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Chapter 1

Introduction

This thesis deals with infinitely extended classical systems, and in this wide context
we study two particular problems, both aimed to give a microscopic description of
macroscopic phenomena which pertain to Statistical Physics.

The first problem, treated in Chapter 2, arises in the rigorous study of Non Equi-
librium Statistical Mechanics, and it consists in giving a precise sense to the time evo-
lution of states of infinitely many particles. We consider a physical system composed
by infinitely many particles mutually interacting in three dimensions via a bounded
superstable long-range potential. We want to establish existence and uniqueness of the
time evolution of the system governed by the Newton Equations (1.1), which means
essentially to show that a quasi-local observable evolves remaining quasi-local. This is
not trivial because we can exhibit situations with an initial bounded density that after
a finite time produce infinitely many particles in a bounded region. Consider in fact a
one-dimensional system of point-like, non-interacting particles with initial positions and
velocities ¢; = i, v; = —1, 1 € Z. At time ¢t = 1 we have a configuration with all particles
at the origin. So we need a careful choice of the initial conditions in order to exclude
these bad data, but at the same time to take into account all the relevant states in Non
Equilibrium Statistical Mechanics. The results depend in a very sensitive way on the
dimension of the space in which the particles move and on the nature of the mutual
interaction. The first pioneer results have been obtained by Lanford ([23], [24]) many
years ago, in one dimension for bounded and finite range interactions, then the cases
in one dimension with singular interactions ([18], [28]) and Coulomb force ([29]) have
been solved. In two dimensions Fritz and Dobrushin solved the problem for finite range



potentials ([20]), whereas Fritz ([19]) extended the previous results in two dimensions for
superstable, singular, finite range potentials. The extension of this result for long-range
potentials is due to Bahn et al. ([2]). The three dimensional case has been recently
solved by Caglioti, Marchioro, and Pulvirenti for positive, bounded interactions ([10]).
In this thesis we extend the results obtained in [10] to bounded superstable long-range
potentials. As it was claimed in [10], the extension to superstable potentials seems quite
natural and the problems of such a generalization are essentially of technical nature.
With the generalizations introduced in the present work the more important potentials
which are not yet included in this kind of analysis are those singular at the origin; they,
although interesting from a physical point of view, seem to be out of a possible approach
with the present techniques in three dimensions. An interaction which is singular at the
origin in fact could produce a too fast growth of the maximal velocity assumed by the
particles, which could diverge in a finite time. To confirm the difficulties that appear
in three dimensions, J. Fritz and R. L. Dobrushin ([20]) have exhibited an example of
a system of infinite particles with a hard-core potential, which preserves energy in the
collisions but it’s not hamiltonian, and it produces a collapse in three dimensions but
not in two.

The above quoted papers exhibit explicits sets of initial conditions. Indeed there are
other works regarding the Equilibrium (or Stationary) Dynamics, in which the existence
of the dynamics can be proved in any dimension, without considering the existence for
any single particle trajectory, but using the invariance properties of the equilibrium
measure. The initial data have full-measure with respect to the Gibbs (or Stationary
Non Equilibrium) measure, but they are not costructively specified ([1], [25], [27], [31],
[35], [36], [37]). We recall also some papers dealing with the time evolution of special
states ([7], [11], [32]).

Let us briefly describe the contents of Chapter 2, which are also contained in [16].
We are going to consider the motion of a countable collection of identical particles of
unit mass in the 3-dimensional Euclidean space R®. A configuration of the system is rep-
resented as an infinite sequence {g;, v; }sen of the positions and velocities of the particles,
and its time evolution is characterized by the solutions of the Newton equations:

i)=Y Flalt)—qt), ieN, (1.1)
JEN, j#1

where F(z) = —V¢(z). We assume that ¢ is a symmetric pair potential, superstable,



bounded, and with infinite range, with a power-like decreasing rate (see Chapter 2 for
the details). We establish existence and uniqueness of the solutions of Equations (1.1),
complemented by the initial conditions {g;(0), v;(0) }ien, chosen in order to exclude data
giving rise to a collapse of the system (i.e. infinitely many particles in a bounded region),
but taking into account all the relevant states from a thermodynamical point of view.

A natural step forward would be to investigate in more detail the long time behavior
of the dynamics. Unfortunately, in this kind of approaches the bounds one gets on
the local density and energy are generally bad-behaving in time, so that it is difficult
to say something about the time asymptotics of the system. On the other hand it is
in this regime that many physical laws can be reproduced. Recently some results in
this direction have been obtained in [4], [5], [6], [7], and [9], for some particular one-
dimensional systems. In particular, in [5] and [6] authors aim at a microscopic rigorous
derivation of Ohm’s law. In these papers it is considered, in the framework of fully
Hamiltonian models, a charged particle moving in a constant electric field and interacting
with a medium composed by infinitely many neutral particles. In [5], for particles moving
in an unbounded tube and for large electric field, and in [6], for a strict one-dimensional
system and for electric field of any intensity, it has been rigorously proved that if the
particle/medium interaction is bounded, positive, and short-range, the particle escapes
in the direction of the electric field with a quasi-uniformly accelerated motion (runaway
particle effect). Ohm’s law, predicting a proportionality between the electric field and
the mean velocity of the charge carriers, is in this case violated. This effect has been
widely studied in kinetic theory to explain the so-called “runaway electrons” observed in
plasma physics ([Landau]). The conditions under which this effect takes place are related
to a fast decrease in the scattering cross-section of the particle/medium interaction.
Heuristic arguments suggest that the results obtained in [5] and [6] can be extended to
singular interactions provided the singularity is integrable (the most important example
being Coulomb interaction), see Section 5 of [5]. However, in general, a rigorous analysis
on what conditions on the particle/medium interaction assure this runaway particle
effect, in case of systems of infinitely many particles, seems too difficult, but a conjecture
can be formulated (see [15]). If the charged particle interacts with the particles of the
medium via a potential behaving as gr~* (g > 0) for r small, and if the initial velocity
of the charged particle is large enough, then:

Conjecture 1.1. If a < 2 the runaway particle effect happens;
if > 2 the effect does not happen,



if a = 2 there exists a positive constant g*, depending on the intensity of the electric
field and the state of the medium, such that for g < g* the effect happens, while for
g > g* the effect does not happen.

In [8] the conjecture has been proved for a@ < 2, when the medium is composed by
infinitely many particles in the mean field approximation (i.e. moving via the Vlasov
equation), the interaction between two particles of the medium is bounded, the motion
of the charged particle does not affect the motion of the background, and finally the
system has initially a one-dimensional symmetry. In [15] the conjecture is proved in case
of a schematic model which keeps however the main features of the physical problem.
It has been investigated the existence of a stationary state for the system [charged
particle]+[medium| moving in a three-dimensional space, in the reference frame in which
the charged particle is at rest and the background is composed by infinitely many free
particles in the mean field approximation, coming from infinity with a velocity parallel
to the electric field and constant flux. The problem is then reduced to a scattering
one. It has been studied in detail the threshold case a = 2, the solutions of the other
cases following by the observation that they correspond to an increment (o > 2) or a
decrement (a < 2) of the repulsive interaction.

Conjecture 1.1 has an immediate consequence on Ohm’s law. In fact, in order to
have a finite asymptotic velocity for the charged particle for any intensity of the electric
field, the runaway particle effect has not to happen, hence a necessary condition for the
validity of Ohm’s law is that a > 2.

When the charged particle interacts with the background via a hard-core interaction
(i.e. the potential is infinite for r < 7o, otherwise it is zero) it has been proved the
existence of a stationary motion for any intensity of the electric field. Moreover, for the
initial velocity sufficiently close to the stationary one, the approach to the stationary
velocity satisfies a power (in time) law (see [13], [12], [14]). We treat in Chapter 3 a
problem of this kind, also studied in [12]. Let us introduce the model, describing the
physical scenery and motivation of our analysis.

We consider a solid body moving along the z-axis under the action of an exter-
nal horizontal force F, immersed in a homogeneous fluid. The macroscopic evolution
equation is the following:

X(t) = —=G(X () + E(X(t), (1.2)

where X (t) is the position of the body, whose mass is assumed to be equal to one and G,
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the friction term, is the resultant of all interactions between the body and the medium.
We assume the fluid to be a gas of free particles elastically interacting with the body, in
the mean-field limit, that is, we let the mass of any particle go to zero, as the number of
particles per unit volume goes to infinity, in such a way that the mass density remains
finite. The reason for this assumption is related to possible difficulties which one meets
when dealing with not averaged quantities, due to velocity fluctuations. Such a limit
is well known for interacting particle systems in case of finite total mass ([3], [17], [30],
[38]) and for one-dimensional particle systems with unbounded mass ([4]). We remark
that the physical model here presented has been previously introduced in connection
with the so called piston problem (see [21] and [26] with references quoted therein).

The friction term G, usually determined from phenomenological considerations, is
mostly assumed to be positive and linear in V(¢) :== X (¢). In particular, in the simple
case of E positive and constant, if G(V') has non-vanishing derivative, the solution V()
of Eq. (1.1) converges exponentially to the limiting velocity V., which satisfies

G(Vi) = E. (1.3)

In [13] it is shown that this trend to equilibrium is not the right one, since it is proved
that the asymptotic time behavior of the body velocity to V., is power like. More
precisely, if £ > 0 is constant, assuming the initial velocity V such that V, — Vj is
positive and small, it is proved that for large ¢

V(t) — Vol = (1.4)

d+2
where d = 1,2, 3 is the dimension of the physical space and C' is a constant, depending
on the medium and on the shape of the obstacle. This trend, surprising for not being
exponential, is due to the recollisions between gas particles and body (in fact, neglecting
recollisions, we obtain the exponential decay). As it is already stressed in [13], the
problem we are concerned with is a long memory one, since effects of very early collisions
are retained for long time.

In the present analysis we go forward with respect to [13]. In Sections 3.1 and 3.2
we consider the more complex problem in which £ = 0 and prove the same asymptotic
behavior as in [13]. In this case additional difficulties come from the fact that the body
changes its velocity sign, from positive to negative (if Vj > 0), and this complicates the
estimates on the effect of recollisions. The same techniques can be employed to study



the case £ > 0 with Vj > V., which is the completion to the case treated in [13], but not
its symmetric. A comment on this is made in Section 3.4, where some generalizations
are discussed.

In Section 3.3 we approach a model in which a non constant force is acting on the
body. It is evident that in general its motion could be very complicated, nevertheless
we believe that, if we perturb slightly the body from its equilibrium position, then the
power law approach to the equilibrium should still be valid, a part some exceptional
cases. We are not able to prove this statement in general, thus we restrict ourselves to
study a particular but significant problem, in which the external force is assumed to be
harmonic, the initial data are chosen in a suitable way, and the friction force is large
with respect to the external one. Even in this simple case, the problem is pretty hard
to be handled. We are no more able, as in the previous cases, to predict the sign of the
velocity, which could in principle go to zero oscillating from positive to negative values.
Nevertheless we prove the asymptotic time behavior X (t) ~ —C¢ 42, for ¢ large, for
sufficiently small X, and V4.

This result can be immediately applied to a physical pendulum, that is a stick with a
fixed point moving in a vertical plane under the action of its own weight and immersed
in a viscous medium. Actually, it is usually expected that it reaches its rest point
exponentially fast in time, while our results show that, at least for a suitable choice of
the medium, the approach takes place with a power law.

We remark that our results are given for a simple shaped body, that is a disk, but
this is not essential, since it can be changed into a more general one, as we discuss briefly
in Section 3.4 (see also [14]).

Some comments on the result. As we already pointed out, the time behavior we
prove is due to the recollisions between the gas particles and the obstacle, which create
a long memory effect. On the other hand, it is reasonable to argue that this feature
becomes negligible if the background is not constituted by a free gas but by a real gas
with ergodic (mixing) properties. In this case we can say that our result remains valid,
not as a strict asymptotic behavior, but as a transient long time behavior.

We can ask whether it is probable that a gas particle hits twice the obstacle: it
depends on the data of the physical system, taking into account that a typical particle
of the gas in thermodynamical equilibrium has a speed of the order of the sound velocity.

We conclude by recalling the works performed during these years of Ph.D., [7], [12],
[14], [15], and [16], two of which contained in the present thesis ([12] and [16]).
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Chapter 2

Non Equilibrium Dynamics of
infinite particle systems

2.1 Notations, Definitions and Main Results

In this chapter we show existence and uniqueness for the solutions to the Newton equa-
tions relative to a system of infinitely many particles moving in the three-dimensional
space and mutually interacting via a bounded superstable long-range potential.

Let X = {¢;, v; }ien be the infinite sequence of positions and velocities of the particles.
We assume that X is a locally finite configuration, that is in any compact set A C R?
the number of the particles in the region A:

na =Y x(g €A) (2.1)
i€N

is finite. We denote by x(A) the characteristic function of the set A, and by B(u, R)
the open ball centered in pu and of radius R. The integer part of the real number z is
here denoted by [z].
For simplicity in the sequel we will denote by D;, E;, L;, 11, E’,-, EZ any positive constant,
possibly depending on the interaction ¢ and on the initial configuration X of the system.
Let us now define the class of superstable interactions, which we are going to consider.
Given a symmetric pair potential ¢(z) = &(|z|), z € R®, continuous with its first and
second derivatives, we give the following definition:



Definition 2.1 (Superstability). Let us divide the space R® into cubes A, of side 1
and centered in o € Z3. Let na, be the number of particles in A,.

We say that the potential ¢ is superstable if there exist constants A > 0, B > 0 for
which Yn and Vqy,...,q, we have:

o
with

1
Ug, .- qn) = 3 Z¢(|Qi - qj)-
i#]

A superstable potential can be decomposed into the sum of a stable potential plus a
potential not negative, strictly positive at the origin ([33], [34]). In spite of the presence
of an attractive part, superstability avoids large concentrations of particles in small
regions of space.

Here we consider the interaction due to a superstable, bounded, long-range potential,
with a power-like decreasing rate, for which there exist positive constants v, G1, Go,
Gs, 19, such that, for |z| > ro:

[p(z) | < Eaik (2.3)
Vé(z)] < \x(\iil’ (2.4)

and a
Vé(z) — Vo(y)| < -yl (2.5)

(1 + min(jz[, [y]))
In the sequel we assume v > 7. This technical assumption will be discussed at the end
of this Section.

In order to consider configurations which are typical from a thermodynamical point
of view, we must allow initial data with logarithmic divergences in the velocities and in
the local densities.

More precisely, we define, using the short-hand notation ¢; ; = ¢(|g; — g;|),

vi o1
Q(X;m R) =) x(lgi — ul < R) (5+§ > ¢i,j+b), b> B, (2.6)
TN Qjé%;éj:R)
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and

Q¢(X) =sup  sup %, (2.7)
o ReR>e(ul)
where
Ye(e) = {log(max(z,e))}¥, @€ RF. (2.8)

For each £ > 1/3, the set of all configurations for which Q¢(X) < oo constitutes a full
measure set for all Gibbs states associated to the particle system (see [18], [20]).

If the initial configuration X = {¢;(0),v;(0)} € X, with Xy = {X : Q¢(X) < oo},
we will make sense of the infinite set of Newton equations:

Gi(t) = F(X (1) =) Fi;(b), (2.9)
J#i

where F; ; = =V ¢(|g; — g;|) is the force exerted by the particle j on the particle i.
The solutions to the Newton equations will be constructed by means of a limiting pro-
cedure. Neglecting all the particles outside B(0,n), we consider, for an integer n:

G ) = F'@),

¢0)=q¢ , v(0)=v; i€l (2.10)
where
I, = {ieN:q;€B(0,n)},
Ft) = Z; F(g(t) — ¢5 (1)),
i€ty
and

X*(t) = {g’ (1), vi' (t) }ier,
is the time evolved finite configuration.
Even if we consider here the more general case of long-range potentials, it is useful to
underline the differences that occur considering short-range and long-range potentials

(in both cases of a superstable, bounded type). For short-range potentials the following
Theorem holds:
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Theorem 2.1. If X € X, there exists a unique flow t — X (t), with
X () = {as(t), (D bien € Xy,
satisfying:

Q) = F(X(1)  X(0) =X, (2.11)
Moreover, ¥t > 0 and Vi € N,

lim ¢*(t) = ¢;(t), lm vl (t) = v;(t). (2.12)

n—+00 n—-+0o0

For long-range potentials the existence of the dynamics is defined starting from condi-
tions for which £ is not too large: £ < 4/9 (this restriction for £ will be clear in Section
5 where it will be used to make the iterative method work). In order to include states of
physical interest we then take & € [1/3,4/9). The Theorem in this case is the following:

Theorem 2.2. If X € X, there exists a unique flow t — X (t), with

X(#) = {q:(t), vi(t) bien € Xe,

satisfying:
G(t) = F(X() X(0)=X, (2.13)
where
and
X = {gi,vi : Vi €N |v;| < C¥(lai])}, (2.15)
with C > 0.

Moreover, YVt > 0 and Vi € N,

lim ¢*(t) = ¢;(t), lm vl'(t) = v;(t). (2.16)

n—-+o0o n—-+0o0o ¢
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Theorems 2.1 and 2.2 are the main results and their proofs occupy the rest of the
chapter. The proofs are based on several steps: we introduce a mollified version of the
local energy and we study its evolution in time under the partial dynamics. The energy
conservation allows to prove that the local energy grows in time at most as the cube
of the maximal velocity of the particles. On the other hand a suitable time average
allows to control the maximal velocity via the local energy in a good way. The result is
achieved by letting n — oo. The philosophy of the proof is similar to that of reference
[10]. Actually in that paper the authors use many times the positivity and the finite
range of the interaction, while here the interaction can be negative and with long-range
behavior. This fact requires a new mollifier and other cumbersome technical tools.

In the sequel we will need to split the potential into two terms: a short-range one, (!
and a long-range one, ¢
To do so, let us take, for » > max (1o, v/3):

$(z) = W (z) +¢?(2)

¢W(z) = ¢(@)x(lz| <7)
¢ (z) = o(x) - ¢ () (2.17)
6@ (2)| < W

The following Proposition holds:

Proposition 2.1. Let ¢ as in (2.17). Then 37 > 0 such that, Vr > 7, ¢ is super-
stable.

Proof
From the superstability of ¢ we have

%Z Z bij = z Z ¢ +¢” ) > Bn—i—AZnA

i=1 j=1,j7#1 i=1 j=1,j71 i€z
ORI D olet R JRVS 2 NIT
1=1 j=1,j#1 K i€Z3

13



where ) ;. is the sum restricted to particles at distance greater than r.
Let us con81der the first term on the right:

* o 1
Z|q_q G1ZZX(/~W<|qz~—qj|§(k—i-1)r)'7'|7
i il

k=1 i#j |qz —4gj

IN
@
||M
- =

)y Zx(kr <lg—q;| <(k+1)r)
1#£]

[M]8
]

X(kr—\/§§ |l—m|<(k+1)7«+\/§)kG_1

7 A, A,
k=1 1ez3, ( ’I”)

A
S
Dl\)
=2

=

1€Z3 k=1
x Card{Z> N (B(0, (k + 1)r +v/3) \ B(0, kr — v3))}
D] < 1 ) D, )
< =3 Z kv—2 Na; < r7—3 Z A
k=1 i€Z3 1€Z3

when vy > 3.
Inserting (2.19) in (2.18), we obtain:

—Z Z ¢”_( 2T73+A)ani—3n,

i=1 j=1,j#i

then for

we obtain the thesis:

—Z z gbﬂ_ AZnQAi—Bn. [ |

i=1 j=1,j#i i€Z3

(2.19)

(2.20)

(2.21)

(2.22)

For a configuration X with finite cardinality, let us define a mollified version of the
energy (plus b times the number of particles, with b > B) for the particles contained

14



into the ball B(u, R), by means of a suitable weight-function:
2
. _ wr(Vi 1 N
W(X;p R) = ;eN: (5 + 5]}#; bi5+b), (2.23)

with a weight-function

fiu’REf(Qi_/l',R)E/RS9(|qi_g_y|>( ! )/\dy, (2.24)

1+ aly|

where 6 : Rt — (0, 1], is continuously differentiable and it is such that
1. 0(z) = (1+az)?, forz>2,
2. 6(z) 1is concave for = < 2,

3. 0(z) = 0(2) — 20'(2), for z <1.

2

Notice that
0(z) < (14 az)™ (2.25)

and
6 (z)| < Aa(1 + az)” (2.26)

with A > 3 and « € (0,1]. In the sequel we shall assume A € (4,7 — 3) and « small
enough (for details see Appendix A).
Following (2], let us show the main properties of the weight-function:

Proposition 2.2. There exist positive constants Cy, Cy, depending only on o and ),
such that, for any R > 1, the following properties hold

1. f(z,R) < Ci(1+alz|/R)™,

2. f(z,R) > Co(1+alz|/R)™,

3. f(@,R) < (1+alz—y|)*f(y, R).

15



Proof
1. Let us prove the first property. Multiplying f(z, R) by (1+ a|z|/R)", using the
triangular inequality we obtain:

A
— 1
(1+a‘ |) 2. R) < / dy(R+a|y|+a|x y|> i
RS R+ alz —y| (1+ aly|)

<2A/ gy Loly)’ +(R+ale—y)* 1
R? (R+alz —yl) (1+alyl)

considering that Va,b € Rt it holds (a + b)* < 2* (¢* + *). Then

kd g /\/ 1 A/ 1
1+ ra Ry <2 | dy— 422 [ ay
( R) ) g (1+aly]) g (R+aly—z|)?

1
< 2’\+1/ dy ——— < G
g (1+alyl)

for R > 1.
2. Notice first that:

|z — | 1
0( R )29(2) (1+alz —y|/R)™’ (2.27)

being 6(2) = mirée(x) So for the weight-function we have

1 1
f(z,R) > 0(2) / dy
wo (1+alz—yl/R) (1+aly))’
Multiplying f(z, R) by (1 + a|z|/R)", we obtain:

aly) Q) 1 (1 + afz|/R)*
(1+a)/@R) 2 2/ y(1+a|y|>A (1+ alyl/R)+(1 + alal /R)’

> / L
(1+ a|y| (1+a\y|/R)
1+alz|/R
1
> %2 / .
22 1+a|y| 1+ (1+aly|/R)
1
2 (—/ B\ 2 027
2 +a|y| 1+ (1+alyl)

16



for R > 1.
3. For the third relation let us write the function f in the following way, putting

F(z,R) =/RB 9 (%) (m)Adz.

1 <1+a\x—y\
l+alr—2z — 1+aly—2z|

T —Y =2z

Since

the thesis follows (last inequality becomes evident multiplying both sides by (1 + a|z —
z|)(1 + a|y — z|) and using the triangular inequality). W

The choice of such a weight-function will be evident later, in the proof of Lemma 2.1.
This function, unlike the mollifier function used in [10], allows also to give some super-
stability estimates for the energy of a bounded region of the space, essential in the proof
of Lemma 2.2.
Notice that, if the interaction has finite range, we could use an explicit weight-function,
i.e. f(x) = 1/cosh(z). In general an exponential decay for the weight-function is too
fast for taking into account potentials with a power-law decay.

We give now a short explanation for the technical assumption on the power-law decay
(v > 7) of the interaction. The weight-function must decay slower than the interaction
(v > 3+ ) to handle the border terms of the mollified energy (see (A.12)); moreover the
weight-function must decay fast enough (A > 4, see (C.9)) to obtain the boundedness
of the mollified density energy W¢(X) defined in (2.31).

2.2 Properties of the mollified energy

We present here a lemma, whose proof is shown in Appendix A, that gives a supersta-
bility property of the mollified energy.

Lemma 2.1. There ezxist C3 > 0 and & € (0, 1), not depending on R, such that Va €
0,a):
WX ) > G 3 f(k -l R)nd,. (2.28)

kezZs3
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We actually prove a stronger condition:

1
WX B) > SRS dig+0)
1EN VEE=
> C3 Y f(lk—pl,R)ni, >0, (2.29)
kez3

which implies that the interaction energy is non-negative. In the sequel the parameter
a appearing in Lemma 2.1 will be considered fixed.
From the previous lemma we can derive the following corollaries:

Corollary 2.1. There exist C3,Cy > 0, not depending on R, such that:

C3 S Fllk—pl, Rynd, < W(X;uR) < Ci S f(lk—pl, R)nd,

kezZ3 keZ3

2

u,Rvi
+ E T 2.30
fZ 2 ( )

1€EN

The first inequality reproduces Lemma 2.1, while the proof of the second inequality will
be given in Appendix B.

The function W is a technical tool. The following Corollary (whose proof is given in
Appendix C) shows the relation with the initial data. Defining

X.
We(X) =sup  sup M, (2.31)
womsge(lul) B
then it holds:
Corollary 2.2. 3 Cs, Cg > 0, not depending on R, such that:
C5 Qe(X) < We(X) < Gy Qe(X). (2.32)

We can give now an estimate for the mollified energy, useful for the proof of the
existence of the dynamics.

18



Lemma 2.2. For X € X, there exists a positive constant C7 such that

sup W (X"™(t); p, R(n,t)) < C7R*(n,t), (2.33)
I
where .
R(n,t) = ¢(n) +/ dsV"(s), (2.34)
0
with
¢(n) = wz’/ *(n)
and
V() = max{ sup ()1}
1€ln L o<r<s
Proof

For 0 < s <t < T let us define
R(n,t,s) = R(n,t) + /t V™ (r)dr. (2.35)
Notice that
R(n,t,s) = 68—? (n,t,s) ==V"(s) <0,

moreover

R(n,t,t) = R(n,t), R(n,t,0) <2R(n,t).

Let us derive with respect to s the quantity:

WX () Rl 5)) = 30 £ (S LS g 40)

ieN Jiiis
JEN

— Zfiu’R(n,t’S) w’“ (236)

ieN

with

vz 1

wi=5 g > i+ (2.37)
Jij#i

19



We have:

ow . )
as =~ it W (2.38)
where
Wi —sz/ dy 6 (M)
1 Vers(qi -y — u) . R(n t S)
X Z B |
(1+Od|y|)>‘ ( R(n,t,s) RQ(n ‘. )|q Y — pl
n,t,s 1
Z.f”’ 2 ( V; - ,] 2‘Fi,j'(vi_vj))- (239)
i#j

We have denoted by Vers (z) the versor of the vector € R®. Let us consider now the
first term W;. Thanks to (2.26) and to the definition of V", we have:

. R 1
Wil < A= o wj / dy
W< ARl ;| B T
1 \qi—y—u|)
x — (14 MY A
(1+afy])* < R(n,t,5)
i 1 1
<Dyl Y il [y
R Z g (L+alg—p—yl/R)* 1+aly)

R n,t,s
< Dalgl D2 S (2.40)

where in the last inequality we have applied (2.27). From the positivity of the mollified
energy and from estimates analogous to those used to obtain (B.1) we have:

. i
Wil < Ds| 5 (W(X; B+ 3l (i = pl, R)) , (2.41)

i€Z3

and from Lemma 2.1 we obtain:

: R
Wl < Ds‘ﬁ‘ W(z; u, R). (2.42)

For the second term W, we are going to give also an estimate of the form:

. R
Wy < Dy E‘ W(X;p, R). (2.43)

20



Let us evaluate

T n,t,s 1
Wy =y flofitet )<Uz’ Fij— SFij- (vi— Uj))

(E] 2
1 T, 1,8
= >RSI (i + ;). (2.44)
i£]
Since Fj; = —F};, it results:
T 1 yR(n,t,s
Wy = EZfiu LI - (v + vy)
i#]
1 1
T2 Y R, B > SEIE v,
i#£] ]
1 n,t,s
=~ 2 (P — g uils). (2.45)
i£]

Let us estimate now the addends of the sum one by one. From the properties of 6(z)
(2.26), (2.27) and of the potential we have:

,R(n,t,s ,R(n,t,s |CI2 - q| ,R(n,t,s ,R(n,t,s
|sz(t)_ff(t)§D7m(fiM(t)+ff(t))' (2.46)
Being
IVé(la: — g51)] < Ds(1+ g — ¢;)) ", (2.47)

then, using an estimate analogous to (B.1):

: R R(n,t,s) u,R(n,t,s) 1
‘W2|SD9‘_‘ (flua sty +fa sy )
RIZ 2 R (PR
i#]
R . 2
< Dy E‘ Zf(‘z_ﬂ‘aR) nA,- (2.48)
i€Z®
Using Lemma 2.1 we close the estimate with the function W:
: R(n,t,s)
<D 7‘ X™(s): , R(n, 1, 5)). 2.49
[W2| < Dy R(n. 1, 5) W (X"(s); u, R(n,t, s)) (2.49)
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We have so proved that

oW (X" (s); u, R(n, 1, 5))
0s

< Dyy | ———=
‘— 21 R(n,t,s)

Integrating we have:

W(X"(s); p, R(n, 1, 5)) < W(X"(0); p, R(n,1,0))

+ Dy /05 dT‘%‘ W(X™(7); u, R(n,t,7)).

n,t,T)

Let us use now the Gronwall’s lemma to handle the previous inequality:

W (X"(s); p, R(n, 1, 5)) < W(X™(0); 1, R(n, ¢,0)) (M) 12,

EZ??; < 2, we obtain

from which, being 2

W (X"™(s); u, R(n, t,5)) < 2P2 W (X™(0); u, R(n, ,0)),

and since R(n,t,t) = R(n,t), taking the supremum over p, we have

m
From Corollary 2.2 and by the hypothesis on the initial data, being
R(n,t,0) > y¢(n), we get:

sup W (X™(0); i1, R(n,t,0)) < CeQe(X)R3(n,t,0),

w
thus
sup W (X" (t); i, R(n, ) < DiuR*(n,1). W
o

. ‘ W(X"(s); p, R(n,1, 5)).

sup W (X"™(t); 4, R(n,t)) < Dy3 sup W(X"(0); u, R(n, t,0)).

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

In the next lemma we present some relations that will be used in the sequel. The proof

is in Appendix D.

Lemma 2.3. Let X be a configuration with finite cardinality. Then, for any R > 1

there exist positive constants Cg, Cy, Chg, C11 such that
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i)if neN, n>1

W(X; u,nR) < Csn* W (X; p, R); (2.55)
iw)if neN, n>1
W(X;p, R) < CoW (X; p, nR); (2.56)
iii)
N(X, 1, R) = x(lgi — p| < R) < CooR*°W(X; 1, R)"%; (2.57)

iiii) for 0 <p <R

> x(lgi — a5l < p)x(lgi — ul < R)x(lg; — ul < R) < Chy p* W(X;, R).  (2.58)
i#j

We will need an estimate for the force F; that at time ¢ acts on the particle i:
F(X"() ==Y Vo(ai(t) — g;(t)])- (2.59)
JE€In

We can make the following decomposition:

F(X" () < BV + B,
where Fi(l) represents a bound for the absolute value of the force acting on the particle
i, due to the particles j contained in B(g;(t),r), with r not less than 7, defined in
Proposition 2.1, and FZ-(Q) is a bound for the absolute value of the force acting on the
particle 7, due to the particles j contained in B¢(g;(t),).

Using the third property of Lemma 2.3, the first term is bounded by:

FY < ||Fllo N(X"(£), :(£), 7) < | Flloo Cho 72 W (X™(£); gs(2), )/
< || Flloo D15/ sup W (X" (£); 1, R(n, 1))"/* < Dig R¥*(n, 1),
u

where, for sufficiently large n, we have used Lemma 2.2.
Let us give now a bound for the second term; for R = R(n,t) > r we have

1
RY<G 3 o

Jilai—giI>r 4~ 45
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[R/r]+1 1

< Gy Z Z x(kr < g —q;| < (k—i—l)r)W

k=1 j
+00 1
Pl (kR)
[R/r]+1
<G N(X,q,(k+1 —_—
< G ; (X, i, ( )r))(rk)'y—}—l
ad 1
+ G N(X,q, (k+1)R))——
2; (X, 4 ( )R)) (kR)7+1
[R/r]+1 1
<D E+Dr)*2wWY2(X, ¢, (k +1)r)——
< Dir 3 (b4 D WO (54 D)
+D k+ 1R WYX, ¢, (k+1)R)——
i Dok DR WK, i b+ DF) o

. = 1
S D18 (R3/2 + R3/2 71 Sl;p W1/2 (Xa 22 R) Z k)\/Q k7+1_3/2)
k=1

+o0o
1
3/2 3—y—1
< Dy (R/ + R Zm)

k=1

where in the penultimate line we have used the first property of Lemma 2.3.
Since v > 3 + A we obtain:

F? < Dy R*?(n, ).

[Fi(X™(1)| < Dar R?(n, ).

_ 1
Bl <G ),
J:lgi—q;|>RY/* 4 = g
+oo 1
<G ERY* < |g; —qi| < (k+1)RYY)——
< QEEX( <l — ¢l < (k+1) )(le/‘l)%Ll

24

(2.60)

(2.61)

(2.62)

In the proof of Proposition 2.3 we will need an estimate for the force, |F;|, due to the
particles j at distance larger than R(n, t)l/ 4 from the particle 1:



°° 1
1/4

S Zl X q’u k+ )R )) (kR1/4)’y+1

°° 1
< Doy k+1D)RYYPWY(X, ¢, (k+1)R)———
< ;(( + 1)RY4) (X, qi, (k+1) )(kR1/4)7“

nd 1

3/8— 1)/4 1/2 A/2

< Dyy R3/8-0r1)/ Sl;PW/ (X, R) ;k / L+1-3/2

+o0 1
< D24R3/8+3/27(’y+1)/4 W
> E Lr—M2—

2.3 Dynamical estimates

on the work done by the system over a single particle.
In this section we shall omit any explicit notational dependence on n for R(n,t) and
{q?(t),v}*(t)} for simplicity, since, from now on, n will be fixed.

V™ (t) < Cip R(t),

+/Ot V™(s)ds

o(n) = 4" (n).

Proposition 2.4. For 0 < s <t <T and any ¢ € [1/2,1], we set:

A =CR(t)™,

Suppose that, for some i € I, and some suitable constant A > 1:

it [u(m)] = AR()

25

(2.63)

The following two propositions give bounds on the maximal velocity of a particle and

Proposition 2.3. For any positive T < +00, there ezists a positive constant Cio such
that, fort <T,

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)



Then there exists a constant C15 independent of A such that:

/S_AdT;Uj'E,j

< Cy3AR(t)” (2.69)

Using Proposition 2.4 we are able to prove Proposition 2.3.

Proof of Proposition 2.3

The proof will be achieved by contradiction. We first notice that, by the initial condi-
tions, V™(0) < Q¢(X)*p(n) = Q¢(X)"?*R(0) and then (2.64) is verified for ¢ = 0.
Suppose that, for some t* € [0,t] and i € I,, we have:

VR(t*) = |ui(t)] = AR(?) (2.70)

for a suitable constant A to be fixed later and satisfying A > 2(Qe(X )1/ >+ 1). We also
fix ¢, € [0,%*), such that

[vi(t)] = (Qe(X)"? + D)R(®); (2.71)
inf |oi(r)| > (Qe(X)"* + 1)R(?) (2.72)

TE(t1,t*)

and |t* —t;| = HA for some integer H > 1 and a suitable choice of ¢. This can be done
because by

o () = vilth) + /t " R dr (2.73)
and by (2.62), we find
AR(t) < (Qe(X)? + 1)R(t) + Doy (t* — 1) R(2)*” (2.74)
and hence
(t* — 1) > By R(t)"* > R(t)™"/", (2.75)

therefore, for a suitable choice of ¢ € [1/2,1],
Furthermore, defining the set

ROl —ta]
c 1s Integer.

V,={jelL:|g()—qr)| <R for some 7 € [ty, ]}, (2.76)
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we have
1 1 G

=L+ LQ, (2.77)

where " tr
E]_ = / ds Z vU; - z] and ‘CQ = / ds Z v Ev] (278)
eYc tl ]GYn
For £; we have:

*

£y < max (Z\F,J )/ ds |vs(s)| < ByR() %~ "T (2.79)

5€[t1,t*]

where the time integral is bounded by R(t) (see (2.34)), and for the sum of the force we
have used (2.63). Eq. (2.79) clearly gives |£1| < E3 R(t)*.
Let us consider the second term Lo:

t t1+hA
52:/ dsZ( F’J+Z/ dst] i
t JEY, tr+(h JEYn
==Y (@) —g(t) + D dlat) — ;)
je Yn JEY,
H ti+hA
+ Z/ ds Z v - Fi; (2.80)
h=1 tl—l— h 1 ]EYn

and, following a similar method to that used to obtain (2.62), we get

> blait) — q; ()| < BuR(t)**. (2.81)

JEY,

The same bound holds for 3. ¢((gi(t1) — ¢;(¢1)). Thus, using Proposition 2.4 to control
the last term of (2.80), we have:

%vf(t*) < (Qe(X) + 1+ E3)R(£)? + 2E.R()"2 + Crs RO |t — 1], (2.82)
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hence
A2R(t)? < 2(Qe(X) + 1+ Es + 2B, + C13T) R(t)*. (2.83)

The above inequality can’t be satisfied for any A2 larger than 2(Q¢(X)+ 1+ F3+2F, +
C13T). This clearly contradicts (2.70) (for this choice of A), therefore the proposition is
proved. W

Proof of Proposition 2.4
Let us set
J=[s—A,s], (2.84)

Y, ={j €L |g(r)—q(r)| < RE)"* for some T € J}. (2.85)

The particles belonging to Y, can be easily handled: as shown in (2.79) we have

/ dr Y v Fiy| < BR(4)% 5 < BsR(t)’A, (2.86)
s—A

JEYE

being v > 7. Hence from now on we consider only the particles j € Y,,. Let us split the
set Y, according to the following partition:

ar ={j € Y, : 2V R)Y® < sup |v;(T)| < 2" RY® k=1,.. kmas}, (2.87)
TEJS

where k4, is the maximum integer for which

1
2kmaw S §R(t)2/6’ (288)
a={j€Y,: Su? lv; ()] < R(t)4/6}, (2.89)
TE

kmazf
a= ag, (290)

k=1
a=Y,\ (aoUa). (2.91)

Therefore

~—~~

2.92)

/SA dTZUj'E,j

JEYR

/SA dT{Z+Z+Z}UJE’J

jea  jea  j€ao
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and we give below a bound for each term of the previous equality.
First of all we give an upper bound for the cardinality of a. If j € a

. 1
()] = max [o,(r)] > § R(1), (299)
then by (2.62),
1
vi(7)] 2 7 R() = DuA R >

R(t) — Dy R(t)*® > Z R(t), (2.94)

A~ =

for n (and so for R(t)) large enough.

By definition R(t) is larger than the maximal displacement that a particle can undergo
during the time interval [0, ¢], then all the particles with indices in ¥, must be contained
into the ball B(g;(0),3R(t)). Thus it follows from (C.1), (2.55) and (2.33) that

D vd(r) < 2Q(X™(7);4:(0),3R(t)) < 2L W (X™(7); :(0), 3R(2))

j€a
< 203" LW(X"(7); :(0), R(t)) < 2Cs 3*L C1R(t)°, (2.95)
then, by (2.94):
1
51RO < EgR(2)°, (2.96)
which implies
la| < 64 Eg R(t). (2.97)

As a consequence, we have

/sA dTZ’Uj'E,j

jea

s 1/2
< ||F||00/Ad7'<z )" lap?

jea

< E;R(t)*? R(t)'*A = E;R(t)* A. (2.98)

Let us consider now the contribution of the set a. Let [ € N with 1 <[ < [,,.. and
lmaz = [R(t)1/4]. In this way, using the decreasing property (2.4), we get:

[rgon

JE€ay

1
T R@AED

lmaac

1 S
4/6 ok 0]
<EgR(t)"*2 Z{Z i} /sA dr x{(T)

j€ag =1

| drxtia - (0] > (B0}
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lmaac

1 S
< BROC2 {5 [ andie)
I=1 5=

JjE€ak =
S

s [ drxade) = )] > R0 )} (2.99)

where

X(r) = x(a(r) — ()| < 1).

Now we want to study the time integral [ , dr Xz(l]) (1), with 1 <1 < lpez-
In order to estimate this integral, we notice that for n sufficiently large:

[0i(7) = v;(7)| = inf Jui(7)[ — sup [v;(7)]
T TEJ

> R(t) — 2Fme= R()Y® > Z R(¢). (2.100)
Suppose that |g;(to) — ¢;(to)| = [ at time ¢, € [s — A, 5], with outgoing velocities (i.e.
(vi(to) — vj(to)) - (gi(to) — g;(to)) > 0). Then we are going to prove that the pair (2, j),
once reached a relative distance larger than [, it will never reach a distance smaller than
I. Let t; € (s — A, s) denote the time in which (g;(7) — ¢;(7))? reaches its maximum
value, say 77 (for this reason (v;(t1) — vj(t1)) - (¢i(t1) — g;(t1)) = 0).

By the identity

1 d?

573 (6(1) = ¢;(7)" = (wi(r) = v;(r))’

and using (2.100), (2.62) we get:

(g:() — q;(7))> > r2 + (r—t)° (R(f — Dy, rlR(t)?’/?) , (2.101)

for 7 > t¢,. By the definition of r; it follows that r > R(t)l/2/(4 D,,), otherwise
(qi(T) —qj (7))? > 72. In this case
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—)° A2 2
(T 2 1) Tl R(t)3/2 S 77‘1 R(t)3/2 S %Tl R(t)l/G S E9T14/3- (2102)
Therefore
(a:(7) — ¢;(7))? > ] — Egry*/* > 17, (2.103)

then the pair (7, 7) will keep a relative distance larger than [ in the time interval (¢o, s)
(note that the last inequality clearly holds because I, = [R(t)"*] < R(t)"?).

Now we repeat this argument when r; is the minimum distance between particles 7 and
J; we again denote by ¢; the time in which this distance is reached. Supposing r; < [,
we want to establish the exit time of the particle j from the ball B(g;(7),[); this time
can be derived from the equation (g;(7) — ¢;(7))* = I2, hence (2.101) implies

(r—t,)> R(t)*

l2 Z 7'% -+ E10

2 4 7

8(12 — 2 812 Bl

(r—t)t < & ”2)3 s = |r—t| < .

EywR(t)* ~ EwR(t) R(t)

Thus
. Eil

Oy < 222 2.104
ARG (2104)

In order to estimate the cardinality of ay, we use again an upper bound of the energy
as we have done for the set a. Let be 7; € J such that |v;(r;)| = max |vj(7)|. Thus
TE

Jak| 225D RS <N ()P <> fui(s — A)?

j€ayg j€ay

+/; > lvi(7) Z|Fp,] (2.105)

Jj€ay,

Multiplying (2.105) by 27 and summing over k, we have

Z |a | 2(k=1) R8/6<22 kz lvj(s — A

Jj€ag

+ Ei3 RYS / Ty Z |F, (7). (2.106)

j€a

31



The latter term can be bounded as follows:

Z Ey(7)] < Eig ZZ 17 (7 (2.107)

By means of (2.58) and (2.33), taking the supremum over u, we can state:

> Z X\0(r) < Bis B R(t)®, (2.108)

j€a

and by (2.95) it follows that

Z 275 ) " Juj(s — A))? < By R(2)°, (2.109)

Jj€ag

hence, combining these two relations and using the definition (2.67) of A, we get

> Jakl2F < Eyp Rt AL (2.110)
k
It follows from (2.99), (2.104) and (2.110) that

Z/s dTZ“J i

k Jj€ag

< EiR(t)* A (2.111)

since the sum over k of the second term of (2.99) can be easily bounded by:

£)*/6 sz Z[R T / dr < B R()Y° R(¢)"*/°A? R(¢)™/*

J€ag

< FEigAR(t)>. (2.112)

It remains to estimate the last contribution, namely that associated to the set of
indices ag. We have

s H-1 sh+1 kmaz
/ dr Y v Fij| < Ex Y R(t)"° ), (2.113)
j€ag h=0 Sh

with

Z (lai(7) = g;(T)] < kr)

Jj€a
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and where J = [s — A, s] has been decomposed into H identical intervals:

H-1

J = Ish, sna1l, (2.114)
h=0

1 1 ]
2AR() AR

with sg = s, so =s— A, and |sp11 — sp| =0 € |
Moreover k,,,, is such that

Koz = [R(t)l/‘*/r} g (2.115)

(such a choice for the maximum value of k£ will be clear later).
Since |v;(7)] < R()*®, the maximal displacement of a particle belonging to the set aq
is less than 1, in the time interval J. Moreover, defining

NP =30 x( it falr) = gss0)] < hr 1), (2.116)

: TC(ShySh+1
J€ao Cht

for 7 € (sp, Sp41), we get N®) (1) < N,(lk).
Then for (2.113) we have:

Let us define

TE={yeR: e(inf : lqi(T) —y| < kr+ 1} (2.118)
T Shvsh-i-l
and
=" dla(so) — q5(s0)) + b N(X"(s0), T}¥), (2.119)
I<j

where the sum is restricted to the pairs of particles in 7;¥ and E is a positive quantity
because b > B. Let us note that N(X"(sq), TF) < N}(Lk).
We want to estimate now the sum in (2.117):

T

1 )
(N,(Lk)) . (2.120)
0

>
Il
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If the sets T, were all disjoint, then, defining
=7 (2.121)
h

by superstability we would simply have

2 ()
TH (2.122)

[\,j ™

E(TH > A Z nA >AZ Z nA > Ey

i€Z3NTE i€Z3NTF h=0

We anticipate two results that will be proved afterwards: the first regarding |7%|:
T < Ex K, (2.123)

the other dealing with the fact that a set 7;¥ has a non empty intersection with no more
than (8 + 4rk) other sets (we consider k fixed).
In this way (2.122) becomes

E(TF) > =2 (N,E’“))Q. (2.124)

Putting the previous relation into (2.117), we can write:

S kmam
/ dr Y " v Fj| < BExuR(t)Y° B(TH)"?. (2.125)
J€ao
By the bound on the maximal velocity of the i-th partlcle
_ 3
vi(7)] < AR(t) + Dy R(t)** A < SAR(), (2.126)
we get

T* € B(gi(7),2 + kr + R(t)'/?), (2.127)

with 7 belonging to the interval [s — A, s] (for the proof see below).
Therefore
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E(TF) < Y lo@(so) = a5(s0)| +bN (X" (s0), TF)

1<j:
ql,q]'ETk

< 3 il +ON(B) < Eas sup Y R (Y oy
By J

1<j:
q,9;€B

< E26 sup W(Xn(So); M, R(So)) < E27R(t)3, (2128)
7

+0)

where in the fourth inequality we have used an estimate like the one given in (B.1)
and Lemma 2.1, while in the last inequality we have used Lemma 2.2. Putting the last
relation into (2.125) we get:

/ dr Z vj - Fij
s=A e

since VH = (A/8)"/? < \/2CAR'®.

It remains to prove that a fixed set 7, has a non empty intersection with no more
than (8 + 4rk) other sets, that |7,¥| < Fy k3, and (2.127) (we will see that these three
statements are consequences of the inclusion (2.132)).

For a given h, let e = ‘Zzgz:i;' and £(7) = (¢:(7) — ¢i(sn31)) - €.

Then:

< EyAR(t)?, (2.129)

(1) = |vi(sha1)| (T — spy1) + /T do (T — o) Fi(0) - e, (2.130)

Sh+1
hence

2
T— S8
)] > [uilsnen)| (7 = swe) — L2010 b gy

2
> |7 = sni1| (AR(t) — DnR(t)*R(t) %)
AR(t
> |7 — Spy1l 2( ), (2.131)
for n large enough. On the other hand from (2.126) it follows that
3 -
TE C B(gi(sht); §AR(t)(5 + kr) C B(qi(Sh+1);2 + kr). (2.132)
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Let us choose |7 — sp41| > (8 +4rk)d, with (8 +4rk)d < A (such a condition guarantees
us to remain in [s — A, s]), that is k < kmee < R(t)"/?; from this last condition, the
choice (2.115) previously done of taking kmas ~ R(t)"* is clear. Now, from (2.131),
we have that |£(7)| > 2 + kr, and for this reason, after the time 7, ¢; will not enter
anymore into the ball B(g;(sp41);2+ kr), in such a way that 7,* will have a non empty
intersection with no more than (8 4+ 4rk) other different 7;k,S.

The bound on |7;¥| and the inclusion (2.127) are straightforward consequences of (2.132).
|

We have now all the results necessary to prove the main theorem of this work.

2.4 Proof of Theorem 2.2

Let us define the quantity

i, 1) = a7 (1) — i (1)]. (2133)

From the equations of motion in integral form we have:

q;'(t) = ¢;(0) + v;(0) ¢ / ds(t—s Z F qZ — q;’(s)) ) (2.134)

J:g7i
From (2.133) and (2.134) it follows that, for any i € I,,_,

500) < [ as(e= | {90009 = () - Vol )~ D} | (2139

Jij#i

and, because of the long-range of the interaction, it is useful to split up the last sum in
the following way. Let

min {|g} ' (s) — ¢} ' (s)], |aF(s) — G} (s)|} = mi(s) (2.136)

and, fixing a particle ¢, consider the following sets of indices:

A (s, k) = {5 # 0+ (k= Dpln) < mi(s) < k() }
{j?él )>kmax@( )}
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where o(n) = 1¢(n)*? (¢ has been defined in (2.8)), k = 1,2, ..., kpax and kpax =
[n%*/p(n)] . We can write, using the property (2.5) of the interaction:

STV (s) = ai(s) — Vo(ar ™ (s) — 4/ (5))}

Jig#i
<Lt Y. (6i(n,s)+65(n,s))
JEAP(s,1)
Emax 1
+ Ly (51(77’7 8) +5(TL, S))
2 - D)™ ; . ’
g O )~ )~ a0+ 470 (213
max P\ JEA"(S)
Defining
dn(t) = sup sup|q;’(s) — ¢:(0)], (2.138)
SE[O,t} 1€ln
from the bound
V™ (t) < Lap(n) (2.139)

(it is a consequence of (2.64), (2.65) and of Gronwall’s lemma) we get, for ¢t < T
d,(t) < Lzp(n), where Ly = LyT.
Hence, putting

p() (n,t) = kp(n) + Lazp(n), (2.140)

the number of particles contained in A?(s, k) is bounded by the number of particles
that, at the initial time, were in a ball of radius p*)(n,t), and therefore, according to
the definition (2.7), it is bounded by the quantity:

g (n,1) = Qe(X) (1M (n,1))” < Lakp(n)’. (2.141)

For the same reason, the number of particles belonging to A?(s) is bounded by LsQ¢(X)n?
so the last term in (2.137) is bounded by

1 QX ) n*

L=y () (2.142)
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We define

ug(n,t) = supd;(n, t) (2.143)

icly,

and we fix an integer ky < n. Putting

ky = [ko + p¥m=)(n,1)] (2.144)
we can bound the r.h.s. of (2.137) in the following way (using (2.140), (2.141), (2.142)):

(2.137) < L (Lup(n)* + Z L“k 9” ") ) e, (. 5) + LQeX)n’ 145

k>2

Hence by (2.135), (2.145), we get:

t
L

Upg (R, 1) < L6gp(n)3/ ds (t — s) ug, (n, s) + W’j—fﬁ' (2.146)

0 n

We iterate now (2.146) m times, where m is
n— k()

= |- 2.147
=[] (2147

Since up,(n,t) < Lyp(n), we have

£2m L N (p(n)®)" 2

3m+1 7

wko (1) < (Lo ()™ 5osr + Saman o7 2 (2h)!
h=1

th L7
exp(p(n)®/?t). (2.148)

3Im+1
< (ngo(n)) (2m)| + n(3/4)7=5/2

By the choice (2.147), using Stirling formula, since ¢(n)3/2 < Lg(logn) 1, where £ < 4/9,
and since y > 7, it follows that ug,(n,t) converges summably to zero as n — oc.

For what concernes the velocities we have:

P (t) — vp / ds‘ N F(q(s) = qP(s)) — F (¢ (s) — ¢/ (s)) ‘ (2.149)

Jij#i
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and we can bound the r.h.s. of (2.149) by the same estimates used to bound (2.137). In
this way recalling (2.146) we obtain, for any i € Iy,:

t
n n— L7
|’U,L- (t) — 1(1;)‘ < L6gp(n)3/(; ds Uk, (7’L, S) + m, (2150)
where for ug, (n, s) it holds (2.148) replacing m with m — 1:
(1) < (L) 0o, (251)
Uk, (n,t) < (Lgp(n 2(m = 1) + YTy exp(p(n . .

Substituting (2.151) into (2.150) we have

o7 (t) — v M ()| < Lep(n)’

3

X tds (Lgp(n))*m= D+t 2™ + LA (p(n)*2s)
: + @0m—1)  nEArEE P

L
nG/A7—5/2

+ (2.152)

from which it follows that |v,”(t) — v~ (t)| converges summably to zero as n — oc.

To prove that the limit solution belongs to (2.15) for any time 0 < ¢t < T, with T
arbitrary but a priori fixed, let us fix i € N and choose ko such that kg — 1 < |g;| < ko.
We choose n* of the form

n* = [ki + L), (2.153)

in such a way that we have a uniform convergence of > _ . ux,(n,t) with respect to ko

n>n
(as it appears evident from (2.147)). Now we have:

[0i(t) = o (O < Y op(t) — o1 (D), (2.154)

n>n*
hence by (2.152) and by the choice made for n*, the r.h.s. of (2.154) is bounded by a
constant indipendent from kq:

oi(8)] < [0 (£)] + L. (2.155)
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Thus from (2.139) it follows

* § §

[ (t)] < Lig(log(e +n%))7* < Lyz(log(e + ko))?*
3

< Lus(log(e + |4:)) ¢ = Lt (|,

so that, from (2.156) and (2.155), it follows

lvi(t)] < L15¢§/2(|%‘|)-

We want to prove now that, if X € X, then X(¢) € Xsg.
Given y € R® and R > (log(e + |,u\))%6 let

no = |Ligexp (2 R%)] .
Clearly (log(e + no))%’5 > R so that, by Lemma 2.2 and from the relation
Q(X;u, R) < LW(X; u, R),
(see (C.1)), we have
QX" (t); u, R) < LW (X™(t); 1, 2R(no, 1)) < L1z R (o, 1)
< Lig(log(e + 1)) *¢ < Lig (R%)% < Ly R

On the other hand

Q(X(t); 1, R) < Q(X™(t); 1, R)
+ ) |Q(X™(®); s R) — QX" (1); 1, R))|

n>no

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

and the sum on the r.h.s. of (2.160), by the choice (2.158) of ny (which in partic-
ular implies that ny > |u|), converges uniformly with respect to © € R® and R >

(log(e + |,u|))%£, so it is bounded by a constant independent from u and R.

Notice that the following inequalities hold:
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(log(e + 10)) ¢ > R > (log(e + |ul)) ¥ (2.161)

in order that, combining (2.159) and (2.160), taking the supremum over y € R*® and
over R > (log(e + |,u|))%'£, we obtain that X (¢) € Xs,.

We want to underline that we cannot say that the solution surely exits from X¢, we have
only proved that the maximal set of existence for X (¢) is X’ 3¢ D A

For what concerns the uniqueness of the solution, let us assume that there is a solution
{q},vr} different from the one obtained as the limit of the partial dynamics and deduce
a contradiction. In the space defined by (2.14) and (2.15) it can be easily proved that
the difference |¢!" — g}| converges to zero as n — oo by an iterative method identical to
the one just used, in particular we need the restriction over the velocities provided by
(2.15) in order to make the iterative method work. This last condition on the velocities
is imposed by the long-range character of the interaction, which gives origin to a term
like the last present in (2.148).

We want to point out that the restriction (2.15) is a requirement imposed to prove the
uniqueness of the solution. In particular we need a velocity bound (better than the
one following by energy conservation) for the non-limit (hypothetical) solution {g}, v}},
necessary to make the iterative method work. Nevertheless we remark that we have
proved that the limit solution, lim,_,{¢", v}'}, belongs directly to (2.15). W

The proof of Theorem 2.1, dealing with the short-range interaction, is analogous to
Theorem 2.2’s, with obvious simplifications.
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Chapter 3

A Microscopic Model of Viscous
Friction

In this chapter we discuss some features of a simple (but not trivial) microscopic model
of viscous friction. In particular we want to show that a careful mathematical analysis
of the long time asymptotics allows to outline some unexpected behaviors. We consider
a body moving along the z-axis under the action of an external force E' and immersed in
an infinitely extended perfect gas. We assume the gas to be described by the mean-field
approximation and interacting elastically with the body. In this set up, we discuss the
following statement: “Let Vj be the initial velocity of the body and V, its asymptotic
velocity, then for [V — V| small enough it results |V (t) — Vio| &~ C't %2 for ¢ large,
where V(t) is the velocity of the body at time ¢, d the dimension of the space and C is
a positive constant depending on the medium and on the shape of the body”.

The reason for the power law approach to the stationary state instead of the exponential
one (usually assumed in viscous friction problems), is due to the long memory of the
dynamical system.

In a recent paper by Caprino, Marchioro and Pulvirenti ([13]), it has been discussed the
case of E constant and positive, with 0 < V < V,, for a disk orthogonal to the z-axis.
Here we complete the analysis in the cases £ > 0 with V, > V, and E = 0. We also
approach the problem of an z-dependent external force, by choosing E of harmonic type.
In this case we obtain the power-like asymptotic time behavior for the body position
X (t). The investigation is done in detail for a disk orthogonal to the z-axis and then,
by a sketched proof, extended to a body with a general convex shape.
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3.1 Model and Results for £ =0

Here we consider the case with null external force. The body is a disk of radius R in
dimension d = 3, a stick of lenght 2R for d = 2 and a point particle on the line for d = 1.
We assume, for simplicity, its mass to be unitary. The disk has its center placed on the
x-axis and it is assumed orthogonal to the same axis. We remark that the assumption
that the center moves along the x-axis becomes redundant if we initially place the disk
orthogonal to the z-axis, property which is conserved during the motion by symmetry.
The thickness of the disk is assumed to be negligible, even if this is not essential and it
is useful just for notational simplicity. Moreover the disk is immersed in a perfect gas
in equilibrium at inverse temperature proportional to S and with constant density p.

We give the body an initial small velocity and we investigate how its velocity vanishes
in time.

We assume the perfect gas in the mean-field approximation. The motion of the
disk modifies the equilibrium of the gas, which evolves according to the free transport
equation. Let f(z,v;t), (z,v) € R? x R? be the mass density in the phase space of the
gas particles, then its evolution equation is:

(O +v-Vy)f(z,v;t) =0, for x ¢ D(t), (3.1)

where:

D(t) = {y € T"(X (1)) : [y - X (1)* < R*}, (3-2)

X (t) is the position of the center of the disk at time ¢ and I1+(X (¢)) the plane orthogonal
to the z-axis at the point X (¢).

Now we give the boundary conditions, which express the continuity of f along the
trajectories with elastic reflection on D(t). According to the elastic reflection law,
denoting by v’ the outgoing velocity of a gas particle with incoming velocity v, after a
collision with the body, we have:

ve =2V (t) — v, V) =y, (3.3)

where V' (t) = X(t) is the velocity of the disk and v,, v, the velocity components of the
gas particles on the x-axis and the orthogonal plane respectively. We set,

(@5t = f-(z,vi1),  for z € D(t) (3.4)
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where
fe(z,v;t) = lingr flxtev,v;tte), for x € D(t). (3.5)
e—=0

Eq. (3.4) gives the boundary conditions and it describes both the continuity along the
collisions from the right (V'(¢) > v,) and from the left (V (¢) < v,).
Coupled to Eq. (3.1) we consider the evolution equation for the disk:

X(t) =V(1), V(t)=—F(t), (3.6)

where
— _ 2 .
F(t) =2 /D(t) dx /%<V(t) dv (V(t) — vg)* f-(x,v;1)
_ _ 2 .
2 /;(t) dx /vsz(t) dv (V(t) — vg)" f-(x, v;1) (3.7)

is the action of the gas on the disk.
As initial state for the gas distribution we assume the thermal equilibrium, namely

/2
Feta0)=p(2) e, (3.5)
for g > 0.

The choice of such initial datum is not binding, since the results of the present paper
hold for any initial function of the form pg(v?), with g integrably decreasing.

A solution to the viscous friction problem is a pair (f, V) such that V=V(t) solves,
for almost all ¢ € R, Eq.ns (3.6), (3.7) and [ satisfies

d
%f(a: +vt,v;t) =0 a.e. (z,v), (3.9)
together with boundary conditions (3.4) and initial condition (3.8).

Eq. (3.6) can be derived in a heuristic way from the balance of momentum. In fact,
formally, the quantity

/ dz | dvvyf_(z,v;t) + V(?) (3.10)
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is conserved along the motion and its time derivative yields the equation of motion (for
a short proof of this fact, see Appendix E). An equivalent heuristic derivation is given
in [13].

Notice that, were the time evolution of the disk given, we could solve Eq. (3.1) by
means of characteristics, that is by following back in time the trajectory of a gas particle
which has position z and velocity v at time t. Any such particle has a free backward
evolution up to the last time 7 < t in which it hits the disk. At this instant we use
condition (2.3) and then we continue on the backward trajectory in this way, up to time
t = 0. Setting z(s,t;z,v), v(s,t;z,v) to denote position and velocity at time s < ¢ of a
gas particle whose position and velocity at time ¢ are x, v, at the end we obtain:

/2
T D) Ju<v()
_/ dx/ dv (V(t) _ Uz)Qe—ﬂ'u?(O,t;w,v)]' (3.11)
D(t) vz >V (t)

Note that, if z € D(t), then v has to be interpreted as a precollisional velocity, that is
v =lim,,; v(s, t;x,v).

Unfortunately, to compute F(t) we need to know v(0,%;x,v) and hence to know all
the previous history {X(s), V(s), s < t}. However, if a light particle goes back without
undergoing any collision, then

v(0,t;z,v) = v.

If this is the case, where no recollisions take place, the friction term becomes:
3 /2 ,
Fy(V)=2p (—) o [/ dv (V — vg)%e P
™ v <V
— / dv (V — vm)2e_ﬂ”2] : (3.12)
Ve >V

being o4 the area of the disk.

It can be seen (see Lemma 3.1) that Fp is an increasing odd function, positive and
convex in the interval (0, 4+00). This properties enable us to solve our problem, with Fj
in place of F, in a quite easy way.

Indeed Eq. (3.6) becomes:

X(t) =V(), V(t) = —Fy(V(1) = —K 1)V (2), (3.13)



where
k(- B

We take, without loss of generality, V; > 0 (the case Vj < 0 is the symmetrical one).
Since Fp is an odd function, it results, for V' € [0, Vp],

(3.14)

Cy < K(t) < Cy (3.15)

where

0< F(0)=Cy < CL=F(Vp),. (3.16)

By estimate (2.15) we can deduce that V is decreasing in time and moreover it
satisfies:
Voe O <V (t) < Vhye @2, (3.17)

Equation ((2.9) can finally be solved by characteristics.

In the full problem, where we include recollisions, the long memory effect makes the
problem much more difficult.

Let us rewrite the full friction term F' as:

Fit)=FV®)+rt@) +r(t) (3.18)
where 77 (t) and r~(t) are:
/2
rt(t) = 2p (g) /D ) dz / e dv (v, — V (2))?(e P OBz0) _ =By (319)
and
r(t) = 2p (g) v / da / dv (v, — V()2 (e P — e PP08m0))  (3.90)
D(t) va >V (t)

The quantities p, 8, R and v =V, are the data of the problem.
We are now in the position to state the following
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Theorem 3.1. There exists vo = Yo(p, 5, R) > 0 sufficiently small such that, for any
initial velocity Vo = v € (0,7) there exists at least one solution (V (t), f(t)) to problem
(8.1)-(3.9). Moreover there exist two positive constants Ay, Ay independent of vy, such
that any solution (V(t), f(t)) satisfies the following properties:

(i) for any t > 0 it is:

A
V(t) > ye Ot - 3.21
(t) > ve (s (3.21)
(i1) there ezists a sufficiently large t, depending on vy, such that for any t > 0:
_ A
V(t) <ve @~ ’Y5td—+22X({t > t}) (3.22)

where x({...}) is the characteristic function of the set {...}.

Note that (3.22) establishes the power law approach to the equilibrium state.

Estimates (2.21) and (2.22) show that in this model the disk slows down its velocity
in an unexpected way, in spite of what intuition suggests. The velocity V (t) goes from
positive to negative values, crossing the zero value in a finite time. Then, it tends
asymptotically to zero from negative values. The fact that V' (¢) changes sign is due to
the memory of the recollisions, whose effect is contained in the terms r*(t) and r~(¢).

For the sake of concreteness we will prove Theorem 3.1 for the three-dimensional case.
The remaining cases d = 1, 2 follow by the same arguments with obvious modifications.
We discuss now some properties of Fj.

Lemma 3.1. Fy is an increasing odd function, positive and convex in (0, +00).

Proof
By (3.12) it is, for a constant C' > 0:

v
Fo(V) = C/dUJ_ e Pl [/ dvg (V — vw)Qe_’B”%

—00

+00 )
- / dvg (V — vgc)Ze_ﬁ“m] . (3.23)
v

By the simple change of variables v, — —v, we obtain, for V > 0,

Fo(V) = C[ / dvg (V — vg)2e 7% — /_

—00

Vv

v
dvg(V + vg)%e %

oo
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-V
> C / doa[(V — v0a)2 — (V + 0,)?] P02
o |
= —4CV/ dvy, ve P > 0, (3.24)

moreover Fy(0) = 0. From the previous expression we can also see that Fo(—V) =
—Fy (V).
Furthermore, for V' > 0,

v 2 -V 2
Fy(V) = 20[/ dvg (V — vy)e v —/ dv, (V + Uz)e_ﬂ”w]

v
> —40/ dvg ve % > 0. (3.25)
Finally, for V > 0,
v 2 -V 2
FI(V) = 20[ / dvg eP% — / dv, e—ﬂ%] >0. W (3.26)

3.2 Proof of Theorem 3.1

In the sequel of the paper C' will denote positive constants, possibly depending on 3, p,
R, but not on v, which is our small parameter.

For any v € (0, o) with 7 suitably small, we introduce an a.e. differentiable function
with bounded derivative, ¢ — W (t), such that W(0) = Vj, limy,o W(t) = 0, and
satisfying the following properties:

(i) W is decreasing in any time interval in which W (t) > 0.
(17) There exist two positive constants Ay, As such that, for any ¢ > 0, it is:

A

W(t) > ye Ot — 43 107 = fi(t) (3.27)
and 4
W(t) <ye @ — v5t—52x({t > 1}) = fo(1). (3.28)
where 1
t= I_{log; (3.29)



with the constant K satisfying K > 4/C,. The two constants A; and A, independent
of each other and also of vy and 7y, will be fixed later on.

The strategy of the proof of Theorem 3.1 is the following. We assign the disk a
velocity W (t) with the properties just stated and we consider the free transport equation
(3.9) outside the disk, with boundary conditions (3.4). We can compute the terms ry,
and 7y, defined below in (3.31) and (3.32), since the light particles velocities v(s, t; x, v)
for s < t are known, once the motion of the body is given. At this point, we solve Eq.
(3.6) for the disk with assigned ry, and ry,, finding a new velocity, call it Viy. The
solution to our problem is the fixed point of the map W — Vj. To this aim, we have
to prove that Vj enjoys the same properties established above for W, with the same

constants.

Let X(t) = f(f W (7)d7 be the position of the disk at time ¢. Consider the modified
problem:

Vir (t) = =K (1) Viw (8) — 1y (8) — iy (1), (3.30)

where K (t) is the function introduced in (3.14) with W (t) in place of V().
We define

o =2p(2) / da / dv (v, — W (1)2(e=PPO120) _ =By (3.31)
™ D(t) v <W (1)
and

() =20(2)’ / da / dv (v, — W(H)2(e=P" — P08y (3.39)
™ D(t) Ve >W (1)

We notice that as long as W is decreasing r;},(t) = 0, so that this term appears only for
negative velocities and moreover, by the collision law (3.3), it is negative. The analysis
of the sign of 7}, (¢) is more involved, since there are positive and negative contributions.
We will show, in any way, that the sum 7}, + ry;, is positive.

We may ask whether Eq. (3.30) is well posed. The following Proposition, proved
in Ref. [13], shows that this dynamical system is well defined for almost all initial
data and almost all £ € R*. More precisely we can neglect in the sequel all the initial
configurations giving rise to infinitely many or tangential collisions, namely those for
which there exists a time s < ¢ such that x € D(t), z(s, t; z,v) € D(s) and vy (s, t;z,v) =
W (s).
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Proposition 3.1. Consider the dynamics of the disk with given velocity W = W (t) and
the fluid trajectories x(s,t;z,v), v(s,t;z,v) computed according to the evolution of the
disk and the law of the elastic reflection (3.3). Assume W differentiable for almost all
t and such that

ess sup, g+ (|W(t)| + |W(t)|) = L < +o0. (3.33)

Then the set of allt € RY, x € D(t), v € R® for which z(s,t;x,v), v(s,t;z,v),0 < s <,
delivers infinitely many backward collisions, or has a tangential collision, has vanishing
Lebesgue measure.

Now we start the analysis of the two terms 7}, (¢) and r;;,(¢). Let us set, for 0 < s < ¢

(W) = / Wi(r (3.34)

t—s
and
Wop = (W)t (3.35)

We have a recollision (from the right or from the left) if x € D(t), v(0,t;z,v) # v and
it exists a time s < ¢ such that

t
vyt — 5) = X (t) — X (s) :/ W(r) dr (3.36)
that is v, = (W), for some s € (0,t) and
|z, —vi(t—s)| < 2R. (3.37)
Thus, necessary condition for a recollision to happen is that:
2R
vy = (W), forsomese (0,¢) and |v | < PR (3.38)
Let us start by estimating 77}, (¢), proving the following Lemma:
Lemma 3.2. For any t > 0 and ~ sufficiently small,
4 7P A}
0< —r(t) <C t>t 3.39
where 1
to = Kylog — (3.40)
Y

and Ky is a constant satisfying 1/C1 < Ko < 2/C.
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Proof

As already pointed out, 73}, (t) = 0 as far as W is decreasing (i.e. as far as W (t) > 0).
Now we give an upper and lower bound for the first time ¢* for which W (¢*) = 0. For
t =ty it results

A
to) =y OO — 4® - >0 3.41
fl( 0) Y Y (1 +K010g %)5 ) ( )
the last inequality being satisfied by taking 7 sufficiently small. By the properties (7)
and (4¢) of the function W this implies that, for 0 <t <o, W(t) > W (to) > fi(to) > 0.
Moreover by (3.29):
Fald) =7 HFC B2 (3.42)
(Klog ) '
for v sufficiently small. Then W (t) < 0 for ¢ > ¢, and so the first time ¢* for which
W (t*) = 0 satisfies t* € (to,1); moreover W (t) < 0 for t* <t < 1.
It is also evident from the law of elastic reflection (3.3) that rj,(¢) < 0, since it
appears for negative velocities. Let us establish an upper bound for |} (¢)]. Recalling
the necessary condition (3.36) to have a recollision, we have by (3.27):

1 ¢ A
Ug = <W>s,t > / (76_CIT - 73 . )dT

t—s (I+7)5
3

I A gl
> 2 Nar>—cA 4
_t—s/s< 7 (1+r)5>d7— ChT (3.43)

if s < t/2. Since by (3.3) v, (0,¢;2,v) = vy, from (3.31), (3.38) and (3.43) it follows, for
v, such that s < ¢/2 and ¢ > t*, that a first contribution to the estimate of |ry}, (¢)] is:

C/de (v, — W (t))? ({—CAW <w, <W(t)})
" / dvi e ™ x({fvu| < Rs”
< / W) (-T2 <o, <wio))
CAl’Y A1
S ( 1+t ) SC(1+t)5 (3.44)

since W (t) < 0.
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If s > t/2 and t > t* we have by (3.27):

1 t A
= > — A3 !
Vg <W>s,t - t—Sl ( Y (1+T)5)d7—
Al’)/3
> _0—— 4
> O (3.45)

hence the second contribution to the estimate of |rj(¢)] is:

Ay
(1+1)5
Ay’ \?
<o . 3.46
<t ) (3.46)
Collecting estimates (3.44) and (3.46) we finally achieve the proof of Lemma 3.2. W

C [ v (e = W) (-0 < v < WO [dve

For ry,(t) we have an upper bound expressed by the following Lemma:

Lemma 3.3. For any t > 0 and v sufficiently small,

- (v + Ay’)°
() < O e (3.47)
Proof
By (3.36) and (3.28) we obtain:
Y A S A
v = (Whee < = [ [re o = #22x((r > )] ar
1 t
St /’ye_CZTdT, (3.48)
then we have
Y . t
< (C—— f — 4
Um_01+t if s <3 (3.49)
t
vy < C’fye_cﬁ/2 if s> 3" (3.50)
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Hence by (3.32) we get a first contribution to the estimate of 7, (¢), in case s < t/2,
recalling (3.27) and condition (3.38) on v, :

Cy

C T C Cvy 3
— . — W () dv, < — Wit
u+w%4m@ 4WU)1’—Q+QA1+t4WO)
9 Cy —C1t s A 3
< _ 1
—(1+t)2<1+t e ij(1+t)5)
(v + A1)
<C1——rL :
_67(1+®5 (3.51)

If s > t/2, using (3.50), we have by (3.27) the second contribution to the estimate of
rw (1):

C | dvy (vs — W) Xx({W (1) < vy < Cye=C25})

Ay® + 7)3

< 0(076_02% - W(t))3 < C(w

(3.52)

therefore, collecting (3.51) and (3.52), we obtain the thesis. W

By the collision law (3.3) it follows that r,(t) > 0 for any ¢ < ¢* (as long as
W(t) > 0). Actually the positivity of ry;,(¢) for any ¢ > 0 is not obvious, since for
negative velocities of the disk, ry;, (¢) could change sign. We can prove that this is not
the case. Moreover we will show that the sum (ry},(¢) + ry;,(¢)) is not negative for any
t > 0, which is a key ingredient in the proof of Theorem 3.1.

Lemma 3.4. Suppose v sufficiently small. Then, for t >ty we have:
3
rw(t) 2 O (3.53)

Proof

The only reason for ry;,(t) to become negative at some instant ¢ is that the absolute
value of the particles’ velocities has been increased by the collisions with the body. By
the law (2.3), this can happen only for those particles who are to collide at time ¢ with
W (t) < 0, while their last but one collision was at some time s < ¢ with W(s) < 0.
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Moreover, any such particle has negative x-component of its pre-collisional velocity at
time ¢, being
vy = 2W(s) — vl < 2W(s) — W(s) < 0, (3.54)

for some v}, > W (s). Denoting by 7, (¢) the restriction of 7y, (¢) to such configurations,
we give an upper bound for \7717[,( )]
From Definition (3.32) of r};,(¢) and using (3.27) we obtain, by (3.28):

ot |<c/ )edu, < C(—W (1)
A 3
< _ Cit 1
_C( ve + (1+t)5)
9 43
v’ Ay
c%1+ﬂm, (3.55)

where W (t) < 0, since t > s and W (s) < 0 (see the comment on the sign of W in the
proof of Lemma 3.2). Up to now we could obviously write

rw (t) 2 =[Fy (2)]- (3.56)

To improve this lower bound, let us denote by 7;,(t) a term which contains some “good”
contribution to 7, (¢), namely the one due to particles colliding at time ¢ and coming
from a single collision in the past, at some instant s < ¢ for which W(s) > 0. Hence we
have

rw(t) 2 Ty () = [P (1) (3.57)
and the difficulty now shifts to get a lower bound for 7;,(¢). To this end we restrict
our analysis to a subset of the set of “good” contributions. Therefore let us introduce
So > 0 defined as:

So = min {s € (0,t): W(s) < %} . (3.58)
Such sy does exist by continuity, since we have at time 0:
W@=%>ﬁ%¥@¢¢%>g% (3.59)
which holds because it is W (t) < V, V¢ > 0; at time s = ¢ we have
W(t) < Vo+ W)y  Vo+WI(2) — W (t) < Vo (3.60)

2 - 2 2 DR
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Define the set I' = {(z,v) : & € D(t), (W)sor < vy < (Whor = (W)}

First of all, we show that I' is a non-empty set. Indeed for s < sq, by definition (3.58),
it follows: p . .

%(W)S,t = ;[(W}st —W(s)] < ;(W(s) - VW) <0. (3.61)
Hence, for s < sg, (W)spr < (W)se < (W),

Moreover, any particle belonging to I' had at most one collision with the disk in the
past. In fact, consider a light particle which is to collide at x with velocity v, = (W),
being s € (0, so] the time of its last collision with the disk. Then, denoting by v,(s™)

the z— component of the precollisional velocity, for s < sq by (3.58) we have:
Uz(s7) = =0y +2W (s) = =(W)st + 2W (s) > W. (3.62)
Before s the light particle cannot undergo another recollision, since it should be:

Vo <up(s7) = (W)rs (3.63)

)

for some 7 € (0, s), and (W), s >V} is absurd.
Hence, for s < s,
v(0, 82, 0) = 2W(s) — v,. (3.64)

The time sy can be bounded from above and from below, independently of 7, in the

following way:
1

C1
provided that ¢ is sufficiently large independently of ~.

3 1
log <59 < Elogél (3.65)

We have that s is the minimal solution of the equation:

Vb + <W>So,t

W (sy) = ; (3.66)

Moreover, by (3.28),
W)s

SRR, oo

and since, by (3.27),
1 t Al’y3
oy > — > —A? :
Whos >~ [ dr = A (3.68)
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we have, for 4172 < 1/2,

3
e~ 2% > % - Al;
so we have proved the right bound in (3.65).
To prove the left bound, we have, by (3.27):

.,
> — .
= (3.69)

v W )son —-C 5 A
= = =W > 190 o 3.70
By (3.28) and the upper bound just proved for sy, we have for large ¢
K 1
(W)son < ./’w*wdfs—mC. (3.71)
t— S0 Jsg 14
Hence, for ¢ large independently of v and for 4,72 < 1/12,
C A3 2
—C150 1 _7 717 < = 3.72
v Sy T T T sy o3 (3.72)

proving also the left bound in (3.65).
Now we consider the restriction of 7, (t) to the set I, setting

(W)t
I@%:/ dm/i mu/‘ dvg (vg — W (1)) [e7P7" — e P Otm0)] - (3.73)
D(t) vy |<$ (W)sg ¢

By definition of 7y (t) and (3.64), it results that 75, (¢) is non-negative, since [e #** —
e~ AV (0t)] > (. Moreover it is
rw(t) > CI(t). (3.74)

This is due to the fact, which now we prove, that for ¢t > s,
W(t) < (W)sp.t- (3.75)

We have, by (3.27) and (3.28), for ¢ large enough,

W(O) = (W = WO~ [ dsW(s)

S0

—Cat 1 ! —Cis 3 Al
< e +—t—so ds[—fye +y (1—|—s)5]
S0
—Ci1s9 __ ,—C1t 1
<qyleet - S+ —can?]. 3.76
_7[6 Cili—sy  T7CAN (3.76)
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For v small enough, so that t; is sufficiently large and A;~? is small, we obtain that the
r.h.s. of (3.76) is negative for ¢ > ¢,. For sy <t <ty W(t) is decreasing, so that (3.75)
holds for any ¢ > s.

Let us go back to the investigation of I(t). For s < s¢ by (3.64) and (3.58) we get:

v2(0,t; 7, v) — 2W (8) — v5)? — v2 = AW (s) (W (s) — (W)s,)

vh = (
> 9 (5)(Vh — (W), (3.7
and for s < so < (log4)/Cy and for A1y% < C it is

log 4

W(s)>W ( ) > O (3.78)

2

We want to show also that
Vo — <W>s,t > C’)’- (3'79)

In fact (W), is decreasing with respect to s, for s < s, then by (3.28)

1 t
Vom (Whae 2 Vo= (Whae =Yo7 [ Wir)ar
0
t

1 A
> v+ ;/ (—fyeCzT + 757__52)(({7' > ﬂ)) dr
0
1—e C2t o
>y — > L 3.80
277 23 (3.80)

for ¢ sufficiently large independently of «. Therefore, for ¢ sufficiently large:
2W () (Vo — (W)s4) > Co>. (3.81)

By these considerations, we have:
() = / dz / dv,
D(t) vy <€
(W)t
X / dv, (’l)m — W(t))2 e_ﬂUQ[l — eﬁ(”%_”%(O,t;w,v))]
(W>80,t

and since, by (3.77),

v2(0, 8 7, v) — v < 4Vo(Vo + Vo) = 897, (3.82)
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it results, using also (3.81),
-8y < v2 —v2(0,t;7,v) <0, (3.83)
and in this interval we can write, since 7y is small,
1 — P 0kz0) > —CB(W2 —v2(0,t;2,v)). (3.84)

Therefore, by (3.77), (3.81) and ¢ large independently of 7,

Ity > C dx/ dv,
D(t) lor|<§

(W)t )
« / dv, (vs — W) e P [02(0, £: 2, v) — v2]
(

W)so,t
(W)t
2 Uy (Vy — 2 =P ULe_ﬂ”2L
> oy /(W%O,td s (0e — W(E)P e /| et
> ST = W)~ (Whaoe = WY
> ST~ (W) (W = W) (3.85)

We now estimate both differences appearing in (3.85), showing that they are both O(%)

WYy — (W)sot = = /W )dr — —So/ W(r
_ (t )/ W(r dT+t_180/s°W(T)dT
= tjoso [31_0/0 W (r) dT—;/O W(r) dT:|

= 2 (W) = (W), (3.86)

and it is, by (3.78) and (3.28),

> (4, (3.87)



for « sufficiently small and ¢ large independently of 4. Thus by (3.86) and (3.65) we
arrive at:

<W>t - <W>So,t 2 C% (388)
Let us now estimate the remaining term in (3.85). Proceeding as in (3.76) we have:

1—e Gt 1

(W) —W(t) > —y|e @ — o, + ZCAWQ : (3.89)

therefore, for y sufficiently small (so that A;7? is small enough) and ¢ large independently
of 7,
(W), — W(t) > c%. (3.90)

Inserting estimates (3.88) and (3.90) in (3.85), by (3.74) we conclude that, for v suffi-
ciently small and ¢ sufficiently large, independently of ~,

i (t) > CL. (3.91)

Recalling (3.57), choosing ¢ > t; (see (3.40)) and ~ sufficiently small, by (3.91) and
(3.55),

0& VA
02 7 0~ 7] 2 €% - oA 3.2
so that, for v A2 small enough,
4
o (t) > Ct_5' [ | (3.93)

We remark that, from (3.39) and (3.53) it follows immediatly, for v small and any ¢,

i () + r (8) > 0. (3.94)

Now we prove that the function Vi (¢) satisfying Eq. (3.30) enjoys, for v suitably
small, the same properties as the function W, with the same constants A;, Ay. After
this the proof of Theorem 3.1 will follow easily.
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Proposition 3.2. Suppose v > 0 sufficiently small. Then:

(i) t = Viy(t) is an a.e. differentiable function with bounded derivative, decreasing in

any time interval in which Vi (t) > 0.

(i1) For anyt >0 :
Ay

1+1¢)%

Vin(t) > ve ' =77

(iii) For anyt >0 :
Ap

ot — Vx> ).

Viw(t) <vye

Proof
(7) From Eq. (3.30) and the Duhamel formula we have:

t
Vin(t) = ye Jo K(Ddr _ /0 dse J: KO (rh (s) + 135, (5)),

(3.95)

(3.96)

(3.97)

and since ry,(¢) and r4;,(¢) are bounded, by (3.97) and (3.30) Viy is a.e. differentiable
with bounded derivative. The fact that Vi (¢) is decreasing in any time interval in which

Vv (t) > 0 is obvious by Eq. (3.30) and (3.94).

(i) By (3.97), (3.39), and (3.47) it follows:

Vir(t) > ve~ @ — O(y + A1y?)? /Ot ds e~ C>(t=5) a j T
Let us evaluate the integral:
t oC2s t t
/0 dsm :/0 (-)ds+/€ (1) ds
eC25 1 25 Cat _ O}
=70 Tery o
Thus
¢ ~Cat—s)  p—Cab _ ,—Cat 95 1 _ =Cot
/0 (1+s)5 — Co (2+1)5 (O
5
= Ci2 <602§ - (2—2|—t)5) = ft)5

(3.98)

(3.99)



To conclude, there exists a constant C such that:

1

Viv(t) > v~ — C(y + Ay*)? 3.100
and hence, to achieve the thesis, it is sufficient that
Cly+ A1) < Ay, (3.101)

which is satisfied, for instance, by choosing A4; = 2C (this fixes 4;) and y consequently
small (also to satisfy the previous constraints on A;).

(#3i) First, by (3.94) and (3.97), we have that, for any ¢ > 0,
Viw (t) < ye™ . (3.102)

By (3.97), (3.39), and (3.53), for v suitably small and ¢ > ¢ > 2ty, where ¢ is defined in
(3.29) and t, in (3.40), it follows:

t ‘ 9 5
Vip (t) < e~ @ +/0 ds e~ Js K (C(l 1 o CZ—5> x({s > to})

t
1
< ,_yefCQt _ 075/ ds effst K(r)dr ; X({S > tO}) (3103)
0
We have that

¢ 1 ¢ 1
/ dse KO x({s > 1o}) > / dse C1s) —
0 S to S

1 _ 6_01 (t—to)

>
- Cytd
1 — e Cito 1
> > 3.104
- Cytd — 2C4t5’ ( )
since t >t > 2t,.
Then, by (3.103) and (3.104),
Cat 04
Viv(t) < ye “% — C’t—5. (3.105)

Last inequality enables us to choose As, in such a way that (3.96) is satisfied for any
t > 0. This can be done in a consistent manner, since the constant C' appearing in
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(3.105) does not depend of A;. Actually it depends on A;, nevertheless As can be
chosen independently of A; for v sufficiently small. W

Using Proposition 3.2 we easily prove Theorem 3.1. We only give a sketch of the
proof and, for a better explanation of it, we address to [13]. We construct a sequence
{Vn}2 | defined by

Vo =Wy, n>2 (3.106)

setting Vi = W, being W any function with the properties established at the beginning of
this Section. By Proposition 3.2 such properties hold for the whole sequence (for suitable
values of A;, As, ¢ independent of n). By compactness (the sequence is equibounded
and equicontinuous), we can extract a subsequence V,y converging to a limit point V =
V (t). Moreover, for any n > 1 we can solve the free transport equation, with reflecting
boundary conditions on the disk moving according to the velocity V,(t), by means of the
characteristics which are a.e. defined. The convergence of V,,; implies the convergence of
almost all characteristics to a family of characteristics satisfying the reflecting boundary
conditions on the disk moving with velocity V'(¢). This yields a solution to the Vlasov
equation (3.1) producing the friction term (3.7). Therefore we have obtained a solution
to the problem (3.1)-(3.9).

Moreover, any solution to this problem satisfies bounds (3.21) and (3.22). Consider
in fact any solution (V, f) of the problem. By continuity of V' there exists a time interval
in which inequalities (3.21)-(3.22) hold strictly. Let T be the first time for which our
strict inequalities are violated. The same arguments used in Proposition 3.2 (replacing
W by V) show that (3.21)-(3.22) hold strictly in the interval (0, 7], since in this interval
V enjoys the same properties as W. Then 7" must be infinite. This concludes the proof
of Theorem 3.1.

3.3 The case with elastic force

We consider here the case in which an elastic force acts on the disk. We consider the
same model introduced in Section 3.1, the only difference consisting in the evolution
equation for the disk (see 3.6), which becomes:

X(t)=V(t), V(t)=—-F(t) — SX(t), (3.107)
X(0) =X, <0, V(0) =V, >0,
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where F(t) is defined in (3.7) and S > 0 is the elastic constant.
We analyse first a simplified case in which recollisions are neglected and only the first
term of the Taylor expansion, centered in V' = 0, of Fy(V(t)) is retained. We obtain:

X(t)=V(), V(t)=—F)(0)V(t) — SX(2), (3.108)

X(0) =X, <0, V(0) =V, >0,
It is useful to put (3.108) into the form (recalling that Cy = F{(0)):

(56) - (50)
Az<_5_02>. (3.110)

Y _ a4 Xo

t)) —c ( Vo) . (3.111)
_ 2 _

A= Ot V202 45 (3.112)

_ —Cy—/CT—148

2
We want to restrict ourselves to study the case in which the body position goes to zero

where

Therefore we have

The eigenvalues of A are

Ao (3.113)

without oscillations, hence we have to choose the friction force large with respect to the
elastic one, and the initial data in a suitable way. We assume

C2 — 45 >0, (3.114)
so that it results Ay < A; < 0. Decomposing the initial datum into the eigenvectors of
A, we have:

Xo\ _ 1 1
()-n()en(l)
finding
Vo — A Xo MXo— Vo
_ = 3.116
ay /\1 _ )\2 ) a2 )\1 _ )\2 ( )
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Hence from (3.111) we obtain:

X(t) = a;eM + age™?, (3.117)
V(1) = arh Mt + aphpe™. (3.118)

Now we assume
MXog < Vo < A X (3119)

This condition, together with (3.114), ensures, by (3.117) and (3.118), that both X (¢)
and V (t) decay exponentially to zero, being X (¢) < 0 and V' (¢) > 0 for all ¢ > 0.

Let us examine now the full problem (3.107), including recollisions. In this case the
sign of V'(¢) is no more evident, nevertheless we can state for X (¢) a result analogous to
the one in Theorem 3.1.

We make assumption (3.114) on the quantities p, 3, R, S, which are the data of the
problem. Moreover, we put

1=V, [Xo=0Cy (3.120)

with the constant C, independent of v, chosen in such a way that (3.119) is satisfied.
Let us define:

2
C3 = ;max{|a1|; las |}, (3.121)
L.
Cy= ;m1n{|a1|; las|}, (3.122)
2
05 = ;max{|a1)\1|; |a2)\2|} . (3123)

Note that, with the choice (3.120), the constants Cs, Cy, and C5 are independent of ~.

Theorem 3.2. There exists vo = Yo(p, 8, R, S) > 0 sufficiently small such that, for any
v € (0,70) and for any choice of initial conditions Xy, Vi satisfying (3.120), there exists
at least one pair (X, f), where X = X (t) solves, for almost all t € R*, Eq. (3.107)
and f solves Eq.s (3.9), (3.4), and (3.8). Moreover there exist three positive constants
By, By, and Bs, independent of 7y, such that any solution (X, f) satisfies the following
properties:

(i) for any t > 0, we have:

B,

< At 3~
X(t) <0, X ()| < Csye™ +v (1 + ¢)d+2’

(3.124)
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(i) there exists a sufficiently large t, depending on vy, such that for any t > 0:

B
X0 > Caye +9°Z5x({t > 1), (3.125)
(111) for any t > 0:
: B
X ()] < CsyeM' + v3m. (3.126)

We notice that in this case the power-law decay is stated on the position of the
disk, while in Theorem 3.1 it was stated on its velocity. This is due to the fact that in
Theorem 3.1 the equation governing the evolution of the disk was a first order differential
equation involving only V'(¢), while in the present case we have a second order differential
equation involving X (¢).

Also in this case, as we did in the previous Section, we give the proof of the Theorem
for the three-dimensional case.

Proof of Theorem 3.2

In the same way as in Section 3.2, for any y € (0, ) (with 7, sufficiently small) we
introduce an a.e. differentiable function with bounded derivative, t — W (t), such that
W(0) = Vo, limy 0o W (t) = 0, and satisfying the following properties:

(i) W is positive and decreasing for ¢ € [0, t|, where

t=—log—. 3.127
c; s (3.127)
(73) There exists a positive constant Bs, such that, for any ¢ > 0, it is:
B
W(t)] < CgyeMt +4° ——> . 3.128
[W(t) < Cgvye +7(1+t)5 (3.128)

The constant Bs, independent of v and 7y, will be fixed later on.

Let us consider the modified problem:

Xw(t) = Vir(t)
Viv(t) = —F3(0) Vi (t) — S Xw () — [Fo(W (t)) — F3(0) W ()] (3.129)
1y () = (1)
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with initial conditions Xy, Vj, satisfying (3.107), (3.119), and y,, ry;,, defined in (3.31),

(3.32). The fixed point of the map W — Vi (if any), defined by (3.129), solves Eq.
(3.107).

The solution, by the Duhamel formula, is:

() == (o)« [ e (L)

L o L mowe) 619

where A is defined in (3.110). We decompose the last two vectors in (3.130) into the
eigenvectors of A:

<—7"v+v(8)0— riw (s) ) i ( —F(W(s)) 3 F3(0) W (s) >
= b3 (s) (A11> + b7 (s) (;2) , (3.131)

B(s) = —riw(s) = rw(s) _/\FO—(I//\V(S)) + Fo(0) W(s) b (s) = bl (s).  (3.132)

The r.h.s. of (3.130) can be written then in the form (recalling (3.115)):

A1t ]' Aot 1
aie <A1> +age ()\2> (3.133)
LWy s (1 1)y ratt—s) 1
1(t—s _ 2(t—s
+/0 ds [bw(s)e <A1> by/(s)e ()\2)]

and the solution in (3.130) is, recalling (3.111), (3.117), and (3.118):

Xw(t) = a1 6/\1t + a9 6/\2t

¢
+/ ds b(wl,)(s) [e)‘l(t_s) — e’\2(t_s)}, (3.134)
0

Vw(t) = 0,1)\1 e)‘lt + a2/\2 6)\2t

t
+ / ds b3 (s) [)\16’\1”_8) —AQeMt—s)] (3.135)
0
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In order to establish the properties of Xy (¢), Viy (), and to infer that Vjy satisfies
the same properties of W, we proceed to analyse the recollision terms, i}, (t) and r;; (1),
and the function b%,) (t).

Let us start by estimating r;},(¢).

Lemma 3.5. For any t > 0 and v sufficiently small,

VB3
(141¢)°

ry ()] < C x({t > t}). (3.136)
Proof

First of all let us notice that 7;},(¢) = 0 as far as W is decreasing (i.e. for ¢ € [0,]). For
t >t we have, by (3.127) and (3.128),

B ¢ B
W ) < C /\1i )qi 3 3 < C 3 /\15 3 3
| ()‘ — 876 ze 2_*_/}/ (]_+t)5 — 87 € +r)/ (1+t)5
CB;
< A3 3.137
=Ty (3137)
therefore, recalling (3.38), we have for s < ¢/2:

Uz:<W>s,tZ — s ) - (1—+—T)5 dTZ— 31+t (3138)

Then recalling that, by (3.3), v, (0,¢;z,v) = v, from (3.31), (3.38), (3.137) and (3.138)
it follows, for v, such that s < ¢/2 and ¢ > £, that a first contribution to the estimate of
Iy (£)] is:

[ o (o~ Wi (-2

< [ v x({lon] < o)
O [ - wp -2

(141
(W) +

<, <W(t)})

AN

— Su < W(t)})

3.3 3.9
1+t / = (141t

C
~ (141)?

N

(3.139)
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If s > t/2 and t > ¢, we have by (3.137):

1 ¢ CB;
= (W > _ A3
vy = ( )s,t = t—s/s ( Y (1+T)5)d7'

3373
- (1+41t)>’

hence the second contribution to the estimate of |rj(¢)] is:
3

C/de (vy — W (t))? X({—c% <w, <W(H)})

(i)

Collecting estimates (3.139) and (3.141) we obtain (3.136). H

For ry,,(t) we have an upper bound expressed by the following Lemma:

Lemma 3.6. For any t > 0 and ~ sufficiently small,

(v + Bsy®)?

rwlt) < C

Proof
By (3.36) and (3.128) we obtain:

1 t Bs
= . < C AT 3
v <W>,t_—t_s/s [ gye +7—(1+T)5 dr,

then we have

v+ By . t

<Ol =20 Z

vy < C 1 1f$<2
B 3

vy < Y+ By ifszz'

(1+1¢)5 2

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

(3.145)

Hence, again by (3.38) and (3.128), a first contribution to the estimate of ry,(¢) is, in

the case s < t/2:

C

¥ + Bsy?
(1+1)

1+t

/ Aoy (vy — WO x(W () < vy < C b
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C v+ B3y® 3
< _
< Trp (c — W)

c v+ Byy? IR B
C Cyye )
= (1+t)2( 11t O T e
B 3)3
< (y+ Bsy*)° (3.146)
(1+1)

If s > t/2, by (3.145) we analogously get the second contribution to the estimate of
T (1)

[ dun o= WP X (0) < v < TEE
¥+ Bs*\’

therefore, collecting (3.147) and (3.146), we obtain the thesis. W

The lower bound for r};,(¢) is given in the following Lemma:

Lemma 3.7. Suppose v sufficiently small. Then, for t >t we have:
3
rw(t) > O (3.148)

Proof

Following the same argument as in Lemma 3.4, we notice that the “bad” contributions
to 7y,(t), which tend to turn it into a negative quantity, are uniquely due to particles
whose last collision time s < t is such that W (s) < 0. By the definition of W, it has
to be necessarily s > . We denote by 7, (¢) such “bad” contributions, and we give an
upper bound for |7, (t)]. Tt is for s € (£,t), by (3.38) and (3.137),

CB;
Whes < —— T 3.149
=< [ (3.149)
and it results
Bg’y3 1
< — .
U”—C1+t lf8<2, (3.150)
B3’y3 t
< > —. .
Uw_C(1+t)5 1fs_2 (3.151)



Hence a first contribution to the estimate of |7y, (¢)| is, in the case s < t/2, by (3.137)
and (3.38):

o [ = WOP A0 < v < P
C (B P O (B o B Y
= (1+t)2< 1+t _W(t)) = (1+t)2(01+t+0(1+t)5>
< Cﬁ_ (3.152)

If s > t/2, using (3.151) and (3.137), we have the second contribution to the estimate
of |7 (1)]:

C / dvg (vy — W) x({W(t) < v, < C Bay 1)

(1+1)5
9133
7" B3
therefore, collecting (3.152) and (3.153), we obtain that V¢ > ¢
9133
_ 7' B
[Ty ()] < C(1 n 55. (3.154)

Let us now look for some positive contribution to r,, call it 7}, which turns out to
contrast 7. As in Lemma 3.4, we consider a set of particles coming from a single
collision in the past, happening for some s < ¢ such that W (s) > 0. The analysis is
now pretty much the same as the one made before (the only change being the small
difference in the definition of W), and the lower bound obtained for 7, (¢) is the same:

e (t) > C (3.155)

t_5’
for v small enough and ¢ large. Then we have, by (3.154) and (3.155), for ¢ > ¢ and ~y
sufficiently small,

7V’ B3
(1+1)%

rw () > 7y (1) = [P ()] > CZ—; ~-C (3.156)

so that, for B3 small enough, we obtain (3.148). [ |
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As an immediate consequence of Lemmas 3.5 and 3.7 we have, for v sufficiently small
and Vi > 0,
() + 7y (8) > 0. (3.157)

The following Lemma concerns the function b%,) (t), introduced in (3.132):

Lemma 3.8. Suppose v sufficiently small. Then for any t > 0 it is b%,) (t) < 0. More-
over, for any t > 0, it results:

CTxe=2 ) < o) < oI

(3.158)
Proof

For t < it is W (t) > 0, then the quantity [Fy(W (t)) — F;(0) W (t)] is positive, by the
properties of the function Fj (see Lemma 3.1). Hence, by the definition of b%,) (t) (3.132),
and by (3.157), we have that b%,) (t) < 0 for t < t. For t >t and + sufficiently small, by
(3.137) we have that

7° B3

[Fo(W (1) — Fo(0) W(t)] < 0(1 )

(3.159)
since, by the properties of Fy, the Lh.s. of (3.159) is O(W?) for W small. Hence by
Lemma 3.5, Lemma 3.7, (3.159), and (3.132), we have that

5

9 R3 9 nR3
(1) 7’ Bj Y 7’ Bg
A i R A (I
5

Y
< -0, (3.160)
for v*B3 small enough, so that the negativity of b%,) (t) is proved for any time.
In the same way it can be proved the lower bound for \b%,) (t)|, while the upper bound
is achieved by using Lemma 3.6. |

We show now that the function Xy (¢) (satisfying Eq. (3.129)) enjoys, for v suffi-
ciently small, properties (3.124) and (3.125) stated for X (¢) in Theorem 3.2, while the
function Viy (t) satisfies the same properties as W (t) (3.127)-(3.128).
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Proposition 3.3. Suppose v > 0 sufficiently small. Then, for any t > 0, the following
properties hold:

(i) 5
Xw(t) <0, Xw(t)] < CoyeMt +~3—1 3.161
(i1) There exists a sufficiently large t, depending on vy, such that:
B
[ Xw (8)] > Cry e + 75t—52x({t > 1}). (3.162)

(11i) t — Viy(t) is an a.e. differentiable function with bounded derivative, positive and
decreasing for t € [0,1].

(iv)

Bs

At 3
V()| < Cgye™ + v At

(3.163)

Proof
(1) The negativity of Xy (t) is obvious from (3.134), as it follows from assumptions
(3.114), (3.119), and by the negativity of b%,) (s), proved in Lemma 3.8.

Moreover, by (3.134) and Lemma 3.8,

t
[ Xw ()] < 2max{|a|; |a2\}e“+/ ds b3} ()] e¢=*)
0

(v + Bsy*)? Hit—s)

ey (3.164)

t
< Cﬁq/e)‘lt—i-/ dsC
0

By the same calculations as those made in (3.99) we have

t 6’\1(t_s) C
d < 1
/0 Atsp = (1407 (3.165)

so that (3.161) is obtained, by choosing the constant B; independently of Bs, for 7
suitably small.

(77) We have, for any ¢ > 0:

¢
| Xw ()] = |a1| €M + |ag| e +/ ds |b%,) (s)| [e’\l(t_s) — e)‘Q(t_s)}
0

> Cryet. (3.166)
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Moreover, choosing £ = 2f (where £ is defined in (3.127)), by Lemma 3.8 we have, for
t>t:

¢
/ ds b)) ()] [eM (=) — eholi=9)] > C’/ ds L [eME=s) — ghali=s)] | (3.167)

0
Let us evaluate the integral:

/t g eM(t=s) _ pha(t—s) S 1 _1 _ e)\l(tff) 1— e)\z(tff)
i 5 85 — —)\1 —/\2

> — +— > =,
— -\ Ao | — 80

(3.168)

1 [1 = et 1] C

This implies that (3.162) is verified, for some constant By, with £ = 2{.

(174) Since b%,) (t) is bounded, by (3.134), (3.135), and (3.129) Vjy is a.e. differentiable
with bounded derivative. We have also

t
Vw(t) Z al)\l 6)‘1t + 0@)\2 6)‘2t - / ds |b$/‘1/) (8)‘ |/\1€)‘1(t_5) + /\26)‘2(t_5)| . (3169)
0
By Lemma 3.8 and (3.165),

' t Ban3)3
/ ds |b%,)(3)‘ ‘)\leAl(t—S) + )\26,\2(t—s)| < C/ dswe)\l(t—s)
0

0 (14 s)
< CH?, (3.170)
therefore in the time interval [0, ],
Viy(t) > Cy M — 0y = 077%?1 - Oy >0, (3.171)
for v sufficiently small, since by (3.112) and (3.16)
0< _éf\l < 27612 <2. (3.172)

By taking the derivative with respect to time in (3.135), it can be seen similarly that
Vir(t) < 0 for t € [0,%]. Indeed, from Lemma 3.8 it follows:

VW (t) = al/\% e)‘lt + CLQ/\% 6)\2t

t
+/dw(mp2MH>A%MHﬂ+uﬁwm$@
0
t ~
< a2 eMt 4 C/ ds |b$41,) (s)] < —=CyeM +Cv* <0, (3.173)
0
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for v sufficiently small.
(iv) The result is achieved following the same reasoning as in (¢). W

Theorem 3.2 can finally be proved, through the same steps as in the proof of Theorem
3.1.

3.4 Comments

We want to discuss briefly some possible generalizations of the present investigation.

Our techniques employed in Section 3.2 work as well in case of a constant field
E > 0 directed along the z-direction, with the choice Vy > V. Putting V) — Vo = v as
small parameter, Theorem 3.1 can be slightly modified, to obtain the power-like time
asymptotics. This case E > 0, Vj > V., is even easier than the one we faced in Section
3.2, with F =0 and V; > 0. Indeed we are no more troubled with the signes of r* and
r~: they are always positive since the velocity of the disk never changes sign. Hence we
have the same power-law approach to the limiting velocity V., and we can prove that
V (t) initially decreases monotonically, crosses its limiting value V., in a finite time and
then reaches it from below.

Another improvement of the model consists in the generalization of the shape of the
obstacle. We have considered the simplified shape of a disk, but the same results remain
valid in case of a general convex body. A detailed analysis of this case is performed in
[14], and we give here a short sketch of such a generalization.

Let us consider the same physical problem of Section 3.1 in which the disk is replaced
by a convex solid  in R?, taken for simplicity with unitary mass and constant density.
Let R be the diameter of Q (i.e. the maximum distance between two points on its
boundary 0f2) and X (t) the position of its center of mass at time ¢. We impose that the
center of mass is constrained to move along the z-axis, and that the solid cannot undergo
any kind of rotation (if the solid has a rotational symmetry around the z-axis, these
constraints are superfluous). The outward normal to 52 is denoted by n. Moreover we
denote by 002" the right face of the solid, on which 72-Z > 0 (being & the unit vector of
the z-axis) and by 02~ the left face of the solid, on which 71 - & < 0. We require that n
is continuously varying a.e. on 0f2 and that there are two disjoint subsets of 0€2, having
positive measure, on which n-Z > 0 and n - £ < 0 respectively.
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A necessary condition for which a gas particle with velocity v hits the solid at time
t is that, at the collision point P € 0, it results

vn < Vi(2), (3.174)

denoting by
Up =07, Vo) =V (t)n -z, (3.175)

where V(t) = X (t) and 7 is calculated at P.
The gas particles hitting the body are reflected according to the usual collision law:

vy, =2V (t) —vp, Uy, = Un,, (3.176)

denoting by v,, =v —v,n.
Ignoring recollisions, the viscous friction term is

Fy(V) = k/ da/ dv (Vy, —vp)? i -ze P
Nt v <Vp

—|—k/ da/ dv (V, —v,)? i -ze P
o0~ o <Vp

where k = 2p(8/7)%? and do is the surface element on 9. The scalar product 7 - &

2

2

(3.177)

in the integral is due to the fact that we have to consider the projection of the force
along the z-axis. It is also convenient to separate the whole integral on 02 in the two
integrals (on Q" and 0Q2~) appearing in (3.177), since the first one is positive (72-2 > 0
on 90") and the second one is negative (2-% < 0 on 9Q7). It can be easily seen that the
function Fy(V') defined in (3.177) is an increasing odd function (not necessarily convex
for V> 0).

Taking into account recollisions the full friction term is

Fit)=FV®)+rt@) +r(t)

where
r(t) = k/ da/ dv (Vo (t) — v)? 70 - & [e P07 OB50) _ o=Bv"] (3.178)
ant v <Va(t)
and

r(t) = —k / do / dv (Vo (£) — )2 - 3 [eP?" — e=P°0um)] (3.179)
80- on <Va(t)
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Define a function W (t) with the same properties stated in Section 3.2, and corre-
spondingly compute the terms

=k [ do o B0 =020 [0 B, (3 150

= —k / do / Wo(t) —v,)?h- 2 [eP7 — e P °Ok20)] - (3.181)
on- vn<Wn(t

where W, (t) =

Let s < t be the ﬁrst backward recollision time, and let us denote by P € 0f) the
collision point at time ¢, and by ) € 0f2 the collision point at time s. The condition to
have two subsequent collisions is the following:

Val(t — 8) = QP - it + (W)sat — 8) > (Wo)salt — 5) (3.182)

where 7 is calculated at P and Cﬁg is the vector joining the points () and P at time
s. In fact v,(t — s) is the space along the n direction covered by the gas particle in
the time interval [s,t], (W,)s:(t — s) is the space along the 7 direction covered by the
body in the time interval [s, ], and QP - 7 is the distance along the 7 direction between
the two points Q and P at time s, which, by the convex shape of the body, is always
non-negative.

Hence a first necessary condition to have a recollision is

Un Z <Wn>s,t- (3183)
Another necessary condition is the following:
Vn, | (8= 8) K2R+ [(W)sul (£ — 3). (3.184)

In fact the r.h.s. of (3.184) represents the maximum displacement that a particle can

undergo along the z-direction, and along any direction orthogonal to the z-axis, to have

a recollision with the body. Then from (3.184) we obtain
C

t—

Summarizing, conditions (3.183) and (3.185) replace conditions (3.38). In this way we

(3.185)

|Un¢|

can obtain estimates analogous to those of Lemma 3.2, Lemma 3.3 and Lemma 3.4,
hence we are able to prove for V() the same time-decay as that contained in Theorem
3.1, in case of an obstacle with a general convex shape.

As a final comment, we remark that, even if we have explicitly treated the case of
elastic force, the same techniques work also in case that anharmonic terms are added.
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Appendix A

Proof of Lemma 2.1

We make a partition of the physical space with large cubes of side mr and we divide
the interaction into a short-range and a long-range one. The last one can be handled
using Proposition 2.1. Concerning the short-range interaction we choose the parameter
« in the definition of the weight-function f (see (2.24)) so small in such a way that,
in a cube, f is constant, and then, neglecting the interaction with the other cubes, W
is superstable. Of course the interaction between different cubes exists, but it gives a
surface effect, and it becomes negligible with respect to a volume effect, as m is very
large.

Let us define the set I'! () in the following way:

TL(r) = {z e R : w9 +19mr <29 <u® + (19 4+ Dymr,
ueR; meN, ez,

where r is the parameter appearing in Proposition 2.1.
From this definition, it follows that |z — y| < v/3mr, Vz,y € T!(r), then, by the
properties of the weight-function:

Flly = ul B) < Fllw =, B) (14 av/Bmr) (A1)

We define also the following quantities:

R = nf R (A.2)

M .
u i€N,q; €T},
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Pi(r)={(,7) eN®N:i>j ¢ el ¢ €T |¢—ql <7}, (A.3)

T.0r) = |J PLr), (A4)
M = Sup ¢(z)], (A.5)
V(r) ={(,j) e N®ON:i>j, [¢—q;| <1} (A.6)

As it follows from its definition, V'(r) is the set of all the pairs of particles with relative
distance smaller than r, while in 7;, there are no pairs with particles in two adjoining

It
Let € be a real positive number such that:
e >V3amr, (A7)

then for each z and y in I'}, we have:

flly—ul,R) < (1+ e f(|z— ul, R). (A.8)

Since the potential can be decomposed into ¢ = ¢() + ¢ (see (2.17)), the mollified
energy becomes

W (X; p, R) = WO (X; 4, R) + W (X; 1, R), (A.9)
where
WO (X5, R) = 3 o8 ( 53 o +0) (A.10)
1€EN ]j#z
WX R) = 30 005 6. (A1)
1EN YR ED

Let us estimate now the second term W®). For r large enough we have:

W] < Dy (1+v3a) S f(i — pl, R) na,

1€Z3
|z—j\>7“—2)
XZ na; 3y
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<D2Z Z f|l_N|RnAnA| :

1€Z3  jez3:
l[i—j|>r—2

<Dy Y fi—ulR) (A, + 7))

i€Z3  jezs:
li—j|>r—2

1
<D4{Z > f(li—plR)n m

iI€Z3  jez3:
[i—j|>r—2

—J|"

+ 0 i uh B, |(1+|z
z]EZs
li—j|>r—2
<D5Zf — pl, R)ni,
i€Z3

x ZZ (k < lj| < ( k—i—l))w

k=r jeZ3 k7
< DY 10 R, 3
1€Z3
< l)7 r jg:tf ‘i'_'AA’}?)7%Ai:
1€Z3
with D;(r) such that:
A, D =0
as
v>34+ A

Therefore 37y >0: Vr >r; = 57(7') < iA, hence

:> ___UA-EE: f /Ll l% 7%57
1€EZ3
for any r > r;.
Now it remains to examine the first term W,

If we define the quantity:
E(X;p Tl = > fRel),

(4,)EP

79

i—jl"

1

i}

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)



by the superstability of ¢ we have:

B(X;uT) = Z (fiof - f Z ngJ

(i,j)€PL (i ,J)EP’

—M((1+e¢) —1 Z B“’RZTLAk+ A Z LUINE

(i1,§)ePL kez3 kez3
and from the following definition
7 =7°NT,

we get:

B(X:pTy) > ~BFE S na + 2 37 f(k— ul, R)
keZ3 ) kezZ?

- %«He) 1) Z (F - f2R),

(4,4)€PL

(A.17)

(A.18)

Choosing z = u, where z € T NrZ3, we have U I'' = R® and to each z it is associated

lez3
a partition P, of the space.

For a fixed partition, considering the definition (2.23), summing (A.16) over the sets
I'Y € P, and taking into account all the contributions of the pairs not belonging to a

set of the partition, we finally obtain a lower bound for the mollified energy.
choosing b > B, we have:

W(l)(X;u,R)ZZEX pu,TL) +bz ffl na,

1eZ3 leZ3
M
-3 2 W
(Zﬂj)gTZ
241 AZflk pl, Rynk, — MY (f1F + f1°F)
( te kez3 (4,0)¢T:
M
- S+t =1 D (Y
(4:,5)€T:
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3A

> (k= pl, Ryn}, = MY (1% + %)
4(1 4 o) ,;Za . (i%ﬂ 7
- S+ =1) 3D (PR g, (A19)
(3,9)€V

If we sum over z, the term in the left hand side is clearly independent of z. On the
contrary, given a pair of particles (i, j), the number of z such that (i,7) € T, is larger
than (m —2)3, thus the number of pairs of particles with a relative distance smaller than
7, but such that they do not belong to T, is less than m? — (m — 2)° < 14m?2.

In this way we obtain

3Am3
m* WX 4, R) > ——— 3" f(lk — |, R) n>
(X;p )_4(1+6) kEZZ; (Ik — pl, R) na,
= dMm® Y ()
(i,)eV
Mm3
- (A+e*—=1) Y (7 + 5. (A.20)

(4,5)eV
Let us estimate now the last two terms of the sum:
SO A <Y R+ (e - gl <)
(@.5)ev i<j

<D > > > fli-ulR)

i€Z3 leN: jez3d:  gEN:qg€EA;
QEA; |i—j|<r+2

=Dsy, > fli—plR)nana,.

AN
Obviously for a fixed j
Card{i € Z*: |i — j| <7+ 2} < Dyr?,
then, for r large enough:
S (4 ) < Dio ™ F(li— pl, R) R (A.21)

(i,5)eV i€Z3
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In conclusion the term W is bounded by

WO, R) > D(e;myr) Y f(li = ul, R)n,, (A.22)
1€Z3

where

34 14D M M ~
-0 ﬁ“-_fawﬂwu+@*—n>. (A.23)

4(1 4+ e))‘ m 2

D(e,m,r) = (

Let 7 be such that r > max{7,r:}, and m such that:

112Dy Mr3+A
mzmz——%riﬂ (A.24)
and let e satisfy the following bound:
1 A X
¢ <miny (3/2)* - 1,(——=——+1) —1;, (A.25)
4MD107'3+)‘
so that we have
1
D(e,m,r) > ZA. (A.26)

Finally we fix a in such a way that amry/3 < ¢, so the thesis immediately follows with
C; = 1/4A.

Summing up, first we choose r so large that the tail term W, is small enough. Then,
for a fixed r, m can be chosen in such a way that (A.24) holds, and € small enough to
satisfy (A.25). Finally, as we have fixed r,m, ¢, from (A.7) the bound on « follows. W
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Appendix B

Proof of Corollary 2.1

The only part which remains to prove is:

Let us define

where

ST b+ D) < Co Y F (R,

1EN JEN: kezZ3
J#i

1
DG D by h) =W+ WO,

1€EN JEN:
J#i

WO = 37 RS 6 )

ieN jEN:
J#i
1 R 2
W = 3 E fi E ¢z(,j)'
iEN jex:
VE

(B.1)

Using the third property of Proposition 2.2, the first term can be easily bounded by

W@ < (1+av3) B, S f(ll = pl, R)na,

lez?

e
+ % Z FERx (g — ] < 7).
i#]
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Thus

W@ <E Y f(ll—pl, R)nA, +Es > f(lg; — ¢ <) (B.6)

VA i#£]

Let us give an upper bound for the second term that we denote with W

W= (g — il < 7)

i#]

<3 Y A (A (1 + av3) F (11— ul, B) x(1l — m]| < r+V3)

I,mEZ3 1#£j

<E Y Y f(l=pl, Ry namna,x(|l = m| < 7 +V3)

<

I/\

1€Z3 meZ3

%Z S S = s R) (4, 4+ (L = m| < 7+ V)

lEZ3 meZ3
Zf —pl, R)nd, Y x(l—m| <7 +V3)
lez3 mezZ3

2O flm = Ry, Y (L alr + V3 x(l = m| < r+V3)

mezZs3 lez3

PN (- pl, R)nA, < Eg > f(Il— pl, R)ni,,

lez3 €73

where we denote with x;(4,;) the characteristic function of the set {i € N : ¢; € A;}
and with n,, the number of particles in the unit cube A; with its center in /. Moreover
we have used the fact that, for a fixed {, >, s x(|l —m| < r +1/3) is bounded by the
cardinality of the set Z*N B(0,r + v/3).

Thus for W(® we have:

W@ < By f(l =l R)ni,. (B.7)

lez3

Let us give a similar estimate for W ®)

From the forth property of (2.17) we have:

84



thus

WO < By Y xllg -4l 2 ) —

ieN JEN ‘qz ‘
1
_ESZZf“’ (kr < |g; — qj|<(k+1)r)| T
=1 i 9 — g

< E ; lZ;xl
x (1+av3) f(ll = ul, R) x(kr — V3 < |l—m| < (k+ 1)r +v/3)

1
p kr)?
Ef(|l—,u| R)nana, x(kr — V3 < |[l—m| < (k+1)r +V3)

,ZS

< Ey

Eﬂg

w‘gj?

f: Z( — pl, R)ni;,

k:l I,mée
73

+ f(im = pl, R)(1 + = m|)*n )
X X(kr—\[< |l — m)| <(k+1)7‘+\/§)

<Emz S SV (RRULS

lez’
~ k(1 k+1
+E11Z ( +a(((1:7:) )T+f Zf ‘m ,U| R)nA
k=1 mezZ3
< By Zf(‘l — pf, R) nQA,

leZ3

(B.8)

where in the last inequality the convergence of the series follows from the bound on 7.

Thus we have:

ST G i+ 8) < O S S il R) A,

€N JEN: lez3
J#
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and then the proof easily follows. B
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Appendix C

Proof of Corollary 2.2

For the first inequality we prove a stronger bound: there exists a positive constant L
such that:
Q(X;p, R) < LW(X; p, R). (C.1)

From definition (2.6) we can write:

2
< _Z
QUG R) =) (s — ul < R)5
€N
1 1
+ 3 xla - <B(b+5 Y 6F)
€N
qjeB(u R)
1
+ 52 x(g —nl < R) Z oy
€N
qjeB(M R)
=T+U% 4+ U3, (C.2)
where
22
T =) xl(g—n <R
1EN
1 1
U= xla—ul < B)(b+5 3o o))
€N FESH
9 E€EB(u,R)
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1
O=2) x(a—ul <R) Z 6%

ieN
qjeB(u R)
Because of the boundness of the weight-function fi“’R and from the positivity of the
interaction energy (2.29), we have

- 2 ~
T< Loy f < LW (X, R), (C.3)
1EN

The second term can be easily bounded by

_ 1
U <L) b+ 5 > x(la — ul < R)x(lg; — ul < R) |8

iEN i#j
A~
< (14+av3) LY f(ll— pl, R)na,
lez3
6™ oo
+ D Xl — pl < R)x(lgi — g5 < 7). (C.4)
1£]

where for the first addendum we have used the third property of Proposition 2.2.
Thus

U <Ly Y f(ll—ul, R)nA, +Ls Y (g — g5l < 7). (C.5)

lez3 i#]

Let us give an upper bound for the second term that we denote with U:

=Y (g — gl <)

i#]
<3 S X A)XG (AR (1 +avB3) f(IL - pl, R) (|l - m| < 7+ V3)
I,mEeZ3 1#j
< LSS f(L = ul, Ry nana, x(l = m| < r+V3)
IEZ3 mEeZ3

<SS Al R) (0, + A (- m] < 7 V)

IEZ3 mEeZ3
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IN

S Rl Ry, Y (- ml < 74 )

1ez3 meZ3

+ % Z f(|m—,u|,R)n2AmZ(1+a(r+ﬁ))AX(‘l_m|§T+\/§)

mezZ3 lez3

< Lsr®™ Y f(l =l Ryna, < Ls Y f (L= pl, Ry,

lez’ lez3

where we denote with x;(4;) the characteristic function of the set {i € N : ¢; € A;}
and with na, the number of particles in the unit cube A; with its center in [. Moreover
we have used the fact that, for a fixed [, > s x(|l — m| < r +1/3) is bounded by the

cardinality of the set Z3 N B(0,r + V/3).
Thus for U we have:

1)<L7§:f — pl, R) n3,.

lez3
Let us give a similar estimate for U®?)
From the forth property of (2.17) we have:

2 <G Y Y xlg -l < R)x(lg; — gl > )

1€N jeN

<Led Y x(lg - qg|>r)‘

1€EN JEN

4 — g5
—q;|”

kmam 1

<L > ST (ke < g — gl < (k+ 1))

k=1 14,j

where k.. = [4/3 7 R3/r] + 1, then:

|Qi— '|7’

kmam

Lsz ZZX’ Ap)x;(A

lme sz

X (1+oz\/_) (U= pl, R) x(kr — V3 < |l =m| < (k+1)r +V3)
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X Zf(|l — ul, R) nana, x(kr — V3 < [l —=m| < (k+1)r +V3)

l,me
73
Z kmam 1
9 A
<3 D Gyros Y=l Ryma,f (m =l R)(1+ all = m|)*nd.)
k=1 I,me
73

xxwr—¢_<U—mw<w+)r+¢®

<sz ik = > fl = ul B)nd,

lez3
21+ a((k + 1)r +v3))
+ Lllz )7) z f(Im = ul, R) nA
meZ3
< Lp Z F(l = pl, R)nj, (C.7)

lez3

where in the last inequality the convergence of the series follows from the bound on 7.
Thus, from Lemma 2.1 we have:

Q(X;p, R) < T+UD +UP < LiyW(X;p, R),

and then the proof of the first inequality of the Corollary follows.
Let us consider the second one.
From the definition of Q(X; 4, R) and from the superstability of the potential we have:

QUX;umR)>A Y nd, >Lu Y f(k—pl,R)ni,, (C8)
kez3: kezZ3:
[k—u|<R |k—pu|<R

and from Corollary 2.1:

2
: Vi
W(X;pR) < Ca Y f(li—pl, Ryni, + > f7

1€73: 1€EN
<oy fli-ul RN,
k>0 i€Z3:

i€ B(u,(k+1)R)\B(u,kR)
2

+ ZZX(kRS lg; — p| < (k+1)R) fiu:RU_i

‘ 2
k>0 eN
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< lez % Z nii

k>1 i€z
leB(M (k+1)R)

X;p, (k+1)R)
lc>0
k>1 k + l)R)
Dividing by R3
W(X; pu, 1 QX;u, (k+1)R
W(X;p, R) u Iy Q s, (K +1) ),
=1 =3 ((k+1)R)®

from which, taking the supremum over p € R?® and over R > ¢ (|u|):

W(Xa My R) T 1 T
sup sup ————— < LigQs —— < L9 Qg,
woBsu(l) A ; kA2 ‘

being A > 4. [
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Appendix D

Proof of Lemma 2.3

i) Since
1 n

= lyl\*
(14+a%)
then, from the first two properties of Proposition 2.2, ZQ() > (0 such that

R _ T R
in §L20n)‘fi“ .

)
(1+a%)

By Corollary 2.1 it follows that

2
nR U;
W(X;,u,nR)SE fi"’RE%—CC; E f(\k—u|,nR)n2Ak

1€EN kez?
< Loy W(X; 1, R)
+ Cy Logn® Z Sk = pl,R)ni, < Csn* W (X;p, R).

keZ3

ii) From the definition of the weight-function we have f(z, Ry) < f(z, Ry), if Ry < Ry.
Using again Corollary 2.1 we get

2
Vi
W(X;pR) < Cay ) f(lk—pul Ryn}, + > f75

kez3 i€N
< Gy f(lk = pl,nR)n}, +W(X;unR)
keZ3

< CoW(X;pu,nR).
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iii) We use the superstability of the interaction and the bound (C.1):

W(X;p, R) > %Q(X;M,R)

1

> =2 X(a =l < R)x(la; - nl < B) &
(2

>@N2(XNR)—BLN(XNR).

- R3 P el 2L 1

Since the interaction energy is positive:

NQ(X,,U,,R) S Z22}33 (N(X):U’aR) +W(Xa:u': R)) S Z23]%31/1/()(;/J'aR)'

iiii) Let us cover the ball B(u, R) by a collection of disjoint cubes {A, }qez3 of side one.
Therefore

S xllai — gl < p)x(gi — il < B)x(lgj — ul < R) < D" s, ma, + Z MAn:

i#j (a,8)

where («, 3) means the sum restricted to all pairs of different cubes at distance not
larger than p. Thus we have the bound:

> x(a — g5l < p)x(la — pl < R)x(|g; — p| < R)

i#]
< Z nAa + = Z (nA —f—nA ) < ZQ4p3Z nQAa
(,8)
< Las p° Z fli=pl,R)nA, < Los P° W(X;p, R). W (D.2)

1€Z3
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Appendix E

Derivation of the viscous friction
force

We give a derivation of the equation of motion (3.6)-(3.7) in the one-dimensional case,
the d-dimensional case following by using theorems on multiple integrals. We will obtain
the equation of motion from the time derivative of the total momentum of the system
gas—+disk, which is conserved along the motion:

%/dm/ dvvf(z,v;t)+ V(t) = 0. (E.1)
R R
Let us denote by
FRX (), v;t) = [z, v;t), (E.2)
FAX@, vt = lim (e 0;0). (E-3)

Let us calculate the first term in (E.1). Using (3.1) and the fact that

T—>—00 T—r+00 s

B\ 12
lim f(z,v;t) = lim f(x,v;t):p( > e (E.4)

we have:

d X(t) +00
p / dx/dvvf(x,v;t)+/ dw/dvvf(:v,v;t)
L2 Y R X(#) R

= /Rdvva(X(t),v;t)V(t)—/Rdvva(X(t),U;t)V(t)
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X(t) +o00
+ /Rdv/_oo dxv(—vawf(x,v;t))—k[Rdv/X(t) dz v(—v0, f(z,v;t))
_ /Rdva(t)fL(X(t),v;t)—/Rdva(t)fR(X(t),v;t)
- /RdUUQfL(X(t),U;t)-i-/RdU’UQfR(X(t),U;t)
_ /Rdvv(V(t)—v)fL(X(t),v;t)—/Rdvv(V(t)—v)fR(X(t),v;t).

(E.5)
We consider first the integral involving f¥, taking into account the fact that
FEX(@),v5t) = FE(X (), v58) x({v 2 V()})
HE(X (), v58) x({v < V(B)}), (E.6)

with the definition of fi given in (3.5), since for v > V/(¢) the velocity v is necessarily
a pre-collisional velocity (we are on the left side of the obstacle), while for v < V (¢) the
velocity v is a post-collisional velocity.

Hence
[ avetv e - o,
V(t) +o00
= /_ dv' ' (V(t) — o) FE(X(8),0';t) + /V(t) dvo(V(t) —v) fE(X(t),v;t). (E.T)

Performing the change of variable v' = 2V(¢) — v in the first integral in the r.h.s. of
(E.7), we have

V(t)
(E.7) = —/+ dv 2V (t) —v)(=V (t) +v) fE(X(t), 2V (t) — v;t)

ﬁ/“muw@_mﬁmmwm, (E)

V(t)

and for the continuity of f% along the collisions, by (3.4) it is

FLX(@),2V (1) = vit) = fL(X (1), v;t), (E.9)
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therefore

+oo

(E&::/ dv (V (1) = v) (v — 2V (£) + ) fHX (1), 03 1)

V(t)

~ / o (V(t) — 02X (1), 03)

V(t)

In the same way it can be handled the integral with f# in (E.5), arriving at:

V(t)
(Emzz/ dv (V (1) — v)2fR(X (1), v: )

o0

-2 o (V) = 2P (), v ),

v(t)

which is the friction term (3.7) in the one-dimensional case.
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