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Introduction

As it is well known, the fundamental problem in algebraic geometry is to classify
algebraic varieties, that is: sorting them in isomorphism classes. In its absolute
generality this problem goes far beyond the techniques now available, nonetheless it
can be considered as a ‘guiding problem’, that offers impulse to further research in
geometry and that allows geometers to measure their achievements.

A first approach to this ‘guiding problem’ consists, besides restricting the investi-
gation to a particular class of algebraic varieties - in our case complex and projective
- of relaxing the notion of isomorphism and focus on the classification of algebraic
varieties up to birational equivalence, namely identifying algebraic varieties that
have isomorphic Zariski open sets, or, equivalently, that have isomorphic fields of
rational functions.

It is then clear the importance of understanding the behavior of certain numerical
and geometrical birational invariants that are canonically associated to an algebraic
variety. More specifically recall that if X is a smooth complex projective variety
of non-negative Kodaira dimension and KX is its canonical divisor then for every
n ∈ N+, we can consider both the n-th plurigenus Pn := h0(X,nKX) and the
associated rational pluricanonical map φ|nKX | : X 99K P(H0(X,nKX)). If we
concentrate our attention to varieties of general type (i.e., of maximal Kodaira
dimension) of dimension d then, by definition, the plurigenera Pn grow like nd and
φn is birational (meaning ‘birational onto its image’) for n sufficiently large. It is
then legitimate to wonder if it is possible to find an explicit number nd, potentially
the minimal one, such that nd does not depend on X (but only on d) and Pn 6= 0 or
φn is birational for all n ≥ nd.

For curves and surfaces of general type results of this kind are already known
since a long time: by simple applications of Riemann-Roch theorem, for curves
we have that Pn 6= 0 as soon as n ≥ 1 and |nKX | is birational as soon as n ≥ 3;
for surfaces Bombieri proved in 1973 (see [5]) that Pn 6= 0 for n ≥ 2 and |nKX | is
birational for n ≥ 5.

For varieties of higher dimension recent advances have been made independently
by Hacon-McKernan (see [20]) and Takayama (see [36]) using ideas of Tsuji. They
proved that actually, and for every d, this nd exists, even if their methods do not
directly allow us to compute it. In the case of threefolds J.A. Chen and M. Chen
proved in [8] that Pn > 0 for every n ≥ 27 and that |nKX | is birational for all
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n ≥ 73.
On the other hand it is reasonable to expect effective statements, and even better

ones in the case of threefolds, if one requires in addition that some invariant of X is
big. This is the content of an article of G.T. Todorov (see [37]) who proved that if the
volume of X (see def. 1.3) is sufficiently large then P2 6= 0 and |5KX | is birational.
Notice that the hypothesis about the largeness of the volume is not too restrictive
since varieties of general type of dimension d and volume bounded by a constant M
are birationally bounded (see [20, cor. 1.2]); or, in other words, varieties of general
type of dimension d and bounded volume are birational to subvarieties of P2d+1 with
bounded degree, hence they can be birationally arranged in a finite number of families.

In this work we develop a strategy to effectively study non-vanishing (and size)
of pluricanonical systems and birationality of pluricanonical maps for varieties of
general type of any dimension and large volume, also with respect to the genus of
the curves lying on the variety.

As a matter of fact we succeed in improving Todorov’s results for threefolds (also
studying higher plurigenera and higher pluricanonical maps) and in finding effective
results even for fourfolds and, partially, for fivefolds.

We also manage to give characterizations for threefolds of general type with
birational fourth pluricanonical map. We just need to assume that the volume is
sufficiently large: as far as we know this approach has never been considered before.

We will now give some details about the most significant results that we obtain.
In the case of threefolds of general type we prove the following theorems:

Theorem 0.1. (see theorem 2.2). Let X be a smooth projective threefold of general
type such that vol(X) > α3. If α ≥ 879 then h0(2KX) ≥ 1 and if α ≥ 432(n+ 1)− 3
then h0((n+ 1)KX) ≥ n, for all n ≥ 2.

Theorem 0.2. (see theorem 3.3). Let X be a smooth projective threefold of general
type such that vol(X) > α3. If α > 1917 3√2 then |lKX | gives a birational map for
every l ≥ 5.

In both cases we have much more precise estimates on α, depending on l and on
the genus of the curves lying on X. See theorem 2.2 and theorem 3.3, respectively.

We find analogous results also for fourfolds of general type. Using general facts
(see theorem 4.1 and theorem 4.6) and a lower bound on the volume of threefolds of
general type given by J.Chen and M.Chen (see [8]) we prove:

Theorem 0.3. (see corollary 4.4). Let X be a smooth projective fourfold of general
type such that vol(X) > α4. If α ≥ 1709 then h0(X, (1 +m)KX) ≥ n for all n ≥ 1
and all m ≥ 191n.

Theorem 0.4. (see corollary 4.8). Let X be a smooth projective fourfold of general
type such that vol(X) > α4. If α ≥ 2816 then |lKX | gives a birational map for every
l ≥ 817.
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As before, we have more precise estimates on α, depending on the genus of the
curves lying on X. See corollary 4.4 and corollary 4.8, respectively.

In the case of varieties of general type of dimension d, when l is sufficiently
large, we also find functions α1(d, l), α2(d, l) such that if vol(X) > α1(d, l)d then
either h0(lKX) 6= 0 or X is birational to a fibre space over a curve such that
the general fibre has small volume (see theorem 4.12) and if vol(X) > α2(d, l)d

then either |lKX | is birational or X is birational to a fibre space over a curve
such that the general fibre has small volume (see theorem 4.13); both these func-
tions depend on the lower bounds of the volume of varieties of dimension equal or
smaller than d−2, thus allowing us to find explicit results also in the case of fivefolds.

Unlike the fourfold case, the results about threefolds of general type are optimal
in the sense that there exist threefolds of arbitrarily large volume with P1 = 0 and
|4KX | not birational. Therefore another interesting question that arises naturally
when dealing with threefolds of general type is to study when |4KX | is birational. It
is clear that |4KX | cannot be birational if X is birationally equivalent to a fibration
over a curve B such that the general fibre is a minimal surface S with K2

S = 1 and
with geometric genus = 2, since in this case |4KS | is not birational. In general the
converse does not hold (see remark 3.11), but it turns out that it actually holds
when the volume of X is sufficiently large. We prove the following:

Theorem 0.5. (see corollary 3.10). Let X be a smooth projective threefold of general
type such that vol(X) > α3. If α > 6141 3√2 then |4KX | does not give a birational
map if, and only if, X is birational to a fibre space X ′′, with f : X ′′ → B, where B
is a curve, such that the general fiber X ′′b is a smooth minimal surface of general
type with volume 1 and geometric genus pg = 2.

Again, we have better estimates on α depending on the genus of the curves on
X: see corollary 3.10.

The birationality of |4KX | has already been analyzed also by Lee, Dong, M.Chen,
Zhang. Actually both Dong in [13] and Chen-Zhang in [10], requiring that the
geometric genus (rather than the volume) of X is sufficiently large (h0(KX) ≥ 7 for
Dong, h0(KX) ≥ 5 for Chen-Zhang), give characterizations for the birationality of
the fourth pluricanonical map. Note, however, that the largeness of the geometric
genus is not implied by the largeness of the volume (see remark 2.4).

The proofs of the above-mentioned results rest on the algebro-geometric tech-
niques of the minimal model program. More precisely they rest on the study of
singularities of pairs. The basic idea (already successfully applied by Angehrn-Siu,
Hacon-McKernan, Takayama, Todorov and many others) is to produce log canonical
centers of certain divisors, cut their dimension and then pull back sections from the
log canonical centers to the ambient variety. When for threefolds of general type
this cutting-down process is not fruitful then, following Todorov, we apply some
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results by McKernan about family of tigers to come down to study fibre spaces.

This thesis is organized as follows:

in Chapter 1 we fix the notation, recall the standard definitions and introduce
new ones. We also present some of the relevant techniques in the generality we will
need: when exact references are not available we will give also proofs;

in Chapter 2 we examine plurigenera for threefolds of general type and large
volume, studying their non-vanishing and their size;

in Chapter 3 we deal with the birationality of the nth canonical maps (n ≥ 5) for
threefolds of general type and large volume. As direct consequences we characterize
also such threefolds with birational 4th, 3rd or 2nd canonical map;

in Chapter 4 we study plurigenera and pluricanonical maps for varieties of general
type of large volume and any dimension. Giving up optimality, we give explicit
estimates for fourfolds and, in the sense already explained, also for fivefolds. As di-
rect corollaries we also recover some well-known results about surfaces of general type;

in Chapter 5 we present a first attempt to treat adjoint pluricanonical systems
for varieties of general type, but proving some results only for surfaces.
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Chapter 1

Preliminaries

1.1 Notation

We will work over the field of complex numbers, C. As in [31], [32] a scheme is a
separated algebraic scheme of finite type over C. A variety is a reduced, irreducible
scheme. A curve is a variety of dimension 1. A surface is a variety of dimension
2. A d-fold is a variety of dimension d. We will usually deal with closed points of
schemes, unless otherwise specified.

In our terminology a countable set is a set that has a bĳection over a subset of N,
the set of natural numbers. Thus it can be finite or infinite. By N+ we will denote
the set N \ {0}; by Q+ the set {q ∈ Q|q > 0}.

Unless otherwise specified a divisor or a Q-divisor is meant to be Weil. A divisor
is called Q-Cartier if an integral multiple is a Cartier divisor. Of course when we
work on smooth varieties Weil and Cartier divisors coincide.

Let q ∈ Q: we write [q] = xqy, pqq, {q} for the round-down (or integral part),
round-up and fractional part of q, respectively. Recall that [q] is the greatest integer
≤ q, pqq is the least integer ≥ q and {q} = q − [q].

If X is a variety and D a Weil-Q-divisor on X, when writing D =
∑
i qiDi we

will assume that the Di’s are distinct prime divisors. Given the case, we also define
the round-down of D, [D] = xDy, and the round-up of D, pDq, as [D] :=

∑
i[qi]Di,

pDq :=
∑
ipqiqDi.

A projective morphism f : X → Y is called an (algebraic) fibre space (according
to Mori) if X, Y are smooth projective varieties, f is surjective and f∗(OX) = OY .
Notice that, under this definition, f∗(OX) = OY is the same as requiring f to have
connected fibres.

1



2 1. Preliminaries

1.2 Topological issues

In this section we will recall some basic definitions and state some easy results
of topological flavour that will be used in the proof of the main theorems.

First of all we just recollect how the operation of closure behaves in relation
with the operation of union and intersection and what this implies if we consider
the Zariski topology:

Lemma 1.1. Let X be a topological space and Ai subsets of X for all i ∈ I. Then
∪i∈IAi ⊇ ∪i∈IAi and ∩i∈IAi ⊆ ∩i∈IAi. If |I| <∞ then ∪i∈IAi = ∪i∈IAi.

Proof. ∪i∈IAi ⊇ ∪i∈IAi ⊇ Ai for all i ∈ I, therefore ∪i∈IAi ⊇ Ai for all i ∈ I.
Hence ∪i∈IAi ⊇ ∪i∈IAi.

Since Ai ⊆ Ai for all i ∈ I, ∩i∈IAi ⊆ ∩i∈IAi. An arbitrary intersection of closed
sets is closed, hence ∩i∈IAi ⊆ ∩i∈IAi.

If |I| < +∞ then ∪i∈IAi is closed and contains ∪i∈IAi. Therefore ∪i∈IAi ⊆
∪i∈IAi and we are done.

Lemma 1.2. Let X be a scheme and A ⊆ X. If A = ∪ki=1Zi, irredundant de-
composition into irreducible closed sets (cf. [21, I, 1.5]), then, for all 1 ≤ i ≤ k,
A ∩ Zi = Zi.

Proof. First of all, let us recall that if an irreducible closed set Y is contained in
a finite union of closed sets Wj , 0 ≤ j ≤ s < +∞, then, by the irreducibility
hypothesis, there exists j such that Y ⊆Wj .

Fix j ∈ {1, . . . , k}. Zj ⊆ A = A ∩ (∪ki=1Zi) = ∪ki=1(A ∩ Zi) = ∪ki=1A ∩ Zi by
lemma 1.1. Therefore there exists i such that Zj ⊆ A ∩ Zi. Since Zj ⊆ Zi, by the
irredundancy hypothesis i must be equal to j, hence Zj ⊆ A ∩ Zj .

Also, since Zj is closed, Zj ⊇ A ∩ Zj and so we can conclude.

The following lemma asserts that every dense set (in the Zariski topology) is
separable, in the sense of general topology (cf. [28, p. 49]):

Lemma 1.3. Let X be a scheme of dimension n. Let A ⊆ X be a Zariski-dense set.
Then there exists a Zariski-dense countable set B ⊆ A.

Proof. Without loss of generality we can suppose X to be irreducible: actually if
X = ∪ki=1Zi, irredundant decomposition into irreducible closed sets, then, by lemma
1.2, A ∩ Zi is Zariski-dense in Zi for all i.

Now assume X irreducible. If n = 0 the statement is clear, otherwise we will
prove that if A ⊆ X is a Zariski-dense set then, for all 1 ≤ d ≤ n, there exists a
countable set Bd ⊆ A such that Bd is an irreducible variety of dimension at least d.
d = n is our thesis.

Let d = 1. Since A is Zariski-dense, A has at least infinitely countable many
elements. Choose B ⊆ A with |B| = |N|. B has dimension at least 1. B = ∪ki=1Ci,
irredundant decomposition into irreducible closed sets. There exists j such that Cj
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has dimension at least 1. Let B1 := B ∩Cj . By lemma 1.2, B ∩ Cj = Cj and so the
case d = 1 is proved.

For 1 ≤ d ≤ n − 1 suppose we have constructed BA
d for every A ⊆ X Zariski-

dense. Let us construct BA
d+1. Let B1

d ⊆ A be a countable set such that Y1 = B1
d

is an irreducible closed set of dimension at least d. If the dimension is at least
d + 1 we are done. Otherwise let us consider A1 := A \ Y1. A1 is Zariski-dense,
in fact X = A = (A ∩ Y c

1 ) ∪ (A ∩ Y1) = A ∩ Y c
1 ∪ A ∩ Y1 by lemma 1.1 and, since

X is irreducible and A ∩ Y1 ⊆ Y1 ( X, we have that A1 = A \ Y1 = A ∩ Y c
1 = X.

There exists B2
d ⊆ A1 a countable set such that Y2 := B2

d is irreducible and of
dimension at least d. Note that Y2 is different from Y1, since Y2 contains points not
in Y1. If dimY2 ≥ d+ 1 then we are done, otherwise we go on: Ak := A \ (∪ki=1Yi)
is a Zariski-dense set; let Bk+1

d ⊆ Ak a countable set such that Yk+1 := Bk+1
d is

an irreducible closed set of dimension at least d. Note that Yk+1 is different from
Y1, . . . , Yk. If dimYk+1 ≥ d+ 1 we are done, otherwise at the end we have countably
many countable sets Bi

d such that Yi = Bi
d are irreducible, distinct, closed sets

(i ∈ N). Let B′ = ∪i∈NB
i
d. B′ is a countable set and B′ ⊇ ∪i∈NBi

d = ∪i∈NYi,
therefore B′ contains an irreducible closed set of dimension at least d+ 1. As before,
a suitable choice (cf. lemma 1.2) of Bd+1 ⊆ B′ will do.

Definition 1.4. Let X be a variety. Let P ⊆ X. P is called very general if it is
the complement of a countable union of proper closed subvarieties of X. P is called
countably dense if it is not contained in the union of countably many proper closed
subvarieties of X.

As we will see in the following lemma, countable density is a property stronger
than Zariski-density but not as much constraining as being very general. If (very)
general sets will usually be the starting point of our analysis it is also true that
manipulating these sets leads us to face countably dense sets rather than other (very)
general sets. For example if we randomly decompose a very general set into a finite
(or countable) union of disjoint sets then we loose information about being very
general but we rest assured that at least one of the new sets is countably dense.

Lemma 1.5. Let X be a variety of dimension d ≥ 1 and let A,B,C ⊆ X.

1. If A is countably dense then A is Zariski-dense.

2. If A is very general then A is countably dense (and hence Zariski-dense).

3. If A is countably dense and B is very general, then A ∩B is countably dense.

4. If A \ B ⊆ C, with A very general, then either B is countably dense or C
contains a very general subset of X.

Proof. 1. Every closed set is a finite union of closed irreducible subsets (cf. [21,
I, 1.5]). So, by the very definition of countably dense, A = X.
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2. By hypothesis A = X \ ∪i∈NVi, Vi ( X proper closed subsets of X. If A is not
countably dense, then A ⊆ ∪i∈NZi, where Zi are proper closed subsets of X.
Therefore X = ∪i∈NVi ∪ ∪i∈NZi, a countable union of proper closed subsets.
But this is not possible, since X is irreducible.

3. By hypothesis B = X \∪i∈NVi, Vi ( X proper closed subsets of X. If A∩B is
not countably dense, then A∩B ⊆ ∪i∈NZi, where Zi are proper closed subsets
of X. Then A∩ (X \ ∪i∈NVi) ⊆ ∪i∈NZi, that is (A∩ (X \ ∪i∈NVi))∪∪i∈NVi ⊆
∪i∈NZi ∪ ∪i∈NVi, therefore A ⊆ ∪i∈NZi ∪ ∪i∈NVi, contradiction.

4. By hypothesis A = X \ ∪i∈NVi, Vi ( X proper closed subsets of X. If B is not
countably dense then, by definition, B ⊆ ∪i∈NZi, where Zi are proper closed
subsets of X. Hence X \ (∪i∈NVi ∪ ∪i∈NZi) ⊆ A \B and we are done.

If we have a family of points and divisors through them, then the countable
density of the set of points is the right property that allows us to extract a finite
number of divisors that are “unrelated”, in a certain sense:

Lemma 1.6. Let X be a variety of dimension ≥ 1 and let A be a countably
dense subset of X. Suppose that for all x ∈ A there exists a divisor Dx such
that x ∈ Supp(Dx). Then there exist x1, x2 ∈ A such that x1 6∈ Supp(Dx2) and
x2 6∈ Supp(Dx1).

More generally, under the same hypotheses, for every n ∈ N there exist x1, . . . , xn ∈
A such that xi 6∈ Supp(Dxj ) for every i 6= j, 1 ≤ i, j ≤ n.

Proof. By lemma 1.5 and lemma 1.3, there exists a countable, Zariski-dense set
B ⊂ A. For all b ∈ B consider Db. V := A \ ∪b∈BSupp(Db) is non-empty (otherwise
A ⊆ ∪b∈BSupp(Db), contradiction). Let x1 ∈ V . Since B is Zariski-dense, Dx1

cannot pass through b for every b ∈ B. Let x2 such that x2 6∈ Supp(Dx1) and we
are done.

For the general case choose B1 := B as before. We define B2, . . . , Bn−1 in-
ductively: suppose we have already defined B2, . . . , Bi; since Vi := A \ ∪ik=1 ∪b∈Bk
Supp(Db) is still countably dense, and hence Zariski-dense, we can choose a countable
Zariski-dense set Bi+1 ⊂ Vi. Now we define x1, . . . , xn inductively. Choose a point
xn ∈ Vn−1. Suppose we have already defined xn, xn−1, . . . , xi+1. Since Bi is Zariski-
dense, there exists a point xi such that it does not belong to ∪nk=i+1Supp(Dxk).
x1, . . . xn, defined in this way, respect the requirements on the associated divisors,
and we are done.

Note that Zariski-density is not enough to obtain the same conclusion: for ex-
ample consider, on a curve, a countable infinity of points {x1, . . . , xn, . . .} and, for
every xn, the divisor Dn = x1 + . . .+ xn.

When we will study pluricanonical systems on a projective variety X it will
be clear that we can have better explicit results if we know that we do not need
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to deal with curves of small volume (i.e., of small genus). That is why we define
g-countably dense varieties as varieties in which we cannot avoid curves of genus
< g, not even “very generally”. More precisely we give the following

Definition 1.7. Let X be a projective variety. Let g ∈ N+. Let

Ωg :=
⋃

C curve ⊆X,
g(C)<g

C

(where g(C) is the geometric genus of the (possibly singular) curve C). Then we
will say that X is g-countably dense if Ωg is countably dense, that is: Ωg is not
contained in the union of countably many proper closed subvarieties of X.

Remark 1.8. Clearly, if X is not g-countably dense then X is not g′-countably dense
for every g′ ≤ g. Moreover if X is not g-countably dense then, by definition, there
exists a very general subset Λ of X such that for every x ∈ Λ and every curve C
through x then g(C) ≥ g.

Remark 1.9. Being g-countably dense is a birational property.

If X is a projective variety and Λ a very general subset of X, we can define

gX,Λ := min{
x∈Λ,C curve⊆X,
x∈C

} g(C)

and
gX := max{

Λ⊆X,
Λ very general

}{gX,Λ} .
Note that the max is well defined: just consider a very ample divisor A on X and
observe that for every point x there is a curve passing through x and of geometric
genus ≤ pa(An−1), where pa is the arithmetic genus.

Remark 1.10. Every projective variety X is not gX -countably dense but it is (gX +1)-
countably dense. In fact by the definition of gX there exists Λ very general such
that gX,Λ = gX , hence ΩgX ⊆ X \ Λ, which is not countably dense. Conversely, if
X were not (gX + 1)-countably dense then by remark 1.8 there would exist a very
general subset Λ for which gX,Λ ≥ gX + 1: contradiction.

To prove that the maps we will consider are birational we will essentially prove
that they separate two very general points. Note that, by the following lemma, this
is actually enough.

Lemma 1.11. Let X and Y be projective varieties, with dim(X) ≥ 1 and let
φ : X 99K Y be a dominant rational map. If there exists a very general set U ⊆ X
such that φ separates every couple of points in U then φ is birational.

Proof. By resolution of the locus of indeterminacy and resolution of singularities we
can suppose that X is smooth and that φ is a projective morphism. Let d be the
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dimension of X. By definition, there exist countable many proper closed subvarieties
of X, {Vi}i∈N, such that U = X \ ∪i∈NVi. By generic smoothness (see [21, cor.
III.10.7]) there exists a nonempty open set W ⊆ Y such that φ := φ|φ−1(W ) is a
smooth morphism. Hence, in particular, φ is flat and all the fibres are equidimensional
of a certain dimension k (see [21, thm. III.10.2]). Since φ−1(W ) is open and nonempty
(because φ is dominant), then φ−1(W )∩U 6= ∅. Let p ∈ φ−1(W )∩U . By hypothesis
we know that for any other point u ∈ φ−1(W )∩U , u 6= p, we have that φ(p) 6= φ(u),
hence p is an irreducible component of φ−1(φ(p)), thus k = 0 and so dim(Y ) = d.
Moreover ∃s ∈ N+ such that |φ−1(w)| = s for any w ∈ W . Let U ′ := Y \ ∪φ(Vi).
Since dim(Y ) = d then U ′ is a very general subset of Y , hence U ′ ∩W 6= ∅. If
q ∈ U ′ ∩W then φ−1(q) ⊂ φ−1(W ) ∩ U . Since φ separates points in φ−1(W ) ∩ U ,
then s = 1, i.e., φ is an isomorphism and so φ is birational.

1.3 Volume and big divisors

Definition 1.12. Let X be a projective variety of dimension d and let D be a
Cartier integral divisor. Then the volume of D, vol(D), is just

lim sup
m→+∞

h0(X,mD) · d!
md

.

It turns out that this limsup is actually a limit. Moreover by the homogeneous
property of the volume we can extend this definition to Q-Cartier divisors. It
occurs that the volume of a divisor does depend only on its numerical class. If
X is nonsingular and KX is its canonical bundle then vol(X) := vol(KX). Since
the volume of a divisor is a birational invariant then if X is singular take any
desingularization X ′ of X and set vol(X) := vol(X ′). If vol(D) > 0 then D is called
big. If KX is big then X is called a variety of general type. For all these matters see
[31, 2.2.C].

Example 1.13. Let X be a projective variety of dimension d and let D be a big
and nef Cartier integral divisor. Then, by asymptotic Riemann-Roch (see [31, cor.
1.4.41]), we have that vol(D) = Dd.

Definition 1.14. Let X be a projective variety, let V ⊆ X be a subvariety of
dimension d ≥ 1 and let D be a Cartier integral divisor. The restricted volume of D
along V is

volX|V (D) := lim sup
m→+∞

h0(X|V,mD) · d!
md

,

where
H0(X|V,mD) := Im

(
H0(X,mD)→ H0(V,mD|V )

)
and h0(X|V,mD) is its dimension.

Notice that if V = X then volX|V (D) = volX(D) = vol(D). If V 6⊆ B+(D)
then the limsup is a limit and it actually depends only on the numerical class of D.
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Moreover, as in the case of the volume, the definition can be extended to Q-Cartier
divisors. For all these matters see [17, sect. 2].

Example 1.15. Let X be a projective variety and let A be an ample integral Cartier
divisor. By Serre’s theorem (see [31, thm. 1.2.6]) the restriction maps are eventually
surjective. Moreover A|V is ample on V , hence volX|V (A) = volV (A|V ) = (A|V )d =
Ad · V .

Example 1.16. Clearly volX|V (D) ≤ volV (D|V ), but it may very well happen that
volX|V (D) < volV (D|V ). For example, let X be a smooth projective surface and
let D be a Cartier integral divisor on X. Consider µ1 : X ′ → X, the blow-up of
X at a point, and its exceptional divisor E1. Finally, consider µ2 : X ′′ → X ′ the
blow-up of X ′ at a point living on E1. Call E2 the exceptional divisor of µ2 and, by
a slight abuse of notation, denote by E1 the proper transform of E1 under µ2. Let
µ := µ1 ◦ µ2. Let B := µ∗(D) + 2E1 + E2. OE2(B|E2) = OE2(1), hence B|E2 is big
on E2. On the contrary, for every m ∈ N+, consider

0→ OX′′(mB − E2)→ OX′′(mB)→ OE2(mB|E2)→ 0.

By Fujita’s lemma (see [27, lemma 1-3-2(3)]):

H0(X ′′,mB − E2) = H0(X,mD) = H0(X ′′,mB),

hence for every m ∈ N+ the restriction map H0(X ′′,mB)→ H0(E2,mB|E2) is the
null map. Therefore volX′′|E2(B) = 0.

Thus the volume of an integral divisor measures the number of its sections, but
only asymptotically, while the restricted volume measures the number of sections of
the restriction mD|V that can be lifted to X, but, again, only asymptotically. Even
so, one can hope (in certain cases) to obtain information also about actual multiples
of the divisor.

The technique to pass from the limit to effective numbers has been developed
by Angehrn and Siu for their famous theorem: the key point is to find a specific
subvariety and then prove that the restriction map (for the given divisor) is surjective.
Both to produce the subvariety and to study the surjectivity of the restriction map,
one needs to use particular techniques, such as the Tie Breaking (see [29, prop. 8.7.1]
and [7, thm. 3.7]) or Nadel’s vanishing theorem (see [32, thm. 9.4.8]), that require
the divisor to be ample (or big and nef). When the divisor is not ample but only
big then we can use local analogues: in fact a big divisor is ample outside a closed
subset. The following definitions and lemma will make this clearer:

Definition 1.17. Let X be a variety, let D be a Q-Cartier divisor and let p ∈
N+ be such that pD is integral. The stable base locus of D is the algebraic set
B(D) =

⋂
m≥1Bs(|mpD|), where Bs(|mpD|) is the set-theoretic base locus of the

linear system |mpD| with the convention that Bs(|mpD|) = X if |mpD| is empty
(cf. [16, §1] or [31, def. 2.1.20, rmk. 2.1.24]). By [31, prop. 2.1.21] actually there
exists an integer m0 such that B(D) = Bs(|km0D|) for all k ≥ 0.



8 1. Preliminaries

Unfortunately these loci do not depend only on the numerical class of D. Naka-
maye then suggested to slightly perturb D: the augmented base locus of D is defined
as B+(D) = B(D−εA) for any ample A and sufficiently small ε ∈ Q+. This definition
does not depend on A or on ε (provided it is sufficiently small). Moreover D is big
if and only if B+(D) is a proper closed subset of X (see [16, §1 and ex. 1.7]). The
augmented base locus and restricted volumes are closely related notions: in fact,
generalizing Nakamaye’s theorem from big and nef Q-Cartier divisors to arbitrary
Q-Cartier divisors, Ein et al. proved in [17, thm. C] that

B+(D) =
⋃{

V :V subv. of X,
dim(V )≥1,
volX|V (D)=0

}V

Lemma 1.18. Let X be a projective variety and D a big Q-Cartier divisor on X.
Then there exists ε > 0 such that for every ample Q-Cartier divisor A, ||A|| < ε, and
for every x 6∈ B+(D) there is an effective Q-Cartier divisor E such that x 6∈ Supp(E)
and D ∼Q A+ E.

Proof. By [16, §1], [32, 10.3.2] and [31, 2.1.21], there exists m ∈ N such that mD,
mA are integral divisors and B+(D) = B(D−A) = Bs(|mD−mA|). Since x 6∈ B+(D)
then there exists an effective divisor F ∈ |mD −mA| such that x 6∈ Supp(F ). Set
E := F/m. D ∼Q A+ E and we are done.

Remark 1.19. We could have chosen E to skip n points not in B+(D).

Remark 1.20. If D is a big Q-Cartier divisor then we have

B+(D) =
⋂{

E:E Q-Cartier divisor,
E effective,
D−E ample

} Supp(E),

where ⊇ comes from lemma 1.18 and ⊆ from its converse: if there exists an effective
Q-Cartier divisor E such that x 6∈ Supp(E) and D ∼Q A+ E, for a certain ample
Q-Cartier divisor A, then x 6∈ B+(D). In fact B+(D) = B(D− εA) (for a sufficiently
small ε ∈ Q+) = Bs(|mD −mεA|) (for a sufficiently large and divisible m ∈ N);
since for a sufficiently large and divisible m we have that m(1− ε)A is very ample
and that mD −mεA ∼Z m(1− ε)A+mE then Bs(|mD −mεA|) ⊆ Supp(E) and
thus x 6∈ B+(D).

Notice that, because of the properties recalled above, some authors refer to
B+(D) as the non ample locus of D.

Since, as explained before, our analysis will heavily use the fact that varieties
and subvarieties have sufficiently large volumes, it is fundamental, when dealing with
varieties of general type, to accurately avoid subvarieties not of general type. This is
possible by the following well-known fact (see, for example, [20, proof of 1.1]):
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Lemma 1.21. Let X be a projective variety of general type. Let W be the union of
all subvarieties of X not of general type. Then W is contained in a countable union
of proper subvarieties of X.

Proof. Possibly considering a resolution of singularities, we can suppose that X is
smooth.

For any polynomial h = h(t) ∈ Q[t] consider the Hilbert scheme Hilbh(X) that
parametrizes closed subschemes of X with Hilbert polynomial h. Consider also its
universal family Yh ⊆ Hilbh(X)×X and the two natural projections π : Yh → X

and f : Yh → Hilbh(X) (see [34, par. 2]):

Yh π //

f
��

X

Hilbh(X)

If a fibre of f (and hence, by upper semicontinuity, a general fibre) is not of general
type then we will show that π is not dominant. This is enough to conclude, since
Q[t] is a countable set.

By contradiction, suppose that a general fibre of f is not of general type but π is
dominant. Potentially taking general hyperplane sections of Hilbh(X) and restricting
Yh to their preimages through f , we can suppose that dim(Yh) = dim(X).

By Stein’s factorization (see [21, cor. III.11.5]), π can be factored as follows:

Yh π //

γ

��

X

Ih
ψ

>>~~~~~~~~

where γ has connected fibres and ψ is a finite morphism. Clearly, in our case, ψ
is dominant and, since dim(Yh) = dim(X), γ is also birational.

Since X is a variety of general type then by [31, prop. 1.2.13] ψ∗KX is big on
Ih. Passing to a resolution φ : Ĩh → Ih we have that φ∗ψ∗(KX) is big on Ĩh. Since
ψ ◦ φ is dominant and X, Ĩh are smooth then we can apply [12, par. 1.41, (1.11)]:
K
Ĩh
∼ φ∗ψ∗(KX)+Ram(ψ◦φ), where Ram(ψ◦φ) is an effective divisor. Hence K

Ĩh

is big. Thus since Yh and Ĩh are birational then also Yh is a variety of general type,
i.e., KYh is big. Therefore if F is a general fibre of f we have that KF = KYh |F is
big. Contradiction.

Remark 1.22. If X is a projective variety of general type then, by lemma 1.21, there
exists a very general subset Λ of X such that every subvariety through any point of
Λ is of general type. Hence such an X is not 2-countably dense (see definition 1.7).

1.4 Multiplier ideals and singularities of pairs

First of all we recall some standard definitions:
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Definition 1.23. (cf. [32, 9.1.10, 9.3.55] and [30, 0.4]). A pair (X,∆) consists of a
normal variety X and a Q-divisor ∆ such that KX + ∆ is a Q-Cartier Q-divisor.

The pair (X,∆) is said to be effective if ∆ is effective.
A projective birational morphism µ : X ′ → X is said to be a log resolution of

the pair (X,∆) if X ′ is smooth, Exc(µ) is a divisor and µ−1(Supp(∆))∪Exc(µ) is a
divisor with simple normal crossing support.

Let L be an integral Cartier divisor on X, let V ⊆ H0(X,L) and let |V | be
the corresponding linear series. A projective birational morphism µ : X ′ → X is
said to be a log resolution for (X, |V |) if X ′ is smooth, Exc(µ) is a divisor and
µ∗|V | = |W |+F , where W ⊆ H0(X ′,OX′(µ∗L−F )) defines a base point free linear
series and F + Exc(µ) is a divisor with simple normal crossing supports.

Definition 1.24. (cf. [32, §9.2.A]). Let X be a smooth variety and let D be
a Q-divisor on X. The multiplier ideal sheaf J (D) = J (X,D) is defined in
the following way: fix any log resolution µ : X ′ → X of (X,D); then J (D) :=
µ∗OX′

(
KX′/X − [µ∗D]

)
. The definition does not depend on the chosen log resolution

and if D is effective then J (D) is actually an ideal sheaf.

The multiplier ideal associated to an effective Q-divisor D should be seen as
a way to measure, in a subtle way, the singularities of D (or, better, of the pair
(X,D)). For example consider X = A2, C1 = {y2 = x3 − x2} a rational curve with
a node in (0, 0) and C2 = {y2 = x3} a rational curve with a cusp in (0, 0). To
compute J (C1) we can just use, as a log resolution of (X,C1), a single blow up
at (0, 0) (we need it since C1 is singular, hence it has not simple normal crossing
support): J (X,C1) = OX(−C1). Moreover J (cC1) = OX for every 0 ≤ c < 1. To
compute J (C2) we need three successive blow-ups to make C2 with simple normal
crossing support. As before, J (C2) = OX(−C2), but this time J (cC2) = OX for
every 0 ≤ c < 5/6, while J (cC2) ( OX as soon as c ≥ 5/6. Therefore in a certain
sense multiplier ideals have recognized C2 to have worse singularities than C1.

It is important also to stress out that the use of the language of multiplier
ideals allows us to apply Kodaira-type non-vanishing theorems (such, for example,
Kawamata-Viehweg - see [32, thm. 9.1.18]) without the need to pass to a new space
every time in order to resolve singularities and obtain simple normal crossing divisors.

Definition 1.25. Let (X,∆) be a pair and µ : X ′ → X be a log resolution of
the pair. We can canonically write KX′ − µ∗(KX + ∆) ≡

∑
a(E)E, where the

sum is taken over all prime divisors E. These a(E) = a(E,X,∆) ∈ Q are called
discrepancies of (X,∆).

Given x ∈ X, (X,∆) is said to be klt at x or kawamata log terminal at x
(respectively: lc at x or log canonical at x) if for every E such that x ∈ µ(E) we
have that a(E) > −1 (resp.: a(E) ≥ −1). (X,∆) is klt or kawamata log terminal
(respectively: lc or log canonical) if it is klt (resp.: lc) at x for every x ∈ X. These
definitions do not depend on the log resolution µ.

We say that a subvariety V ⊂ X is a lc centre or log canonical centre for the pair
(X,∆) if it is the image, through a certain µ, of a divisor E of discrepancy ≤ −1.
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The valuation corresponding to this divisor is called a log canonical place.
A log canonical centre V for the pair (X,∆) is pure if it is log canonical at the

generic point of V .
A log canonical centre V for the pair (X,∆) is exceptional if it is pure and there

is a unique log canonical place lying over the generic point of V .
We will denote by LLC(X,∆, x) the set of all lc centres for (X,∆) that pass

through the point x.

If (X,D) is effective and X is smooth, then we can use equivalent definitions for
klt and lc, based on multiplier ideals:

Lemma 1.26. Let X be a smooth variety and let (X,D) be an effective pair. (X,D)
is klt (resp. lc) if and only if J (D) = OX (resp. J ((1− ε)D) = OX ∀ 0 < ε < 1).

Proof. Let µ : X ′ → X be a log resolution of (X,D). LetKX′−µ∗(KX) =
∑
E a(E)E

and let KX′ − µ∗(KX +D) =
∑
E(a(E) + b(E))E. Hence KX′/X − [µ∗((1− ε)D)] =∑

E(a(E) + p(1 − ε)b(E)q)E. Notice that a(E) is always a non-negative integer,
a(E) > 0 implies that E is exceptional and that b(E) is always non-positive.

(X,D) is klt, by definition, if ∀E a(E) + b(E) > −1 ⇔ pa(E) + b(E)q ≥ 0 ⇔
a(E) + pb(E)q ≥ 0 ⇔ J (D) = OX , in fact if a(E) = 0 then pb(E)q ≥ 0 and this
implies pb(E)q = 0; if a(E) > 0 then E is exceptional, hence just apply Fujita’s
lemma (see [27, lemma 1-3-2(3)]).

(X,D) is lc, by definition, if ∀E a(E) + b(E) ≥ −1. Since a(E) is non-negative
a(E)+ b(E) = −1⇒ b(E) < 0⇔ (1− ε)b(E) > b(E) for all 0 < ε < 1⇔ a(E)+(1−
ε)b(E) > −1 for all 0 < ε < 1. Hence a(E) + b(E) ≥ −1⇔ a(E) + (1− ε)b(E) > −1
for all 0 < ε < 1 ⇔ (X, (1− ε)D) is klt for all 0 < ε < 1⇔ J ((1− ε)D) = OX for
all 0 < ε < 1.

Remark 1.27. Also local analogues hold: (X,D) is klt (resp. lc) at a point x ∈ D if
and only if J (D)x = OX,x (resp. J ((1− ε)D)x = OX,x for every 0 < ε < 1).

These considerations justify the following:

Definition 1.28. Let (X,D) be an effective pair, withX smooth and let x ∈ X. The
log canonical threshold at x, lct(D,x) = lct(X,D, x), is just inf{c > 0|J (X, cD)x (
OX,x}.

We will denote byNklt(X,D) the non-klt locus for (X,D), that is Supp(OX/J (X,D)) ⊂
X with the reduced structure.

For practical purposes it is convenient to give a way to compute log canonical
thresholds using discrepancies (see [32, 9.3.16]):

Lemma 1.29. Let (X,D) be an effective pair, with X smooth and let x ∈ X. Fix
any log resolution µ : X ′ → X of the pair (X,D). Let KX′/X =

∑
E a(E)E and let

−µ∗(D) =
∑
E b(E)E. Then

lct(X,D, x) = min{E:x∈µ(E),
b(E) 6=0

} {−a(E) + 1
b(E)

}
.
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Proof. By remark 1.27, lct(D,x) = inf{c > 0|∃E s.t. x ∈ µ(E) and a(E) + cb(E) ≤
−1}. Since a(E) ≥ 0, then a(E)+cb(E) ≤ −1⇒ b(E) 6= 0, hence lct(D,x) = inf{c >
0|c ≥ −a(E)+1

b(E) for a certain E s.t. x ∈ µ(E) and b(E) 6= 0} = min{E:x∈µ(E),
b(E)6=0

} {−a(E)+1
b(E)

}
.

Remark 1.30. As a byproduct of lemma 1.29 we have that the log canonical threshold
is a positive rational number.

Log canonical centres will be our main tool to produce subvarieties from which
it is possible to pull back forms. Log canonical centres, in our case, are quite well
behaved from this point of view: they can be made exceptional (using the Tie
Breaking method) and their dimension can be cut down (see [20, thm. 4.1], [36, §5],
[32, 10.4.10]).

It turns out to be quite convenient to use, sometimes, the language of multiplier
ideals when dealing with log canonical centres. That is why, first of all, we collect
here some useful results about multiplier ideals. The next few lemmas are used to
prove proposition 1.35 that essentially states that the multiplier ideal of a divisor D
is trivial outside its support: though very immediate, it will be very useful several
times.

Lemma 1.31. Let X be a topological space and F a sheaf of abelian groups on X.
Let U ⊆ X and W ⊆ U be open sets. Then F|U (W ) = F(W ).

Proof. By definition (cf. [21, II.1]), F|U is the sheaf associated to the presheaf
V 7→ limO⊇V F(O), where V is any open set of U and the direct limit is taken over
all open sets O of X containing V . Since V is an open set of U , and hence of X,
limO⊇V F(O) = F(V ), therefore V 7→ limO⊇V F(O) = F(V ) is a sheaf and thus
F|U (W ) = F(W ).

Lemma 1.32. Let X,X ′ be topological spaces, µ : X ′ → X a continuous function,
F a sheaf of abelian groups on X ′ and U ⊆ X an open set. Let µ|U : µ−1(U)→ U

be the restriction of µ to µ−1(U). Then (µ∗F)|U and (µ|U )∗(F|µ−1(U)) are naturally
isomorphic.

Proof. Let W ⊆ U be an open set. Note that µ−1(W ) ⊆ µ−1(U). By definition (cf.
[21, II.1]) and by 1.31 (µ∗F)|U (W ) = (µ∗F)(W ) = F(µ−1(W )).

On the other hand, (µ|U )∗(F|µ−1(U))(W ) = F|µ−1(U)(µ−1(W )) = F(µ−1(W )).

Lemma 1.33. Let X,X ′ be varieties, D be a Cartier divisor on X and µ : X ′ →
X be a morphism such that it does not map X ′ into the support of D. Then
Supp(µ∗D) ⊆ µ−1(Supp(D)).

Proof. Let D be represented by {(Ui, fi)}, where {Ui} is an open cover of X and fi
is a rational function on Ui. Recall that, by definition, the support of D is the set of
points x ∈ X at which a local equation of D is not a unit in OX,x (cf. [31, 1.1.1]).
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Since X ′ is reduced and irreducible µ does not map X ′ into the support of D,
then, by [31, p. 10], µ∗(D) is represented by {(µ−1(Ui), fi ◦ µ|µ−1(Ui))}.

Let z ∈ Supp(µ∗D), i.e. there exists j such that z ∈ µ−1(Uj) and (fj ◦µ|µ−1(Ui)))z
is not a unit in OX′,z.

Since µ#
z : OX,µ(z) → OX′,z is a local homomorphism of local rings (cf. [21, p.

72]), then (fj)µ(z) is not a unit in OX,µ(z), hence µ(z) ∈ Supp(D) and the thesis
follows.

Before stating the proposition, since it does not require X to be smooth, we
recall the following generalization of the definition of multiplier ideals to singular
varieties:

Definition 1.34. (multiplier ideal on singular varieties, cf. [32, §9.3.G]) Let (X,∆)
be a pair and D a Q-Cartier Q divisor on X. Let a(E)’s be the discrepancies of the
pair (X,∆ +D). Then we define J ((X,∆);D) as µ∗OX′(

∑
pa(E)qE). Clearly if X

is non-singular J ((X,∆);D) = J (X,∆ +D).

Proposition 1.35. Let (X,∆) be a pair and let D, E be Q-Cartier Q-divisors on
X.

Let us consider the multiplier ideals J ((X,∆);D) and J ((X,∆);D + E). Set
U := X \ Supp(E). We have that J ((X,∆);D)|U ∼= J ((X,∆);D + E)|U and, in
particular, for every z ∈ U , J ((X,∆);D)z = J ((X,∆);D + E)z.

Proof. Let µ : X ′ → X be a log resolution of (X,∆), D,E and D + E. Let
K ′X ≡ µ∗(KX + ∆) +

∑
F a(F )F , µ∗(D) =

∑
F b(F )F and µ∗(E) =

∑
F c(F )F , the

sums running over all prime divisor of X ′. By definition of multiplier ideal we must
show that (µ∗OX′(

∑
F pa(F ) − b(F )qF ))|U ∼= (µ∗OX′(pa(F ) − b(F ) − c(F )qF ))|U .

By lemma 1.32 we need only to show that

OX′
(∑

F

pa(F )− b(F )qF
)
|µ−1U

∼= OX′
(∑

F

pa(F )− b(F )− c(F )qF
)
|µ−1U .

Note that if c(F ) 6= 0 then F ⊆ Supp(µ∗E) and thus, by lemma 1.33, F ⊆
µ−1(Supp(E)). Therefore F ∩ µ−1U = ∅ and we are done.

One of the main operation that can be performed on multiplier ideals is the
restriction to appropriate divisors. Since this is a little bit subtle, after reintroducing
the definition and the main property, we investigate how it relates to the classical
tensor product.

Definition 1.36. (cf. [32, §9.5.A]) Let X be a nonsingular variety and let D be an
effective Q-divisor onX andH ⊂ X a smooth irreducible divisor that does not appear
in the support of D. Then we define J (X,D)H := Im(J (X,D) ↪→ OX

π
� OH).

Theorem 1.37 (Restriction theorem - cf. [32], 9.5.1). Using the notation introduced
before, there is an inclusion J (H,D|H) ⊆ J (X,D)H .
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Lemma 1.38. Let X be a variety, let Y ⊆ X be a closed subscheme of X, defined
in X by the ideal sheaf JY , and let D be an integral divisor on X, with D effective.
Let πD : OX → OD be the natural map. If D|Y is effective on Y then we have a
short exact sequence:

0→ JY (−D)→ JY → πD(JY )→ 0.

Proof. We have the following commutative diagram:

0

��

0

��

0

��
0 // JY (−D) //

��

JY //

i

��

kerπY //

��

0

0 // OX(−D)

��

// OX

��

πD // OD
πY

��

// 0

0 // OX(−D)⊗OY

��

// OY

��

// OD ⊗OY //

��

0

0 0 0

The second row and all the columns are exact. SinceD|Y is effective by hypothesis,
then also the third row is exact. Therefore by the snake lemma also the first row
is exact. Note that, by the commutativity of the diagram, πD(i(JY )) ⊆ kerπY .
Moreover, considering the stalks for every x ∈ X, we have the following commutative
diagram

JY,x // //
� _

ix
��

(kerπY )x� _

��
OX,x

πD,x // // OD,x

and it is clear that, for every x ∈ X, (kerπY )x ⊆ πD,x(ix(JY,x)). Therefore kerπY =
πD(i(JY )) = πD(JY ).

Remark 1.39. If JY = J (B) = J (X,B) (with Y = Z(J (B))) is a multiplier ideal of
an effective Q-divisor B and D is an effective, integral divisor on X such that D|Y
is effective, then by lemma 1.38 we have the following exact sequence (cf. definition
1.36):

0→ J (B)⊗OX(−D)→ J (B)→ J (B)D → 0. (1.1)

In a similar manner, we have a natural exact sequence J (B)⊗OX(−D) ψ→ J (B)→
J (B) ⊗ OD → 0. Let µ : X ′ → X be a log resolution of (X,B). Since 0 →
µ∗(OX(−D)) ⊗ OX′(KX′/X − [µ∗B]) → µ∗(OX) ⊗ OX′(KX′/X − [µ∗B]) is exact,
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then, by the projection formula and the definition of multiplier ideal, we can conclude
that ψ is injective. Hence we also have the following short exact sequence:

0→ J (B)⊗OX(−D) ψ→ J (B)⊗OX → J (B)⊗OD → 0. (1.2)

Therefore in this case, being D|Y effective, J (B)|D ∼= J (B)D.
The following lemma about log canonical centres of codimension 1 will be needed

later:

Lemma 1.40. Let (X,∆) be a pair, ∆ =
∑s
i=1 di∆i with ∆i prime divisors and

di ∈ Q. IfW is a lc centre for (X,∆) of codimension 1 then there exists i ∈ {1, . . . , s}
such that W = ∆i and di ≥ 1. If moreover W is pure then di = 1.

Proof. By definition of lc centre, there exists µ : X ′ → X a log resolution of (X,∆)
and a prime divisor E ⊂ X ′ such that µ(E) = W and of discrepancy a(E,X,∆) ≤ −1.
Since the codimension of W is 1 then E cannot be exceptional for µ, hence (cf. [32,
9.3G, footnote 14] or [30, 2.25-2.26]) E is a strict transform of one of the ∆′is, i.e.,
∃i such that W = µ(E) = ∆i and a(E,X,∆) = −di ⇒ di ≥ 1.

If moreoverW is pure, i.e., it is lc at the generic point ofW , then, since µ(E) = W

actually contains the generic point of W , −di = a(E,X,∆) ≥ −1⇒ di = 1.

1.5 Some techniques

In this section we list some of the techniques that will be involved later. Most of
them are already well-known but since they are needed in more particular settings
we include also proofs.

First of all we state the classical Tie Breaking theorem, but in its local version,
using big divisors to perturb the log canonical centre, instead of ample ones. Check
also [29, prop. 8.7.1] and [7, thm. 3.7].

Lemma 1.41 (local Tie Breaking with a big divisor). (cf. [37, lemma 2.6]). Let
X be a complex smooth projective variety and let ∆ be an effective Q-divisor and
assume that (X,∆) is lc but not klt at some point x ∈ X. Then:

a. If W1,W2 ∈ LLC(X,∆, x) and W is an irreducible component of W1 ∩ W2
containing x, then W ∈ LLC(X,∆, x).

b. By the item before, LLC(X,∆, x) has a unique minimal irreducible element, say
V .

c. If L is a big divisor and x 6∈ B+(L) then there exist a positive rational number a
and an effective Q-divisor M such that M ∼Q L and such that for all 0 < ε� 1,
(X, (1− ε)∆ + εaM) is lc at x and LLC(X, (1− ε)∆ + εaM, x) = {V }.

d. If ∆ is big, x 6∈ B+(∆) and ∆ ∼Q λD with λ < c, λ ∈ Q+ and D a Q-divisor,
then there exists an effective Q-divisor ∆′ such that (X,∆′) is lc, not klt at x,
LLC(X,∆′, x) = {V } and ∆′ ∼Q λ′D with λ′ < c, λ′ ∈ Q+.
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e. In every case, we can also assume that there is a unique place lying above V .

Proof. We will prove only items c.,d. and e., referring to [37, lemma 2.6] and [20,
lemma 2.5] for the item a. Check also [29, proposition 8.7.1].

First of all, simply notice that if (X,∆) is lc but not klt at x then every element
in LLC(X,∆, x) is a log canonical centre image of a divisor of discrepancy −1.

c. Since L is big and x 6∈ B+(L) then, by lemma 1.18, we can find an ample Q-
divisor A and an effective Q-divisor G such that L ∼Q A+G and x 6∈ Supp(G).

Let IV be the ideal of V . Let p � 0 such that pA, pG, p∆ are integral
divisors and IV (pA+pG) is globally generated outside Supp(G). Let |IV (pA+
pG)| ⊆ |pA+ pG| be the linear series of divisors corresponding to sections in
H0(IV (pA+ pG)).

Let µ : X ′ → X be a log resolution of (X, p∆ + |IV (pA+ pG)|). Let KX′ −
µ∗(KX) =

∑
a(E)E (a(E) ≥ 0) and KX′ − µ∗(KX + ∆) =

∑
(a(E) + b(E))E.

By hypothesis if x ∈ µ(E) then a(E) + b(E) ≥ −1 and there exists a divisor
E0 such that µ(E0) = V and a(E0) + b(E0) = −1.

By definition of log resolution, µ∗|IV (pA+ pG)| = |S|+B, where |S| is base
point free and B+Exc(µ)+(strict transforms of components of ∆) is a divisor
with simple normal crossing supports.

If we pick a general effective divisor M ′ ∈ |IV (pA+ pG)| then we can suppose
that µ is a log resolution for (X,∆ +M ′) and, since IV (pA+ pG) is locally
free outside V and V is minimal, we can also suppose that M ′ is nonsingular
outside V ∪Supp(G) and µ∗M ′ does not contain divisors E with x ∈ µ(E) and
a(E) + b(E) = −1, unless µ(E) = µ(E0) = V : in fact if µ∗M ′ contains such
an E then, by the generality of the choice of M ′ in |IV (pA+ pG)|, Supp(E) ⊆
Supp(B) and hence µ(E) ⊆ µ(B) ⊆ V ∪ Supp(G); by the minimality of V and
the fact that x ∈ µ(E) but x 6∈ Supp(G) then we have µ(E) = V .

Let M := M ′/p ∼Q L. Let −µ∗M =
∑
c(E)E. Thus c(E) ≤ 0, c(E0) < 0

since µ(E0) = V ⊆ Supp(M) and c(E) = 0 if x ∈ µ(E), a(E) + b(E) = −1
and µ(E) 6= µ(E0).

Let ε be a sufficiently small rational number and

a := min
{E : µ(E)=V,
a(E)+b(E)=−1}

{
b(E)
c(E)

}
.

a > 0, since b(E) < 0 (in fact a(E) + b(E) = −1 and a(E) ≥ 0) and, as before,
µ(E) = V implies c(E) < 0. Let Ẽ be a divisor that attains the minimum for a.
We have thatKX′−µ∗(KX+(1−ε)∆+εaM) =

∑
(a(E)+(1−ε)b(E)+εac(E))E.

First of all, let us check that V is still a lc-centre for (X, (1 − ε)∆ + εaM):
a(Ẽ) + (1− ε)b(Ẽ) + εb(Ẽ) = a(Ẽ) + b(Ẽ) = −1 and µ(Ẽ) = V by definition.
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Then let us check that (X, (1 − ε)∆ + εaM) is lc in a neighbourhood of x:
for every E such that x ∈ µ(E), since ∆ is effective and hence b(E) ≤ 0, we
have that a(E) + (1 − ε)b(E) + aεc(E) ≥ a(E) + b(E) + aεc(E) =: d(E). If
a(E)+b(E) > −1 then d(E) > −1, since ε is sufficiently small. If a(E)+b(E) =
−1 and µ(E) 6= µ(E0) then c(E) = 0 and thus d(E) ≥ −1. If a(E)+b(E) = −1
and µ(E) = µ(E0) = V then, by definition, a ≤ b(E)

c(E) that implies that
ac(E) ≥ b(E) ⇒ −εb(E) + εac(E) ≥ 0 that is equivalent to saying that
a(E) + (1− ε)b(E) + εac(E) ≥ −1.

Eventually let us check that V is the unique element of LLC(X, (1 − ε)∆ +
εaM, x): if a(E) + b(E) > −1 then, since ε is sufficiently small, a(E) +
(1 − ε)b(E) + aεc(E) ≥ a(E) + b(E) + aεc(E) > −1; if a(E) + b(E) = −1,
x ∈ µ(E) and µ(E) 6= µ(E0) = V then, as we have already seen, c(E) = 0 and
a(E) + b(E) = −1, a(E) ≥ 0 ⇒ b(E) < 0. Thus, since ε > 0, we have that
a(E) + (1− ε)b(E) > −1.

d. Let us apply c. with L = ∆ and let a ∈ Q+ and M ∼Q ∆ be as in c. Let
∆′ := (1− ε)∆ + εaM and λ′ := λ− ελ+ εaλ. Hence ∆′ ∼Q λ′D. Since λ < c,
choosing ε sufficiently small we can manage to have λ′ < c, and we are done.

e. Let us start from the outcome of item c., that is, setting ∆′ := (1− ε)∆+ εaM ,
we are in the following situation: LLC(X,∆′, x) = {V }, and (X,∆′) is lc at x.

Since L is big then we can write L = A+E with A,E Q-divisors, A ample, E
effective.

Let µ : X ′ → X be a log resolution of (X,∆′ + E). Fixing the notation, we
will also write KX′ − µ∗(KX) =

∑
a(E)E and −µ∗(∆′) =

∑
f(E)E.

If V is the image of a strict transform of a component of ∆′ then it is clear
that there exists a unique place lying above V . Therefore we can suppose that
codim(V ) > 1 and thus that V is the image of at least one exceptional divisor.

Following the proof of [29, prop. 8.7.1], we will prove the thesis in two steps:
first of all we will produce a divisor H Q-linearly equivalent to L, that passes
through V and such that µ∗H contains an ample divisor Eamp; this divisor
H, as in c., will be used for another tie breaking. Then, using Eamp we will
slightly modify H so that we can be sure there is only one exceptional divisor
above V .

Recall that for every Weil divisor W on X ′, µ∗(W ) is well defined as a Weil
divisor on X (cf. [19, §1.4]). Moreover, since µ is projective, recall that if
W ∼ W ′ then µ∗(W ) ∼ µ∗(W ′) (cf. [19, theorem 1.4]) and that, since µ is
also birational, µ∗µ∗Y = Y , for every divisor Y on X.

Since by [12, par. 1.40] Exc(µ) is a divisor whose irreducible components are
µ-exceptional then by [12, par. 1.42] there exists an effective and µ-exceptional
Q-divisor F such that µ∗A − F is ample. Choose an effective Q-divisor
Eamp ∼Q µ∗A − F such that it is irreducible, with nonsingular support and
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such that it has simple normal crossings with Exc(µ) and with all the strict
transforms of the components of ∆′ +E. Let E be a prime divisor such that
µ(E) = V ; then E is exceptional and, in particular, the map µ|E : E → V

has positive dimensional fibres, hence notice that µ(Eamp) ⊃ V . Let us now
consider the effective Q-divisor H := µ∗(Eamp + F + µ∗E) ∼Q L. Since F is
exceptional then H = µ∗(Eamp) + E: hence, by the choice of µ and Eamp, we
have that µ is a log resolution also of ∆′ +H. Set −µ∗(H) =

∑
g(E)E. Let

ε′ ∈ Q+, ε′ � 1 and

a′ := min
{E : µ(E)=V,
a(E)+f(E)=−1}

{
f(E)
g(E)

}
.

Therefore KX′ − µ∗(KX + (1 − ε′)∆′ + ε′a′H) =
∑

(a(E) + (1 − ε′)f(E) +
ε′a′g(E))E and as in the proof of item c., it can be easily seen that (X, (1−
ε′)∆′+ ε′a′H) is lc at x and LLC(X, (1− ε′)∆′+ ε′a′H,x) = {V } (in this case,
however, a(E) + f(E) = −1 and x ∈ µ(E) directly imply µ(E) = V ). And so
the first step is done.

As for the second step, let E0 be an exceptional divisor such that µ(E0) = V and
a(E0) + (1− ε′)f(E0) + ε′a′g(E0) = −1. Since Eamp is ample, then for a small
ξ ∈ Q+ we have that Eamp − ξE0 is ample too and Q-linearly equivalent to an
effective, irreducible divisor Aξ. We can choose Aξ to have nonsingular support
and simple normal crossings with Exc(µ) and with all the strict transforms of
the components of ∆′+H. Let us considerH ′ := µ∗(µ∗H−Eamp+ξE0+Aξ) ∼Q
µ∗µ

∗H = H. Notice that µ is a log resolution also for ∆′ + H ′. Since
H ′ = µ∗(µ∗H − Eamp + ξE0 + Aξ) = H − µ∗(Eamp) + µ∗(Aξ) then µ∗(H ′) =
µ∗H−Eamp−exc1+Aξ+exc2 ∼Q µ∗H, where exc1 and exc2 are effective sums
of exceptional divisors. Since ξE0 ∼Q Eamp − Aξ then ξE0 + exc1 ∼Q exc2,
that is: ξE0 + exc1 = exc2. Therefore µ∗(H ′) = µ∗H +Aξ − Eamp + ξE0. Set
−µ∗(H ′) =

∑
g′(E). Note that g′(E) = g(E) unless E = Eamp, Aξ, E0; notice,

however, that E0 is the only exceptional divisor for which g and g′ are different:
namely g′(E0) = g(E0)− ξ. Let ε′′ ∈ Q+, ε′′ � 1 and

a′′ := min
{E : µ(E)=V,
a(E)+f(E)=−1}

{
f(E)
g′(E)

}
.

Then KX′ − µ∗(KX + (1 − ε′′)∆′ + ε′′a′′H ′) =
∑

(a(E) + (1 − ε′′)f(E) +
ε′′a′′g′(E))E. As before (X, (1 − ε′′)∆′ + ε′′a′′H ′) is lc at x, LLC(X, (1 −
ε′′)∆′+ ε′′a′′H ′, x) = {V }, but this time E0 is the only exceptional divisor with
discrepancy −1 and such that µ(E0) = V : in fact, since for any E such that
µ(E) = V and a(E)+f(E) = −1 we have that g′(E) < g(E)⇒ f(E)/g′(E) <
f(E)/g(E) then E0 is the only exceptional divisor above V that attains the
minimum in the definition of a′′.
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The following lemma just deals about intersections of codimension 1 log canonical
centres:

Lemma 1.42 ([37], 3.3). Let X be a smooth projective variety and let (X,∆1),
(X,∆2) be effective pairs such that at some point x ∈ X there exists Wi a pure log
canonical centre of codimension 1 at x for (X,∆i), with ∆i with smooth support at
x (i = 1, 2). Then there exists Z ⊆W1 ∩W2 a minimal pure log canonical centre at
x for the pair (X,∆), where ∆ = k(∆1 + ∆2) for some rational number 0 < k ≤ 1.

Proof. Let ∆1 =
∑
j a1jD1j , where a1j 6= 0, D1j prime divisors. Since Supp(∆1)

is non singular at x we can suppose that D11 is the unique divisor in ∆1 passing
through x. Analogously let ∆2 =

∑
j a2jD2j , where a2j 6= 0, D2j prime divisors,

where D21 is the unique divisor in ∆2 passing through x.
By lemma 1.40 W1 = D11, W2 = D21 and a11 = a21 = 1.
Let µ : X ′ → X be a log resolution of ∆1+∆2. Since it can be easily seen that a log

resolution of the support of a divisor is also a log resolution of the divisor itself then, by
Hironaka’s theorem (cf. [31, thm. 4.1.3]), we can construct µ as a sequence of blowing-
ups along smooth centers contained in the singular locus of Supp(∆1 + ∆2) and
X, that is contained, under our hypotheses, in Sing(Supp(∆1)) ∪ Sing(Supp(∆2)) ∪
(Supp(∆1) ∩ Supp(∆2)). Therefore, since Supp(∆i) is nonsingular at x for i = 1, 2
and x ∈ Dij ⇔ j = 1, then every exceptional divisor Ξ of µ such that x ∈ µ(Ξ)
goes, under µ, in a subvariety of D11 ∩D21. Now set KX′ − µ∗KX =

∑
E a(E)E

(so that a(E) 6= 0 ⇔ E is exceptional), µ∗∆1 =
∑
E b1(E)E, µ∗∆2 =

∑
E b2(E)E.

Consider D̃11, the strict transform of D11: since it is not an exceptional divisor, then
a(D̃11) = 0 and b1(D̃11) = 1, therefore if we set c := lct(∆1 + ∆2, x), we have

c = min
{E : x∈µ(E),
b1(E)+b2(E)>0}

{
a(E) + 1

b1(E) + b2(E)

}
≤ a(D̃11) + 1
b1(D̃11) + b2(D̃11)

≤ 1.

Clearly c > 0.
KX′ − µ∗(KX + c(∆1 + ∆2)) =

∑
E(a(E)− cb1(E)− cb2(E))E. Let E be such

that a(E)− cb1(E)− cb2(E) = −1, x ∈ µ(E) and b1(E) + b2(E) > 0.
If E is exceptional then µ(E) ⊆ D11 ∩D21 = W1 ∩W2.
If E is not exceptional, since b1(E) + b2(E) > 0 then E is a strict transform,

E = D̃ij for some i, j. Since x ∈ µ(E) then E = D̃11 or E = D̃21. If D̃11 = D̃21 then
µ(E) = W1 = W2 and we are done. If D̃11 6= D̃21 then, supposing E = D̃11, we have
that b2(D̃11) = 0, a(D̃11) = 0 and hence c = 1. This implies that D̃21 has discrepancy
−1 for (X, c(∆1 + ∆2)) and so W1, W2 are both lc centers of (X, c(∆1 + ∆2)). We
can now conclude applying lemma 1.41, b.

The next lemma, due to Hacon-McKernan (cf. [20, lemma 2.6]), essentially
explains how to pull back sections from log canonical centres when we already know
that these centres have dimension 0. The main ingredient is Nadel’s Vanishing
theorem, that, under particular conditions, assures the surjectivity of the restriction
map. For the convenience of the reader we start by enunciating Nadel’s theorem:



20 1. Preliminaries

Theorem 1.43 (Nadel vanishing theorem). (see [32, thm. 9.4.8]). Let X be a
smooth projective variety, let D be any Q-divisor on X and let L be any integral
divisor such that L−D is big and nef. Then

H i(X,OX(KX + L)⊗ J (X,D)) = 0 for every i > 0.

Lemma 1.44. Let X be a smooth projective variety and D a big and integral divisor
on X. Let x, y 6∈ B+(D). Assume that there exists an effective Q-divisor ∆x ∼Q λxD

with λx ∈ Q+ and such that LLC(X,∆x, x) = {{x}}. Then for every m ∈ N+ such
that m > [λx],

h0(OX(KX +mD)) > 0.

If moreover there exists another effective Q-divisor ∆y ∼Q λyD with λy ∈ Q+, such
that LLC(X,∆y, y) = {{y}} and such that x 6∈ Supp(∆y) and y 6∈ Supp(∆x), then
for every m ∈ N+ such that m > [λx + λy],

h0(OX(KX +mD)) ≥ 2.

More generally, let x1, . . . , xn 6∈ B+(D). If for every 1 ≤ i ≤ n there exists an
effective Q-divisor ∆i ∼Q λiD with λi ∈ Q+, such that LLC(X,∆i, xi) = {xi} and
such that xi 6∈ ∪j 6=iSupp(∆j) then for every m ∈ N+ such that m > [

∑n
i=1 λi],

h0(OX(KX +mD)) ≥ n.

Proof. Since x 6∈ B+(D), by lemma 1.18 there exist an ample Q-divisor Ax of
sufficiently small norm and an effective Q-divisor Ex such that D ∼Q Ax +Ex and
x 6∈ Supp(Ex). Let us consider the multiplier ideal associated to ∆x, J (∆x). Let us
notice that, by the hypothesis that {x} is an isolated lc-centre at x, there exists an
open neighbourhood Ux of x such that J (∆x)x ( OX,x but J (∆x)z = OX,z for all
z ∈ Ux − {x} (cf. [32, def. 9.3.9]).

Let Bx be the Q-divisor ∆x+(m−λx)Ex. Since x 6∈ Supp(Ex), using proposition
1.35 we can conclude that J (Bx)x ( OX,x and J (Bx)z = OX,z for every z ∈ U ′x :=
Ux ∩ (X − Supp(Ex)), that is: the set of zeroes Z(J (Bx)) has x as an isolated point.

Let us consider the following exact sequence:

0→ J (Bx)→ OX → OZ(J (Bx)) → 0

Tensoring it by OX(KX +mD) we obtain:

0→ J (Bx)⊗OX(KX+mD)→ OX(KX+mD)→ OZ(J (Bx))⊗OX(KX+mD)→ 0

Since x is an isolated point in Z(J (Bx)) we have that h0(OZ(J (Bx)) ⊗ OX(KX +
mD)) > 0.

Let us notice that since m is an integer greater than [λx] then m > λx, hence
mD −Bx ∼Q (m− λx)Ax is big and nef. Therefore we can apply Nadel’s theorem
to conclude that H1(OX(KX +mD) ⊗ J (Bx)) = 0 and thus the first part of the
lemma is proved.
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Since x, y 6∈ B+(D) then, by remark 1.19, there exist an ample Q-divisor A
of sufficiently small norm and an effective Q-divisor E such that D ∼Q A + E

and x, y 6∈ Supp(E). Let B be the Q-divisor ∆x + (m − λx − λy)E + ∆y. Since
x, y 6∈ Supp(E), x 6∈ Supp(∆y), y 6∈ Supp(∆x), using proposition 1.35, as before we
can conclude that Z(J (B)) has x, y as two isolated points.

Let us consider the following exact sequence:

0→ J (B)⊗OX(KX +mD)→ OX(KX +mD)→ OZ(J (B))⊗OX(KX +mD)→ 0

Since x, y are two isolated points in Z(J (B)) we have that h0(OZ(J (B))⊗OX(KX +
mD)) ≥ 2 and since mD − B ∼Q (m − λx − λy)A we have that mD − B is big
and nef (by hypothesis λx + λy < m). Therefore we can conclude as before, simply
applying Nadel’s theorem.

The general case in analogous.

When dealing with more that one point, the previous lemma will be applied
together with lemma 1.6.

As we have already said, we will use log canonical centres to pull back sections of
multiples of the canonical divisor. Clearly the first step is to produce log canonical
centres. For this purpose we will use a standard tool, by means of divisors that are
sufficiently singular at given points and whose existence is guaranteed by assuming
some hypotheses on their volumes:

Lemma 1.45. (see [31, prop. 1.1.31], [32, lemma 10.4.12], [37, lemma 2.2]). Let
X be a projective variety of dimension d and let D be a Q-Cartier divisor. Fix a
positive real number α with

vol(D) > αd.

Then for any sufficiently large and divisible k ∈ N there exists for any smooth point
x ∈ X a divisor Ax ∈ |kD| such that multx(Ax) > kα.

Proof. Assume k sufficiently divisible so that kD is integral. Since x is a smooth
point we can fix a system of local parameters {x1, . . . , xd} at x so that any section s
of H0(kD) can be written as

∑
e1,...,ed

ae1,...,edx
e1
1 . . . xedd (e1, . . . ed ≥ 0).

It is clear that s vanishes at x with order > c if all the partial derivatives of s at
x of degree 0, . . . , c vanish. These conditions are linear in ae1,...,ed and their number
is (

d+ c

d

)
= cd

d!
+O(cd−1).

By the definition of volume, there exists β > αd (for example β = (vol(D) + αd)/2))
such that for k sufficiently large (and independent of x)

h0(kD) > βkd

d!
>
αdkd

d!
.
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Therefore, if c = αk (k large) we have that

h0(kD) >
(
d+ c

d

)
.

Hence there exists a section in H0(kD) - and thus a divisor Ax ∈ |kD| - such that
ordx(s) = multx(Ax) > c = αk.

Remark 1.46. Lemma 1.45 can be applied also to two distinct smooth points x, y. In
this case clearly the number of conditions for the vanishing of partial derivatives is
doubled, hence we can say that if vol(D) > 2αd then there exists Ax,y ∈ |kD| such
that multx(Ax,y) > kα and multy(Ax,y) > kα.

Divisors with high multiplicities at a given point naturally give rise to log
canonical centres:

Proposition 1.47. (see [32, prop. 9.3.2]). Let X be a smooth projective variety
of dimension d, let D be an effective Q-divisor and let x ∈ X be a point. If
multx(D) ≥ d then J (X,D)x ( OX,x.

If J (X,D) is not trivial at x then x ∈ Nklt(X,D), i.e., there exists a log canon-
ical centre (not necessarily pure) of (X,D) that passes through x.

Pulling back sections from log canonical centres is not easy to do, unless the
lc centres are points. Unfortunately when the volume is low, cutting down the
dimension of lc centres does not allow us to have information about small multiple
of the canonical divisor. That is why Todorov in [37], using ideas of McKernan
(see [33]) has developed another strategy in the case of threefold, that is to produce
a morphism from the threefold to a curve and use this to have sections. The
next lemma shows how to obtain such a fibration from lc centres, while the next
proposition shows how to create sections in this way:

Lemma 1.48 (McKernan-Todorov). ([33, lemma 3.2] and [37, lemma 3.2]). Let X
be a smooth projective variety and suppose that for every point x ∈ P , where P is a
countably dense subset of X, we may find an effective Q-divisor ∆x and a subvariety
Vx such that Vx is a pure log canonical centre for (X,∆x) at x and ∆x ∼Q ∆/wx for
some big Q-divisor ∆ on X and a rational positive number wx. Then there exists a
diagram

X ′
π //

f

��

X

B

such that f is a dominant morphism of normal projective varieties with connected
fibres and for a general fibre X ′b of f there exists x ∈ π(X ′b) such that π(X ′b) is a
pure log canonical centre for (X,∆x) at x, with ∆x ∼Q ∆/w for some w ∈ Q+. We
also have that π is a generically finite and dominant morphism of normal varieties.
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Proposition 1.49. Let X be a smooth projective threefold of general type. Suppose
that there exist a smooth projective curve B and a dominant morphism with connected
fibres f : X → B such that the general fibre Xb is a minimal, smooth surface of
general type. Moreover suppose there exist λ ∈ Q+ and, for a general b ∈ B, an
effective Q-divisor Db on X such that Db ∼Q λKX and such that Xb is a lc centre for
(X,Db). Suppose also that, for general b, there exists β ∈ Q+ such that vol(Xb) ≤ β2.
Then, given b1, . . . , bk general points on B, the restriction map gives a surjection

H0(OX((n+ 1)KX)→ H0(OXb1 ((n+ 1)KXb1
))⊕ . . .⊕H0(OXbk ((n+ 1)KXbk

))

as long as λk(4(n+ 1)[β2]− 1) < 1 and n > λk.

Proof. By Kawamata’s theorem A (cf. [25], taking S = {pt}) for every 1 ≤ i ≤ k

and every positive integer m the restriction maps

H0(OX(m(KX +Xbi)))→ H0(OXbi (mKXbi
))

are surjective. Since for every i we have an injection

H0(OX(m(KX +Xbi))) ↪→ H0(OX(m(KX +Xb1 + . . .+Xbk))),

then the restriction maps

H0(OX(m(KX +Xb1 + . . .+Xbk)))→ H0(OXbi (mKXbi
))

are surjective. Since Xbi are minimal surfaces of general type then, by [5] for m
large enough (namely m ≥ 4) |mKXbi

| is base point free, hence a general G ∈
|m(KX +Xb1 + . . .+Xbk)| is such that for every i, G|Xbi is a general divisor in the
base-point-free linear system |mKXbi

|.
Since KX is big then KX = A + E where A is an ample Q-divisor and E an

effective Q-divisor.
Let now b′ be a general point on B, m be a sufficiently large integer, G a general

divisor in |m(KX +Xb1 + . . .+Xbk)|, ε a rational number, 0 < ε� 1. Let

h :=: hn,k := k(n+ 1)− εk
λk + 1

,

j :=: jn,k := −hn,k,

i :=: in,k := −1 +
hn,k
k
,

and consider the Q-divisor

F :=: Fn,k := hDb′ +
i

m
G+ jXb′ + εE.

For ε sufficiently small h > 0. Since Xb′ is an exceptional log canonical centre of Db′

then Db′ = Xb′+ other surfaces. Therefore if i ≥ 0 then F is an effective divisor: in
order to have i ≥ 0 it is enough to ask that n > λk.
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Moreover, by the choices of h, i, j, we have that

nKX − (Xb1 + . . .+Xbk)− F ≡ εA.

Start with the following short exact sequence:

0→ OX(−(Xb1 + . . .+Xbk))→ OX → OXb1 ⊕ . . .⊕OXbk → 0

After tensoring it by OX((n+ 1)KX) and using remark 1.39 with JY = J (F )
(Xbi are general fibres, so their restriction to Y = Z(J (F )) is effective) we have the
following exact sequence:

0→ OX((n+ 1)KX − (Xb1 + . . .+Xbk))⊗ J (F )→ OX((n+ 1)KX)⊗ J (F )→

→ OXb1 ((n+ 1)KXb1
)⊗ J (F )Xb1 ⊕ . . .⊕OXbk ((n+ 1)KXbk

)⊗ J (F )Xbk → 0

By Nadel’s vanishing theorem (theorem 1.43),

H1(OX((n+ 1)KX − (Xb1 + . . .+Xbk))⊗ J (F )) = 0.

Moreover, since F is effective, J (F ) ⊆ OX , hence

OX((n+ 1)KX)⊗ J (F ) ⊆ OX((n+ 1)KX).

Therefore to prove the theorem it is now sufficient only to prove that, under the
hypotheses, J (F )Xbi is trivial for every i.

To ease the notation, let b = bi. By theorem 1.37, since Xb * Supp(F ), we have
that J (F )Xb ⊇ J (F |Xb), therefore we have to prove only that J (F |Xb) is trivial.
Set

∆ := Db′ |Xb and Γ := E|Xb .

∆ and Γ are effective divisors, with ∆ ∼Q λKXb . F |Xb = h∆ + i
mG|Xb + εΓ. Since

m is large enough and G|Xb is a general divisor in the base-point-free linear system
|mKXb |, then, by Kollar-Bertini (cf. [32, 9.2.29]),

J
(
h∆ + i

m
G|Xb + εΓ

)
= J (h∆ + εΓ).

But, by [32, prop. 9.2.32.i],

J (h∆+εΓ) ⊇ J
(
h∆ + εk

λk + 1
∆ + εΓ

)
= J

(
k(n+ 1)
λk + 1

∆ + εΓ
)

= J
(
k(n+ 1)
λk + 1

∆
)
,

where the last equality is due to [32, ex. 9.2.30]. Set

h′ :=: h′n,k = k(n+ 1)
λk + 1

.

Now for every x ∈ ∆, pick a curve C ⊂ Xb passing through x that is a component of
a divisor in |4KXb | but it is not a component of ∆ (cf. [37, proof of claim 1]). Then
multx(h′∆) = h′multx(∆) ≤ h′∆.C. Since ∆ ∼Q λKXb is nef (Xb is minimal and of
general type) then h′∆.C ≤ 4h′∆.KXb = 4h′λK2

Xb
. If multx(h′∆) < 1 for all x ∈ ∆

then J (h′∆) is trivial, as wanted (cf. [32, prop. 9.5.13]). Therefore we need only to
impose 4λh′K2

Xb
< 1. By hypothesis, and since vol(Xb) is an integer, it is enough to

ask that λk(4(n+ 1)[β2]− 1) < 1.



Chapter 2

Plurigenera for 3-folds of
general type

In this chapter we will be dealing with plurigenera for threefolds of general type.
Before stating and proving the main theorem, for the convenience of the reader we
quote Hacon-McKernan’s theorem about the lifting of log canonical centres:

Theorem 2.1 (Hacon-McKernan). (see [20, theorem 4.1]). Let (X,∆) be an effective
pair, with X Q-factorial. Let V be an exceptional log canonical centre of (X,∆).
Let f : W → V be a resolution of singularities V and suppose that W is a variety of
general type. Let Θ be an effective Q-divisor on W . Suppose that there are positive
rational numbers λ and µ such that ∆ ∼Q λKX and Θ ∼Q µKW . Let

ν := (λ+ 1)(µ+ 1)− 1.

There is a very general subset U of V with the following property:
Suppose that W ′ ⊂ W is a pure log canonical centre of (W,Θ) whose image

V ′ ⊂ V intersects U .
Then for every positive rational number δ, we may find an effective Q-divisor ∆′

on X such that V ′ is a pure log canonical centre of (X,∆′), where ∆′ ∼Q (ν+ δ)KX .
Now suppose that we may write KX ∼Q A+ E, where A is an ample Q-divisor, E
is an effective Q-divisor and V is not contained in Supp(E). Then we may also
assume that V ′ is an exceptional log canonical centre of (X,∆′).

Theorem 2.2. Let X be a smooth projective threefold of general type such that
vol(X) > α3. If α ≥ 879 then h0(2KX) ≥ 1 and if α ≥ 432(n + 1) − 3 then
h0((n+ 1)KX) ≥ n, for all n ≥ 2. More generally, if X is not g-countably dense
and if g, n, α are as in Table 2.1 or, in the other cases, α ≥ 48(n + 1) − 3, then
h0((n+ 1)KX) ≥ n, for all n ≥ 1. Moreover, under the same bounds on α and g
given by the case n = 1, we have that h0(lKX) ≥ 1 for all l ≥ 2.

Remark 2.3. This improves [37, theorem 1.1].
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Table 2.1.

g n α g n α

2 1 ≥ 879 10 1, . . . , 304 ≥ 60(n+ 1)− 3
≥ 2 ≥ 432(n+ 1)− 3 305, . . . , 381 ≥ 18354

3 ≥ 1 ≥ 132(n+ 1)− 3 11 1, . . . , 8 ≥ 60(n+ 1)− 3
4 1, . . . , 6 ≥ 96(n+ 1)− 3 9, 10 ≥ 550

7 ≥ 714 12 1, . . . , 4 ≥ 60(n+ 1)− 3
≥ 8 ≥ 84(n+ 1)− 3 5 ≥ 306

5 1 ≥ 165 13 1, 2 ≥ 60(n+ 1)− 3
2 ≥ 242 3 ≥ 223
≥ 3 ≥ 72(n+ 1)− 3 14 1, 2 ≥ 60(n+ 1)− 3

6 1, . . . , 43 ≥ 72(n+ 1)− 3 15 1 ≥ 117
44, . . . , 52 ≥ 3234 2 ≥ 156
≥ 53 ≥ 60(n+ 1)− 3 16, 17, 18 1 ≥ 117

7 1 ≥ 141 19 1 ≥ 111
2 ≥ 184 20 1 ≥ 105
≥ 3 ≥ 60(n+ 1)− 3 21 1 ≥ 101

8, 9 ≥ 1 ≥ 60(n+ 1)− 3 22 1 ≥ 97

Proof. We will follow [37] very closely. Since we need to obtain explicit numbers
from an asymptotic measure (the volume) the idea is to use the hypothesis about
the volume to produce singular divisors and, in this way, log canonical centres.
Then we would like to pull back sections from the log canonical centres, using
Nadel’s vanishing theorem. Unfortunately we do not have information about sections
of systems of divisors on lc centres, unless lc centres are points: thus we need a
technique by Hacon-McKernan to cut down the dimension of the lc centres (cf. thm.
2.1). But when lc centres have codimension 1 and small volume this cutting-down
process does not lead to have a bicanonical section: therefore Todorov’s idea is to
apply, in this case, a theorem of McKernan about family of tigers and so produce
a fibration of X onto a curve and then, from this fibration, produce bicanonical
sections (cf. proposition 1.49).

By remark 1.22 X is at least not 2-countably dense, hence g ≥ 2. Furthermore,
since X is not g-countably dense then by remark 1.8 there exists a very general
subset Λ such that every curve passing through any point of Λ has geometric genus
≥ g. Let X0 be the intersection between Λ and the complement of the union of all
subvarieties of X not of general type and B+(KX). X0 is a very general subset of
X, hence countably dense.

Since vol(KX) > α3, by lemma 1.45, for every x ∈ X and every k � 0 there
exists a divisor Ax ∈ |kKX | with multx(Ax) > kα. Let ∆′x := Ax

λ′x
k , with λ

′
x <

3
α ,

λ′x ∈ Q+, but close enough to 3
α so that multx(∆′x) > 3. Note that ∆′x ∼ λ′xKX . Let
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sx := lct(X,∆′x, x). Since for a small ε we have that multx((1 − ε)∆′x) is still > 3
then, by proposition 1.47, sx < 1 . Moreover, by remark 1.30, sx ∈ Q+. Therefore,
without loss of generality, we can suppose that (X,∆′x) is lc, not klt in x.

By lemma 1.41, d., for every x ∈ X0 there exists an effective Q-divisor Dx ∼
λxKX , with λx < 3

α , λx ∈ Q+, such that (X,Dx) is lc, not klt in x and LLC(X,Dx, x) =
{Vx}, where Vx is the unique minimal irreducible element of LLC(X,∆′x, x). More-
over we can also assume that Vx is an exceptional lc centre.

Fix β ∈ Q+. Set
Y0 := {x ∈ X0 s.t. dim(Vx) = 0},

Y1 := {x ∈ X0 s.t. dim(Vx) = 1},

Y2,a := {x ∈ X0 s.t. dim(Vx) = 2 and vol(KVx) > β2},

Y2,b := {x ∈ X0 s.t. dim(Vx) = 2 and vol(KVx) ≤ β2}.

Since X0 is countably dense then at least one between Y0, Y1, Y2,a and Y2,b is
countably dense. We will therefore analyze these cases.

Before continuing with the proof we remark that since given a variety of general
type (i.e., vol > 0), all the subvarieties that pass through a very general point are of
general type (i.e., vol > 0), one is tempted to argue that if the volume is sufficiently
large then all the subvarieties that pass through a general point have large volume.
Unfortunately this is not the case: for example let Cg be a smooth curve of genus g.
Then vol(C2 × Cg) = vol(C2)vol(Cg) = 4(2g − 2). Hence we can construct examples
of varieties of volume as large as one likes but such that for every point there is a
curve of vol = 2 (namely C2).

Back in track: first of all, let us assume that Y0 is countably dense. For
every x ∈ Y0 we have that Vx = {x}, in fact dim(Vx) = 0 and Vx is irreducible.
x ∈ Supp(Dx). Therefore we can apply lemma 1.6 and lemma 1.44 (with m = n) to
conclude that for every n ≥ 1, as soon as

λx <
3
α
≤ 1⇔ α ≥ 3, (2.1)

h0(KX + nKX) = h0((n+ 1)KX) ≥ n.
Let us now consider the case Y1 countably dense. We wish to apply theorem 2.1,

to cut down the dimension of the lc centers. For every x ∈ Y1 consider Vx and a
resolution fx : Wx → Vx. As we have already seen, Vx is an exceptional lc centre of
(X,Dx). Since x ∈ X0, Vx, and henceWx, are of general type and Vx is not contained
in the augmented base locus of KX . Moreover g(Wx) ≥ g ≥ 2. Let Ux be the very
general subset of Vx defined as in [20, thm. 4.1]. Set U ′x := Ux ∩X0. U ′x is still a
very general and non-empty subset of Vx. We also have that vol(Wx) ≥ 2g − 2. Let
ε� 1, ε ∈ Q+. Then vol(Wx) > 2g−2− ε. Set t1 := 1/(2g−2− ε): vol(t1KWx) > 1.
For every y ∈ U ′x let us consider y′ ∈ f−1

x (y) ⊂Wx. Since y′ is a smooth point, by
lemma 1.45 and proposition 1.47, there exists Θy′ ∼ t1KWx such that (Wx,Θy′) is
not klt in y′. As before, since lct(Wx,Θy′ , y

′) < 1, we can suppose that (Wx,Θy′) is
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lc, not klt in y′ and Θy′ ∼ µy′KWx with µy′ ∈ Q+ and µy′ ≤ 1/(2g−2− ε). SinceWx

is a curve and lc centres are irreducible, LLC(Wx,Θy′ , y
′) = {y′}. We can now apply

theorem 2.1 since fx(y′) = y ∈ U ′x and {y′} is a pure lc centre: for every δ ∈ Q+,
there exists a divisor D′y such that {y} is an exceptional lc centre for (X,D′y) and
D′y ∼ ((λx + 1)(µy′ + 1)− 1 + δ)KX . Let us notice that since {y} is an exceptional
lc centre then LLC(X,D′y, y) = {{y}}.

At the end we are in the following situation: for every point z ∈ ∪x∈Y1U
′
x

there exists a Q-divisor D′z such that LLC(X,D′z, z) = {{z}} and such that D′z ∼
((λz + 1)(µz + 1)− 1 + δ)KX , with λz < 3

α and µz ≤ 1/(2g − 2− ε). Let us prove
that ∪x∈Y1U

′
x is still a countably dense subset of X: if ∪x∈Y1U

′
x ⊆ ∪i∈NZi, where

Zi are closed proper subsets of X, then, for every x ∈ Y1, U ′x ⊆ ∪i∈NZi, hence
U ′x ⊆ (∪i∈NZi) ∩ Vx = ∪i∈N(Zi ∩ Vx). But U ′x is very general in Vx, hence countably
dense in Vx. Therefore for every x ∈ Y1 there exists i ∈ N such that Zi ⊇ Vx 3 x,
i.e., Y1 ⊆ ∪i∈NZi, but this is a contradiction.

We can now apply lemma 1.6 and lemma 1.44 (with m = n) to conclude that for
every n ≥ 1 if( 3

α
+ 1

)
(1 + 1/(2g − 2− ε))− 1 + δ ≤ 1⇔ α ≥ 6g − 3− 3ε

(2g − 2− ε)(1− δ)− 1
(2.2)

(we are considering ε, δ very small) then h0((n+ 1)KX) ≥ n.
Let us now suppose that Y2,a is countably dense. Again, we want to apply

theorem 2.1. As before, for every x ∈ Y2,a we have Vx, a resolution fx : Wx → Vx
and Ux the very general subset of Vx defined as in [20, thm. 4.1]. As before, consider
U ′x := Ux ∩X0. U ′x is still a very general and non-empty subset of Vx. For every
y ∈ U ′x consider y′ ∈ f−1

x (y). Since vol(Vx) > β2 then vol(Wx) = vol(Vx) > β2.
Set t1 = 2/β. Then vol(t1KWx) > 22. Hence there exists Θy′ ∼ t1KWx such that
(Wx,Θy′) is not klt in y′. Since lct(Wx,Θy′ , y

′) < 1, we can suppose that (Wx,Θy′)
is lc, not klt in y′ and Θy′ ∼ µy′KWx with µy′ ∈ Q+ and µy′ < 2/β. Therefore there
exists a pure lc centre W ′y′ ∈ LLC(Wx,Θy′ , y

′). Set V ′y := fx(W ′y′) 3 y. By thm. 2.1,
for every δ ∈ Q+ there exists a Q-divisor D′y such that V ′y is an exceptional lc centre
for (X,D′y) and such that

D′y ∼ ((λx + 1)(µy′ + 1)− 1 + δ)KX .

Recall that λx < 3
α and µy′ < 2

β . Consider

J0 :=
{
y ∈ ∪x∈Y2,aU

′
x s.t. dim(V ′y) = 0

}
and

J1 :=
{
y ∈ ∪x∈Y2,aU

′
x s.t. dim(V ′y) = 1

}
.

Note that if V ′y is a point, i.e. V ′y = {y}, then LLC(X,D′y, y) = {{y}}, while if V ′y is
a curve then it is of general type because it passes through y ∈ X0. Since ∪x∈Y2,aU

′
x

is countably dense in X, then either J0 or J1 is countably dense.
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If J0 is countably dense then we can apply lemma 1.6 and lemma 1.44 (with
m = n) to conclude that, assuming ε, δ very small and

β >
2

1− δ
, (2.3)

for every n ≥ 1 if( 3
α

+ 1
)

(1 + 2/β)− 1 + δ ≤ 1⇔ α ≥ 3β + 6
β(1− δ)− 2

(2.4)

then h0((n + 1)KX) ≥ n. If J1 is countably dense then we can argue exactly in
the same way as we did before for Y1 countably dense: simply re-read the proof
substituting Y1 with J1 and λx with (λx + 1)(µy′ + 1)− 1 + δ. We can conclude that,
assuming ε, δ very small and

β >
2

(2− δ)
(

2g−2−ε
2g−1−ε

)
− 1− δ

, (2.5)

for every n ≥ 1 if

((( 3
α

+ 1
)( 2

β
+ 1

)
− 1 + δ

)
+ 1

)(
1 + 1

2g − 2− ε

)
− 1 + δ ≤ 1⇔ (2.6)

⇔ α ≥ 3β + 6
β
(
(2− δ)

(
2g−2−ε
2g−1−ε

)
− 1− δ

)
− 2

(2.7)

then h0((n+ 1)KX) ≥ n.
Let us now suppose that Y2,b is countably dense. Recall that for every x ∈ Y2,b

we have a divisor Dx ∼ λxKX such that LLC(X,Dx, x) = {Vx}, Vx is an exceptional
log canonical centre and dim(Vx) = 2. Since if we decompose a countably dense set
as a countable union of subsets then at least one of the subsets is countably dense,
we can suppose that λx = λ for a fixed λ ∈ Q+. Recall that λ < 3

α . By lemma 1.48,
we are in the following situation:

X ′
π //

f

��

X

B

whereX ′, B are normal projective varieties, f is a dominant morphism with connected
fibres, π is a dominant and generically finite morphism and the image under π of a
general fibre of f is Vx. Arguing exactly as in [37] we can suppose that there exists
a proper closed subset X1 ⊂ X such that for all x 6∈ X1, Dx is smooth at x. Either
π is birational or the inverse image of a general x ∈ X \X1 under π is contained in
at least two different fibres of f : in fact if π is not birational, since π is a dominant
generically finite morphism, then there exists an open set O′ ⊆ X ′ and m ∈ N,
m > 1, such that for every x ∈ O′, #π−1(x) = m; let Fx ⊂ X ′ be a fibre of f such
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that π(Fx) = Vx; Fx and Vx are birational through π|Fx by [33], hence, since Vx is
smooth at x, π|−1

Fx
(x) is connected, that is #(π−1(x)∩Fx) = 1. Using the above fact

and by the construction of B then if π is not birational there are at least two log
canonical centres through x. In this case we can apply lemma 1.42 and lemma 1.41,
d., e., to conclude that there exists a countably dense set Y := Y2,b ∩ (X \X1) such
that for all y ∈ Y there exists a divisor Sy ∼ k(2λKX) ( 0 < k ≤ 1, λ < 3

α) such
that LLC(Sy, y) = {Cy}, where Cy is an irreducible variety of dimension at most
1. Therefore, as in the case of Y0 and Y1, we can apply lemma 1.6 and lemma 1.44
(with m = n) to conclude that for every n ≥ 1, if 2λk < 6

α ≤ 1, that is

α ≥ 6 (2.8)

and( 6
α

+ 1
)

(1 + 1/(2g − 2− ε))− 1 + δ ≤ 1⇔ α ≥ 12g − 6− 6ε
(2g − 2− ε)(1− δ)− 1

(2.9)

(we are considering ε, δ very small) then h0((n+ 1)KX) ≥ n.
We can now suppose that π is birational. Again arguing as in [37], we can

suppose X ′ = X and that the general fibre of f over a point b ∈ B, Xb, is minimal
and smooth (and of general type). Since f is projective, B is smooth and the general
fibre of f is connected, then by Zariski’s connectedness theorem (see [11, 2.3.7]) f
has connected fibres. Hence, by Stein factorization, f is a fibre space. Moreover for
every b ∈ B there exists a divisor Db ∼ λKX for which we have J (Db) ⊂ OX(−Xb)
(since the fibre is an exceptional lc centre for (X,Db)). Hence we are exactly in the
situation of proposition 1.49: setting k = 1, we know that if λ(4(n+ 1)[β2]− 1) < 1
and n > λ then there is a surjection

H0(X,OX((n+ 1)KX))→ H0(Xb,OXb((n+ 1)KXb))

and thus the theorem is proved, because, by [2, VII.5.4],

h0(Xb,OXb((n+ 1)KXb)) ≥ n.

Since λ < 3
α then the numerical conditions are satisfied as long as

α ≥ 12(n+ 1)[β2]− 3 (2.10)

α ≥ 3
n

(2.11)

It is now time to put everything together, that is to find the best possible value
for β such that we have the lowest inferior bound for α.

Set b := 2g−3
2g−1 . Note that (2.5) implies (2.3) and that β > 2

b = 4g−2
2g−3 implies (2.5).

Moreover (2.9) ⇒ (2.2) ⇒ (2.1) ⇒ (2.11), (2.9) ⇒ (2.8) and (2.7) ⇒ (2.4). Besides
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(2.7) ⇒ (2.9) if β < 12g−10
2g−3 . Therefore we are left to consider only the conditions

(2.7) and (2.10). Set

β′ :=
1 +

√
1 + b(b+1)

4(n+1)

b

and, finally, choose β :=
√

[β′2] + 1− ε′ with 0 < ε′ � 1 and such that β ∈ Q. In
this way β > β′ > 2

b = 4g−2
2g−3 , [β2] = [β′2] and, actually, [β2] = 4 for every n ≥ 1 as

soon as g ≥ 19.
Since (2.7) does not depend on n, for n sufficiently large (2.10)⇒ (2.7). Moreover,

with that choice of β and with g sufficiently large (namely g ≥ 23), we have that
(2.10) ⇒ (2.7) for every n. Therefore in general (2.10) ⇒ (2.7), except for a finite
number of couples (g, n) listed below:

1. g = 2, n = 1;

2. g = 4, n = 7;

3. g = 5, n = 2;

4. g = 6, 44 ≤ n ≤ 52;

5. g = 7, n = 2;

6. g = 10, 305 ≤ n ≤ 381;

7. g = 11, n = 9, 10;

8. g = 12, n = 5;

9. g = 13, n = 3;

10. g = 15, n = 2;

11. 19 ≤ g ≤ 22, n = 1.

The theorem now follows by simple computations.

For the last statement just notice that if we go back over the above proof but
using lemma 1.44 with n = 1 and m = 2 (instead of n = 1 and m = 1) then we can
conclude that h0(3KX) > 0 when g = 2, α ≥ 141, or g = 3, α ≥ 69, or g = 4, α ≥ 47,
or g ≥ 5, α ≥ 33. Therefore, for n = 1, if g, α are as in the hypotheses of the theorem
then not only h0(2KX) > 0 but also h0(3KX) > 0 so, in these cases, we can say that
h0(lKX) ≥ 1 for every l ≥ 2.

Remark 2.4. There are examples of smooth threefolds X with arbitrarily large
volume but h0(KX) = 0: in fact just choose a smooth surface of general type S with
H0(KS) = 0, for example a numerical Godeaux surface (see [2, VII, 10.1]) and a
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smooth curve C of genus g. Then set X := S×C: vol(X) = 3vol(C)vol(S) = 3(2g−
2)vol(S) −−−−→

g→+∞
+∞, but by Kunneth’s formula H0(KX) ∼= H0(KS)⊗H0(KC) = 0.

Remark 2.5. In [23] there are many examples of threefolds of small volume that do
not verify some of the theses of theorem 2.2. They are all constructed as weighted
complete intersections Xd1,...dc canonically embedded in a weighted projective space
P(a1, . . . , ac+3) and with at worst canonical singularities. For instance X46 ⊂
P(4, 5, 6, 7, 23), a general element in the family of all degree 46 hypersurfaces in
P(4, 5, 6, 7, 23), has volume = 1/420 and pg, P2, P3 all equal zero (see [23, 15.3] and [23,
Table 15.1 No. 23]). X10,12,18 ⊆ P(3, 4, 5, 5, 6, 7, 9) has volume 2/105 and Pn < n− 1
for all n between 2 and 14 (see [23, Table 18.16 No. 35]). X10,12 ⊆ P(2, 2, 3, 4, 5, 5)
has volume = 1/10 and P2 = 2, but P3 = 1 (see [23, Table 15.4 No. 43]). Notice
that all the plurigenera have been computed using the formula in [23, par. 18].



Chapter 3

Pluricanonical maps for 3-folds
of general type

3.1 Pluricanonical maps of order ≥ 5

In order to have effective estimates on which pluricanonical system determines a
birational map, by generic smoothness we should only understand when pluricanoni-
cal systems separate very general points (see lemma 1.11). Since we now need to
keep track of two points and not only one, in this case to have the best results we
cannot argue exactly in the same way as before (that is, applying [20, thm. 4.1] (see
thm. 2.1)).

Therefore, following [37], we will use a slightly different technique by Takayama
to inductively lower the dimension of lc centers on a birational modification of the
original variety. Before stating and proving the main theorem we will therefore quote
Takayama’s results:

Theorem 3.1 (Takayama). ( [36, prop. 5.3]). Let X be a smooth projective variety
of general type and of dimension d, let 0 < ε < 1 and let µ : X ′ → X be a birational
morphism from X ′ smooth and projective such that µ∗(KX) ∼Q Aε +Eε, where Aε
is an ample Q-divisor, Eε is an effective Q-divisor and they verify the properties of
[36, theorem 3.1]. Let Q be the union of all subvarieties of X of general type. Let
us take two distinct points x1, x2 ∈ X ′ \ (µ−1(Q) ∪ Supp(Eε)). Then the following
induction statement (∗j) holds for 1 ≤ j ≤ d:

There exists a positive constant

aj < sj + tj/
d

√
vol(X)

and a non-empty subset Ij ⊆ {1, 2} with the following properties. There exists an
effective Q-divisor Dj on X ′ such that Dj ∼Q ajAε and such that

(i) (X ′, Dj) is lc at xi for i ∈ Ij,

33
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(ii) (X ′, Dj) is not klt at xi for i ∈ Ij,

(iii) (X ′, Dj) is not lc at xi for i ∈ {1, 2} \ Ij,

(iv) codim(Nklt(X ′, Dj)) ≥ d at xi for i ∈ Ij.

The constants sj , tj are defined inductively in [36, Notation 5.2(3)]. We do not
recollect them here, since we will need a slightly different inductive definition that
can be found in the proof of theorem 3.3 and, more explicitly and generally, in the
proof of theorem 4.6.

Lemma 3.2 (Takayama). ([36, lemma 5.4]) (∗1) holds.

Theorem 3.3. Let X be a smooth, not g-countably dense, projective threefold of
general type and such that vol(X) > α3. Let l ∈ N, l ≥ 5. Let

f(l, g) := 3 3√2
(

4l
[

32g2

((g(l − 1)− (l + 1))2

]
− 1

)
.

If l, g, α are as in Table 3.1 or, in the other cases,

α >
3 3√2g(1 + 2

√
2)

g(l − 1)− (l + 1)− 4
√

2g

then |lKX | gives a birational map.

Table 3.1.

l g α l g α

5 6= 9 > f(l, g) 9 ≤ 4 > f(l, g)
9 118 3√2 10 ≤ 3 > f(l, g)

6 6= 8 > f(l, g) 11 2 > f(l, g) = 261 3√2
8 73 3√2 12 2 > f(l, g) = 141 3√2

7 ≤ 23 > f(l, g) 13 2 > f(l, g) = 153 3√2
24, . . . , 39 81 3√2 14 2 > f(l, g) = 165 3√2

8 ≤ 6 > f(l, g)
7 93 3√2

Corollary 3.4. If α > 1917 3√2 (or, in case g ≥ 10, α > 117 3√2) then |lKX | gives a
birational map for every l ≥ 5. More generally, if g 6= 9, α > 3 3√2

(
20
[

8g2

(2g−3)2

]
− 1

)
or g = 9, α > 118 3√2 then |lKX | gives a birational map for every l ≥ 5.

Remark 3.5. This improves [37, theorem 1.2].

Remark 3.6. By [8] we know that if l ≥ 73 then |lKX | is always birational, indepen-
dently of the volume of X.
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Proof. We will follow [37]. By [36, theorem 3.1], for every 0 < ε < 1 there exists a
smooth projective variety X ′, a birational morphism µ : X ′ → X and an approximate
Zariski decomposition µ∗(KX) ∼Q A+E where A = Aε is an ample Q-divisor and
E = Eε is an effective Q-divisor that satisfy condition (1),(2),(3) of Takayama’s
theorem (cf. [36, theorem 3.1]).

First of all let us notice that we can argue on X ′ instead of X: in fact, for
every l ∈ N+, µ induces an isomorphism µ∗ : H0(lKX)→ H0(lKX′) (cf. [21, II.8.19
and ex. 8.8]), hence if U ′ := X ′ \ ∪i∈NVi is a very general subset of X ′ (with Vi
proper subvarieties of X ′) and |lKX′ | separates every couple of points in U ′, then
|lKX | separates every couple of points in U = X \ (∪i∈Nµ(Vi)), a very general
subset of X: actually, if x, y ∈ U then, since µ is surjective, ∃x′, y′ ∈ U ′ such that
x = µ(x′), y = µ(y′); then, given s ∈ H0(lKX′) separating x′ and y′, there must
exist a section σ ∈ H0(lKX) with s = µ∗(σ) and therefore σ separates x and y.

By remark 1.22 X ′ is at least not 2-countably dense, hence g ≥ 2. Furthermore,
since X ′ is not g-countably dense then by remark 1.8 there exists a very general
subset Λ ⊆ X ′ such that every curve passing through any point of Λ has geometric
genus ≥ g. Now we would like to simply apply theorem 3.1, but in order to have
better numerical conditions, as in the proof of theorem 2.2 we will distinguish two
different cases depending on the volume of lc centres.

By the proof of lemma 3.2 (see [36, lemma 5.4]), there exists a very general subset
U of X ′ such that for every two distinct points x, y ∈ U we can construct, depending
on x, y, an effective Q-divisor D1 ∼Q a1A, with a1 <

3 3√2
α(1−ε) , a1 ∈ Q+, such that

x, y ∈ Z(J (D1)),(X ′, D1) is lc not klt at one of the points, say p(x, y) ∈ {x, y},
and either codimZ(J (D1)) > 1 at p(x, y) or there is one irreducible component of
Z(J (D1)), say Vp(x,y), that passes through p(x, y) and such that codimVp(x,y) = 1.
We can suppose U ⊆ Λ.

Fix β ∈ Q+.
Let U ′ := {p(x, y)|codimZ(J (D1)) = 1 at p(x, y) and vol(Vp(x,y)) ≤ β2}. Since

U = U ′ ∪ (U \ U ′), then by lemma 1.5, 4., we are in one of these two cases:

1. U \ U ′ contains a very general subset U ′′ of X;

2. U ′ is countably dense.

In the first case we know that ∀x, y ∈ U ′′ either codimZ(J (D1)) > 1 at p(x, y)
or vol(Vp(x,y)) > β2. Applying the inductive steps of theorem 3.1 (see [36, prop.
5.3]), we can conclude that given two very general points x, y ∈ X ′ there exists
(depending on x, y) an effective Q-divisor D on X ′ and a ∈ Q+ with D ∼Q aA such
that x, y ∈ Z(J (X ′, D)) with dimZ(J (X ′, D)) = 0 around x or y, that is x or y is
an isolated point of Z(J (X ′, D)), and

a <

(
1 + 1

(1− ε)(g − 1)

)(
1 + 2

√
2

(1− ε)β

)(
2 + 3 3√2

(1− ε)α

)
− 2 + εf,

where f =
(
1 + 1

(1−ε)(g−1)

) (
2 + 2

√
2

(1−ε)β

)
> 0.



36 3. Pluricanonical maps for 3-folds of general type

By [12, 1.41], KX′ ∼Z µ
∗(KX) + Exc(µ) ∼Q A+ E + Exc(µ), where Exc(µ) is

the exceptional locus and it is an effective divisor by [12, 1.40]. Therefore, replacing
D with D+ (l− 1)(E+Exc(µ)) (with l ∈ N+), as in the proof of lemma 1.44 we can
conclude that by Nadel’s vanishing theorem and proposition 1.35, |lKX′ | separates
two very general points in X ′ as soon as l ≥ [a] + 2.

Hence, in the first case, considering l ≥ 5, we now need only to estimate α
(depending on g, β, ε) in order to have [a] ≤ l− 2, that is a < l− 1. To that purpose,
choosing ε sufficiently small and

β >
4
√

2g
g(l − 1)− (l + 1)

, (3.1)

it is enough to ask that

(
1 + 1

g − 1

)(
1 + 2

√
2

β

)(
2 + 3 3√2

α

)
< l + 1

⇔ α >
3 3√2g(β + 2

√
2)

β(g(l − 1)− (l + 1))− 4
√

2g
. (3.2)

If, otherwise, the second case occur then β ≥ 1 since the volume of a surface of
general type is at least 1. Moreover by lemma 1.48, we are in the following situation:

X ′′
π //

f

��

X ′

B

where X ′′, B are normal projective varieties, f is a dominant morphism with
connected fibres, π is a dominant and generically finite morphism and the image
under π of a general fibre of f is Vx where Vx is a surface through x, a general point.
Moreover there exists a divisor Dx such that Vx is a pure log canonical centre of
(X ′, Dx). In addition, setting a := 3 3√2

α(1−ε) ∈ Q+ we have that Dx ∼Q aA. Moreover
for every p in a countably dense subset of U ′, Vp is the image through π of a fiber of
f .

Again as in [37], we can suppose that there exists a proper closed subset X ′1 ⊂ X ′

such that for all x 6∈ X ′1, Dx is smooth at x.
As in [37] and the proof of theorem 2.2, we will distinguish two other different

subcases, depending on the birationality of π: in fact, as we have already proved in
theorem 2.2, either π is birational or for a general x ∈ X ′ \X ′1 there are at least two
log canonical centres through x.

In the latter case we claim that, using these two log canonical centres, we can
still apply the inductive steps of theorem 3.1, starting from codimension 2. That is:
we claim that given x, y general points of X ′ we can find an effective Q-divisor Dx,y

on X ′ and a′′ ∈ Q such that Dx,y ∼Q a′′A and such that Dx,y satisfies the induction
statement (∗2) of theorem 3.1.
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Now we will prove the claim. Just consider x, y general points of X ′ and consider
also the divisors Dx and Dy. By [32, prop. 9.2.32(i)], since Dx is not klt at x and Dy

is not klt at y, then Dx +Dy is not klt at x and y. Since Dx and Dy are nonsingular
outside X ′1 then we can write

Dx = D1
x + θxD

2
x +Gx,

where θx ∈ Q+, D1
x is the only prime divisor in Dx passing through x and D2

x is
the only prime divisor in Dx − D1

x passing through y (or D2
x = 0 if y ∈ D1

x) and
Gx = Dx −D1

x − θxD2
x is effective. Analogously

Dy = D1
y + θyD

2
y +Gy

with D1
y the only prime divisor in Dy passing through y, D2

y the only prime divisor
in Dy −D1

y passing through x (or D2
y = 0 if x ∈ D1

y) and Gy = Dy −D1
y − θyD2

y is
effective. After rescaling with a positive rational number q ≤ 1 we can suppose that
qDx + qDy is lc but not klt at one of the points, say x, and it is not klt at the other
point y. Therefore, depending on x, y there exists a′ ∈ Q+, a′ ≤ 6 3√2

α(1−ε) < ε+ 6 3√2
α(1−ε) ,

such that qDx + qDy ∼Q a′A.
If there exists, for the pair (X ′, qDx+ qDy), a lc centre through x of codimension

≥ 2 then by 1.41, b., just consider the unique minimal element W of LLC(X ′, qDx+
qDy, x) and proceed as follows:

1. if qDx+qDy is not lc at y then we can apply 1.41, d., with ε′ sufficiently small so
that (1− ε′)(qDx + qDy) is still not lc at y. After the tie-breaking, potentially
taking a smaller ε′, the new divisor is ∼Q a′′A with a′′ still < ε + 6 3√2

α(1−ε) .
This new divisor verifies the induction statement (∗2) of theorem 3.1 with
a2 = a′′, s2 = ε, t2 = 6 3√2

α(1−ε)vol(X);

2. if qDx + qDy is lc, not klt both at x and y but for the pair (X ′, qDx + qDy)
there exists a lc centre Z through y such that x 6∈ Z, then take a sufficiently
small positive rational number ε′ and an ample divisor H ∼Q ε′A. Let B
be a general divisor given by a general section in H0(OX′(mH)⊗ IZ) for m
sufficiently large and divisible. By Kollar-Bertini theorem (see [32, ex. 9.2.29])
J (X ′, qDx+qDy+ 1

mB) = J (X ′, qDx+qDy) outside Z, hence qDx+qDy+ 1
mB

is still lc, not klt at x but it is not lc at y. Hence we can apply 1.;

3. if qDx+qDy is lc, not klt both at x and y, if every lc centre for (X ′, qDx+qDy)
through y passes through x and y ∈ W , then W is the minimal lc centre at
y as well. Hence, as in 1., we can apply the tie-breaking and produce a new
divisor that is lc, not klt at x, y and whose Nklt locus has codimension ≥ 2
both at x and y. Therefore, as in 1., the induction statement (∗2) of theorem
3.1 is satisfied;

4. if qDx+qDy is lc, not klt both at x and y, if every lc centre for (X ′, qDx+qDy)
through y passes through x and y 6∈W , then as in 2., using IW we can suppose
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that
D′ := qDx + qDy + 1

m
B

is still lc, not klt at y but not lc at x. If the minimal lc centre of (X ′, D′) at y
has codimension ≥ 2 then, after switching x and y, we can apply 1. Otherwise
there is a unique lc centre of codimension 1 at y for the pair (X ′, D′). Call it
Y1. Since y is a general point then there exists an effective Q-divisor Fy ∼Q aA

that passes through y, that is smooth at y, such that (X ′, Fy) is lc, not klt at
y and such that LLC(X ′, Fy, y) = {Y2} where Y2 is an irreducible subvariety
of codimension 1. Since, by hypothesis, there are at least two different V ’s
passing through y then we can suppose that Y2 6= Y1. Consider D′+kFy where

k = max{c : D′ + cFy is lc at y}.

Clearly k ≥ 0 and thus D′ + kFy is an effective divisor that is still not lc at
x but it is lc, not klt at y. Let µ : X̃ → X ′ be a log resolution of D′ + Fy.
Thus we can write KX̃/X′ =

∑
a(E)E, KX̃/X′ − µ∗D′ =

∑
(a(E) + b(E))E,

KX̃/X′ − µ∗Fy =
∑

(a(E) + c(E))E, so that

KX̃/X′ − µ
∗(D′ + kFy) =

∑
(a(E) + b(E) + kc(E))E.

By hypothesis there exists a non-exceptional E0 (i.e. a(E0) = 0) such that
b(E0) = −1 and µ(E0) = Y1. Since Fy is smooth at y, then the only irreducible
component of Fy passing through y is Y2 6= Y1, hence c(E0) = 0 and thus
µ(E0) = Y1 is a lc centre at y also for D′ + kFy. By the definition of k there
exists a prime divisor E such that y ∈ µ(E) and a(E)+b(E)+(k+1)c(E) < −1;
but we must also have that a(E) + b(E) + kc(E) ≥ −1. Hence, in particular,
c(E) 6= 0 and thus E 6= E0 and this implies that µ(E) 6= µ(E0) = Y1. Thus
now, considering Y1 ∩ µ(E) and using 1.41,a., we know that there exists a lc
centre of D′ + kFy at y of codimension ≥ 2. Moreover since D′ + kFy ≥ D′

then D′+ kFy is still not lc at x. Hence, after switching x and y, we can apply
1. and produce a new divisor ∼Q a′′A with a′′ < ε+ 9 3√2

α(1−ε) and satisfying (∗2)
of theorem 3.1.

If, on the contrary, every lc centre for (X ′, qDx+qDy) through x has codimension
1 then, by 1.41, a., there exists only one lc centre for (X ′, qDx + qDy) that passes
through x. Since it has codimension 1 then this lc centre must be the support of a
prime divisor in qDx + qDy. Since

qDx + qDy = qD1
x + qθxD

2
x + qD1

y + qθyD
2
y + qGx + qGy

then, identifying a prime divisor with its support, this lc centre can be:

i. D1
x;

ii. D1
y;
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iii. D2
y.

We analyze these different cases.

i. a. if D1
x = D1

y then just see ii.;
b. if D1

x 6= D1
y and D1

x = D2
y then D1

y does not pass through x, or otherwise
D2
y = 0. Since D1

x = D2
y does not pass through y then the components

through y of Nklt(X ′, qDx + qDy) are contained in D2
x ∪D1

y. Since neither
D2
x nor D1

y passes through x then there exists an irreducible component of
Nklt(X ′, qDx + qDy) that passes through y but not through x: hence, as in
2., we can possibly add a small divisor to make sure that qDx + qDy is not
lc at y, but still lc, not klt at x. At this point, as in the second part of 4.,
we can add another divisor through x in order to have a lc centre at x of
codimension ≥ 2 and then apply 1. to produce a new divisor ∼Q a′′A with
a′′ < ε+ 9 3√2

α(1−ε) and satisfying (∗2) of theorem 3.1;

c. if D1
x 6= D1

y and D1
x 6= D2

y then q = 1 and thus D1
y is a lc centre through y

not only for the divisor Dy but also for the divisor qDx + qDy = Dx +Dy.
Therefore D1

y cannot pass through x. We can conclude as in ib.;

ii. since x ∈ D1
y then D2

y = 0 and hence Dy is lc, not klt also at x. Therefore
instead of qDx + qDy we can just consider Dy and its lc centre D1

y. Now, as in
4., we can add another divisor to obtain a lc centre at x of codimension ≥ 2 and
thus falling in one of the cases 1, 2, 3, 4. Eventually we produce a new divisor
∼Q a′′A with a′′ < ε+ 9 3√2

α(1−ε) and satisfying (∗2) of theorem 3.1;

iii. D2
y 6= D1

x, otherwise see ib. We also know that x 6∈ D1
y, otherwise D2

y = 0. If
y 6∈ D1

x then there exists an irreducible component of Nklt(X ′, qDx + qDy) at y
that does not pass through x. We can conclude as in ib. If y ∈ D1

x then D2
x = 0.

Since the lc centre at x is unique then the discrepancy a(D1
x, X

′, qDx + qDy) is
> −1. Hence the irreducible components of Nklt(X ′, qDx + qDy) through y are
contained in D1

y. Therefore we can conclude as in ib.

Summing up: if π is not birational we can conclude that for every x, y general
points in X ′ there exists an effective Q-divisor Dx,y on X ′ and a positive rational
number (depending on x, y) a′′ < ε+ 9 3√2

α(1−ε) such that Dx,y ∼Q a′′A and such that
Dx,y satisfies the induction statement (∗2) of theorem 3.1.

We can now apply the inductive steps of Takayama (see [36, prop. 5.3; in
particular lemmas 5.5, 5.8]) and conclude that for every x, y general points in X ′

there exists an effective Q-divisor D′x,y on X ′ and a positive rational number a′′′ such
that D′x,y ∼Q a′′′A, x, y ∈ Z(J (X ′, D′x,y)) with dimZ(J (X ′, D′x,y)) = 0 around x or
y and

a′′′ <

(
2 + 2

(1− ε)(g − 1)

)(
1 +

9
2

3√2
(1− ε)α

)
− 2 + 2εh,

where h =
(
1 + 1

(1−ε)(g−1)

)
> 0.
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As before, we conclude that |lK ′X | separates x and y as soon as a′′′ < l − 1. To
that purpose, choosing ε sufficiently small, it is enough to ask that(

2 + 2
g − 1

)(
1 +

9
2

3√2
α

)
< l + 1⇔ α >

9 3√2g
g(l − 1)− (l + 1)

. (3.3)

We can now assume that π is birational. Moreover sinceKX′′ ∼ π∗(K ′X)+Exc(π),
then we can suppose that the general fiber X ′′b is a pure log canonical centre of
D′′b ∼Q aKX′′ . Arguing as in [37] we can suppose X ′′ is smooth and that the general
fiber X ′′b of f is smooth and minimal (and of general type). As in the proof of 2.2, f
is a fibre space. In addition, since the fibers of f are all numerically equivalent, we
also know that vol(X ′′b ) ≤ β2.

As before to prove that |lKX′ | separates two very general points it is enough to
show that |lKX′′ | separates two very general points on X ′′.

Choose x, y general points on the same fiber. Since for all l ≥ 5, |lKX′′
b
| gives a

birational map on X ′′b by a result of Bombieri (cf. [5]), in order to separate x and y
we can simply apply proposition 1.49 with k = 1, n = l − 1, obtaining the following
conditions:

a(4l[β2]− 1) < 1, (3.4)

a < l − 1, (3.5)

that are implied by
α > 3 3√2(4l[β2]− 1), (3.6)

α >
3 3√2
l − 1

. (3.7)

(Recall that β ≥ 1 and hence [β2] ≥ 1).
If x, y are on different fibers then, since by a result of Bombieri H0(2KX′′

b
) 6= 0,

we can apply proposition 1.49 with k = 2 and n = 1, obtaining the following
conditions:

2a(8[β2]− 1) < 1, (3.8)

a <
1
2
, (3.9)

that are implied by
α > 6 3√2(8[β2]− 1), (3.10)

α > 6 3√2. (3.11)

Under these assumptions H0(2KX′′) separates x and y. Then if l is even also
H0(lKX′′) separates x and y. If l is odd then if moreover

H0(3KX′′) 6= 0 (3.12)

we can conclude in the same way.
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To deal with condition (3.12) we could simply use theorem 2.2, but since we
do not need h0(3KX′′) ≥ 2 (because for our purposes it is enough to ask that
h0(3KX′′) ≥ 1) then instead of applying theorem 2.2 in its full extent we can simply
use the results about h0(3KX) stated at the end of the proof of theorem 2.2.

It is now time to put everything together, that is to find the best possible value
for β such that we have the lowest inferior bound for α.

If β < 1 we need only to consider (3.1) and (3.2).
If β ≥ 1 then, since l ≥ 5 and g ≥ 2, (3.6) ⇒ (3.3) ⇒ (3.7) and (3.6) ⇒ (3.10)

⇒ (3.11). Moreover, by (3.1), (3.6) ⇒ (3.12). Thus, if β ≥ 1, we are left to consider
only these conditions: (3.1), (3.2), (3.6).

Set
β′ := 4g

√
2

g(l − 1)− (l + 1)
.

Since l ≥ 5, β′ > 0. Finally, if β′ ≥ 1 choose β :=
√

[β′2] + 1− ε′, if β′ < 1 choose
β := 1− ε′, with 0 < ε′ � 1 and such that β ∈ Q. (3.1) is obviously verified. Besides,
in this way [β2] = [β′2].

Now some simple computations allow us to conclude: for (l, g) not as in Table
3.1 we have that β′ < 1 and hence that |lKX | gives a birational map for

α >
3 3√2g(1 + 2

√
2)

g(l − 1)− (l + 1)− 4
√

2g
.

For l = 7, g = 24, . . . , 39 and l = 8, g = 7 it turns out that it is better to take a
larger value for β′, namely β′ = 1. Hence for all (l, g) as in Table 3.1 we have that
(3.6) ⇒ (3.2) except for l = 5, g = 9 and l = 6, g = 8.

Remark 3.7. Notice that, in general, the birationality of |nKX | does not imply
the birationality of |nKX | for every n ≥ m. For example consider the threefold
X46 ⊂ P(4, 5, 6, 7, 23) defined in remark 2.5: in this case |nKX | is birational if and
only if n = 23 or n ≥ 27 (see [20, question 1.6]).

Remark 3.8. In theorem 3.3, whenever l ≥ 21 then we could simply apply [9, theorem
0.1] to prove that vol(X)� 1 implies that |lKX | yields a birational map: in fact, if
vol(X) is sufficiently large then by theorem 2.2 we know that h0(3KX) ≥ 2. Anyway,
the estimates on the volumes obtained directly applying Takayama’s techniques are
much better.

3.2 Pluricanonical maps of order ≤ 4

Remark 3.9. As already Todorov pointed out in [37], we cannot expect to have
results about |4KX | analogous to those listed in theorem 3.3. In fact just choose
a smooth surface of general type S such that |4KS | does not give a birational
map, for example a smooth minimal surface S with K2

S = 1 and h0(KS) = 2
(cf. [2, VII, 7.1]), and a smooth curve C of genus g. Then set X := S × C.
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vol(X) = 3(2g − 2)vol(S) −−−−→
g→+∞

+∞, but since the map φ|4KX | given by |4KX | is,
by Kunneth’s formula, essentially constructed with the two maps φ|4KS | and φ|4KC |
followed by a Segre’s embedding, then φ|4KX | is never birational.

In the wake of remark 3.9, and when the volume is sufficiently large, we can
characterize threefolds for which |4KX | does not give a birational map. In fact if
a threefold X satisfies the conditions on α as listed in the proof of theorem 3.3
(imposing, this time, l = 4) but, at the same time, φ|4KX | is not birational, then X
must necessarily be birational to a threefold fibered by surfaces for which the fourth
pluricanonical map is not birational. Such surfaces X ′′b have volume 1 and geometric
genus pg = 2 by [2, prop. VII.7.1 and VII.7.3]. Therefore we can state the following:

Corollary 3.10. Let X be a smooth projective threefold of general type such that
vol(X) > α3. If α > 6141 3√2 then |4KX | does not give a birational map if, and only
if, X is birational to a fibre space X ′′, with f : X ′′ → B, where B is a curve, such
that the general fiber X ′′b is a smooth minimal surface of general type with volume
1 and geometric genus pg = 2. More generally, if X is not g-countably dense and
if g, α are as in Table 3.2 or, in the other cases, α > 3 3√2

(
16
[

32g2

(3g−5)2

]
− 1

)
, then

|4KX | does not give a birational map if, and only if, X is birational to a fibre space
X ′′ as above.

Table 3.2.

g α g α

11 > 237 3√2 39 > 168 3√2
30, . . . , 37 > 189 3√2 40 > 156 3√2

38 > 182 3√2 41 > 146 3√2

Proof. The “if” part is trivial (and not depending on g, α). For the “only if”, simply
consider again all the conditions on α as in the proof of theorem 3.3, but with l = 4
instead of l ≥ 5; moreover, instead of the usual value for β′, it is better to take a
larger value in some cases: for g = 11 β′ :=

√
5, for g = 30, . . . , 37, β′ := 2. Note

also that the condition (3.12) is not needed. Now, for g = 2, . . . 37 and g ≥ 42 we
have that (3.6) ⇒ (3.2), while for g = 38, 39, 40, 41 (3.2) ⇒ (3.6).

Remark 3.11. In [13] and [10] there is an example of a smooth canonical threefold
X with volume = 2 and such that |4KX | does not give a birational map. For this X
the thesis of corollary 3.10 does not apply: in fact for a generic irreducible curve C0
in any family of curves on X we have KX · C0 ≥ 2 (see [10, Ex. 6.3]), but if X were
birationally fibred by surfaces of volume 1 and pg = 2, we would have, on a general
fibre, a family of curves for which KX · C0 ≤ 1.

Analogously, dealing this time with the 3rd pluricanonical map, considering the
characterization of surfaces with a birational 3rd pluricanonical map (cf. [2, prop.
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VII.7.1, VII.7.2 and VII.7.3]) and requiring X not to be 3-countably dense, we can
state also the following:

Corollary 3.12. Let X be a smooth, not 3-countably dense, projective threefold of
general type such that vol(X) > α3. If α > 5178 3√2 then |3KX | does not give a
birational map if, and only if, X is birational to a fibre space X ′′, with f : X ′′ → B,
where B is a curve, such that the general fibre X ′′b is a smooth minimal surface of
general type and either it has volume 1 and geometric genus pg = 2 or it has volume
2 and pg = 3. More generally, if X is not g-countably dense, with g ≥ 3, and if g, α
are as in Table 3.3 or, in the other cases, α > 6 3√2

(
12
[

8g2

(g−2)2

]
− 1

)
then |3KX |

does not give a birational map if, and only if, X is birational to a fibre space X ′′ as
above.

Table 3.3.

g α g α

11 > 858 3√2 35, . . . , 37 > 642 3√2
19 > 714 3√2 38 > 640 3√2

Proof. Consider again the proof of theorem 3.3, but with l = 3: this time, however,
if x, y are on different fibers then we need to apply prop. 1.49 with k = 2, n = 2
obtaining a new condition (3.10), namely α > 6 3√2(12[β2]− 1), and a new condition
(3.11), namely α > 3 3√2. As before, (3.12) is no longer needed. Moreover instead of
the usual value for β′, it is better to take a larger value in some cases: for g = 11
β′ :=

√
12, for g = 19 β′ :=

√
10, for g = 35, . . . , 37, β′ := 3. Therefore this time we

have that (3.10)⇒ (3.6) and we are left to consider only conditions (3.1), (3.2) and
(3.10). For g 6= 38 we have that (3.10) ⇒ (3.2), while for g = 38 (3.2) ⇒ (3.10).

Remark 3.13. There are examples of threefolds X of general type with large volume
and |3KX | birational even if X is covered by curves of genus 2: just consider the
product C2 × Cg × Cg (where Ca is a smooth curve of genus a) and let g go to
infinity.

Remark 3.14. By corollaries 3.10 and 3.12 we have that if X is a threefold of general
type, not 3-countably dense and of sufficiently large volume then the birationality of
|3KX | implies the birationality of |4KX |.

We can say something also for the second pluricanonical map, even if in this case
we need to suppose that X is not 4-countably dense. Note that the classification
of surfaces for which the second pluricanonical map is not birational has not been
completed yet. You can refer to [3, §2] for a survey on this subject and to [6, theorem
0.7, remark 0.8] for a partial classification (however notice that by our assumption
about countably density the standard case and the symmetric product case cannot
occur).
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Corollary 3.15. Let X be a smooth, not 4-countably dense, projective threefold of
general type and such that vol(X) > α3. If α > 24570 3√2 then |2KX | does not give a
birational map if, and only if, X is birational to a fibre space X ′′, with f : X ′′ → B,
where B is a curve, such that such that the general fiber X ′′b is a smooth minimal
surface of general type and |2KX′′

b
| does not give a birational map. More generally,

if X is not g-countably dense, with g ≥ 4, and if g, α are as in Table 3.4 or, in the
other cases, α > 6 3√2

(
8
[

32g2

(g−3)2

]
− 1

)
, then |2KX | does not give a birational map if,

and only if, X is birational to a fibre space X ′′ as above.

Table 3.4.

g α g α

8 > 3930 3√2 43, 44 > 1770 3√2
12 > 2730 3√2 53, 54 > 1722 3√2
14 > 2490 3√2 69, . . . , 72 > 1674 3√2
22 > 2058 3√2 73 > 1630 3√2
24 > 2010 3√2 101, . . . , 110 > 1626 3√2
26 > 1962 3√2 197, . . . , 241 > 1578 3√2
29 > 1914 3√2 242 > 1560 3√2
32 > 1866 3√2 243 > 1532 3√2
37 > 1818 3√2

Proof. Consider the proof of theorem 3.3, but with l = 2 instead of l ≤ 5. (3.12) is
not needed. Moreover instead of the usual value for β′, it is better to take a larger
value in some cases: g = 8 β′ :=

√
82, g = 12 β′ :=

√
57, g = 14 β′ :=

√
52, g = 22

β′ :=
√

43, g = 24 β′ :=
√

42, g = 26 β′ :=
√

41, g = 29 β′ :=
√

40, g = 32 β′ :=
√

39,
g = 37 β′ :=

√
38, g = 43, 44 β′ :=

√
37, g = 53, 54 β′ := 6, g = 69, . . . , 72 β′ :=

√
35,

g = 101, . . . , 110 β′ :=
√

34, g = 197, . . . , 241 β′ :=
√

33. This time we have that
(3.10)⇒ (3.6) and we are left to consider only conditions (3.1), (3.2) and (3.10).
For g 6= 73, 242, 243 we have that (3.10) ⇒ (3.2), while for g = 73, 242, 243 (3.2) ⇒
(3.10).

Remark 3.16. The birationality of the fourth pluricanonical map for threefolds of
general type has been studied by, among the others, Lee, Dong, M.Chen, Zhang.
Actually it is still an open problem when φ|4KX | not birational implies that X is
birational to an X ′′ as in corollary 3.10 (cf. [10, 6.4]). Both Dong in [13] and Chen-
Zhang in [10] give characterizations for the birationality of the fourth pluricanonical
map, but instead of using the volume of X, they suppose that the canonical bundle
has a sufficient number of sections (h0(KX) ≥ 7 in Dong’s paper, h0(KX) ≥ 5 in
Chen-Zhang’s). As we have already seen (cf. remark 2.4 ) this is not implied by the
largeness of the volume.
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As for the birationality of the third pluricanonical map, explicit characterizations
not depending on the volume are not known (cf. [10, Open problems 6.4]).





Chapter 4

Higher dimensional results

We know that there exists a positive lower bound on the volume of any variety
of general type of a given dimension (see, for example, [36, theorem 1.2]). If only
we knew these lower bounds explicitly then the ideas we exploited for threefolds to
find estimates for the non-vanishing of pluricanonical systems or the birationality of
pluricanonical maps could be generalized to varieties of any dimension. Unfortunately
this is not the case. Anyway, we did explicit calculations in the case of fourfolds, since
in [8] J. Chen and M. Chen computed a lower bound for the volume for threefolds
of general type. However notice that since we do not have the technique of the
fibration at our disposal, these estimates are probably far from being optimal.

4.1 Plurigenera

Theorem 4.1. Let X be a smooth projective variety of general type and of dimension
d, such that vol(X) > αd. Let Π be a very general subset of X and, for i = 1, . . . , d−1,
let vi ∈ Q+ such that vol(Z) > vi for every Z ⊂ X subvariety of dimension i passing
through a point x ∈ Π and let µi := i

i
√
vi
. Set

M :=
[(

d

α
+ 1

)
· (µd−1 + 1) · (µd−2 + 1) · . . . · (µ1 + 1)

]
.

Then for all n ≥ 1, for all m ≥ nM , h0((m+ 1)KX) ≥ n.

Remark 4.2. By [20, corollary 1.3] or [36, theorem 1.2], we know that there exists ηi
such that for every variety Z of dimension i and of general type, then vol(Z) ≥ ηi.
Therefore for every i = 1, . . . , d− 1, the vi’s exist and are greater than 0.

Proof. As in [37] and as before, to prove the theorem we will essentially produce lc
centres and then, using theorem 2.1, cut their dimensions until they are points; then
we can apply Nadel’s vanishing theorem to pull back sections from the points to the
variety.

Let X0 be the intersection between Π and X \ B+(KX). X0 is a very general
subset of X, hence countably dense. Note that for every x ∈ X0, every subvariety
through x is of general type, since its volume is strictly positive by hypothesis.

47
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Since vol(KX) > αd, by lemma 1.45, for every x ∈ X and every k � 0 there
exists a divisor Ax ∈ |kKX | with multx(Ax) > kα. Let ∆′x := Ax

λ′x
k , with λ

′
x <

d
α ,

λ′x ∈ Q+, but close enough to d
α so that multx(∆′x) > d. Note that ∆′x ∼ λ′xKX . Let

sx := lct(X,∆′x, x). By lemma 1.47, sx < 1 . Moreover, by remark 1.30, sx ∈ Q+.
Therefore, without loss of generality, we can suppose that (X,∆′x) is lc, not klt in x.

By lemma 1.41, d., for every x ∈ X0 there exists an effective Q-divisor Dx ∼
λxKX , with λx < d

α , λx ∈ Q+, such that (X,Dx) is lc, not klt in x and LLC(X,Dx, x) =
{Vx}, where Vx is the unique minimal element of LLC(X,∆′x, x). Moreover we can
also assume that Vx is an exceptional lc centre.

For every 0 ≤ i ≤ d− 1, set

Yi := {x ∈ X0 s.t. dim(Vx) = i}.

Since X0 is countably dense then at least one between the Yi’s is countably dense.
Moreover we can assume that Yd−1 is countably dense - in fact, numerically, this is
the “worst” possible scenario, as it will be clear further on in the proof.

Now we apply theorem 2.1: for every x ∈ Yd−1 consider Vx and a resolution
fx : Wx → Vx. As we have already seen, Vx is an exceptional lc centre of (X,Dx).
Since x ∈ X0, Vx, and hence Wx, are of general type and Vx is not contained in the
augmented base locus of KX . Moreover vol(Wx) > vd−1 by hypothesis, since the
volume is a birational invariant. Let Ux be the very general subset of Vx defined
as in [20, thm. 4.1]. Set U ′x := Ux ∩X0. U ′x is still a very general and non-empty
subset of Vx. Moreover vol(µd−1KWx) > (d − 1)d−1. For every y ∈ U ′x let us
consider y′ ∈ f−1

x (y) ⊂Wx. Since y′ is a smooth point, by lemma 1.45 and remark
1.47, there exists Θy′ ∼ µd−1KWx such that (Wx,Θy′) is not klt in y′. As before,
since lct(Wx,Θy′ , y

′) < 1, we can suppose that (Wx,Θy′) is lc, not klt in y′ and
Θy′ ∼ µy′KWx with µy′ ∈ Q+ and µy′ < µd−1. Therefore there exists a pure lc
centre W ′y′ ∈ LLC(Wx,Θy′ , y

′). Set V ′y := fx(W ′y′) 3 y. By theorem 2.1, for every
δ ∈ Q+ there exists a Q-divisor D′y such that V ′y is an exceptional lc centre for
(X,D′y) and such that D′y ∼ ((λx + 1)(µy′ + 1)− 1 + δ)KX . At the end we are in the
following situation: ∪x∈Yd−1U

′
x is countably dense in X and for every z ∈ ∪x∈Yd−1U

′
x

there exists a Q-divisor D′z such that LLC(X,D′z, z) = {V ′z} with V ′z exceptional lc
centre, dim(V ′z ) < d− 1 and D′z ∼Q ((λz + 1)(µz + 1)− 1 + δ)KX with λz < d

α and
µz < µd−1.

We can now apply theorem 2.1 again and again and conclude that there exists a
countably dense set Γ ⊆ X such that for every x ∈ Γ there exists a Q-divisor Bx
such that LLC(X,Bx, x) = {{x}} and Bx ∼Q γKX with

γ <

(
d

α
+ 1

)
· (µd−1 + 1) · (µd−2 + 1) · . . . · (µ1 + 1)− 1 + δq,

where q is a positive rational number.
Taking δ sufficiently small, we can conclude that γ < M , therefore, by lemma

1.6 and lemma 1.44, for all n ≥ 1, for all m ≥ nM , h0((m+ 1)KX) ≥ n.
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Remark 4.3. In the above proof it is clear that

M ≥ [(µd−1 + 1) · (µd−2 + 1) · . . . · (µ1 + 1)]

and that “=” holds as soon as(
d

α
+ 1

)
· (µd−1 + 1) · . . . · (µ1 + 1)− [(µd−1 + 1) · . . . · (µ1 + 1)] < 1

i.e.
d

α
<

1− {(µd−1 + 1) · . . . · (µ1 + 1)}
(µd−1 + 1) · . . . · (µ1 + 1)

i.e.
α >

d(µd−1 + 1) · . . . · (µ1 + 1)
1− {(µd−1 + 1) · . . . · (µ1 + 1)}

.

Corollary 4.4. Let X be a smooth, not g-countably dense, projective variety of
general type of dimension d and such that vol(X) > αd. If d = 3, if

α >
92g−1

2g−2

1−
{
32g−1

2g−2

}
then we have that h0 ((1 +m)KX) ≥ n for all n ≥ 1 and all m ≥

[
32g−1

2g−2

]
n. If

d = 4,

α >
12(3 3√2660 + 1)2g−1

2g−2

1−
{
3(3 3√2660 + 1)2g−1

2g−2

}
then h0 (X, (1 +m)KX) ≥ n for all n ≥ 1 and all m ≥

[
3(3 3√2660 + 1)2g−1

2g−2

]
n. In

general: if d = 3, if α > 27 then h0(X, (1 + m)KX) ≥ n for all n ≥ 1 and all
m ≥ 4n; if d = 4, if α ≥ 1709 then h0(X, (1 + m)KX) ≥ n for all n ≥ 1 and all
m ≥ 191n.

Proof. For every X and for every 0 < ε� 1 we can take v1 = 2g − 2− ε (by remark
1.8), v2 = 1− ε (the minimal model of a surface is nonsingular, hence the volume
is an integer) and, by [8], v3 = 1

2660 − ε. Therefore µ1 = 1
2g−2 + o(1), µ2 = 2 + o(1)

and µ3 = 3 3√2660 + o(1) (with o(1) > 0, limε→0 o(1) = 0).
If X is a threefold we have that (µ2 + 1) · (µ1 + 1) = 32g−1

2g−2 + o(1) therefore, by
4.1 and 4.3, if

α >
92g−1

2g−2

1−
{
32g−1

2g−2

}
then h0 ((1 +m)KX) ≥ n for every n ≥ 1 and every m ≥

[
32g−1

2g−2

]
n. In general,

taking g = 2 by remark 1.22, we can conclude that if α > 27 then h0(X, (1+m)KX) ≥
n for all n ≥ 1 and all m ≥ 4n.
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IfX is a fourfold we have that (µ3+1)·(µ2+1)·(µ1+1) = 3(3 3√2660+1)2g−1
2g−2+o(1),

therefore we can conclude that if

α >
12(3 3√2660 + 1)2g−1

2g−2

1−
{
3(3 3√2660 + 1)2g−1

2g−2

}
then h0 (X, (1 +m)KX) ≥ n for all n ≥ 1 and all m ≥

[
3(3 3√2660 + 1)2g−1

2g−2

]
n. In

general, taking g = 2, we can conclude that if α ≥ 1709 then h0(X, (1 +m)KX) ≥ n
for all n ≥ 1 and all m ≥ 191n.

Remark 4.5. It is not known which is the least integer n for which Pn 6= 0 for any
fourfold of sufficiently large volume, but by remark 2.5 and taking products we know
that this n must be greater or equal to 4.

4.2 Pluricanonical maps

For the birationality of pluricanonical systems, using - as for the 3-fold case
- Takayama’s result instead of Hacon-McKernan’s, under the same notation and
hypotheses of 4.1, we can state that

Theorem 4.6. Let X be a smooth projective variety of general type and of dimension
d, such that vol(X) > αd. Let Π be a very general subset of X and, for i = 1, . . . , d−1,
let vi ∈ Q+ such that vol(Z) > vi for every Z ⊂ X subvariety of dimension i passing
through a point x ∈ Π and let µi := i

i
√
vi
. Setting, for every i = 1, . . . , d − 1,

ri := i
√

2µi,

s := 2
d−1∏
i=1

(1 + ri)− 2,

t := d
√

2d
d−1∏
i=1

(1 + ri),

we have that if l ≥
[
s+ t

α

]
+ 2 then the linear system |lKX | gives a birational map.

Proof. As in the proof of theorem 3.3, we can reduce ourselves to the following
situation: for every 0 < ε < 1 there exists a smooth projective variety X ′ and a
birational morphism π : X ′ → X and a decomposition µ∗(KX) ∼Q A + E where
A = Aε is an ample Q-divisor and E = Eε is an effective Q-divisor. As in thm. 3.3
we will argue on X ′. By theorem 3.1, we know that given two very general points
x, y ∈ X ′ there exists an effective Q-divisor D on X ′ and a positive constant a with
D ∼Q aA such that x, y ∈ Z(J (X ′, D)) with dimZ(J (X ′, D)) = 0 around x or y,
that is x or y is an isolated point of Z(J (X ′, D)). Besides, by the same theorem, we
also know that a < s+ t/ d

√
vol(X) ≤ s+ t/α where s, t are non-negative constants
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defined as follows. Let si, s′i, ti (i = 1, . . . , d) be non-negative constants determined
inductively as (cf. [36, notation 5.2]): s1 = 0, t1 = d

√
2d/(1− ε), s′i = si + ε,

si+1 =
(

1 + d−i√2 µd−i
1− ε

)
s′i + 2 d−i

√
2 µd−i
1− ε

,

ti+1 =
(

1 + d−i√2 µd−i
1− ε

)
ti.

Finally, set s := sd, t := td.
As in the proof of thm. 3.3, we can say that, given l ∈ N, |lKX′ | separates two

very general points in X ′ as soon as l ≥ [a] + 2.
It can be easily seen that s = s+ o(1) and t = t+ o(1), with o(1) > 0 and such

that limε→0 o(1) = 0. Note that s and t do not depend on ε.
Since a < s+ t/α then a < s+ t/α+ o(1), therefore, taking ε sufficiently small,

[a] ≤ [s+ t/α] and thus we can conclude.

Remark 4.7. In the above proof it is clear that[
s+ t

α

]
≥ [s]

and that “=” holds as soon as
t

α
< 1− {s}

(where {·} is the fractional part), that is

α >
t

1− {s}
.

We can now do explicit calculations in the case of fourfolds, using the same
notation and estimates as in 4.4.

Corollary 4.8. Let X be a smooth, not g-countably dense, projective fourfold of
general type such that vol(X) > α4. If

α >
4 4√2

(
g
g−1

)
(1 + 2

√
2)(1 + 3 3√5320)

1−
{
2
(

g
g−1

)
(1 + 2

√
2)(1 + 3 3√5320)

}
we have that the linear system |lKX | gives a birational map for every

l ≥
[
2
(

g

g − 1

)
(1 + 2

√
2)(1 + 3 3√5320)

]
.

In general, if α ≥ 2816 then |lKX | gives a birational map for every l ≥ 817.
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Proof. For every X and every 0 < ε � 1, as in 4.4 we can take r1 = 1
g−1 + o(1),

r2 = 2 2√2 + o(1), r3 = 3 3√5320 + o(1). Therefore

s = 2
(

g

g − 1

)
(1 + 2

√
2)(1 + 3 3√5320)− 2 + o(1)

and
t = 4 4√2

(
g

g − 1

)
(1 + 2

√
2)(1 + 3 3√5320) + o(1).

Hence, by 4.6 and its remark, if

α >
4 4√2

(
g
g−1

)
(1 + 2

√
2)(1 + 3 3√5320)

1−
{
2
(

g
g−1

)
(1 + 2

√
2)(1 + 3 3√5320)

}
then |lKX | gives a birational map for every

l ≥
[
2
(

g

g − 1

)
(1 + 2

√
2)(1 + 3 3√5320)

]
.

In general, taking g = 2, we can conclude that if α ≥ 2816 then |lKX | gives a
birational map for every l ≥ 817.

Remark 4.9. It is not known which is the least integer n for which |nKX | gives a
birational map for any fourfold X of sufficiently large volume, but by remark 3.7
and taking products we know that this n must be greater or equal to 27.

In the case of a surface of general type S, many things about its pluricanonical
maps are already known. For example |5KS | gives always a birational map, while
|4KS | gives a birational map if vol(S) ≥ 2 (cf. [2, thm. 5.1]). Anyway we can apply
theorem 4.6 to obtain, in another way, similar (but weaker) results:

Corollary 4.10. Let S be a smooth, not g-countably dense, projective surface of
general type. If vol(S) > 2g2

(2g−3)2 then |5KS | gives a birational map. In general, if
vol(S) ≥ 9 then |5KS | gives a birational map.

Proof. Simply apply theorem 4.6 with s = 2
g−1 , t = 2

√
2 + 2

√
2

g−1 : we want s+ t
α < 4

and this implies α >
√

2g
2g−3 .

Corollary 4.11. Let S be a smooth, not g-countably dense, projective surface of
general type. If vol(S) > 8g2

(3g−5)2 then |4KS | gives a birational map. In general, if
vol(S) ≥ 33 then |4KS | gives a birational map.

Proof. As before, simply apply theorem 4.6. This time we want s+ t
α < 3 and this

implies α > 2
√

2g
3g−5 .

Note that even if this corollary does not add anything new to the geography of
surfaces of general type (in fact if vol(S) = 1 we have g ≤ 11 and so the inequality
is not verified), however it gives another direct way to prove that |4KS | is birational
if vol(S) = 2 and g ≥ 6 or vol(S) = 3, 4 and g ≥ 4 or vol(S) = 5, . . . , 32 and g ≥ 3.
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4.3 Fibrations

In the threefold case, for studying both the non-vanishing of plurigenera and the
birationality of pluricanonical maps, we avoided log canonical centres of codimension
1 and small volume by passing to a fibration (see lemma 1.48) and then producing
sections of pluricanonical bundles (see proposition 1.49). It is important to notice
that this reducing to the fibration is not exclusive to the three-dimensional case,
even if, for varieties of dimension greater or equal to 4, we were not able to have
both the ambient variety smooth and the general fibre minimal, thus not permitting
us to apply something similar to proposition 1.49.

Anyway this approach by means of lemma 1.48 allows us to say something about
varieties of any dimension but without the need to take into accounts log canonical
centres of codimension 1 and small volume.

Hence we can state the following two theorems. Their proofs are not essentially
different from the ones given in this and previous chapters, but for the convenience
of the reader we rewrite them in their generality.

Notice that now explicit numbers can be easily obtained also in the case of
fivefolds.

Theorem 4.12. Let X be a smooth projective variety of general type of dimension
d and such that vol(X) > αd. Let Π be a very general subset of X and, for
i = 1, . . . , d − 2, let vi ∈ Q+ such that vol(Z) > vi for every Z ⊂ X subvariety of
dimension i passing through a point x ∈ Π. Let µi := i

i
√
vi

and R :=
∏d−2
i=1 (µi + 1).

Let l be a positive integer, l > R. Let

β1 := (d− 1)R
l −R

,

β2 := (d− 1)(l +R)
l −R

.

For all β > β1, setting β̃ := min{β, β2}, if

α >
d(1 + (d− 1)/β̃)R
l − (1 + (d− 1)/β̃)R

then either h0(lKX) ≥ 1 (and for all n ∈ N+, h0(mKX) ≥ n for all m ≥ n(l−1)+1)
or X is birational to a fibre space X ′, with f : X ′ → B, where B is a curve, such
that the volume of the general fibre is ≤ βd−1.

Proof. Let X0 be the intersection between Π and X \B+(KX). X0 is a very general
subset of X, hence countably dense. Note that for every x ∈ X0, every subvariety
through x is of general type, since its volume is strictly positive by hypothesis.

Since vol(KX) > αd, by lemma 1.45, for every x ∈ X and every k � 0 there
exists a divisor Ax ∈ |kKX | with multx(Ax) > kα. Let ∆′x := Ax

λ′x
k , with λ

′
x <

d
α ,

λ′x ∈ Q+, but close enough to d
α so that multx(∆′x) > d. Note that ∆′x ∼ λ′xKX .

Let sx := lct(X,∆′x, x). By proposition 1.47, sx < 1 . Moreover, by remark 1.30,
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sx ∈ Q+. Therefore, without loss of generality, we can suppose that (X,∆′x) is lc,
not klt in x.

By lemma 1.41, d., for every x ∈ X0 there exists an effective Q-divisor Dx ∼
λxKX , with λx < d

α , λx ∈ Q+, such that (X,Dx) is lc, not klt in x and LLC(X,Dx, x) =
{Vx}, where Vx is the unique minimal element of LLC(X,∆′x, x). Moreover we can
also assume that Vx is an exceptional lc centre.

For every 0 ≤ i ≤ d− 2, set

Yi := {x ∈ X0 s.t. dim(Vx) = i}.

Then fix β ∈ Q+ and set

Yd−1,a := {x ∈ X0 s.t. dim(Vx) = d− 1 and vol(Vx) > βd−1},

Yd−1,b := {x ∈ X0 s.t. dim(Vx) = d− 1 and vol(Vx) ≤ βd−1}.

Since X0 is countably dense then at least one between the Yi’s, Yd−1,a, Yd−1,b is
countably dense. If one of the Yi, 0 ≤ i ≤ d − 2, or Yd−1,a is countably dense
then we can assume that Yd−1,a is countably dense (in fact, numerically, this is the
“worst” possible scenario) and we apply theorem 2.1: for every x ∈ Yd−1,a consider
Vx and a resolution fx : Wx → Vx. As we have already seen, Vx is an exceptional
lc centre of (X,Dx). Since x ∈ X0, Vx, and hence Wx, are of general type and Vx
is not contained in the augmented base locus of KX . Moreover vol(Wx) > βd−1 by
hypothesis, since the volume is a birational invariant. Let Ux be the very general
subset of Vx defined as in [20, thm. 4.1]. Set U ′x := Ux∩X0. U ′x is still a very general
and non-empty subset of Vx. Moreover vol(d−1

β KWx) > (d− 1)d−1. For every y ∈ U ′x
let us consider y′ ∈ f−1

x (y) ⊂ Wx. Since y′ is a smooth point, by lemma 1.45 and
proposition 1.47, there exists Θy′ ∼ d−1

β KWx such that (Wx,Θy′) is not klt in y′.
As before, since lct(Wx,Θy′ , y

′) < 1, we can suppose that (Wx,Θy′) is lc, not klt
in y′ and Θy′ ∼ µy′KWx with µy′ ∈ Q+ and µy′ <

d−1
β . Therefore there exists a

pure lc centre W ′y′ ∈ LLC(Wx,Θy′ , y
′). Set V ′y := fx(W ′y′) 3 y. By theorem 2.1, for

every δ ∈ Q+ there exists a Q-divisor D′y such that V ′y is an exceptional lc centre for
(X,D′y) and such that

D′y ∼ ((λx + 1)(µy′ + 1)− 1 + δ)KX .

At the end we are in the following situation: ∪x∈Yd−1U
′
x is countably dense in X and

for every z ∈ ∪x∈Yd−1U
′
x there exists a Q-divisor D′z such that LLC(X,D′z, z) = {V ′z}

with V ′z exceptional lc centre, dim(V ′z ) < d−1 and D′z ∼Q ((λz+1)(µz+1)−1+δ)KX

with λz < d
α and µz < d−1

β .
We can now apply theorem 2.1 again and again and conclude that there exists a

countably dense set Γ ⊆ X such that for every x ∈ Γ there exists a Q-divisor Bx
such that LLC(X,Bx, x) = {{x}} and Bx ∼Q γKX with

γ <

(
d

α
+ 1

)
·
(
d− 1
β

+ 1
)
·R− 1 + o(1),
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where o(1) > 0 and limδ→0 o(1) = 0.
By lemma 1.6 and lemma 1.44, h0(lKX) ≥ 1 as soon as l > γ + 1 (and we also

have that for all n ∈ N+, h0(mKX) ≥ n for all m ≥ n(l − 1) + 1). To that purpose,
imposing

l >

(
d− 1
β

+ 1
)
R, (4.1)

it is enough to ask that

α >
d
(
d−1
β + 1

)
R

l −
(
d−1
β + 1

)
R
. (4.2)

Let us now suppose that Yd−1,b is countably dense. Recall that for every x ∈ Yd−1,b
we have a divisor Dx ∼ λxKX such that LLC(X,Dx, x) = {Vx}, Vx is an exceptional
log canonical centre and dim(Vx) = d− 1. Since if we decompose a countably dense
set as a countable union of subsets then at least one of the subsets is countably
dense, we can suppose that λx = λ for a fixed λ ∈ Q+. Recall that λ < d

α . By
lemma 1.48, we are in the following situation:

X ′
π //

f

��

X

B

whereX ′, B are normal projective varieties, f is a dominant morphism with connected
fibres, π is a dominant and generically finite morphism and the image under π of a
general fibre of f is Vx. Arguing exactly as in [37] we can suppose that there exists a
proper closed subset X1 ⊂ X such that for all x 6∈ X1, Dx is smooth at x. Either π
is birational or the inverse image of a general x ∈ X \X1 under π is contained in at
least two different fibres of f . In this case we can apply lemma 1.42 and lemma 1.41,
d.,e., to conclude that there exists a countably dense set Y := Yd−1,b ∩ (X \X1) such
that for all y ∈ Y there exists a divisor Sy ∼ k(2λKX) ( 0 < k ≤ 1, λ < d

α) such that
LLC(Sy, y) = {Cy}, where Cy is an irreducible variety of dimension at most d− 2.
Taking δ any sufficiently small positive rational number, we can now apply theorem
2.1 again and again and conclude that there exists a countably dense set Γ′ ⊆ X such
that for every x ∈ Γ′ there exists a Q-divisor B′x such that LLC(X,B′x, x) = {{x}}
and B′x ∼Q γ′KX with

γ′ <

(2d
α

+ 1
)
·R− 1 + o(1),

where o(1) > 0 and limδ→0 o(1) = 0. Hence, as before, h0(lKX) ≥ 1 as soon as
l > γ′+1 (and we also have that for all n ∈ N+, h0(mKX) ≥ n for allm ≥ n(l−1)+1).
To that purpose, imposing

l > R, (4.3)

it is enough to ask that
α >

2dR
l −R

. (4.4)



56 4. Higher dimensional results

Summing up: given l ∈ N+, if (4.1), (4.2), (4.3), (4.4) are satisfied then we
can conclude that either h0(lKX) ≥ 1 (and for all n ∈ N+, h0(mKX) ≥ n for all
m ≥ n(l − 1) + 1) or X is birational to the fibre space X ′ → B, where B is a curve,
such that the volume of the general fibre is ≤ βd−1.

Note that (4.1) ⇒ (4.3). Moreover (4.1) is equivalent to requiring β > (d−1)R
l−R

and, if (4.1) holds,((4.2) ⇒ (4.4)) ⇔ β ≤ (d−1)(l+R)
l−R . The thesis follows.

Theorem 4.13. Let X be a smooth projective variety of general type of dimension
d and such that vol(X) > αd. Let Π be a very general subset of X and, for
i = 1, . . . , d − 2, let vi ∈ Q+ such that vol(Z) > vi for every Z ⊂ X subvariety
of dimension i passing through a point x ∈ Π. Let µi := i

i
√
vi
, ri := i

√
2µi and

P :=
∏d−2
i=1 (1 + ri). Let l be a positive integer, l > 2P − 1. Let

β1 := 2 d−1√2(d− 1)P
l + 1− 2P

,

β2 :=
d−1√2(d− 1)(l + 1 + 4P )

2(l + 1− 2P )
.

For all β > β1, setting β̃ := min{β, β2}, if

α >
d d
√

2(1 + d−1√2(d− 1)/β̃)P
l + 1− 2(1 + d−1√2(d− 1)/β̃)P

then either |lKX | gives a birational map or X is birational to a fibre space X ′′, with
f : X ′′ → B, where B is a curve, such that the volume of the general fibre is ≤ βd−1.

Proof. By [36, theorem 3.1], for every 0 < ε < 1 there exists a smooth projective
variety X ′, a birational morphism µ : X ′ → X and an approximate Zariski decom-
position µ∗(KX) ∼Q A+E where A = Aε is an ample Q-divisor and E = Eε is an
effective Q-divisor that satisfy condition (1),(2),(3) of Takayama’s theorem (cf. [36,
theorem 3.1]).

As in the proof of theorem 3.3, we can argue on X ′ instead of X and regard Π
as a subset of X ′.

By lemma 3.2 (see also its proof in [36, lemma 5.4]), there exists a very general
subset U of X ′ such that for every two distinct points x, y ∈ U we can construct,
depending on x, y, an effective divisor D1 ∼Q a1A, with a1 <

d d
√

2
α(1−ε) , a1 ∈ Q+, such

that x, y ∈ Z(J (D1)),(X ′, D1) is lc not klt at one of the points, say p(x, y) ∈ {x, y},
and either codimZ(J (D1)) > 1 at p(x, y) or there is one irreducible component of
Z(J (D1)), say Vp(x,y), that passes through p(x, y) and such that codimVp(x,y) = 1.
We can suppose U ⊆ Π.

Fix β ∈ Q+.
Let U ′ := {p(x, y)|codimZ(J (D1)) = 1 at p(x, y) and vol(Vp(x,y)) ≤ βd−1}.

Since U = U ′ ∪ (U \ U ′), then by lemma 1.5, 4., we are in one of these two
cases:
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1. U \ U ′ contains a very general subset U ′′ of X;

2. U ′ is countably dense.

In the first case we know that ∀x, y ∈ U ′′ either codimZ(J (D1)) > 1 at p(x, y)
or vol(Vp(x,y)) > βd−1. Applying the inductive steps of theorem 3.1 (and as in
theorem 4.6) we can conclude that given two very general points x, y ∈ X ′ there
exist (depending on x, y) an effective Q-divisor D on X ′ and a ∈ Q+ with D ∼Q aA

such that x, y ∈ Z(J (X ′, D)) with dimZ(J (X ′, D)) = 0 around x or y, that is x or
y is an isolated point of Z(J (X ′, D)), and a < s+ t

α + o(1) with

s = 2
(

1 + (d− 1) d−1√2
β

)
· P − 2,

t = d
d
√

2
(

1 + (d− 1) d−1√2
β

)
· P,

and o(1) > 0, limε→0 o(1) = 0.
By [12, 1.41], KX′ ∼Z µ

∗(KX) + Exc(µ) ∼Q A+ E + Exc(µ), where Exc(µ) is
the exceptional locus and it is an effective divisor by [12, 1.40]. Therefore, replacing
D with D + (l − 1)(E + Exc(µ)), as in the proof of lemma 1.44 we can conclude
that by Nadel’s vanishing theorem and proposition 1.35, |lKX′ | separates two very
general points in X ′ as soon as l ≥ [s+ t

α ] + 2⇔ l > s+ t
α + 1. To that purpose,

imposing

l > 2
(

1 + (d− 1) d−1√2
β

)
P − 1, (4.5)

it is enough to ask that

α >
d d
√

2
(

1 + (d−1) d−1√2
β

)
P

l + 1− 2
(

1 + (d−1) d−1√2
β

)
P
. (4.6)

In the second case, by lemma 1.48, we are in the following situation:

X ′′
π //

f

��

X ′

B

where X ′′, B are normal projective varieties, f is a dominant morphism with
connected fibres, π is a dominant and generically finite morphism and the image
under π of a general fibre of f is Vx where Vx is a hypersurface through x, a general
point. Moreover there exists a divisor Dx such that Vx is a pure log canonical
centre of (X ′, Dx). In addition, setting a := d d

√
2

α(1−ε) ∈ Q+ we have that Dx ∼Q aA.
Moreover for every p(x, y) in a countably dense subset of U ′, Vp(x,y) is the image
through π of a fiber of f .
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Again as in [37], we can suppose that there exists a proper closed subset X ′1 ⊂ X ′

such that for all x 6∈ X ′1, Dx is smooth at x.
As in [37] and the proof of theorem 2.2, we know that either π is birational or

for a general x ∈ X ′ \X ′1 there are at least two log canonical centres through x.
In the latter case consider x, y two general points of X ′ and consider also the

divisors Dx and Dy. By [32, prop. 9.2.32(i)], since Dx is not klt at x and Dy is not
klt at y, then Dx +Dy is not klt at x and y. After rescaling with a constant ≤ 1
we can suppose that Dx +Dy is lc but not klt at one of the points, say x, and it
is not klt at the other point y. Therefore, depending on x, y there exists a′ ∈ Q+,
a′ < 2d d

√
2

α + o(1), such that Dx +Dy ∼Q a′A. At this point, arguing exactly as in
the proof of theorem 3.3, we can say that if π is not birational then for every x, y
general points in X ′ there exists an effective Q-divisor Dx,y on X ′ and a positive
rational number (depending on x, y) a′′ < 3d d

√
2

α + o(1) such that Dx,y ∼Q a′′A and
such that Dx,y satisfies the induction statement (∗2) of theorem 3.1 (with a2 = a′′,
s2 = o(1), t2 = 3d d

√
2

α vol(X)).
Now applying the inductive steps of Takayama (see [36, prop. 5.3, lemma 5.5,

lemma 5.8]), we can conclude that for every general point x, y ∈ X ′ there exists a
divisor D′ ∼ a′A such that Nklt(X ′, D′) has dimension 0 in x or y and D′ is not klt
at the other point and a′ < s′ + t

′

α + o(1) with

s′ = 2P − 2,

t
′ = 3d d

√
2P.

As before, |lKX′ | separates two very general points in X ′ as soon as l ≥ [s′+ t
′

α ]+2⇔
l > s′ + t

′

α + 1. To that purpose, imposing

l > 2P − 1, (4.7)

it is enough to ask that

α >
3d d
√

2P
l + 1− 2P

. (4.8)

Summing up: given l ∈ N+, if (4.5), (4.6), (4.7), (4.8) are satisfied then we can
conclude that either |lKX′ | is birational or X ′, and hence X, is birational to the
fibre space f : X ′′ → B, with the general fibre having volume ≤ βd−1.

Note that (4.5)⇒ (4.7). Moreover (4.5) is equivalent to requiring β > 2(d−1) d−1√2P
l+1−2P

and, if (4.5) holds, ((4.6) ⇒ (4.8)) ⇔ β ≤ (d−1) d−1√2(l+1+4P )
2(l+1−2P ) . The thesis follows.



Chapter 5

Adjoint pluricanonical systems

Until now we have only dealt with pluricanonical systems on varieties of general
type, but of course we could investigate also other kinds of big divisors. However, if
L is a line bundle on a variety X of dimension d, the simple assumptions “L big” and
“vol(L) � 0” are not enough to allow us to conclude that there exists an m ∈ N+

such that H0(cL) 6= 0 for a certain 0 < c ≤ m:

Example 5.1. Let X be a nonsingular curve of genus g and let a ∈ N+. Let
νn : Pic(X)a → Pic(X)na be the map such that νn(D) = nD for every D ∈ Pic(X)a.
Since νn is dominant, then if D is general of degree a then nD is general of degree
na. Moreover consider the natural map: X(na) → Pic(X)na, where X(na) is the
symmetric product of X. Since dim(X(na)) = na while dim(Pic(X)na) = g, then
the generic line bundle of degree na is not effective as long as na < g. Hence if L is
a general line bundle on X of degree (i.e.: volume) a > 0 then H0(nL) = 0 as long
as na < g. Therefore, for every a > 0, allowing g to go to infinity it is clear that
such an m cannot exist.

Taking products X × . . .×X the same conclusion is still valid for varieties of
arbitrary dimension.

By virtue of the above example, we will consider only a particular class of big
divisors on a variety X, namely big adjoint divisors.

5.1 Adjoint plurigenera

The non-vanishing of the space of sections of adjoint divisors have been extensively
studied during the last years: we can mention Beltrametti-Sommese’s conjecture
(see [4, conj. 7.2.7]), Kawamata’s conjecture (see [26, conj. 2.1]), Höring’s theorem
on adjoint divisors (see [22, thm. 1.2]) that is a generalized version of Beltrametti-
Sommese’s conjecture.

For a threefold X, Kawamata proved the following proposition (see also [22, thm.
1.7] for a similar statement, more general in some sense):

Proposition 5.2 (Kawamata). (see [26, prop. 4.1]). Let X be a projective threefold

59
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with at worst Q-factorial canonical singularities. Let D be an integral Cartier divisor.
Assume that KX is nef and that D −KX is big and nef. Then H0(X,D) 6= 0.

Remark 5.3. Notice that the fact that D must be integral does not allow us to use
Kawamata’s theorem to prove non-vanishing results about pluricanonical systems
on smooth threefolds of general type by simply reducing ourselves to their minimal
model.

For surfaces Kawamata’s conjecture is true; in fact Kawamata proved a general-
ized version of the following theorem:

Theorem 5.4 (Kawamata). (see [26, conj. 2.1 and thm. 3.1]) Let X be a smooth
surface. Let D be a nef integral Cartier divisor such that D −KX is big and nef.
Then H0(X,D) 6= 0.

Instead of considering KX +L, where L is a big and nef line bundle, it is natural
to try to relax some of the hypotheses on L, that is considering L big but maybe not
nef, and, at the same time, bring in other hypotheses about the volume of X and L,
in order to obtain explicit results about non-vanishing of adjoint linear systems.

Unfortunately the techniques that we used did not lead to significant effective
results for threefolds of general type; anyway if we would like to apply something
similar to proposition 1.49, the first step is to study adjoint systems on surfaces of
general type.

We could prove the following theorem. Before stating it, we put before an easy
generalization of lemma 1.45 (cf. [35, exercise 3.5], but applied only to a single
point).

Lemma 5.5. Let X be a projective variety and let V ⊆ X be a subvariety of X of
dimension d and let D be a Q-Cartier divisor. Fix a positive real number α with

volX|V (D) > αd.

Then for any sufficiently large and divisible k ∈ N there exists for any smooth
point x ∈ V a divisor Ax ∈ |kD| such that multx(Ax|V ) > kα and such that
Vx 6⊆ Supp(Ax).

Proof. Assume k sufficiently divisible so that kD is integral. The proof is very much
similar to lemma 1.45. We need only to point out that instead of considering H0(kD)
we are now considering sections in H0(kD|V ) that come from H0(kD) by the natural
restriction map r : H0(kD)→ H0(kD|V ). Clearly if s = r(t) is not zero then t gives
a divisor whose support does not contain V .

Remark 5.6. Mutatis mutandis remark 1.46 holds also in this case.

Theorem 5.7. Let X be a smooth, projective surface of general type and let L be a
big line bundle on X such that vol(L) > α2. If α > 4 then h0(2KX + L) ≥ 1 and
if α > 3n+ (−1)n+1n then h0 (KX +

([
n
2
]
+ 1

)
(KX + L)

)
≥ n for all n ≥ 1. More
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generally, if X is not g-countably dense, if α > 4g−4
2g−3 then h0(2KX + L) ≥ 1 and if

α > 2n
1−
{
n

2g−2

} then

h0
(
KX +

([
n

2g − 2

]
+ 1

)
(KX + L)

)
≥ n

for all n ≥ 1.

Proof. By remark 1.8 there exists a very general subset Λ ⊆ X such that for every x ∈
Λ and every curve C through x then g(C) ≥ g. Set X0 := Λ∩(X \(B+(L)∪B+(KX)).

As in the proof of theorem 2.2, for every x ∈ X0 we have an effective Q-divisor
Dx ∼Q λxL, with λx < 2

α , λx ∈ Q+, such that (X,Dx) is lc, not klt in x and
LLC(X,Dx, x) = {Vx}, where Vx is an exceptional lc centre at x. As in the proof of
theorem 2.2, set

Y0 := {x ∈ X0 s.t. dim(Vx) = 0},

Y1 := {x ∈ X0 s.t. dim(Vx) = 1}.

Either Y0 or Y1 is countably dense.
If Y0 is countably dense then for every x ∈ Y0 take an effective Q-divisor

Fx ∼Q λxKX such that x 6∈ Supp(Fx) (this is possible by lemma 1.18). Consider
D′x := Dx +Fx ∼Q λx(KX +L). Since for every x ∈ Y0, x 6∈ Supp(Fx) then by prop.
1.35 we have that Vx = {x} is still an exceptional lc centre for (X,D′x) and thus we
can apply lemma 1.6 and lemma 1.44 to conclude that for all n ≥ 1, for all m >

[
2n
α

]
we have that

h0(KX +m(KX + L)) ≥ n.

If Y1 is countably dense then for every x ∈ Y1 we need to cut down the dimension
of Vx. But this time we cannot simply apply the specific theorem by Hacon-McKernan
(as we did in theorem 4.1) or the specific theorem by Takayama (as we did in theorem
4.6), since we are not dealing with pluricanonical systems.

First of all, since x 6∈ B+(L), we can pick an effective Q-divisor Ex such that L−Ex
is ample and x 6∈ Supp(Ex). Then we can write L as L = (1−λx)Ax+Dx+(1−λx)Ex,
with Ax ample. This is needed to invoke [35, theorem 4.4]: Dx + (1− λx)Ex is an
effective divisor and, since x 6∈ Supp(Ex), (X,Dx + (1− λx)Ex) is still lc at x and
LLC(X,Dx + (1− λx)Ex, x) = {Vx}, therefore, since g(Vx) ≥ g,

volX|Vx(KX + L) ≥ vol(Vx) ≥ 2g − 2.

At this point we would like to apply [35, lemma A.4]. Let Z(J (X,Dx)) = Vx ∪ Z,
where Z is closed and, since Vx is an exceptional lc centre at x, x 6∈ Z. For all
x ∈ Y1, let us consider U ∩X0 ∩ (Vx \ Z), where U is the dense subset of Vx defined
in the above-mentioned lemma (notice that Vx \ Z is open and non-empty in Vx
and that U can be chosen open, thus U ∩X0 ∩ (Vx \ Z) 6= ∅ and is very general in
Vx). For all x ∈ Y1, for all y ∈ U ∩X0 ∩ (Vx \ Z), since y in particular is a smooth
point on Vx, by lemma 5.5 we have that for every t > 1

2g−2 there exists an effective
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Q-divisor B ∼Q t(KX +L) such that multy(B|Vx) > 1 and such that Vx 6⊆ Supp(B).
In particular take

t := 1
2g − 2

+ 1
α
− λx

2
.

For k sufficiently large, IVx(kB) is globally generated outside B+(B) ⊆ B+(KX) ∪
B+(L), thus the possible choices of B′ ∼ kB such that B′|Vx = kB|Vx and Vx 6⊆
Supp(B′) form a free linear series off Vx ∪ B+(KX) ∪ B+(L). By Kollar-Bertini’s
theorem, if B′ is general then J (X,Dx+ 1

kB
′) = J (X,Dx) off Vx∪B+(KX)∪B+(L).

Let B′′ := 1
kB
′. Since multy(B′′|Vx) > 1 still holds then, by [35, lemma A.4] and for

every ε ∈ Q+, ε� 1, we have that Z(J ((1− ε)Dx +B′′)) contains y as an isolated
point (in fact (X,Dx) is lc at the generic point of Vx and Vx 6⊆ Supp(B′′)). As before,
for every x, for every y, take an effective Q-divisor F ′y such that F ′y ∼Q (1− ε)λxKX

and y 6∈ Supp(F ′y). Then y is still an isolated point of Z(J ((1− ε)Dx +B′′ + F ′y))
where

(1− ε)Dx +B′′ + F ′y ∼Q µx,y(KX + L),

with µx,y ∈ Q+, µx,y < 1
2g−2 + 2

α .
Notice that since this point y can be chosen in a very general subset of Vx, then

by the same argument as in the proof of theorem 2.2 we know that, varying x ∈ Y1,
the set of all possible points y is countably dense in X.

Therefore we can now apply lemma 1.6 and lemma 1.44: for all n ≥ 1, for all
m >

[
n

2g−2 + 2n
α

]
, h0(KX +m(KX + L)) ≥ n.

In particular, for all n ≥ 1, if

α >
2n

1−
{

n
2g−2

} ,
we have that

[
n

2g−2

]
+1 > n

2g−2 + 2n
α . This is equivalent to

[
n

2g−2

]
+1 >

[
n

2g−2 + 2n
α

]
and thus

h0
(
KX +

([
n

2g − 2

]
+ 1

)
(KX + L)

)
≥ n.

Remark 5.8. For threefolds of general type, by the same arguments, it can be proved
a theorem analogous to 5.7: if L is a big line bundle of sufficiently large volume then
H0(6KX + 5L) 6= 0.

5.2 Adjoint pluricanonical maps

When do adjoint pluricanonical systems separate general points? A celebrated
conjecture by Fujita says that if X is any smooth projective variety of dimension d
and A is an ample integral divisor then (i) KX + (l − 1)A is base point free and (ii)
KX + lA is very ample for any l ≥ d+ 2 (see, for example, [32, conj. 10.4.1]).

In the case of surfaces Fujita conjecture has been proved: it actually follows
from more precise results due to Reider. It is interesting to note that in [14] Ein
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gave a proof for Reider’s theorem (more precisely for the base point free part) using
multiplier ideals and non-vanishing theorems. (i) has been proved also in dimension
three and four (see [15], [18], [24]).

Unfortunately this kind of techniques do not seem very adept at separating
tangent vectors, and for this reason not very much is known about very ampleness
of adjoint divisors. However, if we just focus on points separation, then probably
the most notable progress up to now was made by Angehrn and Siu, who proved
that for any smooth projective variety X of dimension d and any A ample (or big
and nef) divisor on X, if l ≥ 1

2(n2 + 2nr − n+ 2) then |KX + lA| separates any set
of r distinct points of X (see [1, cor. 0.4]).

As in the previous section, we can try to relax hypotheses on A adding hypotheses
on X in order to obtain explicit results about the birationality of adjoint linear
systems. We could prove the following:

Theorem 5.9. Let X be a smooth, projective surface of general type and let L be
a big line bundle on X such that vol(L) > α2. If α > 2

√
2 then |KX + l(KX + L)|

gives a birational map for every l ≥ 2. If X is not g-countably dense, with g ≥ 3, if
α > 2

√
2g−1
g−2 then |KX + l(KX + L)| gives a birational map for every l ≥ 1.

Proof. Let Λ and X0 be the same sets as in the proof of theorem 5.7. For every
x1, x2 ∈ X0, by remark 1.46 and as in the proof of theorem 2.2, we have an effective Q-
divisor D1,2 ∼Q λ1,2L, with λ1,2 <

2
√

2
α , λ1,2 ∈ Q+, such that x1, x2 ∈ Nklt(X,D1,2)

and (X,D1,2) is lc at (at least) one of the two points.
If either x1 or x2 is an isolated component of Nklt(X,D1,2) then we are done (see

proof of lemma 1.44). Otherwise, as usual, we need to cut its dimension. Applying
[36, lemma 5.5] and [35, simplifying ass. 4.5,4.6] we can suppose that D1,2 is lc both
at x and y and that there exists a unique irreducible component V of Nklt(X,D1,2)
through x and that y ∈ V ; we can also assume that dim(V ) = 1 and that x, y are
smooth points in V .

As in the proof of theorem 5.7, we have that volX|V (KX + L) ≥ 2g − 2 and
thus by remark 5.6 for every t > 2

2g−2 = 1
g−1 there exists an effective Q-divisor

B ∼Q t(KX + L) such that multx1(B|V ) > 1, multx2(B|V ) > 1 and V 6⊆ Supp(B).
Take

t := 1
g − 1

+
√

2
α
− λ1,2

2
.

As in the proof of thm. 5.7 we can also suppose that J (X,D1,2 +B) = J (X,D1,2)
off V ∪ B+(KX) ∪ B+(L). Hence by [35, lemma A.4] for every ε ∈ Q+, ε � 1 we
have that Z(J ((1− ε)D1,2 +B)) contains x, y as isolated points.

To ease calculations, take an effective Q-divisor F1,2 ∼Q (1− ε)λ1,2KX such that
x1, x2 6∈ Supp(F1,2) (this is possible by remark 1.19). x1, x2 are still isolated points
of Z(J ((1− ε)D1,2 +B + F )) and

(1− ε)D1,2 +B + F ∼Q µ1,2(KX + L),

with µ1,2 ∈ Q+, µ1,2 <
1
g−1 + 2

√
2

α .
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Therefore, as in the proof of lemma 1.44, for every l >
[

1
g−1 + 2

√
2

α

]
we have that

|KX + l(KX + L)| gives a birational map.
In particular if

α >
2
√

2
1−

{
1
g−1

} ,
we have that [ 1

g − 1

]
+ 1 >

[
1

g − 1
+ 2
√

2
α

]

and we can conclude: if g = 2 then
[

1
g−1

]
= 1, while if g ≥ 3 then

[
1
g−1

]
= 0.

Remark 5.10. For threefolds of general type, by the same arguments, it can be
proved a theorem analogous to 5.9: if L is a big line bundle of sufficiently large
volume then |8KX + 7L| gives a birational map.
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