
Sapienza Università di Roma
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Introduction

In this thesis, we focused on algorithms to solve combinatorial optimization problems

(COP). Solving a COP consists of finding an element within a finite space, typically

exploiting a combinatorial nature, e.g. the space of the permutations of the first

N natural numbers. Such an element should minimize (maximize) a given so

called fitness function. The COP prototype is the Traveling Salesman Problem

(TSP), whose solution is an Hamiltonian cycle on a weighted graph with minimal

total weight. Although a solution of a COP always exists, finding it may involve

a very high computational cost. The study of algorithm computational cost

started in the early 1940s with the first introductions of computers. Two different

kinds of algorithms can be used to solve a COP problem: exact or heuristic

(approximation). A method of the former type consists of a sequence of non

ambiguous and computable operations producing a COP solution in a finite time.

Unfortunately, it is often not possible to use exact algorithms. This may be the

case for instances of a NP-complete COP. In fact, to establish with certainty if any

element of the search space is a solution, requires non polynomial computational

cost. Alternatively, heuristic algorithms can be applied. Such type of algorithms

only guarantee either a solution in an infinite time or a suboptimal solution. Of great

importance are the meta-heuristic algorithms (MHA). They are general purposes

algorithms independent of the particular COP considered. Moreover, they are

usually based on advanced techniques. Often, algorithms of this kind are stochastic.

Among them, there are Simulated Annealing, Tabu Search, Genetic Algorithms and

Ant Colony Optimization (ACO).

The simulated annealing (SA) takes the name from technique involving heating
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Introduction iv

and controlled cooling of a material to increase the size of its crystals and reduce

their defects, both are attributes of the material that depend on its thermodynamic

free energy. This notion of slow cooling is implemented in the Simulated Annealing

algorithm as a slow decrease in the probability of accepting worse solutions as it

explores the solution space ([30],[7]).

Tabu search (TS) enhances the performance of these techniques by using memory

structures that describe the visited solutions or user-provided sets of rules [17]. If

a potential solution has been previously visited within a certain short-term period

or if it has violated a rule, it is marked as ”tabu” (forbidden) so that the algorithm

does not consider that possibility repeatedly.

The genetic algorithm (GA) mimics the process of natural selection is routinely

used to generate useful solutions to optimization and search problems. The GA

belongs to the larger class of evolutionary algorithms (EA), which generate solutions

to optimization problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover [18].

The prototype of ACO takes into account the basic mechanisms by which a

colony of ants finds the shortest path between nest and food.

A natural issue for MHA is their convergence. Given the stochastic nature of

such algorithms, they are studied probabilistically. Anyway, when convergence is

theoretically guaranteed, often it is too slow for using the algorithm in practice.

One possible way to cope with this problem is the so called restart approach.

This consists of several independent executions of a basic MHA. The executions are

randomly initialized and the best solution is chosen among those produced. Despite

the fact that the restart is widely used, very little work has been done to study

theoretically this approach. Here, first we studied under which conditions there is

an advantage to apply the restart. This was done by looking at the expected time to

find a solution by both the basic MHA and the restart one. We provided conditions

for the MHA failure probability along iterations, which are sufficient to obtain a gain

when applying the restart.

Another important issue is the choice of the time to restart the MHA. Usually,

the basic MHA is restarted when there are negligible differences in the fitness of
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candidate solutions at consecutive iterations. However, this criterion may not be

adequate when we want to really find the COP solution while we are not satisfied

with suboptimal ones. This is because the criterion above is not related to the restart

failure probability. The failure probability when applying the restart is geometrically

decreasing towards zero with the number of restarts. The base of such geometric

sequence is the failure probability of the involved the MHA at the restart time.

Therefore, if the above criterion provides a short restart time, this may result in a

slow convergence. In order to increase the speed of convergence one can decrease the

base value by choosing a high value of the restart time. Unfortunately, this either

may require a very long computation time or may correspond to a low number of

restarts. Therefore, a natural problem is to find an “optimal value” of the restart

time. This is studied here theoretically. To this aim, we adopted the criterion of

minimizing the restart failure probability corresponding to a fixed amount of total

computation time. The problem is then to find a minimum of a suitable function

of the MHA failure probability curve along time. Whenever the minimum of this

function does not exist, there is no advantage to use the restart. In one part of the

study, we derived sufficient or necessary conditions for the MHA failure probability

in order to have the existence of this minimum. However, these conditions cannot

be applied in practice since the MHA failure probability is obviously unknown.

In another part of the study, we propose a new iterative procedure to optimize

the restart. It does not rely on the MHA failure probability. Therefore, it can be

applied in practice. The procedure consists of either adding new MHA executions

or extending the existing ones. The procedure uses a certain version of the MHA

failure probability where the optimal solution is replaced by the best so far one. We

make the hypothesis that the MHA failure probability converges to zero with the

number of iterations. Then, we proved that with probability one the restart time of

the proposed procedure approaches, as the number of iteration diverges, the optimal

value based on the criterion of above.

We applied the proposed restart procedure to several TSP instances with

hundreds or thousands of cities with known solution. As MHA we used different

versions of an ACO. We compared the results from the restart procedure with those
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from the basic ACO, which we implemented in the C language. This was done by

considering the failure probability of the two approaches corresponding to the same

total computation cost. This comparison showed a significant gain when applying

the proposed restart procedure. In fact, the failure probability decreased by one or

two orders of magnitude.

The thesis is structured as follow. In the first chapter, we introduce both the

computational complexity issue for COP algorithms and the MHA. In the second

chapter, we illustrate some theoretical results on ACO convergence. In the third

chapter, we study theoretically when there is an advantage to use the restart.

Finally, in the last chapter, we describe the proposed restart procedure and we

study its convergence. Furthermore, we show some results of the application of the

procedure to solve TSP instances in combination with ACO. In the appendix, we

include the C code of the used ACO.



Chapter 1

Computational complexity and

some approach

An algorithm is an effective method expressed as a finite list of well-defined

instructions for calculating a function. Starting from an initial state and initial

input, the instructions describe a computation that, when executed, proceeds

through a finite number of well-defined successive states, eventually producing

“output” and terminating at a final ending state. The transition from one state

to the next is not necessarily deterministic; some algorithms, known as randomized

algorithms, incorporate random input. The definition of the algorithm above is,

of course, quite informal. In order to deal with the concept of algorithm with

mathematical tools, it was necessary to give a more rigorous definition. This was

achieved by inventing a series of mathematical models. One of the most famous is the

Turing machine [41]. It represents a sort of ideal computer equipped with a program

to run. Compared to an ideal computer, the Turing machine has an easier operation,

but with the advantage that its operation is easily described in mathematical terms,

using concepts such as set, relation and function. Furthermore, it was shown that

the Turing machine is as powerful as the Von Neumann machine, which is the model

underlying all real computers. In algorithms theory the study of computational and

spatial complexity is very important. We want to know, when the complexity of the

problem increasing, how the time to execute the algorithm and the space occupied in

1
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the computer’s memory increase. These kind of studies was born in the early 1940s

with the confluence of algorithms theory, mathematical logic, and the invention of

the stored-program electronic computer. The body of knowledge of computing is

frequently described as the systematic study of algorithmic processes that describe

and transform information: their theory, analysis, design, efficiency, implementation,

and application. The fundamental question underlying all of computing is, What

can be (efficiently) automated?

1.1 Computational complexity

A problem is described by giving a general description of all its parameters

and a statement of what properties answer or solution is required to satisfy. An

instance of a problem is obtained specifying particular values for all the problem

parameters. An algorithm is said to solve a problem Π if that algorithm can be

applied to any instance I of Π and is guaranteed always to produce a solution for

instance I. Each problem has associated with it a fixed encoding scheme which

maps problem instances into the strings describing them.

Definition 1.1.1. The input length for the instance I of a problem Π is the number

of symbols in the description of I obtained from the encoding schema for Π.

Definition 1.1.2. The time complexity function for an algorithm expresses that its

time requirements by giving, for each possible input length, the largest amount of

time needed by the algorithm to solve a problem instance of that size

Definition 1.1.3. Let us say that f(n) is O(g(n)) whenever there exists a constant

c such that f(n) ≤ c · |g(n)| for all n ≥ 0.

A polynomial time algorithm is defined to be one whose time complexity function

in O(p(n)) for some polynomial function p(n), where n is the input length. Any

algorithm where time complexity function cannot be bounded with a polynomial

function is called on exponential time algorithm. In complexity theory there is wide

agreement that a problem has not been well-solved until a polynomial time algorithm
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is known for it. So, we shall refer to a problem as formatting if it is so hard that

no polynomial time algorithm can possibly solve it. The intractability can be a

consequence of two facts. The first, which is the most intuitive, is that the problem

is so difficult that an exponential amount of time is needed to discover a solution.

The last is that the solution itself is required to be so extensive that it cannot be

described with an expression having length bounded by a polynomial function of

the input length. For example, if we consider the following variation of traveling

salesman problem (TSP): for a fixed length l > 0, to find all tours with length

almost l, we have that the intractability is a consequence of second fact. However,

in most cases, the existence of the second type of intractability is apparent from the

problem definition because we are asking for more information than we could ever

hope to use. So, from now, we shall consider only the first type of intractability.

The earliest intractability results for such problems are the classical undecidability

result of Alan Turing (cf. [41]) which demonstrated that certain problems are so

hard that they are “undecidable” in the sense that no algorithm at all can be given

for solving them.

1.2 NP-completeness

In order to introduce the NP-completeness we give the following definitions.

Definition 1.2.1. A decision problem consists of some formalized question

admitting a yes-or-no answer, which may depend on the values of some input

parameters.

Definition 1.2.2. The class P is the class of decision problems that can be solved

by a polynomial time algorithm.

Definition 1.2.3. The class NP consists of decision problems that can be solved by

a nondeterministic polynomial-time algorithm.

The relation between these two kind of problems can be established by the

following theorem; for the proof we refer to [14].
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Theorem 1.2.4. If Π ∈ NP, then there exists a polynomial p such that Π can be

solved by a deterministic algorithm having time complexity O(2p(n)).

The foundations for the theory of NP-completeness is due to Stephen Cook (cf

[8]) where it is emphasized the significance of “polynomial time reducibility” for

which the required transformation can be executed by a polynomial time algorithm.

In order to give a formal definition of “P-reducible”, we have to introduce some

definitions.

Definition 1.2.5. A deterministic Turing machine (DTM) is a 6-tuple T =

(Γ, b̄, Q, q0, F, δ) where Γ is tape symbol alphabet, b̄ 6∈ Γ is blank symbol, Q is finite

set of states no void, q0 is initial state, F ⊆ Q is final set of states, δ is transition

function defined as follow

δ : (Q \ F )× (Γ ∪ {b̄})→ Q× (Γ ∪ {b̄})× {r, l, s},

where we denote by r, l, s the head tape which moves right, left, stationary,

respectively.

This definition can be extended to multi-tape Turing machine (MTM) defining

the functions δ(i) in the space (Q \ F ) × (Γ1 ∪ {b̄}) × · · · × (Γk ∪ {b̄}) to

(Q \ F ) × (Γ1 ∪ {b̄}) × · · · × (Γk ∪ {b̄}) × {r, l, s}k, where k is a tapes number

and i = 1, . . . , k. It proves that MTM and DTM are equivalents.

Definition 1.2.6. A non-deterministic Turing machine (NDTM) is a 6-tuple T =

(Γ, b̄, Q, q0, F, δN) where Γ is tape symbol alphabet, b̄ 6∈ Γ is blank symbol, Q is finite

set of states no void, q0 is initial state, F ⊆ Q is final set of states, δN is a partial

transition function defined as follow

δN : Q× (Γ ∪ b̄)→ P(Q× (Γ ∪ {b̄})× {r, l, s}),

where we denote by r, l, s the head tape which moves right, left, stationary,

respectively.

A query machine is a multi-tape Turing machine with a distinguished tape called

the query tape, and three distinguished states called the query state, yes state, and
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no state, respectively. If M is a query machine and T is a set of strings, then a

T -computation of M is a computation of M in which initially M is in the initial

state and has an input string w on its input tape, and each time M assumes the

query state there is a string u on the query tape, and the next state M assumes is

the yes state if u ∈ T and the no state if u 6∈ T .

Definition 1.2.7. A set S of strings is P-reducible (P for polynomial) to a set T

of strings iff there is some query machine M and a polynomial Q(n) such that for

each input string w, the T -computation of M with input w halts within Q(|w|) steps

(|w| is the length of w) and ends in an accepting state iff w ∈ S.

Informally, this definition says that if Π can be polynomially reduced to Π′, then

problem Π′ is at least as difficult to solve as problem Π. If we have a polynomial

time reduction from one problem to another, this ensures that any polynomial time

algorithm for the second problem can be converted into a corresponding polynomial

time algorithm for the first problem. Moreover Cook studied on the class NP
of decisions problem that can be solved in polynomial time by nondeterministic

computer. He studied satisfiability problem also called SAT that it establishes if

the variables of a given boolean formula can be assigned such that the entire logical

expression is true. Cook proved that the satisfiability problem has the property that

every other problem in NP can be polynomially reduced to it. If the satisfiability

problem can be solved with a polynomial time algorithm, then so can every problem

in NP , and if any problem in NP is intractable, then the satisfiability problem also

must be intractable. In this sense, the SAT problem is the hardest problem in NP .

Definition 1.2.8. A problem Π is NP-complete if and only if for all Π′ ∈ NP
holds that Π′ is polynomially reducible to Π.

Definition 1.2.9. A problem Π is NP-hard if and only if there is an NP-complete

problem Π′ that is P-reducible to Π.

It is no difficult to see that if Π belongs to P and there exist a polynomial time

reduction of Π′ to Π, then also Π′ belongs to P . It implies that if one NP-complete

problem can be solved in polynomial time, then each problem in NP can be solved
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Figure 1.1: In this figure, we illustrate two possibilities in relation with answer of

the problem P/NP

in polynomial time. Moreover, if Π belongs to NP , and Π′ is NP-complete and

there exists a polynomial time reduction of Π′ to Π, then also Π is NP-complete.

Theorem 1.2.10. (Cook’s theorem) The satisfiability problem is NP-complete.

After this result, Richard Karp (cf. [29]) presentend a collection of results

proving that indeed the decision problem versions of many well known combinatorial

problem, including the TSP are just as “hard” as the SAT problem. Since then a

wide variety of other problems have been proved equivalent in difficulty to these

problems, and this equivalence class, consisting of the “hardest” problems in NP
has been given a name: the class ofNP-complete problems. So the Cook’s ideas have

provided the means for combining many individual complexity questions into the

single question: Are the NP complete problems intractable? This question is now

considered to be one of the foremost open questions of contemporary mathematics

and computer science.
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1.3 Combinatorial Optimization Problems

(COP)

A combinatorial optimization problem (COP) is either a maximization or

minimization problem with an associated set of feasible solutions S.

Definition 1.3.1. An instance of a combinatorial optimization problem is a pair

(S, f) where S is the finite set of candidate solutions and f : S → R is a function

which assigns to every s ∈ S a value f(s), also called objective function value.

To goal of a combinatorial optimization problem is to find a solution s ∈ S with

minimal (maximal) objective function, i.e. f(sopt) ≤ (≥)f(s) ∀s ∈ S. Moreover

sopt is called a globally optimal solution of (S, f) and Sopt is the set of all globally

optimal solutions.

Often the set S naturally arises as a subset of 2E (the set of all subsets of

E), for some finite ground set E. Of course, there is no problem because we

can just enumerate all feasible solutions but we seek to do better. Usually, the

feasible solutions are described in some concise manner, rather than being explicitly

listed. The challenge is to develop algorithms that are provably or practically

better than enumerating all feasible solutions. Applications of discrete optimization

problems arise in industry and in applied sciences. Besides the applications, discrete

optimization has aspects that connect it with other areas of mathematics as well as

computer science. Thus research in discrete optimization is driven by mathematics

as well as by applications.

In COP, we have to find solutions which are optimal or near-optimal with respect

to some goals. Usually, we are not able to solve problems in one step, but we follow

some process which guides us through problem solving. Often, the solution process

is separated into different steps which are executed one after the other. Commonly

used steps are recognizing and defining problems, constructing and solving models,

and evaluating and implementing solutions.



CHAPTER 1. COMPUTATIONAL COMPLEXITY AND SOME APPROACH 8

1.3.1 Some COP NP complete

As mentioned above, the first problem that has been shown to be NP complete

is

Boolean satisfiability problem: In computer science, satisfiability (often

abbreviated SAT) is the problem of determining if there exists an interpretation,

which satisfies the formula. In other words, it establishes if the variables of a given

boolean formula can be assigned in such a way as to make the formula evaluate to

“1”. Equally important is to determine whether no such assignments exist, which

would imply that the function expressed by the formula is identically “0” for all

possible variable assignments.

Since SAT is NP complete, it is shown that the partition problem is NP
complete (cf. [29]).

Partition problem: Given a collection C of subsets of a finite set X, is there a

subcollection of C that forms a partition of X?

A corollary of the last result cited is that hamiltonian path problem is NP complete.

Hamiltonian path problem: Remembering that a Hamiltonian path (Hamiltonian

cycle) is a path that visits each vertex exactly once, given a graph G, the problem

consists of determining whether G contains a Hamiltonian path.

Moreover, in [29] is shown that also TSP is NP complete. In order to show this,

was given a polynomial time reduction of undirected hamiltonian path to TSP.

Traveling salesman problem (TSP): The problem was first formulated in 1930

and is one of the most intensively studied problems in optimization. For this

problem, we have two versions: the first is the optimization version and the latter is

the decision version. Here we describe both versions. Given a symmetric complete

graph G = (V,E), where V is a vertices set (cities) and E is a edge set (distances

between each pair of cities) what is the shortest possible route that visits each link
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exactly once and returns to the origin node? The parameters of this problem consist

of finite set C = {c1, c2, · · ·, cm} of cities and, for each pair of cities (ci, cj) ∈ C ×C,

a distance d(ci, cj) between them. A solution is an ordering of (cπ(1), cπ(2), . . . , cπ(m))

of the given cities that minimizes[
m−1∑
i=1

d(cπ(i), cπ(i+1))

]
+ d(cπ(m), cπ(1)).

The decision version of this problem is: fixed a length l, does it exist a tour with

length at most l? There are many variation of this problem. For example, it is

possible to consider the tour without the edge that connects the last city with the

first city; or it is possible to eliminate the hypothesis of symmetry (existence of

one-way streets).

Quadratic assignment problem (QAP): There are a set of n facilities P and a

set of n locations L. For each pair of locations, a distance is specified and for

each pair of facilities a weight or flow is specified (e.g., the amount of supplies

transported between the two facilities). The problem is to assign all facilities to

different locations with the goal of minimizing the sum of the distances multiplied

by the corresponding flows. In other words, let ci,j be non-negative integer costs with

1 ≤ i, j ≤ n (c : P × P → R), and distances dk,l, where 1 ≤ k, l ≤ m. A solution is

a bijective function f : P → L (“’assignment’) such that the cost function n∑
i=1

n∑
j=1
j 6=i

ci,j · df(i),f(j)


is minimized.

Vehicle routing problem (VRT): The road network, used for the transportation of

goods, is generally described through a graph G = (V,E), whose arcs represent the

road sections and whose vertices correspond to the road junctions and to the depot d

and customer locations. The arcs (and consequently the corresponding graphs) can
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be directed or undirected, depending on whether they can be traversed in only one

direction (for instance, because of the presence of one-way streets, typical of urban

or motorway networks) or in both directions, respectively. Each arc is associated

with a cost ci,j, which generally represents its length, and a travel time, which is

possibly dependent on the vehicle type or on the period during which the arc is

traversed. In other words, introducing three kind of variables: xki,j to represent if

the edge (i, j) belongs to the path of vehicle k, yi,j to consider every vehicle, zki to

describe if the customer i belongs to the path k, we have to minimize the objective

function ∑
(i,j)∈V

ci,jyi,j,

with suitable constraints. The constraints are:

• a feasible solution has to verify the maxima capacity Q :
∑
i∈V

zki ≤ Q,

• every customer has to be visited by only one vehicle:
∑
k∈K

zki = 1,

• xkij ≤ zki ∀(i, j) ∈ E, ∀k ∈ K,

• yij =
∑
k∈K

xkij, ∀(i, j) ∈ E,

•
∑

(i,j)∈δ(h)

yij = 2, ∀h ∈ V \ d,

•
∑

(i,j)∈δ(d)

yij = 2k.

A complete description about this problem it can find in [40].

1.4 Solution methods for combinatorial problem

If we consider a problem NP-hard, now, it is not possible to have a polynomial-

time algorithm that solves the problem. Therefore we study algorithms of different

types. In particular, we have two kind of algorithms.
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• Exact algorithms: They reach the optimal solution after a finite number of

steps.

• Approximation algorithms: They make research in the search space according

to appropriate criteria based on stochastic search and/or local search.

1.4.1 Exact Algorithms

For any optimization problem, way to know the solution is to try all the elements

in the search space. This means that for problems NP-hard as TSP, if, for a fixed

instance, the space is too large, it is impossible to obtain a exact solution of the

problem. For the TSP, the computational cost of a generic algorithm exhaustive

search is O(n!). Nevertheless, research carried out in this area have obtained

considerable improvements. In fact, by the dynamic programming, introduced by

Bellman in 1960 (cf. [3], [4]), it was born one of the earliest applications of dynamic

programming with the Held Karp algorithm [24] that solves the problem in time

O(n22n). The dynamic programming solution requires exponential space. Using

inclusion-exclusion, the problem can be solved in time within a polynomial factor

of 2n and polynomial space (cf. [31], [28]). For some problems in restricted suitable

conditions it is possible to find exact algorithm with less time. For example Hwang,

Chang and Lee describe in [26] a sub-exponential time O(c
√
n logn) exact algorithm

with some constant c > 1 for the Euclidean TSP. The last one is a special case of

the TSP where the cities are points in the euclidean plane and where the distance

between two cities is the euclidean distance. This result is based on planar separator

structures, and it can not be generalized for all TSP. Other approaches include:

various branch-and-bound algorithms, which can be used to process TSPs containing

40-60 cities; progressive improvement algorithms which use techniques reminiscent

of linear programming (works well for up to 200 cities); implementations of branch-

and-bound and problem-specific cut generation (branch-and-cut) (cf. [2]); this is the

method of choice for solving large instances. This approach holds the current record,

solving an instance with 85900 cities ( see [1]). A survey about exact algorithms for

NP-complete problems can be found in [43].
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1.4.2 The meta-heuristic algorithms (MHA)

Since many problems NP-hard can not be solved by exact algorithms, we resort

to use approximate algorithms to accept even sub-optimal solutions near global

optimum. However, using, these kind of algorithm we can not guaranteed to have

obtained the optimum. There are different type of an approximate. In fact there are

heuristic-constructive algorithms that start by initial point and construct a solution

following an appropriate criterion. These algorithms have the advantage of being

very fast losing precision compared to local search algorithms which, starting from

an initial solution try to improve it moving to solutions neighboring of the current

solution and iterating the procedure. An approximation algorithm is always assumed

to be polynomial. We also assume that the approximation algorithm delivers a

feasible solution to some NP-hard problem that has a set of instance [I].

Definition 1.4.1. A polynomial algorithm, A, is said to be a δ-approximation

algorithm if for every problem instance I with an optimal value OPT (I),

fA(I)

OPT (I)
≤ δ,

where fA(I) is the value of optimal solution found by A for the instance I.

We recall that δ ≥ 1 for minimization problems and ≤ 1 for maximizations

problems. The smallest value of δ is the approximation ratio RA of the algorithm

A. For maximization problems, sometimes
1

δ
is considered to be the approximation

ratio/factor.

Definition 1.4.2. The absolute performance ratio, RA, of an approximation

algorithm A is,

RA = inf {r ≥ 1 | RA(I) ≤ r forall problem instances I},

and the asymptotic performance ratio R∞A for A is

R∞A = inf {r ≥ 1 | ∃n ∈ N, RA(I) ≤ r ∀|I| ≥ n},

where |I| is the size of the instance I.
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The means of RA is a “worst case” notion, i.e. it suffices to have a single “bad”

instance to render the value of δ larger than it is for all other encountered instances.

It is the same as the absolute performance ratio, with a lower bound n on the size

of problem instances.

1.4.3 Local search algorithms

In computer science, local search is a heuristic method for solving

computationally hard optimization problems. Local search can be used on problems

that can be formulated as finding a solution maximizing a criterion among a number

of candidate solutions. Local search algorithms move from solution to solution in

the space of candidate solutions (the search space) by applying local changes, until a

solution deemed optimal is found or a time bound is elapsed. Local search algorithms

are widely applied to numerous hard computational problems, including problems

from computer science (particularly artificial intelligence), mathematics, operations

research, engineering, and bioinformatics. Most problems can be formulated in

terms of search space and target in several different manners. For example, for the

TSP a solution can be a cycle and the criterion to maximize is a combination of

the number of nodes and the length of the cycle. But a solution can also be a

path, and being a cycle is part of the target. A local search algorithm starts from a

candidate solution and then iteratively moves to a neighbor solution. This is only

possible if a neighborhood relation is defined on the search space. As an example,

the neighborhood of a vertex cover is another vertex cover only differing by one

node.

For boolean satisfiability, the neighbors of a truth assignment are usually the

truth assignments only differing from it by the evaluation of a variable. The same

problem may have multiple different neighborhoods defined on it; local optimization

with neighborhoods that involve changing up to k components of the solution is

often referred to as k-opt. Typically, every candidate solution has more than one

neighbor solution; the choice of which one to move to is taken using only information

about the solutions in the neighborhood of the current one, hence the name local
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search. When the choice of the neighbor solution is done by taking the one locally

maximizing the criterion, the meta-heuristic takes the name hill climbing. When no

improving configurations are present in the neighborhood, local search is stuck at

a locally optimal point. This local-optima problem can be cured by using restarts

(repeated local search with different initial conditions), or more complex schemes

based on iterations, like iterated local search, on memory, like tabu search (TS),

on memory-less stochastic modifications, like simulated annealing. Termination of

local search can be based on a time bound. Another common choice is to terminate

when the best solution found by the algorithm has not been improved in a given

number of steps. Local search is an anytime algorithm: it can return a valid solution

even if it’s interrupted at any time before it ends. Local search algorithms are

typically approximation or incomplete algorithms, as the search may stop even if

the best solution found by the algorithm is not optimal. This can happen even

if termination is due to the impossibility of improving the solution, as the optimal

solution can lie far from the neighborhood of the solutions crossed by the algorithms.

For specific problems it is possible to design neighborhoods which are very large,

possibly exponentially sized. If the best solution within the neighborhood can be

found efficiently, such algorithms are referred to as very large-scale neighborhood

search algorithms.

Many widely known and high-performance local search algorithms make use

of randomized choices in generating or selecting candidate solutions for a given

combinatorial problem instance. These algorithms are called stochastic local search

(SLS) algorithms, and they constitute one of the most successful and widely used

approaches for solving hard combinatorial problems.

1.5 LKH algorithm and its evolutions

The Lin Kernighan heuristic algorithm (LKH) was introduced in [33] by Lin

ad Kernighan which extended and generalized a method of local search introduced

by Croes in [9] several previous years: 2-opt. Lin and Kernighan suggested the

k-opt as the central point of their algorithm Lin Kernighan Heuristic (LKH). A first
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General k-opt submoves for the Lin–Kernighan TSP heuristic 121

Fig. 1 A 3-opt move. x1, x2, x3 are replaced by y1, y2, y3

The algorithm is specified in exchanges (or moves) that can convert one candidate
solution into another. Given a feasible TSP tour, the algorithm repeatedly performs
exchanges that reduce the length of the current tour, until a tour is reached for which
no exchange yields an improvement. This process may be repeated many times from
initial tours generated in some randomized way.

The Lin–Kernighan algorithm (LK) performs so-called k-opt moves on tours.
A k-opt move changes a tour by replacing k edges from the tour by k edges in such
a way that a shorter tour is achieved. The algorithm is described in more detail in the
following.

Let T be the current tour. At each iteration step the algorithm attempts to find two
sets of edges, X = {x1, . . . , xk} and Y = {y1, . . . , yk}, such that, if the edges of X are
deleted from T and replaced by the edges of Y , the result is a better tour. The edges
of X are called out-edges. The edges of Y are called in-edges.

The two sets X and Y are constructed element by element. Initially X and Y are
empty. In step i a pair of edges, xi and yi , are added to X and Y , respectively. Figure 1
illustrates a 3-opt move.

In order to achieve a sufficiently efficient algorithm, only edges that fulfill the
following criteria may enter X or Y :

(1) The sequential exchange criterion xi and yi must share an endpoint, and so
must yi and xi+1. If t1 denotes one of the two endpoints of x1, we have in general:
xi = (t2i−1, t2i ), yi = (t2i , t2i+1) and xi+1 = (t2i+1, t2i+2) for i ≥ 1 (see Fig. 2).

As seen, the sequence (x1, y1, x2, y2, x3, . . . , xk, yk) constitutes a chain of adjoin-
ing edges. A necessary (but not sufficient) condition that the exchange of edges X
with edges Y results in a tour is that the chain is closed, i.e., yk = (t2k, t1). Such an
exchange is called sequential. For such an exchange the chain of edges forms a cycle
along which edges from X and Y appear alternately, a so-called alternating cycle (see
Fig. 3). Generally, an improvement of a tour may be achieved as a sequential exchange
by a suitable numbering of the affected edges. However, this is not always the case.
Figure 4 shows an example where a sequential exchange is not possible.

123

Figure 1.2: A 3-opt move. x1, x2, x3 are replaced by y1, y2, y3

generalization of [9] was proposed by Lin [32] introducing a concept of k-optimality

as follows

Definition 1.5.1. A tour is said to be k- optimal (or simply k-opt) if it is impossible

to obtain a tour with smaller cost by replacing any k links by any other set of k links.

Empirical evidence suggests that iterative improvement algorithms based on k-

exchange neighborhoods with k > 3 return better tours, but the computation times

required for searching these large neighborhoods render this approach ineffective.

An idea to overcome this problem is to compose more complex steps from a number

of steps in small, simple neighborhoods. The best-known algorithm that exploits

this idea is LKH. The logic of this procedure is to understand the optimal k to apply

the k-opt. In fact, the authors suppose to have a solution T which has k different

arcs to the optimal solution. Lin and Kernighan want to understand this unknown

k. In order to do this, they propose the procedure as follow:

1. Generate a random initial solution T

2. (a) Set i=1.

(b) Select xi and yi as the most-out-of place pair at the ith step.This means

that xi and yi are chose to maximize the improvement.
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(c) If it appears that no more gain can be made according to “stopping rule”,

go to Step 3; otherwise, set i = i+ 1 and go back to Step 2 (b).

3. If the best improvement is found for i = k, exchange x1, . . . , xk with y1, . . . , yk

to give a new T and go to Step 2; if no improvement is found, go to Step 4.

4. Repeat from Step 1 if desired.

In [33] there is a detailed description of this procedure applied to the TSP. The

k-opt is applied such that there are not repeated path, there is a gain, the gain is

maximized. These constraints identify the “stopping rule” mentioned in the Step

2(c).

Some variants of this algorithm in [27] and [25].

In [38] is proposed the k-opt integrate in ACO algorithm in order to improve

the performances.



Chapter 2

ACO algorithms

The Ant Colony Optimization (ACO) paradigm was developed by Dorigo,

Maniezzo and Colorni (cf. [11],[12]).It imagines to have a graph and an ant moving

randomly from one of these vertices to some other vertex, then to a third, etc., always

avoiding still visited vertices. After the visit of the last point, the ant returns to

its start position. This defines a tour, which can also be described by a sequence

of arcs (i, j), where i and j are vertex indices. The ant releases a substance in the

arcs on which it is passed it will attract other ants: the pheromone. So it assumes

that if the tours happens to be comparably short, the ant increases its probability

to traverse arcs (i, j) that lie on that tour in the future, and it decreases the

probability of traversing other arcs. In other words, successful moves are reinforced.

Computationally, this is done by an increment of real numbers assigned to the arcs,

the so-called pheromone values, along the arcs of the tour. Then, the ant starts its

walk from a new vertex, applying transition probabilities that are proportional to

the current pheromone values. By this mechanism, the average quality of a tour

improves over time, which can be used to obtain approximate solutions to the TSP.

After first successes on the TSP, it turned out that the range of application of the

ACO paradigm was much broader. The paradigm can be extended to the whole area

of combinatorial optimization problems (COP) and even beyond this field, which

means that ACO algorithms may be considered as meta-heuristic (cf [10]). A survey

on different variants of ACO algorithms, their applications and properties is given

17
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in [13].

2.1 The algorithms

Let V and E the set of the nodes (cities) and the set of the arcs, respectively. We

denote by τi,j(t) the generic element (i, j) of pheromone matrix τ at the time t. The

pheromone matrix depends the iteration of the algorithm so that the probability

that an ant traverses the arc (i, j) change with the pheromone update rule. In

order to solve the TSP, it was introduced a quantity called visibility to reward the

shorter paths. That is, we define a function η : V × V → R+ (visibility) inversely

proportional to the length of the arc (i, j) following the rule ηi,j := η(i, j) = 1
di,j

,

where di,j is the distance between i to j. Let u denote the current partial path of

the ant, and we denote by F(u) the set of arcs of u that are considered “feasible”.

The set of “feasible” arcs are the arcs of the best solution found until current time

or a variation of this rule. It depends ACO algorithm, which it could be exploit.

Procedure ACO

Initialize pheromone value τi,j on the arcs (i, j) ∈ E;

for iteration t = 1, 2, . . . do

for ant σ = 1, 2, . . . , s do

set i the current position of the ant, equal to the start node of V ;

set u, the current partial path of the ant, equal to the empty list;

while (F(u) 6= ∅)
select successor node j with probability

pi,j = 1{(i,j)∈F(u)} ·
τi,j(t)α · ηβi,j∑

(i,r)∈F(u)

τi,r(t)α · ηβi,j

append arc (i, j) to u and set i = j;

end while

set xσ = u;

end for

update the pheromone values τi,j based on the current solution xσ;
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end for The parameters α, β ∈ R+: α represents the weigh given to the pheromone

matrix, β represents the weigh given to the visibility. Generally, α = 1 and

β ∈ {1, 2, 3, 4, 5}. The last one depends the problem.

2.2 A classification of ACO

The ACO algorithms, having many parameters and functions to be defined, are

many and can be classified. Clearly any ACO depends the numbers of ants.

A parameter that gives rise to different algorithms is the rule that indicates

which paths are reinforced. This parameter can take the following values:

ac: all the current iteration;

bf: best so far;

bf∗: best so far with strict improvements;

bf0: best so far on exchange only;

bf∗0: best so far strict improvements on exchange only;

ib(r): iteration best with r ranked ants.

ac: Each path traversed by some ant in the current iteration is reinforced, for

any arc (i, j) ∈ E, following the rule:

τi,j = (1− ρ) · τi,j +
ρ

s
·

s∑
σ=1

1{(i,j)∈xσ} ·R(xσ),

where ρ ∈ [0, 1] is the so called evaporation rate and R is the reward function.

bf, bf∗, bf0, bf∗0: Only the best path found up to now in any of the previous

iterations (including the current one) by any ant is reinforced. The difference

between these variants are that bf and bf0 change the optimum if the current solution

of the generic ant σ is ’≤’ of the previous best path; otherwise for bf0 and bf∗0 the

relation is ’<’. The rule, which reinforces any arc (i, j) ∈ E, is

τi,j = (1− ρ) · τi,j + ρ · 1{(i,j)∈x̂} ·R(x̂),
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where x̂ is the best solution found until current time.

(ib)(r): Let x1, x2, . . . , xr denote the r best paths found until current iteration.

Then, for any arc (i, j) ∈ E the following pheromone update rule is applied:

τi,j = (1− ρ) · τi,j + ρ ·
r∑

k=1

(r − k + 1) · 1{(i,j)∈xk} ·R(xk).

Clearly these reinforcement rules can be combined.

The value of the reward function R(x) describes the amount of reward that

is added to the pheromone value of a reinforced arc. This can be constant (co)

or fitness-proportional (fp). For the last case, an example of reward function is
C

length(x)
, where C is a constant.

An other important parameter is the pheromone bound. In fact it could set that

any element of pheromone matrix is upper and/or lower bound by τmax and τmin,

respectively. These bounds (we denote by b) will be important if ρ is constant.

The classical ACO algorithms, Ant System ([11],[12]) is the variant s-ac-fp-nb.

MAX-MIN Ant System (MMAS) in [38] regards the variants s-bf∗-fp-b, s-ib(1)-fp-b

and s-bf∗+ib(1)-fp-b. In [5] there are the cases s-ib(r)-fp-nb and s-bf∗+ib(r)-fp-

nb, with r ≥ 2. In theoretical research, a simplified ACO algorithm called GBAS

has been designed in order to study convergence properties. The GBAS variant

investigated in [19] is s-bf0-co-nb and in [20] the variants are s-bf∗-co-nb and s-bf∗-co-

b. For runtime analysis purposes in [34] there is the study of the variant 1-bf0-co-b

and in [21], [23] there is the study of runtime analysis of variants 1-bf∗-co-b and

1-bf∗-fp-b.

2.3 The construction graph

For treating a given CO problem by ACO we have to define a graph on which the

fictitious computational unit called “ant” performs its random walks and to encode

each solution x ∈ S as a path in this graph, such that the trajectories of the ants

can be decoded to solutions in S. This graph which obviously has to depend on the

problem instance, is called the construction-graph (CG). Two different suggestions
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for formally defining the CG have been given in the ACO literature: a pheromone-

on-arcs version and a pheromone-on-nodes version.

Definition 2.3.1. It supposes that G = (V,E) is a directed graph with node set V

and arc set E. Let a unique node in V marked as the so called start node and let

W be a set of directed paths w ∈ G, called feasible paths, that satisfy the following

conditions

i) w starts at the start node of V ;

ii) w contains each node of V at most once;

iii) w is a maximal in W , i.e., it cannot be prolonged to a longer feasible path in

W .

Moreover, let φ be a function mapping the set W of feasible paths onto the

search space S of the given problem instance: To each feasible path w ∈ W , there

corresponds a feasible solution x = φ(w) ∈ S, and to each feasible solution x ∈ S
corresponds at least one feasible path in W such that φ(w) = x. Then, the graph G,

endowed with the function φ, is called a construction graph for the problem instance

(S, f).

2.4 Convergence

In order to study ACO algorithms theoretically, a way is to use Markov chain

theory. In order to do this, it needs to identify the Markov chain to work. If

we denote by x̂(t − 1) the best solution of ACO until time t − 1 we can define

Xt = (τ(t), x̂(t− 1)) which can be proved to be a Markov chain.

Let X i(t) be the stochastic process modeling the configuration assumed by the

i-th of the |A| ants of the colony. Let X∗ denote the optimal set for the function f

to be maximized (or minimized).

Definition 2.4.1. Given a function f : S → R to be maximized (or minimized),

X(t) be the stochastic process and X∗ the optimal set for the function f we define
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the failure probability as following:

p(t) = P(X(t) 6∈ X∗).

By definition, the failure probability is a non-increasing function of the number

of iterations. The effectiveness of the algorithm can then be translated into the

convergence to zero of the failure probability. Although this kind of convergence

requirement is very basic, it is not always fulfilled. Therefore, theoretical studies on

this kind of convergence are well motivated. Knowing in advance that the failure

probability is decreasing to zero makes the user confident that waiting long enough

time, there are very good chances that the algorithm will solve the problem.

We can distinguish two kinds of convergence:

convergence in value: when it holds

pv(t) := P

(
A⋂
i=1

{
X i(t) /∈ X∗

})
→ 0;

convergence in model: if for some x∗ ∈ X∗ we have

pm(x∗, t) := P

(
A⋂
i=1

{
X i(t) = x∗

})
→ 1 .

The convergence in value is important. This property tells us something about

the way in which the algorithm is exploring the configuration space X. It is

strongly connected with the strict positivity of the conditional probability to visit

at the end of any iteration one point of X∗ given that we are not currently in

X∗. However, the convergence in model is stronger than the one in value. In

the former, the probabilistic model itself evolves towards one that generates only

optimal solutions. Not all algorithms converging in value are also converging in

model. For example, this is the case for the algorithm that explores the configuration

space in a uniform and independent way, known as Random Search (RS). In fact,

pv(t) =

(
1− |X

∗|
|X|

)|A|t
→ 0, while it holds pm(x∗, t) =

(
1

|X|

)|A|
.
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In the following, we will only cope with the case where the ACO algorithm does

not use the visibility matrix ηij. In this case, the configuration of each ant of the

colony is built by a path over the construction graph [19]:

p(j|sp) =
ταij∑

j∈N(sp)

ταij
, ∀ j ∈ N(sp) (2.1)

where (i, j) is the arc by which we continue the partial path sp, and τij is its current

pheromone value.

By simply imposing some constraints on the pheromone matrix, it is possible to

have an ACO algorithm that converges in value. In fact, for an ACO algorithm

with 0 < τmin ≤ τij ≤ τmax, given any ε > 0, we have that, for t large enough, it

holds

pv(t) ≤ ε .

that is, by definition,

lim
t→∞

pv(t) = 0 .

Because of the bounds on the pheromone matrix, every choice made by the rule in

Eq. (2.1) has a probability larger or equal to

pmin =
ταmin

(Dmax − 1)ταmax + ταmin
> 0 ,

where Dmax, is the maximum value of the degree of the nodes of the construction

graph. It then follows that any configuration of the whole space X, including an

optimal one x∗, can be visited with a probability larger or equal p̂ = (pmin)Lmax > 0,

where Lmax = max
x∈X

L(x), and L(x) is the length of the path by which we have built

the configuration x. From this, it follows that

pv(t) ≤ (1− p̂)|A|t , (2.2)

i.e. there is convergence in value.

Different kinds of ACO algorithms are such that suitable bounds on the

pheromone matrix values hold. Among them, the Max Min Ant System (MMAS),
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where lower and upper bounds on the pheromone matrix values are imposed

explicitly when updating recursively them along iterations

τij(t+ 1) = min{τmax,max{(1− ρ)τij(t) + ρ 1{(i, j) ∈ xb}/L(x̄), τmin}},

where 0 < ρ < 1, and 1(·) is the indicator function [39],[38]. We notice that

the pheromone is reinforced only on arcs belonging to one configuration xb, e.g.

the best one (w.r.t the objective function f) that we have visited so far, i.e.

xb = argi=1,...,A, k=1,...,t max f(xi(k)). We could use another kind of update where

no bound on the pheromone are explicitly imposed:

τij(t+ 1) = (1− ρ)τij(t) + ρ 1{(i, j) ∈ xb}/L(xb) .

In this case, after t iterations, the pheromone values are bounded from above by

(1− ρ)tτ0 + ρ
t∑
i=1

(1− ρ)t−i/Lmin .

The above quantity converges from below to 1/Lmin. In this case, we do not have in

general any guarantee that also a lower bound holds. However, not having a lower

bound sometimes can be a positive condition. In fact, as seen above, when we have

both lower and upper bounds, convergence in value holds. When a lower bound

holds, however, we cannot have convergence in model because at any iteration we

have a lower bound for the conditional probability of reaching any configuration

given any other. We will see now that if we impose the weaker condition that the

lower bound of the pheromone matrices at time t, τmin(t) (it always exists since

there is a finite number of edges) goes to zero slowly enough, convergence in value

still holds. This is stated by the following theorem [13].

Theorem 2.4.2. Given an ACO algorithm with pheromone values having constant

upper bound τmax and lower bound τmin(t)

τmin(t) = Ω

(
1

ln(t+ 1)

)
,

then we have

pv(t)→ 0 .
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In fact, similarly to Eq. (2.2), one can prove that

pv(t) ≤
t∏

k=1

(
1− (pmin(k))Lmax

)A
,

where

pmin(t) ≥ ταmin(t)

(Dmax − 1)ταmax + ταmin(t)
≥ ταmin(t)

Dmaxταmax
.

By combining the two inequalities of above, we have

pv(t) ≤
t∏

k=1

(
1−

(
ταmin(t)

Dmaxταmax

)Lmax)A

=
t∏

k=1

(
1−K (τmin(t))α Lmax

)A
.

By the following lemma, it is sufficient to show that
∞∑
t=1

(τmin(t))αLmax → +∞.

Lemma 2.4.3. Let {an}n∈IN be a sequence of real numbers converging to zero such

that 0 ≤ an < 1, ∀n. Then, it follows that
∑
n

an → +∞ ⇒
∏
n

(1 − an)k → 0,

∀k ≥ 1.

Since τmin(t) = Ω
(

1
ln(t+1)

)
, then the terms of the series

∞∑
t=1

(τmin(t))αLmax are

eventually bounded from below by
(

C
ln(t+1)

)αLmax
. Then, this series is diverging

because
∞∑
t=1

(
C

ln(t+ 1)

)αLmax
is infinite. Finally, we have

lim
t→∞

pv(t) = 0.

In order to obtain ACO convergence avoiding to bound the pheromone matrix, it

needs to have pheromone evaporation depending to the time-dependent evaporation

factor (tdev). In particular ρ = ρ(t) has to converge to zero “slowly”. This kind

of problem is studied in [20], for a ACO variant called GBAS (Graph based Ant

System). In [20] the pheromone update rule is as follows:

τkl(t+ 1) =

(1− ρ(t))τkl(t) + ρ(t)
L(x̂(t))

if (k, l) ∈ x̂(t)),

(1− ρ(t))τkl(t) otherwise.

where 0 < ρ(t) < 1 (t = 1, 2, . . . ) and x̂(t) is the best so far solution until time t.
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Theorem 2.4.4. Let, in the algorithm GBAS-tdev,

ρ(t) ≤ 1− log(t)

log(t+ 1)
eventually,

and it holds
∞∑
t=1

ρ(t) =∞.

Then, the algorithm converges in model.

Several convergence results of different types have been shown for different ACO

variants. Some can be found in [19], [22], [36].



Chapter 3

The restart and some new

theoretical results

Trying to find the optimal solution of an instance of a NP-hard problem by using a

meta-heuristic algorithms (MHA) may be unsatisfactory. This is typical when the

instance dimension is high. In fact, also in the case when the failure probability

converges theoretically to zero, the expected time to find the optimal solution can

be very large. Hence, in practice the failure probability remains high. Based on

the stochastic nature of a MHA, a very simple approach has been proposed known

as restart. This consists of the execution of a certain number of independent runs

of the underlying algorithm. Each independent run has the same temporal length

T . The different restarts are obtained by changing typically the starting point

and or some other characteristics of the underlying algorithm. The restart has

been widely applied with success in combination with several algorithms to solve

instances of different NP-hard problems. For example, in [35],[37],[38] a restart for

ACO algorithms is proposed to solve the TSP. In [15] and [16], a method is proposed

to apply the restart at some intermediate stages to generate more occurrences of a

rare event. When applying the restart, the failure probability decreases to zero

geometrically with the number of restarts. Therefore, one is interested to use

the highest number of restarts that is compatible with the computational resource

available. Having a finite computation time t available, the number of restarts can

27
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be increased by decreasing T . On the other side, the base of the geometric sequence

of above is the failure probability pT of the underlying algorithm at the restart time

T . Hence, we wish to execute each restart for a sufficiently long T in order to

make pT small. Therefore, it is natural that the choice of T optimized the trade off

between those to requirements. Usually, the criterion to find a value of T is based

on the presence of negligible fluctuation in the solution values along time.

Despite the huge literature on the application of the restart, a few theoretical

works on this approach are available ([42]). In this thesis, we study theoretically

the restart. In this chapter, we first illustrate two examples of the application of the

restart. This is done to provide an intuitive idea about the conditions when applying

the restart is convenient in terms of the failure probability. After that, we proceed

by studing the expected value of the time needed to find the optimal solution. We

give sufficient conditions in terms of p(t) (cf. [6]) ensuring that the above expected

value is lower than when applying the underlying algorithm. Moreover, we cope

with the problem of finding an optimal value for T . This is done by adopting the

following criterion. Given the finite computation time t available, as criterion to

find an optimal value for the restart time T , we choose to minimize the restart

failure probability at the time t. As it will be clear later, this is strongly related to

the problem of minimizing the function p(T )
1
T . We provide necessary and sufficient

conditions in terms of p(t) so that such optimal value exists. We illustrate some

numerical example when the restart is convenient, assuming to know the optimal

restart time. Finally, we describe a related theoretical work.

Let X(t) be a stochastic process corresponding to the state of underlying

algorithm at the time (iteration) t and let f be the function to maximize (minimize).

We denote by fm the optimal value of the function f . Let Y (t) the value of the

function f evaluated at the state at the time t of the process corresponding to the

“best so far solution”, i.e. Y (t) = max{f(X(i)) : i ∈ [1, t] ∩ N}. In the case the

function f should be minimized, the max is replaced by min.
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3.1 Two examples

We describe now two examples. In the first example, due to the sub-exponential

decay to zero of the failure probability p(t) of the underlying algorithm, the restart

is successful. Instead, in the second example the underlying failure probability goes

to zero more than exponentially. Then, the restart is not successful.

Example 3.1.1. If p(t) =
c

tα
, where α > 0 and 0 < c < 1, we are going to show

that, for any t sufficiently large, there exists T < t such that the failure probability

p(t) of the algorithm after t iterations is larger than p(T )b
t
T c, that is the failure

probability of the algorithm restarted
⌊
t
T

⌋
times with restart time equal to T . To

this aim, it will be sufficient to have that

p(t) > p(T )( t
T
−1).

To show this, we compute the derivate of p(T )
1
T :

d

dT

(
p(T )

1
T

)
=

( c

Tα

) 1
T

[
− 1

T 2
ln
( c

Tα

)
+

1

T

(
−α 1

T

)]
= −

( c

Tα

) 1
T 1

T 2

(
ln
( c

Tα

)
+ α

)
.

This derivate vanishes when ln
(
c
Tα

)
+ α = 0 and hence for T = ec

1
α . Of course

we will choose a restart time equal to T̄ =
⌈
ec

1
α

⌉
= βec

1
α , where β ≥ 1. After

having calculated p(T̄ ) =
1

(βe)α
, we consider the quantity

p(T̄ )t/T̄−1 =

(
1

(βe)α

)t/(βe α√c)−1

<
c

tα
= p(t),

where the last inequality is true for t sufficiently large. Therefore, in this case there

is an advantage to consider the process with restart.

Example 3.1.2. Here, we choose p(t) = ct
α
, where c < 1 and α > 1. In this case,

it holds

p(T )b
t
T c ≥ p(T )

t
T = cT

α−1t ≥ ct
α

= p(t) ∀ T ≤ t.
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Therefore, in this case the choice T = t minimizes the restart failure probability,

which unfortunatly is then equal to the underlying failure probability. Hence there

is no advantage to use the restart.

3.2 Restart expected value

We will now study the restart in terms of the expected value of the first time τT

we find the optimal solution. Let τ∞ denote the analogous time for the underlying

algorithm i.e. τ∞ = inf {t : Y (t) = fm}. The expected value of τ∞ (τT ) can be

expressed in terms of the survival function

E[τ∞] =
∞∑
k=0

P (τ∞ > k). (3.1)

We notice that the event {τ∞ > t} is equal to the event {Y (t) 6= fm} for t ≥ 1.

Then, the equation (3.1) becomes

E[τ∞] =
∞∑
k=0

p(k),

where p(k) = P (Y (k) 6= fm) and we defined p(0) = 1. The same reasoning is valid

for τT so that P(τT > t) can be expressed as

p(T )b
t
T cp

(
t−
⌊
t

T

⌋
T

)
.

We notice that the power term appearing above gives the probability that the restart

did not find the optimal value in the first

⌊
t

T

⌋
restarts already completed, and the

other term corresponds to the current restart. Moreover we can write t = mT + r

where m = m(t) =

⌊
t

T

⌋
and r = r(t) ∈ {0, 1, . . . , T − 1}. Hence, we can write

E[τT ] =
∞∑
t=1

pT (t),

where

pT (t) = p(T )mp (r) (3.2)
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is the restart failure probability at the time t. In general, we notice that a necessary

condition for E[τ∞] to be finite is that the non increasing sequence p(t) goes to zero

as t diverges. Instead, to have that the expected value of τT is finite is just enough

that ∃T such that pT < 1. In fact, we have

E[τT ] ≤
∞∑
t=1

p(T )
t−1
T ,

and the series on the r.h.s. is convergent. Here, there is an example of a case where

p(t) is not going to zero as t goes to infinity.

Example 3.2.1. The algorithm involved is known as (1+1)EA with single flip

proposed for maximizing pseudo-boolean functions [23]. This algorithm, at each

iteration, first inverts the bit of a single component, randomly chosen among the n of

the binary string. Then, the proposed flip is accepted if it corresponds to an increase

of the function f . For this algorithm, the probability p(t) has a positive lower-bound

in the case when there are more than one local maximum of the objective function

f . In fact, the algorithm will converge to one of the local maxima because it is

of “hill climbing” type. Moreover, the candidate solution belongs to the hamming

neighborhood of size one of the current one, Therefore, if the initial point belongs

to the “bacine of attraction” R of a certain local maximum different from the

global one, the algorithm will converge to that local maximum with probability one.

Therefore, in this case, it holds

p(k) ≥ P (X(0) ∈ R).

If P (X(0) ∈ R) > 0 we have that p(k) does not go to zero.

A sufficient condition to have E[τT ] < E[τ∞] is obviuosly

p(T )mp (r) < p(t), (3.3)

for any t > T . However, the above condition reduces to identity for t ≤ T . In

the following, we provide some sufficient conditions for Eq. (3.3) when t > T , and

therefore also for E[τT ] < E[τ∞].
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Proposition 3.2.2. If it exists T > 0 such that for any t > 0, it holds
p(t)

p(t− 1)
>

p(T )
1
T , it follows

E[τT ] < E[τ∞].

Proof. For any t > T we can write t = mT+r, so that using the convention p(0) = 1,

we get

p(t) = p(mT + r) =
r∏
i=1

p(i)

p(i− 1)
·
mT+r∏
i=r+1

p(i)

p(i− 1)
> p(r)p(T )m,

that is (3.3).

Proposition 3.2.3. If it exists T > 0 for which it holds

p(t)

p(t− 1)
>

p (r)

p (r − 1)
∀t > T, r > 0 (3.4)

p(mT + 1)

p(mT )
≥ p(1) ∀m ∈ N, (3.5)

then we have

E[τT ] < E[τ∞].

Proof. To obtain the thesis it is sufficient to show that it holds

p(mT + r) > p(T )mp(r) ∀m ∈ N \ {0},∀r ∈ {0, 1, . . . , T − 1}. (3.6)

The last inequality is true. In fact, assuming p(0) = 1, we can write

p(mT + r) =
mT+r∏
i=1

p(i)

p(i− 1)
=

T∏
i=1

p(i)

p(i− 1)
· · ·

mT∏
i=(m−1)T+1

p(i)

p(i− 1)
·
mT+r∏
i=mT+1

p(i)

p(i− 1)
.

(3.7)

Using the hypothesis, we have

(n+1)T∏
i=nT+1

p(i)

p(i− 1)
>

T∏
i=1

p(i)

p(i− 1)
= p(T ),

where n = 1, 2, . . . ,m− 1. The similar result holds for the last product of (3.7). In

fact, we have
mT+r∏
i=mT+1

p(i)

p(i− 1)
>

r∏
i=1

p(i)

p(i− 1)
= p(r).

Hence, since (3.7) we obtain (3.6), that implies the thesis.
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3.3 Restart failure probability

From the equation (3.2), we see that the failure probability of the restart

algorithm at the finite computational time available t is geometrically decreasing

to zero with base equal to p(T )
1
T . Therefore, a criterion for choosing an optimal

value for the restart time T could consist of minimizing the function g(k) := p(k)
1
k ,

where k ∈ N. Moreover, the existence of a finite number of local minima of the

function g is strongly related to the successfull application of the restart, as shown

in the next three propositions. In order to prove the next result, we introduce the

following definition. We notice that it assumes p(t) > 0 for every t in order to give

a sense to what follows.

Definition 3.3.1. We say that the restart is convenient if ∃T ∈ N such that

pT (t)/p(t) = o(1).

Proposition 3.3.2. The Definition 3.3.1 implies that

∃T ∈ N and a < 1 such that
p(T )

t
T

p(t)
< at for any t large enough. (3.8)

Proof. The hypothesis implies that

∃T ∈ N and a < 1 such that pT (t)/p(t) = o(at). (3.9)

By using the expression of pT (t) in (3.2), we can write pT (t) = p(T )
t
T · f(t), where

f(t) = p(r) · p(T )−
r
T ,

and r = t−
⌊
t

T

⌋
T . The (3.9) can be written as

p(T )
t
T

p(t)
·f(t) < c·at eventually. Since

the function f(t) is bounded from below and above, the thesis easily follows.

Proposition 3.3.3. The condition (3.8) is equivalent to

lim
t→∞

inf
s>t

g(s) > inf
t
g(t). (3.10)
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Proof. (3.8) ⇒(3.10)

From (3.8), it follows that

g(t) = p(t)
1
t >

1

a
· p(T )

1
T =

1

a
· g(T ) > inf

t
g(t).

(3.8) ⇐ (3.10)

From (3.10), we have g(t) > c eventually, where c = β · inf
t
g(t), for a suitable β > 1.

Condition (3.10) also implies that min
t
g(t) exists and can be reached only for a finite

number of values of t. Hence, we obtain

p(t)
1
t = g(t) > β ·min

t
g(t),

for t large enough and a suitable β > 1, which implies that

1

βt
>

(mint g(t))t

p(t)
.

The proof is completed by setting a = 1
β

and T = min(arg min
t
g(t)).

We notice that for any choice of T such that g(T ) < lim
t→∞

infs>t g(s), we could

use the same scheme applied in the second implication of the above proposition, to

get that the restart is convenient for such T .

We have seen that a necessary condition for the restart to be convenient

accordingly to the definition 3.3.1 is the fact that g(t) admits a finite number of

global minima. Moreover, as said before, a criterion to find an optimal value for the

restart time could be based on the minimization of the function g.

Proposition 3.3.4. 1. Condition (3.10) holds under the hypotheses

B1) There exist a ∈ (0, 1) and ta ∈ N such that ∀t ≥ ta we have p(t) > at.

B2) It exists i ∈ N such that p(i)
1
i < a.

2. Condition (3.10) holds under the hypotheses B2) and

C1) There exist a ∈ (0, 1) and ta ∈ N such that ∀t ≥ ta we have p(t+1)
p(t)

> a.
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3. If ∀a ∈ (0, 1) it exists ta ∈ N such that ∀t ≥ ta we have
p(t+ 1)

p(t)
> a, then, it

follows lim
t→∞

g(t) = 1. Moreover, condition (3.10) holds.

Proof. 1: B1-B2 ⇒ (3.10)

Since B1 holds, there exist a ∈ (0, 1) and ta ∈ N such that ∀t ≥ ta we have p(t) > at.

Moreover, because of B2, it exists i ∈ N such that g(i) < a. Therefore, g(t) admits

minimum which is equal to min
t∈N∩[1,ta−1]

g(t). Furthermore the minimum value of g(t)

is reached at most in ta − 1 points.

2: C1-B2 ⇒ (3.10)

Since C1 holds, there exist a ∈ (0, 1) and ta ∈ N such that ∀t ≥ ta we have
p(t+1)
p(t)

> a. Moreover, we remark that condition B2 also holds when replacing a by

suitable number c such that c < a. For t ≥ ta we have p(t + 1) > ap(t), which

implies p(t) > at−tap(ta) = kat. Since a > c, the exponential sequence kat will be

smaller than ct after a certain time tc. For t ≥ max(ta, tc) condition B1 is fulfilled.

By using the implication B1-B2 ⇒ (3.10), we get thesis.

3 By the hypothesis, it follows that , for any b such that b < 1, we have

∃tb > 0 such that ∀t ≥ tb p(t+ 1) > bp(t). (3.11)

By applying (3.11) recursively, we get

p(t) > bt−tbp(tb) = cbt ∀t ≥ tb. (3.12)

The above inequality is equivalent to

pt > at ∀t ≥ ta.

Therefore, for t ≥ ta we have p(t)
1
t = g(t) > a. Hence, it holds

∀ε > 0 ∃tε > 0 such that 1− ε < p(t)1/t < 1 ∀t > tε,

which is the limit definition. Let t1 be such that p(t1) < 1 so that we have g(t1) < 1.

By choosing ε such that g(t1) < 1 − ε, by the limit condition we have g(t) > g(t1)
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for t > tε, with obviously t1 < tε. Therefore, as in the proof of 1, the sequence g(t)

admits a minimum value equal to min
t∈[1,tε]

g(t).

3.4 Some numerical simulations

We will illustrate now a simulation study where restarting the MMAS ACO

algorithm is successful. We want to maximize the following pseudo-Boolean function

f(x) =

∣∣∣∣∣
N∑
i=1

xi −
N − 1

2

∣∣∣∣∣ , (3.13)

with respect to all binary strings of length N . In Fig. 1, the function considered is

plotted as function of the number of 1s in the case N = 20.

Figure 1. The plot of the considered pseudo-Boolean function versus the number

of 1s of the binary string.

This function has two local maxima but only one of them is a global maximum.

The presence of the pheromone bounds τmin and τmax ensures convergence in value of

the MMAS algorithm. However, if the algorithm visits a configuration with few 1s it

takes a very long time in average to move towards the global maximum. Therefore,

we expect that in this case the restart will be successfull. By using as construction

graph, the chain graph [19], and by setting the initial values of the pheromone matrix
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equal to 0.5, the pheromone matrix coincides with the matrix of the probability of

transitions [23]. The initial string was chosen uniformly in the state space {0, 1}N .

The algoritms were implemented in Matlab. The values of the MMAS parameters

were ρ = 0, 01, τmin = 0.1, τmax = 0.9. We used one thousands runs of the algorithm

each with 20.000 iterations. Based on these simulations, we estimated the failure

probability. In Fig. 2, the estimation ĝ(t) of g(t) is plotted versus the iteration

numbers t. A minimum of this function is clearly visible and located at iteration

2876.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.9998

0.9998

0.9999

0.9999

1

1

Figure 2. The estimated function ĝ(t).

Finally, in Fig. 3 we show the estimated failure probability p̂(t) for the MMAS

algorithm with chain graph to maximize the pseudo-Boolean function of Fig. 1

(continuous line). On the same figure, the estimated failure probability of the restart

algorithm with T = 2876 is plotted (dashed line). As seen, there is a clear advantage

to use the restart MMAS algorithm when compared to the stardard MMAS.
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Figure 3. The estimated failure probability for the standard MMAS (continuous

line) and the restarted MMAS (dashed line).

3.5 Related work

In [42] theoretical conditions to apply the restart are studied, though for a simple

problem: when do I click my browser’s reload button if a web page takes too long

to download? If the random variable t denote the completion time of a job, the

authors ask if one would restart at time T , when it holds

E[t] < E[t− τ | t > T ].

Let f(s) be probability density function of t and F (s) its distribution. The authors

assume that F (s) is a continuous probability distribution function defined over

[0,∞), such that F (s) > 0 if s > 0. After assuming c time units for each restart,

the authors introduce the random variable tT to denote the completion time when

an unbounded number of restarts is allowed. Let fT (s) and FT (s) be the density

and the distribution of tT . It is possible to compute the distribution for the restart

FT (s) =

1− (1− F (T ))k(1− F (s− k(T + c))) if k(T + c) ≤ s < k(T + c) + T ,

1− (1− F (T ))k+1 if k(T + c) + τ ≤ s < (k + 1)(T + c),
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and density

fT (s) =

(1− F (T ))kf(s− k(T + c)) if k(T + c) ≤ t < k(T + c) + T ,

0 if k(T + c) + τ ≤ s < (k + 1)(T + c).

The expected value of tnT is computed in the next result

Theorem 3.5.1. The moments E[tnT ] =
∫∞

0
snsfT (s)ds, n = 1, 2, . . . , of the

completion time with unbounded number of restarts, restart interval length T > 0,

and time c consumed by a restart, can be expressed as:

E[tnT ] =
Mn(T )

F (T )
+

1− F (T )

F (T )

n−1∑
l=0

(
n

l

)
(T + c)n−lE[tlT ],

where E[t0T ] = 1.

The next result describes a condition to obtain the optimal time to apply the

restart.

Theorem 3.5.2. The optimal restart time T ∗ > 0 that minimized the expected

completion time E[tT ] is such that:

1− F (T ∗)

f(T ∗)
E[tT ∗ ] + c.

That is, if c = 0, the inverse of the hazard rate at T ∗ equals the expected completion

time under unbounded restarts.



Chapter 4

A new restart procedure and its

convergence

As seen in the last chapter, the restart procedure could be optimized by choosing

a value σ for the restart time that minimizes the function g(t) := p(t)
1
t , where p(t)

is the failure probability of the underlying algorithm. This has also been illustrated

by a numerical example. However, this approach cannot be used in practice. This

is because the failure probability could be computed theoretically or estimated from

a suitable large simulation sample only if we know the combinatorial optimization

problems (COP) solution. In this chapter, we describe a new iterative procedure to

optimize the restart which does not use such a knowledge. This property together

with the convergence’s results, allow us to apply this procedure in practice. Every

iteration, the procedure provides an estimation of σ̂ which converges to σ as the

number of steps of the procedure grows with probability one. Moreover, we show

some numerical results where the proposed restart procedure (RP) is applied to

ACO for solving several TSP instances.

4.1 The procedure

The RP starts by executing r0 replications of the underlying algorithm until time T0.

Then, at the end of iteration k, based on the criterion described later in this section,

40
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the RP either increases the number of replications from rk to rk+1 by executing

rk+1 − rk replications of the underlying algorithm until time Tk, or it continues the

execution of the rk replications until time Tk+1. Let Yi(t) be the value of the best

solution found by i-th replication until time t i.e. Yi(t) = min(f(Xi(s)), s = 1, ..., t),

where f is the function to minimize. Each Yi(t) is an independent realization of

the same process. We can always think at the RP in the following way. Given the

infinite matrix Y with generic element Yi(j) where i, j = 1, 2, . . . , at iteration k,

a realization of the RP consists an increasing sequence {YAk}k∈N of finite matrices,

where Ak := {(i, t) : i = 1, . . . , rk t = 1, . . . , Tk}. The matrix YAk corresponds to

the first rk rows and Tk columns of Y. Let Ỹk denote the minimum value of this

matrix at the end of iteration k: Ỹk = minYAk = min
(i,t)∈Ak

Yi(t). We estimate the

failure probability sequence by means of the empirical frequency

p̂k(t) =

 1
rk

∑rk
i=1 1{Yi(t)>Ỹk} t = 1, . . . , Tk,

0 otherwise.

We denote by σ̂k the smallest value of the time where the minimum of p̂k(t)
1
t is

reached in the interval [1, Tk] ∩ N. Let λ be a number in (0, 1). If σ̂k < λ · Tk,
then the RP increases the number of replications by means of the rule such that

rk+1 := fr(rk) > rk. Otherwise, the RP increases the restart time accordingly to

Tk+1 := fT (Tk) > Tk. We assume that both fr and fT are functions such that for any

fixed x > 0 it holds f
(k)
r (x), f

(k)
T (x)→∞ , where the power k denotes the consecutive

application of the function k times. These are the two basic requirements to choose

fr and fT . Apart from this, there is complete freedom to choose the functions.

An example of these functions is provided in section 4.3. Therefore, the recursive

formula for (rk, Tk) is

(rk+1, Tk+1) =

(fr(rk), Tk) if σ̂k < λ · Tk,

(rk, fT (Tk)) otherwise.

Below, there is the pseudo code for RP:

r = r0;
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T = T0;

for replication i = 1, 2, . . . , r do

execute algorithm A until time T ;

save Ai(T );

end for

save YA0 ;

compute σ̂0 from YA0 ;

for iteration k = 1, 2, . . . do

if σ̂k−1 > λ · Tk−1 then

Tk = fT (Tk−1);

rk = rk−1;

for replication i = 1, 2, . . . , rk do

continue the execution of Ai until Tk;

save Ai(Tk);
end for

else then

rk = fr(rk−1);

Tk = Tk−1;

for replication i = rk−1 + 1, rk−1 + 2, . . . , rk do

execute Ai until Tk;

save Ai(Tk);
end for

end if

save YAk ;

compute σ̂k from YAk ;

end for
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4.2 RP convergence

We denote by fm the value of the solution of the optimization problem. Moreover,

for simplicity, we introduce the function gk(t) := p̂k(t)
1
t , whose domain is N∩ [1, Tk].

In order to derive the following results, we assume that

1. p(t) −→
t→∞

0,

2. g(t) admits only one point of minimum tm and that it is strictly monotone

decreasing for t ≤ tm,

3. p(1) < 1.

Remark 4.2.1. We notice that, by the assumption on fr and fT ,the probability

that both sequences rk and Tk are bounded is zero.

Lemma 4.2.2. Let p(t) be as above. Let (rk, Tk) be the sequence of random variables

which describes RP. Then

1. P (rk →∞) = 1.

2. It holds

P
({
∃k : Ỹk = fm

})
= 1. (4.1)

Proof. 1 If P (rk →∞) < 1, then with positive probability the following three

conditions hold for a certain positive integer r:

i) rk = r eventually;

ii) Tk diverges (for Remark 4.2.1);

iii) σ̂k ≥ λTk eventually (from ii and the definition of RP).

However, since p(t) = o(1), with probability 1, the underlying r copies of the

algorithm will have all reached the optimum after a certain time t0. Therefore, since

ii), it follows that, for all h large enough, we will have p̂h(t) = 0 for t0 ≤ t ≤ Th.
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Hence, eventually σ̂h will not change which is a contradiction with iii). Therefore

P (rk →∞) = 1.

2 Remark 4.2.1, by looking at the RP in terms of a increasing sequence

of finite matrices extracted by Y, means that P(A) = 1, where A =

{the first row or the first column of ∪k Ak is infinite}. Then, we have

P({∃k : Ỹk = fm}) ≥ P(A ∩B), (4.2)

where B = {∃t : Y1(t) = fm} ∩ {∃i : Yi(1) = fm}. The event B has

probability one since it is an intersection between events with probability one. In

fact, P({∃t : Y1(t) = fm}) = 1 from the hypothesis p(t) → 0. Moreover, by the

strong law of large numbers P({∃i : Yi(1) = fm}) = 1. Hence, by (4.2)

P({∃k : Ỹk = fm}) = 1.

This proves (4.1).

Lemma 4.2.3. If, for every t ∈ N, we have

P
({

sup
k
Tk < t

}
∪
{

lim
k→∞

p̂k(t) = p(t)
})

= 1, (4.3)

then it holds

P
(

sup
k
Tk >

tm
λ

)
= 1.

Proof. Assume that the thesis is not true. Then, it exists a real number M such that

0 < M ≤ tm
λ

and P ({supk Tk = M}) > 0. When

{
sup
k
Tk = M

}
happens, by both

(4.3) and the continuous mapping, we have the convergence gk(t) → g(t), for any

t ≤M . This means that, for any ε > 0 eventually it holds

{
M⋂
t=1

|gk(t)− g(t)| < ε

}
.

This implies that gk(M) < g(M) + ε and gk(t) > g(t)− ε for any 1 ≤ t < M . The

first inequality can be rewritten as −gk(M) > −g(M) − ε. Summing side by side

the first and the last inequalities, we obtain

gk(t)− gk(M) > g(t)− g(M)− 2ε.
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Since g is strictly decreasing until tm ≥ min(M, tm) := M̃ , the r.h.s. of the last

inequality is larger than g(M̃−1)−g(M̃)−2δ. By taking ε = 1
2

min
t∈[2,M̃ ]∩N

(g(t−1)−g(t))

we get gk(t)− gk(M̃) > 0 for t < M̃ . Therefore, σ̂k → arg min
t∈[0,M ]∩N

g(t) = M̃).

Hence, with a positive probability, we get eventually σ̂k = M̃ . If M ≤ tm,

we have eventually σ̂k = M . Since σ̂k ≤ Tk ≤ sup
k
Tk = M , we have eventually

Tk = M . For one of such k, it holds
σ̂k
Tk

= 1 > λ, so that, by the definition of

the RP, at the following iteration we have Tk+1 > Tk = M = sup
k
Tk, which is a

contradiction. In the other case tm < M ≤ tm
λ

, for an infinite number of values

of k, we have tm = σ̂k ≤ Tk ≤ sup
k
Tk = M . For any of these values of k, we get

σ̂k
Tk

=
tm
Tk
≥ tm
M
≥ λ. As a consequence, given the current value Tk, as before, the

following one Tk+1 will be fT (Tk). By the property of the function fT , after a certain

number of iteration k, we get Tk > M = sup
k
Tk, which is a contradiction.

Theorem 4.2.4. If we define T :=

⌊
tm
λ

⌋
it holds

P
(

sup
k
Tk >

tm
λ

)
= 1,

and

P

(
T⋂
t=1

lim
k→∞

p̂k(t) = p(t)

)
= 1.

Proof. We now show that

P
({

sup
k
Tk < t

}
∪
{

lim
k→∞

p̂k(t) = p(t)
})

= 1. (4.4)

In fact, if the event {supk Tk ≥ t} happens, then we can eventually compute

p̂k(t). Therefore, by the first statement of Lemma 4.2.2 and using the strong law of

large numbers, we get

P

(
lim
k→∞

1

rk

rk∑
i=1

1{Yi(t)>fm} = p(t)

)
= 1. (4.5)
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Hence, using (4.1), we obtain

P

(
lim
k→∞

1

rk

rk∑
i=1

1{Yi(t)>Ỹk} = p(t)

)
= 1. (4.6)

It then follows that,

P
(

sup
k
Tk ≥ t

)
= P

({
sup
k
Tk ≥ t

}
∩
{

lim
k→∞

p̂k(t) = p(t)
})

.

Since

P
({

sup
k
Tk < t

}
∪
{

lim
k→∞

p̂k(t) = p(t)
})

=

P
({

sup
k
Tk < t

})
+ P

({
sup
k
Tk ≥ t

}
∩
{

lim
k→∞

p̂k(t) = p(t)
})

,

it follows (4.4), which is the hypothesis of Lemma 4.2.3, so that it holds

P
(

sup
k
Tk >

tm
λ

)
= 1.

Therefore, for any t = 1, 2, . . . T , with probability one we can eventually compute

p̂k(t) and (4.6) holds. Therefore we get

P

(
T⋂
t=1

lim
k→∞

p̂k(t) = p(t)

)
= 1,

that is the thesis.

4.3 Application of the RP to TSP instances

Here, we assess the performances of the RP and we compare them with those of

the underlying algorithm. We consider several TSP instances with hundreds or

thousands of cities for which the optimal solution is known. This information can

be used to estimate the failure probability of the RP and of the underlying algorithm.

However, obviously, this information has not be used when applying the underlying
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algorithm and the RP. In order to compare the results from the two algorithms with

the same computational effort, we consider for the RP a pseudo-time t, defined as

follows. To this aim, we may think that the replications of RP are executed in

parallel. When adding new replications (rk increase), we stop the execution of the

existing ones. Instead, when increasing the time Tk, we just continue the execution of

them. The first T1 instants of the pseudo-time correspond to the first T1 iterations

of the first replication. The following T1 pseudo-time instants correspond to the

analogous of the second replication and so on. At the end of the k-th RP iteration,

we have produced rk executions (replications) for Tk times and the final pseudo-time

instant is t = rk · Tk. At the (k + 1)-th iteration, we have a certain (rk+1, Tk+1),

with either rk+1 > rk and Tk+1 = Tk or rk+1 = rk and Tk+1 > Tk. In the first case,

the pseudo-time instant t = Tk · rk + 1 corresponds to the first iteration time of the

rk + 1 replication. The pseudo-time is increased until the end of that replication.

We proceed in the same way until the end of rk+1 replication. In the second case,

the pseudo-time instant t = Tk ·rk+1 corresponds to the iteration time Tk+1 of the

first replication. The pseudo-time is then increased until the iteration time Tk+1 of

that replication. Then, the following pseudo-time instant t = Tk ·rk+(Tk+1−Tk)+1

corresponds to the iteration time Tk + 1 of the second replication, and so on.

We denote by Ỹ (t) (t = 1, 2, . . . ), the process describing the best so far solution

of the RP corresponding to the pseudo-time instant t. Hence, based on a set of m

replications of the RP, we can estimate the failure probability pRP(t) by using the

classical estimator

p̂RP(t) =
1

m

m∑
i=1

1{Ỹi(t)6=fm}. (4.7)

By the law of large numbers this estimator converges to the failure probability of

the RP pRP(t).

We notice now that p̂RP(t) conditioned to a sequence {(rk, Tk)}k can be expressed

as a function of the failure probability p(t) of the underlying algorithm as followp(Tk)
⌊
t
Tk

⌋
p
(
t− Tk

⌊
t
Tk

⌋)
, if rk+1 > rk,

p(Tk+1)∆t,k · p (t− Tkrk −∆t,k(Tk+1 − Tk) + Tk) · p(Tk)rk+1−∆t,k−1, if Tk+1 > Tk,

(4.8)
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where ∆t,k =
⌊

t−Tkrk
Tk+1−Tk

⌋
, and t = Tk · rk + 1, Tk · rk + 2, . . . , Tk+1 · rk+1. In the

second case rk+1 = rk, the first factor describes the ∆t,k replications which have

been already extended until time Tk+1. The second factor represents the replication

which is currently being extended. The last one accounts for the rk+1 − ∆t,k − 1

replications that have not yet been extended.

Replacing p(t) in the last formula by the classical estimator p̂(t) in (4.7) based

on a set of replications of the underlying algorithm, we can estimate the failure

probability of the RP conditioned to a sequence {rk, Tk}k. Since p̂(t) is a consistent

estimator of p(t), by the continuous mapping the same will be true for the above

estimator of pRP(t).

Below, we describe some results of the application of the RP to different TSP

instances studied in [38]. The underlying algorithm used here in the RP and as

term of comparison is the ACO proposed in [38]. It is a particular ACO known

as MMAS, combined with different local search procedures. Moreover, we compare

them with those from the underlying algorithm. The RP setting is as follows:

Tk+1 = fT (Tk) := q(Tk)Tk where

q(Tk) = c2 + C ·

√ ∣∣(Ȳ (rk, Tk)− Ȳ (rk, σ̂k)
)∣∣(

Ȳ (rk, Tk) + Ȳ (rk, σ̂k
)
)/2

, (4.9)

where Ȳ (r, s) =
1

r

r∑
i=1

Yi(s), and c2 and C are constant larger than one and zero,

respectively. The square root factor appearing in the last formula is not essential,

but we have empirical evidence that it accelerates the RP convergence. Moreover,

rk+1 = fr(rk) := c1 · rk, where c1 > 1. Finally, we set λ = 2
3
.

We consider now an instance with 1291 cities (d1291). For this instance,

the underlying algorithm has a high failure probability (f.p.) after some tens of

thousands of iterations. Instead, the RP has a significantly lower f.p., as shown in

the Figure 4.1. We remark that, until the value 104 for the time or pseudo-time, the

f.p. the underlying algorithm is lower than the one of RP. This is due to the fact

that the RP is still searching for the optimal value of the restart time. After that,

the Tk value for RP is approaching the optimal restart time tm. In fact, the value
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of tm and the final value of σ̂k are 650 and 652, respectively. Consequently, the RP

overcomes the underlying algorithm and gains up to three orders of magnitude in

terms of the f.p. at pseudo-time 70000.

For the same instance above, in Figure 4.2, we compare the f.p. curves of RP

computed by the estimators in (4.7) and (4.8). As one can see, there is a very good

agreement between the two estimates. This is an evidence that the mathematical

model for the RP is adequate. Furthermore, we have seen empirically that the

variance of the estimator (4.8) is lower than the other one. Therefore, we have

used the first one to compute the f.p. values for the RP applied to the several TSP

instances which are shown in the Table 1. Of course, the estimator (4.8), uses the

information about the estimate of p̂(t). This last requires additional independent

replications of the underlying algorithm. However, the estimate of p̂(t) was necessary

in any case for the comparison of the performances of the RP with those of the

underlying algorithm.

Finally in Figure 4.3, we compare the f.p. curve of RP computed by the estimator

in (4.7) (blue curve) and the curve obtained applying the restart periodically at the

optimal restart time (red curve). We remark that the RP curve has the same

behavior shifted by the pseudo time which takes to learn the optimal restart time

than the red curve. We notice that for all instances of Table 4.3, curves similar to

those as in Figure 4.1, 4.2 and 4.3 , were obtained.

By looking at the results in Table 4.3, it is evident the advantage of using the

RP instead of the underlying algorithm. In fact, for all instances, the f.p. of the RP

is two or three orders of magnitude lower than the one of the underlying algorithm.

We can then claim the success of the RP to optimize the computation resource

available with respect to the f.p. Therefore, given a certain computation resource,

by applying the RP, we are far more confident that the result obtained is a solution

of the COP instance analyzed.
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Figure 4.1: Failure probability versus pseudo-time and time for the RP (red line)

and the underlying algorithm (blue line) respectively. The considered TSP instance

(d1291) has 1291 cities. The f.p. curves of the RP and the underlying algorithm have

been computed by the classical estimator in (4.7) based on 300 and 1600 replications,

respectively. The vertical segment shows the 99% level confidence interval.

Instance ACO algorithm T ACO f.p. RP f.p.

eil51 MMAS -2.5 opt 100000 0.88 5.3 · 10−2

lin318 MMAS-2opt 84000 0.73 1.7 · 10−3

att532 MMAS-3opt 57000 0.54 2.0 · 10−3

pcb1173 MMAS-3opt 150000 0.75 5.2 · 10−2

d1291 MMAS-3opt 70000 0.76 3.1 · 10−3

rat783 MMAS-3opt 25000 0.10 2.2 · 10−2

Table 4.1: Results of the application of the RP and the underlying algorithm to

TSP instances with known optimal solutions. The f.p. values are computed at the

time T reported in the third column (pseudo-time for the RP).
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Figure 4.2: Failure probability for the RP versus pseudo-time for the TSP instance

d1291. The continuous and dashed-dotted lines correspond to the estimators (4.7)

and (4.8), respectively.

Figure 4.3: In this figure, using ACO as underlying algorithm, we compare f.p. of

the RP that appears in Figure 1 (blue curve) with the one obtained applying the

restart periodically at the optimal restart time (red curve).



Conclusions

For a given COP, when the search space has high cardinality, it is useful to

apply stochastic algorithms, which exploit the space using the regularity of the

problem. In these cases the problem could be hard so that it could happen that

the algorithm stays in sub-optimal solution too much time with positive probability.

Hence, it could be useful to improve the algorithm’s performance. A way to do this,

it is to apply the restart, which consists of periodic initializations of the algorithm.

Although this technique is often applied in practice, there are few theoretical works

which describe when, applying the restart, there is a gain. In this thesis, we have

studied, from the theoretical side, sufficient conditions to have gain applying the

restart. This gain is defined in two ways: the first is based on the failure probability,

the second is based on the first hitting time to optimal solutions. In the first case,

we say that the restart is convenient if the ratio between the failure probabilities of

restart and underlying algorithm goes to zero. We show that this condition holds if

the failure probability of the underlying algorithm is sub-exponential. The second

theoretical approach consists of comparing the expected value of the first hitting time

in optimal solutions between the underlying and restart algorithm. We have found

sufficient conditions for having mean time to reach optimal solutions is lower for the

restart algorithm than the one underlying. The sufficient condition is the existence

of a time T such that, for t > T the failure probability of the underlying algorithm

decreases slower than for t ≤ T . This conditions have limited utility, because one

needs to know the failure probability of the underlying algorithm. In fact, for almost

every problems the failure probability is unknown. Hence, we have proposed a new

procedure, which does not use the failure probability of the underlying algorithm.

52
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The iterative procedure executes a certain number of replication until a fixed

time. These replications are used to estimate the failure probability of the underlying

algorithm. In order to do this, it is computed the minimum value of the replications

executed Ỹk. Hence, it is computed for any time, the failure probability respect of Ỹk,

so that we obtain gk(t) that is an estimate of g(t). Therefore, we have compute the

position of the minimum of ĝk(t) which is σ̂k. If σ̂k close to the end of time window,

the time of underlying algorithm is increased, otherwise the number of replication is

increased. This choice is made because if the estimate of g(t) continues to decrease,

we extend the time, otherwise we improve the estimate of g(t) increasing the number

of replications. In order to establish if σ̂k close to the end of time window, we set

a parameter λ ∈ (0, 1). For small λ we have less confidence than for λ near to

one. In this way, the procedure overcomes the problem that the failure probability

of underlying algorithm is unknown and, after a suitable numbers of iterations,

the procedure applies the restart, using a time upper and close to the optimal

restart time. In other words, the procedure, after a suitable numbers of iterations

of underlying algorithm, that is used to understand the optimal restart time, the

procedure works like if the failure probability is known. This fact, is shown in

practice for some TSP instances (Table 1) and is guaranteed by the theory. In fact,

the theorem, that we have proved, tell us that if the p(t) goes to zero and g(t) admits

only one minimum tm, and until tm, g(t) is strictly decreasing function, then p̂k(t)

converges almost certainly to p(t). Hence, ĝk(t) converges almost certainly to g(t),

so that the procedure finds the minimum of g(t). In the last part of thesis, we have

shown the results obtained applying the restart procedure for several TSP instances

with hundred and thousand of cities. The procedure proposed can be improved in

terms of preserve the performance, decreasing the computational cost. In order to

do this, we can follow two approaches. The first is to take λ which depends from

the iteration number of the procedure. In this way, the first iterations of the restart

procedure, have an estimate of g(t) that is not good, so that we could take small λ.

Increasing the iterations of the procedure the estimate of g(t) is improved, so that we

can take λ larger. Hence, if we denote by k the k-th iteration of restart procedure,

we could choose λ = λk, which is increasing with k. The second improvement is to
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reduce the time window when the estimate of g(t) is good enough. In this way, the

last replications are executed for less time than the previous replications.
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Appendix A

ACO implementation code

1 #include <iostream>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <math.h>

6 #define n points 194

7 #define new dim 18

8 #define num sub pb 7

9 #define T 5000

10 #define TLOC 1000

11 #define IA 16807

12 #define IM 2147483647

13 #define AM (1.0/IM)

14 #define IQ 127773

15 #define IR 2836

16 #define NTAB 32

17 #define NDIV (1+(IM−1)/NTAB)

18 #define EPS 1.2e−7

19 #define RNMX (1.0−EPS)

20 #define MAXFLDS 3 /∗ maximum possible number of fields ∗/
21 #define MAXFLDSIZE 10000 /∗ longest possible field + 1 = 31 byte field ∗/

60
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22 #define bufsize 1024

23 #define nAnts 25

24

25

26 void edit matrix distance(float Cities[n points][2],double M[n points][n points])

27 {
28 int i,j;

29 for(i = 0; i < n points; i++){
30 for(j = 0; j < n points; j++){
31

32 M[i][j]=sqrt((Cities[i][0]−Cities[j][0])∗
33 (Cities[i][0]−Cities[j][0])+(Cities[i][1]−Cities[j][1])∗
34 (Cities[i][1]−Cities[j][1]));

35 }
36 }
37 return;

38 }
39

40 void set diff(int set[n points],int setNew[n points], int elem,int lung )

41 {
42 int i,k=0;

43 for (i=0;i<n points;i++)

44 {
45 if(set[i]!=elem)

46 {
47 setNew[k]=set[i];

48 k++;

49 }
50

51 }
52 return;

53 }
54
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55

56 void set diff local(int set[new dim],int setNew[new dim], int elem,int lung )

57 {
58 int i,k=0;

59 for (i=0;i<new dim;i++)

60 {
61 if(set[i]!=elem)

62 {
63 setNew[k]=set[i];

64 k++;

65 }
66

67 }
68 return;

69 }
70

71 float minimo(float a,float b){
72 if (a<b)

73 return a;

74 else

75 return b;

76 }
77

78 float massimo(float a,float b){
79 if (a>b)

80 return a;

81 else

82 return b;

83 }
84

85

86 int pos massima(double v[n points],int lung,double a)

87 { int j,i=0;
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88 double w[lung],mass=−1;

89 int pos=−1;

90 for(j=0;j<lung;j++){
91 w[j]=v[j];

92 }
93

94 while(mass<a)

95 {
96 mass=w[i];

97 pos=i;

98 i++;

99 }
100

101 return pos;

102 }
103

104

105 float ran1(long ∗idum)

106 {
107 int j;

108 long k;

109 static long iy=0;

110 static long iv[NTAB];

111 float temp;

112

113

114 if (∗idum <= 0 || !iy) {
115 if (−(∗idum) < 1) ∗idum=1;

116 else ∗idum = −(∗idum);

117 for (j=NTAB+7;j>=0;j−−) {
118 k=(∗idum)/IQ;

119 ∗idum=IA∗(∗idum−k∗IQ)−IR∗k;

120 if (∗idum < 0) ∗idum += IM;
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121 if (j < NTAB) iv[j] = ∗idum;

122 }
123 iy=iv[0];

124

125 }
126 k=(∗idum)/IQ;

127 ∗idum=IA∗(∗idum−k∗IQ)−IR∗k;

128 if (∗idum < 0) ∗idum += IM;

129 j=iy/NDIV;

130 iy=iv[j];

131 iv[j] = ∗idum;

132 if ((temp=AM∗iy) > RNMX) return RNMX;

133 else return temp;

134

135 }
136

137 void opt 3(int Pat[n points],int NewPat[n points], int cit[3])

138 {
139 float dist;

140 int i,j,pos 0,pos 1,pos 2;

141 pos 0=cit[0];

142 pos 1=cit[1];

143 pos 2=cit[2];

144 for(i=0;i<pos 0;i++)

145 NewPat[i]=Pat[i];

146 j=0;

147 for(i=pos 0;i<pos 1;i++){
148 NewPat[i]=Pat[pos 1−1−j];

149 j++;

150 }
151 j=0;

152 for (i=pos 1;i<pos 2;i++){
153 NewPat[i]=Pat[pos 2−1−j];
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154 j++;

155 }
156 for (i=pos 2;i<n points;i++){
157 NewPat[i]=Pat[i];

158 }
159 }
160

161 void opt 3 2(int Pat[n points],int NewPat[n points], int cit[3])

162 {
163 float dist;

164

165 int i,j,pos 0,pos 1,pos 2;

166 pos 0=cit[0];

167 pos 1=cit[1];

168 pos 2=cit[2];

169 for(i=0;i<pos 0;i++)

170 NewPat[i]=Pat[i];

171 j=0;

172 for(i=pos 0;i<pos 0+pos 2−pos 1;i++){
173 NewPat[i]=Pat[pos 1+j];

174 j++;

175 }
176 j=0;

177 for (i=pos 0+pos 2−pos 1;i<pos 2;i++){
178 NewPat[i]=Pat[pos 0+j];

179 j++;

180 }
181 j=0;

182 for (i=pos 2;i<n points;i++){
183 NewPat[i]=Pat[pos 2+j];

184 j++;

185 }
186 }
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187

188

189

190

191

192

193 double verify opt(double M[n points][n points],int Pat[n points],double value dist)

194

195 {
196 int iOp,jOp,hOp,bestCit2[2],bestCit3[3],kOp ,flag=0,i,j,pos 0,pos 1,pos 2,pos 3,NewPat[n points];

197 double dist1,dist2,gain1,gain2,gain3,gain2bis,gain1bis,gain3bis,gain=0;

198

199 for(iOp=0;iOp<n points−5;iOp++)

200 {
201 for(jOp=iOp+2;jOp<n points−3;jOp++)

202 {
203 pos 0=iOp+1;

204 pos 1=jOp+1;

205 gain1=M[Pat[pos 0−1]][Pat[pos 0]]−M[Pat[pos 1−1]][Pat[pos 0−1]];

206 gain1bis=M[Pat[pos 0−1]][Pat[pos 0]]−M[Pat[pos 1]][Pat[pos 0−1]];

207 if((gain1>0)||(gain1bis>0))

208 {
209

210 for(kOp=jOp+2;kOp<n points−1;kOp++)

211 {
212 pos 2=kOp+1;

213

214 gain2=gain1+M[Pat[pos 1−1]][Pat[pos 1]]−
215 M[Pat[pos 1]][Pat[pos 2]];

216

217 if ((gain1>0) && (gain2>0))

218 {
219 gain3=gain2+M[Pat[pos 2]][Pat[pos 2−1]]−
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220 M[Pat[pos 2−1]][Pat[pos 0]];

221

222 if(gain3>gain)

223

224 {
225 flag=2;

226 bestCit3[0]=pos 0;

227 bestCit3[1]=pos 1;

228 bestCit3[2]=pos 2;

229 gain=gain3;

230 }
231 }
232 gain2bis=gain1bis+M[Pat[pos 1−1]][Pat[pos 1]]−
233 M[Pat[pos 1−1]][Pat[pos 2]];

234 if ((gain1bis>0) && (gain2bis>0))

235 {
236 gain3bis=gain2bis+M[Pat[pos 2]][Pat[pos 2−1]]−
237 M[Pat[pos 2−1]][Pat[pos 0]];

238 if(gain3bis>gain)

239

240 {
241

242 flag=3;

243 bestCit3[0]=pos 0;

244 bestCit3[1]=pos 1;

245 bestCit3[2]=pos 2;

246 gain=gain3bis;

247 }
248 }
249 }
250 }
251 }
252 }
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253 if(flag==2)

254 {
255 opt 3(Pat,NewPat,bestCit3);

256 for(i=0;i<n points;i++)

257 Pat[i]=NewPat[i];

258 }
259 else if(flag==3)

260 {
261

262 opt 3 2(Pat,NewPat,bestCit3);

263 for(i=0;i<n points;i++)

264 Pat[i]=NewPat[i];

265 }
266

267 value dist=value dist−gain;

268 return value dist;

269 }
270

271

272

273

274

275 void tsp(double M[n points][n points], double sol[T],int bestPat[n points],long h )

276 {
277 double N[n points][n points];

278 int i,jj,iDim,bestPatPart[n points],bestPat2[n points],iAnt,cont2=0,j,iLoc;

279 int iTime,w,k,setExpl[n points],pat[n points],ncities,ipat,lSetExpl,div,contator[n points];

280 double fMinAnt,taumin,taumax,rho,tau[n points][n points],dist,appo[n points],somma;

281 double fMin,fMinBis,fMin2,fMin3,dim,a,solLocal,solLocal2,fMinLocal,solLocalOpt;

282 long ∗idum;

283 int par,par1,new dim 2;

284 int bestPatLocal[new dim],bestPatLocalOpt[new dim],bestPatLocalAppo[new dim];

285 idum=&h;
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286 rho=0.26;

287 taumax=10000;

288 taumin=0;

289

290 for(i=0;i<n points;i++)

291 {
292 for (j=0;j<n points;j++)

293

294 N[i][j]=M[i][j]∗M[i][j]∗M[i][j]∗M[i][j]∗M[i][j]∗M[i][j];

295 }
296 for (i=0;i<n points;i++)

297 {
298 for (j=0;j<n points;j++)

299 {
300 tau[i][j]=taumax;

301 }
302 }
303 fMin=1000000000;

304 par1=0;

305 for (iTime=0;iTime<T;iTime++)

306 {
307 if (iTime<=25)

308 par=30;

309 if(iTime>25 && iTime<=75)

310 par=5;

311 else if(iTime>75 && iTime<=125)

312 par=3;

313 else if(iTime>125 && iTime<=250)

314 par=2;

315 else if(iTime>250)

316 par=1;

317 if(iTime==26 || iTime==76 || iTime==126 || iTime==251)

318 par1=0;
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319 if( iTime==251)

320 par1=0;

321 fMinAnt=1000000000;

322 for (iAnt=0;iAnt<nAnts;iAnt++)

323 {
324 for (i=0;i<n points;i++)

325 {
326 setExpl[i]=i;

327 contator[i]=0;

328 }
329 ncities=1;

330 i=0;

331 lSetExpl=n points−1;

332 set diff(setExpl,setExpl,i,lSetExpl);

333 ipat=0;

334 pat[ipat]=i;

335 dist=0;

336 while(ncities<n points−1)

337 {
338

339 for(j=0;j<lSetExpl;j++)

340 {
341 appo[j]=0;

342 }
343 ipat++;

344 somma=0;

345 for(j=0;j<lSetExpl;j++){
346 somma=somma+tau[i][setExpl[j]]/(N[i][setExpl[j]]);

347 }
348

349 for(j=0;j<lSetExpl;j++){
350 appo[j]=tau[i][setExpl[j]]/(N[i][setExpl[j]]∗somma);

351 }
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352

353 for(j=1;j<lSetExpl;j++)

354 {
355 appo[j]=appo[j]+appo[j−1];

356 }
357 a=ran1(idum);

358 w=pos massima(appo,lSetExpl,a);

359 w=setExpl[w];

360 pat[ipat]=w;

361 dist=dist+M[i][w];

362 i=w;

363 set diff(setExpl,setExpl,i,lSetExpl);

364 lSetExpl−−;

365 ncities++;

366 }
367 dist=dist+M[setExpl[0]][pat[0]]+M[setExpl[0]][pat[n points−2]];

368 pat[ipat+1]=setExpl[0];

369 dist=verify opt(M,pat,dist);

370 if(dist<fMinAnt)

371 {
372 fMinAnt=dist;

373 for(i=0;i<n points;i++)

374 bestPatPart[i]=pat[i];

375 }
376 }
377 if(par−par1>1) {
378 for (i=0;i<n points;i++)

379 {
380 for (j=0;j<n points;j++)

381 {
382 tau[i][j]=(1−rho)∗tau[i][j];

383 }
384 }
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385 for(k=1;k<n points;k++)

386 {
387 tau[bestPatPart[k]][bestPatPart[k−1]]=

388 tau[bestPatPart[k]][bestPatPart[k−1]]+ 1/fMinAnt;

389 tau[bestPatPart[k−1]][bestPatPart[k]]=

390 tau[bestPatPart[k−1]][bestPatPart[k]]+ 1/fMinAnt;

391 }
392 tau[bestPatPart[0]][bestPatPart[n points−1]]=

393 tau[bestPatPart[0]][bestPatPart[n points−1]]+ 1/fMinAnt;

394 tau[bestPatPart[n points−1]][bestPatPart[0]]=

395 tau[bestPatPart[n points−1]][bestPatPart[0]]+1/fMinAnt;

396 for (i=0;i<n points;i++)

397 {
398 for (j=0;j<n points;j++)

399 {
400 tau[i][j]=minimo(taumax,massimo(tau[i][j],taumin));

401 }
402 }
403 par1++;

404

405 }
406 if(fMinAnt<fMin)

407 {
408 fMin=fMinAnt;

409 for(i=0;i<n points;i++)

410 bestPat[i]=bestPatPart[i];

411 }
412

413 for (i=0;i<n points;i++)

414 {
415 for (j=0;j<n points;j++)

416 {
417 tau[i][j]=(1−rho)∗tau[i][j];
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418 }
419 }
420 for(k=1;k<n points;k++)

421 {
422

423 tau[bestPat[k]][bestPat[k−1]]=

424 tau[bestPat[k]][bestPat[k−1]]+ 1/fMin;

425

426 tau[bestPat[k−1]][bestPat[k]]=

427 tau[bestPat[k−1]][bestPat[k]]+ 1/fMin;

428

429 }
430 tau[bestPat[0]][bestPat[n points−1]]=

431 tau[bestPat[0]][bestPat[n points−1]]+ 1/fMin;

432

433 tau[bestPat[n points−1]][bestPat[0]]=

434 tau[bestPat[n points−1]][bestPat[0]]+1/fMin;

435

436

437 for (i=0;i<n points;i++)

438 {
439 for (j=0;j<n points;j++)

440 {
441 tau[i][j]=minimo(taumax,massimo(tau[i][j],taumin));

442 }
443 }
444

445 }
446

447 sol[iTime]=fMin;

448 taumax=1/(rho∗fMin);

449 taumin=taumax/(2∗n points);

450 }
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451 printf(”\n MinimoAco=%f\n”,fMin);

452 return;

453 }
454 int main( )

455 {
456 FILE ∗fp;

457 int fld,iRep,nRep=1,i;

458 float s[n points][2];

459 double sol[T];

460 int idx=0,bestPat[n points];

461 int idx2;

462 char c;

463 char ∗tok;

464 char ca[10000];

465 char∗p;

466 double M[n points][n points];

467

468 char arr[MAXFLDS]={0};
469 fp = fopen(”q2.txt”, ”r”);

470 if (fp == NULL)

471 printf(”File doesn’t exist\n”);

472 else {
473 while (c != EOF) {
474 c = getc(fp); /∗ get one character from the file∗/
475 fgets (ca, 10000, fp);

476 idx2=0;

477 tok = strtok(ca,”;”);

478 while (tok != NULL)

479 {
480 if(idx2==0)

481 {
482

483 }
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484 else if(idx2==1)

485 s[idx][0]=atof(tok);

486

487 else if(idx2==2)

488 s[idx][1]=atof(tok);

489

490 idx2++;

491

492

493 tok = strtok(NULL, ”;”);

494

495

496 }
497 idx++;

498 }
499 }
500 fclose(fp);

501 FILE ∗ pFile;

502 FILE ∗ pFilenew;

503 pFile = fopen (”qt194simple10bis.txt”,”w+”);

504 pFilenew = fopen (”solqt194simple10bis.txt”,”w+”);

505 int contatore=0;

506 for (i=0;i<n points;i++){
507 contatore++;

508 }
509 edit matrix distance(s,M);

510 for (iRep=0;iRep<nRep;iRep++){
511 tsp(M,sol,bestPat,−(iRep+23));

512 for (i=0;i<T;i++)

513 fprintf(pFile,”%f ”,sol[i]);

514 for(i=0;i<n points;i++)

515 fprintf(pFilenew,”%d ”,bestPat[i]);

516 }
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517 return 0;

518 }



Appendix B

ACO for pseudo boolean functions

1 function risultato=funzione 4(x)

2 risultato=abs(sum(x)−(length(x)−1)/2);

3 end

4

5 nRep=1000;

6 T=20000;

7 N=20;

8 A=zeros(T,1);

9 B=A;

10 contt(T,1)=0;

11 for w=1:nRep

12 tau=1/2∗ones(N,1);

13 taumin=.3∗ones(N,1);

14 taumax=.7∗ones(N,1);

15 rho=rho 1(T);

16 nAntsNumbers=1;

17 nFcn= @funzione 4;

18 fMax=−1000000;

19 iTime=1;

20 while iTime <= T

21 for iAntNumber=1:nAntsNumbers

77
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22 v=unifrnd(0,1,N,1);

23 sol=heaviside(v−tau);

24 fMaxNew=nFcn(sol);

25 if fMaxNew>fMax

26 fMax=fMaxNew;

27 massimo=sol;

28 end

29 end

30 for i=1:length(tau)

31 tau(i)=(1−rho(iTime)).∗tau(i) + rho(iTime).∗(1−massimo(i));

32 end

33 tau=max(taumin,tau);

34 tau=min(taumax,tau);

35 x=sum(abs(massimo−ones(N,1)));

36 massi(w,iTime)=nFcn(massimo);

37

38 if x == 0

39 contt(iTime)=contt(iTime)+1;

40 iTime= 2∗T;

41 end

42 iTime=iTime+1;

43 end

44

45 end


