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Introduction

Sofic groups were introduced by Gromov [22] as a common generalization

of amenable and residually finite groups. For both the classes algorithmic

problems have been studied, for example the solvability of the word problem

for residually finite, finitely presented groups and the subrecursivity of the

Følner function for amenable groups.

The topic of this dissertation is the investigation of computability and

decidability of some problems related to soficity.

And when the problem is to understand the effectiveness of a property

the natural tool is the quantification of this property.

A group Γ is sofic if for all ε > 0, for any finite subset K of Γ there exist

a k ∈ N and a map φ : Γ→ Sym(k), where Sym(k) denotes the symmetric

group of degree k, such that:

dH(φ(gh), φ(g)φ(h)) ≤ ε, g, h ∈ K;

dH(φ(g), φ(h)) ≥ 1− ε, g, h ∈ K : g 6= h.

Here, the function dH is the normalized Hamming distance on the symmetric

group: dH(σ, τ) = |{i∈{1,2,...k}:σi6=τi}|
k . We call φ a (K, ε)-approximation of Γ.

If we also ask for the existence of (K,0)-approximations for all finite subset
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K of Γ we characterize the local embeddability into finite groups (LEF),

moreover if we want that these approximations are actually homomorphisms

we have all and only groups that are residually finite. From this point of view

it is clear that residually finite groups, and, more generally, LEF groups, are

sofic. LEF groups were introduced in [37] and for these groups we have that

the multiplicative table of any finite subset is the same as the multiplicative

table of a subset of a finite group. In a sofic group the multiplicative table

of any finite subset is arbitrarily close, in the sense of Hamming distance,

to a multiplicative table of a subset of a symmetric group.

In the last fifteen years many conjectures on groups were proved for

sofic groups: Gottschalk’s surjunctivity conjecture [22,38], Kaplansky stable

finiteness [10,14], algebraic eigenvalues conjecture [36], determinant conjec-

ture [15], Connes’ embedding conjecture (since sofic groups are hyperlin-

ear)[15, 34]. Now we know many stability properties for these groups: sub-

groups, direct products, direct limits, inverse limits, amenable extensions,

free product over amenable amalgamation [16, 17, 32] and others, but we

don’t know if there exists a non sofic group and this is the main problem of

the subject.

There are also a lot of equivalent ways to define soficity. For some of

these definitions and for some results what we really use is the bi-invariance

of normalized Hamming distance and some finiteness properties of symmet-

ric groups. Simply a metric d on a group G is bi-invariant if d(gx, gy) =

d(x, y) = d(xg, yg) for every g, x, y ∈ G. The Hamming distance is bi-

invariant on symmetric groups, but also the discrete distance, the Hilbert-

Schmidt distance on unitary groups of matrices... So we can define other

properties of this kind of metric approximations, there is a short presenta-

tion in [1]. And in general for a more complete survey on sofic groups it is
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possible to see [33] and [8].

We have explained why the class of residually finite groups is sofic, now

we see the other class, the amenable groups. Amenability property has a lot

of equivalent definitions, varying from representation theoretic, topological,

algebraic, theory of dynamical systems, theoretical computer science. Here

we present the Følner condition which is the closest to the given definition

of soficity. A group Γ is amenable if for every finite subset K, for any ε > 0

there exists a finite non empty subset F of Γ which is ε-invariant by left

multiplication of all elements in K, that is:

|F ∩ kF |
|F |

≥ 1− ε ∀k ∈ K.

If we ask the condition for ε = 0 we obtain exactly the finite groups (take

F = Γ). Moreover notice that when Γ is finite for each k ∈ K we can

associate a bijection on F , the left multiplication by k and it is easy to

check that this association is a (K,0)-approximation (and actually a real

injective homomorphism in the symmetric group of Γ, as Cayley’s Theorem

states).

So the idea for a general amenable group is, given an element k ∈ K,

to map into a bijection of F that on F ∩ kF is the left multiplication by

k, but F ∩ kF is a large part of F and it is possible to see that this map

is a (K ′, ε′)-approximation for some finite subset K ′ and some ε′ > 0. At

this qualitative (and not quantitative) level, if we just want to prove that

Γ is sofic, it’s enough to show that for each possible (K ′, ε′) of soficity we

can find the corresponding (K, ε) for amenability. We might be tempted to

understand how they are related and quantify this relation... but first we

specialize our subject to finitely generated groups.
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The LEF, sofic and Følner conditions are local, defined and checked on

finite subsets, so a group Γ is LEF, amenable or sofic if (and only if) every

finitely generated subgroups of Γ are resp LEF, amenable or sofic. So it is

very natural to consider just finitely generated groups.

If Γ is a group generated by a finite subset X = {x1, . . . xd}, denote by

FX ∼= Fd the free group generated by X, we have a natural epimorphism

π : FX → Γ

that maps a word ω ∈ FX to the corresponding element ω(x1, . . . xd) in the

group Γ. In the free group we have the word length and so for g ∈ Γ we

define the word length |g| as the length of shortest word projecting into g.

We can also give a presentation, Klein did it first, in this way:

Γ = 〈X|R〉

then R is a subset of FX such that the normal closure RFX = kerπ. We say

that Γ is finitely presented if there exists a finite R with this property.

For an amenable, finitely generated group Γ with finite set of generators

X we say that F ⊂ Γ is n-Følner if F is finite, non empty and:

|F \ xF |
|F |

≤ 1

n
, ∀x ∈ X ∪X−1.

We present the Følner function, first defined by Vershik:

FΓ,X(n) = min{|F |, F ⊂ Γ, F is n-Følner }.

Suppose that F is n-Følner, it is easy to see that, if we consider for example

the element x1x2 ∈ Γ, we have |F\x1x2F |
|F | ≤ 2

n and in general

|F \ gF |
|F |

≤ |g|
n
. (1)
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But for a finite subset of Γ we have a bound for the length of its elements.

This might convince that given a finite subset K and an ε > 0 there exists

an n large enough to obtain a Følner set for K and ε. And the existence of

that minimum for each n is equivalent to amenability. Actually FΓ,X is a

sort of quantification of amenability.

The asymptotic behaviour of the Følner function does not depend on

the choice of generators: this means that if X and X ′ are two finite sets of

generators of Γ, there exists C > 0 such that C−1FΓ,X′(C
−1n) ≤ FΓ,X(n) ≤

CFΓ,X(Cn). This function is very well studied (see for example [18, 19, 23,

30, 35]), it is related to other famous functions as the isoperimetric profile

and the return probability in a random walk on a group, but actually it is

still unknown its precise asymptotic behaviour for many amenable groups.

At this point it is natural to try something similar for soficity of finitely

generated group. So we start with another definition of soficity:

Definition. A finitely generated group Γ is sofic if for n ∈ N there exist

k ∈ N and (σ1, σ2, . . . σd) ∈ Sym(k)d with the following property:

`H(ω(σ1, . . . , σd))


≤ 1

n , if ω ∈ Bn ∩ kerπ

≥ 1− 1
n , if ω ∈ Bn \ kerπ

(2)

where Bn is the ball of radius n in the free group Fd and `H is the normalized

Hamming length: `H(σ) = dH(σ, 1). We call the d-tuple (σ1, . . . , σd) an n-

approximation.

All information about the multiplicative table of a finitely generated

group is in the kernel of π. For every n ∈ N we define KΓ,X(n) ∈ N to be

the minimum rank k of Sym(k) containing n-approximations. We call the

map n 7→ KΓ,X(n) sofic dimension growth. Arzhantseva and Cherix first
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introduced and studied this function in the more general setting of metric

approximations in an unpublished paper [2]. Some of the results about KΓ,X

in this text (there will be a list) were already proved in [2] but our proofs are

independent. For example the independence on generators up to asymptotic

equivalence. Another related work with the same idea to quantify the soficity

by the rank of approximations is the one about sofic profile in [12].

Coming back to our proof of soficity for amenable groups, in the case of

finite generation, we can provide the following quantification, simply using

inequality (1):

KΓ,X(n) ≤ FΓ,X(n2).

In the last part of this dissertation many of the results are exactly a

quantitative version of some known properties of sofic groups or related

with them. But in some case the procedures of classical proofs loose all

quantitative information, forcing us to find other proofs.

In [18] it is proved that there exist finitely generated groups with Følner

function growing faster than any recursive function, in [23] it is asked if

that it’s possible also for some finitely presented groups. So we need the

definition of recursive function and this brings us closer to the heart of the

thesis.

Given a function f : N→ N, informally, the Church-Turing thesis states

that every way to define the computability of f is equivalent to the com-

putability definition given by a Turing machine. More formally, Godel,

Church and Turing defined in three different ways the class of recursive, or

computable functions. In 1936 Turing and Church proved that the class of

computable functions is the same in the three definitions. We give, later,
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another equivalent definition for computability, by using the Minsky ma-

chines.

A 2-glasses Minsky machine is a model of computation. Imagine we are

given two glasses, A and B, and an infinite number of coins. The glasses

can contain any finite number of coin each. The machine can put a coin into

a glass, can check if a glass is empty, and if not can take a coin out from

it. The program of the machine consists in a finite sequence of numbered

instructions, 0, 1, . . . N . The instant configuration of the machine is given

by (i, εA, εB) where i ∈ {0, 1, . . . N} is the instruction that the machine is

reading, εA ∈ N and εB ∈ N are, respectively, the number of coins in A and

in B. The instruction has one of these forms:

i→ Add(A), j

i, εA > 0→ Sub(A), j

i, εA = 0→ j

0→ STOP.

In the first instruction the machine is in i, adds a coin to A and goes to j;

in the second it checks if A is empty, if not it takes a coin and goes in j; in

the third it checks if A is empty and goes to j, if it is not empty goes to

i+ 1. The same instructions hold for B. At the beginning the machine has

input (1, n,m), it starts to read and execute the instructions, it stops when

it goes to the instruction 0.

We are now in position to define a recursive function.

Definition. A function f : N → N is computable (recursive) if there exists

a Minsky machine with INPUT (1, 2n, 0) and OUTPUT (0, 0, 2f(n)).
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Example. The program:

• 1, εA = 0→ 0

• 2, εA > 0→ Sub(A), 3

• 3,→ Add(B), 4

• 4,→ Add(B), 1

with INPUT (1, n, 0) has OUTPUT (0, 0, 2n).

Therefore the function n 7→ n+ 1 is computable.

By a theorem of Minsky all Turing-computable functions are Minsky-

computable functions. Now it’s simple to extend the concept of computabil-

ity to other things, at first we can say algorithm, effective procedure, Turing

machine and Minsky machine and obtain the same concept of computability.

Moreover we say that a subset A ⊂ N is computable (recursive) if χA, the

characteristic function of A, is computable. More generally we may define

computability of subsets of a countable set with a given enumeration.

Given a finitely presented group

Γ = 〈X|R〉,

in FX we can fix an enumeration of the reduced words and ask if kerπ,

the normal closure of the finite set R, is recursive or not. Actually this is

equivalent to asking for the existence of an algorithm with:

INPUT ω ∈ FX

OUTPUT 0 if ω ∈ kerπ, 1 if ω /∈ kerπ.

This problem is called the word problem and it was formulated by Dehn

in 1911, many years before the study about computability started. Then he
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gave an explicit algorithm to solve the word problem for the fundamental

group of closed orientable two-dimensional manifolds of genus greater than

or equal to 2 (but now we can use the same algorithm for hyperbolic groups).

Magnus in 1935 solved the word problem for one-relator groups (finitely pre-

sented group with |R| = 1). But to see a negative answer we should wait

till the studies of Turing, in particular he proves the non computability of

the halting problem: there’s no algorithm with:

INPUT (M,x) where M is an algorithm and x is an input for M ,

OUTPUT 1 if M stops with input x, 0 if M doesn’t stop with x.

After this Markov and Post in 1947 constructed finitely presented semi-

groups with unsolvable word problem: the idea is to simulate a Turing ma-

chine with a semigroup and obtain that the computability of word problem

implies the computability of halting problem. In the fifties we finally have

a finitely presented group with unsolvable word problem, by Novikov and

Boone. But maybe the theorem that crowned the theory of computability

inside the theory of groups is the Higmann embedding theorem 1960s: a

finitely generated group is a subgroup of a finitely presented group if and

only if it is recursively presented (Γ is recursively presented if there is an

algorithm that lists all elements in R). So the answer to a purely algebraic

question is provided by the theory of recursive functions. In particular, since

it is easy to find recursively presented groups with unsolvable word problem,

the theorem easily provides the existence of finitely presented groups with

unsolvable word problem.

We can now come back to our classes of groups. If Γ is finitely presented,

residually finite we know that for each g ∈ Γ \{1} there exists an homomor-
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phism φ onto a finite group such that φ(g) 6= 1. Since Γ is finitely presented

it’s easy to see that we can list all the words in kerπ. Consider the following

algorithm:

Given ω ∈ FX as input we list all elements in kerπ and stop if we find

ω. Simultaneously we can list all homomorphisms onto finite groups (again

thanks to the finite presentation of Γ and the possibility to list all finite

groups) and stop if we find φ such that φ(π(ω)) 6= 1 (we can check it be-

cause finite groups have solvable word problem).

Then if ω ∈ kerπ we find it in the first list and the algorithm stops, if

ω /∈ kerπ we know that π(ω) ∈ Γ\{1} and then the second algorithm stops.

This is the Malcev algorithm to solve the word problem in finitely presented

residually finite groups.

On the other hand Kharlampovich constructed in [24] finitely presented

solvable of step 3 (and therefore amenable) groups, with unsolvable word

problem. Again the idea is to simulate Minsky machines with unsolvable

halting problem.

In some sense for finitely presented groups the residual finiteness is ef-

fective: it is possible to compute the homomorphisms onto finite groups.

This gives the solvability of the word problem for this kind of groups. What

happens in the class of amenable and sofic groups? It is natural to try to

understand which are the effectively amenable groups and effectively sofic

groups. We thank A. Thom who gave us the idea to study effective soficity.

The definition of effective soficity is very natural, this means that there

exists an algorithm with:

INPUT n ∈ N

OUTPUT k ∈ N,(σ1, . . . σd) ∈ Sym(k) the n-approximation.

For effective amenability we want an algorithm with:
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INPUT n ∈ N

OUTPUT F ⊂ FX such that π(F ) ⊂ Γ is n-Følner.

It has no sense in fact asking as output a subset for a group that in general

has unsolvable word problem, but we can search for the preimages of Følner

sets. In particular it means that if this algorithm exists we can list the

elements of a Følner set, but maybe with repetitions.

The most important facts of the thesis are:

Γ effectively sofic ⇐⇒ Γ sofic with solvable WP ,

Γ effectively amenable 6=⇒
⇐= Γ amenable with solvable WP.

It is natural to ask for the relations with the Følner function, also to show

examples of amenable groups which are not effectively amenable. A function

f : N → N is subrecursive if there exists a recursive upper bound. It is

known that there exist functions which are not subrecursive. In [18] for each

function f finitely generated groups with Følner function greater than f are

constructed. If we start with a non subrecursive function f we obtain a non

subrecursive Følner function. Noting that the effective amenability implies

the subrecursivity of F , then these groups are not effectively amenable (and

therefore have unsolvable word problem).

We don’t know if subrecursivity of FΓ is equivalent to computability

of Følner sets in Γ. For the analogue question about soficity we have the

answer, again thanks to Kharlampovich groups:

KΓ subrecursive 6=⇒ Γ effectively sofic (and then solvable WP)

because the sofic dimension growth is bounded from above by the Følner

function which is, in the case of Kharlampovich groups, subrecursive. And

we know that the word problem is unsolvable.
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Finally we give some stability properties for effectively amenable groups

and for groups with subrecursive sofic dimension growth. For the first ones

we construct explicit preimages of Følner sets for some amenable extensions

and for the second ones we find several upper bounds for KΓ, in particu-

lar for direct products, semidirect products with amenable groups and free

products.

Many questions, that we will present throughout the text, remain open.

A natural ambitious program would be to find some good algorithmic prop-

erty for sofic groups, maybe so good that it wouldn’t be true for all finitely

generated groups.
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List of definitions and results

Solvable

·Z

·Q

·Z×A5·G(M)

·G(M)×Q ·Q×A5

Gω

·Gω̄

?

??

?

?

?

?

?

?

?

E·

Finitely generated amenable groups

WP

Subrec. Følner f.

EffA

FP

not FP

IG

LEGENDA

FP finitely presented groups;

WP group with solvable word problem;

EffA effectively amenable groups (groups with computable Følner sets);

IG intermediate growth groups;

G(M) Kharlampovich group (see Section 1.7);

E Erschler groups with non subrecursive Følner function in [18];

Gω̄ Grigorchuk groups with ω̄ computable (see [21]);

Gω Grigorchuk groups with ω non computable (see [21]).

Solvable groups are disjoint from IG groups by Milnor’s Theorem. For intermediate growth

groups the subrecursivity of Følner function is equivalent to the computability of Følner

sets (we know that a subsequence of the balls is a Følner sequence). Grigorchuk asked

for the growth rate of the Følner function of Gω, generalization of the Grigorchuk group

described in [21]. Gromov asked for amenable groups with non subrecursive Følner func-

tion; there are only not finitely presented examples by Erschler [18]. The remaining non

trivial inclusions and questions will be discussed in the sequel.
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Chapter 2

• Definition of computable Følner sets or effective amenability (EffA),

• WP+amenability implies EffA,

• Kharlampovich groups are EffA and then EffA does not imply WP,

• f.g. extensions of an amenable solvable WP groups by abelian groups are EffA,

• semidirect products between f.g. groups EffA are EffA,

• N,G,K f. g. groups such that:1→ N → G→ K → 1, N EffA, distortion function

∆G
N subrecursive, K amenable solvable WP, then G is EffA.

Chapter 3

• amenable+WP implies subrecursive Følner function F

• upper bound Følner function Kharlampovich groups and solvable groups 1

• upper bound Følner function semidirect product

• upper bound Følner function amenable extension in term of distortion function

• definition of function LEF , quantitative version of LEF property and comparison

with function R quantifying residual finiteness 2

• definition of sofic dimension growth K, asymptotic invariance, comparison with

other version of sofic growth 2

• comparison between LEF , F and K functions 2

• definition of function Stb, quantitative version of weak stability of a finite set of

relations

• remark about the arbitrary large subrecursive growth of Stb

• definition of computability of sofic approximation or effective soficity (EffS)

• EffS if and only if WP+soficity

• subrecursivity of K in Kharlampovich group (K subrecursive 6⇒ EffS)

• upper bound for K of direct products2

• upper bound for K of semidirect products with amenable groups

• upper bound for K of free product.

1different proof of something known
2independent proof of something already proved in the unpublished work [2]



Chapter 1

Preliminaries and notation

In this chapter we fix for good some notation, essentially about finitely

generated groups. For example the symbols and the description of the pre-

sentation of the finitely generated group Γ will be the same, unless explicit

mention, troughout the whole thesis.

Moreover we report some classic definitions and some results without

proofs. In the thesis we will quantify some of these results (then we will prove

stronger versions). Actually in some cases we present alternative version of

known results or definitions, for example we prove the general equivalence

between metric approximation on subsets or on generators, that we will

quantify in the last chapter in the case of soficity.

1.1 Finitely generated groups

Let Γ be a group, a finite subset X = {x1, . . . , xd} generates Γ if 〈X〉 :=⋃
n∈N(X ∪X−1)n = Γ. Consider FX , the free group on X: the group of all

free reduced words in x1, . . . , xd, x
−1
1 , . . . , x−1

d . When it is possible we will

18



CHAPTER 1. PRELIMINARIES AND NOTATION 19

use the same symbol for the generator xi in the group Γ and the generator

in FX .

We have a canonical epimorphism π : FX −→ Γ, the homomorphism

extension of the map xi 7→ xi. In general given a word ω ∈ Fd, given d

elements g1, . . . , gd of a group G, we denote by ω(g1, . . . , gd) the obvious

element of G. Then π(ω) = ω(x1, . . . , xd).

The kernel kerπ is the normal subgroup of the words of FX trivial in

Γ. If R is a subset of FX such that kerπ = RFX , where RFX is the normal

closure of R in FX , then we shortly write:

Γ = 〈X|R〉, where 〈X|R〉 is a presentation of Γ.

A classical result about presentations:

Theorem 1.1.1. If Γ = 〈X|R〉, Γ′ = 〈Y |S〉 and Γ ∼= Γ′ then by using a

sequence of Tietze Transformations R+, R−, X+, X− we can transform

〈X|R〉 to 〈Y |S〉.

In particular if X and Y are finite then X+ and X− appear just a finite

number of times in the sequence. We’ll recall Tietze Transormations in

Subsection 3.3.1, for a general reference see [28].

For each element g ∈ Γ we define | · | as the word length with respect to

X, |g| := min{|ω|, ω ∈ FX , π(ω) = g}, where |ω| is the usual length of a

reduced word in FX . Sometimes we write |g|X to underline the dependence

of the length on the set of generators. We denote with Bn the ball of radius n

in FX and with Bn(Γ) := π(Bn) in Γ. We denote by e the identity element

of Γ and by 1G the identity element of a generic group G. For a subset

A ⊂ FX we denote |A|w := max{|ω|, ω ∈ A} and for a subset A ⊂ Γ we

denote |A|X := max{|a|X , a ∈ A}.
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1.2 Amenable groups

The class of amenable groups appear in many areas of mathematics, in

particular there are a lot of different equivalent characterizations.

Theorem 1.2.1. For a discrete group G, the following are equivalent:

• G has no paradoxical decomposition;

• there exists a state in `∞(G) which is invariant under the left transla-

tion action;

• G has an approximate invariant mean;

• G satisfies the Følner condition;

• the trivial representation of G is weakly contained in the regular repre-

sentation of G;

• the C∗-algebra and the reduced C∗-algebra of G coincide.

• any continuous affine action of G on a nonempty compact convex sub-

set of a locally convex space has a fixed point.

A discrete group G is amenable if one of the conditions in Theorem 1.2.1

holds. Actually the list is not complete: if we restrict to finitely generated

groups, for example, Γ is amenable if and only if the spectral radius of the

Markov operator associated to (Γ, X) is 1 (Kesten-Day Theorem). But also

Γ is amenable if and only if limn→∞ |Bn ∩ kerπ|
1
n = 2|X| − 1 (Grigorchuk-

Cohen cogrowth theorem). We also have a specialized Følner property for

Γ and this is the unique definition that we will use:
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Definition 1.2.1. Γ is amenable if for every ε > 0 there exists a finite

nonempty subset F ⊂ Γ such that

|F \ xF |
|F |

≤ ε, ∀x ∈ X ∪X−1.

The class of amenable groups contains finite groups, abelian groups and

more generally groups with subexponential growth. It is closed under the

operations of taking subgroups, taking quotients, taking extensions, and

taking inductive limits. Non abelian free groups and groups containing non

abelian free subgroups are not amenable.

For proofs, references and systematic treatment see [9, 11].

1.3 Residually finite groups

The class of residually finite groups is a generalization of the class of finite

groups, very different from amenability.

Definition 1.3.1. A group G is residually finite if for each element g ∈ G

with g 6= 1G, there exist a finite group F and a homomorphism Φ : G → F

such that Φ(g) 6= 1F .

It is easy to see that it is equivalent to the fact that finite index normal

subgroups of G separate the elements of G or that G is embeddable into

a direct product of finite groups. Finite groups are obviously residually

finite, finitely generated abelian, and more generally metabelian, groups are

residually finite and the class of residually finite groups is closed under taking

subgroup, taking projective limits and finite extensions.

For a given group F a map φ : Γ→ F is a homomorphism if and only if

φ(π(r)) = 1F for all r ∈ R and we can completely describe a homomorphism
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fixing φ(x1), . . . , φ(xd) ∈ F .

Then, if Γ is residually finite, for each ω ∈ FX \ kerπ, we can find a finite

group F and f1, . . . fd ∈ F such that ω(f1, . . . fd) 6= 1F and r(f1, . . . fd) = 1F

for all r ∈ R.

Finally with a simple direct-product we can obtain an apparently stronger

form of residual finiteness in the case of finitely generated groups:

Proposition 1.3.1. Γ is residually finite if and only if for every n ∈ N we

have a finite group F and d elements f1, . . . , fd ∈ F such that:

ω(f1, . . . , fd)


= 1F if ω ∈ kerπ

6= 1F , if ω ∈ Bn \ kerπ.

(1.1)

In this way the residual finiteness appears as an approximation property

of Γ by finite groups. We see now a large generalization of this.

1.4 Metric approximations

An invariant length group is a group G equipped with a function ` : G→ R+

such that, ∀g, h ∈ G we have:

`(g) = 0 ⇔ g = 1G, `(g−1) = `(g),

`(gh) ≤ `(g) + `(h), `(gh) = `(g).

For each group G the trivial length, 0 on 1G and 1 elsewhere, is invariant.

Another example is the symmetric group Sym(k) with the normalized Ham-

ming length, the normalized number of points not fixed by a permutation.

That is, for σ ∈ Sym(k):

`H(σ) :=
|{i ∈ {1, 2, . . . , k} : σi 6= i}|

|k|
.
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Given such a length, we can define the associated distance on G, simply

by d(g, h) := `(gh−1), that is bi-invariant: d(g, h) = d(xg, xh) = d(gy, hy).

Viceversa from a bi-invariant distance d we obtain an invariant length `(g) :=

d(g, 1G).

We can speak about continuous or isometric maps or homomorphisms

between length invariant groups. In particular every injective homomor-

phism is isometric with the trivial length. Another example of isometric

homomorphism is the inclusion of the symmetric group on a finite set A

into the symmetric group on A×B, where B is a finite set:

i : Sym(A) ↪→ Sym(A×B)

i(σ)(a, b) = (σa, b), ∀a ∈ A, ∀b ∈ B, ∀σ ∈ Sym(A).

Definition 1.4.1. Given a group G and a group F equipped with a bi-

invariant distance d, for K ⊂ G and ε > 0, a map φ : G → F is (K, ε)-

approximation of G by F if:

d(φ(gh), φ(g)φ(h)) ≤ ε, g, h ∈ K;

d(φ(g), φ(h)) ≥ 1− ε, g, h ∈ K, g 6= h.

For each class of invariant length groups C we can consider the following

property. G is approximable by the class C if for each finite subset K ⊂ G

and for each ε > 0, there exist C ∈ C and a (K, ε)-approximation of G by C.

If the groups of the class C are equipped with the trivial length we just

say that G is locally embeddable into C. The two main examples are local

embeddability into finite and into amenable groups (resp. LEF and LEA).

In these cases we can choose ε = 0 and obtain (K, 0)-approximations that
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simply are locally multiplicative and locally injective maps, so the approx-

imation is purely algebraic. The first introduction of LEF property is in

[37]. In Subsection 3.2 we give a direct proof, in quantitative version, of the

fact that residually finite groups are LEF and that finitely presented LEF

groups are residually finite.

For finitely generated groups it is possible express the the approximation

fixing the images of the generators:

Proposition 1.4.1. Γ is approximable by a class of invariant length groups

C if and only if for every n ∈ N there exist C ∈ C and c1, . . . cd ∈ C such

that:

`C(ω(c1, . . . , cd))


≤ 1

n , if ω ∈ Bn ∩ kerπ

≥ 1− 1
n , if ω ∈ Bn \ kerπ.

(1.2)

Proof. If part.

For each finite subset K ⊂ Γ, for each ε > 0 we fix n ∈ N such that

4|K|X ≤ n and n−1 ≤ ε. We find C ∈ C and c1, . . . cd ∈ C such that

conditions (1.2) hold for this n.

For all g ∈ Γ we choose wg ∈ Fd such that g = π(wg) and |wg| = |g|. In

this way we can define a map:

φ : Γ→ C

g 7−→ wg(c1, . . . , cd).

For g, h ∈ K

dC(φ(gh), φ(g)φ(h)) = `C(wgh(c1, . . . , cd)
−1wg(c1, . . . cd)wh(c1, . . . , cd))

= `C(w(c1, . . . , cd))

where w := w−1
gh wgwh.

But |w| ≤ |wgh| + |wg| + |wh| = |gh| + |g| + |h| ≤ 4|K|X ≤ n, moreover
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w ∈ kerπ and then dC(φ(gh), φ(g)φ(h)) ≤ 1
n .

For g, h ∈ K, g 6= h,

dC(φ(g), φ(h)) = `C(w−1
g wh(c1, . . . , cd)) ≥ 1− 1

n

because w−1
g wh ∈ Bn \ kerπ. And so the map φ is a (K, ε)-approximation.

Only if part.

For each N ∈ N consider φ : Γ → C, a (BN (Γ), 1
N )-approximation. We

want to find N such that the elements c1 := φ(x1), c2 := φ(x2), . . . , cd :=

φ(xd) respect the conditions in (1.2).

We have:
1

N
≥ dC(φ(e), φ(e)φ(e)) = `H(φ(e)),

For all w ∈ Bn, w(x1, x2, . . . , xd) ∈ BN (Γ) if N ≥ n, then by the triangle

inequality:

dC(w(φ(x1), φ(x2), . . . , φ(xd)), φ(w(x1, x2, . . . , xd))) ≤ n
1

N
.

If w ∈ kerπ then w(x1, x2, . . . , xd) = π(w) = 1Γ and

`C(w(φ(x1), φ(x2), . . . , φ(xd))) ≤ (n+ 1)
1

N
.

If w /∈ kerπ:

`C
(
w(φ(x1), . . . , φ(xd))

)
≥ dC

(
w(φ(x1), . . . , φ(xd)), φ(1Γ)

)
− 1

N
≥

dC
(
φ(w(x1, . . . , xd)), φ(1Γ)

)
−dC

(
w(φ(x1), . . . , φ(xd)), φ(w(x1, . . . , xd))

)
− 1

N

≥ 1− (n+ 2)
1

N
.

So if we choose N = n(n+ 2) we have that for c1, c2, . . . , cd the conditions

(1.2) hold. �
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1.5 Sofic groups

In the language of the previous section, we could define soficity as the ap-

proximability by the class of finite symmetric groups equipped with normal-

ized Hamming distance. Explicitly:

Definition 1.5.1. A group G is sofic if for all ε > 0, for any finite subset

K ⊂ G there exist a k ∈ N and a map φ : Γ→ Sym(k) such that:

dH(φ(gh), φ(g)φ(h)) ≤ ε, g, h ∈ K;

dH(φ(g), φ(h)) ≥ 1− ε, g, h ∈ K, g 6= h.

It easy to see that finite groups are sofic, but more generally:

Proposition 1.5.1. Amenable groups are sofic.

Proposition 1.5.2. If G is locally embeddable into the class of sofic groups

the G is sofic.

Then LEF and LEA groups are sofic.

We report a short summary of the stability property of sofic groups from

[8]:

Theorem 1.5.1. The class of sofic groups are closed with respect to the

following operations:

• Subgroups;

• Direct limits;

• Direct products;

• Inverse limits;
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• Extension by amenable groups

• Free product;

• Free product amalgamated over amenable groups;

• HNN extension over amenable groups;

• Graph product.

Question. Does there exist a non sofic: group, finitely presented group,

group with solvable word problem, hyperbolic group, one-relator group, group

with Haagerup property, group approximable by finite groups with any in-

varian length (weakly sofic), group approximable by general linear groups

equipped with normalized rank distance (linear sofic), hyperlinear group?

Here some references for introductions and works on sofic groups: [1, 8,

9, 14–17,22,32,33,36,38].

1.6 Algorithmic problems in finitely generated groups

The informal presentations of Minsky machines and recursive functions in

the Introduction are enough for our treatise, so we consider them as given.

The fundamental algorithmic problems for finitely generated groups are:

word problem:

IN ω ∈ FX ,

OUT 0 if ω ∈ kerπ and 1 otherwise;

conjugacy problem:

IN ω1, ω2 ∈ FX ,

OUT 0 if π(ω1) and π(ω2) are conjugates in Γ and 1 otherwise;

isomorphism problem:
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IN (X,R), R ⊂ FX ,

OUT 0 if Γ ∼= {e}, 1 otherwise;

and more generally

IN (X,R), (X ′, R′),

OUT 0 if the two presentations generate isomorphic groups, 1 otherwise.

And we have that the isomorphism problem implies the conjugacy prob-

lem that implies the word problem. But the three are undecidable in general.

Actually we often restrict to recursively presented groups that means that

R is recursively enumerable (there exists a Minsky machine that lists all

elements in R). Under the hypothesis of recursive presentation kerπ is

recursively enumerable.

Remark 1.6.1. If Γ is finitely presented the set of isomorphic finite pre-

sentations of Γ are recursively enumerable. It implies that given two presen-

tations of the same group the sequence of Tietze transformations from the

first presentation to the second one is computable.

Theorem 1.6.1. The following conditions imply the solvability of the word

problem for a finitely generated group Γ:

• Γ is finite;

• Γ is abelian;

• Γ is recursively presented and simple;

• Γ is finitely presented and residually finite;

• Γ is hyperbolic;

• Γ is embeddable into a simple subgroup of a finitely presented group.
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In particular the last condition is equivalent to the word problem (Boone-

Higman theorem).

The first examples of unsolvable word problem in finitely presented

groups were given by Boone and Novikov. But for our purpose we introduce

the first examples of finitely presented solvable groups with unsolvable word

problem, by Kharlampovich.

1.7 Kharlampovich groups

We refer directly to [26] for a nice description of the Kharlampovich group,

first constructed in [24]. In this section we shortly present the generator sets

and recall the properties needed in the sequel.

We start with a prime p and a Minsky machine M with K glasses and

0, 1, . . . N instructions for which the set of inputs for which M will stop is

not recursive. We denote the group G(M).

Consider the letters q0, . . . qN associated to the instructions andA0, . . . AK

associated to the glasses (plus 0). Consider the free abelian monoid genera-

ted by A0, . . . AK , let U0 be the divisors of A0A1 . . . AK in this monoid (in

other words the parts of {0, 1, . . .K}). Finally U is the set of the words qjw,

j = 0, . . .K, w ∈ U0.

Now we can describe the generators, divided into three sets:

L0 := {xu : u ∈ U};

L1 := {Ai : i = 0, . . .K};

L2 := {ai, a′i, ã, ã′ : i = 1, . . .K}.

There are two kinds of relations, dependent or independent on M . The

first simulate the instructions of M and finally give the unsolvability of
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the word problem. The independent relations are related to the algebraic

structure of the group, we simply present some consequences.

Denoting:

Hj := 〈Lj〉, j = 0, 1, 2, H := 〈L1 ∪ L2〉,

• Hj is abelian,

• H0, H1 are of exponent p,

• HH
1 = is abelian of exponent p,

• H = HH2
1 oH2,

• HG
0 (M) is abelian of exponent p,

• G(M) = H0
G(M) oH

Then G(M) is semidirect product of a metabelian group with an abelian

group of exponent p.



Chapter 2

Shape of Følner sets

In this chapter we introduce the Følner sets and we study their shape for

suitable classes of groups. But actually we are interested in an effective

construction so we give the definition of computable Følner sets by the

preimages of Følner sets in the free groups, where the word problem is

solvable and it’s well defined what it means to give a subset like an output

of an algorithm.

In fact for groups with solvable word problem it is easy to check the

computability of the Følner sets but actually we are more interested in

the setting of groups with unsolvable word problem. We prove in a very

elementary way that the Kharlampovich group, finitely presented, solvable

and then amenable group, with unsolvable word problem, has computable

Følner sets. We also obtain some information about the Følner sets of the

extensions, therefore we find some stability properties for the class of groups

with computable Følner sets.

In particular we prove that semidirect products between finitely pre-

sented groups with computable Følner sets have computable Følner sets

31
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and the computability of Følner sets for a group that is extension of an

amenable group with solvable word problem by a group with computable

Følner sets with subrecursive distortion function. Some of these results will

be used in the next Chapter to obtain bounds for the cardinality of these

Følner sets (Følner function).

But now we start with one of the classical definitions of Følner sets:

Definition 2.0.1. Let Γ be an amenable finitely generated group, X a finite

set of generators. For all n ∈ N we define the family of n-Følner sets, the

Følner sets with at least 1
n approximation. We write:

FølΓ,X(n) := {F ∈ Γ, F 6= ∅, F finite ,
|F \ xF |
|F |

≤ n−1, ∀x ∈ X ∪X−1}.

The simplest class of amenable groups for which we know the Følner sets

is the class of finite groups. If |Γ| <∞ we clearly have Γ ∈ FølΓ,X(n) for all

n ∈ N.

There are a lot of (asymptotically) equivalent ways to define Følner sets,

also inside the finitely generated groups. This one in particular is such that

in the lattice of Z2 the n× n squares are n-Følner, and it will be useful.

2.1 Computable Følner sets

We are interested in computing these Følner sets. A priori we don’t know

if it is possible just for groups with solvable word problem or not, for this

reason we give the definition on the preimages of Følner set inside the free

group: recall that π : FX → Γ is the canonical projection into the finitely

generated group Γ

Definition 2.1.1. Γ has computable Følner sets if there exists an algorithm

with:
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INPUT: n ∈ N

OUTPUT: F ⊂ FX finite, such that π(F ) ∈ FølΓ,X(n).

At first we can see that this definition does not depend on the choice of

presentation for finitely presented groups:

Proposition 2.1.1. Let 〈X,R〉 and 〈X ′, R′〉 be two finite presentations of

the same group Γ, inducing respectively π : FX → Γ and π′ : FX′ → Γ. The

Følner sets of Γ are computable by π if and only if they are computable by

π′.

Proof. By Remark 1.6.1 we can algorithmically find the Tietze transforma-

tions and then the homomorphism φ : FX → FX′ such that π′ ◦ φ = π is

computable. �

A very obvious fact is that:

Theorem 2.1.1. A finitely generated amenable group with solvable word

problem has computable Følner sets.

Proof. By the solvability of the word problem, given a finite set F ⊂ FX

it is possible to compute |π(F )| and |π(F ) \ π(xF )|, ∀x ∈ X. So we can

construct an algorithm with:

INPUT: F ⊂ FX finite,

OUTPUT: answer to ‘π(F ) ∈ FølΓ,X(n)?’

Finally we start a (fixed) enumeration of the finite subsets of FX and apply

this algorithm for each. We stop when we obtain -yes-. �

A natural question is if the converse is true, that is, if the class of groups

with computable Følner sets is the class of amenable groups with solvable

word problem. The answer is NO, this chapter is dedicated to prove this

and some stability properties of this class of groups.
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2.2 Geometry of Følner sets

The family of Følner sets has some good properties:

Proposition 2.2.1.

(i) A,B ∈ FølΓ,X(n) and A ∩B = ∅ implies A ∪B ∈ FølΓ,X(n);

(ii) A ∈ FølΓ,X(n) implies Ag ∈ FølΓ,X(n) ∀g ∈ Γ;

(iii) A ∪B ∈ FølΓ,X(n), A ∩B = A ∩XB = ∅

implies A ∪Bg ∈ FølΓ,X(n) ∀g ∈ Γ such that A ∩Bg = ∅.

Proof. (i) First it is clear that if A ∩B = ∅ we have |A ∪B| = |A|+ |B|.

In general (A ∪ B) \ x(A ∪ B) ⊂ (A \ xA) ∪ (B \ xB). Finally the sum of

the two inequalities |A \ xA| ≤ n−1|A| and |B \ xB| ≤ n−1|B| gives us the

thesis.

(ii) The translation from the right doesn’t change the cardinality of the

sets:

|A| = |Ag| and |A \ xA| = |(A \ xA)g| = |Ag \ xAg|.

(iii) In this case we have (A ∪B) \ x(A ∪B) = (A \ xA) ∪ (B \ xB) so:

|(A ∪Bg) \ x(A ∪Bg)|
|A ∪Bg|

≤ |(A \ xA)|+ |(Bg \ xBg)|
|A|+ |Bg|

=
|(A \ xA) ∪ (B \ xB)|

|A|+ |B|
=

=
|(A ∪B) \ x(A ∪B)|

|A ∪B|
≤ n−1.

�

These properties give us some information about the shape of Følner

sets or at least the shape that we can choose. In fact given a Følner set F ∈

FølΓ,X(n), consider f ∈ F , we have Ff−1 ∈ FølΓ,X(n) and |F | = |Ff−1|,
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and clearly e ∈ Ff−1. The other important property that it is possible to

have is the connection.

Definition 2.2.1. We say that K⊂Γ is left-connected (resp. right-connected)

if for any A,B ⊂ K such that K = A
⊔
B we have A ∩ BX 6= ∅, (resp.

A ∩XB 6= ∅).

It’s simple to notice that a left[right]-connected subset K describes a

connected subgraph of the left[right] Cayley graph.

To have connection we need a stronger property of invariance for Følner

sets:

Definition 2.2.2.

Føl′Γ,X(n) := {F, non empty finite subset of Γ :
|∂XF |
|F |

≤ 1

n
},

where ∂XF := {f ∈ F : ∃x ∈ X ∪X−1 : xf /∈ F}.

But X is finite and ∂XF =
⋃
X∪X−1(F \ xF ), and then

|F \ xF |
|F |

≤ |∂XF |
|F |

≤
∑

X∪X−1

|F \ x′F |
|F |

.

It implies:

FølΓ,X(|X ∪X−1|n) ⊂ Føl′Γ,X(n) ⊂ FølΓ,X(n).

So in particular the definition of amenability is unaffected by the choice

of this different type of Følner sets. Often we are interested in the optimal

Følner sets, which are the smallest sets in FølΓ,X(n) and Føl′Γ,X(n). They

will be important also to quantify amenability.

For the optimal Følner sets, at least for those in Føl′Γ,X(n) , we have the

connection. This is a well known fact:
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Lemma 2.2.1. For F ∈ Føl′Γ,X(n), if for every F ′ ∈ Føl′Γ,X(n) we have

|F | ≤ |F ′|, then F is right-connected.

Proof. By contradiction. Suppose that F can be written non-trivially as

F = A1 tA2 and that for any x ∈ X we have xA1 ∩A2 = A1 ∩ xA2 = ∅. In

particular |A1| < |F | and |A2| < |F |. Then by minimality

|∂XA1| > n−1|A1|

|∂XA2| > n−1|A2|

and then the sum:

|∂XA1|+ |∂XA2| > n−1(|A1|+ |A2|).

But ∂XF = ∂XA1 t ∂XA2 because:

if g ∈ ∂XF then g ∈ F and there exists i ∈ {1, 2} such that g ∈ Ai, but

also there is x ∈ X such that xg /∈ F that implies xg /∈ Ai and then the

inclusion;

if g ∈ ∂XAi then g ∈ Ai ⊂ F and there exists x ∈ X sucht that xg /∈ Ai,

but xA1 ∩A2 = A1 ∩ xA2 = ∅ and then xg /∈ A.

Finally |∂XF ||F | > n−1, contradicting the hypothesis. �

So if Γ is amenable we have F ∈ FølΓ,X(n) that is right-ed, in particular

we can assume e ∈ F and then |F | ⊂ B|F |(Γ): we have a bound for the word

length of elements in F .

Finally the result that allowed us to check the invariance property only

under the action of generators for amenability:

Lemma 2.2.2. For any F ∈ FølΓ,X(n) and for all g ∈ Γ we have:

|F \ gF |
|F |

≤ |g|n−1. (2.1)
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Proof. By induction on |g|: if |g| = 1 it is trivial. Suppose g = xg′ with

x ∈ X ∪ X−1 and |g′| = |g| − 1, by induction hypothesis for g′ the (2.1)

holds. Then:

|F \ xg′F |
|F |

=
|x−1F \ g′F |

|F |

and recalling that A \B ⊂ A \ C ∪ C \B, we have:

|F \ xg′F |
|F |

≤ |x
−1F \ F |
|F |

+
|F \ g′F |
|F |

≤ |F \ xF |
|F |

+ |g′|n−1 ≤ |g|n−1.

�

2.3 Abelian groups

We first consider the simple case of the free abelian group:

Example 2.3.1. Consider Zd with generators x1, x2, . . . xd.

Define Cn = {xi11 x
i2
2 . . . x

id
d : i1, i2, . . . id ∈ {0, 1, . . . n− 1}}. Then

Cn \ xjCn = {xi11 . . . x
ij−1

j−1 x
ij+1

j+1 . . . x
id
d : i1, . . . ij−1, ij+1 . . . id ∈ {0, 1, . . . n− 1}},

Cn \ x−1
j Cn = {xi11 . . . x

ij−1

j−1 x
n
j x

ij+1

j+1 . . . x
id
d : i1, . . . ij−1, ij+1 . . . id ∈ {0, 1, . . . n− 1}, }

in the group the only relations are those given by the commutativity, so we

have |Cn| = nd and |Cn\x±1
j Cn| = nd−1. This implies that Cn ∈ FølZd,X(n).

Following the construction for Zd we build the Følner set for a general

abelian finitely generated group. But we want an algorithmic description of

the preimages in the free group.

Definition 2.3.1.

Cn(x1, . . . xd) := {xi11 x
i2
2 . . . x

id
d : i1, i2, . . . id ∈ {0, 1, . . . n− 1}} ⊂ FX .
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Now we want to prove that π(Cn(x1, . . . xd)) ⊂ Γ is n-Følner. More

generally we define Cn for arbitrary elements and we have:

Proposition 2.3.1. Let y1, y2, . . . ys be commuting elements of Γ not ne-

cessarily distinct. Set

Cn(y1, y2, . . . ys) := {yi11 y
i2
2 . . . yiss : i1, i2, . . . is ∈ {0, 1, . . . n− 1}}.

We have:

|Cn(y1, y2, . . . ys) \ y±1
j Cn(y1, y2, . . . ys)|

|Cn(y1, y2, . . . ys)|
≤ n−1, ∀j ∈ {0, 1, . . . d}.

Proof. We write Cn instead of Cn(y1, y2, . . . ys):

• Cn(y1, y2, . . . ys) = Cn(y1)Cn(y2, y3 . . . ys)

and

Cn(y1) \ y1Cn(y1) =


∅ if y1 has order less or equal to n

{e} otherwise.

• Cn \ y1Cn ⊂ Cn(y2, y3, . . . , ys)

because in Cn \ y1Cn ⊂ Cn(y1) \ y1Cn(y1)Cn(y2, y3, . . . , ys)

• yk1 [Cn \ y1Cn] ⊂ Cn for k ∈ {0, 1, . . . n− 1}

if g ∈ yk1 [Cn \ y1Cn] so there exist î2, . . . îs ∈ {0, 1, . . . n− 1} such that

g = yk1y
î2
2 . . . yîss and so g ∈ Cn.

• yk1 [Cn \ y1Cn] ∩ [Cn \ y1Cn] = ∅ ∀k ∈ {1, . . . n− 1},

if g ∈ yk1 [Cn \ y1Cn] so g = yk1y
î2
2 . . . yîss , but k 6= 0 and then g /∈

Cn \ y1Cn.
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So Cn contains n disjoint translations of Cn \ y1Cn, that is:

Cn ⊃
n−1⊔
k=0

yk[Cn \ y1Cn].

It is easy do the same with y−1
1 and we have

Cn ⊃
n−1⊔
k=0

y−k[Cn \ y−1
1 Cn].

So
|Cn\y±1

1 Cn|
|Cn| ≤ n−1. �

In particular if Γ is abelian Cn(x1, x2, . . . xd) ∈ FølΓ,X(n).

Remark 2.3.1. Actually we can prove it also noting that the product of

two n-Følner sets is an n-Følner set for the direct product of the groups,

the products of two “cubes” Cn is still a cube. But the cubes are n-Følner

sets for Zd and clearly for finite groups (for n big enough) so the n-cubes

are n-Følner for finite direct products of finite or free abelian groups, so for

finitely generated abelian groups.

Finally π(Cn(x1, . . . xd)) = Cn(x1, . . . xd).

Corollary 2.3.1. If Γ is abelian then it has computable Følner sets.

Actually the ordering in the set doesn’t matter if we project into an

abelian group, in this case, for a finite subset Y ⊂ FX , we define Cn(Y ) and

Cn(Y ) = π(Cn(Y )).

2.4 Kharlampovich groups: The Revenge

We give a very simple and effective construction of n-Følner sets for a par-

ticular semidirect product that is the one that was used twice to construct

the Kharlampovich groups:
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Theorem 2.4.1. Let Γ = 〈L1∪L2〉 be a finitely generated group, L1 and L2

two finite disjoint subsets and respectively H1 and H2 the subgroups that they

generate. Suppose that H2 is amenable, HΓ
1 is abelian and Γ = HH2

1 oH2,

then:

ACn(LA1 ) ∈ FølΓ(n), ∀A ∈ FølH2(n).

where LA1 = {a−1xa : a ∈ A, x ∈ L1}.

Proof. B := Cn(LA1 ), |AB| = |A||B| because A ⊂ H2 and B ⊂ HH
1 and

H2 ∩HH2
1 = {e}.

For x ∈ L2 ∪ L−1
2 we have:

|AB \ xAB|
|AB|

≤ |A \ xA||B|
|A||B|

≤ n−1.

For x ∈ L1 ∪ L−1
1 , using Proposition 2.3.1, we have:

|AB \ xAB|
|AB|

=
|{ab : a ∈ A, b ∈ B : ab /∈ xAB}|

|A||B|
=

=
|{ab : a ∈ A, b ∈ B : b /∈ a−1xAB}|

|A||B|
≤ |{ab : a ∈ A, b ∈ B : b /∈ a−1xaB}|

|A||B|
≤

≤
|
⋃
a∈A a(B \ a−1xaB)|

|A||B|
≤ n−1.

�

In the case of Kharlampovich group G(M) we have (see Subsection 1.7):

Cn(L2) ∈ FølH2(n),

Cn(L2)Cn(L
Cn(L2)
1 ) ∈ FølH(n),

but HH
1 is of exponent p, so for n ≥ p we have Cn = Cp in HH

1 and the

same holds in H
G(M)
0 , so finally:

Cn(L2)Cp(L
Cn(L2)
1 )Cp(L

Cn(L2)Cp(L
Cn(L2)
1 )

0 ) ∈ FølG(M)(n).
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So we have a finitely presented group G(M) with unsolvable word prob-

lem with computable Følner sets: we have an algorithm with input n and

output a finite subset of the free group projecting onto an n-Følner set in

G(M). Of course we don’t know if some different words of the set represent

the same element in the group. And we have also a bound from above for

the cardinality of these sets.

Corollary 2.4.1. The class of finitely presented groups with computable

Følner sets is larger than the class of finitely presented amenable groups

with solvable word problem.

2.5 Amenable extensions

Amenability is stable under semidirect products and more generally under

amenable extensions, the most common proofs of this do not use the charac-

terization of amenability by Følner sets. The book [11] is one of the excep-

tions and in [25] it was shown explicitly that a Følner net for the semidirect

product is given by the product of the Følner nets of the factor groups. But

it’s not an effective procedure to have, fixing n ∈ N, an n-Følner set.

We first consider general abelian extensions, but apparently the proce-

dure doesn’t ensure the computability of the Følner sets:

Proposition 2.5.1. If Γ is finitely generated by X and N / Γ is an abelian

normal subgroup, denoting with ρ : Γ→ Γ/N the projection:

AC4n|A−1XA∩N |(A
−1XA ∩N) ∈ FølΓ,X(n),

for each A ⊂ Γ such that |A| = |ρ(A)| and ρ(A) ∈ FølΓ/N,ρ(X)(2n).

Proof. Consider S := A−1XA ∩N , it is finite and |S| ≤ |A|2|X|.

Denote B := C4n|S|(S), B ⊂ N and then by Lemma 2.3.1 we have
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|B \ sB|
|B|

≤ (4n|S|)−1 for all s ∈ S ∪ S−1.

Consider the set F := AB, notice that |F | = |A||B| because the inter-

section A ∩ B has at most one element since ρ|A is injective and ρ sends B

to the identity of Γ/N . So for g ∈ F we write g = ab, a ∈ A, b ∈ B in a

unique way (again because ρ|A is injective and ρ(g) = ρ(a)) and we write

A′ := ρ(A), that is 2n-Følner.

For each x ∈ X ∪X−1, the set F \ xF is disjoint union of E1 and E2:

E1 = {g ∈ F \ xF : ρ(g) /∈ ρ(x)A′}

E2 = {g ∈ F \ xF : ρ(g) ∈ ρ(x)A′}.

If g ∈ E1, since ρ(g) = ρ(a) /∈ ρ(x)A′ so ρ(a) ∈ A′\ρ(x)A′. But ρ is injective

on A then:
|E1|
|F |

=
|A′ \ ρ(x)A′||B|

|A||B|
≤ (2n)−1.

If g ∈ E2 then ρ(a) ∈ ρ(x)A′ = ρ(xA), hence there exist a′ ∈ A, s ∈ N

such that as = xa′. So s ∈ S ∪ S−1 and g = xa′s−1b, but since g /∈ xAB

then b /∈ sB:

|E2|
|F |
≤ |{xa

′s−1b, a′ ∈ A, s ∈ S ∪ S−1, b ∈ B \ sB}|
|A||B|

≤
∑

s∈S∪S−1

|B \ sB|
|B|

≤ (2n)−1.

�

Consider the case of Γ/N amenable with solvable word problem and

with the set ρ(X) as generators. If πΓ/N : FX → Γ/N is the canonical

epimorphism, for every n we can compute A ∈ FX such that πΓ/N (A) ∈

FølΓ/N,ρ(X)(2n) (by Theorem 2.1.1), but also with |A| = |πΓ/N (A)|, by the

solvability of the word problem.
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But then A := πΓ(A) is such that ρ(A) = πΓ/N (A) ∈ FølΓ/N,ρ(X)(2n) and

|A| = |ρ(A)|, because:

|ρ(A)| ≤ |A| ≤ |A| = |πΓ/N (A)|.

Moreover, given an element ω ∈ A−1XA we can compute if πΓ/N (ω) = 1

or not, and then we can compute the preimage of A−1XA ∩ N in FX and

finally we can compute a preimage of the n-Følner sets for Γ.

Corollary 2.5.1. A finitely presented group that is an extension of an

amenable group with solvable word problem by an abelian group has com-

putable Følner sets.

This implies again that Kharlampovich group has computable Følner

sets, because it is an abelian extension of a finitely presented metabelian,

and therefore residually finite with solvable WP, group.

Notice that the abelian group could be not finitely generated.

Remark 2.5.1. In general if we observe that AC4n|S|(S) ⊂ AC4n|A|2|X|(A
−1XA)

so even if Γ/N has non-computable Følner sets, we can compute sets con-

taining them.

The situation is clearer if the extension splits. In this case we can also

consider more generally the extension by an amenable group.

Theorem 2.5.1. Let N = 〈X|R1〉 and H = 〈Y |R2〉 be finitely generated

groups and let φ : H → Aut(N) be homomorphism. Let c := max{|φy(x)|X :

x ∈ X, y ∈ Y } and consider N o H = 〈X,Y |R1, R2, x
y = φy(x) ∀x ∈

X, ∀y ∈ Y 〉 then:

AB ∈ FølNoH(n)

for every A ∈ FølH(n), and every B ∈ FølN (nc|A|Y ).

(Remember that |A|Y = max{|a|Y , a ∈ A}).
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Proof. |AB| = |A||B| because A ⊂ H and B ⊂ N ,

for y ∈ Y ∪ Y −1 :

|AB \ yAB|
|AB|

≤ |A \ yA||B|
|A||B|

≤ n−1.

For x ∈ X ∪X−1:

xab = aa−1xab = aφa(x)b, so

{ab ∈ AB : xab /∈ AB} ⊂ {ab ∈ AB : φa(x)b /∈ B}.

But |φa(x)|X ≤ c|a|Y ≤ c|A|Y . Then, using Lemma 2.2.2:

|AB \ xAB|
|AB|

=
|
⋃
a∈A a[B \ φa(x)B]|

|A||B|
≤
∑

a∈A |B \ φa(x)B|
|A||B|

≤ |φa(x)|X
c|A|Y n

≤ n−1.

�

We can observe that the thesis is true also if B ∈ FølH(n′) with n′ ≥

ns|A|Y . In particular this implies that the semidirect product between

two finitely generated groups with computable Følner sets has computable

Følner sets because if we know a preimage for the Følner set A we also have

a bound for |A|Y and so we know a right input for algorithm computing B,

Følner set of N .

Corollary 2.5.2. The semidirect product between two finitely generated

groups with computable Følner sets has computable Følner sets.

Finally we give the computation for the general extension by amenable

finitely generated groups. Before this, we recall the definition of the distor-

tion function.

Definition 2.5.1. We call the map ∆G
N : N→ N with:

∆G
N (n) := max{|ω|Y : ω ∈ N, |ω|X ≤ n}

the distortion function.
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Theorem 2.5.2. Let Γ be generated by the finite set X and N be a normal

subgroup of Γ generated by the finite set Y . Let ρ : Γ → K := Γ/N be the

projection to the quotient. Then:

AB ∈ FølΓ,X(n),

if A′ := ρ(A) ∈ FølK,ρ(X)(2n), |A| = |A′|, |A|X ≤ |A′|ρ(X)

and B ∈ FølN,Y (2n|A′|2|X ∪X−1|∆G
N (2|A′|ρ(X) + 1)).

Proof. Denoting with F := AB it is easy to see that |F | = |A′||B| because

ρ is injective on A.

For each x ∈ X ∪X−1, the set F \ xF is disjoint union of E1 and E2:

E1 = {g ∈ F \ xF : ρ(g) /∈ ρ(x)A′}

E2 = {g ∈ F \ xF : ρ(g) ∈ ρ(x)A′}.

We can write g = ab, with b ∈ B, in a unique way.

If g ∈ E1, since ρ(g) = ρ(a) /∈ ρ(x)A′ so ρ(a) ∈ A′ \ ρ(x)A′, ρ is injective

on A so:
|E1|
|F |

=
|A′ \ ρ(x)A′||B|
|A′||B|

≤ (2n)−1.

If g ∈ E2 then ρ(g) = ρ(a) ∈ ρ(x)A′ hence there exists a′ ∈ A such that

ρ(a) = ρ(x)ρ(a′). The images by ρ of a and xa′ are the same so there is

s ∈ N such that as = xa′.

If we call S := A−1XA we see that s ∈ S ∪ S−1 and |S ∪ S−1| ≤

|A|2|X ∪X−1|. Then g = xa′s−1b, but since g /∈ xAB then b /∈ sB:

|E2|
|F |
≤ |{xa

′s−1b, a′ ∈ A, s ∈ R, b ∈ B \ sB}|
|A′||B|

≤
∑

s∈S∪S−1

|B \ sB|
|B|

.
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We have a bound for |S|, we need a bound for the length of the elements in

S ∪ S−1:

|s|Y ≤ ∆Γ
N (|s|X). But |s|X = |a−1xa′|X ≤ 2|A|X + 1 ≤ 2|A′|ρ(X) + 1

And so by Lemma 2.2.2:

|B \ sB|
|B|

≤ (2n|A′|2|X ∪X−1|)−1 ≤ |S ∪ S
−1|

2n
.

Finally
|F \ xF |
|F |

=
|E1|
|F |

+
|E2|
|F |
≤ n−1.

�

Suppose that N and K have computable Følner sets. For each k we can

construct A ⊂ FX such that πK(A) ∈ FølK(k). We denote A′ := πK(A). If

we consider A := πΓ(A), it is clear that ρ(A) = A′ ∈ FølK(k) as in hypothe-

sis of the theorem. But we want the bound also on the cardinality and on the

length: if |A| > |A′| we could have |A| > |A′|. But if we restrict to the case in

which K has solvable word problem we can detectA such that |πK(A)| = |A|

and |πK(A)|ρ(X) = |A|w. So we can compute a preimage for a set A respect-

ing the hypothesis of the theorem. For the set B we just need the com-

putability (of a bound) of the number 2n|A′|2|X ∪X−1|∆G
N (2|A′|ρ(X) + 1).

While we have automatically (by to the computability of Følner sets in K)

a computable bound for |A′| and |A′|ρ(X), it is possible that ∆G
N is not

subrecursive, see for example [3], also in solvable groups, see [13].

Corollary 2.5.3. Let N,G,K finitely generated groups such that:

1→ N → G→ K → 1.

If N has computable Følner sets, ∆G
N is subrecursive, K is amenable with

solvable word problem, then G has computable Følner sets.
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Remark 2.5.2. By the Remark 2.5.1 we know that a finitely generated

solvable group Γ has the following property that we can call subcomputability

of Følner sets

There exist an algorithm with:

INPUT n ∈ N

OUTPUT F ⊂ FX : ∃A∈FølΓ,X : A ⊂ π(F ).

We can conclude this statement also observing that the free solvable groups

have solvable word problem and then they have computable Følner sets. If

we look for example at the proof of [18, Lemma 2.2], we can see that even

if the projection of a n-Følner set is not n-Følner, it contains an n-Følner

set. We know something more: ρ : G1 → G2 a projection, G1 generated by

X1 and G2 by X2 := ρ(X1): if A ∈ FølG1,X1(n) then there exists i ∈ N,

1 ≤ i ≤ |A| such that the set Bi := {b ∈ G2 : |ρ−1(b) ∩ A| ≥ i} belongs to

FølG2,X2(n).

But if we haven’t solvable word problems apparently we cannot compute

Bi and we cannot say which i is right.

• Have solvable groups computable Følner sets?

• Is computability of Følner sets stable under quotients?

• Does subcomputability imply computability of Følner sets?

The questions are in order of generality, apparently are distinct questions:

while for finitely generated amenable groups and solvable groups we have a

“universal group” for which in its quotients all groups of the class can be

embedded, it is not the case of finitely generated amenable group. The exam-

ples to see this are the Erschler’s groups in [18] and they also are examples

of amenable groups with non computable Følner sets. Infact another neces-
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sary condition for the computability of Følner sets is the subrecursivity of

the Følner function, we will see it in the next chapter.



Chapter 3

Quantifications

One of the obstructions to compute approximations with arbitrary precision

is the possibility that the growth of the dimension of these approximations is

faster than any recursive function. This is what happens for example for the

non computability of Følner sets: actually we have found examples just in

this way. So on purpose to study effectiveness of some properties, especially

of approximation properties, it is natural to try to quantify them.

In this Chapter we start with the definition of a famous function, the

Følner function, introduced by Vershik. In particular we use an asymptoti-

cally equivalent version compatible with our definition of Følner sets. The

Følner function is the cardinality of the optimal Følner sets and then in some

sense it quantifies amenability. Vershik conjectured for it the possibility of a

growth faster than any iterated exponentials, Erschler in [18] shows finitely

generated groups with Følner function faster then any recursive function

(while it is open for finitely presented groups). With the theory of the pre-

vious chapter we know that these groups have unsolvable word problem and

non computable Følner sets. It’s just a short step from effective construc-

49
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tions to the quantifications, so we give as corollaries some upper bounds

for Følner functions even if at least those about solvable groups are already

known. The final goal of the section is that the class of finitely genera-

ted groups with subrecursive Følner function is closed under extension with

subrecursive distortion.

In the following section we present the depth function introduced by K.

Bou-Rabee to quantify the residual finiteness and an analogous function for

the local embeddability into finite groups and the comparisons of these two

functions.

In the last section we study a quantificative function for soficity. The

first introduction of the sofic dimension growth is in an unpublished work

of Arzhantseva and Cherix [2]. The idea to study algorithmic questions in

this setting was suggested to me by Thom and the paper [12]. Cornulier in

fact introduced his own version of quantification of soficity, the sofic profile.

We prove independently some results that will be also in [2]. Then we

introduce a quantifying version of the weak stability (see [4]) and observe

that there’s no uniform recursive bound for all weak stable groups. We

prove that under sofic condition the computability of sofic approximations

is equivalent to the word problem and is not equivalent to subrecursivity of

sofic dimension growth. Finally we give an upper bound for sofic dimension

growth of direct products, free products and splitting amenable extensions

of sofic groups.
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3.1 Følner function

Definition 3.1.1. For an amenable group Γ generated by a finite set X,

remember that for all n ∈ N:

FølΓ,X(n) = {F ⊂ Γ, F 6= ∅, F finite ,
|F \ xF |
|F |

≤ n−1, ∀x ∈ X ∪X−1}.

So we define the Følner function F : N→ N as

FΓ,X(n) := min{|A|, A ∈ FølΓ,X(n)}.

This is a well studied function. It is shown that the asymptotic behaviour

does not depend on presentation. The first simple remark is that if Γ is a

group with computable Følner sets then the function F is subrecursive. So

in particular, as a consequence of Theorem 2.1.1:

Proposition 3.1.1. If Γ is finitely generated amenable group with solvable

word problem than FΓ is subrecursive.

We know that there exist finitely generated groups with FΓ non subre-

cursive [18], so these groups have unsolvable word problem, and in general

there exist finitely generated groups with non computable Følner sets, but

we don’t know examples of groups with subrecursive Følner function and

non computable Følner sets.

Remark 3.1.1. Γ has subcomputable Følner sets if and only if FΓ is sub-

recursive.

If the preimage of a set containing an n-Følner is computable then we can

compute a bound for the cardinality of an n-Følner and thus FΓ is sub-

recursive. Viceversa by Lemma 2.2.1 we have n-Følner sets contained in

BFΓ(|X∪X−1|n)(Γ), so if FΓ is subrecursive we can compute a ball large enough
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to contain an n-Følner.

So we can reformulate the last question in Remark 2.5.2 in the following

way:

Question 1. Does the subrecursivity of FΓ imply the computability of Følner

sets of Γ?

We will see that the analogous question for soficity has negative answer.

In this section we can translate the results from the previous chapter to

obtain upper bounds for the Følner function for some amenable extensions.

Asymptotically equivalent bounds for solvable groups could be also found

as corollaries of the works [19] and [18], or using the comparison with the

Følner function in free solvable groups in [35].

The simplest case is that of finite groups, where the Følner function is

eventually constant, and of abelian groups: if Γ = 〈X〉 is abelian then from

Lemma 2.3.1 we clearly have FΓ(n) ≤ n|X|.

From Theorem 2.4.1 we can choose the optimal Følner sets and consider

the cardinality:

Corollary 3.1.1. Let Γ = 〈L1∪L2〉 be a finitely generated group, L1 and L2

two finite disjoint subsets and respectively H1 and H2 the subgroups that they

generate. Suppose that H2 is amenable, HH2
1 is abelian and Γ = HH2

1 oH2,

then:

FΓ,L1∪L2(n) ≤ FH2,L2(n)n|L1|FH2,L2
(n).

For Kharlampovich groups G(M) (see Section 1.7 and Section 2.4) we

have:

FG(M)(n) ≤ |Cn(L2)Cp(L
Cn(L2)
1 )Cp(L

Cn(L2)Cp(L
Cn(L2)
1 )

0 )| ≤
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≤ n|L2|p|L1|n|L2|
p|L0|n|L2|p|L1n

|L2|
.

From Proposition 2.5.1 we have:

Corollary 3.1.2. If Γ is finitely generated by X and N / Γ is an abelian

normal subgroup, denoting with ρ : Γ→ Γ/N the projection:

FΓ(n) ≤ FΓ/N (2n)(2n|X|FΓ/N (2n)2)|X|FΓ/N (2n)2
.

Proof. We consider ρ(A) ∈ FølΓ/N (2n) such that |ρ(A)| = |A| = FΓ/N (2n),

recall that S = A−1XA and then |S| ≤ |A|2|X|. Finally observe that

AC2n|S|(S) ⊂ AC2n|A|2|X|(A
−1XA).

�

In particular, fixing two numbers k, l ∈ N, there exists a recursive func-

tion f : N→ N (asymptotically a k-iterated nn
...n

) such that for every group

G solvable of step less than k and with less than l generators we have

FG(n) ≤ f(n).

We can say this, without any information on function f other than recursiv-

ity, directly by the solvability of word problem for free solvable groups (see

Remark 2.5.2).

From Theorem 2.5.1 we obtain a bound. First we recall that for a group

H generated by a finite set Y , if we are not interested in computability we

can choose an optimal n-Følner set A ∈ Føl′H,Y (n) that is right-connected

(see Lemma 2.2.1) containing the identity 1 and then |A|Y ≤ |A| ≤ FH(|Y ∪

Y −1|n).
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Corollary 3.1.3. Let N = 〈X|R1〉 and H = 〈Y |R2〉 be finitely genera-

ted groups and let φ : H → Aut(N) be a homomorphism. and consider

N oH = 〈X,Y | R1, R2, x
y = φy(x), ∀x ∈ X, ∀y ∈ Y 〉, then:

FNoH(n) ≤ FH(kn)FN (ncFH(kn)),

where c := max{|φy(x)|X : x ∈ X, y ∈ Y } and k := |Y ∪ Y −1|.

Finally, from Theorem 2.5.2 and again using connectivity argument:

Corollary 3.1.4. Let N,Γ,K finitely generated groups such that:

1→ N → Γ→ K → 1.

Then

FΓ(n) ≤ FK(kn)FN (knFK(kn)2∆Γ
N (2FK(kn) + 1)),

where k := 2|X ∪X−1| the finite generating set of Γ.

This implies that if N and K have subrecursive Følner function and if

∆Γ
N is subrecursive then Γ has subrecursive Følner function.

Coming back to our Question 1, it seems that apparently the property

of subrecursivity of Følner function is more stable than computability of

Følner sets. Or at least these stability properties are easier to prove.

3.2 Depth and LEF functions

We want to consider some quantifications of some other approximation pro-

perties that imply the soficity. First of all, the residual finiteness:

Definition 3.2.1. Let Γ be a finitely generated residually finite group,

RΓ(n) := max{min{[Γ : N ] : N / Γ, g /∈ N}, |g| ≤ n} n ∈ N.
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Bou-Rabee defines the function RΓ in [5], we call it the depth function

of Γ. He proves the independence on the generators (up to asymptotic

equivalence) and computes the function for some groups. There are many

works on the depth function, especially for the free groups [7, 27].

In [6] it is remarked that for finitely presented residually finite groups the

depth function is computable and finitely generated residually finite groups

with arbitrary large depth function were constructed. In [26] starting with

particular Minsky machines with a computable halting problem and with

the same construction of the groups with unsolvable word problem, they

obtain finitely presented residually finite groups with arbitrary subrecursive

large depth function.

A very closed property is the embeddability into finite groups (LEF), we

first need an equivalent version, by Proposition 1.4.1:

Proposition 3.2.1. Γ is LEF if and only if for every n ∈ N there exist a

finite group F and (f1, . . . fd) ∈ F d such that :

ω(f1, . . . , fd)


= 1F if ω ∈ Bn ∩ kerπ

6= 1F , if ω ∈ Bn \ kerπ.

(3.1)

So we can consider the growth of the cardinality of these finite groups.

Definition 3.2.2. For a LEF group Γ we define

LEFΓ,X(n) := min{|F | : ∃ (f1, . . . , fd) ∈ F d for which (3.1) holds }, n ∈ N.

It is simple to see that the asymptotic behaviour does not depend on the

presentation. We will see it in the next section for the function quantifying

soficity, the proof is the same.

We know that residual finiteness implies LEF, we give a quantitative

version of this fact:
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Proposition 3.2.2.

LEFΓ(n) ≤ RΓ(n)ξ(n),

where ξ(n) is the number of conjugacy classes of Γ intersecting Bn(Γ).

Proof. Let g1, g2, . . . , gξ(n) be the representative elements of the non trivial

conjugacy classes intersecting the ball of radius n, we denote with Qg the

smallest finite group such that there exists a surjective homomorphism ρg:

ρg : Γ→ Qg

with ρg(g) 6= 1. We observe that also ρg(hgh
−1) 6= 1 for all h ∈ Γ. We define

ρ : Γ −→
ξ(2n)∏
i=1

Qgi ρ :=

ξ(n)∏
i=1

ρgi .

We want to prove that for (ρ(x1), . . . , ρ(xd)) the relations (3.1) of Proposition

3.2.1 hold.

For ω ∈ Bn ∩ kerπ we have ω(ρ(x1), . . . , ρ(xd)) = ρ(π(ω)) = 1 since ρ

is a homomorphism. If ω ∈ Bn \ kerπ then π(ω) is different from 1 so

there exists i such that gi is conjugate with π(ω) and so ρgi(π(ω)) 6= 1 that

implies ρ(π(ω)) 6= 1, but again ω(ρ(x1), . . . , ρ(xd)) = ρ(π(ω)). We know that

|
∏ξ(n)
i=1 Qgi | ≤ RΓ(n)ξ(n) so we have the thesis. �

But we also know, in the case of finitely presented groups, that the local

embeddability into finite groups implies the residual finiteness. This is the

simple comparison of the associated growth functions:

Proposition 3.2.3. Suppose that R, the set of relations in the presentation

of Γ, is finite, then:

RΓ(n) ≤ LEFΓ(n), for all n ≥ r,

where r := max{|ω| : ω ∈ R}.
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Proof. For n ≥ r the approximation xi 7→ fi gives a homomorphism from

Γ to F , with |F | = LEFΓ(n) and for g ∈ Bn(Γ), g 6= 1Γ we have a word

ωg ∈ Bn \ kerπ such that π(ωg) = g. �

3.3 Sofic dimension growth

The aim of this last section is to describe the growth of the dimension of

sofic approximations and the relation with algorithmic problems. As we see

in Section 1.5 for soficity we need of (K, ε)-approximations, almost homo-

morphisms into a finite symmetric group with a sort of uniform property of

injectivity. We might consider the minimum rank of the symmetric groups

containing approximations, choosing the diagonal subsequence:

K ′Γ(n) = min{k ∈ N : ∃φ : Γ→ Sym(k), (Bn(Γ),
1

n
)− approximation}.

It is very clear that a finitely generated group Γ is sofic if and only if the

function K ′Γ assumes finite values.

But actually we want something closer to the word problem and more easily

worked with computational tools.

The following notion of sofic dimension growth is due to G. Arzhantseva

and P. A. Cherix in an unpublished work [2]:

Definition 3.3.1. Suppose that Γ is sofic. For n ∈ N let KΓ,π(n) be the

minimum integer k such that there exists (σ1, σ2, . . . σd) ∈ Sym(k)d with the

following property:

`H(ω(σ1, . . . , σd))


≤ 1

n , if ω ∈ Bn ∩ kerπ

≥ 1− 1
n , if ω ∈ Bn \ kerπ

(3.2)
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In the language of the work of Arzhantseva and Paunescu [4], KΓ,π(n)

is the minimum rank among 1
n−strong solutions of R, the set of relations of

Γ. We denote as n-approximations the permutations σ1, σ2, . . . σd.

For the sake of completeness we give the easy proofs of some propositions

that will appear in [2] in the more general setting of metric approximations.

We prove them independently but we know by private communications that

they define the sofic dimension growth and many other growth functions

and describe the comparisons between them (including what in this text

are Propositions 3.3.1; 3.3.3; 3.3.4) and some quantifications of stability

properties of soficity (including what in this text is Proposition 3.3.6).

The first thing to see is that Γ is sofic if and only if the function KΓ

assumes finite values. Again this is a particular case of Proposition 1.4.1.

But we give directly a comparison with the function K ′Γ.

Proposition 3.3.1.

K ′Γ(n) ≤ KΓ(3n), KΓ(n) ≤ K ′Γ(n(n+ 2)), ∀n ∈ N.

Proof. First inequality:

For every n ∈ N consider the 3n-approximations σ1, . . . , σd ∈ SK(4n), so the

(3.2) of Definition 3.3.1 holds for 4n. For all g ∈ Γ we choose wg ∈ Fd such

that g = π(wg) and |wg| = |g|. This defines a map:

φ : Γ −→SK(n)

g 7−→wg(σ1, . . . , σd).
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For g, h ∈ Bn(Γ),

dH(φ(gh), φ(g)φ(h)) = `H(wgh(σ1, . . . , σd)
−1wg(σ1, . . .)wh(σ1, . . .))

= `H(w(σ1, . . . , σd))

where w := w−1
gh wgwh.

But |w| ≤ |wgh| + |wg| + |wh| = 2|g| + 2|h| ≤ 4n, moreover π(w) = e so

w ∈ B4n(Γ) ∩ kerπ and then dH(φ(gh), φ(g)φ(h)) ≤ 1
4n .

For g, h ∈ Bn(Γ), g 6= h,

dH(φ(g), φ(h)) = `H(w−1
g wh(σ1, . . . , σd)) ≥ 1− 1

4n

beacuse w−1
g wh ∈ B4n\kerπ. And so the map φ is a (Bn(Γ), 1

n)-approximation.

Second inequality:

For eachN ∈ N consider φ : Γ→ Sym(K ′Γ(N)), a (BN (Γ), 1
N )-approximation.

We want to find N such that the permutations σ1 := φ(x1), σ2 := φ(x2), . . . ,

σd := φ(xd) are n-approximations.

We have:

1

N
≥ dH(φ(1Γ), φ(1Γ)φ(1Γ)) = `H(φ(1Γ)),

For all w ∈ Bn, w(x1, x2, . . . , xd) ∈ BN (Γ) if N ≥ n, then by the triangle

inequality:

dH(w(φ(x1), φ(x2), . . . , φ(xd)), φ(w(x1, x2, . . . , xd))) ≤ n
1

N
.

If w ∈ kerπ then w(x1, x2, . . . , xd) = π(w) = 1Γ then

`H(w(φ(x1), φ(x2), . . . , φ(xd))) ≤ (n+ 1)
1

N
.
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If w /∈ kerπ:

`H
(
w(φ(x1), . . . , φ(xd))

)
≥ dH

(
w(φ(x1), . . . , φ(xd)), φ(1Γ)

)
− 1

N
≥

dH
(
φ(w(x1, . . . , xd)), φ(1Γ)

)
−dH

(
w(φ(x1), . . . , φ(xd)), φ(w(x1, . . . , xd))

)
− 1

N

≥ 1− (n+ 2)
1

N
.

So if we chooseN = n(n+2) we have that σ1, σ2, . . . , σd are n-approximations.

�

So in particular KΓ is finite valued if and only if K ′Γ is finite valued and

then if and only if Γ is sofic.

3.3.1 Asymptotic independence on presentation

We recall the four types of Tietze transformations on the presentations

〈X|R〉 of the group Γ.

R+ Add a relator:

Replace Γ = 〈X|R〉 by Γ = 〈X|R ∪ w〉, for some w ∈ kerπ.

R− Remove a relator:

Replace Γ = 〈X|R〉 by Γ = 〈X|R \ {w}〉, for some w ∈ R such that

RΓ〉 = (R \ {w})Γ.

X+ Add a new generator:

Replace Γ = 〈X|R〉 by Γ = 〈X ∪ {y}|R ∪ {yw−1}〉, for any w ∈ FX .

X− Remove a generator:

Replace Γ = 〈X|R〉 by Γ = 〈X \ {y}|R \ {w}〉, if yw−1 ∈ kerπ and if all

s ∈ R \ {w} do not contain y or y−1.
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Now we compute the variation of the function K after these transforma-

tions.

R+, R− :

The kernel kerπ of the canonical homomorphism is the same in the two

presentations. The word length does not depend by the relations in the

presentations, Bn ∩ kerπ is the same after these transformations so, by

definition, the function K(n) is the same.

X− :

For simplicity suppose that we remove the last generator.

Before: 〈x1, x2, . . . , xk |R〉, kerπ1 /Fk the kernel of the canonical homomor-

phism;

after: 〈x1, x2, . . . , xk−1 |R \ {w0}〉 kerπ2 / Fk−1 the kernel of the canonical

homomorphism.

We can consider Fk−1 as subgroup of Fk and then: kerπ2 = {w ∈ kerπ1 :

xk and x−1
k are not subword of w} = kerπ1 ∩ Fk−1

If σ1, σ2, . . . , σk ∈ SK1(n) are n-approximations for the first presentation,

so σ1, σ2, . . . , σk−1 are n-approximations for the second presentation.

The inclusion of Fk−1 in Fk is isometric then kerπ2∩Bn(Fk−1) = Fk−1∩

kerπ1∩Bn(Fk) but clearly for w ∈ Fk−1 simply w(σ1, σ2, . . . , σk) = w(σ1, σ2, . . . , σk−1).

Then K2(n) ≤ K1(n).

X+ :

Before: 〈x1, x2, . . . , xk|R〉, kerπ1 / Fk the kernel of the canonical homomor-

phism;

after: 〈x1, x2, . . . , xk+1|R∪{xk+1w
−1
0 }〉 kerπ2/Fk+1 the kernel of the canon-

ical homomorphism.



CHAPTER 3. QUANTIFICATIONS 62

Let m be the length of w0, consider σ1, σ2, . . . , σk ∈ SK1(nm) the nm-

approximations for the first presentation.

Set σk+1 := w0(σ1, σ2, . . . , σk), now we show that σ1, σ2, . . . , σk, σk+1 are

n-approximations for the second presentation.

Let w ∈ Bn(Fk+1), we can replace every xk+1 and x−1
k+1 with respectively

w0 and w−1
0 and obtain a new word w′ ∈ Fk ∩ Bnm. It’s clear that w

is in kerπ2 if and only if w′ is in kerπ1. But w(σ1, σ2, . . . , σk, σk+1) =

w′(σ1, σ2, . . . , σk) so we have:

`H(w(σ1, . . . , σk, σk+1))


≤ 1

nm ≤
1
n , w ∈ kerπ2

≥ 1− 1
nm ≥ 1− 1

n , w /∈ kerπ2.

and so K2(n) ≤ K1(nm).

And so finally, by Theorem 1.1.1:

Proposition 3.3.2. Let π : Fd � Γ and π′ : Fd′ � Γ be two presentations

of the same group Γ, then there exists C > 0 such that:

KΓ,π(C−1n) ≤ KΓ,π′(n) ≤ KΓ,π(Cn) ∀n ∈ N

3.3.2 Comparisons with Følner function and with LEF func-

tion

Amenable groups and residually finite groups are sofic. Actually the soficity

was born as the class of groups that contains both. So it is interesting and

very simple to quantify these inclusions.

Proposition 3.3.3.

KΓ(n) ≤ FΓ(n2).
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Proof. For every N ∈ N we consider N -Følner set Y such that FΓ(N) = |Y |.

Now consider σ1, σ2, . . . , σd ∈ Sym(Y ) bijections of Y such that:

σi(y) = xiy

for all y ∈ Y ∩ x−1
i Y, for i = 1, 2, . . . , d. Let w = z1z2 . . . zn be a word such

that |w| ≤ n, with zi ∈ {1, x1, . . . , xn, x
−1
1 . . . , x−1

n }.

If y ∈ Y is such that

w(σ1, σ2, . . . , σd)y 6= w(x1, x2 . . . , xd)y

then

y /∈ Y ∩ z−1
n Y or zny /∈ Y ∩ z−1

n−1Y or ... or z2z3 . . . zny /∈ Y ∩ z−1
1 Y ;

that is:

y ∈ (Y \z−1
n Y )∪(z−1

n Y \z−1
n z−1

n−1Y )∪. . .∪(z−1
n z−1

n−1 . . . z
−1
2 Y \z−1

n z−1
n−1 . . . z

−1
2 z−1

1 Y ).

But

1

|Y |
|(Y \z−1

n Y )∪(z−1
n Y \z−1

n z−1
n−1Y )∪. . .∪(z−1

n z−1
n−1 . . . z

−1
2 Y \z−1

n z−1
n−1 . . . z

−1
2 z−1

1 Y )| ≤

n∑
j=1

|Y \ z−1
j Y |
|Y |

≤ n

N
.

We choose N ≥ n2: for ω ∈ kerπ,

`H(ω(σ1, σ2, . . . , σd)) =
|{y ∈ Y : ω(σ1, σ2, . . . , σd)y 6= y}|

|Y |
≤

|{y ∈ Y : ω(σ1, σ2, . . . , σd)y 6= ω(x1, x2 . . . , xd)y}|
|Y |

≤ 1

n

and if ω /∈ kerπ with the analogous inequality we have:

`H(ω(σ1, σ2, . . . , σd)) ≥
|{y ∈ Y : ω(σ1, σ2, . . . , σd)y = ω(x1, x2 . . . , xd)y}|

|Y |
≥ 1− 1

n
.

So if N = n2, we have the n-approximations. �
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It is very natural and sharp the n2 inside the Følner function. Actually,

remembering Lemma 2.2.2, we know that FΓ(n2) is the cardinality of optimal

Følner sets 1
n -invariant for all the words of length less or equal to n.

This is one of the differences between amenability and soficity, also in finitely

presented groups: suppose we have for all ε permutations σ1, . . . σd such that

`H(w(σ1, . . . , σk))


≤ ε, w ∈ kerπ

≥ 1− ε, w /∈ kerπ

for all w in Fd with |w| < n. Then, if ε ≤ n−1 we have n-approximations, but

for smaller ε, a priori, we don’t have approximation for longer words. In fact

if n ≥ |r|, ∀r ∈ R we can say that for w ∈ kerπ we have `H(w(σ1, . . . , σk)) ≤

εDehn(|w|) so we have a (in general non computable) control, but for the

second condition we have no chance because we haven’t a lower bound for

Hamming length of the product of permutations.

Question 2. Under the hypothesis of amenability, is it possible to give a

reverse inequality between KΓ and FΓ? Namely, for any amenable group Γ

is there a recursive function P : N −→ N such that

FX(n) ≤ KX(P (n))?

The idea comes from [17, Proposition 2.8]: we know that sofic approxima-

tions for amenable groups are in some sense conjugate with the ones given

by Følner sets. By private communication we know that in [2] there is a

bound for subexponential growth groups, it could be interesting to analyze

the recursivity of that bound.

For LEF groups the comparison is direct and linear:
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Proposition 3.3.4.

KΓ(n) ≤ LEFΓ(n)

Proof. For each n ∈ N we consider the finite group F , with LEFΓ(n) = |F |

and f1, . . . fd ∈ F such that the (3.1) of Proposition 3.2.1 holds. We know

that fi describes a permutation σi on F by left multiplication.

Clearly ω(σ1, . . . , σd) is the permutation associated to the left multi-

plication of ω(f1, . . . , fd) on F , so the normalized Hamming length is 0 if

ω ∈ kerπ (because it implies ω(f1, . . . , fd) = 1F ), and is 1 if ω /∈ kerπ

(because it implies ω(f1, . . . , fd) 6= 1F ).

�

A simple remark is that for free groups Fd we have also a sort of reverse

inequality: if σ1, . . . σd ∈ Sym(k) are n-approximations for Fd in particular

they are elements of the finite group Sym(k) and respect the relation (3.1)

of Proposition 3.2.1 because if the kernel kerπ is empty, the relations (3.2)

of Definition 3.3.1 imply the relation (3.1) of Proposition 3.2.1 , and then

LEFFd
(n) ≤ KFd

(n)! .

We want to generalize this in the case that R is not empty but it is

weakly stable: more precisely we want to quantify part of Theorem 7.2 in

the work [4], that is a generalization of the one in [20]. To do that we first

try to quantify the weak stability of a set of relations.

Definition 3.3.2. Let Γ = 〈X,R〉, for every n ∈ N we define StbR(n)

as, if it exists, the smallest m ∈ N such that for every σ1, . . . σd which are

m-approximations for Γ, there exist σ′1, . . . σ
′
d which are solutions of R and

dH(σi, σ
′
i) ≤ 1

n for i = 1, . . . d. In particular if StbR(n) is defined, R is

weakly stable.



CHAPTER 3. QUANTIFICATIONS 66

And then:

Proposition 3.3.5. Let Γ = 〈x1, . . . xd|R〉 be a finitely presented group,

r = max{|ω|, ω ∈ R}.

LEFΓ(n) ≤ KΓ(max{StbR(2n), n})! for n ≥ r.

Proof. Consider m = max{StbR(2n), n}, the soficity gives us σ1, . . . σd which

are m-approximation of R in Sym(K(m)). So there exist σ′1, . . . , σ
′
d solution

of R such that dH(σi, σ
′
i) ≤ 1

2n , i = 1, . . . d . So xi 7→ σ′i is the right

approximation for LEFΓ(n) because for ω ∈ Bn ∩ kerπ, ω(σ1, . . . , σd) = 1

(if m > r) and for ω ∈ Bn \ kerπ and m > n:

`H(ω(σ′1, . . . σ
′
d)) ≥ `H(ω(σ1, . . . σd))−

n

2n
≥ 1

2
− 1

m
> 0.

�

Following Theorem 1 in [20] we can see that for any k ∈ N the relation

R = {xk} is stable and then weakly stable and then StbR is finite valued. If

we look at the proof of that theorem we can see that actually StbR is sub-

recursive: we have an effective bound. The result [4, Theorem 7.2] implies

that the relations of an amenable residually finite group are weakly stable.

In particular for each recursive function f the groups presented in [26] that

are finitely presented, solvable of step 3, residually finite with depth function

greater than f have weakly stable relations. Remembering Proposition 3.2.3

we know that LEF function is (eventually) greater than f , but we also have

a uniform bound for the Følner function of this kind of groups (see Corollary

3.1.1) and then by Proposition 3.3.3 we have a bound for the function K,

and then:
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Corollary 3.3.1. For any recursive function f : N → N there exists a set

of weakly stable relations R such that StbR(n) > f(n).

In particular the problem of computing the solutions of R close to the

n-approximations, even if solvable, can be arbitrarily complex.

However it is interesting that we can have arbitrary fast (but recursive)

growth for LEF function with a fixed upper bound for the sofic dimension

growth.

3.3.3 Computability of sofic approximations

Following what we have done in Section 2.1 with amenability we want do

the same with soficity: we want an effective definition of soficity.

Definition 3.3.3. A finitely generated group Γ = 〈x1, . . . , xd|R〉 has com-

putable sofic approximations if there exists an algorithm with:

INPUT: n ∈ N;

OUTPUT: k ∈ N, σ1, . . . , σd ∈ Sym(k) that are n-approximations.

But the situation in this case of soficity is very clear:

Theorem 3.3.1. A finitely generated group Γ has computable sofic approx-

imations if and only if Γ is sofic and has a solvable word problem.

Proof. (enough for word problem)

For given w ∈ Fd, consider n = max{3, |w|} as input, we have k ∈ N,

σ1, . . . , σd ∈ Sym(k) that are n-approximations.

The number #fix w(σ1,...,σd)
k is computable and therefore looking at (3.2)

of Definition 3.3.1 we can say if w is in kerπ or not.

(necessary for word problem)

First we can construct an algorithm with:
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INPUT: k ∈ N, σ1, . . . , σd ∈ Sym(k);

OUTPUT: answer to “are σ1, . . . , σd ∈ Sym(k) an n-approximation for Γ?”

It is possible because the number #fix w(σ1,...,σd)
k is computable, the set Bn

is finite and the word problem gives us an algorithm to say if ω ∈ Bn is in

kerπ or not, so with every input the algorithm will stop in a finite time.

The set {(k, σ) : k ∈ N, σ ∈ Sym(k)d} of possible INPUT is countable so

we list the set, for each element we start the algorithm and stop when we

obtain a positive answer. The group is sofic so the algorithm will stop. �

A finitely generated group Γ with computable sofic approximations has

subrecursive sofic dimension growth. It is natural ask whether the converse

is true: does a recursive upper bound for KΓ imply the word problem?

The answer is given again by the Kharlampovich group with unsolvable word

problem and subrecursive, by Proposition 3.3.3, sofic dimension growth.

Corollary 3.3.2. There exist groups with subrecursive sofic dimension growth

that haven’t computable sofic approximations.

But we don’t know what happens if we have exactly KΓ,X computable:

Question 3. Does the computability of the function KΓ,X(n) imply the com-

putability of the sofic approximation and then the word problem?

Consider first an analogy: let Γ be finitely presented, γΓ,X(n) := |Bn(Γ)|

the growth function for Γ. We know that γΓ,X is always subrecursive, be-

cause we have an exponential bound given by the cardinality of the ball in

free groups. But if we have γΓ,X recursive we obtain the solvability of the

word problem, in the following way.

Given a word ω ∈ Fd, compute γΓ,X(|ω|) and by subtraction z = |B|ω| ∩
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kerπ|. Then we enumerate kerπ and stop or if ω appears or if after that z

different words in B|ω| ∩ kerπ appear.

We follow the same idea. Suppose that for n we can compute k =

KΓ,X(n). We know that in Sym(k)d there are n-approximations. We can

consider just the set Sym(k)d|n := {Σ ∈ Sym(k)d : `H(ω(Σ)) ∈ [0, 1
n ] ∪

[n−1
n , 1],∀ω ∈ Bn}, in fact we know that we can found n-approximation in

Sym(k)d|n . For Σ ∈ Sym(k)d|n we define NΣ := {ω ∈ Bn : `H(ω(Σ)) ≤ 1
n}.

Then Σ is n-approximation if and only if NΣ = kerπ∩Bn. Now we know that

for k′ < k in Sym(k′)d|n there are no n-approximations, so we can compute

the following set:

N := {NΣ, Σ ∈ Sym(k)d|n} \
k−1⋃
i=1

{NΣ, Σ ∈ Sym(i)d|n}

and we know that kerπ ∩ Bn ∈ N . We have an order relation on N by the

inclusion, it is easy to see that:

kerπ ∩Bn maximal in N ⇒ computable n-approximations

This happens because we can recursively enumerate the words kerπ, consider

only the one with length less than or equal to n and delete all elements in

N which do not contain these words. In case of maximality of kerπ ∩Bn at

one point it remains only this set.

But this maximality is a very strong condition and we don’t know if it holds

in some class of sofic groups (other than Z).

Question 4. Is it possible for finitely presented or just for finitely generated

groups to have sofic dimension growth faster than any recursive function?

This is an (apparently) stronger version of the same question of Gromov

about Følner function in [23, p.578]. In fact for Proposition 3.3.3 the Følner
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funtion is bounded from below by sofic dimension growth. A positive an-

swer to Question 2 would establish the equivalence between subrecursivity

of FΓ and KΓ. For finitely generated not finitely presented it is known that

the Følner function can be non subrecursive [18], and the groups considered

are with intermediate growth. A positive answer to 2 just for groups with

subexponential growth (as announced for [2], if the bound is recursive) im-

plies the existence of finitely generated groups with non subrecursive sofic

dimension growth.

3.3.4 Stability properties

In this section we quantify some stability property of sofic groups, more or

less is a sort of translation of the results in [16].

The direct product of sofic groups is sofic, simply we notice that in a

grid the permutations of the rows commute with the permutations of the

columns. The quantification version has exactly the same proof in [16] or in

[8], the difference of settings is just illusory.

Proposition 3.3.6. Let G = 〈x1, x2, . . . , xl|RG〉 and H = 〈y1, y2, . . . , yk|RH〉,

be finitely generated groups. Consider the direct product with canonical pre-

sentation

G×H = 〈x1, x2, . . . , xl, y1, y2, . . . , yk|RG, RH , [xi, yj ] i = 1, . . . , l, j = 1, . . . , k〉,

then:

KΓ1×Γ2(n) ≤ KΓ1(2n)KΓ2(2n).

Proof. Let σ1, σ2 . . . , σl be m-approximations for G acting on the finite set

A of cardinality KG(m) and and τ1, τ2, . . . , τk be m-approximations for H

acting on the finite set B of cardinality KH(m).
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Denoting C = A × B we can consider the two following (Hamming)-

isometric homomorphisms

iα : Sym(A) ↪→ Sym(C),

iβ : Sym(B) ↪→ Sym(C)

iα(σ)(a, b) := (σa, b), σ ∈ Sym(A); iβ(τ)(a, b) = (a, τb) τ ∈ Sym(B).

It is clear that for every σ ∈ Sym(A) and τ ∈ Sym(B)

iα(σ)iβ(τ) = iβ(τ)iα(σ).

Denoting with `C the normalized Hamming length on Sym(C) and the same

with A and B, we have:

`C(iα(σ)iβ(τ)) = 1− |{(a, b) ∈ C : (σa, τb) = (a, b)}|
|C|

=

= 1− |{a ∈ A : σa = a}|
|A|

|{b ∈ B : τb = b}|
|B|

= 1− (1− `A(σ))(1− `B(τ)) = `A(σ) + `B(τ)− `A(σ)`B(τ)

then:

`C(iα(σ)iβ(τ))


≤ `A(σ) + `B(τ)

= `A(σ) + `B(τ)(1− `A(σ)) ≥ `A(σ)

= `B(σ) + `A(τ)(1− `B(τ)) ≥ `B(τ).

(3.3)

We define the l+k permutations in Sym(C) for the sofic approximation

of G×H:

Σi = iα(σi), i = 1, 2, . . . , l; Tj = iβ(τj), j = 1, 2, . . . , k.

Given a word ω ∈ F(l+k) = Fl ∗ Fk we can associate a word $ = $l$k

with $l ∈ Fl and $k ∈ Fk obtained switching the generators of Fl with the
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generators of Fk.

In particular ω(Σ1, . . . ,Σl, T1, . . . , Tk) = $(Σ1, . . . ,Σl, T1, . . . , Tk). It’s clear

that

ω ∈ kerπG×H ⇐⇒ $l ∈ kerπG and $k ∈ kerπH

Suppose ω ∈ kerπG×H , |ω| ≤ n, using (3.3)

`C(ω(Σ1, . . . ,Σl, T1, . . . , Tk)) = `C($(Σ1, . . . ,Σl, T1, . . . , Tk))

≤ `A($l(σ1, σ2 . . . , σl)) + `B($k(τ1, τ2, . . . , τk)) ≤
2

m
.

If ω /∈ kerπG×H then $l /∈ kerπG or $k /∈ kerπH . Suppose $l /∈

kerπG, using (3.3):

`C(ω(Σ1, . . . ,Σl, T1, . . . , Tk)) = `C($(Σ1, . . . ,Σl, T1, . . . , Tk))

≥ `A($l(σ1, σ2 . . . , σl)) ≥ 1− 1

m

then if m = 2n the permutations Σ1, . . . ,Σl, T1, . . . , Tk are n-approximations

for G×H �

We know that amenable extensions of sofic groups are sofic. For now we

have the relative bound just when the extension splits:

Theorem 3.3.2. Let N = 〈X|R1〉 and H = 〈Y |R2〉 be finitely generated

groups and let φ : H → Aut(N) be homomorphism. Let c := max{|φy(x)|X :

x ∈ X, y ∈ Y } and consider N o H = 〈X,Y |R1, R2, x
y = φy(x) ∀x ∈

X, ∀y ∈ Y 〉 then:

KNoH(n) ≤ FH(kn3)KN (2cFH(kn3)+n),

where k := |Y ∪ Y −1|.
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Proof. We denote G = N o H, G = 〈X ∪ Y 〉, X = x1, x2 . . . xd, Y =

y1, y2 . . . yk so we have:

πN : FX → N, πH : FY → H,

πG : FX∪Y → G,

FX∪Y = FX ∗ FY , πG = πN ∗ πH .

Moreover we need of a function [∗] : H → FY to associate to an element

h ∈ H one of the shortest words in the free group, that is:

π([h]) = h and |[h]| = |h|.

For x ∈ X and y ∈ Y we fix φy(x) ∈ FX one of the shortest word in FX

such that πN (φy(x)) = πG(xy).

We extend the definition of φ recursively: φy(x1x2) = φy(x1)φy(x2) and

φy1y2(x) = φy2(φy1(x)). In this way for X ∈ FX and Y ∈ FY we have

|φY(X )| ≤ |X c|Y and such that πN (φY(X )) = πG(XY).

For every MN ∈ N there exist MN -approximations σ1, σ2, . . . , σd ∈ Sym(B),

|B| = KN (MN ).

For every MH ∈ N there exists a right-connected MH -Følner A ⊂ H with

e ∈ A and |A| ≤ FH(|Y ∪ Y −1|MH). Let

τ1, τ2, . . . τt ∈ Sym(A),

be the permutations as in proof of Proposition 3.2.2 such that for a ∈ A ∩

y−1
i A we have τia = yia.

We want to define

Σ1,Σ2, . . .Σd, T1, T2, . . . Tk ∈ Sym(A×B)
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such that they are n- approximations for G.

So for i = 1, . . . d and j = 1, . . . k we set:

Σi(a, b) = (a, φ[a](xi)(σ1, σ2, . . . σd)b)

Tj(a, b) = (τja, b).

We can write a general word ω ∈ FX∪Y , with |ω| ≤ n, in this form:

ω = X1Y1X2Y2 . . .XpYp with Xi ∈ FX \ {e}, Yj ∈ FY \ {e} for i = 2, . . . p;

j = 1, . . . p− 1 and X1 ∈ FX Yp ∈ FY and p ≤ n
2 . But also:

ω =

p∏
i=1

X (Y1Y2...Yi−1)−1

i Y1Y2 . . .Yp

So we can define:

ω := ωXωY =

p∏
i=1

φ(Y1Y2...Yi−1)−1(Xi)Y1Y2 . . .Yp

with ωX ∈ FX , ωY ∈ FY and ω and ω represent the same element in

group G.

|ωY | ≤ n,

|ωX | ≤
∑p

i=1 |φ(Y1Y2...Yi−1)(Xi)−1)| ≤ ncn.

We want to prove that ω(Σ, T ) is close to ω(Σ, T ). We start evaluating

normalized Hamming distance between XY(Σ, T ) and φY(X )(Σ, T ).

dH(XY(Σ, T ), φ(XY)(Σ, T )) =
|{(a, b) ∈ A×B : XY(Σ, T )(a, b) 6= φY(X )(Σ, T )(a, b)}|

|A||B|
,

XY(Σ, T )(a, b) = Y−1(T1, . . . Tk)X (Σ1, . . .Σd)Y−1(T1, . . . Tk)(a, b) =
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= (a, φ[Y(τ1,...τk)a]X(σ1, . . . σk)b).

From the other side:

φY(X )(Σ, T )(a, b) = (a, φY[a](X )(σ1, . . . σk)b).

So if a ∈ A is such that Y(τ1, . . . τk)a = πH(Y)a we have that φY[a](X )

and φ[Y(τ1,...τk)a](X ) project in N in the same element, then:

ω0 := φY[a](X )−1φ[Y(τ1,...τk)a](X ) ∈ kerπN .

Then:

{(a, b) ∈ A×B : XY(Σ, T )(a, b) 6= φY(X )(Σ, T )(a, b)} ⊂

{a ∈ A : Y(τ1, . . . τk)a 6= πH(Y)a} ×B ∪

∪ A× {b ∈ B : ω0(σ1, . . . σk)b 6= b},

if MN ≥ |ω0| we have:

dH(XY(Σ, T ), φY(X )(Σ, T )) ≤ |Y|
MH

+
1

MN
.

If we consider MN ≥ 2d|A|+n we have (for n big enough):

MN ≥ |φ(Y1Y2...Yi−1)−1[a](X )−1φ[(Y1Y2...Yi−1)−1(τ1,...τk)a](X )|, i = 2, . . . p,

and then by invariance of the Hamming distance we have:

dH(ω(Σ, T ), ω(Σ, T )) ≤
p∑
i=1

(
|Y1Y2 . . .Yi−1|

MH
+

1

MN
) ≤ n2

2MH
+

n

2MN
.

As in the proof of Proposition 3.3.6, for word ωY ∈ FY we have:
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`A×B(ωY (T1, . . . Tk)) = `A(ωy(τ1, . . . , τk)),

but for ωX ∈ FX we have:

`A×B(ωX(Σ1, . . .Σd)) =

|{(a, b) ∈ A×B : (a, φ[a](ωX)(σ1, . . . , σk)b) 6= (a, b)}|
|A||B|

=
∑
a∈A

`B(φ[a](ωX)(σ1, . . . σd)).

But we also have an analogue of inequality (3.3) of the proof of Propo-

sition 3.3.6:

`A×B(ωX(Σ)ωY (T ))


≤ `B(ωX(Σ)) + `A(ωY (T ))

= `B(ωX(Σ)) + `A(ωY (T ))(1− `B(ωX(Σ)) ≥ `B(ωX(Σ))

= `A(ωY (T )) + `B(τ)(1− `A(ωY (T ))) ≥ `A(ωY (T )).

Clearly if ω ∈ kerπG we have: ω ∈ kerπG, ωX ∈ kerπN , ωY ∈ kerπH ,

φ[a](ωX) ∈ kerπN for all a ∈ A. Moreover |φ[a](ωX)| ≤MN then:

`(ω(Σ, T )) ≤ `(ω(Σ, T ) +
n2

2MH
+

n

2MN
≤

≤ `(ωX(Σ1, . . . ,Σk)) + `(ωY (T1, . . . , Tt) +
n2

2MH
+

n

2MN

≤ (n+ n/2)
1

MN
+ (n+ n2/2)

1

MH
.

If ω /∈ kerπG clearly ω /∈ kerπG and then ωX /∈ kerπN or ωY /∈ kerπH , that

implies φ[a](ωX) /∈ kerπN for all a ∈ A, again |φ[a](ωX)| < MN then:

`(ω(Σ, T )) ≥ `(ω(Σ, T ))− n2

2MH
− n

2MN
≥ `(ωY (τ))− n2

2MH
− n

2MN
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≥ 1− n

2MN
− (n+ n2/2)

1

MH

or

`(ω(Σ, T )) ≥ `(ω(Σ, T ))− n2

2MH
− n

2MN
≥ `(ωX(Σ)− n2

2MH
− n

2MN

≥ 1− (n+ n/2)
1

MN
− n2

2MH
.

So finally settingMH = n3 andMN = c|A|+n we have that Σ1 . . .Σd, T1 . . . Tk
are n-approximation for G.

�

For the free product we want again a sort of independence on the per-

mutations associated to the two starting groups, but in this case we don’t

want the commutativity. We need a different setting, in fact if we go to the

hypothesis of permutations without fixed points as in [17] the soficity holds

but we lost information about the rank of permutations.

Theorem 3.3.3. Let G = 〈x1, x2, . . . , xl|RG〉 and H = 〈y1, y2, . . . , yk|RH〉,

finitely generated group. Consider the free product with canonical presenta-

tion

G ∗H = 〈x1, x2, . . . , xl, y1, y2, . . . , yk|RG, RH〉,

then:

KG∗H(n) ≤ KG(2n2)KH(2n2)LEFFKG(2n2)KH (2n2)
(n).

Proof. Let σ1, σ2 . . . , σl be m-approximations for G acting on the finite set

A of cardinality KG(m) and and τ1, τ2, . . . , τk be m-approximations for H

acting on the finite set B of cardinality KH(m).

Now consider the elements of A×B as generators of the free group FA×B

and for r ∈ N (to fix later) denote with V one of the smallest finite groups
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such that there exists φ((a, b)) ∈ V , ∀(a, b) ∈ A × B for which the (3.1) of

Proposition 3.2.1 holds with 2r and then |V | = LEFFA×B
(2r).

In C := A×B × V we can build two partitions, α and β.

α = {A[b, v], b ∈ B, v ∈ V }, where A[b, v] = {(a, b, v), a ∈ A};

β = {B[a,w], a ∈ A,w ∈ V }, where B[a,w] = {(a, b, wφ((a, b))), b ∈ B}.

Remember that the incidence graph between two partitions α and β is

the bipartite, non-oriented graph with vertex α∪β and with an edge between

a ∈ α and b ∈ β if and only if a ∩ b 6= ∅. We observe that:

Lemma 3.3.1.

a: |A[b, v]| = |A| ∀b ∈ B ∀v ∈ V

b: |B[a,w]| = |B| ∀a ∈ A ∀w ∈ V

c: A[b, v] ∩B[a,w] =


{(a, b, v)}, if v = wφ((a, b))

∅, otherwise.

d: The incidence graph of α and β has no cycles of length less than or

equal to 2r.

Proof. The claims a, b, c are clear. For d, by contradiction, suppose we have

a cycle of length less than or equal to 2r. Without loss of generality we can

consider that all elements in the cycle are distinct (if they aren’t, we can

consider a subcycle):

A[b1, v1], B[a2, w2], A[b3, v3], B[a4, w4], . . . , B[a2r, w2r]

and again A[b1, v1], then we would have the following equations:
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v1 = w2φ((a2, b1))

v3 = w2φ((a2, b3))

v2i−1 = w2iφ((a2i, b2i−1))

v2i+1 = w2iφ((a2i, b2i+1))

i = 1, 2, . . . , r (indices mod 2r). So we have:

1 = φ((a2r, b1))−1φ((a2r, b2r−1)) . . . φ((a2, b3))−1φ((a2, b1)).

The word ((a2r, b1))−1((a2r, b2r−1)) . . . ((a2, b3))−1((a2, b1)) must be equal to

the identity in FA×B because its length is less than or equal to 2r and then

the (3.1) of Proposition 3.2.1 holds.

So there exists i ∈ {1, 2, . . . , r} such that

(a2i, b2i−1) = (a2i, b2i+1) or (a2i, b2i+1) = (a2(i+1), b2i+1).

This implies:

b2i−1 = b2i+1, v2i−1 = v2i+1 or a2i = a2(i+1) w2i = w2(i+1)

that is A[b2i−1, v2i−1] = A[b2i+1, v2i+1] or B[a2i, w2i] = B[a2i+2, w2i+2], con-

tradicting the hypothesis. �

We consider the two following (Hamming)-isometric homomorphisms:

iα : Sym(A) ↪→ Sym(C),

iβ : Sym(B) ↪→ Sym(C)

iα(σ)(a, b, v) := (σa, b, v), σ ∈ Sym(A);
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iβ(τ)(a, b, wφ((a, b))) = (a, τb, wφ((a, τb)) τ ∈ Sym(B).

The action of Sym(A) and Sym(B) on C preserves respectively the partition

α and the partition β.

We define the l+ k permutations in Sym(C) for the sofic approximation of

G ∗H:

Σi = iα(σi), i = 1, 2, . . . , l; Tj = iβ(τj), j = 1, 2, . . . , k.

It is possible to write every non trivial word ω ∈ Fl ∗ Fk = Fl+k as:

ω = ωs . . . ω1,

ωi ∈ Fl \ {e} if i is odd, ωi ∈ Fk \ {e} if i is even, or viceversa.

We can associate to ω a new word $ deleting the subwords ωi belonging

to kerπG or to kerπH and rename the subwords at every step. In less than

s steps we obtain either the identity or a word $ = $s . . . $1 such that $i

neither is in kerπG nor in kerπH .

But we can estimate the distance between ω and $ applied to our per-

mutations. We write simply ω(Σ, T ) to indicate ω(Σ1, . . . ,Σl, T1, . . . , Tk).

At every step, if ωi ∈ kerπG, by left and right invariance of the Hamming

distance:

dC(ωs . . . ωi+1ωiωi−1ω1(Σ, T ), ωs . . . ωi+1ωi−1ω1(Σ, T )) =

= dC(ωi(Σ, T ), 1) = lC(ωi(Σ1, . . . ,Σl)) = lA(ωi(σ1, . . . , σl)) ≤
1

m

and similarly if ωi ∈ kerπH , so if |ω| ≤ n iterating we obtain

dC(ω(Σ, T ), $(Σ, T )) ≤ s

m
≤ n

m
.

It is clear that ω ∈ kerπG∗H if and only if $ = e, so if ω ∈ kerπG∗H ∩Bn

then

lC(ω(Σ, T )) ≤ n

m
.
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In the other case, ω /∈ kerπG∗H we have $ = $s . . . $1 such that $i is

out of kerπG and out of kerπH . We want to estimate the number of fixed

point of $(Σ, T ) in terms of the number of fixed point of $i(Σ, T ). If c ∈ C

is a fixed point of $(Σ, T ) we denote:

c0 := c, c1 = $1(Σ, T )c0, . . . , c = cs := $s(Σ, T )cs−1

The action of the subwords $i preserves the partitions, so ci and ci+1

belong to the same set in α or in β, for example if $1 ∈ Fl:

c0, c1 ∈ A1; c1, c2 ∈ B2 . . . ; Ai ∈ α,Bj ∈ β.

So there is a cycle A1, B2, . . . A1 shorter than or equal to n in the inci-

dence graph, for the property d in Lemma 3.3.1 if n ≤ 2r there is at least one

return point, that is there exists i such that either Ai = Ai+2 or Bi = Bi+2.

But this means that ci and ci+1 belong to the intersection of the same two

parts, for example in the first case:

ci ∈ Ai ∩Bi+1, ci+1 ∈ Ai+2 ∩Bi+1 = Ai ∩Bi+1 :

for the property c in Lemma 3.3.1 we have ci = ci+1. So for every fixed

point of $(Σ, T ) we have at least an i and a fixed point of $i(Σ, T ) in C.

If x, y are two fixed points of$(Σ, T ), we have i and j such that$i(Σ, T )xi =

xi and $j(Σ, T )yj = yj . But if i = j and xi = yj then x = y, so there is an

injection from the fixed points of $(Σ, T ) and the union of the fixed points

of the $i(Σ, T )’s. Finally we have:

|{c ∈ C : $(Σ, T )c = c}| ≤
s∑
i=1

|{c ∈ C : $i(Σ, T )c = c}|.

1− lC($(Σ, T ) ≤
s∑
i=1

(1− lC($i(Σ, T ))



CHAPTER 3. QUANTIFICATIONS 82

lC($(Σ, T ) ≥ 1− s+

s∑
i=1

(lC($i(Σ, T ))

but if $i ∈ Fl:

lC($i(Σ, T ) = lA($i(σ1, . . . , σl) ≥ 1− 1

m

if $i ∈ Fk:

lC($i(Σ, T ) = lB($i(τ1, . . . , τk) ≥ 1− 1

m
.

Since s ≤ n, lC($(Σ, T ) ≥ 1− s+ s(1− 1
m) ≥ 1− n

m

Finally, for every ω /∈ kerπG∗H ($ the associated reduced word):

lC(ω(Σ, T )) ≥ lC($(Σ, T )− n

m
≥ 1− 2n

m
.

So if m = 2n2 and r = n we have our approximation. Finally

|C| = KG(2n2)KH(2n2)LEFFKG(2n2)KH (2n2)
(n).

�
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