Let X ⊆
AG. The following are equivalent:
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1. X is a shift subspace;

2. (X, σg) is a dynamical subsystem of (AG, σg) for every g ∈ G;

3. (X, σs) is a dynamical subsystem of (AG, σs) for every s ∈ S ∪ S−1,
where S is a finite set of generators for G;

4. there exists a set F of patterns over AG such that X = XF .

Proof:
(1 ⇔ 2 ⇔ 3) Since every σg is a continuous function, point 1 is equivalent to
point 2. Moreover, if g = s1 . . . sn then σg = σsn

◦ . . . ◦ σs1
, so that point 2 is

actually equivalent to point 3.
(4 ⇒ 1) A set of the form XF is invariant under the natural action of G over
AG. Moreover, if {cn} converges to c and p ∈ F occurs in c, take g ∈ G such
that cg coincides with p over E: since {(cn)g} converges to cg, for all n large
enough (cn)g must coincide with p over E, so that {cn} cannot be entirely
contained in XF .
(1 ⇒ 4) Let X be a shift subspace, and let:

Dn,S(c) = {c′ ∈ AG : dS(c, c′) < 2−n}

SinceX is closed, for all c 6∈ X there exists nc ∈ N such thatDnc,S(c)∩X = ∅.
Put:

F =
{

c|DG
nc,S

, c 6∈ X
}

If c 6∈ X, then surely c 6∈ XF . On the other hand, if c 6∈ XF , then there exist
c′ 6∈ X and g ∈ G such that (cg)|DG

n
c′ ,S

= c′
|DG

n
c′ ,S

: but then dS(cg, c′) < 2−nc′ ,

which by definition of nc′ implies cg 6∈ X. Since X is a shift subspace, c 6∈ X.
¤

Let X be a shift subspace: if X = XF , then F is a presentation of X, because
all of the structure of X is encoded in F . Sometimes, shift subspaces are
“simple” enough to have finite presentations.

Definition 2.4.4 Let A be an alphabet. Let G be a finitely generated group.
Let S be a finite set of generators for G. A shift subspace X ⊆ AG is of finite
type if there exists a finite set F of patterns over AG such that X = XF . A
shift subspace X ⊆ AG has finite memory w.r.t. S if there exist M ≥ 0 and
F ⊆ ADG

M,S such that X = XF . The minimum of the set of possible M ’s is
called the memory of X w.r.t. S.
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Proposition 2.4.5 Let A be an alphabet. Let G be a finitely generated group.
Let X ⊆ AG be a shift subspace. The following are equivalent:

1. X is of finite type;

2. there exists a finite set of generators S of G such that X has finite
memory w.r.t. S;

3. for all finite sets of generators S of G, X has finite memory w.r.t. S.

Proof:
(2 ⇒ 1) Follows from the definitions.
(3 ⇒ 2) Point 2 is a special case of Point 3.
(1 ⇒ 3) Let X be a shift of finite type: then X = XF for some finite set of
patterns F . Let S be a finite set of generators for G: then there exists n ≥ 0
such that DG

n,S contains supp p for all p ∈ F . Let:

F ′ =
{

p′ ∈ ADG
n,S : ∃p ∈ F : p′|supp p = p

}

Then XF ′ = XF = X, so that X has memory M ≤ n w.r.t. S. ¤

2.5 Uniformly locally definable functions

A function F : AG → AG is locally definable at a point g ∈ G, if the value of
F (c) in g depends only on the values of c in some points “near” g, i.e. the
points of a finite set N = N (g); if the N (g)’s also “have the same shape”,
in the sense that there exists N ⊆ G such that N (g) = gN , then we speak
of uniform locality.

Definition 2.5.1 Let G be a group. A neighborhood index is a finite subset
N ⊆ G. A point h ∈ G is a neighbor of g w.r.t. N if h ∈ gN .

The relation “being a neighbor w.r.t. N ” is reflexive iff 1G ∈ N , and sym-
metric iff N is symmetric; moreover, if h is a neighbor of g w.r.t. N and u
is a neighbor of h w.r.t. N ′, then u is a neighbor of g w.r.t. NN ′.
Neighborhood indices allow to introduce the following notation. Let A be an
alphabet, G a f.g. group, N ⊆ G a neighborhood index: for c ∈ AG put:

〈ch〉h∈gN = (cg)|N (2.4)
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In fact, since N is finite, one can define an ordering N = {v1, . . . , vN} and
induce a corresponding ordering gN = {gv1, . . . , gvN} for any g ∈ G: then,

f
(

〈ch〉h∈gN

)

is a writing for f (cgv1
, . . . , cgvN

).

This allows to define uniform local definability as follows:

Definition 2.5.2 Let A be an alphabet. Let G be a finitely generated group.
A function F : AG → AG is uniformly locally definable, or briefly UL-
definable, if there exist a finite set N ⊆ G and a map f : AN → A such that
for every c ∈ AG, g ∈ G:

(F (c))g = f
(

〈ch〉h∈gN

)

(2.5)

The set N is called the neighborhood index of F .

From Definition 2.5.2 and the compactness of AG follows a classical result,
stated for the first time in [13] in the case G = Z and F = σ1: its proof in
our context deserves a look.

Theorem 2.5.3 (Hedlund’s Theorem) A function F : AG → AG is uni-
formly locally definable if and only if it is continuous and commutes with the
natural action of G over AG.

Proof:
(⇒) Suppose F satisfies Equation 2.5 for some finite set N and function
f : AN → A. Let ε > 0. Let n be such that 2−n < ε. Fix a finite set of
generators S, and let r ≥ 0 be such that N ⊆ DG

r,S.

Suppose dS(c1, c2) < 2−(n+r): then c1 and c2 are equal over DG
n+r,S. Let

g ∈ DG
n,S: then gN ⊆ DG

r,S(g) ⊆ DG
n+r,S, therefore:

(F (c1))g = f
(

〈(c1)h〉h∈gN

)

= f
(

〈(c2)h〉h∈gN

)

= (F (c2))g

From the arbitrariness of g follows that F (c1) and F (c2) are equal over DG
n,S:

hence dS(F (c1), F (c2)) < 2−n < ε. From the arbitrariness of ε follows the
continuity of F .
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Moreover, for every fixed g ∈ G and for every h ∈ G:

(F (cg))h = f
(

〈(cg)i〉i∈hN

)

= f
(

〈cgi〉i∈hN

)

= f
(

〈cj〉j∈ghN

)

= (F (c))gh

= ((F (c))g)h

therefore F commutes with the natural action of G over AG.
(⇐) Suppose that F is continuous and commutes with the natural action.
Since AG is compact and metrizable, F is uniformly continuous: in particular,
for every finite set of generators S for G, there exists r ∈ N such that, if c1
and c2 are equal over DG

r,S, then (F (c1))1G
= (F (c2))1G

. Choose S, fix r
accordingly, and put N = DG

r,S.
For α ∈ AN , let f(α) = (F (cα))1G

, where cα is any configuration whose
restriction to N is identical to α: then f : AN → A is well defined because of
the choice of r. To complete the proof, one must show that F and f satisfy
Equation 2.5: and indeed, since F commutes with the natural action, for
every c ∈ AG and g ∈ G:

(F (c))g = (F (cg))1G

= f
(

〈(cg)j〉j∈N

)

= f
(

〈cgj〉j∈N

)

= f
(

〈ci〉i∈gN

)

¤

Hedlund’s Theorem has the following important consequence.

Theorem 2.5.4 Let A be an alphabet. Let G be a finitely generated group.
The class of the transformations of AG that are UL-definable is a monoid
with respect to the composition rule.

Proof:
Suppose F1, F2 : AG → AG are both UL-definable: then they are both con-
tinuous, so the composition F2 ◦ F1 is continuous; moreover, for any c ∈ AG,
g ∈ G:

(F2 ◦ F1)(c
g) = F2(F1(c

g)) = F2((F1(c))
g) = ((F2(F1(c)))

g) = ((F2 ◦ F1)(c))
g
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that is, F2 ◦ F1 commutes with the natural right action of G over AG. Then
F2 ◦ F1 is UL-definable by Hedlund’s Theorem.
The proof is concluded by observing that the identity map of AG is UL-
definable. ¤
As an example, consider the shift map σ1 of {0, 1}Z into itself: since σ1

satisfies the hypotheses of Hedlund’s Theorem, it must be UL-definable. And
indeed, if N = −1, 0,+1 and f(c−1, c0, c+1) = c+1, then σ1 is defined by f in
the sense of (2.5).
As a counterexample on the same configuration space, the function F that
switches the value of c in 0 and leaves it unchanged elsewhere, cannot be
UL-definable: in fact, if ci = 0 for all i ∈ Z, then ((F (c))+1)−1 = 1 but
(F (c+1))−1 = 0.
Observe that if the hypotheses of Hedlund’s Theorem are satisfied on a shift
subspace X, then the map F : X → AG can be seen as the restriction to X
of a uniformly locally definable transformation of AG. More formally:

Proposition 2.5.5 Let A be an alphabet. Let G be a f.g. group. Let X ⊆ AG

be a shift subspace. If F : X → AG is continuous and commutes with the
natural right action of G over X, then F is the restriction to X of a UL-
definable transformation of AG.

Proof:
By definition, X is compact and inherits the metric from AG. Fix a finite set
of generators S for G: as in proof of Hedlund’s Theorem, there must exist
r ≥ 0 such that, if c1, c2 ∈ X are equal over DG

r,S,, then F (c1) and F (c2)
assume the same value on 1G. Let:

P = {α ∈ ADG
r,S : ∃c ∈ X : c|DG

r,S
= α}

Define f : ADG
r,S → A by defining f(α) as the common value a = (F (c))1G

of the c ∈ X such that c|DG
r,S

= α if α ∈ P , and arbitrarily otherwise: let Ff

be the UL-definable transformation of AG induced by f by means of (2.5).
Then for every c ∈ X and g ∈ G:

(Ff (c))g = (Ff (c
g))1G

= f
(

(cg)|DG
r,S

)

= (F (cg))1G
= (F (c))g

so that (Ff )|X = F . ¤



Chapter 3

Cellular automata

Cellular automata are a class of finitary descriptions of dynamical systems
that has encountered a very large appraisal from many fields — and as a side
effect, has undergone many redefinitions.
The reason for this success lies both in the simplicity of the idea and the
similarity with “real world” phenomena: in fact, many complex structures
can be seen as aggregates of simpler ones, interacting at finite range in finite
time.
The drawback of a description so simple for the part, is difficulty of recon-
structing the properties of the whole: this is especially true for invertibility.
In this chapter, cellular automata are presented both with the old-fashioned
formulation and the more recent point of view based on finitely generated
(not necessarily Abelian) groups and possibly incomplete (but closed and
translation-invariant) spaces. The chapter continues by showing a charac-
terization of the dynamical systemd that can be presented in terms of these
“new-styled” cellular automata. Finally, the invertibility problem is formu-
lated and the known main results are stated.

3.1 Definitions and properties

Cellular automata are described in terms of set of states, dimension, finite
neighborhood, and local evolution function. Instead of starting with formu-
las and theorems, we give some examples.

The first one is a very famous two-dimensional conceptual experiment: Con-

23
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way’s game of life.
Consider “living” entities that occupy the nodes of a square lattice. These
beings are born, survive, and die according to the following rules:

• if exactly three alive entities are near an empty node, then a new entity
is born in the node;

• if an alive entity has either two or three alive neighbors, it stays alive;

• all other beings that are alive, die and nothing else is born

where a “neighbor” occupies the nearest cell in one of the eight directions:
north, south, east, west, northeast, northwest, southeast, southwest.
The dynamics above can be described by means of four items:

• a set of states, {0 = dead, 1 = alive};

• an underlying space, Z × Z;

• a set of “possible displacement of neighbors”,
{(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1, 1), (−1, 1), (−1,−1)};

• a function that transforms 9-tuples of states into states, according to
the rules given before.

This is a finite way of describing an infinite system, since the function can be
given by means of its (finite) look-up table, that is, the table that associates
each possible input to its output.
The next example is on the line. Again, the states are 0 and 1; consider the
map that assigns at every node of the cell the sum modulo 2 of the values of
its leftmost and rightmost neighbor.
Again, one has:

• a set of states, {0, 1};

• an underlying space, Z;

• a set of “possible displacement of neighbors” {+1,−1};

• a functions that transforms couples of states into states.
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Figure 3.1: The evolution of a configuration of the Game of Life cellular
automaton. From left to right, from top to bottom: initial random situation,
first iteration, 50th iteration, 250th iteration.

This is called Wolfram’s rule 90. Again, this is a finite description of an
infinite system.
The interesting thing that one can observe from this discussion, is the possi-
bility to obtain finite descriptions of infinite dynamical systems: actually, one
needs a special description of the state space and a local expression for the
evolution function. It is actually possible to give such a formal description
for a class of systems that includes the two previous examples.
Suggestions for extending the concept of cellular automaton to non-Euclidean
context can already be found in the work of Mach̀ı and Mignosi [20] and of
Ceccherini-Silberstein, Mach̀ı and Scarabotti [4] on Moore-Myhill property
(see [21] and [22]) for cellular automata whose support space is the set of
configurations on an amenable group. Later, extending some results in sym-
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Figure 3.2: The evolution of Wolfram’s Rule 90 from an initial configuration
with a single cell having value 1. The “shape” is that of Pascal Triangle
modulo 2.

bolic dynamics about shift dynamical systems over the integers, Fiorenzi [8]
included general finitely generated groups and non-complete sets of config-
urations. It is now possible to give a definition in this direction, with an
additional remark on the role of the neighborhood, which can have a definite
importance in some contexts (see e.g. [28]).

Definition 3.1.1 Let G be a finitely generated group. Let A be an alphabet.
A cellular automaton with alphabet A and tessellation group G is a triple
〈X,N , f〉 where:

1. X is a shift subspace of AG;

2. N is a finite subset of G;

3. f is a function from AN to A such that the function F defined by (2.4)
satisfies F (X) ⊆ X.

The shift subspace X is called the support of the cellular automaton. The set
N is called the neighborhood index of the cellular automaton. The function
f is called the local evolution function of the cellular automaton.
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We introduce some alternative notations to be used in special cases. If
N = DG

r,S for some integer r ≥ 0 and finite set of generators S for G,

we write 〈X,S, r, f〉 instead of
〈

X,DG
r,S , f

〉

. If X = AG with G = Zd, we

write 〈A, d,N , f〉 instead of
〈

AZ
d

,N , f
〉

.

Properties of cellular automata can be based on properties of their compo-
nents. For example, a cellular automaton with tessellation group Zd will be
called d-dimensional or free Abelian; if its support space is a full shift, full ;
if its alphabet is binary, binary ; and so on.
As an example, let G = Z, A = {0, 1}; put X = AG, S = {+1,−1}, r = 1,
and define f : A{−1,0,+1} → A as f(a−1, a0, a1) = a1: then 〈X,S, r, f〉 is a
cellular automaton.
For a less trivial example, let A, G, X, S and r as before, and define
f : A{−1,0,+1} → A as f(a−1, a0, a1) = (a−1 + a1) mod 2: this is Wolfram’s
Rule 90.
As Toffoli [29] points out, cellular automata are not dynamical systems per
se: rather, they are presentations of dynamical systems, that is, finite “en-
codings” of their behavior.

Definition 3.1.2 Let 〈X,N , f〉 be a cellular automaton. The associate dy-
namical system is the pair (X,F ) where F is defined by (2.5). The function
F is called the global evolution function of the cellular automaton.

Observe that, by Hedlund’s Theorem, the global evolution function of a cel-
lular automaton is continuous.
For example, if f(a−1, a0, a1) = a1, then the dynamical system associate to
〈

{0, 1}Z, {−1, 0,+1}, f
〉

is the shift dynamical system.

Actually it is clear that, if N ⊆ N ′ and f ′
(

〈ch〉h∈gN ′

)

= f
(

〈ch〉h∈gN

)

, then

〈X,N , f〉 and 〈X,N ′, f ′〉 have the same associate dynamical system: thus
we will often use the form 〈X,S, r, f〉, with r and S such that N ⊆ DG

r,S.
The range of f w.r.t. S is the range of N w.r.t. S.
Observe that the passage to a subsystem is preserved in a natural way by
the structure of cellular automata.

Proposition 3.1.3 The dynamical system associate to a cellular automaton
〈X,N , f〉 with alphabet A and tessellation group G is a dynamical subsystem
of the dynamical system associate to

〈

AG,N , f
〉

.

One can observe that from Hedlund’s Theorem follows that the global evolu-
tion function of a cellular automaton commutes with the natural right action
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of its tessellation group on the phase space of the associate dynamical sys-
tem.
It is also interesting to show that different elements of the phase space can
always be told from one another by “pointing a microscope in the proper
place”, as can be seen in the following:

Proposition 3.1.4 Let 〈X,N , f〉 be a cellular automaton with alphabet A
and tessellation group G. Then there exists a continuous function π : X → A
such that:

1. for every pair of configurations c1, c2 ∈ X such that c1 6= c2, there exists
c ∈ G such that π((c1)

g) 6= π((c2)
g);

2. the function τ : AG → AG defined by (τ(c))g = π(cg) for all g ∈ G is
continuous.

Proof:
Define π by π(c) = c1G

. Then π is continuous by the definition of product
topology (π is the projection on the coordinate 1G).
(1.) If c1 6= c2, then there must exist g ∈ G such that (c1)g 6= (c2)g. Therefore:

π((c1)
g) = ((c1)

g)1G
= (c1)g 6= (c2)g = ((c2)

g)1G
= π(c2)

(2.) Let c ∈ AG, g ∈ G: then (τ(c))g = π(cg) = (cg)1G
= cg, so τ is actually

the identity. ¤
Two more properties of the class of cellular automata are proved in the next
two statements.

Theorem 3.1.5 Let A be an alphabet. Let G be a f.g. group. Let X ⊆ AG be
a shift subspace. The class of cellular automata with support X is a monoid
with respect to the composition rule.

Proof:
It known from Theorem 2.5.4 that the family of UL-definable maps over AG

is a monoid. This is also true for the family of those UL-definable functions
F satisfying F (X) ⊆ X. ¤

Proposition 3.1.6 Let A be an alphabet. Let G be a finitely generated group.
Let X ⊆ AG be a shift subspace. If F is the global evolution function of a
cellular automaton with alphabet A and tessellation group G, then F (X) ⊆ X
is a shift subspace of AG.
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Proof:
Since AG is both compact and metrizable, X ⊆ AG is closed if and only if
it is compact: and it is known from General Topology that the image of a
compact set by means of a continuous function is compact. Therefore, F (X)
is closed.
Let c ∈ F (X): then c = F (c′) for some c′ ∈ X. Let g ∈ G: since X is a
shift subspace, (c′)g ∈ X: since F commutes with the natural action of G
over AG, cg = (F (c′))g = F ((c′)g) ∈ F (X). Hence F (X) is invariant under
the natural action of G over AG. ¤

3.2 The characterization theorem

Cellular automata provide short descriptions of dynamical systems, as every
cellular automaton describes its associate dynamical system. It is interest-
ing to find exactly the dynamical systems that can be described by cellular
automata.

Definition 3.2.1 A dynamical system (X,F ) has a presentation as a cellu-
lar automaton if there exists a cellular automaton 〈Y,N , f〉 whose associate
dynamical system is conjugate to (X,F ). The cellular automaton 〈Y,N , f〉
is called a presentation of (X,F ) as a cellular automaton.

Point 1 of Proposition 3.1.4 tells that, if (X,F ) is associate to a cellular
automaton with alphabet A and tessellation group G, then there is a way
to tell the points of the phase space from one another, just by using a finite
alphabet in the right way. This suggests the following definition:

Definition 3.2.2 Let X be a set. Let A be an alphabet. Let G be a group.
Let ϕ be a right action of G over X.
X is discernible on A by ϕ if there exists a continuous function π : X → A
such that, for every x1, x2 ∈ X such that x1 6= x2, there exists g ∈ G such
that π(ϕ(x1, g)) 6= π(ϕ(x2, g)).

Discernibility on an alphabet by a group action, is precisely a way to tell
points of the phase space from one another, exactly as it can be done with
supports of cellular automata: this property, together with commutation
of the transition function with a group action, is shared by all dynamical
systems that have a presentation as cellular automata.
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Proposition 3.2.3 Let (X,F ) be a dynamical system. If (X,F ) has a pre-
sentation as a cellular automaton, then F commutes with a continuous right
action of the tessellation group of the cellular automaton.

Proof:
Let 〈X ′,N , f ′〉 be a presentation of (X,F ) as a cellular automaton; let A be
its alphabet and G ist tessellation group. Let ϑ be a conjugacy from (X,F )
to (X ′, F ′). Define a right action ϕ : X × G → X by putting for all x ∈ X,
g ∈ G:

ϕ(x, g) = ϑ−1(σG(ϑ(x), g)) (3.1)

From now on, ϕ(x, g) will be written as xg and σG(c, g) as cg.
Observe that ϕ is actually a right action of G on X. Indeed, for all x ∈ X:
x1G = ϑ−1((ϑ(x))1G) = ϑ−1(ϑ(x)) = x (remember that the action of G over
X ′ is the restriction to X ′ of the natural action of G over AG); moreover, for
any g1, g2 ∈ G, x ∈ X:

(xg1)g2 = (ϑ−1((ϑ(x))g1))g2

= ϑ−1((ϑ(ϑ−1((ϑ(x))g1)))g2)

= ϑ−1(((ϑ(x))g1)g2)

= ϑ−1((ϑ(x))g1g2)

= xg1g2

Moreover, for every g ∈ G, the map ϕg is a composition of continuous func-
tions, and is therefore continuous. From the definition also follows that
ϑ(xg) = (ϑ(x))g. Putting c = ϑ(x) ∈ X ′ and applying ϑ−1 to the last equa-
tion, gives (ϑ−1(c))g = xg = ϑ−1(cg) also.
Now, let x ∈ X, g ∈ G: then:

(F (x))g = ((ϑ−1 ◦ F ′ ◦ ϑ)(x))g

= ϑ−1(((F ′ ◦ ϑ)(x))g)

= (ϑ−1 ◦ F ′)((ϑ(x))g)

= (ϑ−1 ◦ F ′ ◦ ϑ)(xg)

= F (xg)

¤
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Proposition 3.2.4 Let (X,F ) be a dynamical system. If (X,F ) has a pre-
sentation as a cellular automaton, then X is discernible on the alphabet of
the cellular automaton by a continuous right action of the tessellation group
of the cellular automaton.

Proof:
Let 〈X ′,N , f ′〉, A, G, ϑ and ϕ as in proof of Proposition 3.2.3; again, xg

stands for ϕ(x, g) and cg for σG(c, g).
Define π : X → A by putting π(x) = (ϑ(x))1G

: this function is continu-
ous as composition of continuous functions. Suppose that x1 6= x2: then
ϑ(x1) 6= ϑ(x2) too, because ϑ is a conjugacy; hence, there exists g ∈ G
such that (ϑ(x1))g 6= (ϑ(x2))g, that is, ((ϑ(x1))

g)1G
6= ((ϑ(x2))

g)1G
. But

(ϑ(x))g = ϑ(xg) for all x ∈ X, g ∈ G: so π((x1)
g) 6= π((x2)

g). ¤

At the aim of understanding what happens if (X,F ) commutes with a right
action of a group and is discernible on some alphabet by the same action,
Proposition 2.5.5 is restated in a more convenient form.

Theorem 3.2.5 Let (X,F ) be a dynamical system such that X is a shift
subspace of AG for some alphabet A and finitely generated group G. If F
commutes with the natural right action of G over AG, then (X,F ) is the dy-
namical system associate to a cellular automaton with alphabet A, tessellation
group G and support X.

Theorem 3.2.5 has a somewhat surprising consequence: a f.g. group is
Abelian if and only if all the maps induced by its natural action on any
configuration space AG are global evolution functions of cellular automata.

Corollary 3.2.6 Let A be an alphabet. Let G be a finitely generated group.
Let g ∈ G. Then (AG, σg) has a presentation as a cellular automaton if and
only if g commutes with every element of G.

Proof:
By Proposition 2.3.7 and Theorem 3.2.5, (AG, σg) has a presentation as a
cellular automaton if and only if cgh = chg for all h ∈ G and all c ∈ AG: this
is equivalent to gh = hg for all h ∈ G. ¤
Now, fix g ∈ G and a finite set of generators S ⊆ G, and let r = ‖g‖G

S :
by Hedlund’s Theorem, the function Fg : AG → AG induced by the map

fg : ADG
r,S → A defined by fg(α) = αg, is continuous and commutes with the
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natural right action. The apparent contradiction vanishes when one observes
that, in general, the UL-definable map Fg induced by fg does not coincide
with σg: indeed, computation shows that for every c ∈ AG and i ∈ G:

(Fg(c))i = fg

(

〈cj〉j∈DG
n,S

(i)

)

= fg

(

〈

(ci)j

〉

j∈DG
n,S

)

= (ci)g

= cig

while (σg(c))i = cgi, which in general is different from cig.

From Propositions 3.2.3 and 3.2.4 follows that, if a dynamical system (X,F )
has a presentation as a cellular automaton, then it necessarily has the fol-
lowing property: there exist an alphabet A, a finitely generated group G and
a continuous right action ϕ of G over X such that F commutes with ϕ and
X is discernible on A by ϕ. Actually, this property is also sufficient for a
dynamical system to have a presentation as a cellular automaton.

Proposition 3.2.7 Let (X,F ) be a dynamical system. Let A be an alpha-
bet, G a f.g. group, ϕ a continuous right action of G over X such that F
commutes with ϕ and X is discernible over A by ϕ. Then (X,F ) has a
presentation as a cellular automaton with alphabet A and tessellation group
G.

Proof:
For every x ∈ X define cx ∈ AG by putting (cx)g = π(ϕ(x, g)).
The application τ that maps x into cx is injective. In fact, suppose x1 6= x2:
since X is discernible on A by ϕ, there exists g ∈ G such that π((x1)

g) 6=
π((x2)

g). But π(ϕ(x1, g)) = (cx1
)g and π(ϕ(x2, g)) = (cx2

)g, so cx1
6= cx2

.
Put Y = τ(X): then τ is bijective as a map from X to Y . Observe that for
all g, h ∈ G and all x ∈ X:

(cϕ(x,g))h = π(ϕ(ϕ(x, g), h))

= π(ϕ(x, gh))

= (cx)gh

= ((cx)
g)h
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that is, cxg = (cx)
g for all x ∈ X, g ∈ G. Now, given c ∈ Y , it is c = cx for

some x ∈ X: but then, cg = (cx)
g = cxg is still in Y , that is, Y is invariant

under the natural right action of G.
Now, by Definition 3.2.2, π is continuous: since A is discrete, there must
exist η > 0 such that dX(x1, x2) < η implies π(x1) = π(x2).
Let ε > 0. Consider n ∈ N such that 2−n < ε.
Fix a finite set of generators S for G. Since DG

n,S is finite and the action
is continuous, there must exist δ > 0 such that, if dX(x1, x2) < δ, then
dX(ϕ(x1, g), ϕ(x2, g)) < η for all g ∈ DG

n,S. By joining the requirements one
finds that, if dX(x1, x2) < δ, then π(ϕ(x1, g)) = π(ϕ(x2, g)) for all g ∈ DG

n,S;
but then:

(cx1
)g = π(ϕ(x1, g)) = π(ϕ(x2, g)) = (cx2

)g

for all g ∈ DG
n,S . So, if dX(x1, x2) < δ, then dS(cx1

, cx2
) < 2−n < ε.

From the arbitrariness of ε follows that τ is continuous.
Since X is compact and τ is continuous, Y is also compact; since AG is
metrizable, Y is closed in AG. Thus Y is a shift subspace of AG.
Since X and Y are compact metrizable spaces and τ is continuous and in-
vertible, τ−1 : Y → X is continuous too, so τ is a homeomorphism between
X and Y .
Define F ′ : Y → Y by F ′ = τ ◦ F ◦ τ−1: then (Y, F ′) is a dynamical system
and τ is a conjugacy between (X,F ) and (Y, F ′).
Let c ∈ Y : then c = cx for one and only one x ∈ X. Then:

(F ′(c))g = ((τ ◦ F ◦ τ−1)(cx))
g

= ((τ ◦ F )(x))g

= (cF (x))
g

= c(F (x))g

= cF (xg)

= τ(F (xg))

= (τ ◦ F )(τ−1(cxg))

= (τ ◦ F )(τ−1((cx)
g))

= F ′(cg)

so F ′ commutes with the natural right action of G over AG. By Theo-
rem 3.2.5, (Y, F ′) is the dynamical system associate to a cellular automaton
with alphabet A, tessellation group G, and support Y : since (X,F ) is con-
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jugate to (Y, F ′), (X,F ) has a presentation as a cellular automaton. ¤
From Propositions 3.2.3, 3.2.4 and 3.2.7 follows then:

Theorem 3.2.8 (The Characterization Theorem) Let (X,F ) be a dy-
namical system. The following are equivalent:

1. (X,F ) has a presentation as a cellular automaton;

2. there exist an alphabet A, a finitely generated group G and a continuous
right action ϕ of G over X such that F commutes with ϕ and X is
discernible on A by ϕ.

In this case, (X,F ) has a presentation as a cellular automaton with alphabet
A and tessellation group G.

Theorem 3.2.8 could be restated for a more restrictive definition of cellu-
lar automata: for instance, one could consider only cellular automata with
Abelian f.g. tessellation group, and get the corresponding version of the the-
orem.
On the other hand, the hypothesis that the support of a cellular automa-
ton is a shift subspace rather than the whole configuration space, cannot be
abandoned: in fact, if (X,F ) is discernible over A by ϕ and Y ⊆ X is a
closed subset that is invariant with respect to both F and ϕ, then (Y, F ) is
discernible over A by ϕ too; and discernibility is exactly what allows to define
an embedding of the original dynamical system into the associate dynamical
system of one of its presentations as a cellular automaton.
Regarding the choice of generators for the tesselletion group, different sets
of generators can produce different Cayley graphs, however the associate
dynamical system remains the same.

Lemma 3.2.9 Let 〈X,S, r, f〉 be a cellular automaton with alphabet A and
tessellation group G and let (X,F ) its associate dynamical system. For every
set S ′ of generators of G, there exist a number r′ ≥ 0 and a function f ′ :

A
DG

r′,S′ → A such that 〈X,S ′, r′, f ′〉 is a presentation of (X,F ).

Proof:

Put r′ = max{‖g‖G
S′ , g ∈ DG

r,S}: then DG
r,S ⊆ DG

r′,S′ , and f ′ : A
DG

r′,S′ defined
by:

f ′
(

〈ag〉g∈DG
r′,S′

)

= f
(

〈ag〉g∈DG
r,S

)
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satisfies for all g ∈ G:

(F (c))g = f
(

〈ah〉h∈DG
r,S

(g)

)

= f ′
(

〈ah〉h∈DG
r′,S′ (g)

)

¤

3.3 Discussion

The fact of considering non-Abelian tessellation groups and non-full configu-
ration spaces, gives a definition that is potentially broader. This suggests the
question: does a dynamical system exist, having a presentation as a cellular
automaton, but not as a free Abelian full cellular automaton? and if this
happens, what is really making the difference?
A simple argument answers positively the first part of the question.

Proposition 3.3.1 Let G be a finitely generated group. If G has more than
two elements, then there exist cellular automata with tessellation group G
that are not conjugate to any cellular automaton over a full shift.

Proof:
Let a, b ∈ A be distinct.
If G is finite, let X ⊆ AG be the set of those configurations such that:

1. cg ∈ {a, b} for all g ∈ G;

2. there exist g, h ∈ G such that cg = a and ch = b.

Then X is a shift subspace, and |X| = 2|G| − 2 = 2(2|G|−1 − 1), that is never
a perfect power if |G| > 2.
If G is infinite, then it is countable. Let X be the set of those configurations
c such that cg = a except for at most a single g ∈ G, where cg = b: then
X is countable, invariant under the natural action of G over AG, and also
topologically closed, because if {cn} ⊆ X converges to c ∈ AG, then there is
at most one g ∈ G such that cg 6= a, and one must have cg = b: hence X is
a shift subspace.
In either case, there cannot exist a bijection from X to a full shift, and no
cellular automaton with support X can be conjugate to a cellular automaton
over a full shift: this is especially true for 〈X, {1G}, idA〉. ¤
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Regarding the second question, observe that the new definition makes easier
to think about subsystems. In fact, suppose that (X,F ) satisfies point 2 of
Theorem 3.2.8: if Y ⊆ X is closed and invariant both by F and ϕ, then
not only Y has a presentation as a cellular automaton, but this presentation
can be chosen so that its associate dynamical system is a subsystem of the
one associate to a presentation of (X,F ) as a cellular automaton, whatever
it is. In other words: with the new formulation, the operations of “finding
a subsystem” and “present as a cellular automaton” can commute, at least
under reasonable hypotheses.
However, there is always the other side of the coin. Adding shift subspaces is
not painless, because if X is a shift subspace, and c is a configuration, then
in general it is not possible to state in a finite time if c ∈ X or not: the
problem would be decidable if both X and AG \X were shifts of finite type,
but in general, the complement of a shift subspace is not a shift subspace. In
other words, this is like having some kind of “hidden device”, that does “bad
things” if the initial configuration is not “correct”, and that can possibly be
out of control from the inside.
Another thing that can be lost with the new formulation, is finite presentabil-
ity. In fact, with the canonical formulation, a cellular automaton can always
be described by means of a finite sequence of symbols: but this can be im-
possible, for example, if the shift subspace is not full. On the other hand,
the neighborhood and local evolution function part of a cellular automaton
are always finitely presentable: this means that the “weak point” is actually
given by the support. Hence, one has to look at classes of shift subspaces
that have a finite presentation.
Of course, shifts of finite type are a good candidate: one only needs a finite
list of forbidden patterns. But it is possible to do better than this: in fact,
Proposition 3.1.6 allows to define a new class of objects.

Definition 3.3.2 A shift subspace X ⊆ AG is sofic if there exist a uniformly
locally definable map F and a shift of finite type Y ⊆ AG such that X = F (Y ).

Sofic shifts (from a Hebrew word meaning “finite”) are important in one-
dimensional discrete symbolic dynamics, because a shift subspace of AZ is
sofic if and only if it has a presentation as finite state automaton. But a sofic
shift on an arbitrary f.g. group still has a finite presentation: as a cellular
automaton whose support is a shift of finite type.
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3.4 The invertibility problem

When dealing with cellular automata, one has two laws to take into account:
the local one, that maps states of neighborhoods into states of points; and
the global one, that maps states of the space into states of the space. Talking
about invertibility of the local law is usually pointless, because it maps finite
sets into smaller (except for trivial cases) finite sets; instead, the beautiful
thing would be to reconstruct the previous global state from the current one.
In other words, invertibility for a cellular automaton should be equivalent to
invertibility of the associate dynamical system.
This leads to the following statement:

Definition 3.4.1 A cellular automaton 〈X,N , f〉 is invertible if its local
evolution function F is invertible over X.

The main difficulty in dealing with invertibility of dynamical system pre-
sented as cellular automata, lies in the fact that a presentation in local terms
is not the best tool to derive global properties: this is true, for example, for
conservation laws, where results such as [23] or [12] are the exception rather
than the norm. This is also true for invertibility.
The following result, originally stated in a slightly different context (locally
definable relations on Zd whose inverse is a function), states that the class
of cellular automata is closed with respect to inversion.

Proposition 3.4.2 (Richardson’s Lemma) Let 〈X,N , f〉 be an invert-
ible cellular automaton. Let F be its global evolution function. Then (X,F −1)
has a presentation as a cellular automaton.

In other words: the inverse of an invertible cellular automaton is itself a
cellular automaton.
Proof:
First of all, F : X → X is continuous and invertible with X being compact
and metrizable: therefore F−1 is continuous.
Let G be the tessellation group of 〈X,N , f〉: for every c ∈ X, g ∈ G, putting
c′ = F−1(c), one has for every i ∈ G:

(F−1(cg))i = (F−1((F (c′))g))i

= (F−1(F ((c′)g)))i

= ((c′)g)i
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= ((F−1(F (c′)))g)i

= ((F−1(c))g)i

that is, F−1(cg) = (F−1(c))g. Since g ∈ G and c ∈ X arbitrary, F−1 com-
mutes with the natural action of G over X: then the thesis follows by The-
orem 3.2.5. ¤
As a consequence of Richardson’s Lemma together with Theorem 3.1.5 one
finds:

Corollary 3.4.3 Let A be an alphabet. Let G be a finitely generated group.
Let X ⊆ AG be a shift subspace. The class of invertible cellular automata
with support X is a group with respect to the composition rule.

The following question was asked by Richardson:

Is it possible to deduce the invertibility of a dynamical system
only from a presentation as a cellular automaton?

or better:

Does a presentation of a dynamical system as a cellular automaton
contain enough information to reduce the control of the invertibility
of the system to a purely mechanical process?

In the language of Computability Theory, this problem is formulated as fol-
lows:

Definition 3.4.4 Let C be a class of cellular automata. We say that the
invertibility problem is decidable for C if there exists an algorithm that, given
an arbitrary element A of C as input, returns within a finite time True if A
is invertible, and False otherwise.

The problem was stated by Richardson and studied by many people including
Richardson himself, Amoroso, Patt, and Kari. We can summarize the main
results with the following statements (we omit the proofs).

Theorem 3.4.5 (Richardson, 1972) Let C be the class of cellular automata
with tessellation group Zd and full configuration space. If the global evolution
function of A ∈ C is injective, then A is invertible.
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Theorem 3.4.6 (Amoroso and Patt, 1972) Let C be the class of full cel-
lular automata with tessellation group Z. Then the invertibility problem for
C is decidable.

Theorem 3.4.7 (Toffoli, 1977) Every d-dimensional full cellular automa-
ton can be embedded into a d+ 1-dimensional invertible full cellular automa-
ton.

An extension of Theorem 3.4.6 can be found in Section 1.6 of [8]: it states
that the invertibility problem is still decidable for the class of cellular au-
tomata with tessellation group Z and support of finite type.
Amoroso and Patt suggested that the technique they used to prove decidabil-
ity in one dimension, “should be extended to higher dimensions, even with
some difficulty”. This prediction was proved wrong eighteen years later.

Theorem 3.4.8 (Kari, 1990) Let C be the class of full cellular automata
with tessellation group Z2. Then the invertibility problem for C is undecidable.

The techniques adopted by Kari to prove his theorem, was also used by
Clementi [6] to show:

Theorem 3.4.9 (Clementi, Mentrasti, Pierini 1995) There exists no re-
cursive function that, given an arbitrary d-dimensional invertible full cellular
automaton, returns an upper bound for the range of the inverse cellular au-
tomaton.

Of course, what does not hold for a large class, can still possibly hold for
smaller classes: so it is meaningful to focus on peculiar characteristics and
see if they yield more information. An interesting result in this direction is:

Theorem 3.4.10 (Sato, 1993) Let C be the class of cellular automata with
tessellation group Zd with d ≥ 1 and full configuration space, such that A = R
is a finite ring and f only depends on a linear combination of its input values.
Then the invertibility problem for C is decidable.

Those who want to study invertibility problems, however, must keep in mind
that simulation is not a good tool. In fact, Clementi [5] showed that:

Theorem 3.4.11 (Clementi, 1994) There exist an alphabet A, a finite set
N ⊆ AZ

2

and a map f : AN → A such that, calling Xn ⊆ AZ
2

the set of
configurations that satisfy c(i+hn,j+kn) = c(i,j) for all i, j, h, k ∈ Z:

1. 〈Xn,N , f〉 is invertible for all n ≥ 1;

2. 〈A, 2,N , f〉 is not invertible.
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Chapter 4

Lattice gases

Lattice gases are a special class of cellular automata developed with the main
purpose to model perfect gases. In a lattice gas, particles move along the
edges of a regular graph and interact with each other at its nodes.
The very first lattice gas, named HPP (Hardy, de Pazzis, and Pomeau [15]),
has a very simple, bidimensional structure: on a square grid, particles (“gas
molecules”) move from node to node, where they can collide according to a
rule that preserves momentum.
HPP is capable to display gaslike behavior, e.g. formation of shock waves.
However, further research (see e.g. [33]) showed that HPP lacks other im-
portant properties of perfect gases: in particular, there is conservation of
spurious quantities (for instance, the horizontal component of total momen-
tum is a constant on each horizontal line) that has no correspondance with
real physics, and the macroscopic limit does not yield the Navier-Stokes equa-
tions, that are the continuous model for bidimensional perfect gas.
In response to this, FHP (Frisch, Hasslacher, and Pomeau [11]) was de-
veloped: this is perhaps the first example of a cellular automaton whose
underlying structure is not a square grid: in fact, FHP particles move on
an hexagonal grid, that is the Cayley graph of Z2 with respect to the set of
generators:

{e1, e2,−e1,−e2, e1 + e2,−e1 − e2}

(It must also be observed that the collisions in FHP are not completely de-
terministic, which is the other factor that allows it to recover Navier-Stokes
equations in the macroscopic limit.)
An important difference between cellular automata and lattice gases lies in
the field of preferred use: in fact, cellular automata are a natural way to

41
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model dissipative systems, where invertibility is not a fundamental issue; on
the other hand, lattice gases are the main tool for modelization of conserva-
tive systems, because invertibility on the space of all possible configurations
is very easy to check. However, similarities between the two tools do exist,
and the question if they actually model the same class of dynamics, is still
open.
The aim is now to view lattice gases in the conceptual scheme used for cellu-
lar automata. This formalization is of interest for models more general than
the simulation of perfect gas dynamics. This will lead to the noteworthy re-
sult that, if their supports are allowed to be non-full, then cellular automata
and lattice gases do schematize the same dynamics.

4.1 Definitions and properties

Figure 4.1: The collisions of two particles in the HPP lattice gas.

Our example of choice is HPP. The model lies on a square grid; particles
move along the wires of the grid, collide in its nodes, and collisions preserve
momentum.
It turns out that the only nontrivial collision function satisfying these con-
straints is defined as follows:

• if in a node exactly two particles are present, coming from opposite
directions, then they bounce off in opposite directions on the orthogonal
axis;
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• otherwise, each particle keeps going its way.

Figure 4.2: The evolution of the HPP lattice gas from a “stone in the pond”
configuration. From left to right, from top to bottom: initial random situa-
tion, 50th iteration, 100th iteration, 150th iteration. Observe the propaga-
tion of shock waves.

Observe that the number of possible directions from any point is fixed; that a
particle that can go in each of the four directions can exist in each node; and
this can be represented by a 4-bit array, or equivalently by a neighborhood
with four elements. Therefore, collisions take 4-bit arrays into 4-bit arrays,
and also the sum of their values is the same before and after this operation,
because the number of particles in a node is not changed by a collision. Fi-
nally, during the propagation phase, each particle going in direction i moves
from node x to node x+ i.
The aim now is to adapt the cellular automata formalism to lattice gases,
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taking into account the propagation-collision discipline.
The first thing to observe is the one-to-one correspondance between the num-
ber of neighbors and the quantity of state: this means that, if the neighbor-
hood index is N , then the alphabet should be of the form AN for some
alphabet A.
The next remarkable thing, is that instead of speaking about propagation
and collision of particles, one can equivalently talk about transmission and
interaction: actually, particles can take the role of signal values, transmitted
by propagation, and interacting by collisions. This change of viewpoint ac-
tually allows to become free from a strictly phisical point of view, and focus
on algebraic properties.

Definition 4.1.1 Let A be an alphabet. Let G be a finitely generated group.
Let N be a finite, symmetric subset of G. Let f : AN → AN . The interaction
function induced by f is the map If : (AN )G → (AN )G defined by (If (c))g =
f(cg) for all c ∈ (AN )G, g ∈ G.

Observe that If is the global evolution function of a cellular automaton with
alphabet AN , tessellation group G, and range 0.

Definition 4.1.2 Let A be an alphabet. Let G be a finitely generated group.
Let N be a finite symmetric subset of G. The transmission function induced
by N over (AN )G is the function TN : (AN )G → (AN )G defined by:

((TN (c))g)i = (cgi)i−1 (4.1)

for all c ∈ (AN )G, g ∈ G, i ∈ N .

Definition 4.1.2 is consistent with the fact that a particle arriving from direc-
tion i, is moving in direction i−1. For example, in the HPP model: before the
collision phase, the particle moving north in a given point was the particle
moving north in the southmost point immediately before.

Proposition 4.1.3 Let A be an alphabet. Let G be a finitely generated group.
Let N be a finite symmetric subset of G. Then:

1. TN is continuous;

2. TN commutes with the natural action of G over (AN )G;

3. TN is an involution
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Figure 4.3: Propagation in the HPP lattice gas. Observe that particles com-
ing from north are going south, and so on.

that is, TN is the local function of an invertible cellular automaton with al-
phabet AN and tessellation group G.

Proof:
(1.) Let c1, c2 ∈ (AN )G. Let r be the range of N . It follows from the definition
that, if c1 and c2 agree on DG

n+r,S, then TN (c1) and TN (c2) agree on DG
n,S.

(2.) For every g, h ∈ G, i ∈ N , c ∈ (AN )G:

((TN (cg))h)i = ((cg)hi)i−1

= (cghi)i−1

= ((TN (c))gh)i

= (((TN (c))g)h)i

so TN commutes with the natural action of G over (AN )G.
(3.) For every c ∈ (AN )G, g ∈ G, i ∈ N we have:

((TN (TN (c)))g)i = ((TN (c))gi)i−1

= (cgii−1)(i−1)−1

= (cg)i

hence TN is an involution. ¤
It is now possible to give a formal definition of lattice gases and their associate
dynamical systems.
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Definition 4.1.4 Let A be an alphabet. Let G be a finitely generated group.
A lattice gas with alphabet A and tessellation group G is a triple 〈N , X, f〉
where N is a finite symmetric subset of G, X is a shift subspace of (AN )G,
f : AN → AN is such that If (TN (X)) ⊆ X.
The shift subspace X is called the support of the lattice gas. The map f :
AN → AN is called the local interaction function of the lattice gas.

Definition 4.1.5 Let 〈N , X, f〉 be a lattice gas. The associate dynamical
system is the pair (X, If ◦ TN ). The function If ◦ TN is called the global
evolution function of the lattice gas.

Some authors, e.g. [33], define the global evolution function of 〈N , X, f〉 as
TN ◦ If instead of If ◦ TN . Of course, TN being UL-definable and invertible,
the two formulations are equivalent, because the associate dynamical systems
will be conjugate (TN being a conjugacy).
In both cases, lattice gases are cellular automata of a special kind.

Theorem 4.1.6 Every global evolution function of a lattice gas with alphabet
A and tessellation group G is the composition of the global evolution functions
of two cellular automata with alphabet AN and tessellation group G, one
having range 0 and the other one being an involution.

Proof:
Follows from Definition 4.1.1 and Proposition 4.1.3 ¤
Again, lattice gas can be used as presentations for dynamical systems.

Definition 4.1.7 A dynamical system (X,F ) has a presentation as a lattice
gas if there exists a lattice gas 〈N , Y, f〉 such that (X,F ) is conjugate to
(Y, If ◦ TN ). The lattice gas 〈N , Y, f〉 is called a presentation of (X,F ) as a
lattice gas.

From Theorems 3.1.5 and 4.1.6 follows:

Corollary 4.1.8 If a dynamical system (X,F ) has a presentation as a lattice
gas with alphabet A and tessellation group G, then it also has a presentation
as a cellular automaton with alphabet AN and tessellation group G, for some
neighborhood index N ⊆ G.

The definition of invertibility for lattice gases is immediate.
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Definition 4.1.9 A lattice gas 〈N , X, f〉 is invertible if the map If ◦ TN :
X → X is invertible.

In other words, a lattice gas is said to be invertible if and only if its associate
dynamical system is invertible, or equivalently, if and only if the lattice gas
is invertible as a cellular automaton.
Observe that, while the inverse of a cellular automaton is still a cellular au-
tomaton by Richardson’s Lemma, the inverse of a lattice gas, in general, is
not a lattice gas: more precisely, the global evolution function of an invertible
cellular automaton is still the global evolution function of a cellular automa-
ton, while the inverse of the global evolution function of an invertible lattice
gas is not, a priori, the global evolution function of a lattice gas. However,
since a scheme of the form “first interaction, then transmission” is conjugate
to a scheme of the form “first transmission, then interaction”, it should be
possible to prove that the inverse of the dynamical system associate to an
invertible lattice gas has a presentation as a lattice gas. This will be done in
the next section.
A result that marks an important conceptual difference between full lattice
gases and full cellular automata, is the following:

Theorem 4.1.10 Let
〈

N , (AN )G, f
〉

be a full lattice gas. The following are
equivalent:

1.
〈

N , (AN )G, f
〉

is invertible;

2. If is invertible;

3. f is a permutation.

Proof:
(1 ⇔ 2) This follows from TN being invertible.
(3 ⇒ 1) Suppose that f is a permutation. Let c ∈ (AN )G: define c′ ∈ (AN )G

by (c′)g = f−1(cg) for all g ∈ G. Then If (c
′) = c. Thus If is surjec-

tive. Moreover, if c1 6= c2, then there exists g ∈ G such that (c1)g 6= (c2)g:
since f is a permutation, (If (c1))g = f((c1)g) 6= f((c2)g) = (If (c2))g, hence
If (c1) 6= If (c2): thus If is injective.
(1 ⇒ 3) If f is not a permutation, then it is not injective, hence there exist
α1, α2 ∈ AN such that α1 6= α2 but f(α1) = f(α2). Let (c1)g = α1 for
all g ∈ G, and let (c2)1G

= α2, (c2)g = α1 if g 6= 1G: then c1 6= c2 but
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If (c1) = If (c2), therefore If is not injective, and in particular it is not in-
vertible. ¤
Theorem 4.1.10 can be restated as such: a lattice gas with full support is
functionally invertible, if and only if it is structurally invertible, that is, in-
vertibility of dynamics is equivalent to invertibility of point process.
Observe that, in general, 〈N , X, f〉 is invertible if and only if the map If

is invertible as a map from TN (X) to X. Moreover, in the proof of Theo-
rem 4.1.10, the hypothesis that the support space of a lattice gas is full plays
a crucial role both in finding a preimage of c when proving that point 3 im-
plies point 2, and in finding two different configurations with the same image
when proving hat point 2 implies point 3: hence, the hypothesis X = (AN )G

cannot be easily discarded.

Corollary 4.1.11 For full lattice gases, the invertibility problem is decid-
able.

Proof:
By Theorem 4.1.10, a full lattice gas is invertible if and only if its local in-
teraction function f is invertible. Since the domain of f is finite, this is a
decidable problem. ¤

4.2 Equivalence with cellular automata

Theorem 4.1.6 says that every lattice gas can be seen as a cellular automaton.
One focuses now on the opposite case: can a cellular automaton always be
seen as a lattice gas?
Before giving the answer, remember that if a dynamical system has a pre-
sentation as a cellular automaton, then it also has one whose neighborhood
is symmetric: in fact, one can always replace a neighborhood with a larger
one, and in particular, N with N ∪N−1.

Proposition 4.2.1 Let 〈X,N , f〉 be a cellular automaton with symmetric
neighborhood. Let (X,F ) be its associate dynamical system. Then:

1. there exists a lattice gas 〈N , X ′, f ′〉 with alphabet A and tessellation
group G, that is a presentation of (X,F ) as a lattice gas;

2. if X is a shift of a finite type, then X ′ is a shift of finite type;
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3. if X is sofic, then X ′ is sofic.

Proof:
(1.) Suppose initially X = AG. Let:

Z = {c ∈ (AN )G : (cg)i = (cg)j ∀i, j ∈ N ∀g ∈ G}

Then Z is a shift subspace of (AN )G. Consider the function f ′ : AN → AN

defined by:
(f ′(α))i = f(α) ∀α ∈ AN ∀i ∈ N

Consider the lattice gas 〈N , Y, f ′〉: then (If ′ ◦ TN )(Z) ⊆ Z.
Let ϕ : AG → Z be defined by ((ϕ(c))g)i = cg for all i ∈ N , g ∈ G: then ϕ
is both continuous and invertible, hence it is a homeomorphism.
Let c ∈ AG, g ∈ G. Then for every i ∈ N :

(((ϕ ◦ F )(c))g)i = (F (c))g

= f(〈cj〉j∈gN )

= f(〈cgj〉j∈N )

= f(〈((ϕ(c))gj)j−1〉
j∈N )

= f(〈(((TN ◦ ϕ)(c))g)j〉j∈N )

= (f ′(((TN ◦ ϕ)(c))g))i

= (((If ′ ◦ TN ◦ ϕ)(c))g)i

From the arbitrariness of g ∈ G and c ∈ (AN )G follows that ϕ is a conjugacy
between (AG, F ) and (Z, If ′ ◦ TN ).
Now, let X be an arbitrary shift subspace of AG: put X ′ = ϕ(X). Then X ′

is a subset of Z and is closed in (AN )G as a homeomorphic image of a closed
set of AG. Let c′ ∈ X ′: there exist exactly one c ∈ X such that c′ = ϕ(c).
Then for every g ∈ G, i ∈ N :

((ϕ(cg))h)i = (cg)h

= cgh

= ((c′)gh)i

= (((c′)g)h)i

so that (c′)g = ϕ(cg). Since X is a shift subspace, cg ∈ X and (c′)g ∈ X ′:
from the arbitrariness of c and g follows that X ′ is a shift subspace.
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Since ϕ−1(X ′) = X, one gets F (ϕ−1(X ′)) ⊆ X, and finally ϕ(F (ϕ−1(X ′))) ⊆
X ′. But ϕ ◦ F ◦ ϕ−1 = If ′ ◦ TN , hence (X ′, If ′ ◦ TN ) is a subsystem of
(Y, If ′ ◦ TN ) and ϕ is a conjugacy from (X,F ) to (X ′, If ′ ◦ TN ).
(2.) Suppose X is a shift of finite type. Let S be a finite set of generators

for G: by Proposition 2.4.5, there exist M ≥ 0 and F ⊆ ADG
M,S such that

X = XF . Let F ′ ⊆ (AN )DG
M,S be the set of those patterns p′ such that:

• either (p′h)i 6= (p′h)j for some h ∈ DG
M,S, i, j ∈ N ;

• or there exists p ∈ F such that (p′h)i = ph for all h ∈ DG
M,S, i ∈ N .

It is then clear that ϕ(X) = X ′ = XF ′ : since F ′ is finite by construction, X ′

is a shift of finite type.
(3.) Suppose X = ψ(Y ) for a shift of finite type Y ⊆ AG and a UL-definable
function ψ : AG → AG. Let Y ′ = ϕ(Y ): we know from the proof of point 2
that Y ′ is a shift of finite type. Put ψ′ = ϕ ◦ ψ ◦ ϕ−1: then by construction
ψ′ is continuous and ψ′(Y ′) = X ′. Moreover for all c ∈ Y ′ g, h ∈ G, i ∈ N :

((ψ′(cg))h)i = ((ϕ ◦ ψ ◦ ϕ−1)(cg))h)i = (ψ(ϕ−1(cg)))h

But for all c ∈ Z, g, h ∈ G, i ∈ N :

(ϕ−1(cg))h = ((cg)h)i

= (cgh)i

= (ϕ(c))gh

= ((ϕ(c))g)h

that is, ϕ−1(cg) = (ϕ−1(c))g for all c ∈ Z, g ∈ G: from this and the fact that
ψ is UL-definable follows:

(ψ(ϕ−1(cg)))h = (ψ((ϕ−1(c))g))h

= (ψ(ϕ−1(c)))gh

= ((ϕ((ψ ◦ ϕ−1)(c)))gh)i

= ((ψ′(c))gh)i

Therefore ψ′(cg) = (ψ′(c))g for all g ∈ G, that is, ψ′ commutes with the
natural action of G over Y ′. By Proposition 2.5.5, ψ′ is the restriction to Y ′

of a UL-definable function Ψ′ : (AN )G → (AN )G: thus X ′ = Ψ′(Y ′) is a sofic
shift. ¤
A definition of conjugacy for presentations of dynamical systems is immedi-
ate:
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Definition 4.2.2 Two cellular automata (or two lattice gases, or a cellu-
lar automaton and a lattice gas) are conjugate if their associate dynamical
systems are conjugate.

Putting everything together one finds:

• for any lattice gas 〈N , X, f〉 with alphabet A and tessellation group G,
there exists a conjugate cellular automaton 〈X ′,N , f ′〉 with alphabet
AN and tessellation group G;

• for any cellular automaton 〈X,N , f〉 with alphabet A and tessellation
group G, there exists a conjugate lattice gas 〈N , X ′, f ′〉 with alphabet
A and tessellation group G.

From this, and from the fact that conjugacy is an equivalence relation, fol-
lows:

Theorem 4.2.3 (The Equivalence Theorem) Let (X,F ) be a dynamical
system. Then (X,F ) has a presentation as a cellular automaton if and only
if it has a presentation as a lattice gas.

Corollary 4.2.4 If 〈N , X, f〉 is an invertible lattice gas, then (X, (If◦TN )−1)
has a presentation as a lattice gas.

Proof:
If 〈N , X, f〉 is an invertible lattice gas, then (X, If ◦TN ) is the dynamical sys-
tem associate to an invertible cellular automaton: by Richardson’s Lemma,
(X, (If ◦ TN )−1) has a presentation as a cellular automaton, therefore by
Theorem 4.2.3 it also has a presentation as a lattice gas. ¤
Observe that Theorem 4.2.3 can be achieved precisely because the config-
uration space is allowed not to be a full shift: the problem if full cellular
automata and full lattice gases are presentations of the same class of dynam-
ical systems, is still open. The reason is very simple:

Theorem 4.2.5 There is no algorithm that, given an arbitrary full cellular
automaton, returns in finite time a full lattice gas that is a presentation of
the dynamical system associate to the cellular automaton.

Proof:
If such an algorithm existed, then invertibility for full cellular automata
would be reducible in finite time to invertibility of full lattice gases: it would
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be sufficient to construct a conjugate full lattice gas, then solve the invert-
ibility problem for it. But by Theorem 4.1.10, invertibility for full lattice
gases is a decidable problem that does not depend on the tessellation group,
therefore invertibility for bidimensional full cellular automata would be de-
cidable, contradicting Theorem 3.4.8. ¤
As a consequence, either there is a full cellular automata that is not con-
jugate to a lattice gas (but there is no known example yet), or a proof of
the equivalence between full cellular automata and full lattice gases is very
difficult to obtain. A step in this direction has been obtained by Durand-
Lose, who in [7] proves that every invertible full cellular automaton can be
simulated by an invertible block cellular automaton (another class of cellular
automata having a decidable invertibility problem): but the construction in
his paper requires to know both the range of the cellular automaton and its
inverse, so by Theorem 3.4.9 it cannot be recursive.



Chapter 5

Groups with finite parts

Theorems 3.4.6 and 3.4.8 solve the invertibility problem in the free Abelian
case: the problem is decidable in dimension 1, and undecidable in higher
dimension. However, the new formulation opens new paths to explore.
First of all, the Abelian case is a priori larger than the free Abelian case,
so one can try to extend Amoroso and Patt’s result to the case of finitely
generated Abelian groups having rank 1. Moreover, even if this was not
possible, it is still interesting to verify if the Abelian case is a real extension
of the free Abelian case: that is, if every cellular automaton with Abelian
tessellation group is conjugate to a cellular automaton with free Abelian
tessellation group.
This bears some similarities to what happens with many-dimensional models
in Theoretical Phisics: current theories work on an 11-dimensional space-
time, where 7 of the 10 spatial dimensions are “curled up” and are perceived
as state rather than direction. If the Abelian and free Abelian case for cellular
automata were essentially the same in the aforementioned sense, that would
mean that a similar argument would be valid for them.
Indeed, what is shown in this chapter is exactly that, for a rather wide
class of tessellation groups, not only the finite components can always be
seen as parts of the alphabet, but, under suitable hypotheses, the “change of
viewpoint” is computable. This means, first of all, that the transformation
of dimension into state happens in cellular automata exactly as in Physics,
thus confirming the usefulness of such a presentation; then, that algorithms
working on “simpler” spaces can be adapted to work on “more complicated”
ones. Of course, one of the first consequences of the second observation will
be an extension of Amoroso and Patt’s theorem to a much larger case: this

53
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will lead to a nontrivial (i.e., neither finite nor free Abelian) example of a
group where the invertibility problem is decidable.

5.1 Semi-direct products of groups

Semi-direct products are a generalization of direct products, where the mul-
tiplication is still performed componentwise, but not independently : that is,
in a semi-direct product of two groups, one of the factor groupss influences
the other one’s multiplication.

Definition 5.1.1 Let H and K be groups. Let τ be a homomorphism of H
into the group Aut(K) of automorphisms of K. The semi-direct product of
H by K with respect to τ is the group H nτ K of the ordered pairs (h, k),
h ∈ H, k ∈ K, with the operation (h1, k1)(h2, k2) = (h1h2, τh2

(k1)k2).

Observe that the direct product H ×K is just the semi-direct product of H
by K with respect to the trivial morphism from H into Aut(K).
Definition 5.1.1 is similar to the one in Rose’s textbook [25], while many
authors prefer that in Rotman’s book [26], where the role of H and K are ex-
changed. The reason why the first one was chosen, is that the product of two
applications α and β is defined as the composition β ◦ α, while Rotman [26]
adopts the opposite order; of course, mutatis mutandis, the properties remain
the same.
It is not difficult to prove that H nτ K is a group, just remember that, due
to the definition of the product of morphisms, τh1h2

= τh2
◦ τh1

. Definition
5.1.1 easily extends to products with a finite number of factors.

Lemma 5.1.2 For every n ∈ N, h1 . . . hn ∈ H, k1 . . . kn ∈ K:

(h1, k1) . . . (hn, kn) = (h1h2 . . . hn, τh2...hn
(k1)τh3...hn

(k2) . . . τhn
(kn−1)kn)

(5.1)
in H nτ K.

Proof:
By induction. The thesis is true for n = 1, 2. Suppose it is true for n. Then:

(h1, k1) . . . (hn+1, kn+1) = ((h1, k1) . . . (hn, kn))(hn+1, kn+1)

= (h1h2 . . . hn, τh2...hn
(k1)τh3...hn

(k2) . . . τhn
(kn−1)kn)

(hn+1, kn+1)
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= (h1h2 . . . hnhn+1,

τhn+1
(τh2...hn

(k1)τh3...hn
(k2) . . . τhn

(kn−1)kn)kn+1)

= (h1h2 . . . hnhn+1,

τhn+1
(τh2...hn

(k1))τhn+1
(τh3...hn

(k2))

. . . τhn+1
(τhn

(kn−1))τhn+1
(kn)kn+1)

= (h1h2 . . . hnhn+1,

τh2...hnhn+1
(k1)τh3...hnhn+1

(k2)

. . . τhn+1
(τhn

(kn−1))τhn+1
(kn)kn+1)

because τh ◦ τi = τih. ¤

Lemma 5.1.3 Let H, K be groups. Let τ : H → Aut(K) be a homomor-
phism. Then in H nτ K, for every h, i ∈ H, k, j ∈ K:

1. (h, 1K)(i, j) = (hi, j) = (h, k)(i, τi(k
−1)j)

2. (h, k)(i, j) = (h, 1K)(i, τi(k)j)

3. (h, k)(1H , j) = (h, kj)

4. (1H , τi−1(k))(i, j) = (i, kj)

Proof:
Follows from the definition and the fact that τ is a homomorphism, so in
particular τ1H

= idK and τh(1K) = idK for all h ∈ H. ¤

Corollary 5.1.4 In the hypotheses of Lemma 5.1.3, if h = s1s2 . . . sn and
k = t1t2 . . . tm, then:

(h, k) = (s1, 1K)(s2, 1K) . . . (sn, 1K)(1H , t1)(1H , t2) . . . (1H , tm)

In particular, if H = 〈S〉 and K = 〈T 〉, then:

H nτ K = 〈(S × {1K}) ∪ ({1H} × T )〉

Proof:
Apply points 1 and 3 of Lemma 5.1.3. ¤
From now on, given a set S of generators for H and a set T of generators for
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K, the semi-direct product H nτ K will always be thought of as generated
by U = (S ×{1K})∪ ({1H}× T ). Observe that U is symmetrical if S and T
are.
The next results will be useful later.

Lemma 5.1.5 Suppose K is f.g., T is a finite set of generators for K, H is
finite, τ : H → Aut(K) is a homomorphism. Then there exists M ≥ 1 such
that ‖τh(k)‖

K
T ≤M‖k‖K

T for every k ∈ K, h ∈ H.

Proof:
Put M = maxh∈H maxt∈T ‖τh(t)‖

K
T : then M ≥ 1, because each τh is an

automorphism of K.
Let k ∈ K, and let k = t1t2 . . . tn be a writing of minimal length. Then for
every h ∈ H:

‖τh(k)‖
K
T = ‖τh(t1t2 . . . tn)‖K

T

= ‖τh(t1)τh(t2) . . . τh(tn)‖K
T

≤ ‖τh(t1)‖
K
T + ‖τh(t2)‖

K
T = . . .+ ‖τh(tn)‖K

T

≤ nM

= M‖k‖K
T

From the arbitrariness of k ∈ K the thesis follows. ¤

Proposition 5.1.6 Let H and K be f.g. groups with finite sets of generators
S and T respectively. Let τ : H → Aut(K) be a homomorphism. Let G =
H nτ K. Then:

1. if h ∈ DH
r and k ∈ DK

r′ , then g = (h, k) ∈ DG
r+r′;

2. if g = (h, k) ∈ DG
r , then h ∈ DH

r ;

3. if H is finite, then there exists M ≥ 1 such that, if g = (h, k) ∈ DG
r ,

then τi(k) ∈ DK
Mr for every i ∈ H.

Proof:
(1.) Let h = s1s2 . . . sn and k = t1t2 . . . tn′ be writings of minimal length.
Then:

(h, k) = (h1, 1K)(h2, 1K) . . . (hn, 1K)(1H , k1)(1H , k2) . . . (1H , kn′)
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is a writing of length n+ n′ ≤ r + r′.
(2.) Let g = (h, k) = (s1, t1)(s2, t2) . . . (sn, tn) be a writing of minimal length.
Then h = s1s2 . . . sn is a writing of length n ≤ r as a product of elements of
S ∪ {1H}. Therefore h ∈ DH

r .
(3.) Suppose now that H is finite. Put M as in proof of Lemma 5.1.5. Then
by Lemma 5.1.2 for every i ∈ H:

‖τi(k)‖
K
T = ‖τi(τh2...hn

(t1)τh3...hn
(t2) . . . τhn

(tn−1)tn)‖K
T

≤ ‖τh2...hni(t1)‖
K
T + ‖τh3...hni(t2)‖

K
T + . . .

+‖τhni(tn−1)‖
K
T + ‖τi(tn)‖K

T

≤ Mn

≤ Mr

so that τi(k) ∈ DK
Mr. ¤

Corollary 5.1.7 Under the hypotheses of Proposition 5.1.6, if (i, j) ∈ DG
r ((h, k)),

then:

1. i ∈ DH
r (h);

2. if H is finite, then there exists M ≥ 1 such that τi−1h(j) ∈ DK
M2r(k).

Proof:
(1.) Since (h, k)−1 = (h−1, τh−1(k−1)), (i, j) ∈ DG

r ((h, k)) iff (h−1i, τh−1i(k
−1)j) ∈

DG
r : in this case, by point 2 of Proposition 5.1.6 h−1i ∈ DH

r , or equivalently
i ∈ DH

r (h).
(2.) If (h, k)−1(i, j) = (s1, t1)(s2, t2) . . . (sn, tn) is a writing of minimal length,
then for M as in proof of Lemma 5.1.5:

‖τh−1i(k
−1)j‖K

T = ‖τh2...hn
(t1)τh3...hn

(t2) . . . τhn
(tn−1)tn‖

K
T

≤ ‖τh2...hn
(t1)‖

K
T + ‖τh3...hn

(t2)‖
K
T + . . .

+‖τhn
(tn−1)‖

K
T + ‖tn‖

K
T

≤ Mn

≤ Mr

hence by point 3 of Proposition 5.1.6:

‖k−1τi−1h(j)‖
K
T = ‖τi−1h(τh−1i(k)j)‖

K
T ≤M‖τh−1i(k)j‖

K
T ≤M2r

which is equivalent to τi−1h(j) ∈ DK
M2r(k). ¤



58 CHAPTER 5. GROUPS WITH FINITE PARTS

Figure 5.1: A configuration of a cellular automaton with tessellation group
Z × Z3 and alphabet {0, 1}. White represents 0 and black 1.

Let H and K be finitely generated groups, at least one of which is finite,
and let τ : H → Aut(K) be a homomorphism: let 〈X,S, r, f〉 be a cellular
automaton with tessellation group Hnτ K: one asks whether it is possible to
transfer some of the complexity of the structure from the tessellation group
to the alphabet. This is actually possible, but requires different treatment
according to the finite component being H or K, and will be the subject of
the next two sections.

5.2 The case with K finite

The easier case is when the finite group is K. The idea is to study a cellular
automaton with alphabetA and tessellation groupH nτ K as it was a cellular
automaton with alphabet AK and tessellation group H. In this context, the
“change of viewpoint” necessary to determine a homeomorphism between
the two configuration spaces, and consequently, a conjugacy between cellular
automata, is rather simple.
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For the rest of this section, H will be a f.g. group, K a finite group, τ : H →
Aut(K) a homomorphism, and A an alphabet; put G = H nτ K, C = AG,
C ′ = (AK)H .
Consider the function ϕ : C → C ′ given by:

((ϕ(c))h)k = c(h,k) ∀h ∈ H ∀k ∈ K (5.2)

This is clearly an invertible function, whose inverse ψ is given by:

(ψ(c′))(h,k) = ((c′)h)k ∀k ∈ K ∀h ∈ H (5.3)

Observe an intuitive, but interesting, property of ϕ:

Proposition 5.2.1 Let c1, c2 ∈ C, c′1, c
′
2 ∈ C ′. Then:

1. if c1 and c2 agree on DHnτ K
r+|K| , then ϕ(c1) and ϕ(c2) agree on DH

r ;

2. if c′1 and c′2 agree on DK
r , then ψ(c′1) and ψ(c′2) agree on DHnτ K

r .

In particular: ϕ is a homeomorphism.

Proof:
(1.) Suppose that c1 and c2 agree on DHnτ K

r+|K| . Let h ∈ DH
r , k ∈ K = DK

|K|:

then (h, k) ∈ DG
r+|K| by point 1 of Proposition 5.1.6 and:

((ϕ(c1))h)k = (c1)(h,k) = (c2)(h,k) = ((ϕ(c2))h)k

and so (ϕ(c1))h = (ϕ(c2))h.
(2.) Suppose that c′1 and c′2 agree over DH

r . Let (h, k) ∈ DG
r . Then h ∈ DH

r

by point 2 of Proposition 5.1.6 and so:

(ψ(c′1))(h,k) = ((c′1)h)k = ((c′2)h)k = (ψ(c′2))(h,k)

¤

The homeomorphism ϕ has two more important properties: to prove them,
a preliminary result is needed.

Lemma 5.2.2 Let h ∈ H.

1. For every c ∈ C, (ϕ(c))h = ϕ(c(h,1K)).

2. For every c′ ∈ C ′, (ψ(c′))(h,1K) = ψ((c′)h).
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Proof:
Let i ∈ H, j ∈ K. Then by part 1 of Lemma 5.1.3:

(((ϕ(c))h)i)j = ((ϕ(c))hi)j

= c(hi,j)

= c(h,1K)(i,j)

= (c(h,1K))(i,j)

= ((ϕ(c(h,1K)))i)j

and:

((ψ(c′))(h,1K))(i,j) = (ψ(c′))(h,1K)(i,j)

= (ψ(c′))(hi,j)

= ((c′)hi)j

= (((c′)h)i)j

= (ψ((c′)h))(i,j)

From the arbitrariness of i and j the thesis follows. ¤

Proposition 5.2.3 Let F : C → C and let F ′ : C ′ → C ′ be defined by
F ′ = ϕ ◦ F ◦ ψ. If F is UL-definable then F ′ is UL-definable.

Proof:
If F is UL-definable, then it is continuous, so F ′ is composition of continuous
functions. Let c′ ∈ C ′, h ∈ H: by Lemma 5.2.2 follows that:

F ′(ch) = ϕ(F (ψ(ch)))

= ϕ(F ((ψ(c))(h,1K)))

= ϕ((F (ψ(c)))(h,1K))

= (ϕ(F (ψ(c))))h

= (F ′(c))h

From the arbitrariness of h and c′ follows that F ′ commutes with the shift
action ofH over C ′: by Hedlund’s Theorem follows that F ′ is UL-definable. ¤

Proposition 5.2.4 Let X ⊆ C be a shift subspace. Then:
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1. ϕ(X) ⊆ C ′ is a shift subspace;

2. if X is a shift of finite type, then ϕ(X) is a shift of finite type;

3. if X is sofic, then ϕ(X) is sofic.

Proof:
(1.) Since ϕ is a homeomorphism, Y = ϕ(X) is closed in C ′.
Let c′ ∈ Y : then c′ = ϕ(c) for one and only one c ∈ X. Let h ∈ H: by
Lemma 5.2.2, (c′)h = (ϕ(c))h = ϕ(c(h,1K)). But c(h,1K) ∈ X because c ∈ X
and X is a subshift: hence (c′)h ∈ Y . From the arbitrariness of c′ ∈ Y , h ∈ H
follows that Y ⊆ C ′ is a shift subspace.
(2.) Suppose X = XF for a finite set F : one can assume F ⊆ ADG

r for some
r ≥ 0. Put:

F ′ =
{

p′ ∈ (AK)DH
r : ∃p ∈ F : ∃k ∈ K :

∀i ∈ H : ∀j ∈ K : (i, j) ∈ DG
r ⇒ (p′i)τi(k)j = p(i,j)

}

F ′ ⊆ (AK)DH
r is clearly finite; the idea is to show that ϕ(X) = XF ′ .

Suppose c′ 6∈ ϕ(X). Then ψ(c′) 6∈ X, so there are g = (h, k) ∈ G, p ∈ F
such that ((ψ(c′))g)|DG

r
= p. Put (p′i)j = ((ψ(c′))(h,1K))(i,j) for i ∈ DH

r , j ∈ K:
from point 2 of Lemma 5.1.3 follows that if (i, j) ∈ DG

r then:

(p′i)τi(k)j = ((ψ(c′))(h,1K))(i,τi(k)j) = ((ψ(c′))(h,k))(i,j) = p(i,j)

so that p′ ∈ F ′; moreover, for all i ∈ DH
r , j ∈ K:

(((c′)h)i)j = ((ψ(c′))(h,1K))(i,j) = (p′i)j

so the pattern p′ ∈ F ′ occurs in c′.
Suppose that a pattern p′ ∈ F ′ occurs in c′. Then there is h ∈ H such that
(((c′)h)i)j = (p′i)j for every i ∈ DH

r , j ∈ K; in particular, given the structure
of F ′, there are p ∈ F , k ∈ K such that, for every i ∈ H, j ∈ K such that
(i, j) ∈ DG

r :

((ψ(c′))(h,1K))(i,τi(k)j) = p(i,j)

But then by point 2 of Lemma 5.1.3:

((ψ(c′))(h,k))(i,j) = p(i,j)
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for every i ∈ H, j ∈ K such that (i, j) ∈ DG
r : thus ψ(c′) 6∈ XF = X and so

c′ 6∈ ϕ(X).
(3.) If X is sofic, then there exists a shift of finite type Y ⊆ C and a UL-
definable function F : C → C such that X = F (Y ). By point 2, Y ′ = ϕ(Y )
is a shift of finite type; by Lemma 5.2.2, F ′ = ϕ ◦F ◦ψ is UL-definable. But
ϕ(X) = ϕ(F (Y )) = ϕ(F (ψ(Y ′))) = F ′(Y ′), so ϕ(X) is sofic. ¤
Observe that Proposition 5.2.4 cannot be reversed, because ψ(Y ) can pos-
sibly not be a shift subspace of C, even if Y ⊆ C ′ is a shift of finite type
and the product is direct. This is not surprising, because a less complicated
tessellation group means less restrictive conditions for commutation with the
group action.
To prove this, take H = Z, K = Z2, A = {a, b}. Let fxy : Z2 → A be the
function such that fxy(0) = x, fxy(1) = y: then AZ2 = {faa, fab, fba, fbb}. Let
Y = {c′ ∈ (AZ2)Z : ((c′)h)1 = b ∀h ∈ Z}: then Y = X{07→faa,0 7→fba} is a shift
of finite type. But ψ(Y ) = {c ∈ AZ×Z2 : c(h,1) = b ∀h ∈ Z} is not a shift
subspace, because if c̄ ∈ AZ×Z2 is such that c̄(h,k) = a if k = 0 and c̄(h,k) = b
if k = 1, then c̄ ∈ ψ(Y ) but c̄(0,1) 6∈ ψ(Y ).

The way to the main result of this section is now paved.

Theorem 5.2.5 Let G be a f.g. group. If G ∼= H nτ K with H finitely
generated and K finite, then every cellular automaton with tessellation group
G is conjugate to a cellular automaton with tessellation group H. The con-
jugacy is such that the new cellular automaton is of finite type, or sofic, if
the old one is.

Proof:
Let 〈X,U, r, f〉 be a cellular automaton with tessellation group H nτ K. Let
F : C → C be its global evolution function.
By Proposition 5.2.4, ϕ(X) is a shift subspace of C ′ and is of finite type if X
is of finite type, sofic if X is sofic. Define F ′ : C ′ → C ′ by F ′ = ϕ ◦ F ◦ ψ:
by Proposition 5.2.3, F ′ is UL-definable. Thus (ϕ(X), F ′) has a presenta-
tion as a cellular automaton with alphabet AK and tessellation group H: let
〈ϕ(X), S, r′, f ′〉 be this presentation. Then 〈X,U, r, f〉 and 〈ϕ(X), S, r′, f ′〉
are conjugate, ϕ|X being a conjugacy between the two cellular automata. ¤
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{0,0,0}

{1,1,0}

{0,1,0}

{1,1,1}

{1,0,1}

{0,0,0}

Figure 5.2: The cellular automaton with tessellation group Z and alphabet
{0, 1}Z3 conjugate to the cellular automaton of Figure 5.1 constructed with
the technique of Theorem 5.2.5. The configuration corresponds to that of
Figure 5.1 too.

5.3 The case with H finite

The case with H finite is more complicated, even if similar. Indeed, one
might guess that an intuitive function from AHnτ K to (AH)K such as:

((ϕ′(c))k)h = c(h,k) ∀h ∈ H ∀k ∈ K

whose inverse is given by:

(ψ′(c′))(h,k) = ((c′)k)h ∀h ∈ H ∀k ∈ K

would match one’s need. This is not the case, because ϕ′ does not have the
property that ϕ′(X) is a subshift if X is, not even if K is finite too.
As a counterexample, take A = {0, 1}, H = Z2, K = Z4, τ0 = idK ,
τ1(k) = −k ∀k ∈ K: then H nτ K is isomorphic to the dihedral group
D4. Let xyzt be the function from DHnτ K

1 to A such that xyzt((0, 0)) = x,
xyzt((0, 1)) = y, xyzt((0,−1)) = z, xyzt((1, 0)) = t. Put X = X{1111}: it
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is a shift subspace by construction. Consider the configuration c ∈ AHnτ K

such that c(0,0) = c(0,1) = c(0,2) = c(1,1) = 1, c(h,k) = 0 otherwise: then
c ∈ X because DHnτ K

1 ((0, 1)) = {(0, 1), (0, 2), (0, 0), (1,−1)}. If ϕ′(X) was
a subshift, then c′ = (ϕ′(c))(−1), the configuration obtained by translating
ϕ′(c) by −1 ∈ Z4, would still belong to ϕ′(X): but this is equivalent to
ψ′(c′) ∈ X. A quick computation shows that (ψ′(c′))(0,0) = (ψ′(c′))(0,1) =
(ψ′(c′))(0,−1) = (ψ′(c′))(1,0) = 1, (ψ′(c′))(h,k) = 0 otherwise: then 1111 occurs
in ψ′(c′) ∈ X = X{1111}. This is a contradiction.
Observe that the counterexample still holds in the case K = Z.
The reason for this lack is that ϕ′ wastes all the information regarding the
action of H over K determined by τ : this was admissible in the former case,
when the group that undertakes the action enters the alphabet, but is not in
the new one, when it is the group performing the action that “disappears”
into the alphabet. This suggests to define the transformation of AHnτ K into
(AH)K so that it takes into account the action induced by τ ; and indeed, this
allows to obtain results similar to those of the former section.
For the rest of this section, H will be a finite group, K a finitely gener-
ated group, τ : H → Aut(K) a homomorphism, and A an alphabet; put
G = H nτ K, C = AG, C ′ = (AH)K .

Consider the following application from C to C ′:

((ϕτ (c))k)h = c(h,τh(k)) (5.4)

and the following application from C ′ to C:

(ψτ (c
′))(h,k) = ((c′)τ

h−1 (k))h (5.5)

Proposition 5.3.1 Let c1, c2 ∈ C, c′1, c
′
2 ∈ C ′. Let M be as in proof of

Lemma 5.1.5. Then:

1. if c1 and c2 agree on DHnτ K
Mr+|H|, then ϕτ (c1) and ϕτ (c2) agree on DK

r ;

2. if c′1 and c′2 agree on DK
Mr, then ψ(c′1) and ψ(c′2) agree on DHnτ K

r ;

3. ϕτ and ψτ are each other’s inverse.

In particular: ϕτ is a homeomorphism.
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Proof:
Let M as in proof of Lemma 5.1.5.
(1.) Suppose that c1 and c2 agree onDG

Mr+|H|. Let k ∈ DK
r : then τh(k) ∈ DK

Mr

by Lemma 5.1.5. Let h ∈ H = DH
|H|: by point 1 of Proposition 5.1.6,

(h, τh(k)) ∈ DG
Mr+|H|. Hence:

((ϕτ (c1))k)h = (c1)(h,τh(k)) = (c2)(h,τh(k)) = ((ϕτ (c2))k)h

and from the arbitrariness of h follows (ϕτ (c1))k = (ϕτ (c2))k.
(2.) Suppose that c′1 and c′2 agree on DK

Mr. Let (h, k) ∈ DG
r : then τh−1(k) ∈

DK
Mr by point 3 of Proposition 5.1.6, and for all h ∈ H:

(ψτ (c
′
1))(h,k) = ((c′1)τ

h−1(k))h = ((c′2)τ
h−1 (k))h = (ψ(c′2))(h,k)

(3.) For every h ∈ H, k ∈ K, c ∈ C, c′ ∈ C ′:

(ψτ (ϕτ (c)))(h,k) = ((ϕτ (c))τ
h−1(k))h

= c(h,τh(τ
h−1 (k)))

= c(h,τ
h−1h

(k))

= c(h,τ1H
(k))

= c(h,idK(k))

= c(h,k)

and:

((ϕτ (ψτ (c
′)))k)h = (ψτ (c

′))h,τh(k)

= ((c′)τ
h−1(τh(k)))h

= ((c′)τ
hh−1(k))h

= ((c′)τ1H
(k))h

= ((c′)idK(k))h

= ((c′)k)h

From the arbitrariness of h ∈ H, k ∈ K follows that ψτ (ϕτ (c)) = c for all
c ∈ C and ϕτ (ψτ (c

′)) = c′ for all c′ ∈ C ′: hence ψτ is the inverse of ϕτ . ¤

Lemma 5.3.2 Let k ∈ K.
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1. For all c ∈ C, (ϕτ (c))
k = ϕτ (c

(1H ,k)).

2. For all c′ ∈ C ′, (ψτ (c
′))(1H ,k) = ψτ ((c

′)k).

Proof:
For every i ∈ H, j ∈ K:

(((ϕτ (c))
k)j)i = ((ϕτ (c))kj)i

= c(i,τi(kj))

= c(i,τi(k)τi(j))

= c(1H ,k)(i,τi(j))

= (c(1H ,k))(i,τi(j))

= ((ϕτ (c
(1H ,k)))j)i

and:

((ψτ (c
′))(1H ,k))(i,j) = (ψτ (c

′))(1H ,k)(i,j)

= (ψτ (c
′))(i,τi(k)j)

= ((c′)τ
i−1(τi(k)j))i

= ((c′)τ
i−1i

(k)τ
i−1(j)))i

= ((c′)kτ
i−1(j))i

= (((c′)k)τ
i−1(j))i

= (ψτ ((c
′)k))(i,j)

From the arbitrariness of i and j the thesis follows. ¤
Lemma 5.3.2 has two important consequences.

Proposition 5.3.3 Let F : C → C and let F ′ : C ′ → C ′ be defined by
F ′ = ϕτ ◦ F ◦ ψτ . If F is UL-definable then F ′ is UL-definable.

Proof:
If F is UL-definable, then it is continuous, so F ′ is a composition of contin-
uous functions. Let c′ ∈ C ′, k ∈ K: by Lemma 5.3.2:

F ′((c′)k) = ϕτ (F (ψτ ((c
′)k)))

= ϕτ (F ((ψτ (c
′))(1H ,k)))

= ϕτ ((F (ψτ (c
′)))(1H ,k))

= (ϕτ (F (ψτ (c
′))))k

= (F ′(c′))k
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so F ′ commutes with the action of K over C ′: by Hedlund’s Theorem follows
that F ′ is UL-definable. ¤

Proposition 5.3.4 Let X ⊆ C be a shift subspace. Then:

1. ϕτ (X) ⊆ C ′ is a shift subspace;

2. if X is a shift of finite type, then ϕτ (X) is a shift of finite type;

3. if X is a sofic shift, then ϕτ (X) is a sofic shift.

Proof:
(1.) Let c′ ∈ ϕτ (X). There is exactly one c ∈ X such that c′ = ϕτ (c) Fix
k ∈ K. By Lemma 5.3.2:

(c′)k = (ϕτ (c))
k = ϕτ (c

(1H ,k))

But c(1H ,k) ∈ X because c ∈ X and X is a subshift: hence (ϕτ (c))
k ∈

ϕτ (X). From the arbitrariness of k ∈ K, c′ ∈ X follows that ϕτ (X) is a shift
subspace.
(2.) Suppose that X is a shift of finite type: then there exist r > 0, F ⊆ DG

r

such that X = XF . Put:

F ′ =
{

p′ ∈ (AH)DK
Mr : ∃p ∈ F : ∃h ∈ H :

∀i ∈ H : ∀j ∈ K : (i, j) ∈ DG
r ⇒ ((p′)τ

i−1(j))hi = p(i.j)

}

where M ≥ 1 is as in Lemma 5.1.5. The idea is to show that ϕτ (X) = XF ′ .
Suppose that c′ 6∈ ϕτ (X). Then c = ψτ (c

′) 6∈ X, so there must exist p ∈ F ,
g = (h, k) ∈ G such that (cg)|DG

r
= p. Define p′ ∈ DK

Mr by ((p′)j)i =

(c(1H ,τ
h−1 (k))(i,τi(j)): then for all i ∈ H, j ∈ K such that (i, j) ∈ DG

r :

p(i,j) = (c(h,k))(i,j)

= c(h,k)(i,j)

= c(1H ,τ
h−1 (k))(h,1K)(i,j)

= c(1H ,τ
h−1 (k))(hi,j)

= (c(1H ,τ
h−1 (k)))(hi,j)

= (c(1H ,τ
h−1 (k)))(hi,τi(τi−1(j)))

= ((p′)τ
i−1 (j))hi
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so that p′ ∈ F ′, and for j ∈ DK
Mr, i ∈ H:

((p′)j)i = (c(1H ,τ
h−1 (k)))(i,τi(j))

= ((ψτ (c
′))(1H ,τ

h−1 (k)))(i,τi(j))

= (ψτ ((c
′)τ

h−1(k)))(i,τi(j))

= (((c′)τ
h−1(k))τ

i−1(τi(j)))i

= (((c′)τ
h−1(k))j)i

so that c′ has a pattern in F ′.
Suppose that c′ has a pattern in F ′. Then there are k ∈ K, p′ ∈ F ′ such that
((c′)k)|DK

Mr
= p′. In particular, given the structure of F ′, there exist p ∈ F ,

h ∈ H such that, for every i ∈ H, j ∈ K such that (i, j) ∈ DG
r :

(((c′)k)τ
i−1 (j))hi = ((p′)τ

i−1(j))hi = p(i,j)

Let c = ψτ (c
′): then for all i ∈ H, j ∈ K such that (i, j) ∈ DG

r :

p(i,j) = (((c′)k)τ
i−1(j))hi

= ((c′)kτ
i−1(j))hi

= ((c′)τ
i−1 (τi(k)j))hi

= (ψτ (c
′))(hi,τi(k)j)

= c(h,k)(i,j)

= (c(h,k))(i,j)

so that p occurs in c: therefore c 6∈ X and c′ 6∈ ϕτ (X).
(3.) If X is sofic, then there exists a shift of finite type Y ⊆ C and a UL-
definable function F : C → C such that X = F (Y ). By point 2, Y ′ = ϕτ (Y )
is a shift of finite type; by Lemma 5.3.2, F ′ = ϕτ ◦ F ◦ ψτ is UL-definable.
But ϕτ (X) = ϕτ (F (Y )) = ϕτ (F (ψτ (Y

′))) = F ′(Y ′), so ϕτ (X) is sofic. ¤
The way to the main theorem of this section is now paved.

Theorem 5.3.5 Let G be a f.g. group. If G ∼= H nτ K with H finite and K
finitely generated, then every cellular automaton with tessellation group G is
conjugate to a cellular automaton with tessellation group K. The conjugacy
is such that the new cellular automaton is of finite type, or sofic, if the old
one is.
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Proof:
By Proposition 5.3.4, ϕτ (X) is a shift subspace of C ′, and is of finite type
or sofic if X is. Let F be the global evolution function of 〈X,U, r, f〉: then
F ′ = ϕτ ◦ F ◦ ψτ is UL-definable. Thus, (ϕτ (X), F ′) has a presentation
as a cellular automaton with alphabet AH and tessellation group K: let
〈ϕτ (X), T, r′, f ′〉 be this presentation. Then 〈X,U, r, f〉 and 〈ϕτ (X), T, r′, f ′〉
are conjugate, ϕτ |X being a conjugacy between the two cellular automata. ¤

5.4 An application to the invertibility prob-

lem

Theorems 5.2.5 and 5.3.5 suggest an extension of Amoroso and Patt’s the-
orem on the decidability of invertibility problem. After all, under the light
shed by these results, a semi-direct product of Z and a finite group is not very
different from Z itself for what regards the construction of cellular automata:
therefore, if a problem is decidable on Z, it should still be decidable on the
semi-direct product. And actually, under very reasonable hypotheses, this is
exactly the case for the invertibility problem.
Before achieving this result, a definition must be given.

Definition 5.4.1 Let G be a f.g. group with finite set of generators S. We
say that the word problem is decidable for G if the set of all the words over
S that are equal to 1G is recursive.

Equivalently, a f.g. group G has decidable word problem if there exists
an algorithm that, given a word w over S ∪ S−1 and a finite set U ⊆ G,
determines if w represents some element of U . The class of groups with
decidable word problem is not too small, because it includes finite groups,
free groups, and finite semi-direct products of groups with decidable word
problem. In this last case, one can say more:

Lemma 5.4.2 Let H and K be two f.g. groups and let τ : H → Aut(K) be
a group homomorphism. If the word problem is decidable for both H and K,
then τ is computable.

Proof:
One must construct an algorithm to compute τh(k) whatever h ∈ H and
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k ∈ K are.
Let S be a finite set of generators for H and let T be a finite set of generators
for K: the set {τs(t), s ∈ S, t ∈ T} is finite. Consider the following algorithm:

INPUT: a pair (h, k) ∈ H ×K
OUTPUT: the element τh(k) ∈ K

put x = k
construct a writing h = s1 . . . sN ∈ S∗

for i from 1 to N :
construct a writing x = t1 . . . tM ∈ T ∗

replace x with τsi
(t1) . . . τsi

(tM)
end for
return x

One must prove that this algorithm computes τh(k).
First, observe that the construction of the writing h = s1 . . . sN is com-
putable: indeed, one only needs to compare h with 1H , then with each ele-
ment of S, then with each element of H that can be written as a product of
two elements of S, and so on: each comparison terminates in a finite time,
and eventually one of them returns true.
Next, observe that the same is true for every construction inside the “for”
cycle.
Finally, consider the new value of x after every cycle over i: for i = 1 it is
τs1

(k), for i = 2 it is τs2
(τs1

(k)) = τs1s2
(k), and so on, up to τsN

(τs1...sN−1
(k)) =

τs1...sN
(k) = τh(k) when i = N . Observe that if N = 0, the cycle over i is

not entered, but in this case h = 1H , τ1H
= idK , and the returned value is

idK(k) = k. ¤
As before, the simpler case is examined first.

Theorem 5.4.3 If the word problem is decidable over H, then the construc-
tion of f ′ from f in Theorem 5.2.5 is computable.

Proof:
By Lemma 5.4.2, the hypothesis on H and the fact that K is finite imply
computability of τ and decidability of the word problem over G.
Represent (F ′(c′))h by the sequence of its values ((F ′(c′))h)k, for k in K.
Consider the following procedure:
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INPUT: the list 〈(c′)i〉i∈DH
r (h)

OUTPUT: the value (F ′(c′))h

X = an empty list
for k in K:

s = a list of |DHnτ K
r | elements of A

for i in DH
r (h):

for j in K:
if (i, j) in DHnτ K

r ((h, k)):
replace with ((c′)i)j the element of s
in the position corresponding to (h, k)−1(i, j)
in the defined ordering of DHnτ K

r

end if
end for

end for
append f(s) to X

end for
return X

First of all, observe that, since τ is computable, the multiplications are all
computable, and because the word problem is decidable over H and Hnτ K,
the fact that an element appears in a finite subset of one of these groups is
decidable; therefore this procedure is actually an algorithm. One must now
show that it correctly computes (F ′(c′))h.
Observe that:

(F (c))(h,k) = f
(

〈

c(i,j)
〉

(i,j)∈D
Hnτ K
r ((h,k))

)

thus:

(F (ψ(c′)))(h,k) = f
(

〈

(ψ(c′))(i,j)

〉

(i,j)∈D
Hnτ K
r ((h,k))

)

= f
(

〈(c′i)j〉(i,j)∈D
Hnτ K
r ((h,k))

)

and so:
((F ′(c′))h)k = f

(

〈(c′i)j〉(i,j)∈D
Hnτ K
r ((h,k))

)

But for each k inK, the cycle over i transforms the sequence s in the sequence
〈(c′i)j〉(i,j)∈D

Hnτ K
r ((h,k)).
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Indeed, if (i, j) ∈ DHnτ K
r ((h, k)) then surely j ∈ K and i ∈ DH

r (h) by
Corollary 5.1.7,
This means that the double iteration over i and j surely catches all the
elements in DHnτ K

r ((h, k)): hence the next instruction appends to the list X

precisely the value f
(

〈(c′i)j〉(i,j)∈D
Hnτ K
r ((h,k))

)

= ((F ′(c′))h)k. In the end, the

returned list X is precisely the sequence ((F ′(c′))h)k1
. . . ((F ′(c′))h)k|K|

. ¤
From Theorems 5.2.5 and 5.4.3 follows:

Theorem 5.4.4 Let G ∼= H nτ K, with H finitely generated and K finite.
Suppose that the word problem is decidable over H. Then the following are
true:

1. If invertibility of full cellular automata with tessellation group H is
decidable, then invertibility of full cellular automata with tessellation
group G is decidable too.

2. If invertibility of cellular automata of finite type with tessellation group
H is decidable, then invertibility of cellular automata of finite type with
tessellation group G is decidable too.

3. If invertibility of sofic cellular automata with tessellation group H is
decidable, then invertibility of sofic cellular automata with tessellation
group G is decidable too.

It is now time to deal with the harder case.

Theorem 5.4.5 If the word problem is decidable over K, then the construc-
tion of f ′ from f in Theorem 5.3.5 is computable.

Proof:
By Lemma 5.4.2, the hypothesis on K and the fact that H is finite imply
computability of τ and decidability of the word problem over G.
Represent (F ′(c′))k by the sequence of its values ((F ′(c′))k)h, for h in H. Let
M be as in Lemma 5.1.5. Consider the following procedure:

INPUT: the list 〈(c′)j〉j∈DK

M3r
(k)

OUTPUT: the value (F ′(c′))k

X = an empty list
for h in H:
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s = a list of |DHnτ K
r | elements of A

for i in H:
for j in DK

M3r(k)):
if (i, τi(j)) in DHnτ K

r ((h, τh(k))):
replace with ((c′)j)i the element of s
in the position corresponding to (h, τh(k))

−1(i, τi(j))
in the defined ordering of DHnτ K

r

end if
end for

end for
append f(s) to X

end for
return X

First of all, observe that, since τ is computable, the multiplications are all
computable, and because the word problem is decidable over K and over
H nτ K, the fact that an element appears in a finite subset of one of these
groups is decidable; therefore this procedure is actually an algorithm. One
must now show that it correctly computes (F ′(c′))h.
Observe that:

(F (c))(h,k) = f
(

〈

c(i,j)
〉

(i,j)∈D
Hnτ K
r ((h,k))

)

thus:

(F (ψτ (c
′)))(h,k) = f

(

〈

(ψτ (c
′))(i,j)

〉

(i,j)∈D
Hnτ K
r ((h,k))

)

= f
(

〈

((c′)τ
i−1 (j))i

〉

(i,j)∈D
Hnτ K
r ((h,k))

)

and so:

((F ′(c′))k)h = ((ϕτ (F (ψτ (c
′))))k)h

= (F (ψτ (c
′)))(h,τh(k))

= f
(

〈

((c′)τ
i−1 (j))i

〉

(i,j)∈D
Hnτ K
r ((h,τh(k)))

)

= f
(

〈((c′)j)i〉(i,τi(j))∈D
Hnτ K
r ((h,τh(k)))

)

But for each h inH, the cycle over j transforms the sequence s in the sequence
〈

(c′j)i

〉

(i,τi(j))∈D
Hnτ K
r ((h,τh(k)))

.
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Indeed, if (i, τi(j)) ∈ DHnτ K
r ((h, τh(k))), then, by Corollary 5.1.7, i ∈ DH

r (h)
and τh(j) = τi−1h(τi(j)) ∈ DK

M2r(τh(k)), that is, τh(k
−1j) ∈ DK

M2r which
implies by Lemma 5.1.5 k−1j ∈ DK

M3r, that is, j ∈ DK
M3r(k).

This means that the double cycle over i and j captures all the pairs (i, j)
such that (i, τi(j)) ∈ DHnτ K

r ((h, τh(k))). In the end, the returned list X is
precisely the sequence ((F ′(c′))k)h1

. . . ((F ′(c′))k)h|H|
. ¤

From Theorems 5.3.5 and 5.4.5 follows:

Theorem 5.4.6 Let G ∼= H nτ K, with H finite and K finitely generated.
Suppose that the word problem is decidable over K. Then the following are
true:

1. If invertibility of full cellular automata with tessellation group K is
decidable, then invertibility of full cellular automata with tessellation
group G is decidable too.

2. If invertibility of cellular automata of finite type with tessellation group
K is decidable, then invertibility of cellular automata of finite type with
tessellation group G is decidable too.

3. If invertibility of sofic cellular automata with tessellation group K is
decidable, then invertibility of sofic cellular automata with tessellation
group G is decidable too.

Consider now the case when the tessellation group is Abelian. A very well
known structure theorem states that every finitely generated Abelian group
is isomorphic to a finite direct product of cyclic groups; that is, for every f.g.
Abelian group G there exist N,n1, . . . , nk such that G ∼= ZN ×Zn1

×. . .×Znk
.

The number N is called the rank of the f.g. Abelian group G; isomorphic
finitely generated Abelian groups have the same rank. Theorems 5.2.5 and
5.4.3 give us a technique to decide the invertibility of a full cellular automaton
over a f.g. Abelian group having rank 1, because in this case the conditions
over H = Z and K are satisfied.
Consider a full cellular automaton whose tessellation group is Z×Zn1

× . . .×
Znk

: by applying Theorem 5.2.5 with H = Z and K = Zn1
× . . . × Znk

one finds a conjugate full cellular automaton with tessellation group Z, and
the construction is computable because of Theorem 5.4.3. But because of
Theorem 3.4.6, invertibility for the new cellular automaton is decidable, and
because of conjugacy, it is equivalent to invertibility of the original cellular
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automaton.
This, together with Theorem 3.4.8, proves:

Theorem 5.4.7 Let G be a finitely generated Abelian group. Then invert-
ibility for the class of full cellular automata over G is decidable if and only
if G has at most rank 1.

Remark that the procedure is applicable even if the tessellation group is
not Abelian: for example, invertibility of cellular automata with tessellation
group Z×S3, where S3 is the group of permutation of three distinct objects,
is still decidable. The last theorem of this section states exactly this fact,
thus extending the results of Section 1.6 of [8].

Theorem 5.4.8 Let G be a finite group. Let A be an alphabet. Suppose one
of the following is verified:

1. τ : Z → Aut(G) is a homomorphism and X ⊆ AZnτ G is a shift of finite
type;

2. τ : G→ Aut(Z) is a homomorphism and X ⊆ AGnτ Z is a shift of finite
type.

Then the invertibility problem for the class of cellular automata with support
X is decidable.

Proof:
Follows from Theorems 5.4.4 and 5.4.6, together with the fact that the in-
vertibility problem for shifts of finite type of Z is decidable. ¤

Corollary 5.4.9 Let G = D∞ be the infinite dihedral group. Let A be an
alphabet. Let X ⊆ AG be a shift of finite type. Then the invertibility problem
for the class of cellular automata with support X is decidable.

Proof:
The group D∞ is isomorphic to the semi-direct product Z2 nτ Z, where
τ0 = idZ and τ1(n) = −n for all n ∈ Z: this is an instance of case 2 of
Theorem 5.4.8, and the thesis follows. ¤
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5.5 Remarks

Theorems 5.2.5 and 5.3.5 say that the “finite part” of the tessellation group
is unessential to the dynamics, because it can be seen as a component of the
alphabet instead of the group. This implies that the Abelian case essentially
reduces to the free Abelian case, where the tessellation group is finite or is Zd

for some d > 0: hence, study of “non-classical” cellular automata dynamics
should be oriented to the case of non-Abelian tessellation group.
On the other hand, Theorems 5.4.4 says that the question on the decidability
of the invertibility problem has a known answer for cellular automata over
Abelian groups: therefore, further study of the question should then consider
either special subcases of the classical case or cellular automata over non-
Abelian groups. In the last case, the most interesting groups are perhaps the
free groups with two or more (but still finitely many) generators.



Chapter 6

Second-order systems

All the dynamics examined in the previous chapters are first-order : the next
state is completely determined by the current one. This is analogous to a
system of first-order differential equations, because if time is discrete, then
knowing a velocity from a position, is the same as knowing a position from
another position.
However, many real-world phenomena are second-order : first and foremost,
the second principle of dynamics. It is then interesting to do with dynamical
systems the same thing that is done with systems of differential equations,
that is, considering orders greater than the first.
The aim of this section is to present second-order dynamical systems and
second-order cellular automata inside the same formalism.

6.1 Second-order dynamical systems

It is natural to consider second-order evolution functions as maps transform-
ing pairs of phases into phases. Second-order dynamical systems are now
defined, their main properties shown, and links with “canonical” dynamical
systems (called first-order from now on) found.

Definition 6.1.1 A second-order dynamical system is a pair (X,F ) where
X is a compact metrizable space and F : X × X → X is a continuous
function.
The set X is called the phase space of the second-order dynamical system.
The map F is called the transition function of the second-order dynamical
system.

77



78 CHAPTER 6. SECOND-ORDER SYSTEMS

The definition of invertibility is somewhat peculiar. Indeed, defining a second-
order dynamical system (X,F ) to be invertible if and only if F is invertible,
would imply that no second-order dynamical system with 1 < |X| < ∞
can be invertible: this would be an undesirable feature, so it is necessary to
change definitions a little.
A first-order dynamical system (X,F ) is a structure that allows to define
sequences {xt} by means of a recurrence of the form xt+1 = F (xt): since “in-
vertibility” means “being able to go backwards in time”, saying that (X,F )
is invertible, means that it is always possible to reconstruct xt from xt+1 by
means of another recurrence relation of the form xt = G(xt+1).
A second-order dynamical system does a similar thing, but using two data in-
stead of one: that is, the recurrence has the form xt+1 = F (xt, xt−1). Again,
since “invertibility” means “being able to go backwards in time”, saying that
a second-order dynamical system is invertible, means that it must be pos-
sible to reconstruct xt−1 from xt and xt+1: that is, a recurrence relation of
the form xt−1 = G(xt, xt+1) must exist. But switching from the “forward”
dynamics to the “backward” one, only swaps the roles of xt−1 and xt+1: that
is, while an invertible first-order dynamical system swaps the future and the
present, a second-order invertible dynamical system swaps the future and the
past, and the role of the present in this swapping is only to influence the way
the swapping occurs.
Therefore, the right definition of invertibility for a second-order dynamical
system must be the following one:

Definition 6.1.2 A second-order dynamical system (X,F ) is invertible if,
for every x̄ ∈ X, the map x 7→ F (x̄, x) is invertible.

In other words, a second-order dynamical system is invertible if its transition
function is a permutation of its second argument, parameterized by its first
argument.
Actually, one wants to be able to consider second-order dynamical systems as
special cases of first-order dynamical systems, exactly as a system of second-
order differential equations can be transformed in a system of first-order
differential equations. This is performed as follows:

Definition 6.1.3 Let (X,F ) be a second-order dynamical system. The first-
order transform, or briefly 1-transform, of (X,F ) is the first-order dynamical
system (X ×X,F ?), where F ?(x1, x2) = (F (x1, x2), x1).
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The 1-transform is the tool that allows to consider second-order dynamical
systems as if they were first-order: this is similar to what happens with
differential equations, where a system ofN second-order equations can always
be thought of as a system of 2N first-order equations.

Proposition 6.1.4 Let (X,F ) be a second-order dynamical system. Then
(X,F ) is invertible if and only if its 1-transform is invertible.

Proof:
Suppose that (X,F ) is invertible.
Let (x1, x2) ∈ X × X: there exists x3 such that x1 = F (x2, x3). But then,
(x1, x2) = F ?(x2, x3): hence F ? is surjective.
Let F ?(x1, x2) = F ?(x′1, x

′
2): then x1 = x′1 and F (x1, x2) = F (x′1, x

′
2). Since

x1 = x′1 and x 7→ F (x1, x) is invertible, x2 = x′2. Hence F ? is injective.
Suppose now that (X ×X,F ?) is invertible.
Fix x̄ ∈ X.
Let x ∈ X: there exists x1, x2 ∈ X such that F ?(x1, x2) = (x, x̄), but this
implies x1 = x̄ and F (x̄, x2) = F (x1, x2) = x: therefore the map x 7→ F (x̄, x)
is surjective.
Let F (x̄, x1) = F (x̄, x2): then (F (x̄, x1), x̄) = (F (x̄, x2), x̄), that is, F ?(x̄, x1) =
F ?(x̄, x2): this implies x1 = x2. Hence x 7→ F (x̄, x) is injective.
From the arbitrariness of x̄ follows that (X,F ) is invertible. ¤
The aim is now to find a way to see when two second order dynamical sys-
tems essentially describe the same dynamics. When dealing with first-order
dynamical systems, this was performed by employing conjugacies: now, to-
gether with a second-order dynamical system, its 1-transform is also present,
and it can be useful to consider the two possible meanings of the phrase
“describing the same dynamics”.
Recall that, if f1 : X1 → Y1 and f2 : X2 → Y2, the tensor product f1 ⊗ f2 :
X1 ×X2 → Y1 × Y2 is defined by (f1 ⊗ f2)(x1, x2) = (f1(x1), f2(x2)).

Definition 6.1.5 Two second-order dynamical systems (X,F ), (X ′, F ′) are
(strongly) conjugate if there exists a homeomorphism ϑ : X → X ′ such that
ϑ ◦ F = F ′ ◦ (ϑ⊗ ϑ). The map ϑ is called a (strong) conjugacy from (X,F )
to (X ′, F ′).

Definition 6.1.6 Two second-order dynamical systems (X,F ), (X ′, F ′) are
weakly conjugate if their 1-transforms are conjugate.

The reason for talking of “weak” and “strong” conjugacies is given by:
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Proposition 6.1.7 The 1-transforms of two conjugate second-order dynam-
ical systems are conjugate.

In other words, two conjugate second-order dynamical systems are weakly
conjugate.
Proof:
The trick is to prove that, if ϑ be a conjugacy from (X,F ) to (X ′, F ′), then
ϑ⊗ ϑ is a conjugacy from (X ×X,F ?) to (X ′ ×X ′, (F ′)?).
Now, ϑ ⊗ ϑ is continuous by construction, and (ϑ−1) ⊗ (ϑ−1) is its inverse;
since X ×X is both compact and metrizable, ϑ⊗ ϑ is a homeomorphism.
Let now (x1, x2) ∈ X ×X: then:

((ϑ⊗ ϑ) ◦ F ?)(x1, x2) = (ϑ⊗ ϑ)(F (x1, x2), x1)

= ((ϑ ◦ F )(x1, x2), ϑ(x1))

= ((F ′ ◦ (ϑ⊗ ϑ))(x1, x2), ϑ(x1))

= (F ′(ϑ(x1), ϑ(x2)), ϑ(x1))

= (F ′)?(ϑ(x1), ϑ(x2))

= ((F ′)? ◦ (ϑ⊗ ϑ))(x1, x2)

From the arbitrariness of x1 and x2 follows that ϑ⊗ ϑ is a conjugacy. ¤
The problem if two weakly conjugate dynamical systems are also strongly
conjugate, is much harder. This happens because, if |X| > 1, there are maps
τ : X×X → X×X that do not have the form τ = ϑ⊗ϑ for some ϑ : X → X:
just think to τ(x1, x2) = (x2, x1). Anyway, invertibility is not affected by this
problem.

Proposition 6.1.8 Two weakly conjugate second-order dynamical systems
are either both invertible or both noninvertible.

Proof:
A second-order dynamical system is invertible if and only if its 1-transform
is invertible. But any two conjugate first-order dynamical systems are either
both invertible or both noninvertible. ¤
One can now make the following reasoning: A first-order dynamical system
can be thought of as a second-order dynamical system whose transition func-
tion does not depend on its second component. This “faking” of a first-order
dynamical system into a first-order one is tempting; but it is also pointless,
just like talking of a second-order differential equation that only depends on
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first-order terms, or a second-degree polynomial of the form p(x) = bx + c:
it is nothing more than a fake. Indeed, one cannot hope that properties of
a first-order dynamical system can be deduced by those of its “faking” as a
second-order dynamical system: this is especially true for invertibility.

Proposition 6.1.9 Let (X,F ) be a second-order dynamical system such that
F (x1, x2) = G(x1) for some G : X → X. If (X,F ) is invertible then |X| = 1.

Proof:
If X has two distinct elements x1, x2, then the map x 7→ F (x1, x) takes the
same value G(x1) on both x1 and x2, and cannot be invertible. ¤
Since 1-transform allows to see second-order dynamics as they were first-
order, it also allows to define conjugacies between second-order and first-order
dynamical systems.

Definition 6.1.10 A second-order dynamical system (X,F ) and a first-order
dynamical system (X ′, F ′) are conjugate if the 1-transform of (X,F ) is con-
jugate to (X ′, F ′).

6.2 Second-order cellular automata

At the aim of defining second-order cellular automata, the idea is: the ele-
ments of the phase space should be presented as configurations over a finitely
generated group, in a way such that what happens in a point of the group,
must only depend on its surroundings. However, more information is now
taken into account: precisely, the next state of a point must depend both on
the current state of its surroundings, and on the previous state of the point
itself.

Definition 6.2.1 Let A be an alphabet. Let G be a finitely generated group.
A second-order cellular automaton with alphabet A and tessellation group
G is a triple 〈X,N , f〉 where:

1. X is a shift subspace of AG;

2. N is a finite subset of G;
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3. f : AN × A → A is such that the function F : AG × AG → AG defined
by:

(F (c1, c2))g = f
(

〈(c1)h〉h∈gN , (c2)g

)

(6.1)

satisfies F (X ×X) ⊆ X.

The shift subspace X is called the support of the second-order cellular au-
tomaton. The function f is called the local transition function of the second-
order cellular automaton. The function F defined by (6.1) is called the global
transition function of the second-order cellular automaton.

As for first-order cellular automata, if N = DG
r,S for some r ≥ 0 and finite

set of generators S for G, the writing 〈X,S, r, f〉 can be used instead of
〈

X,DG
r,S , f

〉

. The maximum length of an element of N is called the range of
the second-order cellular automaton.

Definition 6.2.2 Let 〈X,N , f〉 be a second-order cellular automaton. The
associate second-order dynamical system is the pair (X,F ) where F is defined
by (6.1).

As for second-order dynamical systems, the 1-transform of a second-order
cellular automaton must be defined. However, a problem arises: the phase
space of the 1-transform of a dynamical system is a product of two phase
spaces, while the configuration space of a first-order cellular automaton must
be a shift subspace; but in general, AG ×AG is not a configuration space, so
one cannot just take X ×X as a support space.
Observe however that, after all, AG×AG is not very different from (A×A)G:
the former is made of pairs of maps from G to A, while the latter is made
of maps from G to pairs of elements to A. So perhaps there is a way to
overcome this little problem.

Proposition 6.2.3 Let A be an alphabet. Let G be a finitely generated group.
The map ϕA,G : (AG × AG) → (A× A)G defined by:

(ϕA,G(c1, c2))g = ((c1)g, (c2)g) ∀g ∈ G ∀c1, c2 ∈ X (6.2)

is a homeomorphism.

Proof:
The map ϕA,G is invertible, its inverse ϕ−1

A,G being given by the equations:

((π1 ◦ ϕ
−1
A,G)(c))g = (cg)1

((π2 ◦ ϕ
−1
A,G)(c))g = (cg)2
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for all g ∈ G, c ∈ Y . The map ϕA,G is also continuous, because if c1 and c′1
agree on DG

r,S and c2 and c′2 do the same, then ϕA,G(c1, c2) and ϕA,G(c′1, c
′
2)

agree over DG
r,S. Since AG ×AG is compact and (A×A)G is metrizable, ϕ−1

A,G

is continuous too. ¤
The function defined by (6.2) will be called the natural homeomorphism.
Observe that it has an important “commutation” property.

Lemma 6.2.4 Let A, be an alphabet, G a f.g. group, g ∈ G. Then:

1. for every c1, c2 ∈ AG:

ϕA,G(cg1, c
g
2) = (ϕA,G(c1, c2))

g

2. for every c ∈ (A× A)G and i = 1, 2:

(πi ◦ ϕ
−1
A,G)(cg) = ((πi ◦ ϕ

−1
A,G)(c))g

Proof:
Let h ∈ G: then:

(ϕA,G(cg1, c
g
2))h = ((cg1)h, (c

g
2)h)

= ((c1)gh, (c2)gh)

= (ϕA,G(c1, c2))gh

= ((ϕA,G(c1, c2))
g)h

and:

((πi ◦ ϕ
−1
A,G)(cg))h = ((cg)h)i

= (cgh)i

= ((πi ◦ ϕ
−1
A,G)(c))gh

= (((πi ◦ ϕ
−1
A,G)(c))g)h

From the arbitrariness of h the thesis follows. ¤
Coming back to the original problem, the change of viewpoint defined by
ϕA,G behaves very well with respect to shift subspaces.

Proposition 6.2.5 Let A be an alphabet. Let G be a finitely generated group.
Let ϕA,G be defined by (6.2). Let X ⊆ AG and let Y = ϕA,G(X ×X)
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1. If X is a shift subspace, then Y is a shift subspace.

2. If X is a shift of finite type, then Y is a shift of finite type.

3. If X is a sofic shift, then Y is a sofic shift.

Proof:
(1.) Let X be a shift subspace: then X × X is closed in AG × AG, so Y =
ϕA,G(X × X) is closed in (A × A)G. Every element of Y has the form c =
ϕA,G(c1, c2) with c1, c2 ∈ X: by Lemma 6.2.4, for every g ∈ G the element
cg = (ϕA,G(c1, c2))

g = ϕA,G(cg1, c
g
2) is still in Y , because X is a shift subspace.

(2.) Suppose X = XF for a set F ⊆ ADG
M,S . Then c′ = (c1, c2) ∈ (A × A)G

belongs to Y if and only if no pattern of F occurs in either c1 or c2: this is
the same as saying that no pattern in:

F ′ = ϕA,G((F × ADG
M,S) ∪ (ADG

M,S ×F))

occurs in c′. Therefore Y = XF ′ is a shift of finite type.
(3.) Suppose that there exist a shift of finite type Y ⊆ AG and a UL-definable
map F : AG → AG such that F (Y ) = X: by point 2, Y ′ = ϕA,G(Y × Y ) ⊆
(A× A)G is a shift of finite type. Define F ′ = (A× A)G → (A× A)G as:

F ′ = ϕA,G ◦ (F ⊗ F ) ◦ ϕ−1
A,G

It is then clear that:

F ′(Y ′) = ϕA,G(F (Y ) × F (Y )) = ϕA,G(X ×X)

Moreover F ′ is clearly continuous, and from Lemma 6.2.4 and the fact that
F is UL-definable follows that F ′ commutes with the natural action of G
over (A× A)G: hence F ′ is UL-definable and X ′ = F ′(Y ′) is sofic. ¤
The definition of 1-transform for second-order dynamical system can now be
stated.

Definition 6.2.6 Let A be an alphabet. Let G be a finitely generated group.
Let 〈X,N , f〉 be a second-order cellular automaton with alphabet A and tes-
sellation group G. The first-order transform, or simply 1-transform, of
〈X,N , f〉 is the first-order cellular automaton 〈ϕA,G(X ×X),N , f ?〉, where
ϕA,G is the natural homeomorphism from AG × AG to (A × A)G and f ? :
(A× A)N → (A× A) is defined by:

f ?
(

〈(a1, a2)i〉i∈N
)

=
(

f
(

〈(a1)i〉i∈N , (a2)1G

)

, (a1)1G

)

(6.3)
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The definition is a “natural” one. Indeed, not only the tessellation group is
the same and the alphabet “is what it is expected to be”, but two important
properties (finiteness of type and soficity) are preserved in the passage to the
1-transform. But there is more: the operations of “presenting as a cellular
automaton” and “seeing as it was first-order” commute (up to a conjugacy).

Lemma 6.2.7 Let A be an alphabet. Let G be a finitely generated group.
Let 〈X,N , f〉 be a second-order cellular automaton with alphabet A and tes-
sellation group G. The 1-transform of the dynamical system associate to
〈X,N , f〉 is conjugate to the dynamical system associate to its 1-transform
via the natural homeomorphism from AG × AG to (A× A)G.

Proof:
Let 〈X,N , f〉 be a second-order cellular automaton; let (X,F ) be its asso-
ciate dynamical system, and let 〈ϕA,G(X ×X),N , f ?〉 be its 1-transform.
The 1-transform of (X,F ) is (X ×X,F ?) with:

((π1 ◦ F
?)(c1, c2))g = (F (c1, c2))g

= f
(

〈(c1)h〉h∈gN , (c2)g

)

and:

((π2 ◦ F
?)(c1, c2))g = (c1)g

On the other hand, the associate dynamical system of 〈ϕA,G(X ×X),N , f ?〉
is (ϕA,G(X ×X),Φ?), where:

(Φ?(c))g = f ?
(

〈ch〉h∈gN

)

=
(

f
(

〈(π1(c))h〉h∈gN , (π2(c))g

)

, (π1(c))g

)

Then, for every g ∈ G:

((Φ? ◦ ϕA,G)(c1, c2))g = (Φ?(ϕA,G(c1, c2)))g

= f ?
(

〈(ϕA,G(c1, c2))h〉h∈gN

)

=
(

f
(

〈(c1)h〉h∈gN , (c2)g

)

, (c1))g

)

= ϕA,G (((π1 ◦ F
?)(c1, c2))g, ((π2 ◦ F

?)(c1, c2))g)

= ((ϕA,G ◦ F ?)(c1, c2))g
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Therefore ϕA,G is a conjugacy from (X ×X,F ?) to (ϕA,G(X ×X),Φ?). ¤
To employ second-order cellular automata as presentations for second-order
dynamical systems, one must choose, between the two notions of conjugacy
introduced, the one that better represents the situation “first transform then
evolve, is the same as first evolve then transform”: since this transformation
must be consistent with dynamics, the right type of conjugacy is the strong
one.

Definition 6.2.8 A second-order dynamical system (X,F ) admits a pre-
sentation as a second-order cellular automaton if there exists a second-order
cellular automaton 〈Y,N , f〉 whose associate second-order dynamical system
is strongly conjugate to (X,F ).
The second-order cellular automaton 〈Y,N , f〉 is called a presentation of
(X,F ) as a second-order cellular automaton.

From Definition 6.2.8, Proposition 6.1.7 and Lemma 6.2.7 follows:

Proposition 6.2.9 If a second-order dynamical system has a presentation
as a second-order cellular automaton, then its 1-transform has a presentation
as a first-order cellular automaton.

Proof:
Let (X,F ) be a second-order dynamical system and let 〈Y,N , f〉 be a pre-
sentation of (X,F ) as a second-order cellular automaton, whose global evolu-
tion function is indicated by Ff . Let ϑ be a strong conjugacy from (X,F ) to
(Y, Ff ): by Proposition 6.1.7, ϑ⊗ϑ is a conjugacy between (X ×X,F ?) and
(Y ×Y, F ?

f ). But by Lemma 6.2.7, (Y ×Y, F ?
f ) is conjugate to the first-order

dynamical system associate to the 1-transform of 〈Y,N , f〉: this 1-transform
is thus a presentation of (X ×X,F ∗) as a cellular automaton. ¤
The definition of invertibility for second-order cellular automata is similar to
the one seen in the first-order case.

Definition 6.2.10 A second-order cellular automaton 〈X,N , f〉 is invert-
ible if its associate second-order dynamical system (X,F ) is invertible.

From Lemma 6.2.7 and Proposition 6.1.4 follows:

Corollary 6.2.11 A second-order cellular automaton is invertible if and
only if its 1-transform is invertible.
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But their special structure gives second-order cellular automaton a very im-
portant property:

Theorem 6.2.12 Let
〈

AG,N , f
〉

be a full second-order cellular automaton.
The following are equivalent:

1.
〈

AG,N , f
〉

is invertible;

2. for every α ∈ AN , the map a 7→ f(α, a) is invertible.

In other words: a second-order cellular automaton is invertible if and only
if its local evolution function is a permutation of the past state of the cell
parameterized by the present state of its neighborhood.
Proof:
(2 ⇒ 1) If point 2 is satisfied, fix c ∈ AG and consider the map Fc : AG → AG

defined by Fc(c) = F (c, c): if c′ = Fc(c), then for every g ∈ G:

(c′)g = f
(

〈(c)h〉h∈gN , cg

)

= f〈(c)h〉h∈gN
(cg)

Then, from condition 2 follows:

cg =
(

f〈(c)h〉h∈gN

)−1

((c′)g)

that is, c is uniquely determined by c′. From the arbitrariness of c follows
that

〈

AG,N , f
〉

is invertible.
(1 ⇒ 2) If point 2 is not satisfied, then there exists a1, a2 ∈ A and α ∈ AN

such that:
f (α, a1) = f (α, a2)

Let c ∈ AG be such that c|DG
r,S

= α; let c1 and c2 be two configurations such

that (c1)1G
= a1, (c2)1G

= a2, and (c1)g = (c2)g for every g 6= 1G. Then
F (c, c1) = F (c, c2) with c1 6= c2, so the second-order cellular automaton is
not invertible. ¤
This leads to the result of [31]:

Corollary 6.2.13 For full second-order cellular automata, invertibility is
decidable.

Proof:
From Theorem 6.2.12 follows that, to check the invertibility of a full second-
order CA, one only needs to check if a finite number of finitary maps is
invertible, which is a decidable problem. ¤
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f(a,b,c)

t

t+1

ab c

f(a,b,c)

g(a,b,c) h(a,b,c)

ab c

t

t+1

Figure 6.1: A schematic representation of a cellular automaton (left) and a
lattice gas (right) as function composition schemes.

6.3 A structural phenomenon in Euclidean

space

Theorems 4.1.10 and 6.2.12 are very similar in shape: they both assert, each
in its range of validity, that for dynamical systems having a very special
structure, invertibility is a structural property. This is a very strong simi-
larity between full second-order cellular automata and full lattice gases, and
suggests the existence of a stronger link than that with ordinary cellular au-
tomata. Such a link does actually exist, at least in the Euclidean case.

Remark that a full first-order cellular automaton with tessellation group G
can be thought of as a special type of function composition scheme, having
enough regularity to be represented as an infinite “circuits” whose “switches”
are on the node of G×Z and whose “wires” connect the neighbors of a node
at time t to the node itself at time t+1, and having the additional constraint
that all signals exiting a switch must be equal — or equivalently, that every
switch has a single output, that is later replicated.
A similar argument works for lattice gases, which show an additional prop-
erty: signal conservation. In detail: each switch must have as many outputs
as inputs, and every signal can be used only once as an input to a switch.

Let G = Zd and let A =
〈

AG,N , f
〉

be a second-order cellular automa-
ton. It is not restrictive to suppose that N is a parallelepiped whose sides
are parallel to the main axes of the space: in this case, N tiles the space, and
there is a subgroup H ⊆ Zd such that Zd = H +N = {h+n, h ∈ H,n ∈ N}:
we observe that it must be H =

⊕

1≤i≤dNiZ ∼= Zd. (Direct sum is used
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t+1

t

t−1

Figure 6.2: A representation of a second-order cellular automaton as a graph.
Arcs exiting from the same node are written as having the first part in
common, to stress that the value assigned to each of them is the same.

in place of direct product, because in Abelian groups the product is often
indicated by a plus symbol; the meaning is the same.)
We can represent A as follows: consider a directed graph whose nodes are
the point of Zd+1 and whose arcs obey the following rules:

1. if y is a neighbor of x w.r.t. N , then there is an arc from (y, t) to
(x, t+ 1) for all t ∈ Z;

2. for all t ∈ Z, there is an arc from (x, t) to (x, t+ 2);

3. there is no other arc.

This is a space-time representation of A, in the sense that we can reproduce
any evolution of the dynamical system associate to A, simply by assigning a
set of values ctx from A to the arcs exiting from nodes at times t = 0 and t = 1
(with arcs exiting from the same node having the same value), and doing the
same on each node at time t > 1 with the rule that the common value of the
arcs exiting from node x at time t, must equal f

(

〈

ct−1
y

〉

y∈x+N
, ct−2

x

)

. After

that, it is not important that the t-th update of a cell really occurs at time
t: it can happen at any time not beofore t and before t+ 1, and we still have
a representation of A. So we do as such: we enumerate N = {n0, . . . , nN−1}
(where N = N1N2 . . . Nd) and for all g ∈ Z, if g = h+ ni with h ∈ H, point
g is marked with label i and evolves at times t+ i/N . Shortly, a single time
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t−1

t

t+1

Figure 6.3: Implementation of the time slack allowed by second-order struc-
ture. This is again a representation, if we identify the state at time t with
the collection of the “output” values from nodes at time τ ∈ [t, t+ 1).

step is divided into N partial time steps.
At this point, there is no need for replicated signals: actually, one signal
generated by node x at time t+ i/N , can pass once by each node that have
x as a neighbor between times t + 1 (included) and t + 2 (excluded) (this
is possible because of the introduced time slack, which in turn is allowed by
second order), before arriving at node x at time t + 2 + i/N , where it is
processed.
Now, instead of having “small” cells in a “fine” group, the structure has
“large” cells in a “coarse” group: but the behavior is the same, because
the “state” of a macrocell is the collection of signals that, in each cell, are
spawned and have been spawned from the same cell at the previous time,
and there is a one-to-one correspondance both in state and dynamics. (And
actually, this is a representation of the dynamical system associated to the
1-transform of A.) But this is a system where each processing element has
as many inputs as outputs, and signal is never replicated: in other words,
a lattice gas. We conclude by observing that the configuration space of the
new system, is basically a rearrangement of the old one’s: in particular, it is
a full shift.
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t−1

t

t+1

Figure 6.4: The time slack actually allows a single copy of the signal to pass
through each node it must. Dotted lines remark macrocells.
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Chapter 7

Conclusions

The formalization of cellular automata by means of group theory and sym-
bolic dynamics not only allows to restate old results in a new way, but also
solves many problems, both old and new.
First of all, it gives a context where an old conjecture on dynamical systems
is true: this sentence appears in a work of Toffoli from the first Eighties,
and asserts that commutation and discernibility with respect to an action of
Zd, were sufficient to have a presentation as a cellular automaton — without
specifying whether it had to be full or not. Actually, it is the possibility to
choose incomplete configuration spaces as support of the cellular automaton,
that yields the greater freedom one needs to prove Theorem 3.2.8.
This same fact also allows to see cellular automata and lattice gases as two
sides of the same coin: this is the content of Theorem 4.2.3. This time, the
greater freedom (and consequently, the more relaxed discipline) in the choice
of the support space, actually spoils the effect of the stronger structural re-
quirements a lattice gas must satisfy.
Moreover, at least under some hypotheses, a part of the complexity can be
transferred from the group to the alphabet without altering the underlying
dynamics, and this can be done in a computable way: the theorems in Chap-
ter 5 allow to extend results for cellular automata with a given tessellation
group, to cellular automata with a slightly more complicated tessellation
group.
Finally, the formalism is also well suited in the study of the second-order case,
which is of great interest because of the strong resemblance with real-world
phenomena; Lemma 6.2.7 allows to swap the operations of “interpreting as
first-order” and “presenting as a cellular automaton”, and the greater dis-

93
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cipline imposed by second order fetches an invertibility result similar to the
one for lattice gases.

Of course, many interesting open problems remain:

1. find additional conditions to characterize the dynamical systems that
allow a presentation as full cellular automata;

2. prove the equivalence between full cellular automata and full lattice
gases, or find a counterexample;

3. find non-Abelian groups that are not semi-direct products with Z and
where the invertibility problem is decidable;

4. study cases when the cardinality of the alphabet can be increased or
reduced without altering the dynamics;

5. understand which properties of Zd allow the construction of Section 6.3,
so that it can be done on every group that satisfies them.

The use of tools from group theory and symbolic dynamics, allowed from
the current formalization, will be of great importance in the study of these
problems, as it has been in the present work.
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