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Introduction

This thesis is mainly devoted to develop the Dynamic Programming ap-
proach to study a class of optimal control problems in infinite dimension
mainly motivated from economic applications (see Chapter 7 and 8). We
will focus our attention in particular1 into HJB related to optimal control
problems governed by linear differential equation of the form

{

dx
dt

(t) = Ax(t) +Bu(t)
x(t) = x

where A is the generator of a C0 semigroup of contractions and B is an
unbounded operator, that arises, for example, in the infinite dimensional
formulation of PDE with boundary control or DDE with delay in the control.
We assume to have a objective functional of the form

J(t, x, u(·)) =

∫ T

t

L(s, x(s), u(s))ds + h(x(T )).

The HJB related to the described optimal control problem is (formally)

−∂tw(t, x) − 〈Ax,∇w(t, x)〉 − inf
u∈U

(

〈Bu,∇w(t, x)〉 + L(t, x, u)

)

= 0

Such class of problems has not been extensively treated in the literature.
The difficulties arise in particular from the unboundedness of the term B, the
non-analyticity of the semigroup A and the non-convexity of the functional
J(t, x, u(·))2. Other difficulties arise from the presence of state-control and
state constraint, that we introduce in very specific case in Chapters 4, 6 and
in the applied models presented in Chapters 7 and 8.

In the thesis we do not give a complete theory but various results on the
subject that may contributes to have a better picture of the argument (a
scheme of the contributions is given below). In particular we limit our study
to the case of HJB related to optimal control problem governed by transport
equation with boundary (and distributed) control (Chapter 3) and to HJB
arising in optimal control problem governed by linear DDEs with delay in
the control (Chapter 4, 6, 7, 8).

1Except for Chapter 5 and Appendix A.
2We use convexity assumption in Chapter 6.
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6 INTRODUCTION

As we said above the main motivation for studying such problems comes
from economic applications, in particular from models of capital accumu-
lation with heterogeneous capital3, see Subsection 3.1.1, Section 7.2 and
Section 8.1.

Dynamic programming approach. The Dynamic Programming
(DP) approach to optimal control problems can be summarized in four main
steps :

(i) letting the initial data vary, calling value function the infimum (or
the supremum) of the objective functional and writing an equation
whose candidate solution is the value function: the so-called DP
Principle, together with its infinitesimal version, the HJB equa-
tion;

(ii) solving (whenever possible) the HJB equation to find the value
function, if it is not possible at least give existence and uniqueness
theorem;

(iii) proving that the present value of the optimal control strategy can
be expressed as a function of the present value of the optimal state
trajectory: a so-called closed loop (or feedback) relation for the
optimal control;

(iv) studying the Closed Loop Equation, i.e. the state equation where
the control is replaced by the closed loop relation: the solution is
the optimal state trajectory and the optimal control strategy is
consequently derived from the closed loop relation.

We can give a description of the contributions presented in this thesis
through such scheme: In Chapters 3, 4, 6 we present three optimal control
problems with the related HJB equations proving that the value function is a
solution (unique in Chapter 3) of the related HJB equation, so we are on step
(i) and (ii). In Chapter 5 and in Appendix A we present two verifications
results that allows to use a solution of the HJB equation to find a optimal
feedback (or to verify if a given pair is optimal). So we are on step (iii). In
chapter 4 also a verification result is proved. Eventually in specific models
treated in Chapter 7 and 8 we can write explicitly the HJB equation (step
(i)), find an explicit solution (step (ii)) and find an explicit optimal feedback
(step (iii)). The delay differential equation found replacing the control with
the closed loop is not solvable (and so we cannot find explicitly the optimal
trajectory) but we can anyway study existence and uniqueness of the solution
and study some properties and the behaviour of such solution (step (iv)).

The plan of the thesis

We divide the thesis in three parts in which we use different approaches
for the study of the HJB: in first part we use the tools of the viscosity solution
approach to study some particular cases, in the second part we refer, for a

3Such models are used to study for example depreciation and obsolescence of physical capital,
geographical difference in growth, innovation and R&D.
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particular problem, to strong solutions method and in third part we examine
two specific applied cases in which it is possible to find an explicit solution
of the HJB.

Part I: Viscosity solution approach:

Chapter 2 is devoted to a brief description of existing literature on vis-
cosity solution for first order HJB in Hilbert spaces, underlining in particular
the relations between optimal control problems in Hilbert spaces and solu-
tions of HJB equations. Differently from the finite dimensional case, where
a certain number of review and books on the theme are available, in the
infinite dimensional case there are not exhaustive summaries about viscosity
solutions approach for HJ in literature.

In Chapter 3 we describe the results obtained in [Faba] related to vis-
cosity solution approach for HJB equation related to optimal control prob-
lems governed by a family of linear transport equations with boundary (and
distributed) control of the form






∂
∂s
x(s, r) + β ∂

∂r
x(s, r) = −µx(s, r) + ũ(s, r) (s, r) ∈ (0,+∞) × (0, s̄)

x(s, 0) = u(s) if s > 0
x(0, r) = x0(r) if r ∈ [0, s̄]

The state equation in L2(0, s̄) appears as
{

d
ds
x(s) = Ax(s) − µx(s) + ũ(s) + βδ0u(s)

x(0) = x0

where the unbounded term βδ0u(s) arises from the boundary control u(s).
Our main problem is to write a suitable definition of viscosity solution, so

that an existence and uniqueness theorem can be derived for such a solution.
The main difficulties we encounter, with respect to the existing literature, is
in dealing with the boundary term and the non-analyticity of the semigroup.
We substantially follow the original idea of Crandall and Lions ([CL90] and
[CL91]) - with some changes, as the reader will rate in Definition 3.15 and
Definition 3.16 - of writing test functions as the sum of a “good part” as it
is a regular function with differential in D(A∗) and a “bad part” represented
by some radial function. The main problems arise in the evaluation of the
boundary term on the radial part.

In order to write a working definition in our case, some further require-
ments are needed, like a C2 regularity of the test functions, the presence
of a “remainder term” in the definition of sub/super solution and the P -
Lipschitz continuity (see Definition 3.10) of the solution. This last feature
guarantees that the maxima and the minima in the definition of sub/super
solution remain in D(A∗) (see Proposition 3.23).

In Chapter 4 we present the results obtained in the work [Fab06]. Here
we consider a class of optimal control problems with state-control constraints,
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where the state equation is a linear delay differential equation with delay in
the control.

The main results are that the value function is a viscosity solution of the
associated HJB equation and a verification theorem.

Due to the difficulties of the problem the result that we find in the
chapter are not very strong and may be considered as a first step of the
study of such problem. Indeed we use a quite small set of test functions and
we can only prove an existence result without any comparison statement.
The DDE we consider in the chapter is a a general homogeneous linear DDE
of the following form:

{

θ̇(s) = N(θs) +B(us) for s ∈ [t, T ]
(θ(t), θt, ut) = (φ0, φ1, ω) ∈ R × L2(−R, 0) × L2(−R, 0)

in which θs, us are the histor of the state and of the control (the notation s

is introduced in Section 1.3) and N and B are linear continuous applications
N,B : C([−R, 0]; R) → R.

The presence of the delay in the control yields an unbounded term in
the HJB equation. Moreover in the state equation as reformulated in M2 a
non-analytic semigroup appears.

We consider two cases: a first case in which we use only state-control
constraint (that generalize the constraints required in the applied examples),
in which we prove an existence result and a verification theorem and a second
case in which we introduce also a (simple) state constraint. In such case the
continuity of the value function is not guaranteed but an existence result is
anyway proved. We present three main examples that show why we study
the problem.

The results of Chapter 5 are from [FGŚ]. We present two results: a
verification theorem within the framework of viscosity solution and a method
to construct ε-optimal piecewise constant controls. As we stressed above a
verification results represents a key step in the dynamic programming ap-
proach to optimal control problems. A verification theorem is a tool to
check whether a given admissible control is optimal and, more importantly,
suggests a way of constructing optimal feedback control.

As observed in Chapter 2 different works treat viscosity solutions in
Hilbert spaces using different approaches and definitions. The verification
results depend on the approach and on the definition of solution we use.
We prove a verification results for the approach of Crandall and Lions. The
main difficulty we have to deal with is the fact that in the infinite dimen-
sional setting not all regular functions that “touch” the candidate-solution
of the HJB equation are test functions but only particular ones. The test
functions that are considered by Crandall and Lions are sum of two parts:
one regular and compatible with the generator of semigroup that appears
in the state equation of the system (“test1”), and one radial (“test2”). The
differentials of such functions do not span all the super (or sub) differential
of the candidate-solution so we cannot reformulate the definition in terms of
super(sub)differentials as in finite dimensional case. The two families test1
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and test2 have different role in the definition of super/sub-solution (see Def-
initions 5.5) and so they have to be treated in different way when we prove
the verification theorem.

In order to construct the ǫ-optimal controls we have first to approxi-
mate the viscosity sub and supersolution of the HJB using sub and super-
convolution and then prove that the approximating functions solve (in vis-
cosity sense) suitable approximating HJB equations.

Under suitable hypotheses we prove that the subsolutions (resp. super-
solutions) of the HJB satisfy the suboptimal (resp. super-optimal) principle

w(t, x) ≤ inf
w(·)∈U [t,T ]

{
∫ t+h

t

L(s, x(s), u(s))ds + w(t+ h, x(t+ h))

}

.

(resp.

w(t, x) ≥ inf
u(·)∈U [t,T ]

{
∫ t+h

t

L(s, x(s), u(s))ds +w(t+ h, x(t+ h))

}

)

Part II: Strong solutions approach:

The second part of the thesis (Chapter 6) is devoted to strong solu-
tion approach to first order HJB equations in Hilbert spaces. The first two
sections (Section 6.1 and Section 6.2) are devoted to the description of the ex-
isting literature and in particular to the introduction of the notions of strong
and weak solution of the HJB when the state equation has an unbounded
linear term.

In the other sections the results obtained in [FGF] are presented. They
are very preliminary and a more in-depth studies is needed in the future, but,
as we have already stressed, we have decided to devote them a whole Part of
this thesis to give to the reader a more complete image of the techniques used
to study first order HJB equation in Hilbert spaces. The concept of ultra-
weak solution as limit of weak solutions is introduced. We will proceed first
showing some motivating examples and then proving that in such examples
the value function is an ultra-weak solution of the HJB.

Part III: Special applied cases:

In Chapter 7 we present the results of [FGa] where the explicit solution
of a first order HJB equation in the Hilbert space M2 is used to study a
vintage capital model.

We denote by k(t) the stock of capital at time t; i(t) and c(t) are the
investment and the consumption at time t. All of them are nonnegative.
The aggregate production at time t is denoted by y(t) and it satisfies, for



10 INTRODUCTION

t ≥ 0

y(t) = a

∫ t

t−R

i(s)ds a > 0.

We have the following accounting relation, for t ≥ 0

ak(t) = y(t) = i(t) + c(t)

so the non-negativity of all variables is equivalent to ask that, for t ≥ 0

i(t), c(t) ∈ [0, y(t)] = [0, ak(t)].

The equilibrium is the solution of the problem of maximizing, over all
investment-consumption strategies that satisfy the above constraints (7.1),
(7.2), (7.3), the functional of CRRA (Constant Relative Risk Aversion) type

∫ +∞

0
e−ρt c(t)

1−σ

1 − σ
dt

where ρ > 0, σ > 0 (and σ 6= 1).
Standard techniques are used to rewrite the problem in the Hilbert space

M2 = R ×L2(−R, 0). The associated HJB equation cannot be treated with
the results of the existing literature. This is due to the presence of the
state/control constraint (i.e. i(t) ∈ [0, ak(t)]), to the unboundedness of the
control operator and the non-analyticity of the semigroup generated by the
operator A. To overcome these difficulties we give a suitable definition of
solution, find an explicit solution of the HJB and use it to give an explicit
form for the optimal feedback. This allows to determine an equation for the
optimal trajectories of the capital stock and of the investment. Long run
equilibrium of the discounted paths is also explicitly given.

In Chapter 8 we present a contribution based a model presented by
Boucekkine DelRio and Martinez [BdRM]. We use the explicit solution of a
first order HJB equation in M2 is used study a model for obsolescence and
physical depreciation. The main ideas are similar to those we have seen in
Chapter 7 (a class of similar problems is studied in [Fab06]) but the different
explicit form of the HJB equation and of the the state equation needs to
adapt the proofs for the new case.

A note on the organization of the work:
A Ph.D. thesis has two different purposes: the first is to produce a presen-
tation of a research problem, the second is to explain how the research of
the candidate has developed during the Ph.D. period. These two different
requirements suggest two different approaches and it is not always easy sat-
isfy both. We will try to describe the main motivations of the problem and
to give, briefly, a description of existing literature and, at the same time,
we will try to focus our attention on the new contributions. The result is a
mix that sometimes try to be a presentation of the the research argument
and sometimes favors the report function of the thesis. For example we have
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chosen to dedicate a whole part of the thesis (part 2) to strong solutions ap-
proach that is a key-argument in the literature on HJB equations in Hilbert
spaces but is not central in the studies of the candidate and for the new
contributions presented. With the same aim we have written a section in
which we describe the problem in the regular case (Section 1.2) and where we
recall some existing results (Section 1.3) to explain which is the background
of the research. On the other hand the chapters that present new contribu-
tions (Chapter 3, 4, 5, 6, 7, 8) are almost self-contained and maintain the
structure of original works4 to give a clearer presentation of research activity.
Sometimes this choice produce some repetitions in the text.
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Notation

X real separable Hilbert space

Ω open or closed subset of X

Y real Banach space

〈·, ·〉 scalar product on X

BR(x̄) {x ∈ X : |x− x̄| ≤ R}
BR {x ∈ X : |x| ≤ R}
O an open set in Rn

Lp(O;Y ) the set of Lp functions : O → Y

Lp(O) the set Lp(O; R)

Lp(a, b) Lp((a, b); R)

Lploc([a,+∞);Y ) the set
{

f : [a,+∞) → Y : f|(a,b) ∈ Lp((a, b);Y ) ∀b > a
}

Lploc[a,+∞) Lploc([a,+∞); R)

W s,p(O;Y ) with s ∈ N and p ≥ 1 the real Sobolev space given by
{f ∈ Lp(O;Y ) : ∀|α| ≤ s∂αf ∈ Lp(O;Y )}

W s,p(O) W s,p(O; R)

Hs(O;Y ) the real Sobolev space of real index s ∈ R

Hs
loc([a,+∞), Y ) (for s ≥ 0) the set

{

f : [a,+∞) → Y : f|(a,b) ∈ Hs((a, b);Y ) ∀b > a
}

Hs(a, b) Hs((a, b); R)

Hs
loc[a,+∞) Hs

loc([a,+∞),R)

C(Ω;Y ) the set of continuous functions : Ω → Y

C(Ω) the set of continuous functions : Ω → R (that is C(Ω; R))

C0,s(Ω;Y ) the set of continuous s-Hoelder functions (s > 0)

C0,s(Ω) C0,s(Ω; R)

C1(Ω;Y ) (Ω ⊆ X open) the set of continuous and continuously differentiable

function : Ω → Y

C1(Ω) (Ω ⊆ X open) C(Ω; R)

Cc(Ω;Y ) the set {f ∈ C(Ω;Y ) : supp(f) ⋐ Ω}
UC(Ω;Y ) the set of uniformly continuous function : Ω → Y

UC(Ω) the set of uniformly continuous function : Ω → R

BUC(Ω) the set of bounded uniformly continuous function : Ω → R

Cω(Ω) the set of weakly continuous function : Ω → R

LSC(Ω) the set of lower semicontinuous function : Ω → R

USC(Ω) the set of upper semicontinuous function : Ω → R

13



14 NOTATION

Lip(Ω;Y ) the set of Lipschitz functions endowed with the natural seminorm

that is
{

f : Ω → Y : [f ]
L

:= supx,y∈Ω, x 6=y
|f(x)−f(y)|Y

|x−y|X
< +∞

}

Lip(Ω) Lip(Ω; R)

C1
Lip(Ω) (Ω ⊆ X open) the set

{

f ∈ C1(Ω) : [f ′]
L
< +∞

}

Cp(Ω;Y ) the set
{

f : Ω → Y : |f |Cp
:= supx∈Ω

|f(x)|Y
1+|x|p

X

< +∞
}

Cp(Ω) the set
{

f : Ω → R : |f |Cp
:= supx∈Ω

|f(x)|
1+|x|p

X

< +∞
}

that is Cp(Ω; R)

Σ0(Ω)
{

w ∈ C2(Ω) : w is convex, w ∈ C1
Lip(Ω)

}

Y([0, T ]× Ω)
{

w : [0, T ]× Ω → R : w ∈ C([0, T ];C2(Ω)),

w(t, ·) ∈ Σ0(Ω), ∇w ∈ C([0, T ];C1(Ω;X ′))
}

D+u(x) the superdifferential of the continuous function u : Ω → R at x that is

D+u(x)
def
=
{

p ∈ X : lim y∈Ω
y→x

(

u(x)−u(y)−〈p,y−x〉
|y−x|

)

≤ 0
}

D−u(x) the subdifferential of the continuous function u : Ω → R at x that is

D−u(x)
def
=
{

p ∈ X : lim y∈Ω
y→x

(

u(x)−u(y)−〈p,y−x〉
|y−x|

)

≥ 0
}

u∗(·) the upper semicontinuous envelopes of a function u : Ω → R at that is

u∗(x)
def
= lim supr↓0 {u(y) : y ∈ Ω |y − x| ≤ r}

u∗(·) the lower semicontinuous envelopes of a function u : Ω → R at that is

u∗(x)
def
= lim infr↓0 {u(y) : y ∈ Ω |y − x| ≤ r}

σ(·) a modulus of continuity (page 17)

σ(·, ·) a local modulus of continuity (page 17)

A the generator of C0 semigroup on X

etA or T (t) the semigroup generated by A



CHAPTER 1

First order HJB equations in Hilbert spaces and

optimal control problems

In this chapter we collect different “utilities” that we will use in the other parts
of the thesis: we first present the notation (Section 1.1), then we describe the
dynamic programming approach to optimal control problem , seeing how it works
when the HJB equation admits a classical solution (Section 1.2), and eventually we
describe some mathematical tools that we will use in the sequel (Section 1.3). The
description of the regular case contained in Section 1.2 is useful to make the thesis
self-contained and to explain the background and the motivations of our studies.
It can be skipped by the reader that already knows the method.

1.1. Definitions: the optimal control problem and the HJB equation

This section is devoted to the description of the notation that will be used.
The hypotheses on the object we consider (like the functions w(·), f(·, ·), L(·, ·),
the generator A, the space U ...) will be specified from time to time during the
exposition.

We describe first the problem characterized by homogeneous state equation and
infinite horizon functional: we consider a state equation in the Hilbert space X of
the form

(1.1)

{

ẋ(s) = Ax(s) + f(x(s), u(s))
x(0) = x

where A is the generator of a C0-semigroup, U is a metric space and f : X×U → X .

Remark 1.1. We will always work using hypotheses that guarantee existence
and uniqueness of the solution. For example f : [0,+∞)×X × U → X continuous
and Lipschitz continuous in x uniformly in (t, u) ∈ [0, T ]× U .

Remark 1.2. The solution x(s) depends on the initial data and on the control,
so we should write xu(·),x(·). We will use simply the form x(·) when there are not
possibilities of misunderstandings.

We want to minimize the infinite horizon functional

(1.2) J(x, u(·)) =

∫ ∞

0

e−ρsL(xu(·),x(s), u(s))ds

among the controls of the set

(1.3) U = {u : [0,+∞) → U : u locally integrable}
(where U is a metric space). We ask that L does not depend (directly) on the time
so the Hamiltonians will not depend on the time.

Notation 1.3. We call admissible pair a couple (xu(·),x(·), u(·)) where u(·) ∈
U . When there are not possibilities of misunderstandings we will write simply
(x(·), u(·))

15



16 1. FIRST ORDER HJB AND OPTIMAL CONTROL

The current value Hamiltonian of the system is

(1.4) HCV (x, p, u) = 〈f(x, u), p〉 + L(x, u)

The maximal value Hamiltonian (or simply Hamiltonian) is

(1.5) H(x, p) = inf
u∈U

(〈f(x, u), p〉 + L(x, u))

The HJB equation is defined as

(1.6) ρw(x) − 〈Ax,∇w(x)〉 −H(x,∇w(x)) = 0,

and the value function of the problem is

(1.7) V (x) = inf
u(·)∈U

(J(x, u(·)))

Remark 1.4. We will work under assumptions that guarantee that |V (x)| <∞
for every x ∈ X. For example in Chapter 4 we will assume L bounded and in
Chapter 7 we will assume ρ > r where r is the maximal growth of |x(·)|.

Notation 1.5. An admissible pair (x̄(·), ū(·)) will be called optimal pair if

V (x) = J(x, ū(·))
The finite horizon problem is characterized by a state equation of the form

(1.8)

{

ẋ(s) = Ax(s) + f(s, x(s), u(s))
x(t) = x

.

Notation 1.6. We will denote by xu(·),t,x(·) the solution of (1.8) when we want
to emphasize the initial data (t, x) and the control u(·).

We consider a target functional (with finite horizon)

(1.9) J(t, x, u(·)) =

∫ T

t

L(s, xu(·),x(s), u(s))ds+ h(x(T ))

and a set of controls

(1.10) Ut = L1(t, T, U).

The current value Hamiltonian of the problem is

(1.11) HCV (t, x, p, u) = 〈f(t, x, u), p〉 + L(t, x, u)

and the (maximal value) Hamiltonian is

(1.12) H(t, x, p) = inf
u∈U

(〈f(t, x, u), p〉 + L(t, x, u)) .

The HJB equation of the system is defined as

(1.13)

{

−∂tw(t, x) − 〈Ax,∇w(t, x)〉 −H(t, x,∇w(t, x)) = 0
w(T, x) = h(x)

and the value function is

(1.14) V (t, x) = inf
u(·)∈Ut

(J(t, x, u(·)))

Remark 1.7. We will work under assumptions that guarantee the uniqueness
of the solution of the (1.8) and that V (t, x)| <∞ for all (t, x) ∈ [0, T ]×X.

Notation 1.8. We call admissible pair at (t, x) a couple (xu(·),t,x(·), u(·)) where
u(·) ∈ Ut. When there are not possibilities of misunderstandings we will write simply
(x(·), u(·)). An admissible pair at (t, x) we be said an optimal pair at (t, x) if

V (t, x) = J(t, x, u(·))
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Notation 1.9. In the following we will refer to equations (1.6) and (1.13) both
in the cases in which an optimal control problems like (1.1, 1.2) and (1.8, 1.9) are
involved or not. In other words we will refer to equations (1.6) and (1.13) also
when the function H is not of the forms (1.5, 1.12).

Eventually we give the definition of the terms “modulus” and “local modulus”
that we will often use in the thesis:

Definition 1.10 (Modulus, from [CL85]). A function σ(·) : [0,+∞) →
[0,+∞) will be called a modulus if it is continuous, nondecreasing, nonnegative,
sub-additive and satisfies σ(0) = 0

Definition 1.11 (Local modulus, from [CL85]). A function
σ(·, ·) : [0,+∞) × [0,+∞) → [0,+∞) will be called a local modulus if r 7→ σ(r,R)
is a modulus for each R ≥ 0 and σ(·, ·) is continuous and non-decreasing in both
variables.

1.2. The dynamic programming in the regular case

In this section we will describe the dynamic programming approach in the
regular case. So we will describe how solving the HJB equation of the problem
can be useful to find an optimal control for the optimization problem. All the
results of this section are well known in literature and so it can be skipped. We
wrote it to introduce the background in which our researches live. The section
can be skipped We refer to the finite horizon problem described in Section 1.1.
We will state and prove the dynamic programming principle (“Bellman optimality
principle” , Theorem 1.13), we will see that the value function solves the HJB
equation (Theorem 1.17 and 1.19 and that such fact can be used to find an optimal
control in feedback form (a “verification theorem” , Theorem 1.20). So we develop
the steps of the dynamic programming presented in the introduction in the regular
case: writing and solving the HJB equation and using the solution to obtain an
optimal control.

Hypothesis 1.12. We will assume that f, L and h are continuous and that
f : [0, T ]×X×U → X is Lipschitz continuous in x uniformly in (t, u) ∈ [0, T ]×U .

Theorem 1.13. If the value function is everywhere finite (so that V : [t, T ] ×
X → R) then, for every s ∈ [t, T ] it solves the following integral equation:

V (t, x) = inf
u(·)∈Ut

{
∫ s

t

L(r, x(r), u(r))dr + V (s, x(s))

}

Proof. We will show the two inequalities:
(≤): We take u(·) ∈ Ut. If u1 ∈ Us then the function

uu1(r) =

{

u(r) if r ∈ [t, s]
u1(r) if r ∈ [s, T ]

is in Ut For the definition of V (t, x) we have

V (t, x) ≤
∫ s

t

L(r, x(r), uu1 (r))dr +

∫ T

s

L(r, x(r), uu1 (r))dr + h(x(T ))

taking the infimum on u1(·) we find

V (t, x) ≤
∫ s

t

L(r, x(r), u(r))dr + V (s, x(s))

and taking the infimum on u(·) we find:

V (t, x) ≤ inf
u(·)∈Ut

{
∫ s

t

L(r, x(r), u(r))dr + V (s, x(s))

}
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(≥): We take u2(·) ∈ Ut. We have

(1.15)
∫ T

t

L(r, x(r), u2(r))dr+h(x(T )) ≥ inf
u(·)∈Ut

{

∫ T

t

L(r, x(r), u(r))dr + h(x(T ))

}

≥

≥ inf
u(·)∈Ut

{

∫ s

t

L(r, x(r), u(r))dr + inf
u1(·)∈Us

{

∫ T

s

L(r, x(r), uu1 (r))dr + h(x(T ))

}}

=

= inf
u(·)∈Ut

{
∫ s

t

L(r, x(r), u(r))dr + V (s, x(s))

}

taking the infimum on u2 we have

V (t, x) ≥ inf
u(·)∈Ut

{
∫ s

t

L(r, x(r), u(r))dr + V (s, x(s))

}

�

Definition 1.14 (Classical solution). We will say that w : [0, T ] ×X → R

is a classical solution of the HJB equation if it is in C1([t, T ] ×X) and
{

−∂tw(t, x) − 〈Ax,∇w(x)〉 −H(t, x,∇w(t, x)) = 0 in [0, T ]×D(A)
w(T, x) = h(x)

We recall now a standard lemma that we will often use in the sequel:

Lemma 1.15. Given a generator A of a C0 semigroup T (s) on X we can extend
T (s) to a C0 semigroup T (E)(s) on the space D(A∗)′ defining for all f ∈ D(A∗)′

T (E)(s)f ∈ D(A∗)′ the element such that
〈

T (E)(s)f, v
〉

D(A∗)′×D(A)
=
〈

f, esA
∗

v
〉

D(A∗)′×D(A)
for all x ∈ D(A∗).

If we call A(E) the generator of T (E)(s) = esA
(E)

we have that A(E) extends A (that
is Ax = A(E)x for all x ∈ D(A)) and X ⊆ D(A(E)).

Proof. See [Fag02] Proposition 4.5 page 59. �

Notation 1.16. In the sequel we will use the notation A(E) to denote the
extension described in Lemma 1.15. Sometimes, if the context is not ambiguous,
we will abuse of the notation and we will call A the extended generator.

Theorem 1.17. Assume that the value function V : [t, T ] × X → R is in
C1([t, T ] ×X). Then it is a classical solution of the HJB equation.

Proof. (This proof is from [LY95]: Proposition 1.2 page 225) By definition
V (T, x) = h(x). Let us fix u ∈ U and x ∈ D(A). By Theorem 1.13 we have that
for s > t

(1.16) 0 ≤ V (s, x(s)) − V (t, x) +

∫ s

t

L(r, x(r), u)dr =

= Vt(t, x)(s− t)+〈∇V (t, x), x(s) − x〉+
∫ s

t

L(r, x(r), u)dr+o(|s− t|+ |x(s)−x|)

Since x ∈ D(A) we have

(1.17)
1

s− t
(x(s) − x) =

1

s− t
(eA(s−t) − I)x +

1

s− t

∫ s

t

eA(s−t)f(r, x(r), u)dr
s↓t−−→

s↓t−−→ Ax+ f(t, x, u)
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Hence, dividing by (s− t) in (1.16) and sending s ↓ t we obtain

−Vt(t, x) − 〈∇V (t, x), Ax + f(t, x, u)〉 − L(t, x, u) ≤ 0 ∀u ∈ U

Taking the infimum in u we find

−Vt(t, x) − 〈∇V (t, x), Ax〉 −H(t, x,∇V (t, x)) ≤ 0.

On the other hand, let x ∈ D(A) be fixed. For any ε > 0 and s > t by Theorem
1.13 there exist a u(·) ∈ Ut such that

(1.18) ε(s− t) ≥ V (s, x(s)) − V (t, x) +

∫ s

t

L(r, x(r)u(r))dr =

= Vt(t, x)(s − t) +
〈

∇V (t, x),
(

eA(s−t) − I
)

x
〉

+
〈

∇V (t, x),

∫ s

t

eA(s−r)f(r, x(r), u(r))dr

〉

+

∫ s

t

L(r, x(r), u(r))dr + o(|s− t|) =

= Vt(t, x)(s − t) +
〈

∇V (t, x),
(

eA(s−t) − I
)

x
〉

+

+

∫ s

t

〈∇V (t, x), f(r, x, u(r))〉 + L(r, x, u(r))dr+

(
∫ s

t

〈∇V (t, x), f(r, x(r), u(r)) − f(r, x, u(r))〉 dr+

+

∫ s

t

L(r, x(r), u(r)) − L(r, x, u(r))dr

)

+ o(|s− t|) ≥

≥ Vt(t, x)(s − t) +
〈

∇V (t, x),
(

eA(s−t) − I
)

x
〉

+H(t, x,∇V (t, x)) + o(|s− t|)

and dividing by (s− t) and letting (s− t) → 0 we obtain

−Vt(t, x) − 〈∇V (t, x), Ax〉 −H(t, x,∇V (t, x)) ≥ −ε
and so we have the thesis. �

Another definition, in which we check the solution in all the points of [0, T ]×X ,
is possible if we ask that ∇w ∈ C([0, T ]×X ;D(A∗)):

Definition 1.18 (Strict solution). We will say that w : [0, T ] × X → R is
a strict solution of the HJB equation if it is in C1([t, T ] × X), ∇w ∈ C([0, T ] ×
X ;D(A∗)) and

{

−∂tw(t, x) − 〈x,A∗∇w(x)〉 −H(t, x,∇w(t, x)) = 0 in [0, T ]×X
w(T, x) = h(x)

We could prove with the same techniques used in the proof of Theorem 1.17
the following

Theorem 1.19. Assume that the value function V : [t, T ] × X → R is in
C1([t, T ] × X) and that V ∈ C([0, T ] × X ;D(A∗)). Then it is a strict solution
of the HJB equation.

Eventually using the solution of the HJB equation we can state a verification
result:

Theorem 1.20. If v ∈ C1([0, T ]×X) is a strict solution of the HJB equation
then v(t, x) ≤ V (t, x) for every (t, x) ∈ [0, T ]×X. Moreover if we have an admissible
pair (x̄(·), ū(·)) such that

(1.19) ū(s) ∈ argminu∈UHCV (s, x̄(s),∇v(s, x̄(s)), u) a.e. in [t, T ]

Then the couple (x̄(·), ū(·)) is optimal at (t, x).
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Proof. We take a generic couple (x(·), u(·)) that solves (1.8), since ∇v ∈
C([0, T ] ×X ;D(A∗)) we can state that

(1.20)
d

ds
v(s, x(s)) = vt(s, x(s)) + 〈A∗∇v(s, x(s)), x(s)〉+

+ 〈∇v(s, x(s)),+f(s, x(s), u(s))〉 a.e. in [t, T ]

so we have that

(1.21) v(t, x) − J(x, u(·)) = v(T, x(T )) −
∫ T

t

vt(s, x(s))+

+ 〈A∗∇v(s, x(s)), x(s)〉 + 〈∇v(s, x(s)),+f(s, x(s), u(s))〉 −

− h(T, x(T )) −
∫ T

t

L(s, x(s), u(s))ds =

since v(T, x(T )) = h(T, x(T )):

(1.22) v(t, x) − J(x, u(·)) = −
∫ T

t

vt(s, x(s))+

〈A∗∇v(s, x(s)), x(s)〉 + 〈∇v(s, x(s)),+f(s, x(s), u(s))〉 + L(s, x(s), u(s))ds =

using that v is a solution of the HJB equation

(1.23) v(t, x) − J(x, u(·)) =

∫ T

t

H(s, x(s),∇v(s, x(s)))−

− 〈∇v(s, x(s)), f(s, x(s), u(s))〉 − L(s, x(s), u(s))ds =
∫ T

t

H(s, x(s),∇v(s, x(s))) −HCV (s, x(s),∇v(s, x(s)), u(s))ds ≤ 0

Taking the infimum over the set of admissible controls in identity (1.23) we see
that v(t, x) ≤ V (t, x) for all (t, x) ∈ [0, T ] ×X . Moreover, since the minimization
of J(t, x, u(·)) over u(·) is equivalent to the maximization of v(t, x) − J(t, x, u(·))
over u(·) if we have a control such that v(t, x)−J(x, u(·)) = 0 then it is an optimal
control. (x̄(·), ū(·)) satisfies by hypothesis such condition and so it is optimal. �

Remark 1.21. Equation (1.23) is called fundamental identity. It implies the
following: if we already know that v(t, x) = V (t, x) for some (t, x) ∈ [0, T ] × X
then the condition (1.19) is also a necessary condition to make an admissible pair
(x̄(·), ū(·)) optimal at (t, x).

1.3. Infinite dimensional setting for delay differential equation

In this section we will recall some general results on linear differential equation
(DDE) and on related Hilbert space approach that can be found e.g. in [BDPDM92].
Such results will be used in the thesis, the reader that already knows the method
can skip the section.

The idea of writing delay system using a Hilbert space setting was first due to
Delfour and Mitter [DM72], [DM75]. Variants and improvements were proposed by
Delfour and Manitius [DM77], Ichikawa [Ich77], Delfour [Del86], [Del80], [Del84],
Vinter and Kwong [VK81], (see also the precise systematization of the argument in
chapter 4 of Bensoussan, Da Prato, Delfour and Mitter [BDPDM92]).

The optimal control problem in the (linear) quadratic case is studied in Vinter,
Kwong [VK81], Ichikawa [Ich82], Delfour, McCalla and Mitter [DMM75]. In that
case the HJB equation reduces to the Riccati equation.

We will concentrate our attention on a particular class of linear DDE. We will
treat the problem using the techniques introduced by Vinter and Kwong ([VK81]).
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We will use the notation of the book of Bensoussan, Da Prato, Delfour and Mitter
[BDPDM92].

The space of the states we will use (the one introduced by Vinter and Kwong)
is the Hilbert M2 = R × L2(−R, 0). So the evolution of the delay system will be
described using x(·) : [0, T ] →M2. The real part of x(t) (the first component) will
be the value of the solution of the delay equation at time t. The second will be a
function of the “histories” of the state and of the control (see 1.37 for details). In
this section we will briefly recall the method that allow to give description of the
system in M2, in order to obtain such result some tools are needed and we have
to rewrite more then once the initial delay equation in different equivalent forms.
This will be done in Subsection 1.3.1.

The state we used is not the only one introduced in the literature. It is, for
example, also possible to use an extended state x̃ in M2 × L2(−R, 0) of three
components: the first is the (real) solution of the DDE, the second is the “history”
of the solution and the third is the “history” of the control. The space is bigger but
the state is more intuitive. See [Ich82], and ([BDPDM92] chapter 4) for details.

1.3.1. Writing and re-writing the DDE. In this subsection we present the
class of DDE we will work on, we introduce some notations and then we will rewrite
the DDE in a form that will allow, in the next subsection, to formulate the DDE
as an equation in a suitable Hilbert space.

We introduce first some notations. We will call L2((a, b); R) (or simply L2(a, b))
the set of the square integrable functions : (a, b) → R, L2

loc([a,+∞); R) (or simply
L2
loc[a,+∞)) the locally square integrable functions : [a,+∞) → R

Given R > 0, T > 0 and z ∈ L2(−R, T ) (or z ∈ L2
loc[−R,+∞)), for every

t ∈ [0, T ] we call zt ∈ L2(−R, 0) the function

(1.24)

{

zt : [−R, 0] → R

zt(s)
def
= z(s+ t)

Given N , B two continuous linear functionals

N,B : C([−R, 0]) → R

with norm respectively ‖N‖ and ‖B‖, we define N and B be the following applica-
tions

(1.25)

N ,B : Cc((−R, T ); R) → L2(0, T )

N (φ) : t 7→ N(φt)

B(φ) : t 7→ B(φt)

Theorem 1.22. N ,B : Cc((−R, T ); R) → L2(0, T ) have continuous linear ex-
tensions L2(−R, T ) → L2(0, T ) with norm ≤ ‖N‖ and ≤ ‖B‖.

Proof. See [BDPDM92] Theorem 3.3 page. 217. �

Given a function f ∈ L2
loc[0,+∞) and a control u ∈ L2

loc[0,+∞) we consider the
the following delay differential equation (where θ0, θt, u0, ut have the sense described
in (1.24):

(1.26)

{

θ̇(t) = Nθt +But + f(t)
(θ(0), θ0, u0) = (φ0, φ1, ω) ∈ R × L2(−R, 0) × L2(−R, 0)

In the delay setting the initial data are a triple, whose first component is the value of
the state variable at initial time, the second and third are respectively the history
of the state and the history of the control up to time 0 (more precisely, on the
interval [−R, 0]).
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Example 1.23. Here we consider and example to illustrate the meaning of the
operators we use in the section. We consider N = δ−r where −r ∈ [−R, 0] and
B = δ−s where −s ∈ [−R, 0]. δ−r and δ−s are the delta measure in −r and −s.
We choose f ≡ 0, so the DDE we obtain is:

(1.27)

{

θ̇(t) = θ(t− r) + u(t− s)
(θ(0), θ0, u0) = (φ0, φ1, ω) ∈ R × L2(−R, 0) × L2(−R, 0)

The explicit form of N and B in this case are:

(1.28)

N ,B : L2(−R, T ) → L2(0, T )

N (θ) : t 7→ N(θt) = θ(t− r)

B(u) : t 7→ B(ut) = u(t− s)

We state now an existence result and an estimate on the solution:

Theorem 1.24. Given an initial condition (φ0, φ1, ω) ∈ R × L2(−R, 0) ×
L2(−R, 0) and a control u ∈ L2

loc[0,+∞) there exists a unique solution θ(·) of
(1.26) in H1

loc[0,∞). Moreover for all T > 0 there exists a constant c(T ) depending
only on R, T, ‖N‖ and ‖B‖ such that

(1.29) |θ|H1(0,T ) ≤ c(T )
(

|φ0|+ |φ1|L2(−R,0) + |ω|L2(−R,0) + |u|L2(0,T ) + |f |L2(0,T )

)

Proof. see [BDPDM92] Theorem 3.3 page 217 for the first part and Theo-
rem 3.3 page 217, Theorem 4.1 page. 222 and page 255 for the second statement. �

In view of the continuous embedding H1(0, T ) →֒ C([0, T ]) we have:

Corollary 1.25. For all T > 0 there exists a constant c(T ) such that

(1.30) |θ|L∞(0,T ) ≤ c(T )
(

|φ0|+ |φ1|L2(−R,0) + |ω|L2(−R,0) + |u|L2(0,T ) + |f |L2(0,T )

)

Definition 1.26 (es
+u, e

s
−u). Let a and b, a < b, two real number. Let F(a, b)

be a set of functions from [a, b] to R. For each u in F(a, b) and all s ∈ [a, b], define
the functions es−u and es+u as follows

es−u : [a,+∞) → R, es−u(t) =

{

u(t) t ∈ [a, s]
0 t ∈ (s,+∞)

es+u : (−∞, b) → R, es+u(t) =

{

0 t ∈ (−∞, s]
u(t) t ∈ (s, b]

Remark 1.27. We will use es− and e+s to divide the function θ(·) in two parts:
the part "before zero" that belongs to the initial datum and the part "after zero" that
is the solution of the DDE. In the same way es− and e+s will be useful to distinguish
the part of u(·) that belongs to the initial datum and the control.

Using the N and B notation we can rewrite the (1.26) as

(1.31)

{

θ̇(t) = N θ + Bu+ f
(θ(0), θ0, u0) = (φ0, φ1, ω) ∈ R × L2(−R, 0) × L2(−R, 0)

Using es− and e+s we can decompose θ(·) and u(·) as θ = e0+θ + e0+φ
1 and u =

e0+u+ e0+ω. So we can separate the solution θ(t), t ≥ 0 and the control u(t), t ≥ 0

from the initial functions φ1 and ω:

(1.32)

{

θ̇(t) = N e0+θ + Be0+u+ N e0−φ
1 + Be0−ω + f

θ(0) = φ0 ∈ R

Now we are ready to describe the key-step in order to obtain R×L2(−R, 0) as state
space. The system (1.32) does not directly use the initial function φ1 and ω but



1.3. INFINITE DIMENSIONAL SETTING FOR DDES 23

only the sum of their images N e0−φ
1 + Be0−ω. We need a last step before we can

write the delay equation in Hilbert space. We introduce two operators
{

N : L2(−R, 0) → L2(−R, 0)

(Nφ1)(α)
def
= (N e0−φ

1)(−α) α ∈ (−R, 0)

and
{

B : L2(−R, 0) → L2(−R, 0)

(Bω)(α)
def
= (Be0−ω)(−α) α ∈ (−R, 0)

The operators N and B are continuous (see [BDPDM92] page 235). We note that

N e0+φ
1(t) + Be0+ω(t) = (e−R+ (Nφ1 +Bω))(−t) for t ≥ 0

So, if we call

(1.33) ξ1 = (Nφ1 +Bω)

and ξ0 = φ0, we can rewrite the (1.32) (and then the (1.26) as

(1.34)

{

θ̇(t) = (N e0+θ)(t) + (Be0+u)(t) + (e−R+ ξ1)(−t) + f(t)
θ(0) = ξ0 ∈ R

where R × L2(−R, 0) ∋ ξ
def
= (ξ0, ξ1). The (1.34) makes sense for all ξ ∈ R ×

L2(−R, 0) also when ξ1 is not of the form (1.33). So we have embedded the original
system (1.26) in a family of systems of the form (1.34).

Example 1.28. In the case N = δ−r and B = δ−s we have the following explicit
expression for N and B:

N(φ1)(α) = N (e−0 φ
1)(−α) =

{

0 α < −r
φ1(−α− r) α ≥ −r

B(ω)(α) = B(e−0 ω)(−α) =

{

0 α < −s
ω(−α− s) α ≥ −s

Remark 1.29. This remark is very (too?) informal but can be useful to un-
derstand the steps we are describing: one can ask why we take the inverse of α
in the definition of N and the inverse of t in the term e−R+ ξ(−t). The advantage
of this approach will be clearer when we will see the state equation in the Hilbert
space, indeed this setting allows to have a state equation in which the unbounded
operator that acts on the control is exactly B∗ (without any transformations). The
“inversion” of the time we are considering now will become an “inversion” in the
state equation (1.39) in M2 where the generator of the semigroup considered is not
the “natural one” S∗(t) but its adjoint S(t).

1.3.2. The infinite dimensional setting. We consider from now on the case
f = 0.

The scalar product between two elements of M2 def= R×L2(−R, 0) φ = (φ0, φ1)

and ξ = (ξ0, ξ1) is 〈φ, ξ〉M2

def
=
〈

φ1, ξ1
〉

L2 + φ0ξ0.
We now introduce the generator of the semigroup that will appear in the equa-

tion in the Hilbert space. We consider the homogeneous system1

{

ẏ(t) = (Ny)(t)
(y(0), y0) = φ ∈M2

1Such homogeneous system can be written in the standard way as


ẏ(t) = Nyt

(y(0), y0) = (φ0, φ1)
.
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We can construct the following semigroup of continuous linear transformations on
M2:

{

S∗(t) : M2 → M2

φ 7→ S∗(t)φ
def
= (y(t), yt)

S∗(t) for t ≥ 0 is a C0 semigroup on M2 and its generator is characterized by

(1.35)

{

D(A∗) =
{

(φ0, φ1) ∈M2 : φ1 ∈ H1(−R, 0) and φ0 = φ1(0)
}

A∗(φ0, φ1) = (Nφ1, Dφ1)

where Dφ1 is the first derivative of φ1. The second component of the elements
of D(A∗) (endowed with the graph norm) is included in C([−R, 0]) so, abusing
notation, we can restrict B on D(A∗) in the following way

(1.36)

{

B : D(A∗) → R

B(φ0, φ1) = Bφ1

Moreover we call j the continuous inclusion D(A∗) →֒ M2. So the operators A∗

and j are continuous from D(A∗) (endowed with the graph norm) in M2 and B is
continuous from D(A∗) in R. We call A, j∗ and B∗ their adjoints. Identifying M2

and R with their duals we have that
A : M2 → D(A∗)′

j∗ : M2 → D(A∗)′

B∗ : R → D(A∗)′

are linear continuous.

Definition 1.30 (Structural state). The structural state x(t) at time t ≥ 0
is defined by

(1.37) x(t)
def
= (θ(t), N(e0+θ)t +B(e0+u)t + Ξ(t)ξ1)

where Ξ(t) is the right translation operator defined as

(1.38) (Ξ(t)ξ1)(r) = (e−R+ ξ1)(r − t) r ∈ [−R, 0]

Example 1.31. In the case N = δ−r and B = δ−s we have the following:

N(e0+θ)t(α) = N (e0−(e0+θ)t)(−α) =







0 α ∈ [−R,−r)
θ(t− α− r) α ∈ [−r,−r + t)
0 α ∈ [−r + t, 0]

B(e0+u)t(α) = B(e0−(e0+u)t)(−α) =







0 α ∈ [−R,−s)
u(t− α− s) α ∈ [−s,−s+ t)
0 α ∈ [−s+ t, 0]

Example 1.32. See Section 6.5 to see another example of explicit structural
state in a applied case.

Theorem 1.33. Assume that θ(t) is the solution of system (1.34) for ξ ∈M2,
f ∈ L2

loc[0,+∞) and u ∈ L2
loc[0,+∞) and let x(t) be the structural state constructed

from x in (1.37). Then for each T > 0, the state x is the unique solution in
{

z ∈ C([0, T ];M2) :
d

dt
j∗z ∈ L2((0, T );D(A∗)′)

}

to the following equation

(1.39)







d

dt
j∗x(t) = Ax(t) +B∗u(t)

x(0) = ξ

Notation 1.34. In the following we will understand the j∗ and we will write
simply d

dtx(t) = Ax(t) +B∗u(t).
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Remark 1.35. The equation (1.39) is an equation in D(A∗)′: if we use the
extension described in Lemma 1.15, observing that the term B∗ is a constant in
D(A∗)′, the solution of (1.39) can be written in mild form :

x(t) = etA
(E)

ξ +

∫ t

0

u(t)e(t−r)A
(E)

B∗dr





Part 1

Viscosity solution approach





CHAPTER 2

A survey on viscosity solutions for first order

Hamilton-Jacobi in Hilbert spaces

As we have already stressed in the Introduction, the study of an optimal control
problem and of the related Hamilton-Jacobi-Bellman equations (from now simply
HJB equation) is strongly connected. The concept of viscosity solutions (that was
introduced for Hamilton-Jacobi (HJ) equations in Rn in [CL83, CEL84]) seems to
be an appropriate tool to implement such connection1. Differently from the finite
dimensional case, where a certain number of review and books on the theme are
available (see for example [FR75], [YZ99] and particularly [BCD97]), in the infinite
dimensional case there are not exhaustive summaries about viscosity solutions ap-
proach for HJ in literature (the only one, to the best of our knowledge, is a chapter
in the book [LY95] that present the method used in [CL90, CL91]). In this first
chapter we will present a brief survey of the literature about viscosity solution of
first order HJB equations in Hilbert spaces whereas in the next ones we will present
some our original contributions. In order to try to make an overview some choices
are needed: different authors treat different formulations of the problem, different
hypotheses are required, different spaces are used and the results are not always
comparable. In particular a lot of different definitions of viscosity solutions are
given. If we want not only to make a list of works but to try to organize them
we have to choose and underline some “main” differences and contributions and to
uniform some details. The distinction between main differences and details is part
of the work of classification and is of course debatable.

Acknowledgements Thanks to professor Andrzej Świȩch that suggested me
many interesting works about viscosity solutions.

A note on the notation Often in the literature the same symbol represents
different mathematical objects. Writing a thesis some choices are required and the
result is not always pleasure. In particular the letter B is often used to indicate
both the boundary terms and the operator introduced in [CL90]. We choose to call
P this second operator. This choice gives some unpleasant effects. For example the
B-continuity becomes the P -continuity. We apologize with the reader.

Notation 2.1. Sometimes we use the name HJ equation, sometime HJB equa-
tion. The distinction is not always clear but we will try to use the expression HJB
equation when the equation is directly related to an optimal control problem and the
expression HJ equation when we consider a generic HJ.

2.1. The first works

Viscosity solutions for HJ equations in Hilbert spaces were first treated by
Crandall and Lions in a series of seven works [CL85, CL86a, CL86b, CL90, CL91,

1“Appropriate” means, for example, that using viscosity solutions we can prove in a important
class of cases that the value function of the optimal control problem is the only viscosity solution
of the HJB.

29
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CL94a, CL94b]. The first two pioneering works ([CL85, CL86a]) deal with a defi-
nition of viscosity solution that extends in natural way the definition given by the
same authors for the HJ equations in Rn in [CL83] that is:

Definition 2.2 (Viscosity solutions in [CL85, CL86a]). Given an HJ equa-
tion of the form

(2.1) ρw(x) −H(x,∇w(x)) = 0 in Ω

where H : X × R × X → R is a continuous function, w ∈ C(Ω) is a viscosity
subsolution of (2.1) on Ω if

ρw(x) −H(x, p) ≤ 0 for every x ∈ Ω and p ∈ D+w(x)

similarly w ∈ C(Ω) is a viscosity supersolution of (2.1) on Ω if

ρw(x) −H(x, p) ≥ 0 for every x ∈ Ω and p ∈ D−w(x)

w ∈ C(Ω) is a viscosity solution of (2.1) on Ω if it is both subsolution and superso-
lution.

Similar definitions are given in [CL85, CL86a] for HJB equation of the form:

(2.2) −wt(x) −H(x,∇w(x)) = 0 in Ω.

Remark 2.3. For this first case the authors prove that there exists an equivalent
formulation that uses regular tests functions instead of sub and super differentials.
For example the definition of viscosity subsolution can be given in the following
equivalent form: w ∈ C(Ω) is a viscosity subsolution of (2.1) on Ω if for every
ϕ ∈ C(Ω) and every point x of maximum of w − ϕ at which ϕ is differentiable we
have:

ρw(x) −H(x,∇ϕ(x)) ≤ 0

This formulation is different from that obtained in the finite dimensional case where
(see for example [YZ99] page 173) we can take ϕ ∈ C1(Ω) and obtain the equiva-
lence.

In the subsequent literature more elaborated definitions will be given and the
equivalence between a sub/superdifferential formulation and the related formulation
that uses the test function will be hard to prove. The main contributions will favor
the formulations based on test functions.

[CL85] is devoted to the proof of comparison theorem for HJB of the form
(2.1) and (2.2). The hypotheses required are similar to that required in the finite
dimensional case. Existence results are studied in [CL86a] proving first an existence
theorem for a class of HJ related to differential games and then proving existence
theorem in general case using approximating techniques (the same scheme will be
used in [CL91]). Existence for (2.1) and (2.2) can be also proved via Perron’s
method as seen in [Ish87].

The main limit of Definitions 2.1 and 2.2 is the absence of the unbounded term
〈Ax,∇w(x)〉 in the HJB equation. This fact implies that, using such definition of
solution, we can only treat HJB equation related to optimal control problem where
the state equation does not contains a generator of a semigroup A that does appear
in many interesting cases. The subsequent literature will try to solve the problem.
The first two works in which a complete HJB equations of the form (1.6) or (1.13)
is considered are [CL86b] (in Section II.3) and [Son88]. In both the HJB equation
of the form (1.13) arising in the optimal control problem (1.8, 1.9) is studied.

In [CL86b] the authors treat the case in which A is the generator of a C0

semigroup of linear operator, U = X , f(t, x, u) = u, L(t, x, u) = F ∗(u) where F ∗ is
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the conjugate convex function of coercive convex function F (p). We call the value
function of such optimization problem V[CL86b]. The related HJB equation is

(2.3)

{

−wt(t, x) − 〈Ax,∇w(x)〉 − F (∇w(t, x)) = 0
w(T, x) = h(x)

We expect, “calculating formally”, that, if w solves (2.3) and w(x, t) =
v(e(T−t)Ax, t), then v solves

(2.4) −vt(t, x) − F̃ (t,∇v(t, x)) = 0

where F̃ (t, p) = F (e(T−t)A∗

p) The authors prove that:

Proposition 2.4. If U = X, f(t, x, u) = u, L(t, x, u) = F ∗(u), h ∈ UC(X),
F : X → R is continuous coercive convex and

|F (p) − F (q)| ≤ σ(|p− q|, R) for p, q in BR

then there is a unique viscosity solution v (in sense of Definition 2.2) of the equation
{

−vt(t, x) − F̃ (∇v(t, x)) = 0
v(T, x) = h(x)

where F̃ (t, p) = F (e(T−t)A∗

p). Moreover we have that V[CL86b](x, t) =

v(e(T−t)Ax, t)

Then the authors say, by definition, that w is a solution of (2.3) if and only if
w(x, t) = v(e(T−t)Ax, t) and v solves the (2.4) and so V[CL86b](x, t) is a solution of
the equation (2.3).

Analogous change of variables methods are also used, for different HJB equa-
tions, in the more recent works (see for example [CT96c, CT96a, CC04],).

The method used by the author in [Son88] allow to treat families of infinite
dimensional HJB equations coming from finite dimensional delay or parabolic prob-
lems proving that the value function of the problem is the unique solution of the
HJB. Some cases in which the generator A depends on the control are considered
also. The idea is to check the (1.13) only in the points of a growing family of (also
non-dense) sets En with En ⊆ En+1 ⊆ . . . ⊆ D(A). The author, called w the
solution and ϕ a regular test function , consider the maxima (or the minima) of the
restriction (w − ϕ)|En

.
The main limits of such approach are two: the first is the difficulty to find, in

a quite general case, a sequence of set En that satisfy the requirements, the second
(and more important) is the fact that the definition of solution depend on the choice
of the sequence En. Indeed the methodology used in [Son88] was not more used
after the publishing of [CL90] and [CL91].

The notion of generalized viscosity solution was proposed by Cannarsa and Da
Prato in the works [CDP89, CDP90, CDP89] in which the authors treat the the
unbounded term using Yosida approximation and defining the generalized viscosity
solution of the unbounded HJ equation as the pointwise limit (on D(A)) of the
viscosity solution of the approximating HJ equations. The approximating HJ equa-
tions do not contain unbounded term and so Definition 2.2 and results contained
in [CL85, CL86a] may be used. In particular in [CDP89] the authors study the
HJB related to the optimal control problem characterized by a state equation of
the form

(2.5)

{

ẋ(s) = Ax(s) + F (x(s)) +Bu(s))
x(0) = x
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(where B : U → X is linear continuous and U , F , A satisfy suitable hypotheses)
and by an objective functional

∫ ∞

0

g(x(s)) + h(u(s))ds.

An existence and uniqueness result is proved. HJB equations of a system governed
by a semilinear dynamics are also treated in [CDP90].

Remark 2.5. In [Bar86] (and also [BBJ88]) the author present a notion of
viscosity solution for the unbounded case in which the solution is checked only in
the point of D(A) so the term 〈Ax,∇φ(x)〉 makes sense. Such definition is quite
“weak” and it is difficult to prove uniqueness results.

Remark 2.6. A definition similar to Definition 2.2 was also used in the work
[CGS91] in which the authors study existence of a viscosity solution an HJ equation
of the form

v(x) +H(x,∇v(x)) = 0

with a boundary condition (arising in exit time or state constraint problem) of the
form

v = g or H(x,∇v(x)) = 0 on ∂Ω

In such case a suitable definition, involving boundary condition, have to be used.

2.2. Viscosity solution in [CL90] and [CL91]

Besides [CL90, CL91] there is a certain number of works that study viscosity
solutions for equations (1.6) and (1.13) in general form (we will examine the main
contributions in the following sections). The definitions of viscosity solution that
various authors give are not always equivalent. We choose to begin describing in
detail the works [CL90, CL91] because they are the first that consider a large family
of cases and their approach can be considered the most standard and classical.

Crandall and Lions in [CL90, CL91] prove existence and uniqueness results for
two different sets of hypotheses: “strong” and “weak”. We begin describing results
for the “strong” case2. In Subsection 2.2.2 we will see the modifications needed in
the weak case.

Some remarks are needed in order to understand the definition given by Cran-
dall and Lions. The first easy remark is that if we use a small set of test functions
we can easily prove the existence of a solution and it is more difficult to prove the
uniqueness of such solution. On the other hand if we use a bigger set of test func-
tion the proof of comparison result (and then uniqueness) becomes simpler and the
existence result becomes more difficult.

If we try to use the Definition 2.2 in the equation (1.6), that is

ρw(x) − 〈Ax,∇w(x)〉 −H(x,∇w(x)) = 0,

the first problem that we see is that it makes sense only if x ∈ D(A). So the first
idea of Crandall and Lions is to take the adjoint of A, to write the equation as

ρw(x) − 〈x,A∗∇w(x)〉 −H(x,∇w(x)) = 0,

and to consider regular test functions ϕ such that ∇ϕ(x) ∈ D(A∗), so we have to
check that

ρw(x) − 〈x,A∗∇ϕ(x)〉 −H(x,∇ϕ(x)) ⋚ 0,

and it makes sense. Nevertheless if we consider a set of test functions composed
only on regular function with differential in D(A∗) such set is too small to prove a

2The Hypotheses of “weak” case are not weaker, they are simply different. Strong case is not
a particular case of “weak” case.
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comparison result (we cannot “localize” the problem and we cannot find a maximum
in the uniqueness proof) so we need to enlarge our test functions set. So, as we will
see, the authors will use also a class of radial functions.

The second idea that we find in [CL90] is the following: if we assume that −A∗

is monotone we have
−〈A∗x, x〉 ≥ 0

for all x ∈ D(A∗) and then if we consider a growing radial test function g(x) =
g0(|x|), its differential is ∇g(x) = g′0(|x|) x

|x| , and we have, on D(A∗),

−〈A∗∇g(x), x〉 = −g
′
0(|x|)
|x| 〈A∗x, x〉 ≥ 0.

So if we consider test functions that are sum of two functions, the first ϕ regular with
differential in D(A∗) and the second g growing radial function, seems reasonable,
when w − ϕ− g attains a maximum, to ask that

ρw(x) − 〈x,A∗∇ϕ(x)〉 −H(x,∇ϕ(x) + ∇g(x)) ≤ 0.

We can now pass to a more rigorous description. We assume the following Hy-
potheses:

Hypothesis 2.7. A is the generator of a C0 semigroup of linear contraction
on separable real Hilbert space X, so −A is a densely defined, maximal monotone
operator.

Hypothesis 2.8. H is uniformly continuous on bounded sets and there exists
a modulus of continuity σ(·) such that

(2.6) |H(y, p) −H(x, p)| ≤ σ(|x − y|(1 + |p|))
for every x, y, p ∈ X. Moreover there exists a radial function µ ∈ C1(X,R) and
local modulus of continuity σ(·, ·) such that lim|x|→∞ µ(x) = ∞ and for every λ > 0

(2.7) max {|H(x, p) −H(x, p+ λ∇µ(x))| ,
|H(x, p) −H(x, p− λ∇µ(x))|} ≤ σ(λ, |p|)

for every x, p ∈ X.

Hypothesis 2.9. There exists P a linear bounded positive selfadjoint operator
on X such that A∗P is a bounded operator on X and

(2.8) there exists c0 ∈ R such that for x ∈ X 〈(A∗P + c0P )x, x〉 ≥ |x|2

Remark 2.10 (On the existence of P ). In [Ren95] some results for the
existence of operator P is proved. In Remark 2.24 we will summarize it.

We can now give the definition of sub/super-solution contained in [CL90]:

Definition 2.11 (Viscosity solution in [CL90]). Hypotheses 2.7, 2.8, 2.9.
Let w ∈ C(Ω). w is a subsolution (respectively supersolution) of (1.6) if for every
ϕ ∈ C1(Ω) such that

ϕ is weakly sequentially lower semicontinuous3

∇ϕ(x) ∈ D(A∗) for all x ∈ Ω
A∗∇ϕ is continuous

3The hypothesis of weak sequential continuity is used in [CL90] in the existence proof that
uses an approximation argument, see the discussion at page 35, equation (2.10). If we prove we
existence for the problem related to optimal control problem, using Bellman’s optimality principle,
we can avoid such assumption.
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and every g ∈ C1(Ω) radial non-decreasing and every local maximum (respectively
minimum) x ∈ Ω of w − ϕ− g (respectively w + ϕ+ g) we have

ρw(x) − 〈x,A∗∇ϕ(x)〉 −H(x,∇ϕ(x) + ∇g(x)) ≤ 0,

(respectively

ρw(x) + 〈x,A∗∇ϕ(x)〉 −H(x,−∇ϕ(x) −∇g(x)) ≥ 0)

Theorem 2.12 (Existence and uniqueness, from [CL90] Theorem 1.2).
Let Hypotheses 2.7, 2.8, 2.9 be satisfied. Let w(·), v(·) ∈ UC(X) bounded and weak
continuous. Let w(·) and v(·) be respectively a subsolution and a supersolution of
(1.6) with w bounded above and v bounded belove. Then

Comparison: w ≤ v in X.
Existence: If P is compact and H(·, 0) bounded on X then there exists a unique

solution z ∈ BUC(X) ∩ Cω(X)

Remark 2.13. The theorem we gave above is less general than the one of
[CL90], in particular the boundedness hypothesis can be relaxed.

Remark 2.14 (The non-autonomous case). We present here only the results
related to autonomous/infinite horizon case (1.6), but also the finite horizon case
is treated in [CL90] (Theorem 1.3 and 1.5)

We can now make some remarks on the hypotheses and on the statements
of Theorem 2.12. Equation (2.6) and boundedness hypothesis on w and v are
quite standard also in the finite dimensional case (they can be be weakened, but
anyway similar hypotheses are needed). Hypotheses 2.7 and 2.9 are typical of the
infinite dimensional setting and become void for finite dimensional case. Definition
2.11 become equivalent to Definition 2.2 when A is continuous and it becomes the
traditional definition (see [BCD97]) when X = Rn. We can now observe the role
of the test functions g in the uniqueness (comparison) part of the theorem: it is
proved similarly to the finite dimensional case writing first

(2.9) Ψ(x, y) = w(x) − v(y) − 〈P (x− y), (x− y)〉
2ε

− λ(µ(x) + µ(y))

and proving that Ψ(x, y) has a maximum on X × X . So we can understand the
meaning of some of our hypotheses:

The boundedness of w and v, the weak continuity and the presence of the term
λ(µ(x) +µ(y)) (and then the use of the family of radial test functions ) are needed
in order to prove the existence of a maximum point of Ψ

If the maximum point is attained in (x̄, ȳ) then we use the definition of viscosity
subsolution noting that

x 7→ w(x) − 〈P (x− ȳ), (x− ȳ)〉
2ε

− λ(µ(x))

attains a maximum in x̄, so Hypothesis 2.9 is needed in order to guarantee that

x 7→ 〈P (x− ȳ), (x− ȳ)〉
2ε

+ λ(µ(x))

is a test function4. The comparison result follows using the definition of sub and
supersolution and letting λ and ε to zero.

4λµ(·) is the radial part and the hypotheses on P guarantee that

ϕ : x 7→
〈P (x − ȳ), (x − ȳ)〉

2ε

have the properties required in Definition 2.11.
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Remark 2.15 (The existence of the maximum in comparison proof).
The existence of the maximum for the function Ψ defined in (2.9) is one of the
difficulties in the proofs of the comparison results. In [CL90] the weak continuity
of the sub and super solutions is used (see the hypotheses of Theorem 2.12). In
[CL91] a perturbation technique is used and so we do not need the weak continuity
hypothesis (see Remark 2.18 for more details). We will see in Subsection 2.3 how
the perturbation method is used in [Tat92b, Tat94, CL94a].

Finally a remark on the proof of existence: it is difficult, using the definition
given in [CL90, CL91], to use Perron’s method to prove existence result. Indeed
different arguments are used by Crandall and Lions. In [CL90] a family of finite
dimensional HJ equations that converges to (1.6) is used. In particular the authors
consider the projection Pn on the the part of X on which P ≥ 1

n and consider the
approximating equations:

(2.10) wn(x) + 〈Anx,∇wn(x)〉 +H(Px,∇wn(x)) = 0

where An = (PnA
∗Pn)

∗. The techniques used in [CL91] are described in Subsection
2.2.3.

2.2.1. The operator P . The operator P , that appears in Hypothesis 2.9 is
crucial in the arguments of [CL90, CL91] but it does not appear in the definition of
viscosity solution (Definition 2.11) and in in Theorem 2.12. Nevertheless using the
operator P it is possible to define more precise functional spaces than can be used
to improve existence and uniqueness results finding more regularity for the solution
and proving uniqueness in larger space:

Definition 2.16 (P-continuity, from [CL91]). Given a function w : Ω → R

we will say that w(·) is P -continuous on Ω if w(xn) → w(x) whenever xn is a
sequence in Ω such that xn ⇀ x and Pxn → Px.

If w is P -continuous then w is continuous, and if P is compact the P -continuity
is equivalent to weak continuity.

Notation 2.17. Using P (that is bounded, positive and selfadjoint), for any
α > 0 we can define the norm

|x|−α = 〈Pαx, x〉1/2

We call X−α the completion of X in the −α norm. In the natural way Pα/2 is
an isometry from X−α onto X. D(P−α/2) may be isometrically identified with the
dual of X−α using the norm

|x|α = |P−α/2x|
We denote this dual by Xα . P−α/2 is an isometry from Xα onto X.

Remark 2.18. In order to obtain a maximum point for Ψ (see Remark 2.15)
in [CL91] the authors use the Ekeland-Lebourg lemma (see [EL77] and [LY95] page
2455). The comparison result is proved on the set of P -continuous function and it is
possible to find a perturbation “small” with respect to the | · |2 norm. More precisely
the author prove that one can find p and q with |q|, |p| ≤ ε (in the X norm) such
that the function

(x, y) 7→ w(x) − v(y) − 〈P (x− y), (x− y)〉
2ε

− λ(µ(x) + µ(y)) + 〈Pp, x〉 + 〈Pq, y〉

admits a maximum. The linear function x → 〈Pp, x〉 has differential equal to Pp.
This term has D(A∗) norm less then (‖A∗P‖+‖P‖)ε and then can be easily treated.

5A version of the theorem can be also found (without proof) in Theorem 3.29, it is less general
than the result showed in [EL77].
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2.2.2. The “weak” case . Here we briefly describe the Hypotheses and the
results for the “weak” case. The requirement on operator P is weakened but a
stronger assumption is needed on H :

Hypothesis 2.19. There exists P a linear bounded positive selfadjoint operator
on X such that A∗P is a bounded operator on X and

(2.11) There exists c0 ∈ R such that for x ∈ X 〈(A∗P + c0P )x, x〉 ≥ 0

Hypothesis 2.20. H is uniformly continuous on bounded sets and there exists
a modulus of continuity σ(·) such that

(2.12) H(y, P (x− y)) −H(x, P (x− y)) ≤ σ(|x − y|−1(1 + λ|x− y|−1))

for every x, y, p ∈ X. Moreover there exists a radial function µ ∈ C1(X,R) and
local modulus of continuity σ(·, ·) such that lim|x|→∞ µ(x) = ∞ and for every λ > 0

(2.13) max {|H(x, p) −H(x, p+ λ∇µ(x))| ,
|H(x, p) −H(x, p− λ∇µ(x))|} ≤ σ(λ, |p|)

for every x, p ∈ X.

Remark 2.21. Hypothesis 2.20 is the same of 2.8 except for the fact that we
changed we change (2.6) with (2.12).

The following is the theorem proved in [CL90] for the autonomous weak case:

Theorem 2.22 (Existence and uniqueness, from [CL90] Theorem 1.4).
Let Hypotheses 2.7, 2.19 and 2.20 hold.
Comparison: Let w, v ∈ UC(X−1) and weakly continuous. Let w and v be respec-
tively a subsolution and a supersolution of (1.6). If either w and −v are bounded
above then w ≤ v on X.
Existence: Let P compact and H(·, 0) bounded on X, then there is a unique solution
w ∈ BUC(X−1) of (1.6).

Remark 2.23. The main contribution of [CL91] was to give more precise results
on the existence and uniqueness of the solutions using the P -continuity. Indeed
the authors prove that the comparison result among all P -continuous functions (in
the Theorem 2.12 the comparison result was proved only among weak continuous
functions). Moreover they prove the existence of a P -continuous solution without
the Hypothesis of compactness of the operator P (that was needed in Theorem 2.12
and Theorem 2.22).

Remark 2.24 (The existence for operator P ). In [Ren95] Renardy prove
that the operator P = (A∗A)−1/2 satisfies in the general case Hypothesis 2.19.
Moreover if

[D(A), X ] 1
2

= [D(A∗), X ] 1
2

=: W

and there exists a δ > 0 such that 〈Ax, x〉 ≤ δ 〈x, x〉 for all x ∈ D(A) then P =
(A∗A)−1/2 satisfies also Hypothesis 2.9. ([·, ·] 1

2
is the complex interpolation, see

[LM72b] for a beautiful reference on the argument).

2.2.3. [CL91], optimal control and differential games. In [CL91] the
authors prove the existence result exploiting the HJ associated to an optimal control
problem and a differential game6: they first show that the HJ equation they study
is the HJB equation related to a certain optimal control problems or the Hamilton-
Jacobi-Isaac (HJI) equations related to some games and then prove that the value
function of the system is a solution of the (1.6). We will recall the use of differential

6In particular they can prove existence using optimal control in a sub-family of the problem
treatable with differential games.
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games in Subsection 2.7.2, here we make some remarks on the relation with optimal
control that is more related to the argument of the thesis. The proof of the fact
that the value function V is a viscosity solution of the (1.6) is quite general: V
has to be well defined on X and continuous. The idea for the proof is the same of
the finite dimensional case (see [YZ99], [FR75]) and it is the same we will use in
Theorem 3.28 and Theorem 4.19, it is based on the Bellman’s principle: the value
function satisfies, under quite genera assumptions, the integral equation:

V (t, x) = inf
u∈Ut

{
∫ s

t

L(r, x(r), u(r))dr + V (s, x(s))

}

for every s ≥ t. It is, roughly speaking, the integral version of the HJB equation.
It can be seen the proof of Theorem 3.28 for an example of how the proof go on in
a viscosity case. The idea in the use of differential games is not very different and
we will describe it in Subsection 2.7.2. Now we state some of the results of [CL91],
note that here the compactness of P is not required:

Suppose to study the optimal control problem subject to state equation (1.1)
and functional (1.2), then we have the following

Theorem 2.25 (Existence, from [CL91] Theorem 4.1 and 4.3). Let A
satisfy Hypothesis 2.7. Moreover let f and L satisfy the following hypotheses:

(2.14)

|f(x, u) − f(y, u)| ≤ C0|x− y| for x, y ∈ X and u ∈ U
|f(x, u)| ≤ C1 for x ∈ X and u ∈ U
|L(x, u)| ≤ C for x ∈ X and u ∈ U
|L(x, u) − L(y, u)| ≤ σ(|x − y|) for x, y ∈ X and u ∈ U

Then the value function V (defined in (1.7) is P -continuous (Theorem 4.3 [CL91])
and it is a viscosity solution of (1.6) (Theorem 4.1 [CL91]).

Remark 2.26 (Non-bounded case). The P -continuity in [CL91] is proved
also using different sets of Hypotheses for example assuming polynomial growth of
L and f instead of the boundedness requirements of (2.14).

Remark 2.27. Also in [CL91] the authors distinguish between “weak” and
“strong” case (as in [CL90]). We have described the strong case but analogous
results are proved for the weak one.

2.3. Problems with non-linear semigroups

In the works [Tat92a, Tat92b, Tat94, Ish92, CL94a] the authors study the
problem in the case in which the operator A is non-linear. In particular here we
describe the works [Tat92b, Tat94, CL94a] that introduce two main improvements
with respect to [CL91]:

- The use of nonlinear operator
- The absence of the auxiliary operator P

making the theory more general. Indeed to prove the comparison result between
a subsolution w and a supersolution v it is only needed the upper semicontinuity
of u and the lower semicontinuity of v (without P -continuity assumptions). A is
assumed to be m-dissipative (see below).

Here we briefly recall some results for nonlinear operator in Banach spaces and
then we will describe the results proved in [CL94a], where the authors revisit the
results of [Tat92b, Tat94] using a simplified notation and rend the results more
accessible7.

7In [KSŚ97] the authors prove that the definitions of [Tat92b] and [CL94a] are not always
equivalent, but weak hypotheses are needed in order to obtain equivalence.
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2.3.1. Some results for nonlinear operator in Hilbert spaces. Refer-
ences for the theory of nonlinear operator in Banach spaces are [DP76, Bar76,
Bar93, Bré73], we refer in particular to [Bar93].

Let K and Y be Banach spaces, A multivalued operator A is a subset of K×Y .
We call

Ax = {y ∈ Y : (x, y) ∈ A} ⊆ Y
D(A) = {x ∈ K : Ax 6= ∅} ⊆ K
R(A) =

⋃

x∈D(A)Ax ⊆ Y

A−1 = {(y, x) : (x, y) ∈ A} ⊆ Y ×K

The duality map is a multivalued operator ∆ ⊆ K ×K∗ defined as

∆x =
{

x∗ ∈ K∗ : 〈x, x∗〉 = |x|2K = |x∗|2K∗

}

A multivalued operator A ⊆ K×K is said dissipative if for all (x1, y1), (x2, y2) ∈ A
there exists a f ∈ ∆(x1 − x2) such that 〈y1 − y2, f〉 ≤ 0. A dissipative operator A
is said m-dissipative if R(I − A) = K. A is said accreative (resp. m-accreative) if
−A is dissipative (resp. m-dissipative).

Proposition 2.28. Let A be a m-dissipative nonlinear operator and y0 ∈ D(A).
Then the Cauchy problem

{

dy(t)
dt −Ay ∋ 0
y(0) = y0

has a unique mild solution y(·). We write etAy0 to mean such solution. We have

etA = lim
n→∞

(

I +
t

n
A

)−n

y0

uniformly in t on compact intervals.

Proof. See [Bar93] page 204. �

2.3.2. Results for the non-linear setting. In the sequel we will assume
that D(A) = X . This fact, that in the linear case is a consequence of hypothesis
that A is a generator of a C0-semigroup, is not guaranteed in the non-linear case.
This assumption is not assumed in [CL94a] and in the Tataru’s works but is useful
to make the description easier. In [Tat92a, Tat92b, Tat94] the unbounded term
〈Ax,∇w(x)〉 is treated using a limit and a new perturbation technique is used in
order to obtain the maxima in the comparison proof:

We consider an HJB equation of the form (1.6):

ρw(x) − 〈Ax,∇w(x)〉 −H(x,∇w(x)) = 0,

In order to give meaning to the term 〈Ax,∇w(x)〉 we consider the liminf (the limsup
in the supersolution definition) of the quantity

w(ehAy) − w(y)

h

for h → 0 and y → x. Actually in the definition the function w will be replaced
with a regular test function Φ so that we will consider a term of the form

lim inf
h↓0
y→x

Φ(ehAy) − Φ(y)

h
,

that can be computed also when ∇Φ(x) 6∈ D(A∗).
The test functions we will consider are made of two part: Φ = ϕ+ ψ where ϕ

is in C1(X) and ψ ∈ Lip(X) (in the sequel when will write Φ = ϕ+ψ we will refer
to this decomposition). The regular part ϕ will be used in the comparison proof to
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localize the problem and to penalize the doubling, whereas the Lipschitz term will
be used as perturbation to create the maximum. We set

Hλ(x, p)
def
= inf

|q|≤λ
H(x, p+ q)

and
Hλ(x, p)

def
= sup

|q|≤λ

H(x, p+ q)

and we will call [ψ]L the Lipschitz constant of ψ.
Now we can describe the hypotheses and give the definition of viscosity solution

of HJ (1.6) in the setting of [Tat92b, Tat94, CL94a]:

Hypothesis 2.29. A is an m-dissipative operator with D(A) = X8.

Hypothesis 2.30. H is continuous and there exists a modulus σ(·) and a local
modulus σ(·, ·) such that

(2.15) |H(x, q) −H(x, p)| ≤ σ(|p− q|, |p| + |q|)
for every x, q, p ∈ X. Moreover

|H(x, α(x − y)) −H(y, α(x − y))| ≤ σ(|x− y| + α|x − y|2)
for every x, y ∈ X, α ≥ 0.

Definition 2.31 (Viscosity subsolutions in [CL94a]). Let Ω an open set
of X. An upper semicontinuous function w : Ω → R is a viscosity subsolution of
(1.6) on Ω if for every test function Φ = ϕ+ ψ ∈ C1(X) + Lip(X) and every local
maximum x of w − Φ we have

lim inf
h↓0
y→x

Φ(ehAy) − Φ(y)

h
+H[ψ]L(x,∇ϕ(x)) ≤ 0

Definition 2.32 (Viscosity supersolutions in [CL94a]). Let Ω an open set
of X. A lower semicontinuous function v : Ω → R is a viscosity supersolution of
(1.6) on Ω if for every test function Φ = ϕ+ ψ ∈ C1(X) + Lip(X) and every local
minimum x of v − Φ we have

lim sup
h↓0
y→x

Φ(ehAy) − Φ(y)

h
+H [ψ]L(x,∇ϕ(x)) ≥ 0

Definition 2.33 (Viscosity solutions in [CL94a]). Let Ω an open set of X.
A lower continuous function w : Ω → R is a viscosity solution of (1.6) if it is both
a subsolution and a supersolution.

An improvement with respect to [CL91] is that here the authors require only
the continuity of the viscosity solution. This improvement adds some difficulties in
the comparison proof. A key step of the comparison proof is to find a maximum of
the function

(2.16) (x, y) 7→ w(x) − v(y) − |(x− y)|2
2ε

− λ(µ(x) + µ(y)) + αPert(x, y)

where αPert(x, y) is a perturbation that allow to “generate maxima” and µ(x)

(here equal to |x|2

2 ) localizes the problem. In [CL91], as we emphasized in Remark
2.18 the authors used the P -continuity of the sub and of the super solution to find
a perturbation with differential small in the D(A∗) norm. Here we do not have
P -continuity and then new techniques have to be developed. In particular the so
called Tataru distance as perturbation function will be used. We will see in the
next subsection some details of such method.

8This second hypothesis is not used in [Tat92b, Tat94, CL94a].
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2.3.3. Distance space and Tataru’s distance.

Definition 2.34 (Distant space, from [CL94a]). A distance space is a couple
(M, d) where M is a set and d is a function

d : M×M → R

such that
(i) d(x, y) ≤ d(x, z) + d(z, y)

(ii) d(x, y) = 0 ⇐⇒ (x = y)

This d is almost a metric but it is non-symmetric

Remark 2.35. The notion of distant space, and the related result, will be gen-
eralized by Suzuki ([Suz01], [Suz06]) that will introduce the notion of τ-spaces.

Definition 2.36 (Complete distant space). A distant space (M, d) is said
complete if whenever {xn} is a sequence in M such that

∞
∑

n=1

d(xn+1, xn) <∞

then there exists x ∈ M such that d(x, xn) → 0.

Definition 2.37 (d-upper semicontinuity). If x, xn ∈ M for n = 1, 2... we
define xn →d x if

∑

n d(xn+1, xn) <∞ and d(x, xn) → 0. We say that

w : M → [−∞,+∞]

is d-upper semicontinuous if

(xn →d x) =⇒ lim sup
n→∞

w(xn) ≤ w(x)

Proposition 2.38 (Ekeland Lemma for distant space, [Tat92a]). Let
(M, d) a complete distant space and w : M → [−∞,+∞) a bounded above and
d-upper semicontinuous function. Then for any x0 ∈ M and λ > 0 there exists
x1 ∈ M such that

(i) d(x0, x1) ≤ w(x1)−w(x0)
λ

(ii) w(x) − λd(x, x1) ≤ w(x1) for all x ∈ M
Proof. See [CL94a] page 64. �

Definition 2.39 (Tataru distance, from [CL94a]). Given a nonlinear m-

dissipative operator A, for any x ∈ X and y ∈ D(A) we define the Tataru’s distance
dA as

dA(x, y) = inf
t≥0

[

t+ |x− etAy|
]

Proposition 2.40. The couple (D(A), dA) is a complete distance space. More-

over given {xn}, x ∈ D(A)

(xn →dA
x) =⇒ (xn → x)

so any function w : D(A) → [−∞,+∞] which is upper-semicontinuous in the norm
topology is also d-upper semicontinuous.

Proof. See [CL94a] page 65. �

The last step we had to do in order to find a maximum in (2.16) is to find a
“right” perturbation. Using Proposition 2.38 and Proposition 2.40 we can take

Pert(x, y) = dA(x, x̂) + dA(y, ŷ)

where x̂ and ŷ are suitable points of X .
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Theorem 2.41 (Comparison, from [CL94a] page 66). Let Hypothesis 2.29
and 2.30 be satisfied. If w(·) is a subsolution and v(·) a supersolution and there
exist two real constant C1 and C2 such that

w(x) ≤ C1|x| + C2 and − v(x) ≤ C1|x| + C2

then w(x) ≤ v(x) for all x ∈ X.

2.4. Existence via Perron’s method

In the work [Ish92] Perron’s method for HJ equations in Hilbert spaces with
unbounded term9 appears for the first time. Perron’s method was already used
for the finite dimensional case (see [Ish87, BCD97]) but the definition of viscosity
solution given in [CL90, CL91] made it difficult to generalize it to the infinite
dimensional case. The definition of viscosity solution given in [Ish92] is referred to
the case in which the unbounded operator −A is maximal monotone and it is of the
form −D−φ for a lower semicontinuous convex function φ : X → (−∞,+∞]. Such
definition with A of that form, in the best of our knowledge, was in the sequel used
only in [Ish93, Kel02] but it have the advantage to make possible the use Perron’s
method in Hilbert case. Perron’s method can be also used in in the setting of
[Tat92b, Tat94, CL94a]. To uniform our exposition we refer here to [CL94a] and
we cite some key results of the Perron’s method in the setting of Definition 2.33 so
we refer to definitions and assumptions of Section 2.3.

Lemma 2.42 ([CL94a] page 71). If H is locally uniformly continuous and F
a non-empty family of upper semicontinuous subsolutions of (1.6) (with respect to
Definition 2.31) on an open set Ω. Let

U(x) = sup
w∈F

w(x) for x ∈ Ω

If the upper semicontinuous envelopes U∗ < ∞ on Ω, then U∗ is a subsolution of
(1.6) on Ω10

Lemma 2.43 (([CL94a] page 72). Let H be locally uniformly continuous, v ∈
LSC(Ω) a supersolution of (1.6) (with respect to Definition 2.32) and

F = {w : w∗ is a subsolution of (1.6) on Ω and w ≤ v}
nonempty. If

ω(x) = sup
ω∈F

w(x)

then ω∗ is a supersolution of (1.6) (with respect to Definition 2.32).

Theorem 2.44 (([CL94a] page 73). Let H be locally uniformly continuous.
Assume w is an upper semicontinuous subsolution and v < ∞ a lower semicon-
tinuous supersolution of (1.6) in Ω (with respect to Definition 2.32). Moreover
assume that given any subsolution U ∈ USC(Ω) and supersolution V ∈ LSC(Ω)
with w∗ ≤ U and V ≤ v∗ we have U ≤ V . Suppose

F = {w ∈ USC(Ω) : w is a subsolution of (1.6) on Ω and w ≤ v}
is nonempty. If

Z(x) = sup
w∈F

w(x)

then Z ∈ C(Ω) and Z is the only continuous solution of (1.6) (with respect to
Definition 2.33) on Ω satisfying w∗ ≤ Z ≤ v∗.

9The case without unbounded term (that is A = 0) can be treated using the results of [Ish87].
10Similar results for finite dimensional case can be found in [CDL90, CEL84, Ish87].
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Here we have to assume the comparison between sub and super solution because
we are only assumingH locally uniformly continuous. As showed in [CL94a] page 74
it is not difficult to construct a sub and super solution where H satisfies Hypothesis
2.30 with limr→∞

σ(r)
r < 1 and prove the unique existence of a bounded uniformly

continuous solution of (1.6).

2.5. Applications of the classical theory to optimal control problem
subject to PDE

One of the main uses of optimal control problem in infinite dimensional is
the study of optimal control problems governed by PDE. We briefly recall typical
problems that can be treated in a infinite dimensional formulation using “classical”
literature (that is the literature we have describe in first four sections).

The main examples for the use of strong case of the definition introduced in
[CL90] and [CL91] are sub-families of the set of elliptic operators of the form (see
[CL90] page 244):

{

D(A) =
{

v ∈ H1
0 (O) : Av ∈ L2(O)

}

Av = −
(

−∑i,j ∂i(αi,j∂j) +
∑

i bi∂i(βi) + c
)

v

where O ⊆ Rn is a bounded domain, ai,j = aj,i and ai,j , bi, βi, c ∈ L∞(O), −A is
monotone and (ellipticity condition)

∃γ > 0 such that −
∑

i,j

ai,jζiζj ≥ γ|ζ|2
Rn for ζ ∈ R

n

We recall now how to obtain operator P (satisfying “strong” condition) for some
particular cases:

- If bi = βi = 0 for all i then A is selfadjoint and we can take P =
(I −A)−1.

- In the case bi = 0 we let A0 be the operator obtained by setting bi =
βi = c = 0 and P0 = (I −A0)

−1. The strong condition is satisfied by a
multiple of P0.

- If βi = 0 we let A0 be the operator obtained by setting bi = βi = 0 and
replacing c by a constant ĉ large enough so that A0 is monotone. The
strong condition is satisfied by P0 = (I −A0)

−1.
- In case bi = 0 and ai,j ∈W 1,∞(O) we can choose P = γÂ−1 where

{

D(Â) =
{

v ∈ H1
0 : ∆v ∈ L2(O)

}

Â(v) = ∆v

and γ ∈ R is large enough

In the weak case, as we have seen in Remark 2.24, the operator P can be found
for every A such that there exists a constant γ such that (A− γI) is the generator
of a C0-semigroup of contractions. In particular state equations of delay problems,
rewritten in the Hilbert spaceM2 following the theory described in 1.3, are treatable
with this theory if there is not delay in the control.

2.6. Works on specific HJB equations with unbounded terms

The general theory developed in the “classical works” of Crandall and Lions,
Tataru and Ishii allows to treat a certain number of cases of optimal control prob-
lem governed by PDEs. The subsequent literature tried to extend the definition
of viscosity solution to study the cases that are non-treatable with classical works,
particular attention was devoted to the study of HJB equations related to optimal
control problems governed by PDE with boundary control. The presence of bound-
ary control in the PDE gives a non-bounded term in the state equation in Hilbert
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space (another unbounded term besides the generator of the semigroup). The works
presented in this thesis except for Chapter 5 are referred to HJB equations in which
this second unbounded term appears.

A key-point in the choice of the definition for the “new” HJB equations is the
relation with optimal control problems: a good definition of viscosity solution for
an HJB equations allows to prove that the value function of the related optimal
control problem is the only solution.

In the last work of the Crandall and Lions’ series ([CL94b]) the authors treat
the case in which the set U is bounded with respect to the X−1 norm (see Notation
2.17) and L is continuous with respect to the X1 norm (moreover they assume that
L depends only on the state x and f(t, x, u) = Ax + u with A selfadjoint). In the
case A = ∆, X = L2(O), if we consider P = (I −A)−1, such description covers for
example the case in which the controls are bounded on H−1(O) and L is continuous
on H1

0 (O). In [CL94b] a definition similar to the one used in [CL90] and [CL91] is
used. The authors prove that the value function is a viscosity subsolution of the
HJB equations (Theorem II.2 of [CL94b]) and that it is grater to every P -continuous
and uniformly continuous subsolution of the HJB equation11. A comparison result
between P -continuous sub- and super- solutions is also proved.

2.6.1. HJB related to parabolic equations with boundary control. 12

[CGS93] is the first work in which an existence and uniqueness result is proved for
HJB equation related to boundary control problems of parabolic type. The authors
consider the state equation with Neumann boundary condition given by







d
dsz(s, r) = ∆rz(s, r) + g(z(s, r)) on (0,+∞) ×O
z(0, r) = z0(r) on O
∂
∂nz(s, r) = ν(s, r) on (0,+∞) × ∂O

As recalled in Section 2 of [CGS93] such equation can be written in abstract form
as

{

ẋ(s) = Ax(s) + f(x(t)) + (−A)βB(ν(s))
x(0) = z0

where β ∈ (1
4 ,

1
2 ), the state space is X = L2(O), A is defined as

{

D(A) =
{

φ ∈ H2(O) : ∂φ
∂n = 0

}

Ax = ∆x− x

and B : L2(∂O) → L2(O) is linear and continuous and it is given by (−A)1−βN
where N is the Neumann map (see the references contained in [CGS93] and in
particular [LM72a]). Also in this case A is selfadjoint. The HJB equation of the
system (we take a functional of the form (1.2)) is

ρv(x) − 〈Ax + f(x),∇v(x)〉 −H(x, C∇v(x)) = 0

where C = (−A)β . The definition of sub and super solution is new and quite par-
ticular but some ideas are not much different from that of [Tat92b, Ish92, CL94a]
so the kind of approach is quite different from [CL94b]13. In the definition a class
of regularizing convolution operators appears and the limit of the regularizations
is considered. Sub and supersolutions are required to be bounded uniformly con-
tinuous and weakly continuous so it is possible to find minima without the use of

11Indeed they do not prove that the value function is P -continuous.
12Unboundedness similar to the ones originated by boundary control problems can be en-

countered in the study of point control, see for instance [LT00, Las93].
13Note that [CGS93] is earlier than [CL94b], we have described it now for exposition reasons.
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perturbations. In [CT94a] (see also [CT94b]) the finite horizon version is studied
with similar techniques.14

In the work [CT96c] the problem for Dirichlet boundary conditions is solved.
Indeed the tools introduced in [CGS93] are not enough to prove existence and
uniqueness of the solution of the HJB equation related to Dirichlet boundary control
case. In the Dirichlet case, that is







d
dsz(s, r) = ∆rz(s, r) + g(z(s, r)) on (0,+∞) ×O
z(0, r) = z0(r) on O
z(s, r) = ν(s, r) on (0,+∞) × ∂O

,

the state equation can be written in abstract form as
{

ẋ(s) = Ax(s) + f(x(t)) + (−A)D(ν(s))
x(0) = z0

where the state space is X = L2(O), A is defined as
{

D(A) = H2(O) ∩H1
0 (O)

Ax = ∆x

and D : L2(∂O) → H1/2(O) is the Dirichlet map that is continuous and linear (see
the references contained in [CT96c] and in particular [LM72a]). Taking β ∈ (3

4 , 1]

we have that D : L2(∂O) → D(A1−β) is continuous and we can rewrite the state
equation as

{

ẋ(s) = Ax(s) + f(x(t)) + (−A)βDβ(ν(s))
x(0) = z0

where Dβ = A1−βD : L2(∂O) → L2(O) is continuous. Using the change of variable

y(t) = A−βx(t)

and calling B = Dβ the state equation becomes
{

ẋ(s) = Ax(s) + (−A)−βf((−A)βx(t)) +B(ν(s))
x(0) = z0

The HJB equation related to such state equation and functional (1.2) is

(2.17) ρv(x) −
〈

Ax+ (−A)−βf((−A)βx(t)),∇v(x)
〉

−H((−A)βx,∇v(x)) = 0.

In [CT96c] the authors prove that the value function (of the transformed problem)
is the only viscosity solution of the HJB equation (2.17). The definition (that
requires the weakly sequential continuity of the solution as in [CGS93]) is new (the
authors state that it uses a certain number of ideas from [Ish92] but they seems quite
different). The definition is given using regular test functions ϕ but it is checked
only in the points of maximum (or minimum) that are in D(A). A comparison
result is also proved. In [CT96a] the authors treat, with the same techniques, the
finite horizon version of the same problem. See also [CT96b].

Other improvements in the study of HJB equations arising in semilinear para-
bolic problems with boundary control are presented in [GJ06] where existence (via
value function) and comparison theorem is proved for HJB equations related to a
family of optimal control problems including some problems with nonlinear bound-
ary conditions or the case of nonlinearity of Burgers type in two dimension, for
example







d
dsz(s, r) = ∆rz(s, r) + z(s, r) + g(s, r) on (0,+∞) ×O
z(0, r) = z0(r) on O
∂
∂nz(s, r) = ĥ(z(s, r)) + ν(s, r) on (0,+∞) × ∂O

14In [QT] the Bolza’s problem is treated, the absence of L gives an HJB equation without
unbounded term and so the author can use the definition of [CL85].
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where ĥ is a regular nondecreasing function with ĥ(0) = 0. The definition used is
not very intuitive.

2.6.2. State constraints. In [KS98] the authors consider the problem
{

ẋ(s) = Ax(s) + f(x(t), u(t))
x(0) = x

with cost functional

J(x, u(·)) =

∫ ∞

0

L(x(s)) +
1

2
|u(s))|2ds

and impose a state constraints defining L = +∞ out of an admissible set K. Note
that L in the previous literature was taken continuous and assumptions on its
growth was imposed and so the new setting presents new difficulties. The author
choose a definition of viscosity solution similar to the one of [Tat92b, CL94a] and
prove that the value function is a viscosity solution of the HJB equation and that
it is the minimal supersolution.

State constraint was treated also in [CGS91] (see Remark 2.6) and in [AIL00]
where the authors consider the problem with constraints given by

{

H(x,w,Dw) ≥ 0 in Ω
H(x,w,Dw) ≤ 0 in Ω

for a continuous Hamiltonian H and an open subset of Ω ⊆ X . Such kind of HJ
equation appears in ergodic control. The continuity ofH allows to use the definition
of viscosity solution given in [CL85].

Remark 2.45. The results related to state (and state-control) constraints are
interesting especially for the problems that directly come from applied example. We
treat particular problems with state-control constraints in Chapter 6, 7 and 8

2.7. Other items

2.7.1. HJB related to Navier-Stokes equation and other HJB with
unbounded term acting on the state. In [GSŚ02] the HJB equation related
to a two-dimensional Navier-Stokes equation is treated. We recall that, given a
domain O ⊆ Rn, called z(s, r) the (vectorial) field of the velocities and p(s, r) the
scalar field of the pressures, the usual Navier-Stokes equations have the form:























∂
∂sz(s, r) = ∆rz(s, r) − (z(s, r) · ∇)z(s, r)−

−∇p(s, r) + g(s, r, u(s)) on (0, T ) ×O
∇ · z(s, r) = 0 on [0, T ]×O
z(s, r) = 0 on [0, T ]× ∂O
z(0, r) = z0(r) on O

where the first equation express the conservation of momentum, the second have
the meaning of irrepressibility, the third and the fourth are boundary and initial
conditions. z and p are the unknowns. Such equation can be rewritten in abstract
form (see [Tem77]) as

{

ẋ(s) = Ax(s) +B(x(s), x(s)) + f(s, u(s))
x(0) = z0

In such formulation the unknowns p disappear. This is because it is obtained
through a projection PH on the subspace obtained by closing the set of regular
compact supported field with divergence equal to 0 and then the term ∇p disap-
pears. So the (2.7.1) allows to describe the behavior of the velocities z. In the



46 2. A SURVEY ON VISCOSITY SOLUTIONS...

equation A = PH∆ and the unbounded term B is given by B(x, y) = PH((x ·∇)y).
The HJB equation becomes:

ρv(x) − 〈A(x) +B(x, x),∇v(x)〉 −H(x,∇v(x)) = 0

In the Navier-Stokes case the unbounded term B is not given by a boundary control
but it comes simply from the form of the equation. The definition used by the
author reminds the definition used in [CT96c] (but it is not the same) and allows to
prove existence (via value function) and uniqueness in a quite large set of functions
(the solution is only required to be continuous). Otherwise the generator A is very
good: it is positive selfadjoint and A−1 is compact. Viscosity solution for HJB
equation related to two dimensional flow problems are also used in [FS94] but there
the definition of viscosity solution is very large and it is not possible to prove any
comparison results.

A classes of HJB equations arising in optimal control governed by three di-
mensional Navier-Stokes equations can be studied using the tools introduced by
Shimano in [Shi02]. He uses a setting similar to [Ish92], in which A = (−D−φ) for
a lower semicontinuous convex function φ : X → (−∞,+∞]. Existence (via value
function) and uniqueness of the solution of the HJB equation is proved. In such
setting it is also possible to treat the p-Laplacian problem:















∂z
∂s =

∑n
i=1

∂
∂ri

(

∣

∣

∣

∂z
∂ri

∣

∣

∣

p−2
∂z
∂ri

)

+ |z|γ + g(s, r, u(s)) on [0, T ]×O

z(s, r) = 0 on [0, T ]× ∂O
z(0, r) = z0(r)

where O is a bounded domain in Rn with smooth boundary, p ≥ 2 and 0 ≤ γ < p−2
if p < n or γ ≥ 0 if n < p. The results of [Shi02] cannot be used to study HJB
equations with unbounded term arising in boundary control because the unbounded
term B acts on the state x

2.7.2. Relation with differential games. As we have already said in [CL91]
the existence results are proved interpreting the HJ equation studied as the HJB
equation or the HJI equation related to an optimal control problems or games.
Relations between the viscosity solution of the HJ equations and differential games
is in-deeply studied in finite dimension (see [ES84, Sou85, LS85, LS86]) and it is
also the subject of a certain number of works related to HJ equations in Hilbert
spaces (see for example [Tat92a, Tat92b, KSŚ97, KS00, GNMR03, GS03, GS04]).

Following the existent literature for the finite dimensional case, the main point
of the proof presented in [CL91] is to find a differential game that admits as HJI
equation the equation we want to study. It can be done as belove when the Hamil-
tonian H is Lipschitz continuous with respect to the second variable15, so that
(consider equation (1.6))

|H(x, p) −H(x, q)| ≤ C|p− q|
Using such hypothesis we can state that

(2.18) H(x, p) = inf
|q|≤C

(H(x, q) + C|p− q|) =

= inf
|q|≤C

sup
|z|≤C

(−〈p, z〉+ 〈q, z〉 +H(x, q))

and then it associated to the differential game characterized by state equation
{

ẋ(s) = Ax(s) + z(q(t))
x(t) = x

15Indeed, often, when such condition is not satisfied, the first step of the proof to reduce the
problem to such case.
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and cost functional

J(x, z(·), q(·)) =

∫ +∞

t

e−s(〈q(s), z(q(s))〉 +H(x(s), q(s)))ds

We call M(s, x(s), z(s), q(s)) = (〈q(t), z(q(t))〉+H(x(t), q(t))) so the cost functional
becomes

J(x, z(·), q(·)) =

∫ +∞

t

e−sM(s, x(s), z(s), q(s))ds

Its lower value function is

U(t, x) = inf
z(·)∈St

sup
q(·)∈Rt

J(x, z(·), q(·))

where

Rt
def
= {q : [t,+∞) → BC : q mesurable}

and

St def= {z : Rt → Rt : z non anticipating }
where non anticipating means that if q1 = q2 almost everywhere on an interval
[0, T ] then z(q1) = z(q2) almost everywhere on [0, T ]. The method used to prove
that the lower value function is a viscosity solution of the (1.6) is similar to the
one used in finite dimensional one (see for example [ES84, Sou85]). It is based (like
in the optimal control problem) on an integral equation satisfied by lower value
function:

U(t, x) = inf
z(·)∈S

sup
q(·)∈R

{
∫ t+τ

t

M(s, x(s), z(s), q(s))ds + U(t+ τ, x(t+ τ)

}

We want in particular to cite the work [KSŚ97] in which the authors explore the
role of lower value function in the context of [CL94a]: We consider the two players
differential games characterized by the dynamical system

{

ẋ(s) = Ax(s) + f(z(s), q(t))
x(0) = x

and payoff given by
∫ ∞

0

e−sM(x(s), z(s), q(s))ds

The related HJI equation is

v(x) − 〈Ax,∇v(x)〉 +H+(x,∇v(x)) = 0

where
H+(x, p) = sup

z
inf
q
{〈−f(x, q, z), p〉 −M(x, q, z)}

Then

Theorem 2.46 ([KSŚ97] page 401). If f and M are continuous and there exists
C > 0 such that for all (xi, q, z) ∈ X ×Q× Z, i = 1, 2

|f(x1, q, z)| ≤ C(1 + |x1|)
|M(x1, q, z)| ≤ C
|f(x1, q, z) − f(x2, q, z)| ≤ C|x1 − x2|
|M(x1, q, z) −M(x2, q, z)| ≤ σ(|x1 − x2|)

Then the lower value function is a viscosity solution of the HJI equation (with
respect to the Definition 2.33) and it is the unique solution in the class of the
bounded uniformly continuous function on X.
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Analogous results are proved in [CL91] for the Definition 2.11, in [Tat92b] for
the definition of viscosity solution given there (that is almost the same of [CL94a]
but not exactly the same). Other improvements to the theory can be found in
[KS00, GNMR03, GS03, GS04]

2.7.3. Exit time problems. In [Bar91] the author prove, using a definition
a bit stronger than that introduced in [CL90] existence (through minimal time
function) and uniqueness for a class of HJ associated with the time-optimal control
problem for a semilinear evolution equation

(2.19)

{

ẋ(s) = Ax(s) + F (x(s)) +Bu(s))
x(0) = x

.

The generator is assumed to be analytical and F dissipative. Moreover the author
assume the reachable set is all the space.

In [CC04] a more general semilinear problem is studied (F is assumed to be
Lipschitz continuous, A strictly dissipative and the reachable set is admitted to be
a subset of X). The authors prove an existence and uniqueness result (the only
solution is the minimal time function) using a Kruzkov-like transformation and a
definition of viscosity solution similar to that of [CT96c]. See also [CS97, Car00].

Remark 2.47. In the finite dimensional case is well developed there are results
that connect maximum principle and viscosity solution of the HJB equation (see
for example [BJ86, BJ90, BJ91]). For the infinite dimensional, in the best of our
knowledge, only the results of the work [BBJ88] are available.
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2.8. A genealogy of the definitions

In the following graph we try to summarize the genealogy of the used definitions.
Of course when an author write a paper he does not refer only to a precise work but
to all existing literature. So our scheme can be very debatable. Anyway we think
it can be useful to orient in the existing contributions. We have also inserted some
works that refer to second order HJB equations. It is not the field we have tried to
explore in this Chapter, but it is a related problem and it can be interesting to see
the connections between the definitions in the two cases.

[CL83] [CEL84]

[CL85] [CL86a] [CL86b]

[CL90] [CL91]

[CL94a]

[CL94b]

[Tat92a] [Tat92b]
[Tat94]

[Ish92]

[Ish93]

[Świ94]
[Świ93]

[LY95]

[KS98]

[KŚ95]

[GRŚ00]

[CT96c]

[CT96a][CT94a]

[CGS91]

[CGS93]

[FS94]

[Shi02]

[QT]

[GSŚ02]

[AIL00]

[GŚ00]

[Kel02]
[KŚ03]

[CC04]

[GJ06]

[KS02]

[GNMR03]
[GS04]

[GS03]

[Bar91]
[Bar86]

[BBJ88]

[Son88]

[CDP88]

[CDP89]

[CDP90]

[KS00]

[KSŚ97]

[Faba]





CHAPTER 3

A viscosity solution approach to the infinite

dimensional HJB equation related to boundary

control problem in transport equation

In the present chapter we describe the results of the work [Faba] in which the
HJB equation related to the infinite dimensional formulation of an optimal control
problem subject to a PDE of transport type is studied.
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3.1. Introduction

We consider the PDE

(3.1)







∂
∂sx(s, r) + β ∂

∂rx(s, r) = −µx(s, r) + ũ(s, r) (s, r) ∈ (0,+∞) × (0, s̄)
x(s, 0) = u(s) if s > 0
x(0, r) = x0(r) if r ∈ [0, s̄]

where s̄, β are positive constants, µ ∈ R, the initial data x0 is in L2(0, s̄), and
we consider two controls: a boundary control u is in L2

loc[0,+∞) and a distributed
control ũ ∈ L2

loc([0,+∞) × [0, s̄]; R).1

Using the approach and the references described in Section 3.2, the above
equation can be written as an ordinary differential equation in the Hilbert space
X = L2(0, s̄) as follows

(3.2)

{

d
dsx(s) = Ax(s) − µx(s) + ũ(s) + βδ0u(s)
x(0) = x0

where A is the generator of a suitable C0 semigroup and δ0 is the Dirac delta in
0. Such an unbounded contribution in the Hilbert formulation comes from the
presence in the PDE of a boundary control (see [BDPDM92]). Besides we consider
the problem of minimizing the cost functional

(3.3) J(x, ũ(·), u(·)) =

∫ ∞

0

e−ρsL(x(s), ũ(s), u(s))ds

where ρ > 0 and L is globally bounded and satisfies some Lipschitz-type condition,
as better described in Section 3.2. The HJB equation related to the control problem
with state equation (3.2) and target functional (3.3) is

(3.4) ρw(x) − 〈∇w(x), Ax〉 − 〈∇w(x),−µx〉L2(0,s̄) −

− inf
(ũ,u)∈Ũ×U

(

〈βδ0(∇w(x)), u〉
R

+ 〈∇w(x), ũ〉L2(0,s̄) + L(x, ũ, u)
)

= 0.

1We write “−µx” instead of “µx” because it is the standard way to write the equation in the
economic literature where −µ has the meaning of a depreciation factor (and only the case µ ≥ 0
is used). Here we consider a generic µ ∈ R.

51
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The sets U and Ũ will be introduced in Section 3.2, they are suitable subset re-
spectively of R and X . If we define the value function of the control problem
as

V (x)
def
= inf

(ũ(·),u(·))∈Ũ×U
J(x, ũ(·), u(·)),

we wish to prove that V (·) is the unique solution, in a suitable sense, of the HJB
equation.

We use the viscosity approach. Our main problem is to write a suitable def-
inition of viscosity solution, so that an existence and uniqueness theorem can be
derived for such a solution. The main difficulties we encounter, with respect to the
existing literature, is in dealing with the boundary term and the non-analyticity
of the semigroup. We substantially follow the original idea of Crandall and Lions
([CL90] and [CL91]) - with some changes, as the reader will rate in Definition 3.15
and Definition 3.16 - of writing test functions as the sum of a “good part” as it is a
regular function with differential in D(A∗) and a “bad part” represented by some
radial function. The main problems arise in the evaluation of the boundary term
on the radial part.

In order to write a working definition in our case, some further requirements
are needed, like a C2 regularity of the test functions, the presence of a “remainder
term” in the definition of sub/super solution, and the P -Lipschitz continuity (see
Definition 3.10) of the solution. This last feature guarantees that the maxima and
the minima in the definition of sub/super solution remain in D(A∗) (see Proposition
3.23). Some other comments on the definition of solution (Definition 3.15 and 3.16)
need some technical details and can be found in Remark 3.18.

The used technique cannot be easily extended to treat a general non-linear
problem because we use the explicit form of the PDE that we give in (3.6). A non-
trivial generalization would be also that of replacing the constant µ with a function
µ(r) in L∞(0, s̄) (see Remark 3.32 for details). Nevertheless the problem remains
challenging.

3.1.1. A motivating economic problem. Transport equations are used to
model a large variety of phenomena, from age-structured population models (see
for instance [Ian95, Ani00, IMM05]) to population economics ([FPV04]), from epi-
demiologic studies to socio-economic science and transport phenomena in physics.

Problems such as (3.1) can be used to describe, in economics, capital accumu-
lation processes where an heterogeneous capital is involved, and this is the reason
why the study of infinite dimensional control problem is of growing interest in the
economic fields. For instance in the vintage capital models x(t, s) may be regarded
as the stock of capital goods differentiated with respect to the time t and the age s.
Heterogeneous capital, both in the finite and infinite dimensional approach, is used
to study depreciation and obsolescence of physical capital, geographical difference
in growth, innovation and R&D.

Regarding problems modeled by a transport equation where an infinite dimen-
sional setting is used we cite the following papers: [BG98] and [BG01] on optimal
technology adoption in a vintage capital context (in the case of quadratic cost func-
tional), [HKVF03] on capital accumulation, [BG99] on optimal advertising and [Fag]
[Fag05b] on the case of general objective convex functional with strong solutions
approach. See also [FG04].

Moreover, we mention that the infinite dimensional approach may apply to
problems such as issuance of public debt (see [AAB+04] for a description of the
problem). In that problem a stochastic setting and simple state-control constraints
appear, but hopefully the present work can be a first step in this direction.
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The work is organized as follows: in the first section we remind some results on
the state equation, we introduce some preliminary remarks on the main operators
involved in the problem, we explain some notations, we define the HJB equation
and we give the definition of solution. The second section regards some properties
of the value function (in particular some regularity properties) that we will be used
in the third section to prove that it is the unique (viscosity) solution of the HJB
equation.

3.2. Notation and preliminary results

3.2.1. State equation. In this subsection we will see some properties of the
state equation: we write it in three different (and equivalent) forms that point out
different properties of the solution. We will use all the three forms in the following
proofs.

We consider the PDE on [0,+∞) × [0, s̄] given by

(3.5)







∂
∂sx(s, r) + β ∂

∂rx(s, r) = −µx(s, r) + ũ(s, r) (s, r) ∈ (0,+∞) × (0, s̄)
x(s, 0) = u(s) if s > 0
x(0, r) = x0(r) if r ∈ [0, s̄]

Given an initial datum x0 ∈ L2(0, s̄) (from now simply L2(0, s̄)), a boundary control
u(·) ∈ L2

loc([0,+∞); R) and a distributed control ũ(·) ∈ L2
loc([0,+∞)× [0, s̄]; R) the

(3.5) has a unique solution in L2
loc([0,+∞) × [0, s̄]; R) given by

(3.6) x(s, r) =

{

e−µsx0(r − βs) +
∫ s

0 e
−µτ ũ(s− τ, r − βτ)dτ r ∈ [βs, s̄]

e
−µ
β
ru(s− r/β) +

∫ r/β

0 e−µτ ũ(s− τ, r − βτ)dτ r ∈ [0, βs)

In the following x(s, r) is the function defined in (3.6).

Remark 3.1. To avoid confusion if x ∈ L2(0, s̄) we will use [·] to denote the
pointwise evaluation, so x[r] is the value of x in r ∈ [0, s̄]. On the other hand x(s)
will denote the evolution of the solution of the state equation (in the Hilbert space)
at time s (as in (3.7)). That is, x(s) is an element of X while x[r] is a real number.

We can rewrite such equation in a suitable Hilbert space setting. We take the

Hilbert space X
def
= L2(0, s̄) and the C0 semigroup S(t) given by

S(s)f [r]
def
=

{

f(r − βs) for r ∈ [βs, s̄]
0 for r ∈ [0, βs)

The generator of S(s) is the operator A given by
{

D(A) = {f ∈ H1(0, s̄) : f(0) = 0}
A(f)[r] = −β d

drf(r)

(see [BG01] for a proof in the case β = 1, the proof in our case can be obtained
simply taking s′ = βs). In the following we will use the notation esA instead of S(s).

We want to write an infinite dimensional formulation of (3.5) but in L2(0, s̄) it
should appear like

(3.7)

{

d
dsx(s) = Ax(s) − µx(s) + ũ(s) + βδ0u(s)
x(0) = x0

where ũ(s) ∈ L2(0, s̄) is the function r 7→ ũ(s, r). Such expression does not make
sense in L2(0, s̄) for the presence of the unbounded term βδ0u(s) . We can anyway
apply formally the variation of constants method to (3.7) and obtain a mild form
of (3.7) that is continuous from [0,+∞) to L2(0, s̄). This is what we do in the next
definition.
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Definition 3.2 (Mild solution). Given x0 ∈ L2(0, s̄), u(·) ∈ L2
loc([0,+∞); R)

and
ũ(·) ∈ L2

loc([0,+∞);L2(0, s̄)) the function in C([0,+∞);L2(0, s̄)) given by

(3.8) x(s) = e−µsesAx0 −A

∫ s

0

e−µ(s−τ)e(s−τ)A(u(τ)ν)dτ+

+

∫ s

0

e−µ(s−τ)e(s−τ)Aũ(τ)dτ

where
ν : [0, s̄] → R

ν : r 7→ e−
µ
β
r

is called mild solution of (3.7).

Remark 3.3. We could include the term −µx in the generator of the semigroup
A taking a Ã = A−µ1 as done in [BG01] The problem of this approach is that often

we will use, in the estimates, the dissipativity of the generator and Ã is dissipative
only if µ ≥ 0.

Proposition 3.4. Taken x(s) the function from R+ to L2(0, s̄) given by (3.8)
and x(s, r) the function from R+×[0, s̄] to R given by (3.6) we have x(s)[r] = x(s, r).

Proof. See [BG01]. �

Eventually we observe that (3.7) can be rewritten in a precise way in a larger
space in which βδ0 belongs. To this extent, we consider the adjoint operator A∗,
whose explicit expression is given by

{

D(A∗)
def
= {f ∈ H1(0, s̄) : f(s̄) = 0}

A∗(f)[r] = β d
drf(r)

We observe that the Dirac’s measure δ0 ∈ D(A∗)′ and we use the A(E) notation
introduce in Lemma 1.15:

Proposition 3.5. Given T > 0, x0 ∈ L2(0, s̄), u(·) ∈ L2(0, T ), ũ(·) ∈
L2((0, T );L2(0, s̄)), (3.8) is the unique solution of

(3.9)

{

d
dsx(s) = A(E)x(s) − µx(s) + ũ(s) + βδ0u(s)
x(0) = x0

in W 1,2((0, T );D(A∗)′) ∩ C([0, T ];X).

Proof. See [BDPDM92] Chapter 3.2 (in particular Theorem 3.1 page 173).
�

3.2.2. The definition of the operator P . In this subsection we give the
definition of the operator P that will have a fundamental role. We could use an
abstract approach using the properties of the operators A and A∗, anyway in this
case we can also follow a more direct approach that allows to find the explicit form
of the operator we are going to introduce.

We note that A∗ and A are negative operators we take φ ∈ D(A∗), so that
φ(s̄) = 0, then

〈A∗φ, φ〉 =

∫ s̄

0

βφ′(r)φ(r)dr =
−βφ(0)2

2

and for φ ∈ D(A) (so that φ(0) = 0)

〈Aφ, φ〉 =

∫ s̄

0

−βφ′(r)φ(r)dr =
−βφ(s̄)2

2
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Therefore, given a λ > 0, the operators (A − λI) and (A∗ − λI) are strongly
negative: 〈(A− λI)x, x〉 ≤ −λ|x|2X for all x ∈ D(A) and 〈(A∗ − λI)x, x〉 ≤ −λ|x|2X
for all x ∈ D(A∗).

We can also directly prove that

(A− λI)−1 : X → D(A)

is a continuous negative linear operator whose explicit expression is given by

(A− λI)−1(φ)[r] =
1

β

(

−e−λ
β
r

∫ r

0

e
λ
β
τφ(τ)dτ

)

The continuity can be proved directly with not difficult estimates and the negativity
can be proved directly using an integration by part argument.

In the same way we can prove that

(A∗ − λI)−1 : X → D(A∗)

is a continuous and negative linear operator and that and its explicit expression is
given by

(A∗ − λI)−1(φ)[r] =
1

β

(

−eλ
β
r

∫ s̄

r

e−
λ
β
τφ(τ)dτ

)

Eventually we can define P
def
= (A∗ − λI)−1(A− λI)−1 = ((A− λI)−1)∗(A− λI)−1

that is continuous, positive and selfadjoint2. Moreover

(A∗ − λI)P = (A− λI)−1 ≤ 0

and so
A∗P = (A− λI)−1 + λP ≤ λP

if we choose λ < 1 we have that A∗P is bounded and

(3.10) A∗P ≤ P

Thus P satisfies all requirements of the so called “weak case” of [CL90] (see Remark
2.24).

Remark 3.6. We note that P 1/2 is a particular case of the operator that Re-
nardy found in more generality in [Ren95] and so P 1/2 : X → D(A∗) continuously
and in particular R(P 1/2) ⊆ D(A∗).

Notation 3.7. For every x ∈ X we will indicate with |x|P the P -norm that is
√

〈Px, x〉X . We will write XP for the completion of X with respect to the P -norm.

Remark 3.8. Thanks to the definition of A∗, the graph norm on D(A∗) is
equivalent to the H1(0, s̄) norm. In particular D(A∗) is the the completion of

K = {f |[0,s̄] : f ∈ C∞
c (R) with supp(f) ⊆ (−∞, s̄)}

with respect to the H1(0, s̄) norm. So, since H1(0, s̄) →֒ C([0, s̄]), we can apply βδ0
on the elements of D(A∗).

Notation 3.9. The notation 〈x, y〉H will indicate the inner product in the
Hilbert space H (for example H = X ≡ L2(0, s̄) or H = H1(0, s̄) or D(A∗)...).
Otherwise if Z is an Banach space (possibly an Hilbert space) and Z ′ its dual
the notation 〈x, y〉Z×Z′ will indicate the duality pairing. In a few words, a sin-
gle index means inner product, a double one indicates duality. Eventually 〈x, y〉 ≡
〈x, y〉L2(0,s̄).

2See [Yos95] Proposition 2 page 273 for a proof of the equality (A∗ −λI)−1 = ((A−λI)−1)∗.
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3.2.3. The control problem and the HJB equation. In this subsection we
describe the optimal control problem, state the hypotheses, define the HJB equation
of the system and give a suitable definition of solution of the HJB equation.

We consider the optimal control problem governed by the state equation

(3.11)

{

d
dsx(s) = Ax(s) − µx(s) + ũ(s) + βδ0u(s)
x(0) = x

that has a unique solution in the sense described in Section 3.2.1. Given two
compact subsets U and Λ of R, we consider the set of admissible boundary controls
given by

U def
= {u : [0,+∞) → U ⊆ R : u(·) is measurable} .

Moreover we call

Ũ
def
= {γ : [0, s̄] → Λ ⊆ R : γ(·) is measurable} .

In view of the compactness of Λ we have that Ũ ⊆ L2(0, s̄). We define the set of
admissible distributed controls as

Ũ def
=
{

ũ : [0,+∞) → Ũ ⊆ L2(0, s̄) : ũ(·) is measurable
}

.

In view of the compactness of U and Λ, we have U ⊆ L2
loc([0,+∞); R) and Ũ ⊆

L2
loc([0,+∞) × [0, s̄]; R). We call ‖U‖ def

= supu∈U (|u|), ‖Λ‖ def
= supb∈Λ(|b|) and

‖Ũ‖ def
= supũ∈Ũ (|ũ|X=L2(0,s̄)) (they are bounded thanks to the boundedness of U

and Λ).
We call admissible control a couple (ũ(·), u(·)) ∈ Ũ × U . The cost functional

will be of the form

J(x, ũ(·), u(·)) =

∫ ∞

0

e−ρsL(x(s), ũ(s), u(s))ds

where L is uniformly continuous and satisfies the following conditions: there exists
a CL ≥ 0 with

(L1) |L(x, ũ, u) − L(y, ũ, u)| ≤ CL 〈P (x− y), (x− y)〉 ∀(ũ, u) ∈ Ũ × U
(L2) |L| ≤ CL < +∞

We define formally the HJB equation of the system as

(3.12) ρw(x) − 〈∇w(x), Ax〉 − 〈∇w(x),−µx〉 −H(x,∇w(x)) = 0

where H is the Hamiltonian of the system and is defined as:
{

H : X ×D(A∗) → R

H(x, p)
def
= inf(ũ,u)∈Ũ×U (〈βδ0(p), u〉R + 〈p, ũ〉X + L(x, ũ, u))

(according to Notation 3.9 〈·, ·〉
R

is the usual real product).
Before introducing a suitable definition of (viscosity) solution of the HJB equa-

tion we give some preliminary definitions.

Definition 3.10 (P-Lipschitz continuity). A function v ∈ C(X) is Lips-
chitz with respect to the P -norm, or P -Lipschitz, if there exists a constant C such
that

|v(x) − v(y)| ≤ C|(x− y)|P def
= C|P 1/2(x − y)|X

for every choice of x and y in X. In the same way we can give the definition of a
locally P -Lipschitz function.

Definition 3.11 (P-continuity). A function v ∈ C(X) is said to be P -
continuous at a point x ∈ X if for every xn ∈ X with xn ⇀ x and |P (xn−x)| → 0,
it holds that v(xn) → v(x).
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Definition 3.12 (P-lower semicontinuity). A function v ∈ C(X) is said to
be P -lower semicontinuous continuous at a point x ∈ X if for every xn ∈ X with
xn ⇀ x and |P (xn − x)| → 0, it holds that v(x) ≤ lim infn→∞ v(xn).

Definition 3.13 (test1). We say that a function ϕ such that ϕ ∈ C1(X) and
ϕ is P -lower semicontinuous is a test function of type 1, and we write ϕ ∈ test1,
if ∇ϕ(x) ∈ D(A∗) for all x ∈ X and A∗∇ϕ : X → X is continuous.

Definition 3.14 (test2). We say that g ∈ C2(X) is a test function of type 2,
and we write g ∈ test2, if g(x) = g0(|x|) for some nondecreasing function g0 : R+ →
R.

Definition 3.15 (Viscosity subsolution). A function w ∈ C(X) bounded
and Lipschitz with respect to the P -norm, is a subsolution of the HJB equation (or
simply a “subsolution”) if for every ϕ ∈ test1, g ∈ test2, local maximum point x of
w − (ϕ+ g) we have

(3.13) ρw(x) − 〈A∗∇ϕ(x), x〉 − 〈∇ϕ(x) + ∇g(x),−µx〉 −

− inf
(ũ,u)∈Ũ×U

(

〈βδ0(∇ϕ(x), u〉
R

+ 〈∇ϕ(x) + ∇g(x), ũ〉X + L(x, ũ, u)
)

≤

≤ g′0(|x|)
|x| β

‖U‖2

2

Definition 3.16 (Viscosity supersolution). A function v ∈ C(X) bounded
and Lipschitz with respect to the P -norm is a supersolution of the HJB equation
(or simply a “supersolution") if for every ϕ ∈ test1, g ∈ test2, local minimum point
x of v + (ϕ+ g) we have

(3.14) ρv(x) + 〈A∗∇ϕ(x), x〉 + 〈∇ϕ(x) + ∇g(x),−µx〉 −

− inf
(ũ,u)∈Ũ×U

(

− 〈βδ0(∇ϕ(x), u〉
R
− 〈∇ϕ(x) + ∇g(x), ũ〉X + L(x, ũ, u)

)

≥

≥ −g
′
0(|x|)
|x| β

‖U‖2

2

Definition 3.17 (Viscosity solution). A function v ∈ C(X) bounded and
Lipschitz with respect to the P -norm is a solution of the HJB equation if it is at
the same time a supersolution and a subsolution.

Remark 3.18. In the definition of viscosity solution we have used two kinds of
test functions: those in test1 and those in test2 which, as usual in the literature,
play a different role. In view of their properties and their regularity the functions of
the first set (test1) represent the “good part” . More difficulties is to deal with the
functions of the set test2, that have the role of localizing the problem. A difficulty
of our case is to treat the term

(3.15)
g(x(s)) − g(x)

s

(where x(s) is a trajectory starting from x). The idea then to consider only P -
Lipschitz solution so that the maxima/minima considered in Definition 3.15 and
Definition 3.16 are in D(A∗). If the starting point x is in D(A∗) there are some
advantages in the estimate of (3.15) but some problems remain: in such case we
will prove in Proposition 3.26 that (if ũ(·) is continuous).

∣

∣

∣

∣

g(x(s)) − g(x)

s
− 〈∇g(x),−µx + ũ(0)〉

∣

∣

∣

∣

≤ g′0(|x|)
|x| β

‖U‖2

2
+O(s)

where the rest O
s→0−−−→ 0 and does not depend on the control. So the most challenging

case is the one described in the definition.
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3.3. The value function and its properties

The value function is, as usual, the candidate unique solution of the HJB equa-
tion. In this section we define the value function V (·) of the problem and then we
verify that it has the regularity properties required to be a solution. Namely we
will check that V (·) is P -Lipschitz (Proposition 3.22). To obtain such result we
prove an approximation result (Proposition 3.19) and then a suitable estimate for
the solution of the state equation (Proposition 3.21).

The value function of our problem is defined as:

V (x)
def
= inf

(ũ(·),u(·))∈Ũ×U
J(x, ũ(·), u(·))

We consider the functions
{

ηn : [0, s̄] → R

ηn(r)
def
= [2n− 2n2r]+

(where [·]+ is the positive part). We then define
{

C∗
n : R → X

C∗
n : γ 7→ γηn

Such functions are linear and continuous and their adjoints are

(3.16)

{

Cn : X → R

Cn : x 7→ 〈x, ηn〉
Cn “approximate the delta measure”. The approximating equations we consider are

(3.17)

{

d
dsxn(s) = Axn(s) − µxn(s) + ũ(s) + βC∗

nu(s)
xn(0) = x

Together with (3.8) we use the mild form of the approximating state equations
(that can be found in [Paz83] page 105 equation (2.3)):

(3.18) xn(s) = e−µsesAx+

∫ s

0

e−(s−τ)µe(s−τ)Aũ(τ)dτ+

+

∫ s

0

e−(s−τ)µe(s−τ)AβC∗
nu(τ)dτ

Proposition 3.19. For T > 0 and (ũ(·), u(·)) ∈ Ũ × U

lim
n→∞

sup
s∈[0,T ]

|xn(s) − x(s)|X = 0

Proof. Using the mild expressions we find

(3.19) |x(s) − xn(s)| =

∣

∣

∣

∣

−A
∫ s

0

e−(s−τ)µe(s−τ)A(u(τ)ν)dτ−

−
∫ s

0

e−(s−τ)µe(s−τ)AβC∗
n(u(τ))dτ

∣

∣

∣

∣

To estimate such expression we will use the explicit expression of the two terms (as
two-variable function). We simplify the notation (only in this proof!) taking an
“extension” of u(·) to the whole R obtained by putting u(·) identically 0 on R−. So

y(s, r)
def
=

(

−A
∫ s

0

e−(s−τ)µe(s−τ)A(u(τ)ν)dτ

)

[r] = e−
µ
β
ru(s− r/β)
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(3.20) yn(s, r)
def
=

(
∫ s

0

e−(s−τ)µe(s−τ)AβC∗
n(u(τ))dτ

)

[r] =

=

∫ r∧(1/n)

0

e−
µ
β

(r−θ)[2n− 2n2θ]+u

(

θ − r

β
+ s

)

dθ

Now for all s ∈ [0, T ]

(3.21) |y(s, ·) − yn(s, ·)|2X=L2(0,s̄) ≤

≤
(
∫ s̄

1/n

∣

∣

∣

∣

∣

e−
µ
β
ru(s− r/β) −

∫ 1/n

0

e−
µ
β

(r−θ)[2n− 2n2θ]+u

(

θ − r

β
+ s

)

dθ

∣

∣

∣

∣

∣

2

dr

)

+

+

(
∫ 1/n

0

∣

∣

∣

∣

e−
µ
β
ru(s− r/β) −

∫ r

0

e−
µ
β

(r−θ)[2n− 2n2θ]+u

(

θ − r

β
+ s

)

dθ

∣

∣

∣

∣

2

dr

)

≤

(for s̄ ≤ T )

(3.22) ≤
(

e|µ|s
∫ T

0

∣

∣

∣
e−µ( r

β
−s)u(s− r/β)−

−
∫ 1/n

0

e−µ( r−θ
β

−s)[2n− 2n2θ]+u

(

s+
θ − r

β

)

dθ

∣

∣

∣

∣

∣

2

dr

)

+

(

1

n
e|µ|/βT2‖U‖

)

.

Such estimate does not depends on s, the integral term goes to zero because it is
the convolution of a function in L2(0, T ) with an approximate unit and the second
goes to zero for n→ ∞. �

Proposition 3.20. Let ϕ ∈ C1(X) be such that ∇ϕ : X → D(A∗) (D(A∗) is
endowed, as usual, with the graph norm) is continuous. Then, for an admissible
control (ũ(·), u(·)), if we call x(·) the trajectory starting from x and subject to the
control (ũ(·), u(·)), we have that, for every s > 0,

(3.23) ϕ(x(s)) = ϕ(x) +

∫ s

0

[〈A∗∇ϕ(x(τ)), x(τ)〉 + 〈βδ0(∇ϕ(x(τ))), u(τ)〉
R

+

+ 〈∇ϕ(x(τ)), ũ(τ)〉 + 〈∇ϕ(x(τ)),−µx(τ)〉] dτ
Proof. In the approximating state equation (3.17) the unbounded term βδ0

does not appear (βC∗
n are continuous) and then (see [LY95] Proposition 5.5 page

67) for every ϕ(·) ∈ C1(X) such that A∗∇ϕ(·) ∈ C(X) we have

(3.24) ϕ(xn(s)) = ϕ(x) +

∫ s

0

[〈A∗∇ϕ(xn(τ)), xn(τ)〉 + 〈∇ϕ(xn(τ)), βC∗
nu(τ)〉+

+ 〈∇ϕ(xn(τ)), ũ(τ)〉 + 〈∇ϕ(xn(τ)),−µxn(τ)〉] dτ.
In view of the continuity of the operator C∗

n we can pass to its adjoint (see (3.16)
for an explicit form of the operator Cn) and we obtain:

(3.25) ϕ(xn(s)) = ϕ(x) +

∫ s

0

[〈A∗∇ϕ(xn(τ)), xn(τ)〉 + 〈βCn∇ϕ(xn(τ)), u(τ)〉+

+ 〈∇ϕ(xn(τ)), ũ(τ)〉 + 〈∇ϕ(xn(τ)),−µxn(τ)〉] dτ.
Now we prove that every integral term of the (3.25) converges to the correspond-
ing term of the (3.23). This fact, together with the pointwise convergence of
(ϕ(xn(s))

n→∞−−−−→ ϕ(x(s)) due to Proposition 3.19) prove the claim.
First we note that, in view of Proposition 3.19 and of the continuity of x, xn(τ)

is bounded uniformly in n and τ ∈ [0, s] and, in view of the continuity of ∇ϕ,
∇ϕ(xn(r)) is bounded uniformly in n and τ ∈ [0, s] So we can apply the Lebesgue
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theorem (the pointwise convergence is given by Proposition 3.19 and |ũ(τ)| ≤ ‖Ũ‖)
and we prove that

(3.26)
∫ s

0

[〈∇ϕ(xn(τ)), ũ(τ)〉 + 〈∇ϕ(xn(τ)),−µxn(τ)〉] dτ n→∞−−−−→

n→∞−−−−→
∫ s

0

[〈∇ϕ(x(τ)), ũ(τ)〉 + 〈∇ϕ(x(τ)),−µx(τ)〉] dτ

Now we observe that, in view of the continuity of A∗∇ϕ and of the of Proposition
3.19, the term A∗∇ϕ(xn(τ)) is bounded uniformly in n and τ ∈ [0, s] so the same
is true for

|A∗∇ϕ(xn(τ)) −A∗∇ϕ(x(τ))|.
Therefore we can use the Lebesgue theorem (the pointwise convergence is given by
Proposition 3.19) to conclude that

∫ s

0

〈A∗∇ϕ(xn(τ)), xn(τ)〉 dτ →
∫ s

0

〈A∗∇ϕ(x(τ)), x(τ)〉 dτ

We have now to prove that

(3.27)
∫ s

0

〈βCn∇ϕ(xn(τ)), u(τ)〉 dτ →
∫ s

0

〈βδ0(∇ϕ(x(τ))), u(τ)〉
R

dτ

We first note that Cn n→∞−−−−→ δ0 in H−1(0, s̄) →֒ D(A∗)′. Indeed given z ∈ H1(0, s̄)
we have

(3.28) |(Cn − δ0)z| =

∣

∣

∣

∣

∫ s̄

0

z[τ ]ηn[τ ]dτ − z[0]

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∫ 1/n

0

(

z[0] +

∫ τ

0

∂ωz[r]dr

)

ηn[τ ]dτ − z[0]

∣

∣

∣

∣

∣

=

(∂ωz is the weak derivative of z) integrating by part

(3.29) =

∣

∣

∣

∣

∣

(

z[0] +

∫ 1/n

0

∂ωz[r]dr

)(

∫ 1/n

0

ηn[r]dr

)

−

−
∫ 1/n

0

∂ωz[τ ]

∫ τ

0

ηn[r]drdτ − z[0]

∣

∣

∣

∣

∣

≤

writing ηn in explicit form and making computation (using
∫ 1/n

0
ηn[r]dr = 1)

≤
∣

∣

∣

∣

∫ s̄

0

χ[0,1/n][τ ]|∂ωz[τ ]|dτ
∣

∣

∣

∣

≤ 1√
n
‖z‖H1(0,s̄)

Summarizing: by Proposition 3.19 xn(·) n→∞−−−−→ x(·) in C([0, T ];X), then (by hy-
pothesis on ϕ) ∇ϕ(xn(·)) n→∞−−−−→ ∇ϕ(x(·)) in C([0, T ];D(A∗)) and then, by the last
estimate βCn(∇ϕ(xn(·))) n→∞−−−−→ βδ0(∇ϕ(x(·))) in C([0, T ]). Then (3.27) follows by
Cauchy-Schwartz inequality (it is the scalar product in L2(0, s)). �

Proposition 3.21. Given T > 0 and a control (ũ(·), u(·)) ∈ Ũ ×U there exists
cT such that for every x, y ∈ X

sup
s∈[0,T ]

|xx(s) − xy(s)|2P ≤ cT |x− y|2P ,

where xy(·) is the solution of
{

d
dsx(s) = Ax(s) + ũ(s) − µx(s) + βδ0u(s)
x(0) = y

and xx(·) the solution with initial data x
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Proof. We use Proposition 3.20 with ϕ(x) = 〈Px, x〉. So ∇ϕ(x) = 2Px.
We observe that xx(·) − xy(·) satisfies the equation

{

d
ds(xx(s) − xy(s)) = A(xx(s) − xy(s)) − µ(xx(s) − xy(s))
(xx − xy)(0) = x− y

(the one of Proposition 3.20 with control identically 0) and then by (3.10)

(3.30)

|xx(s) − xy(s)|2P = |x− y|2P + 2

∫ s

0

〈A∗P (xx(r) − xy(r)), (xx(r) − xy(r))〉 −

− µ 〈P (xx(s) − xy(s)), xx(s) − xy(s)〉dr ≤

≤ |x− y|2P + 2(1 + |µ|)
∫ s

0

〈P (xx(r) − xy(r)), (xx(r) − xy(r))〉 dr

now we can use the Gronwall’s lemma and obtain the claim. �

Proposition 3.22. Let L satisfy (L1) and (L2). Then the value function V is
Lipschitz with respect to the P -norm

Proof. Assume V (y) > V (x). Then we take (ũ(·), u(·)) ∈ Ũ × U an ε-
optimal control for x. We have:

V (y) − V (x) − ε ≤
∫ ∞

0

e−ρt|L(xy(s), ũ(s), u(s)) − L(xx(s), ũ(s), u(s))|ds =

If we look the explicit for of xx(·) and xy(·) as two-variables functions we see that
they depend on the initial data only for s ∈ [0, s̄β ]. After this period they depends
only on the control. So for s > s̄

β xx(s) = xy(s) and so the previous integral is
equal to

=

∫ s̄/β

0

e−ρt|L(xy(s), ũ(s), u(s)) − L(xx(s), , ũ(s), u(s))|ds ≤

(by (L1) and Proposition 3.21)

≤
∫ s̄

0

e−ρtCL|xy(s) − xx(s)|Pds ≤ s̄cs̄CL|x− y|P

Letting ε→ 0 we have claim. �

3.4. Existence and uniqueness of solution

In this section we will prove that the value function is a viscosity solution of
the HJB equation (Theorem 3.28) and that the HJB equation admits at most one
solution (Theorem 3.31).

We remind that we use XP to denote the completion of X in the P -norm. This
notation will be used in the next propositions.

Proposition 3.23. Let u ∈ C(X) be a locally P -Lipschitz function. Let ψ ∈
C1(X), and let x be a local maximum (or a local minimum) of u−ψ. Then ∇ψ(x) ∈
R(P 1/2) ⊆ D(A∗).

Proof. We do the proof only in the case in which x is a local maximum
(the other case is similar).

We take ω ∈ X with |ω| = 1 and h ∈ (0, 1). Then for every h small enough

(u(x− hω) − ψ(x− hω))

h
≤ u(x) − ψ(x)

h
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so
ψ(x) − ψ(x− hω)

h
≤ C|w|P

and passing to the limit we have 〈∇ψ(x), ω〉 ≤ C|ω|P . Likewise

(u(x+ hω) − ψ(x+ hω))

h
≤ u(x) − ψ(x)

h
so

ψ(x) − ψ(x+ hω)

h
≤ C|w|P

and passing to the limit we have −〈∇ψ(x), ω〉 ≤ C|ω|P .
Putting together these two remarks we have

| 〈∇ψ(x), ω〉 | ≤ C|ω|P
for all ω ∈ X . So we can consider the linear extension of the continuous linear
functional ω 7→ 〈∇ψ(x), ω〉 to XP ; we will call such extension Φx and by Riesz
representation theorem we can find zx ∈ XP such that

Φx(ω) = 〈zx, ω〉XP
∀ω ∈ XP

however

(3.31) 〈zx, ω〉XP
=
〈

P 1/2(zx), P
1/2(ω)

〉

X
=

=
〈

P 1/2(P 1/2(zx)), ω
〉

(XP )′×(XP )
=
〈

P 1/2(mx), ω
〉

(XP )′×(XP )

where mx
def
= (P 1/2(zx)) ∈ X . Now for ω ∈ X

〈

P 1/2(mx), ω
〉

(XP )′×(XP )
=
〈

P 1/2(mx), ω
〉

X

Therefore ∇ψ(x) = P 1/2(mx) ∈ R(P 1/2) ⊆ D(A∗) where the last inclusion follows
from Remark 3.6. �

3.4.1. Existence. In this subsection we will prove that the value function is
a solution of the HJB equation. In the next subsection we will prove that such
solution is unique. We start with a lemma and two propositions. We will use the
notation introduced in Remark 3.1 on “x(s)” and “x[r]”. Moreover we will continue
to use the symbol δ0 in the text so that x[0] = δ0x if x ∈ D(A∗).

We have not found a simple reference for the following lemma so we prove it:

Lemma 3.24. Let x be a function of H1(0, s̄) then

(i) lim
s→0+

(
∫ s̄

s

(x[r] − x[r − s])2

s
dr

)

= 0(3.32)

(ii) lim
s→0+

(
∫ s̄−s

s

(x[r + s] − x[r])

s
x[r]dr

)

=
x2[s̄] − x2[0]

2
(3.33)

Proof. part (i)
∫ s̄

s

(x[r] − x[r − s])2

s
dr =

∫ s̄

0

ψs[r]dr

where ψs : [0, s̄] → R is defined in the following way:

ψs[r] =

{

0 if r ∈ [0, s)
(x[r]−x[r−s])2

s if r ∈ [s, s̄]
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In order to prove the claim we want to apply the Lebesgue theorem. First we will
see the a.e. convergence of the ψs to zero: for r > 0 we take s < r:

ψs[r] ≤

∣

∣

∣

∫ r

r−s
∂ωx[τ ]dτ

∣

∣

∣

s
|x[r] − x[r − s]|

where ∂ωx is the weak derivative of x (x is in H1 for hypothesis). Now almost every
r is a Lebesgue point and then

∣

∣

∣

∫ r

r−s ∂ωx(τ)dτ
∣

∣

∣

s

s→0+

−−−−→ |∂ωx[r]| a.e. in r ∈ (0, s̄]

while the part |x[r] − x[r − s]| goes uniformly to 0.
In order to dominate the convergence we note that by Morrey’s theorem

([Eva98] Theorem 4 page 266) every x ∈ H1(0, s̄) is 1/2-Holder then there exists a
positive C such that for every s ∈ (0, s̄] and every r ∈ [s, s̄] we have

|x[r] − x[r − s]|√
s

≤ C

and then
|x[r] − x[r − s]|2

s
≤ C2

this allows to dominate ψs with the constant C2, use the Lebesgue theorem and
obtain the claim.
part (ii):

(3.34) I(s)
def
=

∫ s̄−s

s

(x[r + s] − x[r])

s
x[r]dr =

=

∫ s̄−s

s

(x[r + s]x[r])

s
dr −

∫ s̄−2s

0

(x[r + s]x[r + s])

s
dr =

= −
∫ s̄−2s

s

(x[r + s] − x[r])

s
x[r + s]dr +

∫ s̄−s

s̄−2s

(x[r + s]x[r])

s
dr+

+

∫ s

0

− (x[r + s])2

s
dr

def
= −I1(s) + I2(s) + I3(s)

By the continuity of x we see that:

I2(s)
s→0+

−−−−→ x2[s̄]

and

I3(s)
s→0+

−−−−→ −x2[0]

Moreover, using similar arguments that in (i) we find that

(3.35) lim
s→0+

(I(s) − I1(s)) = lim
s→0+

∫ s̄−2s

s

− (x[r + s] − x[r])2

s
dr+

+ lim
s→0+

∫ s̄−s

s̄−2s

(x[r + s] − x[r])

s
x[r]dr = 0

so the limit lims→0+ I(s) exist if and only if there exist the limit lims→0+
I1(s)+I(s)

2
and in such case they have the same value. But

I1(s) + I(s)

2
=
I2(s) + I3(s)

2

s→0+

−−−−→ x2[s̄] − x2[0]

2

and then lims→0+

(

∫ s̄−s

s
(x[r+s]−x[r])

s x[r]dr
)

= x2[s̄]−x2[0]
2 . �
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Lemma 3.25. Given x ∈ D(A∗) there exists a real function O(s) such that

O(s)
s→0−−−→ 0 and such that for every control (ũ(·), u(·)) ∈ Ũ × U we have that

|x(s) − x| ≤ O(s)

(where we called x(s) the trajectory that starts from x and subject to the control
(ũ(·), u(·))). Note that O(s) is independent of the control.

Proof. We consider s ∈ (0, 1]. This is an arbitrary choice but we are inter-
ested only in the behavior of x(·) near to 0 so we can assume it without problems.
We use the explicit expression of x(s, r):

(3.36) ‖x(s) − x‖2
X=L2(0,s̄) =

=

∫ s̄

βs

∣

∣

∣

∣

e−µsx[r − βs] +

∫ s

0

e−µτ ũ(s− τ, r − βτ)dτ − x[r]

∣

∣

∣

∣

2

dr+

+

∫ βs

0

∣

∣

∣

∣

∣

e−
µ
β
ru(s− r/β) +

∫ r/β

0

e−µτu(s− τ, r − βτ)dτ − x[r]

∣

∣

∣

∣

∣

2

dr ≤

≤ 2

∫ s̄

βs

∣

∣e−µsx[r − βs] − x[r]
∣

∣

2
dr + 2

∫ s̄

βs

∣

∣

∣

∣

∫ s

0

e|µ|‖U‖dτ
∣

∣

∣

∣

2

dr+

+

∫ βs

0

∣

∣

∣

∣

∣

e|µ|‖U‖ +

∫ r/β

0

e|µ|‖Λ‖dτ + |x|L∞(0,s̄)

∣

∣

∣

∣

∣

2

dr ≤

(We have used that x ∈ D(A∗) ⊆ H1(0, s̄) so it is continuous and |x|L∞(0,s̄) < +∞)

(3.37) ≤ 2

∫ s̄

0

∣

∣e−µsx[(r − βs) ∧ 0] − x[r]
∣

∣

2
dr + 2s2s̄

(

e|µ|‖U‖
)2

+

+ sβ
(

e|µ|‖U‖ + |x|L∞ + se|µ|‖Λ‖
)2

Observe that in this estimate the control (ũ(·), u(·)) does not appear. The second
and the third terms goes to zero for s→ 0. In the first we can use Lebesgue theorem
observing that

∣

∣e−µsx[(r − βs) ∧ 0] − x[r]
∣

∣ ≤
(

e|µ||x|L∞ + |x|L∞

)

∀(s, r) ∈ (0, 1] × [0, s̄]

and that |e−µsx[(r − βs) ∧ 0] − x[r]| s→0−−−→ 0 pointwise. So the statement is proved.
�

Proposition 3.26. Given x ∈ D(A∗) and g ∈ test2 there exists a real function

O(s) such that O(s)
s→0−−−→ 0 and such that for every control (ũ(·), u(·)) ∈ Ũ ×U with

u(·) continuous we have that
∣

∣

∣

∣

∣

g(x(s)) − g(x)

s
−
∫ s

0
〈∇g(x), ũ(r)〉

s
− 〈∇g(x),−µx〉

∣

∣

∣

∣

∣

≤ g′0(|x|)
|x| β

‖U‖2

2
+O(s)

(where we called x(s) the trajectory that starts from x and subject to the control
(ũ(·), u(·))). Note that O(s) is independent of the control.

Proof. First we write

(3.38)
g(x(s)) − g(x)

s
− 〈∇g(x),−µx〉 −

∫ s

0
〈∇g(x), ũ(r)〉

s
=

=
g(x(s)) − g(y(s)) + g(y(s)) − g(x)

s
− 〈∇g(x),−µx〉 −

∫ s

0 〈∇g(x), ũ(r)〉
s
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where y(·) is the solution of

(3.39)

{

ẏ(s) = Ay(s) + βδ0u(s)
y(0) = x

(that is our system when µ = 0 and ũ(·) = 0). x(·) satisfies the mild equation3

(3.40) x(s) = esAx−A

∫ s

0

e(s−τ)A(u(τ)ν)dτ +

∫ s

0

e(s−τ)A(ũ(τ) − µx(τ))dτ

The term
(

esAx−A
∫ s

0 e
(s−τ)A(u(τ)ν)dτ

)

is the mild solution of y(·) and

x(s) − y(s) =

∫ s

0

e(s−τ)A(ũ(τ) − µx(τ))dτ.

Now we come back to (3.38), we have

(3.41)

∣

∣

∣

∣

∣

g(x(s)) − g(x)

s
−
∫ s

0
〈∇g(x), ũ(r)〉 dr

s
− 〈∇g(x),−µx〉

∣

∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

∣

g(x(s)) − g(y(s))

s
−
∫ s

0 〈∇g(x), ũ(r)〉 dr

s
− 〈∇g(x),−µx〉

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

g(y(s)) − g(x)

s

∣

∣

∣

∣

.

In order to estimate the first addendum we use the Taylor expansion as follows:

(3.42)
g(x(s)) − g(y(s))

s
=

〈

∇g(y(s)), x(s) − y(s)

s

〉

+

+

〈

∇g(ξ(s)) −∇g(y(s)), x(s) − y(s)

s

〉

=

where ξ(s) is a point of the line segment connecting x(s) and y(s)

(3.43) =

〈

∇g(y(s)),
∫ s

0
e(s−τ)A(ũ(τ) − µx(τ))dτ

s

〉

+

+

〈

∇g(ξ(s)) −∇g(y(s)),
∫ s

0
e(s−τ)A(ũ(τ) − µx(τ))dτ

s

〉

We know by Lemma 3.25 that x(s)
s→0−−−→ x y(s)

s→0−−−→ x uniformly in the

control (ũ(·), u(·)), and so ∇g(y(s)) s→0−−−→ ∇g(x) uniformly in the control and

|∇g(y(s)) −∇g(ξ(s))| s→0−−−→ 0 uniformly in the control. Moreover, in view of bound-

edness of the control and of the fact that x(s)
s→0−−−→ x uniformly in the control

(Lemma 3.25) we can prove that the term
∣

∣

∣

∣

∣

∫ s

0 e
(s−τ)A(ũ(τ) − µx(τ))dτ

s

∣

∣

∣

∣

∣

X

is bounded uniformly in the control and s ∈ (0, s̄] and we conclude that the second
term of the (3.43) goes to zero uniformly in (ũ(·), u(·)) and that

(3.44)

∣

∣

∣

∣

∣

g(x(s)) − g(y(s))

s
−
∫ s

0 〈∇g(x), ũ(r)〉 dr

s
− 〈∇g(x),−µx〉

∣

∣

∣

∣

∣

≤ O(s)

where O(s)
s→0−−−→ 0 and it does not depend on the control.

3We have already written an explicit mild form of the solution in (3.8), the form we use here
is different, indeed it is not explicit because the x appears also in the second term. The only
difference between the two formula is the following: equation (3.8) is the equation we obtain if we
include the term −µx in the generator of the semigroup, equation (3.40) is the form we obtain if
we maintain the term −µx out of the generator of the semigroup. The two forms are equivalent.
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So we have now to estimate the second term of the (3.41), namely
∣

∣

∣

g(y(s))−g(x)
s

∣

∣

∣
.

If we prove that it is smaller then g′0(|x|)
|x| β ‖U‖2

2 +O(s) where O(s) does not depend
on the control we have proved the proposition.

We first note that

∇g(x) = g′0(|x|)
x

|x|
and

D2g(x) = g′′0 (|x|) x|x| ⊗
x

|x| + g′0(|x|)
(

I

|x| −
x⊗ x

|x|3
)

We consider the Taylor’s expansion of g at x:

(3.45)
g(y(s)) − g(x)

s
=

〈∇g(x), y(s) − x〉
s

+
1

2

(y(s) − x)T (D2g(x))(y(s) − x)

s
+

+
o(|y(s) − x|2)

s
=

=
g′0(|x|)
|x|

(〈

x,
y(s) − x

s

〉

+
1

2

〈y(s) − x, y(s) − x〉
s

)

+

+
1

2

(

g′′0 (|x|)
|x|2 − g′0(|x|)

|x|3
) 〈x, y(s) − x〉2

s
+
o(|y(s) − x|2)

s

def
=

def
= P1 + P2 + P3

First we prove that P2 and P3 go to zero uniformly in (ũ(·), u(·)) and then we will
estimate P1. We proceed in two steps:
step 1: There exists a constant C such that for every admissible control
(ũ(·), u(·)) ∈ Ũ × U with u(·) continuous and every s ∈ (0, 1]4

∣

∣

∣

∣

〈x, y(s) − x〉
s

∣

∣

∣

∣

≤ C

(as before the choice of the interval (0,1] it is not essential: we are interested in
the behavior near zero). We observe first that the explicit solution of y(s)[r] can
be found taking µ = 0 and ũ = 0 in (3.6). We have:

y(s, r) =

{

x(r − βs) r ∈ [βs, s̄]
u(s− r/β) r ∈ [0, βs)

so

(3.46)

〈x, y(s) − x〉
s

=

∫ s̄

βs

x[r]
(x[r − βs] − x[r])

s
dr +

∫ βs

0 x[r](u(s − r/β) − x[r])dr

s
=

=

∫ s̄−βs

βs

x[r]
(x[r + βs] − x[r])

s
dr +

∫ s̄

s̄−βs
−x2[r]dr

s
+

∫ βs

0 x[r]x[r + βs]dr

s
+

+

∫ βs

0 x[r]u(s − r/β)dr

s
−
∫ βs

0 x2[r]dr

s

The third and the fifth part have opposite limits, the second goes to zero thanks to
the fact that x ∈ D(A∗) and then x is continuous and x(s̄) = 0. The first part goes

4In the expression of y(·) the distributed control ũ(·) does not appear, so we will speak from
now only of the boundary control u(·).
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to −β
2x

2[0] = 〈A∗x, x〉 in view of Lemma 3.24. The only term in which the control
appears is the fourth but we can estimate it as follows:

∣

∣

∣

∣

∣

∫ βs

0
x[r]u(s − r/β)dr

s

∣

∣

∣

∣

∣

≤
∫ βs

0
|x[r]|‖U‖dr

s
≤ β max

r∈[0,s̄]
|x[r]|‖U‖

step 2: There exists a constant C such that for every admissible control u(·) ∈
U with u(·) continuous and every s ∈ (0, 1]

|y(s) − x|2
s

≤ C

Indeed

(3.47)

∣

∣

∣

∣

〈y(s) − x, y(s) − x〉
s

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ s̄

βs

(x[r − βs] − x[r])2

s
dr

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∫ βs

0
(u(s− r/β) − x[r])2dr

s

∣

∣

∣

∣

∣

in view of the fact that x ∈ D(A∗) ⊆ H1(0, s̄) and of the Lemma 3.24 the first part
goes to zero. Moreover, since x ∈ H(0, s̄) ⊆ L∞(0, s̄), the second part is less or
equal to

(3.48)

∫ βs

0
‖U‖2dr

s
+

∫ βs

0
2|x[r]|‖U‖dr

s
+

∫ βs

0
|x[r]|2dr
s

≤ C.

This completes step 2.
From step 2 it follows that

o(|y(s) − x|2)
s

=
o(|y(s) − x|2)
|y(s) − x|2

|y(s) − x|2
s

s→0+

−−−−→ 0

uniformly in u(·). Thus |P3| s→0−−−→ 0 uniformly in u(·). Moreover

〈x, y(s) − x〉2
s

≤ | 〈x, y(s) − x〉 |
s

|x||y(s) − x|

and so, from step 1 and Lemma 3.25, |P2| s→0−−−→ 0 uniformly in u(·).

step 3: Conclusion
We now estimate P1. We can write a more explicit form of P1 as in the proofs

of step 1 and step 2 ((3.46), (3.47) and (3.48)) and using the same arguments we

can see that there exists a rest o(1) (depending only on x) with o(1)
s→0−−−→ 0 such

that for every control u(·) continuous

(3.49) P1 =
g′0(|x|)
|x|

(

〈A∗x, x〉 +

∫ βs

0
x[s]u(s− r/β)dr

s
+

1

2

∫ βs

0
(u(s− r/β))2dr

s
+

+
1

2

∫ βs

0 x2[r]dr

s
+

1

2

∫ βs

0 −2x[r]u(s− r/β)dr

s

)

+ o(1)

The fourth part of the above, that does not depend on the control, goes to β x[0]
2

2
that is the opposite of the first part. The second and the fifth part are opposite.
So we have that

P1 = o(1) +
g′0(|x|)
|x|

(

1

2

∫ βs

0
(u(s− r/β))2dr

s

)

≤ o(1) +
1

2

g′0(|x|)
|x| β‖U‖2
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Now, using the estimates on P1, P2 and P3 we see that
∣

∣

∣

∣

g(y(s)) − g(x)

s

∣

∣

∣

∣

≤ O(s) +
1

2

g′0(|x|)
|x| β‖U‖2.

Using this fact and equation (3.44) in (3.41) we have proved the proposition. �

Proposition 3.27. If x ∈ D(A∗) and ϕ ∈ test1 then there exists a real function

O(s) such that O(s)
s→0−−−→ 0 and such that for every control (ũ(·), u(·)) ∈ Ũ ×U with

u(·) continuous we have that

(3.50)

∣

∣

∣

∣

∣

ϕ(x(s)) − ϕ(x)

s
−
∫ s

0 〈∇ϕ(x), ũ(r)〉 dr

s
− 〈∇ϕ(x),−µx〉 −

− 〈A∗∇ϕ(x), x〉 −
∫ s

0
〈βδ0(∇ϕ(x)), u(r)〉

R
dr

s

∣

∣

∣

∣

∣

≤ O(s)

(where we called x(s) the trajectory that starts from x and subject to the control
(ũ(·), u(·))). Note that O(s) is independent of the control.

Proof. We proceed as in the proof of Proposition 3.26 observing that

ϕ(x(s)) − ϕ(x)

s
=
ϕ(x(s)) − ϕ(y(s))

s
+
ϕ(y(s)) − ϕ(x)

s

where y(·) is the solution of (3.39). It is possible to prove, using exactly the same
arguments used in the proof of Proposition 3.26 that

∣

∣

∣

∣

∣

ϕ(x(s)) − ϕ(y(s))

s
− 〈∇ϕ(x),−µx〉 −

∫ s

0
〈∇ϕ(x), ũ(r)〉 dr

s

∣

∣

∣

∣

∣

≤ O(s)

where O(s)
s→0−−−→ 0 and does not depend on the control. So we have to prove that

∣

∣

∣

∣

∣

ϕ(y(s)) − ϕ(x)

s
− 〈A∗∇ϕ(x), x〉 −

∫ s

0
β 〈δ0∇ϕ(x), u(r)〉

R
dr

s

∣

∣

∣

∣

∣

≤ O(s)

where O(s)
s→0−−−→ 0 and does not depend on the control.

We write

(3.51)
ϕ(y(s)) − ϕ(x)

s
= I0 + I1

def
=

〈

∇ϕ(x),
y(s) − x

s

〉

+

+

〈

∇ϕ(ξ(s)) −∇ϕ(x),
y(s) − x

s

〉

where ξ(s) is a point of the line segment connecting x and y(s). In view of Lemma

3.25, |y(s) − x| s→0−−−→ 0 uniformly in the control, so |ξ(s) − x| s→0−−−→ 0 uniformly in
u(·). By hypothesis

∇ϕ : X → D(A∗) and it is continuous

(D(A∗) is endowed with the graph norm). Then

(3.52) |∇ϕ(ξ(s)) −∇ϕ(x)|D(A∗)
s→0−−−→ 0

uniformly in u(·).

If we read equation (3.39) in D(A∗)′ it appears as an equation of the form
{

u̇(t) = A(E)u(t) + f(t)
u(0) = x
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where f(t) is a bounded measurable function (|f(t)|D(A∗)′ ≤ β|δ0|D(A∗)′‖U‖) we
can choose a constant C that depends on x such that, for all admissible control u(·)
continuous and all s ∈ (0, 1],

(3.53)
|y(s) − x|D(A∗)′

s
≤ C

Thus by (3.52) and (3.53), we can say that |I1| s→0−−−→ 0 uniformly in u(·). Therefore
∣

∣

∣

∣

ϕ(y(s)) − ϕ(x)

s
− 〈∇ϕ(x), y(s) − x〉

s

∣

∣

∣

∣

s→0−−−→ 0

uniformly in u(·). We now write

(3.54)
〈∇ϕ(x), y(s) − x〉

s
=

∫ s̄

βs

∇ϕ(x)[r]
(x[r − βs] − x[r])

s
dr+

+

∫ βs

0 ∇ϕ(x)[r](u(s − r/β) − x[r])dr

s
=

=

∫ s̄−βs

βs

x[r]
∇ϕ(x)[r + βs] −∇ϕ(x)[r]

s
dr +

∫ s̄

s̄−βs

(−∇ϕ(x)[r]x[r])

s
dr+

+

∫ βs

0
(∇ϕ(x)[r + βs]x[r])dr

s
+

∫ βs

0
∇ϕ(x)[r]u(s − r/β)dr

s
+

+

∫ βs

0
−∇ϕ(x)[r]x[r]dr

s
The third and the fifth terms, that do not depend on the control, have opposite
limits, the second goes to zero because ∇ϕ(x) and x are in D(A∗) and then x[s̄] =
0 = ∇ϕ(x)[s̄]. The first term goes to 〈A∗∇ϕ(x), x〉. Finally we observe that the
only term that depends on the control is the fourth and

∣

∣

∣

∣

∣

∫ βs

0
∇ϕ(x)[r]u(s − r/β)dr

s
− β

∫ s

0
∇ϕ(x)[0]u(s − r′)dr′

s

∣

∣

∣

∣

∣

s→0−−−→ 0

uniformly in u(·) and, since ϕ(x)[0] is a constant,

β

∫ s

0 ∇ϕ(x)[0]u(s− r)dr

s
=

∫ s

0 〈βδ0∇ϕ(x), u(r)〉
R

dr

s
This complete the proof. �

We can now prove that the value function is a solution of the HJB equation
equation.

Theorem 3.28. Let L satisfy (L1) and (L2) let U and Λ be a compact subsets
of R. Then the value function V is bounded, P -Lipschitz and is a solution of the
HJB equation.

Proof. The boundedness of V follows from the boundedness of L (assump-
tion (L2)). The P -Lipschitz property is the result of Proposition 3.22. It remains
to verify that V is a solution of the HJB equation.
Subsolution:
Let x be a local maximum of V − (ϕ + g) for ϕ ∈ test1 and g ∈ test2. Thanks
to Proposition 3.23 we know that ∇(ϕ + g)(x) ∈ D(A∗). Moreover we know that
∇ϕ(x) ∈ D(A∗) for the definition of the set test1. So ∇g(x) = g′0(|x|) x

|x| ∈ D(A∗)

and this implies that x ∈ D(A∗). We can assume that V (x) − (ϕ+ g)(x) = 0. We
consider the constant control (ũ(·), u(·)) ≡ (ũ, u) ∈ Ũ × U and x(s) the trajectory
starting from x and subject to (ũ, u). Then for s small enough

V (x(s)) − (ϕ+ g)(x(s)) ≤ V (x) − (ϕ+ g)(x)
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and thanks to the Bellman principle of optimality we know that

V (x) ≤ e−ρsV (x(s)) +

∫ s

0

e−ρrL(x(r), ũ, u)dr

Then

(3.55)
1 − e−ρs

s
V (x(s)) − ϕ(x(s)) − ϕ(x)

s
− g(x(s)) − g(x)

s
−

−
∫ s

0 e
−ρrL(x(r), ũ, u)dr

s
≤ 0.

Using Proposition 3.26 and Proposition 3.27 we can now pass to the limsup as
s→ 0 to obtain

(3.56) ρV (x) − 〈∇ϕ(x),−µx〉 − 〈∇g(x),−µx〉 −

−
(

〈A∗∇ϕ(x), x〉 + 〈βδ0(∇ϕ(x)), u〉
R

+ 〈∇ϕ(x), ũ〉 + 〈∇g(x), ũ〉 + L(x, ũ, u)

)

≤

≤ g′0(|x|)
|x| β

‖U‖2

2
.

Taking the inf(ũ,u)∈Ũ×U we obtain the subsolution inequality.
Supersolution:

Let x be a minimum for V + (ϕ + g) and such that V + (ϕ + g)(x) = 0. As in
the subsolution proof we obtain that x ∈ D(A∗). For ε > 0 take (ũε(·), aε(·)) an
ε2-optimal strategy. We can assume u(·) continuous (it is not hard to see). We call
x(s) the trajectory starting from x and subject to (ũε(·), uε(·). Now for s small
enough

V (x(s)) + (ϕ+ g)(x(s)) ≥ V (x) + (ϕ+ g)(x)

and thanks to the ε2-optimality and the Bellman principle we know that

V (x) + ε2 ≥ e−ρsV (x(s)) +

∫ s

0

e−ρrL(x(r), ũε(r), uε(r))dr

We take s = ε. Then

(3.57)
1 − e−ρε

ε
V (x(ε)) +

ϕ(x(ε)) − ϕ(x)

ε
+
g(x(ε)) − g(x)

ε
−

−
∫ ε

0
e−ρrL(x(r), ũε(r), uε(r))dr

ε
+
ε2

ε
≥ 0

in view of Proposition 3.26 and Proposition 3.27 we can choose, independently of

the control (ũε(·), uε(·)), a o(1) with o(1)
ε→0−−−→ 0 such that:

(3.58) ρV (x) + 〈A∗∇ϕ(x), x〉 + 〈∇ϕ(x) + ∇g(x),−µx〉 −

−
(

∫ ε

0 〈−βδ0(∇ϕ(x), uε(r)〉R
+ e−ρrL(x(r), ũε(r), uε(r))dr

ε
−

−
∫ ε

0
〈∇ϕ(x) + ∇g(x), ũε(r)〉 dr

ε

)

≥ o(1) − g′0(|x|)
|x| β

‖U‖2

2
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we now take inf over u and ũ inside the integral and let ε→ 0 to obtain that

(3.59) ρV (x) + 〈A∗∇ϕ(x), x〉 + 〈∇ϕ(x) + ∇g(x),−µx〉 −

− inf
(ũ,u)∈Ũ×U

(

− 〈βδ0(∇ϕ(x)), u〉
R

+ L(x, ũ, u) − 〈∇ϕ(x) + ∇g(x), ũ〉
)

≥

≥ −g
′
0(|x|)
|x| β

‖U‖2

2
.

(we observe again that the fact that o(1)
ε→0−−−→ 0 uniformly in the control is essen-

tial). Therefore V is a solution of the HJB equation. �

3.4.2. Uniqueness. In the proof of uniqueness result we will use the following
theorem proved in general case in [EL77]:

Theorem 3.29. Let Y be a uniformly continuous Banach space. Let D be a
bounded closed subset of X and f : D → (−∞,+∞] be a proper lower semicontin-
uous function bounded from below. Then, for any ε > 0, there exists a p ∈ Y ∗ with
|p|∗ < ε such that the map x 7→ f(x) + 〈p, x〉Y ∗×Y attains its minimum over D at
some point x0 ∈ D.

Proof. See [LY95] page 245. �

Moreover, recalling the notation introduced in Notation 2.17, we will use the
following

Lemma 3.30. Any convex, bounded, closed set S ⊆ X is convex, bounded and
closed in X−2.

Proof. See [LY95] page 250. �

Now we can prove a uniqueness result: we prove the result in the case µ 6= 0.
The case µ = 0 is simpler and can be proved with small changes in the proof.

Theorem 3.31. Let L satisfy (L1) and (L2) let U and Λ be compact subsets of
R. Then given a supersolution v of the HJB equation and a subsolution w we have

w(x) ≤ v(x) for every x ∈ X

In particular there exist at most one solution of the HJB equation

Proof. We will proceed by contradiction. Assume that w is a subsolution
of the HJB equation and v a supersolution and suppose that there exists x̌ ∈ X
and γ > 0 such that

(w(x̌) − v(x̌)) >
3γ

ρ
> 0

We take γ < 1. So, taken ϑ > 0 small enough we have

(3.60) w(x̌) − v(x̌) − ϑ|x̌|2 > 2γ

ρ
> 0

We consider ε > 0 and Ψ: X ×X → R given by

Ψ(x, y)
def
= w(x) − v(y) − 1

2ε
|P 1/2(x− y)|2 − ϑ

2
|x|2 − ϑ

2
|y|2.

Thanks to the boundedness of w and v, chosen ϑ > 0, there exist Rϑ > 0 such
that

(3.61) Ψ(0, 0) ≥
(

sup
(|x|≥Rϑ) or (|y|≥Rϑ)

(Ψ(x, y))

)

+ 1

We set
S = {(x, y) ∈ X ×X : |x| ≤ Rϑ and |y| ≤ Rϑ}
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If we choose Rϑ big enough x̌ ∈ S. The next step is to perturbate Ψ(·, ·) to
obtain a maxima5: We first observe that S is bounded convex and closed and so in
view of Lemma 3.30 it is bounded convex and closed in X2

−2. Next we note that
Ψ(·, ·) is upper semicontinuous on S with respect to the topology of X2

−2. We take
(xk, yk) ∈ S×S and (x, y) such that |P (xk −x)| → 0 and |P (yk− y)| → 0. Since S
is bounded on X we may assume xk ⇀ x̃ and yk ⇀ ỹ in X . Since P is continuous
and selfadjoint we have Pxk ⇀ Px̃ and Pyk ⇀ Pỹ and for the uniqueness of the
weak limit x̃ = x, ỹ = y. We have |xk − x|−1 = 〈P (xk − x), (xk − x)〉1/2 −→ 0 and
the same for yk. So, since w(·) and v(·) are P -Lipschitz continuous,

w(xk) −→ w(x) and v(yk) −→ v(y).

Eventually we use the P -continuity of the function (x, y) 7→ |P 1/2(x− y)|2 and the
lower weak semicontinuity of x 7→ |x|2 to conclude that Ψ(·, ·) is upper semicontin-
uous on S with respect to the topology of X2

−2. Moreover Ψ(·, ·) is bounded on S
that is bounded closed and convex in X−2. So we can use Theorem 3.29 and state
that there exist p̃ and q̃ in (X−2)

′ = X2 such that |p̃|2, |q̃|2 ≤ σ and

(x, y) 7→ ϕ(x, y) − 〈p̃, x〉X2×X−2
− 〈q̃, y〉X2×X−2

attains a maximum over S in (x̄, ȳ). But for definition of X2 there exist p, q ∈ X
with q̃ = Pq, p̃ = Pp and |p| = |p̃|2 ≤ σ, |q| = |q̃|2 ≤ σ and so

(x, y) 7→ ϕ(x, y) −
〈

P̃ p, x
〉

−
〈

P̃ q, y
〉

attains a maximum over S in (x̄, ȳ). If we choose σ small enough (for example such
that σ‖P‖Rϑ < 1

4
γ
ρ ) we know by (3.61) that such maximum is in the interior of S

and, thanks to (3.60), that

Ψ(x̄, ȳ) − 〈Pp, x̄〉 − 〈Pq, ȳ〉 > 3γ

2ρ
.

Moreover

(3.62) Ψ(x̄, ȳ) >
γ

ρ
and so w(x̄) − v(ȳ) >

γ

ρ
.

We now make some preliminary estimates that we will use in the following:
Estimates 1 (on ε):

We observe that
{

M : (0, 1] → R

M : ε 7→ sup(x,y)∈X×X

(

w(x) − v(y) − 1
2ε

∣

∣P 1/2(x− y)
∣

∣

2
)

is non-decreasing and bounded and so it admits a limit for ε→ 0+. So there exists
a ε̄ > 0 such that, for every 0 < ε1, ε2 ≤ ε̄ we have that

(3.63) |M(ε1) −M(ε2)| <
(

γ

16(1 + |µ|)

)2

We choose now ε, that will be fixed in the sequel of the proof:

(3.64) ε := min

{

ε̄,
1

32C2
L

}

(CL is the constant introduced in hypotheses (L1) and (L2)). Now we state and
prove a claim that we will use in the following:

5We use an approach similar to the one of [LY95] (page 252) with some differences due to
the different properties of the functions w and v.
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Claim
If x̃ ∈ X and ỹ ∈ X satisfy

(3.65) w(x̃) − v(ỹ) − 1

2ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

≥M(ε) −
(

γ

16(1 + |µ|)

)2

then

(3.66)
1

ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

≤ 1

32

(

γ

(1 + |µ|)

)2

proof of the claim:
(We follow the idea used in Lemma 3.2 of [CL94a])

(3.67) M(ε/2) ≥ w(x̃) − y(ỹ) − 1

4ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

=

= w(x̃) − y(ỹ) − 1

2ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

+
1

4ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

≥

≥M(ε) −
(

γ

16(1 + |µ|)

)2

+
1

4ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

So

(3.68)
1

4ε

∣

∣

∣
P 1/2(x̃− ỹ)

∣

∣

∣

2

≤M(ε/2)−M(ε) +

(

γ

16(1 + |µ|)

)2

≤

≤
(

γ

16(1 + |µ|)

)2

+

(

γ

16(1 + |µ|)

)2

= 2

(

γ

16(1 + |µ|)

)2

where the inequality M(ε/2) −M(ε) <
(

γ
16(1+|µ|)

)2

follows from the definition of

ε (3.64) that implies ε ≤ ε̄ and then the (3.63). The claim follows.

From (3.64) we have
1√
ε
≥ 4

√
2CL

and then if x̃, ỹ satisfy the hypothesis (3.65) of the claim we have

(3.69) CL |x̃− ỹ|P ≤ γ

32(1 + |µ|)
Estimates 2 (on σ):

We have already imposed σ < γ/ρ
4‖P‖Rϑ

, we take from now

(3.70) σ = min

{

γ

8ρ‖P‖Rϑ
, ϑ,

ϑ

Rϑ

}

so that

(3.71) σ
ϑ→0−−−→ 0

and

(3.72) σRϑ
ϑ→0−−−→ 0

We recall that we have already fixed ε in (3.64). From the choice of σ (3.70) follows
that

(3.73) |〈Pp, x̄〉| ≤ ‖P‖σRϑ ϑ→0−−−→ 0, |〈Pq, ȳ〉| ≤ ‖P‖σRϑ ϑ→0−−−→ 0

Moreover, in view of the continuity of the linear operator A∗P : X → X that has
norm ‖A∗P‖, we have

(3.74) |〈A∗Pp, x̄〉| ≤ ‖A∗P‖σRϑ ϑ→0−−−→ 0, |〈A∗Pq, ȳ〉| ≤ ‖P‖σRϑ ϑ→0−−−→ 0
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Estimates 3 (on ϑ): Fixed ε, we have

(3.75) ϑ |x̄|2 ϑ→0−−−→ 0, ϑ |ȳ|2 ϑ→0−−−→ 0

(3.76) lim
ϑ→0

(Ψ(x̄, ȳ) − 〈Pp, x̄〉 − 〈Pq, ȳ〉) =

= sup
(x,y)∈X×X

(

x(x) − v(y) − 1

2ε

∣

∣

∣
P 1/2(x− y)

∣

∣

∣

2
)

> 2
γ

ρ

(where the last inequality follows from the (3.60)). In (3.64) we fixed ε, in (3.70)
we chose σ as function of ϑ. Now we will fix ϑ. We begin taking

ϑ <
γ

64β‖U‖2

so that

(3.77) βϑ‖U‖2 <
γ

64

We know from (3.73) and (3.74) that if we choose ϑ small enough we have

(3.78)
|µ| |〈Pp, x̄〉| < γ

16 , |µ| |〈Pq, ȳ〉| < γ
16

|〈A∗Pp, x̄〉| < γ
16 , |〈A∗Pq, ȳ〉| < γ

16

From (3.75) we know that if we choose ϑ small enough we have

(3.79) |µ|ϑ |x̄|2 < γ

32
, |µ|ϑ |ȳ|2 < γ

32

Moreover the (3.75) implies also that

ϑ |x̄| ϑ→0−−−→ 0, ϑ |ȳ| ϑ→0−−−→ 0

and then if we choose ϑ small enough we have

(3.80) ϑ‖Ũ‖ (|x̄| + |ȳ|) < γ

32

Moreover, in view of (3.76) we know that that if we choose ϑ small enough, x̄
and ȳ satisfy the hypothesis (3.65) of the Claim and then, from the (3.66), we have

(3.81)
1

ε

∣

∣

∣
P 1/2(x̄− ȳ)

∣

∣

∣

2

≤ 1

32

(

γ

(1 + |µ|)

)2

≤ 1

32

γ

(1 + |µ|) ≤ γ

32

(where we uses that if 0 < a < 1 then a2 < a, we recall that we took 0 < γ < 1).
From the (3.66) in the same way we obtain

(3.82)
|µ|
ε

∣

∣

∣
P 1/2(x̄− ȳ)

∣

∣

∣

2

≤ γ

32

and, from (3.69),

(3.83) CL

∣

∣

∣
P 1/2(x̄− ȳ)

∣

∣

∣
≤ γ

32

Eventually, from (3.71) if we choose ϑ small enough we have

(3.84) 2‖P‖|p|‖Ũ‖ ≤ 2‖P‖σ‖Ũ‖ ≤ γ

64

and

(3.85) 2σβ‖δ0 ◦ P‖‖U‖ ≤ γ

32

where we have called ‖δ0 ◦ P‖ the norm of the linear continuous functional
δ0 ◦ P : X → R.

We choose ϑ > 0 small enough to satisfy (3.78), (3.79), (3.80), (3.81), (3.82)
(3.83), (3.84), (3.85).
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We have finished our preliminary estimates and we come back to the main part
of the proof of the theorem. The map

x 7→ w(x) −
(

1

2ε
|P 1/2(x − ȳ)|2 +

ϑ

2
|x|2 + 〈Pp, x〉

)

attains a maximum at x̄ and

y 7→ v(y) +

(

1

2ε
|P 1/2(x̄− y)|2 +

ϑ

2
|y|2 + 〈Pq, y〉

)

attains a minimum at ȳ.
Thanks to Proposition 3.23 x̄ and ȳ are inD(A∗). We can now use the definition

of sub- and super-solution (page 57) to obtain that

(3.86) ρw(x̄) − 1

ε
〈A∗P (x̄− ȳ), x̄〉 − 1

ε
〈P (x̄− ȳ),−µx̄〉 − 〈A∗Pp, x̄〉−

− 〈Pp,−µx̄〉 − ϑ 〈x̄,−µx̄〉 − inf
(ũ,u)∈Ũ×U

(

1

ε
〈βδ0(P (x̄− ȳ)), u〉

R
+ 〈βδ0(Pp), u〉R +

+ ϑ 〈x̄, ũ〉 +
1

ε
〈P (x̄− ȳ), ũ〉 + 〈Pp, ũ〉 + L(x̄, ũ, u)

)

≤ ϑβ‖U‖2

2

and

(3.87) ρv(ȳ) − 1

ε
〈A∗P (x̄− ȳ), ȳ〉 − 1

ε
〈P (x̄− ȳ),−µȳ〉 + 〈A∗Pq, ȳ〉+

+ 〈Pq,−µȳ〉 + ϑ 〈ȳ,−µȳ〉 − inf
(ũ,u)∈Ũ×U

(

1

ε
〈βδ0(P (x̄− ȳ)), u〉

R
− 〈βδ0(Pq), u〉R −

− ϑ 〈ȳ, ũ〉 +
1

ε
〈P (x̄− ȳ), ũ〉 − 〈Pq, ũ〉 + L(ȳ, ũ, u)

)

≥ −ϑβ‖U‖2

2

Subtracting the above we obtain

(3.88) ρw(x̄) − ρv(ȳ) − 1

ε
〈A∗P (x̄− ȳ), (x̄− ȳ)〉−

− 1

ε
〈P (x̄− ȳ),−µ(x̄− ȳ)〉 − 〈A∗Pp, x̄〉 − 〈A∗Pq, ȳ〉−

− 〈Pp,−µx̄〉 − 〈Pq,−µȳ〉 − ϑ 〈x̄,−µx̄〉 − ϑ 〈ȳ,−µȳ〉−

− inf
(ũ,u)∈Ũ×U

(

1

ε
〈βδ0(P (x̄ − ȳ)), u〉

R
+ 〈βδ0(Pp), u〉R +

+ ϑ 〈x̄, ũ〉 +
1

ε
〈P (x̄− ȳ), ũ〉 + 〈Pp, ũ〉 + L(x̄, ũ, u)

)

+

+ inf
(ũ,u)∈Ũ×U

(

1

ε
〈βδ0(P (x̄− ȳ)), a〉

R
− 〈βδ0(Pq), u〉R −

− ϑ 〈ȳ, ũ〉 +
1

ε
〈P (x̄− ȳ), ũ〉 − 〈Pq, ũ〉 + L(ȳ, ũ, u)

)

≤

≤ βϑ‖U‖2

We now note that:
(A): from (3.10) A∗P ≤ P and then

−1

ε
〈A∗P (x̄− ȳ), (x̄ − ȳ)〉 ≥ −1

ε
〈P (x̄− ȳ), (x̄ − ȳ)〉 = −1

ε
|x̄− ȳ|2P
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(B): We have

(3.89) − inf
(ũ,u)∈Ũ×U

(

1

ε
〈βδ0(P (x̄− ȳ)), u〉

R
+ 〈βδ0(Pp), u〉R +

+ ϑ 〈x̄, ũ〉 +
1

ε
〈P (x̄− ȳ), ũ〉 + 〈Pp, ũ〉 + L(x̄, ũ, u)

)

+

+ inf
(ũ,u)∈Ũ×U

(

1

ε
〈βδ0(P (x̄ − ȳ)), u〉

R
− 〈βδ0(Pq), u〉R −

− ϑ 〈ȳ, ũ〉 +
1

ε
〈P (x̄− ȳ), ũ〉 − 〈Pq, ũ〉 + L(ȳ, ũ, u)

)

≥

≥ inf
(ũ,u)∈Ũ×U

(

− 〈βδ0(Pp), u〉R − 〈βδ0(Pq), u〉R + L(ȳ, ũ, u) − L(x̄, ũ, u)−

− ϑ 〈ȳ, ũ〉 − ϑ 〈x̄, ũ〉 − 〈Pq, ũ〉 − 〈Pp, ũ〉
)

≥

≥ inf
(ũ,u)∈Ũ×U

(

L(ȳ, ũ, u) − L(x̄, ũ, u)
)

−

− sup
(ũ,u)∈Ũ×U

(

〈βδ0(Pp), u〉R + 〈βδ0(Pq), u〉R
)

−

− sup
(ũ,u)∈Ũ×U

(

ϑ 〈ȳ, ũ〉 + ϑ 〈x̄, ũ〉
)

− sup
(ũ,u)∈Ũ×U

(

〈Pq, ũ〉 + 〈Pp, ũ〉
)

≥

≥ −CL|x̄− ȳ|P − 2σβ‖δ0 ◦ P‖‖U‖ − ‖Ũ‖ϑ(|x̄| + |ȳ|) − 2‖P‖σ‖Ũ‖
Thus using (A) and (B) in (3.88) we have

(3.90) ρ
(

w(x̄) − v(ȳ)
)

− 1

ε
|x̄− ȳ|2P−

− µ

ε
〈P (x̄− ȳ),−(x̄− ȳ)〉 − 〈A∗Pp, x̄〉 − 〈A∗Pq, ȳ〉−

− 〈Pp,−µx̄〉 − 〈Pq,−µȳ〉 − ϑ 〈x̄,−µx̄〉 − ϑ 〈ȳ,−µȳ〉−
− CL|x̄− ȳ|P − 2σβ‖δ0 ◦ P‖‖U‖ − ‖Ũ‖ϑ(|x̄| + |ȳ|) − 2‖P‖σ‖Ũ‖ − βϑ‖U‖2 ≤ 0

using (3.81), (3.82), (3.78), (3.79), (3.83), (3.85), (3.80), (3.84), (3.77) we obtain

(3.91)

ρ(w(x̄) − v(ȳ)) − 2
( γ

32

)

− 4
( γ

16

)

− 2
( γ

32

)

− γ

32
− γ

32
− γ

32
− γ

64
− γ

64
≤ 0

that is

(3.92) ρ(w(x̄) − v(ȳ)) − 1

2
γ ≤ 0

but from the (3.62) we have ρ
(

w(x̄)−v(ȳ)
)

> γ and then we obtain from the (3.92)

1

2
γ = γ − 1

2
γ < ρ(w(x̄) − v(ȳ)) − 1

2
γ ≤ 0

that is a contradiction because γ > 0 and so the theorem is proved. �

Remark 3.32. Now we can better explain the remark in the introduction saying
that it is difficult to treat the case of non-constant coefficient. We can estimate the
term 1

ε 〈P (x̄− ȳ),−µ(x̄− ȳ)〉 because we use the term 1
ε |x− y|2P to penalize the

doubling of the variables with respect to the P -norm. If µ is a function of r such
term is replaced by 1

ε 〈P (x̄− ȳ),−µ(·)(x̄ − ȳ)〉 where −µ(·)(x̄ − ȳ) is the pointwise

product of the L∞(0, s̄) function µ(·) and the L2(0, s̄) function (x̄− ȳ), which cannot
be estimated by using similar arguments.



CHAPTER 4

Existence of viscosity solution for a family of HJB

equations related to economic problems with delay

In this chapter we present the results obtained in the work [Fab06] in which
we prove that, under suitable hypotheses, the value function is a viscosity solution
of the first order HJB equation in the Hilbert space M2 related to optimal control
problem subject to linear delay differential equation .

The result that we find in this work is not very strong. Indeed we use a quite
small set of test functions and we can only prove an existence result without any
comparison statement. Anyway the existence of a viscosity solution, that is proved
both in state-control constraint and in state constraint case, is sufficient to prove a
verification theorem.

Acknowledgements I would like to thank Silvia Faggian and Prof. Fausto
Gozzi for the many useful suggestions.

4.1. Introduction

The present work is strictly connected to the studies presented in [FGF] that
we will describe in Chapter 6 of this thesis. We treat a class of delay optimal control
problems arising from economics, using the equivalent formulation of the problems
in M2 described in Section 1.3 and then using the dynamic programming approach.

We concentrate on three main examples: The first is an AK model with vintage
capital, taken from [BLPdR05] (see also [BdlCL04] and [FGa]), we refer to Chapter
7 for description of the model. The second is an advertising model with delay effects
(see [GM04, GMS06]), we refer to Section 6.3 for a brief description. The third is
an AK model for obsolescence and depreciation (from [BdRM]) and can be found
in Chapter 8). We study a general problem that includes, as particular cases, the
three main examples.

The examples are used to understand which can be, from an applied point
of view, the more reasonable hypotheses that have to be introduced in the study.
Nevertheless the results we found are applicable independently from the form of
the linear delay differential equation that governs the system.

The economic nature of the example suggest to treat the maximization problem
instead of the minimization one. So the value function will be defined as the
supremum, over all admissible control strategies, of the utility functional and the
Hamiltonian will change too.

In [FGF] we study the HJB equation using an approximation method with
techniques similar to the ones used in [Fag05b, FG04, Fag05a] for other classes of
problems (see Chapter 6 for details). Here we treat a more general case studying
the existence of viscosity solutions for the HJB equation. Indeed the use of viscosity
solutions in the study of the HJB equation allows to avoid the concavity assumption
for the Hamiltonian and the target functional of the system. Moreover, using the
viscosity solution approach, we do not need a current objective function in which
the control and the state appears de-coupled (see Subsection 4.2.2 and in particular
Remark 4.3).

77
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4.1.1. The main “technical” difficulties of the problem. the state
equation: we consider a general homogeneous linear DDE, in which the deriv-
ative of the state θ depends both on the history of the state θs (the notation s was
introduced in Section 1.3) and on the history of the control us:

{

θ̇(s) = N(θs) +B(us) for s ∈ [t, T ]
(θ(t), θt, ut) = (φ0, φ1, ω) ∈ R × L2(−R, 0) × L2(−R, 0)

The presence of the delay in the control yields a unbounded term. There are similar
terms in the papers [CGS93, CT94a, CT96a, CT96c, GSŚ02, Faba] that study
viscosity solution for HJB equation related to optimal control problems governed
by specific PDEs and whose results do not apply to our case. Moreover in our state
equation as reformulated in M2 a non-analytic semigroup appears. The only work,
as far we know, that treat viscosity solution for HJB equation with boundary term
with non-analytic semigroup is [Faba] (presented in Chapter 3), but only a very
specific transport PDE is treated there.

the constraints: we consider both state-control constraints (see Hypothesis
4.4 for a precise definition) and state constraints (θ ≥ 0 in Section 4.6).

the target functional: Here we consider a functional of the form

(4.1)
∫ T

t

L0(s, θ(s), u(s))ds + h0(θ(T ))

where we assume L0 and h0 continuous. In [BLPdR05, FGa, Fab06] a CRRA utility
function is considered and in [FGF] a concave utility function is used.

We include the state constraint θ ≥ 0 only in the last section. In Section 4.2
we describe the general delay problem and we show how to specify the problem
to obtain our main examples. In Section 4.3 we briefly show how the techniques
presented in Section 1.3 can be used in our case to rewrite the optimal control
problem subject to DDE as a an optimal control problem subject to ODE in M2.
In Section 4.4 we present the definition of viscosity solution of the HJB equation
(Definition 4.12, Definition 4.13, Definition 4.14) and then we prove that the value
function of the problem is a viscosity solution of the HJB equation (Theorem 4.19).
In Section 4.5 we give a verification result that can be used to verify if a given
control is optimal and to find optimal controls in feedback form. In Section 4.6 we
consider the constraint θ ≥ 0: giving a definition of viscosity solution in such a case
(Definition 4.28) and we prove that the value function is a viscosity solution of the
HJB equation according to the new definition (Theorem 4.30).

4.2. The Problem

4.2.1. The problem - the delay state equation . From now on we consider
a fixed R > 0. Given T > t ≥ 0, z ∈ L2(t − R, T ) and an admissible control
u(·) ∈ L2(−R, T ) we consider the the following delay differential equation:

(4.2)

{

θ̇(s) = N(θs) +B(us) for s ∈ [t, T ]
(θ(t), θt, ut) = (φ0, φ1, ω) ∈ R × L2(−R, 0) × L2(−R, 0)

where θt and ut are interpreted by means of the Definition (1.24) and

Hypothesis 4.1. N,B : C([−R, 0]; R) → R are continuous linear functionals

The equation (4.2) is a general form that includes our three main examples.
Namely:

• In [BLPdR05, FGa] the control variable is called i (as “investment”)
instead of u and the state variable is called k (as “capital”), N = 0 and
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B = δ0 − δR, the state equation is representing the stock of capital k at
time s is

(4.3) k(s) =

∫ s

s−R

i(r)dr

• In [GMS06, GM04] the definitions of N and B are respectively

(4.4)
N : C([−R, 0]) → R

N : γ 7→ a0γ(0) +
∫ 0

−R
γ(r)da1(r)

(4.5)
B : C([−R, 0]) → R

B : γ 7→ b0γ(0) +
∫ 0

−R
γ(r)db1(r)

where a0, b0 are real constants and a1, b1 are function with bounded
variation.

• In [BdRM] N = 0 and

(4.6)
B : C([−R, 0]) → R

B : γ 7→ (Ω − η)γ(0) − δΩ
∫ 0

−R e
δrγ(r)dr

where Ω, η and δ are constants.

4.2.2. The problem - the target functional. We consider a target func-
tional to be maximized of the form

(4.7)
∫ T

t

L0(s, θ(s), u(s))ds + h0(θ(T ))

where

(4.8)
L0 : [0, T ]× R × R → R

h0 : R → R

are continuous functions.

Remark 4.2. In our main examples the functional are the following

• In [BLPdR05, FGa] the horizon is infinite and the objective functional
was CRRA:

(4.9)
∫ +∞

0

(Ak(s) − i(s))1−σ

1 − σ
ds

where A is a positive constant and σ > 0. In such a work the pro-
duction function is linear and given by y = Ak, while (Ak − i) is the
consumption.

• In [BdRM] the state is called y (it represents the production net of
maintenance and repair costs), the control variable is i (investment).
The functional is CRRA:

(4.10)
∫ +∞

0

(y(s) − i(s))1−σ

1 − σ
ds

Remark 4.3. The generality of the objective functional is one of the improve-
ments due to the viscosity solutions approach, indeed in [FGF] (in [GMS06, GM04]
a similar stochastic case is studied) the authors considered only objective functional
of the form

(4.11)
∫ T

t

e−ρsl0(c(s))ds+m0(θ(T ))

where l0 and m0 are concave functions, and the utility function l0 depends only on
the consumption (that is the control) c.
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4.2.3. The problem - the constraints. The last thing to choose to define
the optimization problem is the choice of the set of the admissible trajectories. In
our main examples a lower bound on the control variable is assumed. In [BLPdR05,
FGa] the constraint u ≥ 0 is assumed and the same is done in [BdRM]. Here we
assume a more general constraint:

(4.12) u ≥ Γ−(θ)

where Γ− : R → (−∞, 0] is a continuous function (see Hypothesis 4.4 for other
assumptions on Γ−). (In [BLPdR05, FGa] Γ−(θ) = 0).

Moreover we assume another state-control constraint that is a generalization of
the constraints imposed in [BLPdR05, FGa, BdRM]: the control cannot be greater
than some number depending on the state. For example in [BLPdR05, FGa] the
investment i cannot be greater then the production Ak(t), in [BdRM] we have i ≤ y.
Here we impose

(4.13) u ≤ Γ+(θ)

where Γ+ : R → [0,+∞) is a continuous function. (In [BLPdR05, FGa] Γ+(θ) = Aθ,
in [BdRM] Γ+(θ) = θ)

The constraint θ ≥ 0 The state constraint θ ≥ 0 is quite natural in our exam-
ples: y is the stock of capital, the net production, the stock of advertising goodwill
of the product to be launched. In the advertising model it is required ([FGF]
and the stochastic version [GM04, GMS06]), whereas it is not directly needed in
[BLPdR05] where it is consequence of the positivity of investment. The constraint
θ ≥ 0 needs to be treated with more attention in the viscosity solution setting, so
we introduce it only in Section 4.6 and we ignore it before.

4.3. The problem in Hilbert space

Following the steps we presented in Section 1.3 we obtain an equivalence of our
optimal control problem governed by (4.2) into the following problem in the Hilbert
space M2 = R × L2(−R, 0) governed by the state equation

(4.14)







d

ds
x(s) = Ax(s) +B∗u(s)

x(t) = x.

where A is the generator introduced in Section 1.3 and used in (1.39) and B∗ is
the adjoint1 of B used in (4.2). From Theorem 1.33 we know that (4.14) admits a
unique solution x(·) such that x(s) = (x0(s), x1(s)) ∈ R×L2(−R, 0) where x0(·) is
the unique absolutely continuous solution θ(·) of (4.2).

In the next Hypothesis we formalize the state-control constraint above as u ∈
[Γ−(θ),Γ+(θ)]:

Hypothesis 4.4. If we consider a control u(·) and the related state trajectory
x(·) = (x0(·), x1(·)) we impose the state-control constraint

(4.15) Γ−(x0(s)) ≤ u(s) ≤ Γ+(x0(s))

where Γ− and Γ+ are locally Lipschitz continuous functions:

(4.16)
Γ+ : R → [0,+∞)

Γ− : R → (−∞, 0]

such that |Γ−(t)| ≤ a+ b|t| and |Γ+(t)| ≤ a+ b|t| for two positive constant a and b.

1We abuse notation as described in (1.36).
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The set of admissible controls is

(4.17) Ut,x def= {u(·) ∈ L2(t, T ) : Γ−(x0
u(·),t,x(s)) ≤ u(s) ≤ Γ+(x0

u(·),t,x(s))}
The target functional (4.7) written in the new variables is

∫ T

t

L0(s, x
0(s), u(s))ds+ h0(x

0(T )).

So we rewrite it as follows

(4.18) J(t, x, u(·)) =

∫ T

t

L(s, x(s), u(s))ds + h(x(T ))

where

(4.19)

{

L : [0, T ]×M2 × R → R

L : (s, x, u) 7→ L0(s, x
0, u)

(4.20)

{

h : M2 → R

h : x 7→ h0(x
0)

and so L and h are continuous functions. Moreover we ask that

Hypothesis 4.5. L and h are uniformly continuous and

(4.21) |L(s, x, u) − L(s, y, u)| ≤ σ(|x − y|) for all (s, u) ∈ [0, T ]× R

where σ is a modulus of continuity.

The original optimization problem is equivalent to the optimal control problem
in M2 with state equation (4.14) and target functional given by (4.18).

Lemma 4.6. Assuming Hypothesis 4.4, given an initial datum (φ0, φ1, ω) ∈
R × L2(−R, 0) × L2(−R, 0), equation (4.2) has a unique solution θ(·) in H1(t, T ).
It is bounded in the interval [t, T ] uniformly in the control u(·) ∈ Ut,x and in the
initial time t ∈ [0, T ). We call K a constant such that |θ(s)| ≤ K for any t ∈ [0, T ),
any control u(·) ∈ Ut,x and any s ∈ [t, T ].

Proof. The existence of the solution follows from Theorem 1.24. It can be
proved (see (1.34)) that the solution of (4.2) is also the solution of the equation

(4.22)

{

θ̇(s) = N(et+θ)s +B(et+u)s + (e−R+ ξ1)(−t) for s ≥ t
θ(t) = φ0 ∈ R

where ξ1 = (Nφ1 + Bω). So, using Hypothesis 4.4 we can state that, for every
control u(·) ∈ Ut,x and related trajectory y(·), the solution θM of the following
ODE satisfies |θ(s)| ≤ |θM (s− t)| for all s ∈ [t, T ]:

(4.23)

{

θ̇M (s) = ‖N‖θM(s) + ‖B‖(a+ bθM (s)) + (e−R+ ξ1)(−t) for s ≥ 0
θM (0) = |φ0| ∈ R

and θM is bounded on [0, T ] and this complete the proof. �

Remark 4.7. Using the Hypothesis 4.4 such result implies u(s) ≤ a + bK for
all the controls in Ut,x.

Lemma 4.8. If Hypothesis 4.4 holds, calling x(s) the solution of (4.14),

(4.24) |x(s) − x|M2

s→t+−−−−→ 0

uniformly in the control u(·) ∈ Ut,x
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Proof. We have to prove that |x(s)−x|M2
s→t+−−−−→ 0 uniformly in u(·) ∈ Ut,x,

so it is enough to show that |x0(s) − x0|R s→t+−−−−→ 0 uniformly in u(·) ∈ Ut,x and

that |x1(s)− x1|L2
s→t+−−−−→ 0 uniformly in u(·) ∈ Ut,x. The first fact is a corollary of

the proof of Lemma 4.6 (because |x0(s)− x0| ≤ θM (s− t) defined in (4.23), for the
second, using the expression (1.37):

(4.25)
∣

∣x1(s) − x1
∣

∣

L2 ≤
∣

∣Ξ(s)x1 − x1
∣

∣

L2 +
∣

∣N(e0+θ)s
∣

∣

L2 +
∣

∣B(e0+u)s
∣

∣

L2 ≤
≤
∣

∣Ξ(s)x1 − x1
∣

∣

L2 + ‖N‖(s− t)
1
2K + ‖B‖(s− t)

1
2 (a+Kb)

where a e b are the constants of Hypothesis 4.4 and K the constant of Lemma 4.6

and Remark 4.7 (Ξ(·) is defined in (1.38). Now we observe
∣

∣Ξ(s)x1 − x1
∣

∣

L2

s→0−−−→ 0

for the continuity of the translation with respect to the L2 norm and such limit does
not depend on the control, the other two term are given by a constant multiplied
by (s− t)1/2 and so they go to zero uniformly in the control. �

The value function of the problem is defined as

(4.26) V (t, x) = sup
u(·)∈Ut,x

J(t, x, u(·))

Proposition 4.9. The value function V : [0, T ]×M2 → R is continuous

Proof. We consider [0, T ] ×M2 ∋ (tn, xn)
n→∞−−−−→
R×M2

(t, x). We have to esti-

mate the terms

(4.27) |V (t, x) − V (t, xn)| and |V (tn, xn) − V (tn, x)|
the difficulties are similar, we analyze the term |V (t, x)−V (t, y)|, the other can be
treated using similar steps. Using arguments similar to the ones of Lemma 4.62 we
can state that there exists a M > 0 such that, for every admissible control,

|xn(s)| ≤M for every s ∈ [tn, T ], n ∈ N

in particular |x0
n(s)| ≤M . In view of Hypothesis 4.4 the restrictions of Γ+ and Γ−

in [−M,M ] are Lipschitz continuous for some Lipschitz constant Z. Suppose that
V (t, x) ≥ V (t, xn), then we take an ε-optimal control uε(·) for V (t, x). The problem
is that uε(·) could not be in the set Ut,xn

. So we consider the approximating control
given in feedback form:

(4.28) uεn(s)
def
=







uε(s) if uε(s) ∈ [Γ−(xnε(s)),Γ+(xnε(s))]
Γ−(xnε(s)) if uε(s) ∈ [Γ−(xn(s)),Γ−(xnε(s))]
Γ+(xnε(s)) if uε(s) ∈ [Γ+(xnε(s)),Γ+(xn(s))]

where xnε(·) the solution of

(4.29)







d

ds
xnε(s) = Axnε(s) +B∗uεn(s)

xnε(t) = xn.

The definition of uε(s) implies that it is bounded, measurable, and then L2[0, T ].
We call xε(·) the solution of

(4.30)







d

ds
xε(s) = Axε(s) +B∗uε(s)

xε(t) = x.

and we call y(·) def= xε(·) − xnε(·), By definition of uεn(·) we know that

(4.31) |uε(s) − uεn(s)| ≤ Z|y0(s)|
2Using that (e−R

+ Nφ1 + Bω)(·) is continuous with respect to the initial data.
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where y0(s) is the first component of y(s). Moreover y0(·) solves the following DDE
(using the notation of (1.34):

{

ẏ0(s) = (N e0+y
0)(s) + (Be0+(uε(s) − uεn))(s) + e−R+ (x1 − x1

n)(−s)
y0(t) = x0 − x0

n

Arguing as in the proof of Lemma 4.6 and using (4.31) we can state that |y0(s)| ≤
θM (s)| where θM is the solution of the ODE

{

θ̇M (s) = ‖N‖θM (s) + ‖B‖θM (s) + e−R+ |x1 − x1
n|(−s)

θM (t) = |x0 − x0
n|

.

We have

(4.32)

θM (s) = |x0 − x0
n|e(‖N‖+‖B‖)(s−t) +

∫ t

s

e(‖N‖+‖B‖)(s−τ)e−R+ |x1 − x1
n|(−τ)dτ ≤

≤ C‖x− xn‖M2

for all s ∈ [t, T ] so,

|x0
ε(s) − xn

0
ε(s)| ≤ C‖x− xn‖M2 for all s ∈ [t, T ]

and

|uε(s) − uεn(s)| ≤ ZC‖x− xn‖M2 for all s ∈ [t, T ]

So, by the uniform continuity of the L we can conclude that

|L(s, x0
ε(s), u

ε(s)) − L(s, xn
0
ε(s), u

ε
n(s)) ≤ σ(‖x− xn‖M2) for all s ∈ [t, T ]

So, for the continuity of h we have (using σ(·) for a generic modulus),

J(t, x, uε(·)) − J(t, xn, u
ε
n(·)) ≤ σ(‖x − xn‖M2)

and then

|V (t, x) − V (t, xn)| = V (t, x) − V (t, xn) ≤ ε+ σ(‖x− xn‖M2)

We conclude for the arbitrariness of ε. �

4.4. Viscosity solutions for HJB

The HJB of the system is defined as

(4.33)

{

∂tw(t, x) + 〈∇w(t, x), Ax〉 +H(t, x,∇w(t, x)) = 0
w(T, x) = h(x)

where H is defined as follows

(4.34)

{

H : [0, T ]×D(A∗) → R

H(t, x, p)
def
= supu∈[Γ−(x0),Γ+(x0)] {uB(p) + L(t, x, u)}

We refer to H as to the Hamiltonian of the system

Remark 4.10. In this chapter we define the value function as supremum of the
objective functional. Moreover the HJB (4.33) is formally different from (1.13) in
which the terms appear with negative sign. So we will use also different definition
for sub and super solution. Such formulation are equivalent.
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4.4.1. Definition and preliminary lemma.

Definition 4.11 (Test). We say that a function ϕ ∈ C1([0, T ]×M2) is a test
function and we will write ϕ ∈ Test if ∇ϕ(s, x) ∈ D(A∗) for all (s, x) ∈ [0, T ]×M2

and A∗∇ϕ : [0, T ] × M2 → R is continuous. This means that ∇ϕ ∈ C([0, T ] ×
M2;D(A∗)) where D(A∗) is endowed with the graph norm.

Definition 4.12 (Viscosity subsolution). w ∈ C([0, T ]×M2) is a viscosity
subsolution of the HJB equation (or simply a “subsolution”) if w(T, x) ≤ h(x) for
all x ∈M2 and for every ϕ ∈ Test and every local minimum point (t, x) of w − ϕ
we have

(4.35) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 +H(t, x,∇ϕ(t, x)) ≤ 0

Definition 4.13 (Viscosity supersolution). w ∈ C([0, T ]×M2) is a viscos-
ity supersolution of the HJB equation (or simply a “supersolution”) if w(T, x) ≥ h(x)
for all x ∈ M2 and for every ϕ ∈ Test and every local maximum point (t, x) of
w − ϕ we have

(4.36) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 +H(t, x,∇ϕ(t, x)) ≥ 0

Definition 4.14 (Viscosity solution). w ∈ C([0, T ] × M2) is a viscosity
solution of the HJB equation if it is, at the same time, a supersolution and a
subsolution.

Proposition 4.15. Given (t, x) ∈ [0, T ]×M2 and ϕ ∈ Test there exists a real

continuous function O(s) such that O(s)
s→t+−−−−→ 0 and such that for every admissible

control u(·) ∈ Ut,x we have that

(4.37)

∣

∣

∣

∣

ϕ(s, x(s)) − ϕ(t, x)

s− t
− ∂tϕ(t, x) − 〈A∗∇ϕ(t, x), x〉 −

−
∫ s

t
〈B(∇ϕ(t, x)), u(r)〉

R
dr

s− t

∣

∣

∣

∣

∣

≤ O(s)

(where we called x(s) the trajectory that starts at time t from x and subject to the
control u(·)).

Moreover if u(·) ∈ Ut,x is continuous in t we have that

(4.38)
ϕ(s, x(s)) − ϕ(t, x)

s− t

s→t+−−−−→
s→t+−−−−→ ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + 〈B(∇ϕ(t, x)), u(t)〉

R

Proof. We write

(4.39)
ϕ(s, x(s)) − ϕ(t, x)

s− t
= It + I0 + I1

def
= ∂tϕ(ξt(s), ξx(s))+

+

〈

∇ϕ(t, x),
x(s) − x

s− t

〉

+

〈

∇ϕ(ξt(s), ξx(s)) −∇ϕ(t, x),
x(s) − x

s− t

〉

where [t, T ] ×M2 ∋ ξ(s) = (ξt(s), ξx(s)) is a point of the line segment connecting

(t, x) and (s, x(s)). In view of Lemma 4.8, |x(s) − x|M2
s→t+−−−−→ 0 uniformly in

u(·) ∈ Ut,x, so |ξ(s)− (t, x)|R×M2
s→t+−−−−→ 0 uniformly in u(·) ∈ Ut,x and in particular

(4.40) |ξx(s) − x|M2
s→t+−−−−→ 0 uniformly in u(·) ∈ Ut,x
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and then

(4.41) |ξ(s) − (t, x)|[t,T ]×M2 ≤ |s− t| + |ξx(s) − x|M2
s→t+−−−−→ 0

uniformly in u(·) ∈ Ut,x.

By definition of test function we have that

(4.42) ∇ϕ : [0, T ]×M2 → D(A∗) and it is continuous.

Then

(4.43) |∇ϕ(ξt(s), ξx(s)) −∇ϕ(t, x)|D(A∗)
s→t+−−−−→ 0

uniformly in u(·) ∈ Ut,x.

As observed in Lemma 1.15 the state equation (4.14) may be extended to an
equation in D(A∗)′ of the form

(4.44)

{

ẋ(s) = A(E)x(s) +B∗u(s)
x(t) = x

and, in view of Lemma 4.6 and Remark 4.7, |B∗u(s)|D(A∗)′ ≤ |B|D(A∗)′ |a + bK|,
where a and b. The solution of (4.44) in D(A∗)′ can be expressed in mild form
[Paz83] as described in Remark 1.35:

(4.45) x(s) = e(s−t)A
(E)

x+

∫ s

t

e(s−r)A
(E)

B∗u(r)dr

So, since x ∈ X ⊆ D(A(E)) we can choose a constant C that depends on x such
that, for all admissible controls and all s ∈ [t, T ],

(4.46)
|x(s) − x|D(A∗)′

s− t
≤ C

So by (4.43) and (4.46), we can say that |I1| s→t+−−−−→ 0 uniform in u(·) ∈ Ut,x. Thanks
to the uniformly (in u(·) ∈ Ut,x) convergence ξ(s) → (t, x) we can also state that

It = ∂tϕ(ξt(s), ξx(s))
s→t+−−−−→ ∂tϕ(t, x) uniformly in u(·) ∈ Ut,x. So to prove the

thesis it remains to show that

(4.47)

∣

∣

∣

∣

〈∇ϕ(t, x), x(s) − x〉
s− t

− 〈A∗∇ϕ(t, x), x〉 −

−
∫ s

t 〈B(∇ϕ(t, x)), u(r)〉
R

dr

s− t

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

〈

∇ϕ(t, x),

(

x(s) − x

s− t
−A(E)x−

∫ s

t
B∗u(r)dr

s− t

)〉

D(A∗)×D(A∗)′

∣

∣

∣

∣

∣

∣

≤ O(s)

uniformly in u(·) ∈ Ut,x.
We can use (4.45) and write down explicitly the expression x(s)−x

s−t in D(A∗)′:

(4.48)
x(s) − x

s− t
=

(e(s−t)A
(E) − I)x

s− t
+

∫ s

t
e(s−r)A

(E)

B∗u(r)dr

s− t
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So we need to estimate:

(4.49)

∣

∣

∣

∣

∣

x(s) − x

s− t
−A(E)(x) −

∫ s

t
B∗u(r)dr

s− t

∣

∣

∣

∣

∣

D(A∗)′

=

=

∣

∣

∣

∣

∣

∣

(esA
(E) − I)x

s− t
−A(E)(x) +

∫ s

t

(

e(s−r)A
(E) − I

)

B∗u(r)dr

s− t

∣

∣

∣

∣

∣

∣

D(A∗)′

where the term (esA−I)x
s−t − A(E)(x)

s→t+−−−−−→
D(A∗)′

0 because x ∈ M2 ∈ D(A(E)) (the

convergence is uniform in u(·) ∈ Ut,x because it does not depend on u(·)) and the
second term can be estimated, using Lemma 4.6 and Remark 4.7, with

(4.50)
∫ s

t |u(r)|
∣

∣

∣

(

e(s−r)A
(E) − I

)

B
∣

∣

∣

D(A∗)′
dr

s− t
≤ (aK+b) sup

r∈[t,s]

∣

∣

∣

(

e(s−r)A
(E) − I

)

B
∣

∣

∣

D(A∗)′

that goes to zero (the estimate is uniform in the control). Then since ∇ϕ(t, x) ∈
D(A∗), the proof is complete.

The (4.38), with u(·) continuous, is a simple corollary of the proof of the first
part. Indeed if u(·) is continuous we have that

(4.51)

∫ s

t 〈B(∇ϕ(t, x)), u(r)〉
R

dr

s− t
→ 〈B(∇ϕ(t, x)), u(t)〉

R

�

Remark 4.16. We want to emphasize that O(s) is independent of the con-
trol, this fact will be crucial when we prove that the value function is a viscosity
supersolution of the HJB equation.

Corollary 4.17. Given (t, x) ∈ [0, T ]×M2 and ϕ ∈ Test and an admissible
control u(·) ∈ Ut,x we have that

(4.52) ϕ(s, x(s)) − ϕ(t, x) =

=

∫ s

t

∂tϕ(r, x(r)) + 〈A∗∇ϕ(r, x(r)), x(r)〉 + 〈B(∇ϕ(r, x(r))), u(r)〉
R

dr

(where we called x(s) the trajectory that starts at time t from x and subject to the
control u(·)).

4.4.2. The value function as viscosity solution of HJB equation.

Proposition 4.18. (Bellman’s optimality principle) The Value function
V , defined in (4.26) satisfies for all s > t:

(4.53) V (t, x) = sup
u(·)∈Ut,x

(

V (s, x(s)) +

∫ s

t

L(r, x(r), u(r))dr

)

where x(s) is the trajectory at time s starting from x subject to control u(·) ∈ Ut,x.
Proof. This is a standard result. It can be done as in Theorem 1.13. �

We can now prove that the value function is a viscosity solution of the HJB
equation.

Theorem 4.19. The value function V is a viscosity solution of the HJB equa-
tion.
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Proof. Subsolution:
Let (t, x) be a local minimum of V − ϕ for ϕ ∈ Test. We can assume that
(V − ϕ)(t, x) = 0. We choose u ∈ [Γ−(x0),Γ+(x0)]. We consider a continuous
control u(·) ∈ Ut,x such that u(t) = u3. We call x(s) the trajectory starting from
(t, x) and subject to u(·) ∈ Ut,x. Then for s > t with s− t small enough we have

(4.54) V (s, x(s)) − ϕ(s, x(s)) ≥ V (t, x) − ϕ(t, x)

and thanks to the Bellman principle of optimality we know that

(4.55) V (t, x) ≥ V (s, x(s)) +

∫ s

t

L(r, x(r), u(r))dr.

Then

(4.56) ϕ(s, x(s)) − ϕ(t, x) ≤ V (s, x(s)) − V (t, x) ≤ −
∫ s

t

L(r, x(r), u(r))dr,

which implies, dividing by (t− s),

(4.57)
ϕ(s, x(s)) − ϕ(t, x)

s− t
≤ −

∫ s

t
L(r, x(r), u(r))dr

s− t
.

Using Proposition 4.15 we pass to the limit as s→ t+ and obtain

(4.58) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + 〈B(∇ϕ(t, x)), u(t)〉
R
≤ −L(t, x, u)

so

(4.59) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + (〈B(∇ϕ(t, x)), u〉
R

+ L(t, x, u)) ≤ 0

Taking the supu∈[Γ−(x0),Γ+(x0)] we obtain the subsolution inequality:

(4.60) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 +H(t, x,∇ϕ(t, x)) ≤ 0

Supersolution:
Let (t, x) be a maximum for V − ϕ and such that (V − ϕ)(t, x) = 0. For ε > 0 we
take u(·) ∈ Ut,x an ε2-optimal strategy. We call x(s) the trajectory starting from
(t, x) and subject to u(·) ∈ Ut,x. Now for (s− t) small enough

(4.61) V (t, x) − V (s, x(s)) ≥ ϕ(t, x) − ϕ(s, x(s))

and from ε2 optimality we know that

(4.62) V (t, x) − V (s, x(s)) ≤ ε2 +

∫ s

t

L(r, x(r), u(r))dr

so

(4.63)
ϕ(s, x(s)) − ϕ(t, x)

s− t
≥ −ε2 −

∫ s

t L(r, x(r), u(r))dr

s− t

We take (s− t) = ε so that

(4.64)
ϕ(t+ ε, x(t+ ε)) − ϕ(t, x)

ε
≥ −ε−

∫ t+ε

t −L(r, x(r), u(r))dr

ε

and in view of Proposition 4.15 we can choose, independently on the control u(·) ∈
Ut,x, a O(ε) with O(ε)

ε→0−−−→ 0 such that:

(4.65) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉+

+

∫ t+ε

t
〈B(∇ϕ(t, x)), u(r)〉

R
+ L(r, x(r), u(r))dr

ε
≥ −ε+O(ε).

3It exists: for example if u > 0 the control u(s) = u
Γ+(x0)

Γ+(x0(s)) until Γ+(x0(s) > 0 and

then equal to 0: since Γ+ is locally Lipschitz and sublinear all works.
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We now take the supremum over u inside the integral and let ε → 0 and obtain
that

(4.66) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 +H(t, x,∇ϕ(t, x)) ≥ 0

Then V is a supersolution of the HJB equation. So V is both a viscosity superso-
lution and a viscosity subsolution of the HJB equation and then, by definition, it
is a viscosity solution of the HJB equation. �

4.5. A verification result

We use the following lemma

Lemma 4.20. Let f ∈ C([0, T ]). Extend f to a g on (−∞,+∞) with g(t) =
g(T ) for t > T and g(t) = g(0) for t < 0. Suppose there is a ρ ∈ L1(0, T ; R) such
that

(4.67)

∣

∣

∣

∣

lim inf
h→0

g(t+ h) − g(t)

h

∣

∣

∣

∣

≤ ρ(t) a.e. t ∈ [0, T ]

Then

(4.68) g(β) − g(α) ≥
∫ β

α

lim inf
h→0

g(t+ h) − g(t)

h
dt ∀ 0 ≤ α ≤ β ≤ T

Proof. The proof can be found in [YZ99] page 270. �

We first introduce a set related with a subset of the subdifferential of a function
in C([0, T ]×M2). Its definition is suggested by the definition of sub/super solution.
We define

Definition 4.21 (Ev(t,x)). Given v ∈ C([0, T ]×M2) and (t, x) ∈ [0, T ]×M2

we define Ev(t, x) as

(4.69)

Ev(t, x) = {(q, p) ∈ R ×D(A∗) : ∃ϕ ∈ Test, s.t.
v − ϕ attains a loc. min. in (t, x),
∂tϕ(t, x) = q, ∇ϕ(t, x) = p,
and v(t, x) = ϕ(t, x)}

Remark 4.22. Ev(t, x) is a subset of the subdifferential of v defined at page
13.

We can now pass to formulate and prove a verification theorem:

Theorem 4.23. Let (t, x) ∈ [0, T ] × M2 an initial datum (x(t) = x). Let
u(·) ∈ Ut,x and x(·) be the relate trajectory. Let q ∈ L1(t, T ; R), p ∈ L1(t, T ;D(A∗))
be such that

(4.70) (q(s), p(s)) ∈ EV (t, xt,y(s)) for almost all s ∈ (t, T )

Moreover if u(·) satisfies

(4.71)
∫ T

t

〈A∗p(s), x(s)〉M2 + 〈Bp(s), u(s)〉
R

+ q(s) ds ≥

≥
∫ T

t

−L(s, x(s), u(s)) ds

then u(·) is an optimal control at (t, x).

Proof. The function

(4.72)

{

Ψ: [t, T ] → R × R × R × R

Ψ: s 7→ (〈A∗p(s), x(s)〉M2 , 〈Bp(s), u(s)〉R , q(s), L(s, x(s), u(s)))
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in view of Lemma 4.6 is in L1(t, T ; R4). So the set of the right-Lebesgue point is
of full measure. We choose s̄ a point in such a set. We can continue to choose s̄ in
a full measure set if we assume that (4.70) is satisfied at s̄. We set x̄ := x(s̄) and
we consider a functions ϕ ≡ ϕs̄,x̄ ∈ Test such that V ≥ ϕ in a neighborhood of
(s̄, x̄), V (s̄, x̄) − ϕ(s̄, x̄) = 0 and (∂t)(ϕ)(s̄, x̄)) = q(s̄), ∇ϕ(s̄, x̄) = p(s̄). Then for
τ ∈ (s̄, T ] and (τ − s̄) small enough we have

(4.73)
V (τ, x(τ)) − V (s̄, x̄)

τ − s̄
≥ ϕ(τ, x(τ)) − ϕ(s̄, x̄)

τ − s̄
≥

for Proposition 4.15

(4.74) ≥ ∂tϕ(s̄, x̄) +

∫ τ

s̄
〈B∇ϕ(s̄, x̄), u(r)〉

R
dr

τ − s̄
+ 〈A∗∇ϕ(s̄, x̄), x〉 + O(τ − s̄)

In view of the choice of s̄ we know that

(4.75)

∫ τ

s̄ 〈B∇ϕ(s̄, x̄), u(r)〉
R

dr

τ − s̄

τ→s̄+−−−−→ 〈B∇ϕ(s̄, x̄), u(s̄)〉
R

So that for almost every s̄ in [t, T ] we have

(4.76) lim inf
τ↓s̄

V (τ, x(τ)) − V (s̄, x(s̄))

τ − s̄
≥

≥ 〈B∇ϕ(s̄, x(s̄)), u(s̄)〉
R

+

+ ∂tϕ(s̄, x(s̄)) + 〈A∗∇ϕ(s̄, x(s̄)), x(s̄)〉 =

= 〈Bp(s̄), u(s̄)〉
R

+ q(s̄) + 〈A∗∇p(s̄), x(s̄)〉
then we can use Lemma 4.20 and find that

(4.77) V (T, x(T )) − V (t, x) ≥

≥
∫ T

t

〈Bp(s̄), u(s̄))〉
R

+ q(s̄) + 〈A∗∇p(s̄), x(s̄)〉ds̄ ≥

using (4.71)

(4.78) ≥
∫ T

t

−L(r, x(r), u(r))dr

Hence

(4.79) V (t, x) ≤ V (T, x(T )) +

∫ T

t

L(r, x(r), u(r))dr =

= h(x(T )) +

∫ T

t

L(r, x(r), u(r))dr

and then (x(·), u(·)) is an optimal pair. �

Remark 4.24. Such result is not a consequence of Theorem 5.15, indeed here
we have the unbounded term B and different test functions.

4.6. The constraint θ ≥ 0

In this section we add the constraint θ ≥ 0 (that is, in the Hilbert setting,
x0 ≥ 0) to the problem. The state equation in Hilbert space remains (4.14) as
in Section 4.3, indeed we are considering the same system as in previous sections
but we admit a smaller set of controls. So we can use Lemma 4.8, Lemma 4.6 and
Remark 4.7 without changes.

In order to impose the condition θ ≥ 0, we use the same method we applied in
[FGF] (the same used in [Fag05b, Fag05a, Fag06]): we add to the target functional
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a function g that assumes the value 0 inside the admissible set and the value −∞ on
the “forbidden” set so that we do not need do modify the set of admissible controls:

(4.80)
g : R → R

g(r) =

{

0 if r ≥ 0
−∞ if r < 0

The set of admissible controls is still

(4.81) Ut,x def= {u(·) ∈ L2(t, T ) : Γ−(x0(s)) ≤ u(s) ≤ Γ+(x0(s)) ∀s ∈ [t, T ]}

but the target functional becomes

(4.82) J(t, x, u(·)) =

∫ T

t

L(s, x(s), u(s)) + g(x0(s))ds+ h(x(T ))

The value function of the problem is defined as

(4.83) V (t, x) = sup
u(·)∈Ut,x

J(t, x, u(·))

If we had imposed the constraint θ ≥ 0 (and then x0 ≥ 0) in the definition of
the set of admissible controls Ut,x, there would have been some points of [0, T ] ×
M2 where Ut,x = ∅. It means that there are some initial data (φ0, φ1, ω) whose
trajectories, for every control u(·) with u ∈ [Γ−(θ),Γ+(θ)], violate the constraint
θ ≥ 0. It is the case of initial data with φ0 < 0 but there may be less simple
examples in the same line of Remark 7.2 where an example in the case Γ− = −∞
is given. Here we allow such points knowing that they will be excluded in the
optimization process. Indeed the value function V is a function in extended real
set: V : [0, T ]×M2 → R such that V = −∞ if a trajectory stays for a while in the
“forbidden zone”.

Otherwise if the set Ut,x contains at least an element with x0(·) ≥ 0 then, taken
an initial datum x, by Lemma 4.6 and Remark 4.7,

|x0(t)|, |u(t)| ≤ C0(|x|) ∀t ∈ [0, T ]

and so, by the continuity of L and h we have can state that

C1(|x|) ≤ J(t, x, u(·)) ≤ C2(|x|).

So V > −∞. This argument shows that

Proposition 4.25. If we call D(V ) (the domain of V ) the set of the points in
which V > −∞, the restriction V|D(V ) is locally bounded.

Moreover we note that the value function is upper semicontinuous in (t, x)
because it is the supremum of the upper semicontinuous functions J(t, x, u(·)) over
u(·). This fact, together with Proposition 4.25 shows that D(V ) is closed.

The HJB equation of the system is defined as

(4.84)

{

∂tw(t, x) + 〈∇w(t, x), Ax〉 + g(x) +H(t, x,∇w(t, x)) = 0
w(T, x) = h(x)

,

where H is defined as before

(4.85)

{

H : [0, T ]×D(A∗) → R

H(t, x, p)
def
= supu∈[Γ−(x0),Γ+(x0)] {uB(p) + L(t, x, u)} .
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4.6.1. Viscosity solution. Now we give a definition of viscosity solution that
takes into account the constraint θ ≥ 0. We are interested only in the points of
the set D(V ) because on the other points all the trajectories have utility −∞.
The definition will be the same as before in the interior of D(V ). Instead, a good
definition on the boundary ∂D(V ) should allow only those controls that keep the
trajectory on D(V ). So we consider the following set
(4.86)

U(t, x) =































[Γ−(x0),Γ+(x0)] if (t, x) is in the interior of D(V )















u ∈ [Γ−(x0),Γ+(x0)] : there exist u(·) ∈ Ut,x
continuous
with u(t) = u
s.t. J(t, x, u(·)) > −∞















if (t, x) ∈ ∂D(V )

and we change the definition of viscosity solution in the “subsolution” part, while
the definition of supersolution remains the same. We change the set where we
compute from [Γ−(x0),Γ+(x0)] to U(t, x), so, when x is an interior point of D(V )
the definition is the same, when x is a boundary point it changes.

We have already observed that the value function is upper semicontinuous in
(t, x) anyway it could be non-continuous and then we have to introduce a definition
of viscosity solution for a family of non-continuous function.

Given a locally bounded function w : D(V ) → R we call w∗
D(V )(·) and

w∗D(V )(·) : D(V ) → R the functions:

w∗
D(V )(t, x)

def
= lim sup

(s,y)→(t,x)

(s,y)∈D(V )

w(s, y)

and

w∗D(V )(t, x)
def
= lim inf

(s,y)→(t,x)

(s,y)∈D(V )

w(s, y)

Definition 4.26 (Viscosity subsolution). A locally bounded function
w : (D(V )) → R is a viscosity subsolution of the HJB equation (or simply a “subso-
lution”) if w∗

D(V )(T, x) ≤ h(x) for all x ∈ M2 and for every ϕ ∈ Test and a local

minimum point (t, x) ∈ D(V ) of w∗
D(V ) − ϕ|D(V ) we have

(4.87) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + sup
u∈U(t,x)

{uB(∇ϕ(t, x)) + L(t, x, u)} ≤ 0

Definition 4.27 (Viscosity supersolution). A locally bounded function
w : (D(V )) → R is a viscosity supersolution of the HJB equation (or simply a
“supersolution”) if w∗D(V )(T, x) ≥ h(x) for all x ∈ M2 and for every ϕ ∈ Test
and a local maximum point (t, x) ∈ D(V ) of w∗D(V ) − ϕ|D(V ) we have

(4.88) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 +H(t, x,∇ϕ(t, x)) ≥ 0

Definition 4.28 (Viscosity solution). A locally bounded function
w : (D(V )) → R is a viscosity solution of the HJB equation if it is at the same
time a supersolution and a subsolution.

Remark 4.29. The boundary condition w(T, x) ≥ h(x) for all x ∈ M2 (or
w(T, x) ≤ h(x) for all x ∈M2) makes sense because {T } ×M2 ⊆ D(V ).

Theorem 4.30. The restriction to D(V ) of the value function is a viscosity
solution of HJB equation.

Proof. In the proof we will call the restriction V|D(V ) simply ω.
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Subsolution:
Since V is upper semicontinuous ω∗

D(V ) = ω Let (t, x) be a local minimum of
(ω − ϕ|D(V )) for ϕ ∈ Test. We can assume that (ω − ϕ|D(V ))(t, x) = 0. If (t, x)
is in the interior of D(V ) the proof is the same as in Theorem 4.19. Otherwise
we choose u ∈ U(t, x) and we consider a continuous control u(·) ∈ Ut,x such that
u(t) = u and J(t, x, u(·) > −∞ (it exists for the definition of U(t, x)). We call x(s)
the trajectory starting from (t, x) and subject to u(·). Then for (s−t) small enough

(4.89) ω(s, x(s)) − ϕ|D(V )(s, x(s)) ≥ ω(t, x) − ϕ|D(V )(t, x)

and thanks to the Bellman principle of optimality we know that

(4.90) ω(t, x) ≥ ω(s, x(s)) +

∫ s

t

L(r, x(r), u(r))dr

So

(4.91) ϕ(s, x(s)) − ϕ(t, x) ≤ ω(s, x(s)) − ω(t, x) ≤ −
∫ s

t

L(r, x(r), u(r))dr

Then, dividing by (t− s),

(4.92)
ϕ(s, x(s)) − ϕ(t, x)

s− t
≤ −

∫ s

t
L(r, x(r), u(r))dr

s− t

Using Proposition 4.15 we can now pass to the limit as s→ t+ and obtain

(4.93) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + 〈B(∇ϕ(t, x)), u(t)〉
R
≤ −L(t, x, u)

so

(4.94) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + (〈B(∇ϕ(t, x)), u〉
R

+ L(t, x, u)) ≤ 0

Taking the supu∈U(t,x) we obtain the subsolution inequality:

(4.95) ∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 + sup
u∈U(t,x)

{uB(p) + L(t, x, u)} ≤ 0

Supersolution:
We take (t, x) ∈ D(V ) and a test function ϕ such that ϕ(t, x) = ω∗D(V )(t, x) and
ω∗D(V ) ≤ ϕ in a neighborhoodBr(t, x)∩D(V ) of (t, x). We assume by contradiction
that

∂tϕ(t, x) + 〈A∗∇ϕ(t, x), x〉 +H(t, x,∇ϕ(t, x)) < 0

By continuity we have

(4.96) +∂tϕ(s, y) + 〈A∗∇ϕ(s, y), y〉 +H(s, y,∇ϕ(s, y)) < −σ
for some 0 < σ < r and for all the points in Bσ(t, x).

By definition of ω∗D(V ) we can choose (tn, xn) ∈ Bσ
2
(t, x) ∩ D(V ) such that

(tn, xn)
n→∞−−−−→
n∈N

(t, x) and such that

(4.97) ω∗D(V ) − V (tn, xn) ∈ (−1/n, 1/n).

{(tn, xn)}n∈N converges to (t, x) and then it is compact, so, thanks to the Frechet-
Kolmogorov theorem (see [Yos95] page 275) we have that x1

n

sup
n∈N

|Ξ(s)x1
n − x1

n|L2(−R,0)
s→0−−−→ 0.

and then, arguing in way similar to Lemma 4.8, we can find ζ > 0 such that for
every n and every admissible control u(·) we have xu(·),tn,xn

(tn + τ) ∈ Bσ(t, x) for
every τ ∈ [0, ζ].

Moreover, for the (4.97) and the continuity of ϕ we can suppose

(4.98) V (tn, xn) − ϕ(tn, xn) ∈ (−2/n, 2/n).
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Given a δ > 0 we can choose an admissible control u(·) (remaining in D(V )) such
that
(4.99)

V (tn, xn) ≤ δ + V (ζ + tn, xu(·),xn,tn(ζ + tn)) +

∫ ζ+tn

tn

L(s, xu(·),tn,xn
(s), u(s))ds

Since (t, x) is a minimum for V∗ − ϕ and thanks to the choice of ζ we have

ϕ(ζ + tn, xu(·),tn,xn
(ζ + tn)) − V∗(ζ + tn, xu(·),tn,xn

(ζ + tn)) ≥ 0

so

(4.100) ϕ(ζ + tn, xu(·),tn,xn
(ζ + tn)) − V (ζ + tn, xu(·),tn,xn

(ζ + tn)) ≥ 0

So, from (4.98), (4.99) and (4.100) we have

−δ+
∫ ζ+tn

tn

−L(s, xu(·),tn,xn
(s), u(s))ds−2/n ≤ ϕ(ζ+tn, xu(·),tn,xn

(ζ+tn))−ϕ(tn, xn)

and using Corollary 4.17 we have

(4.101)

−δ+
∫ ζ+tn

tn

−L(s, xu(·),tn,xn
(s), u(s))ds−2/n ≤

∫ ζ+tn

tn

∂tϕ(s, xu(·),tn,xn
(s), u(s))+

+
〈

A∗∇ϕ(s, xu(·),tn,xn
(s)), xu(·),tn,xn

(s)
〉

+
〈

B(∇ϕ(s, xu(·),tn,xn
(s)), u(r)

〉

R
ds

so, using (4.96) we find
−δ − 2/n ≤ −ζσ

Since the choices of δ was arbitrary and the estimate is uniform in n we find

ζσ ≤ 0

that is a contradiction. �





CHAPTER 5

A verification result within the framework of

viscosity solutions in infinite dimensions and

construction of ǫ-optimal strategies

In this chapter we present the results of [FGŚ]: a verification results within the
framework of viscosity solution and a result on ε-optimal controls. In Appendix
A we describe a verification result for the stochastic case (indeed it is the only
stochastic optimal control in Hilbert space we treat in this thesis).

As we stressed in the Introduction (see page 5) a verification results represents
a key step of the dynamic programming approach to optimal control problems. A
verification theorem is a tool to check whether a given admissible control is optimal
and, more importantly, suggests a way of constructing optimal feedback controls.

In finite dimensional case the verification theorem for smooth solutions V can
be found for example in [Zab92]), and, in the viscosity case in [BCD97, YZ99].

We have already observed in Chapter 2 that different papers use different ap-
proaches and definitions and prove that the value function of the problem is the
only viscosity solution of the HJB equation equation. To “complete” the dynamic
programming approach also in the infinite dimensional case it is necessary to prove,
as in finite dimensional case, some verification theorems. The verification results
depend on the approach and on the definition of solution we use. We prove a
verification results for the approach of Crandall and Lions in [CL90, CL91] in de-
terministic case (and in Appendix A for the approach due to Świȩch (in [Świ94])
for the stochastic case). The reason of such choice can be understood (at least
for deterministic case) reading Chapter 2: they are key-works, and they can be
considered (the most) “classical”.

The main difficulty we have to deal with is the fact that in the infinite di-
mensional setting not all regular functions that “touch” the candidate-solution of
the HJB equation can be test function in the definition of viscosity solution but
only particular ones, indeed the test functions that are considered in [CL90] (see
Section 2.2) are sum of two parts: one regular and compatible with the generator
of semigroup that appears in the state equation of the system (5.1) (“test1”), and
one radial (“test2”). The differentials of such functions do not span all the super (or
sub) differential of the candidate-solution so we cannot reformulate the definition
in terms of super(sub)differentials as in finite dimensional case.

The two families test1 and test2 have different role in the definition of
super/sub-solution (see Definitions 5.5) and so they have to be treated in different
way when we prove the verification theorem.

5.1. Notation, definitions and background

We are interested in the optimal control problem in a real separable Hilbert
space X characterized by the state equation

(5.1)

{

ẋ(s) = Ax(s) + f(s, x(s), u(s))
x(0) = x

95
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and cost functional

(5.2) J(y;u(·)) =

∫ T

0

L(s, x(s), u(s))ds+ h(x(T ))

where the set of admissible controls is given by

U [0, T ] = {u : [0, T ] → U : u is measurable},
and U is a metric space.

We assume that:

Hypothesis 5.1. A is linear, densely defined and −A is maximal monotone ,
and then A generates a C0 semigroup of contractions esA, that is

‖esA‖ ≤ 1 for all s ≥ 0

Remark 5.2. If we replace A and b with Ã = A − ωI and f(t, x, u) with

f̃(t, x, u) = f(t, x, u) + ωx Hypothesis 5.1 covers a more general case

‖esA‖ ≤ eωs for all s ≥ 0

for some ω ≥ 0

Hypothesis 5.3.

f : [0, T ]×X × U → X is continuous

and there exist a constant M > 0 and a local modulus of continuity ω(·, ·) such that

|f(t, x, u) − f(s, y, u)| ≤M |x− y| + ω(|t− s|, |x| ∨ |y|)
for all t, s ∈ [0, T ], u ∈ U x, y ∈ X

|f(t, 0, u)| ≤M for all (t, u) ∈ [0, T ]× U

Hypothesis 5.4.

L : [0, T ]×X × U → R and h : X → R are continuous

and there exist M > 0 and a local modulus of continuity ω(·, ·) such that

|L(t, x, u) − L(s, y, u)|, |h(x) − h(y)| ≤ ω(|x− y| + |t− s|, |x| ∨ |y|)
for all t, s ∈ [0, T ], u ∈ U x, y ∈ X

|L(t, 0, u)|, |h(0)| ≤M for all (t, u) ∈ [0, T ]× U

Following the dynamic programming approach we consider a family of problems
for every t ∈ [0, T ], y ∈ X

(5.3)

{

ẋt,x(s) = Ax(s) + f(s, x(s), u(s))
x(t) = x

We consider the functional

(5.4) J(t, x;u(·)) =

∫ T

t

L(s, x(s), u(s))ds+ h(x(T )),

where u(·) is in the set of admissible controls

U [t, T ] = {u : [t, T ] → U : u is measurable}.
The associated value function V : [0, T ]×X → R is defined by

(5.5) V (t, x) = inf
u(·)∈U [t,T ]

J(t, x;u(·)).

The HJB related to such optimal control problems is

(5.6)

{

vt(t, x) + 〈Dv(t, x), Ax〉 +H(t, x,Dv(t, x)) = 0
v(T, x) = h(x),
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where
{

H : [0, T ]×X ×X → R,
H(t, x, p) = infu∈U (〈p, f(t, x, u)〉 + L(t, x, u))

The solution of the above HJB equation is understood in the viscosity sense of
Crandall and Lions [CL90, CL91] which is slightly modified here. We consider two
sets of functions:

test1 = {ϕ ∈ C1([0, T ) ×X) : ϕ is weakly sequentially lower
semicontinuous and A∗Dϕ ∈ C([0, T ) ×X)}

and

test2 = {g ∈ C1([0, T ]×X) : ∃g0, : [0,+∞) → [0,+∞),
and η ∈ C1([0, T ]) positive s.t.
g0 ∈ C1([0,+∞)), g′0(r) ≥ 0 ∀r ≥ 0,
g′0(0) = 0 and g(t, x) = η(t)g0(|x|)
∀(t, x) ∈ [0, T ]×X}

We use test2 functions that are a little different from the ones used in [CL90].
The extra term η(·) in test2 functions is added to deal with polynomially growing
solutions.

We can now give the definitions of viscosity sub/super-solutions.

Definition 5.5 (Viscosity subsolution). v ∈ C([0, T ] ×X) is a (viscosity)
subsolution of the HJB (5.6) if

v(T, x) ≤ h(x) for all x ∈ X

and whenever v − ϕ − g has a local maximum at (t̄, x̄) ∈ [0, T ) ×X for ϕ ∈ test1
and g ∈ test2, we have

(5.7) ϕt(t̄, x̄) + gt(t̄, x̄) + 〈A∗Dϕ(t̄, x̄), x̄〉 +H(t̄, x̄, Dϕ(t̄, x̄) +Dg(t̄, x̄)) ≥ 0.

Definition 5.6 (Viscosity supersolution). v ∈ C([0, T ]×X) is a (viscosity)
supersolution of the HJB (5.6) if

v(T, x) ≥ h(x) for all x ∈ X

and whenever v + ϕ + g has a local minimum at (t̄, x̄) ∈ [0, T ) ×X for ϕ ∈ test1
and g ∈ test2, we have

−ϕt(t̄, x̄) − gt(t̄, x̄) − 〈A∗Dϕ(t̄, x̄), x̄〉 +H(t̄, x̄,−Dϕ(t̄, x̄) −Dg(t̄, x̄)) ≤ 0.

Definition 5.7 (Viscosity solution). v ∈ C([0, T ] ×X) is a (viscosity) so-
lution of the HJB (5.6) if it is at the same time a subsolution and a supersolution.

Lemma 5.8. Let Hypotheses 5.1, 5.3 and 5.4 hold. Let ϕ ∈ test1 and (t, x) ∈
[0, T ]×X. Then the following convergence holds uniformly in u(·) ∈ U [t, T ]

(5.8) lim
s↓t

(

1

s− t
(ϕ(s, x(s)) − ϕ(t, x)) − ϕt(t, x) − 〈A∗Dϕ(t, x), x〉

− 1

s− t

∫ s

t

〈Dϕ(t, x), f(t, x, u(r))〉 dr

)

= 0

Moreover we have

(5.9) ϕ(s, x(s)) − ϕ(t, x) =

∫ s

t

ϕt(r, x(r)) + 〈A∗Dϕ(r, x(r)), x(r)〉 +

+ 〈Dϕ(r, x(r)), f(r, x(r), u(r))〉 dr

Proof. See [LY95] Lemma 3.3 page 240 and Proposition 5.5. page 67 (the
first sentence is the same of Proposition 3.27. �
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Lemma 5.9. Let Hypotheses 5.1, 5.3 and 5.4 hold. Let g ∈ test2 and (t, x) ∈
[0, T ]×X. The following holds

(5.10)
1

s− t
(g(s, x(s)) − g(t, x)) ≤ gt(t, x)

+
1

s− t

∫ s

t

〈Dg(t, x), f(t, x, u(r))〉 dr + o(1)

where o(1) is uniform in u(·) ∈ U [t, T ]

Proof. To prove the statement we use the fact that (see [LY95] page 241,
equation (3.11)):

|x(s)| ≤ |x| +
∫ s

t

〈

x

|x| , f(t, x, u(r))

〉

dr + o(s− t)

So we have

(5.11) g(s, x(s)) − g(t, x) = η(s)g0(|x(s)|) − η(t)g0(|x|) = 0 ≤

≤ η(s)g0

(

|x| +
∫ s

t

〈

x

|x| , f(t, x, u(r))

〉

dr + o(s− t)

)

− η(t)g0(|x|) = 0 ≤

≤ η′(t)g0(|x|)(s− t) + η(t)g′0(|x|)
(
∫ s

t

〈

x

|x| , f(t, x, u(r))

〉

dr

)

+ o(s− t) =

= gt(t, x)(s − t) +

∫ s

t

〈Dg(t, x), f(t, x, u(r))〉 dr + o(s− t)

where o(s− t) can be choose uniform in u(·). �

Theorem 5.10. Let Hypotheses 5.1, 5.3 and 5.4 hold. Then the value function
V (defined in (5.5)) is a viscosity solution of the HJB.

Proof. The proof is quite standard and can be obtained with small changes
(due to the small differences in the definition of test2 functions) from the proof of
Theorem 3.2 Chapter 6 of [LY95]. �

We need other assumptions to guarantee a comparison result, and then a
uniqueness of the solution of the HJB. There are some different possibilities in
the literature, two different sufficient set of hypotheses can be already found in
[CL90]. What we need in the proof of the verification theorem is the comparison
result in itself, so all different set of hypotheses that guarantee the comparison
result are good for us. So we choose to assume a form of verification theorem as
hypothesis.

Hypothesis 5.11. There exists a G ⊆ C([0, T ] ×X) such that:

(i) The value function V is in G
(ii) If v1, v2 ∈ G, v1 is a subsolution of the HJB and v2 is a supersolution

of the HJB then v1 ≤ v2

From (i) and (ii) we know that V is the only solution of the HJB in G.
We will use the following lemma whose proof can be found in [YZ99], page 270.

Lemma 5.12. Let f ∈ C([0, T ]; R). We extend f to a function g on (−∞,+∞)
by setting g(t) = g(T ) for t > T and g(t) = g(0) for t < 0. Suppose there is a
function ρ ∈ L1((0, T ); R) such that

lim sup
h→0+

g(t+ h) + g(t)

h
≤ ρ(t) a.e. t ∈ [0, T ].
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Then

g(β) − g(α) ≤
∫ β

α

lim sup
h→0

g(t+ h) + g(t)

h
dt ∀ 0 ≤ α ≤ β ≤ T.

5.2. The verification theorem

We first introduce a set related with a subset of the superdifferential of a func-
tion in C([0, T ] × X). Its definition is suggested by the definition of sub/super
solution.

Definition 5.13 (Ev(t,x)). Given v ∈ C([0, T ] ×X) and (t, x) ∈ [0, T ] ×X
we define E1,+v(t, x), or simply Ev(t, x) as

Ev(t, x) = {(q, p1, p2) ∈ : ∃ϕ ∈ test1, g ∈ test2 s.t.
∈ R ×D(A∗) ×X v − ϕ− g attains a local

maximum at (t, x),
∂t(ϕ+ g)(t, x) = q,
Dϕ(t, x) = p1, Dg(t, x) = p2 and
v(t, x) = ϕ(t, x) + g(t, x)}

Remark 5.14. If we call

E1v(t, x) = {(q, p) ∈ R ×X : p = p1 + p2 with (q, p1, p2) ∈ Ev(t, x)}
then E1v(t, x) ⊆ D1,+v(t, x) and in the finite dimensional case we have
E1v(t, x) = D1,+v(t, x). We use Ev(t, x) instead of E1v(t, x) to underline the
different role of g and ϕ. We will need this fact in the proofs in the sequel.

We can now state and prove the verification theorem.

Theorem 5.15. Let Hypotheses 5.1, 5.3, 5.4 and 5.11 hold. Let (x(·), u(·)) be
an admissible pair at (t, x), let v ∈ G be a subsolution of the HJB (see Definition
5.5) such that

(5.12) v(T, x) = h(x) for all x in X.

Let q ∈ L1((t, T ); R), p1 ∈ L1((t, T );D(A∗)) and p2 ∈ L1((t, T );X) be such that

(5.13) (q(s), p1(s), p2(s)) ∈ Ev(s, x(s)) for almost all s ∈ (t, T ).

Moreover we assume that

(5.14)
∫ T

t

〈p1(s) + p2(s), f(s, x(s), u(s))〉 + q(s) + 〈A∗p1(s), x(s)〉 dt ≤

≤
∫ T

t

−L(s, x(s), u(s))ds

Then

(a) v(t, x) ≤ V (t, x) ≤ J(t, x, u(·)) ∀(t, x) ∈ [0, T ]×X, u(·) ∈ U [t, T ],
(b) (x(·), u(·)) is an optimal pair at (t, x).

Proof. Part (a) follows from Hypothesis 5.11. We go to (b). The function
{

[t, T ] → X × R

s 7→ (f(s, x(s), u(s)), L(s, x(s), u(s))

in view of Hypotheses 5.3 and 5.4 is in L1((t, T );X ×R) (in fact it is bounded). So
the set of the right-Lebesgue point of this function that in addition satisfy (5.13)

is of full measure. We choose r a point in such set. We will call y
def
= x(r).

We consider now two functions ϕr,y ∈ test1 and gr,y ∈ test2 such that (we will
avoid the index r,y in the sequel) v ≤ ϕ + g in a neighborhood of (r, y), v(r, y) −
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ϕ(r, y) − g(r, y) = 0 and ∂t(ϕ + g)(r, y) = q(r), Dϕ(r, y) = p1(r) and Dg(r, y) =
p2(r). So for τ ∈ (r, T ] and (τ − r) small enough we have by Lemmas 5.8 and 5.9

v(τ, x(τ)) − v(r, y)

τ − r
≤ g(τ, x(τ)) − g(r, y)

τ − r
+
ϕ(τ, x(τ)) − ϕ(r, y)

τ − r

(5.15) ≤ gt(r, y) +

∫ τ

r 〈Dg(r, y), f(r, y, u(s))〉ds

τ − r
+

+ ϕt(r, y) +

∫ τ

r 〈Dϕ(r, y), f(r, y, u(s))〉ds

τ − r
+ 〈A∗Dϕ(r, y), y〉 + o(1)

In view of the choice of r we know that
∫ τ

r
〈Dg(r, y), f(r, y, u(s))〉ds

τ − r

τ→r−−−→ 〈Dg(r, y), f(r, y, u(r))〉

and
∫ τ

r
〈Dϕ(r, y), f(r, y, u(s))〉ds

τ − r

τ→r−−−→ 〈Dϕ(r, y), f(r, y, u(r))〉
So for almost every r in [t, T ] we have

(5.16) lim sup
τ↓r

v(τ, x(τ)) − v(r, x(r)))

τ − r

≤ 〈Dg(r, x(r)) +Dϕ(r, x(r)), f(r, x(r), u(r))〉
+ gt(r, x(r)) + ϕt(r, x(r)) + 〈A∗Dϕ(r, x(r)), x(r)〉

= 〈p1(r) + p2(r), f(r, x(r), u(r))〉 + q(r) + 〈A∗p1(r), x(r)〉 .
Then we can use Lemma 5.12 and (5.14) to obtain

(5.17) v(T, x(T )) − v(t, x)

≤
∫ T

t

〈p(r), f(r, x(r), u(r))〉 + q(r) + 〈A∗p1(r), x(r)〉 dr

≤
∫ T

t

−L(r, x(r), u(r))dr

Therefore, using (a), we finally arrive at

(5.18) V (T, x(T )) − V (t, x) = h(x(T )) − V (t, x) ≤ h(x(T )) − v(t, x)

= v(T, x(T )) − v(t, x) ≤
∫ T

t

−L(r, x(r), u(r))dr

and so (x(·), u(·)) is an optimal pair at (t, x). �

Remark 5.16. In the book [LY95] (page 262 Theorem 5.4) the authors prove
a verification theorem in which it is required that the trajectories of the system
remain in the domain of A a.e. for every admissible control u(·). They prove
(under hypothesis similar to Hypotheses 5.1, 5.3 and 5.4) that a couple x(·), u(·))
is optimal if and only if

(5.19) u(s) ∈
{

u ∈ U : lim
δ→0

V ((s+ δ), x(s) + δ(Ax(s) + f(s, x(s), u))) − V (s, x(s))

δ
=

= −L(s, x(s), u)

}

for almost every s ∈ [t, T ], where V is the value function.
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5.3. Sub- and super-optimality principles and construction of ǫ-optimal
controls

In this section we will work using the weak P condition introduced in [CL90],
namely we assume (besides Hypotheses 5.1, 5.3, 5.4) that

Hypothesis 5.17. There exists a linear bounded positive self-adjoint operator
P on X such that A∗P is a bounded operator on X and there exists a real constant
c0 such that

〈(A∗P + c0P )x, x〉 ≤ 0 for all x ∈ X

and

Hypothesis 5.18. There exist a constant M > 0 and a local modulus of con-
tinuity σ̄(·, ·) such that:

|f(t, x, u) − f(s, y, u)| ≤M |x− y|−1 + σ̄(|t− s|, |x| ∨ |y|)
and

|L(t, x, u) − L(s, y, u)| ≤ σ̄(|x− y|−1 + |t− s|, |x| ∨ |y|)

(the | · |−1 nor was introduced in Notation 2.17).
Let m ≥ 2,K > 0. For ǫ, β, λ > 0 define

wλ,ǫ,β(t, x) = sup
(s,y)∈(0,T )×H

{

w(s, y) − |x− y|2−1

2ǫ
− (t− s)2

2β
− λeK(T−s)|y|m

}

,

wλ,ǫ,β(t, x) = inf
(s,y)∈(0,T )×H

{

w(s, y) +
|x− y|2−1

2ǫ
+

(t− s)2

2β
+ λeK(T−s)|y|m

}

.

Lemma 5.19. Let v be such that for every R > 0 there exists a modulus σR
such that

(5.20) |v(t, x) − v(s, y)| ≤ σR(|t− s| + |x− y|−1) for t, s ∈ (0, T ], |x|, |y| ≤ R

and

(5.21) v(t, x) ≤ C(1 + |x|k) (respectively, v(t, x) ≥ −C(1 + |x|k))
on (0, T ]×H for some k ≥ 0. Let m > k. Then:

(i) For every R > 0 there exists MR,ǫ,β such that if v = wλ,ǫ,β (respectively,
v = wλ,ǫ,β) then

(5.22) |v(t, x) − v(s, y)| ≤MR,ǫ,β(|t− s| + |x− y|−2) on (0, T )×BR

(ii) The function

wλ,ǫ,β(t, x) +
|x|2−1

2ǫ
+
t2

2β

is convex (respectively,

wλ,ǫ,β(t, x) −
|x|2−1

2ǫ
− t2

2β

is concave). In other terms wλ,ǫ,β is semi-convex and wλ,ǫ,β is semi-
concave.

(iii) If v = wλ,ǫ,β (respectively, v = wλ,ǫ,β) and v is differentiable at (t, x) ∈
(0, T ) × BR then |vt(t, x)| ≤ MR,ǫ,β, and Dv(t, x) = Pq, where |q| ≤
MR,ǫ,β
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Proof. (Some stuff of the proof are from [CL91] page 446).
(i): consider the case v = wλ,ǫ,β(t, x). Observe first that

(5.23) wλ,ǫ,β(t, x) =

= sup
(s,y)∈(0,T ), |y|≤Z

{

w(s, y) − |x− y|2−1

2ǫ
− (t− s)2

2β
− λeK(T−s)|y|m

}

,

where Z depends only on R and λ.
Now suppose wλ,ǫ,β(t, x) ≥ wλ,ǫ,β(s, y). We choose a small σ > 0 and (t̃, x̃)

such that

wλ,ǫ,β(t, x) ≤ σ + w(t̃, x̃) − |x− x̃|2−1

2ǫ
− (t− t̃)2

2β
− λeK(T−t̃)|x̃|m

So

(5.24)

|wλ,ǫ,β(t, x) − wλ,ǫ,β(s, y)| ≤ σ +
|x− x̃|2−1

2ǫ
− (t− t̃)2

2β
− |x̃− y|2−1

2ǫ
− (t̃− s)2

2β
≤

≤ σ +
〈P (x− y), x+ y〉

2ε
+

〈P (x− y), x̃〉
2ε

+
(2t̃− t− s)(t− s)

2β
≤

≤ (2R+ Z)

2ε
|P (x− y)| + 2T

2β
|t− s| + σ

for the arbitrariness of σ we conclude. The case wλ,ǫ,β is similar.
(ii) It is a standard fact, see for example [CIL92] (in Appendix).
(iii) It is a consequence of (5.22). �

Lemma 5.20. Let Hypotheses 5.18 be satisfied. Let w be a viscosity subsolution
(respectively, supersolution) of (5.6) satisfying (5.20) and (5.21) Let m > k. Then
for every R, δ > 0 there exists a non-negative function γR,δ(λ, ǫ, β), where

(5.25) lim
λ→0

lim sup
ǫ→0

lim sup
β→0

γR,δ(λ, ǫ, β) = 0

such that wλ,ǫ,β (respectively, wλ,ǫ,β) is a viscosity subsolution (respectively, super-
solution) of
(5.26)
vt(t, x) + 〈Dv(t, x), Ax〉 +H(t, x,Dv(t, x)) = −γR,δ(λ, ǫ, β) in (δ, T − δ) ×BR

(respectively,
(5.27)
vt(t, x) + 〈Dv(t, x), Ax〉 +H(t, x,Dv(t, x)) = γR,δ(λ, ǫ, β) in (δ, T − δ) ×BR)

for β sufficiently small.

Proof. Some of the ideas of this proof are from [CL91] Proposition 5.3.
Let (t0, x0) ∈ (δ, T − δ) ×X be a maximum of wλ,ǫ,β − ϕ− g. We can assume the
maximum is global (see Remark 2.5 of [CL91]) and strict (see Proposition 2.4 of
[CL91]). Moreover we can assume, without loss of generality, that ϕ is bounded

from above and g0(|x|)
|x|

|x|→∞−−−−→ ∞. In view of this fact, of the (5.20) and of the (5.23)
we can choose S > 0, depending on λ (and g) such that, for all |x| + |y| > S − 1
and s, t ∈ [0, T ],

(5.28) w(s, y) − 1

2ǫ
|P 1/2(x− y)|2 − (t− s)2

2β
− λeK(T−s)|y|m − ϕ(t, x) − g(t, x) ≤

≤ w(t0, x0) − λeK(T−t0)|x0|m − ϕ(t0, x0) − g(t0, x0) − 1.
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We can use Ekeland-Lebourg Lemma (see [EL77] a version is Theorem 3.29)
and state that for every α > 0 we can find p, q ∈ X and a, b ∈ R with |p|, |q| ≤ α
and |a|, |b| ≤ α such that the function

(5.29) Ψ(t, x, s, y)
def
= w(s, y) − 1

2ǫ
|P 1/2(x− y)|2 − (t− s)2

2β
− λeK(T−s)|y|m−

− g(t, x) − ϕ(t, x) − 〈Pp, y〉 − 〈Pq, x〉 − at− bs

attains a local maximum (t̄, x̄, s̄, ȳ) on [0, T ]×BS × [0, T ]×BS . For what we have
seen |x̄|, |ȳ| ≤ S − 1.

Now, since we can choose at the beginning S such that BS contains a maxi-
mization sequence (bounded for (5.23)) for

sup
(s,y)∈(0,T ), |y|≤Z

{

w(s, y) − |x0 − y|2−1

2ǫ
− (t0 − s)2

2β
− λeK(T−s)|y|m

}

,

we have
Ψ(t̄, x̄, s̄, ȳ) ≥ wλ,ǫ,β(t0, x0) − ϕ(t0, x0) − g(t0, x0) − Cα

where the constant C does not depend on α > 0. Moreover

Ψ(t̄, x̄, s̄, ȳ) ≤ wλ,ǫ,β(t̄, x̄) − ϕ(t̄, x̄) − g(t̄, x̄) + Cα.

So, since (t0, x0) is a strict maximum, we have that (t̄, x̄)
α↓0−−→ (t0, x0). We choose

α so that t̄ ∈ (δ, T − δ)
We fix now an upper-bound for β (as required in the claim of the lemma): we

choose β so that for all t ∈ (δ, T − δ) and every |y| ≤ S − 1 we have

(5.30) sup
s∈(0, δ

2 )∪(T− δ
2 ,T )

(

w(s, y) − (t− s)2

2β
− λeK(T−s)|y|

)

≤

≤ −1 − w(t, y) − λeK(T−t)|y|
(such bound depends on λ and δ), so s̄ ∈ [δ/2, T − δ/2].

For (5.21), since m > k, we have that

(5.31) |λeK(T−s̄)|ȳ|m| ≤ σ(λ).

Moreover, since we have

w(s̄, ȳ) − 1

2ǫ
|P 1/2(x̄ − ȳ)|2 − (t̄− s̄)2

2β
− λeK(T−s̄)|y|m ≥ wλ,β,ǫ(t̄, x̄) − Cα

and then
1

2ǫ
|P 1/2(x̄− ȳ)|2 − (t̄− s̄)2

2β
≤ w(s̄, ȳ) − wλ,β,ǫ(t̄, x̄) + Cα − λeK(T−s̄)|y|m

we find, using standard arguments (see for example [CL90] page 250),

(5.32)

( |s̄− t̄|2
2β

+
|x̄− ȳ|2−1

2ǫ

)

≤ σλ(ǫ+ β) + +Cλα = σλ(ǫ+ β) + σλ(α)

for some positive constant Cλ.
Now we use the fact that w is a subsolution:

(5.33) − (t̄− s̄)

β
− λKeK(T−s̄)|ȳ|m + b− 〈A∗P (x̄− ȳ), ȳ〉

ǫ
+ 〈A∗Pp, ȳ〉+

+H

(

s̄, ȳ,
1

ǫ
P (ȳ − x̄) + λeK(T−s̄)|y|m−1 y

|y| + Pp

)

≥ 0.

Now we note that

− (t̄− s̄)

β
= ϕt(t̄, x̄) + gt(t̄, x̄) + a
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and
1

ǫ
P (ȳ − x̄) = Dϕ(t̄, x̄) +Dg(t̄, x̄) + Pq

So

(5.34) ϕt(t̄, x̄) + gt(t̄, x̄) + 〈x̄, A∗Dϕ(t̄, x̄)〉 +H (t̄, x̄, Dϕ(t̄, x̄) +Dg(t̄, x̄)) ≥
≥ λKeK(T−s̄)|ȳ|m − 〈A∗Pp, ȳ〉 − a− b−

−
〈

(ȳ − x̄), A∗ 1

ǫ
P (ȳ − x̄)

〉

− 〈x̄, A∗Dg(t̄, x̄) +A∗Pq)〉+

+H

(

t̄, x̄,
1

ǫ
P (ȳ − x̄) − Pq

)

−H
(

s̄, ȳ,
1

ǫ
P (ȳ − x̄) + λeK(T−s̄)|y|m−1 y

|y| + Pp

)

≥

Using this and the fact that we can take ϕ such that P−1Dϕ ∈ C(X) (see [CL91]
proposition 5.4) we have that Dg(t̄, x̄) ∈ D(P−1) and thus 〈x̄, A∗Dg(t̄, x̄)〉 ≤ 0.
Moreover we use Hypothesis 5.17 and (5.31) to obtain

(5.35) ≥
[

− σ(λ) − σλ(α) + c0
1

ǫ
|P 1/2(x̄− ȳ)|2

]

− σλ(α)−

−
∣

∣

∣

∣

H

(

t̄, x̄,
1

ǫ
P (ȳ − x̄) − Pq

)

−H

(

t̄, x̄,
1

ǫ
P (ȳ − x̄) + λeK(T−s̄)|y|m−1 y

|y| + Pp

)∣

∣

∣

∣

−

(calling J= 1
ǫ
P (ȳ−x̄)+λeK(T−s̄)|y|m−1 y

|y|
+Pp)

− |H (t̄, x̄, J) −H (s̄, x̄, J)| − |H (s̄, x̄, J) −H (s̄, ȳ, J)| ≥
using (5.31), (5.32) and Hypothesis 5.18

(5.36)
≥
[

− σ(λ) − σλ(α) − σλ(ǫ+ β) − σλ(α)
]

−−σλ(α) − σ(λ) − σ(α) − σ(ǫ+ β)−
− σλ(ǫ+ β) − σλ(α) − σ(λ) = σλ(α) − σλ(ǫ+ β) − σ(λ)

where the modules depend on R. Letting α→ 0 we have the claim. The proof for
wλ,β,ǫ is similar. �

Lemma 5.21. Let the assumptions of Lemma 5.20 be satisfied. Then:

(a) If (a, p) ∈ D1,−wλ,ǫ,β(t, x) for (t, x) ∈ (δ, T − δ) ×BR then

(5.37) a+ 〈A∗p, x〉 +H(t, x, p) ≥ −γR,δ(λ, ǫ, β)

for β sufficiently small.
(b) If in addition U is compact and (a, p) ∈ D1,+wλ,ǫ,β(t, x) for (t, x) ∈

(δ, T − δ) × BR is such that Dwλ,ǫ,β(tn, xn) ⇀ p for some (tn, xn) →
(t, x), (tn, xn) ∈ (δ, T − δ) ×BR, then

a+ 〈A∗p, x〉 +H(t, x, p) ≤ γR,δ(λ, ǫ, β)

for β sufficiently small.

Proof. (a)- Step 1: At points of differentiability, it follows from Lemma
5.19(iii) and the semiconvexity of wλ,ǫ,β that there exists a test1 function ϕ such
that wλ,ǫ,β −ϕ has a local maximum and the result then follows from Lemma 5.20.

Step 2: For v = wλ,ǫ,β and (a, p) ∈ D1,−v(t, x) we recall first that for a
convex/concave function ν its sub/super-differential at a point z is equal to

conv{p : Dν(zn) ⇀ p, zn → z}.
that is the weak closure of the convex hull of {p : Dν(zn) ⇀ p, zn → z} (see [Pre90]
page 319).

Consider the case Dv(tn, xn) ⇀ p with (tn, xn) → (t, x). For Lemma 5.19
(iii) Dv(tn, xn) = Pqn with |qn| ≤ MR,ǫ,β, so, it is always possible to extract a
subsequence qnk

⇀ q for some q ∈ X . For the boundedness and the selfadjointness
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of P we know that Dv(tn, xn) = Pqnk
⇀ Pq and for the uniqueness of the weak

limit Pq = p. So, using that A∗P is continuous, we have

〈A∗Pqnk
, xn〉 = 〈qnk

, (A∗P )∗xn〉 −→ 〈q, (A∗P )∗x〉 = 〈A∗Pq, x〉 = 〈A∗p, x〉
Moreover, H is concave in p and then it is upper weakly semicontinuous so we have

H(t, x, p) ≥ lim
n→+∞

H(t, x,Dv(tn, xn))

So the (a) from Step 1.
Step 3: If p is a generic point in conv{p : Dv(tn, xn) ⇀ p, (tn, xn) → (t, x)}

we can conclude using the concavity of

p 7→ 〈A∗p, x〉 +H(t, x, p)

and arguments used in Step 2.
(b): As in (a) for the points of differentiability the claim follows from Lemma

5.19 and Lemma 5.20. Thanks to the compactness of U the infimum in the definition
of the Hamiltonian is a minimum. We call v = wλ,ǫ,β . If Dv(tn, xn) ⇀ p for some
(tn, xn) → (t, x), (tn, xn) ∈ (δ, T − δ) ×BR we have that

(5.38) 〈A∗Dv(tn, xn), xn〉 +H(tn, xn, Dv(tn, xn)) =

= 〈A∗Dv(tn, xn), xn〉 + 〈Dv(tn, xn), f(tn, xn, u
∗
n)〉 + L(tn, xn, u

∗
n)

for some u∗n ∈ U , and, since the thesis is true at the points of differentiability we
have

(5.39) a+ 〈A∗Dv(tn, xn), xn〉 + 〈Dv(tn, xn), f(tn, xn, u
∗
n)〉 + L(tn, xn, u

∗
n) ≤

≤ γR,δ(λ, ǫ, β)

we pass to a subsequence u∗nk
−→ ū, and we pass to the limit in the above expression

for nk −→ ∞, observing that we can prove as in Step 2 of (a) that

〈A∗Dv(tn, xn), xn〉 −→ 〈A∗p, x〉
and so we have

a+ 〈A∗p, x〉 + 〈p, f(t, x, ū)〉 + L(t, x, ū) ≤ γR,δ(λ, ǫ, β),

passing to the infimum in ū we have the thesis. �

Theorem 5.22. Let the assumptions of Lemma 5.20 be satisfied. Then:

(a) Let w be a viscosity subsolution of (5.6) satisfying (5.20) and (5.21) Let
m > k. Then for every 0 < t < t+ h < T and x ∈ H

(5.40) w(t, x) ≤ inf
w(·)∈U [t,T ]

{

∫ t+h

t

L(s, x(s), u(s))ds + w(t+ h, x(t+ h))

}

.

(b) Assume in addition that U is compact and for every (t, x) there exists
a modulus σt,x such that

(5.41) |xt,x(s2) − xt,x(s1)| ≤ σt,x(s2 − s1)

for all t ≤ s1 ≤ s2 ≤ T and all u(·) ∈ U [t, T ], where xt,x(·) is the
solution of (5.3). Let w be a viscosity supersolution of (5.6) satisfying
(5.20) and (5.21) Let m > k. Then for every 0 < t < t+ h < T, x ∈ H,
and ν > 0 there exists a piecewise constant control uν ∈ U [t, T ] such
that

(5.42) w(t, x) ≥
∫ t+h

t

L(s, x(s), uν(s))ds + w(t+ h, x(t+ h)) − ν.



106 5. VERIFICATION THEOREM AND EPSILON-OPTIMALITY

In particular we obtain the superoptimality principle

(5.43) w(t, x) ≥ inf
u(·)∈U [t,T ]

{

∫ t+h

t

L(s, x(s), u(s))ds+ w(t+ h, x(t+ h))

}

and if u is the value function V we have existence (together with the
explicit construction) of piecewise constant ν-optimal controls .

Proof. We will only prove (b) as the proof of (a) follows the same strategy
for a fixed control u(·) and is much easier. We follow the ideas of [Ś96] (that treat
the finite dimensional case).

Step 1. Let n ≥ 1. We approximate w by wλ,ǫ,β .
Step 2. Take any (a, p) ∈ D1,+wλ,ǫ,β(t, x) as in Lemma 5.21(b) (we can do

this because wλ,ǫ,β is semi-concave). Then there exists u1 ∈ U such that

(5.44) a+ 〈A∗p, x〉 + 〈p, f(t, x, u1)〉 + L(t, x, u1) ≤ γR,δ(λ, ǫ, β) +
1

n2
.

By semiconcavity of wλ,ǫ,β

(5.45) wλ,ǫ,β(s, y) − wλ,ǫ,β(t, x) ≤ +a(s− t) + 〈p, y − x〉 +
|x− y|2−1

ǫ
+

(t− s)2

β
.

But the right hand side of the above is a test1 function so if s ≥ t and y = xt,x(s)
with constant control u(s) = u1 we can use Lemma 5.8 and write

(5.46)

∣

∣

∣

∣

a(s− t) + 〈p, x(s) − x〉 +
|x(s)−x|2−1

ǫ + (s−t)2

β

s− t
−

− (a+ 〈p, f(t, x, u1)〉 + 〈A∗p, x〉)
∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

∣

∫ s

t 2 (r−t)
β dr

s− t

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ s

t
〈A∗p, x(r) − x〉 dr

s− t

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∫ s

t 〈p, f(r, x(r), u1) − f(t, x, u1)〉dr

s− t

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ s

t 2 〈A∗P (x(r) − x), x(r)〉 dr

ǫ(s− t)

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∫ s

t 〈P (x(r) − x), f(r, x(r), u(r))〉 dr

ǫ(s− t)

∣

∣

∣

∣

∣

≤ σ(|s− t| + |x(s) − x|) ≤ σ′
t,x(s− t)

where we used in the third term the fact that f is Lipschitz with respect to the
variable x. σ′

t,x is modulus (different from the one of (5.41)) that depends on (t, x).
We can now use (5.44), (5.45), (5.46) to estimate

(5.47)
wλ,ǫ,β(t+

h
n , x(t+ h

n )) − wλ,ǫ,β(t, x)

h/n
≤

≤ σ′
t,x(

h

n
) + γR,δ(λ, ǫ, β) +

1

n2
− L(t, x, u1)

Step 3. We repeat this procedure n times to arrive at the final estimate. Note
that we can choose σ′

t,x depending only on the initial point (t, x). Thus we obtain
the controls ui on the intervals [t+ i−1

n h, t+ i
nh] and the control u(n) obtained by

gluing the ui. We obtain

(5.48)
wλ,ǫ,β(t+ h, x(t+ h)) − wλ,ǫ,β(t, x)

h/n
≤

≤ σ′
t,x(

h

n
)n+ γR,δ(λ, ǫ, β)n+

n

n2
−
∑

i

L(ti, xi, ui)
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and then

(5.49) wλ,ǫ,β(t+ h, x(t+ h)) − wλ,ǫ,β(t, x) ≤

≤ σ′
t,x(

h

n
)T + γR,δ(λ, ǫ, β)T +

T

n2
−
∫ t+h

t

L(r, x(r), u(n))dr + σ′′
t,x(

h

n
)T

where we used Hypothesis 5.18 to estimate how the sum converges to the integral.
So choosing β, λ, ǫ, 1

n small enough and using that

(5.50) |wλ,ǫ,β(t, x) − w(s, y)| ≤ σR,λ(ǫ+ β, |t− s| + |x− y|−1)

for t, s ∈ (0, T ], |x|, |y| ≤ R

we we have the (5.42). �

An example Condition (5.41) holds for example if A = A∗, it generates a
differentiable semigroup , and ‖AetA‖ ≤ C/tδ for some δ < 2. We then have

|(A+ I)
1
2x(s)| ≤ |(A+ I)

1
2 e(s−t)Ax| +

∫ s

t

|(A+ I)
1
2 e(s−τ)Af(τ, x(τ), u(τ))|dτ

However for every y ∈ H and 0 ≤ τ ≤ T

|(A+ I)
1
2 eτAy|2 ≤ |(A+ I)eτAy||y| ≤ C1

τδ
|y|2.

This yields

‖(A+ I)
1
2 eτA‖ ≤

√
C1

τ
δ
2

and therefore

|(A+ I)
1
2x(s)| ≤ C2

(

1

(s− t)
δ
2

+ (s− t)1−
δ
2

)

≤ C3

(s− t)
δ
2

.

Thus to show (5.41) it is enough to prove that for every ǫ > 0 and t + ǫ ≤ s1 <
s2 ≤ T , there exists a modulus σǫ (also depending on x) such that |e(s2−s1)Ax(s1)−
x(s1)| ≤ σǫ(s2 − s1). But this is now clear since

e(s2−s1)Ax(s1) − x(s1) =

∫ s2−s1

0

AesAx(s1)ds

=

∫ s2−s1

0

(A+ I)
1
2 esA(A+ I)

1
2x(s1)ds−

∫ s2−s1

0

esAx(s1)ds.

Thus

|e(s2−s1)Ax(s1) − x(s1)| ≤ |(A+ I)
1
2x(s1)|

∫ s2−s1

0

√
C1

s
δ
2

ds+ (s2 − s1)|x(s1)|

≤ C4

ǫ
δ
2

(s2 − s1)
1− δ

2 + C5(s2 − s1).





Part 2

Strong solutions approach





CHAPTER 6

Strong solutions for first order HJB equations in

Hilbert spaces arising in economic models governed

by DDEs

This Chapter is devoted to the description of the results obtained in [FGF]. As
we have already stated in Chapter 4 the optimal control problem treated is similar
to the one treated in [Fabb] (Chapter 4). The main difference is in the approach:
there we study the HJB equation using a viscosity solutions approach, here we look
for the existence of strong solutions.

The results of [FGF] are very preliminary and a more in-depth studies are
needed in the future, but, as we have already stressed in the introduction, we have
decided to devote them a whole Part of this thesis to give to the reader a more
complete image of the techniques used to study first order HJB equation in Hilbert
spaces.

Before showing the new results we include two short sections: the first is de-
voted to a brief description of the literature on strong solutions for first order HJB
equations in Hilbert spaces (Section 6.1) with special attention to boundary con-
trol, the second (Section 6.2) contains some of the results obtained by Faggian in
[Fag05b] and [Fag06], regarding strong and weak solutions of HJB equations, that
we will use in the sequel.

As in Chapter 4 we will use an applied approach and we will refer in particular
to two main models. The first is the vintage capital model recalled in Subsection
6.3.1 and better described in Chapter 7 and the second is an advertising model due
to [GM04, GMS06]) that is presented in Section 6.3.

In Section 6.5 we write the state equation of such problems as an ODE in M2.
We have already described the general technique in Section 1.3, here we see how the
structural state becomes in our particular cases, concentrating on the first example,
as the second can be rephrased similarly. In Section 6.6 we show our main result:
the value function is an ultra-weak solution of the HJB equation.

6.1. A brief overview on literature

The idea of strong solutions method is to define the solution of the HJ as the
limit of the solutions of a suitable family of approximating HJ.

Strong solutions for first order HJ equations in Hilbert space were first studied
by Barbu and Da Prato in [BDP81] and then in [BDP83, BDP85a, BDP85b].

In [BDP83] a class of HJ equations arising in optimal control problem in Hilbert
spaces with convex cost functional is treated. Existence and uniqueness of strong
solution are proved for regular convex cost functional . A verification theorem
is proved. In [BDP83, BDP85a, BDP85b] and [DB86] the authors study an HJ
equation of the form

{

vt(t, x) +H(∇v(t, x)) − 〈Ax,∇v(t, x)〉 = g(x)
v(0, x) = h(x) for all x ∈ X

111
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where g, h,H : X → R are convex, continuous and bounded on bounded sets. In
particular in [BDPP83] the authors study local existence for the caseH(p) = 1

2 |Rp|2
for a linear continuous operatorR and the caseH(p) = 1

2 |p|2 is in-deeply treated. In
[BDP85a] the authors study to the case H(p) = η(|p|2), where η ∈ W 2,∞

loc is convex,
increasing and limr→+∞ η(r) = +∞. In [DB86] the author studies existence and
uniqueness of a global weak solution when H is continuously Frechet differentiable
and H ′ is bounded. See also [BP86].

In [Goz88, Goz91] (see also [Goz89]) the author considers the semilinear optimal
control and prove global existence for problem with small perturbations.

In [DB91] the author studies the case in which B is linear and continuous and U
is allowed to be a proper subset of the control space and is supposed to be bounded
closed and convex. The theory is applied to the optimal control of a parabolic
partial differential equation with homogeneous Neumann boundary condition in
the infinite horizon case.

In [CDB95] the authors study the convex control problem with state constraints
in a prescribed convex set possibly with empty interior. If every initial state admits
an admissible control the authors prove the existence and the uniqueness of the
(weak) solution, it is in fact the value function of the control problem. An explicit
feedback law is also found.

See [BDPDM92] for the LQ case.
The boundary control case: For the case of linear systems and quadratic

costs (where HJB equation reduces to the operator Riccati equation) the reader
is referred to [LT00] and to [BDPDM92]. In [AFT91] and [AT96, AT99, AT00]
the authors study the non-autonomous linear-quadratic case. The convex case
is treated in [Fag05a, Fag05b] (see [Fag04] and [BP86] for a maximum principle
approach to the same problem). More precisely the optimal control problem studied
in [Fag05a, Fag05b] is governed by a state equation of the form

{

x(s) = Ax(s) +Bu(s) for s ∈ [t, T ]
x(t) = x

where B is an unbounded linear operator and the cost functional is “decoupled”:

J(x, u(·)) =

∫ T

0

[L1(x(s)) + L2(u(s))]ds+ h(x(T ))

where g, f and h are convex . In [Fag06] the constrained case is treated. See [FG04]
for a more applied approach. See [FGb] for the infinite horizon case.

6.2. Some results from [Fag05a] and [Fag06]

Let X be a separable Hilbert space, U an real Hilbert space, A is the generator
of a strongly continuous semigroup of operators on X , and D(A∗) is endowed with
the scalar product 〈v, w〉D(A∗) := 〈v, w〉X + 〈A∗v,A∗w〉X . Let D(A∗)′ be its dual
space endowed with the operator norm.

We consider the following state equation in D(A∗)′

(6.1)

{

ẋ(s) = A(E)x(s) +B∗u(s), s ∈ [t, T ]

x(t) = x ∈ D(A∗)′

with control operator B∗ ∈ L (U,D(A∗)′) (although B∗ 6∈ L (U,X)), where U is
the control space and u(·) ∈ L2((t, T );U) the control. Such equation may be readily
expressed in mild form as

(6.2) x(s) = e(s−t)A
(E)

x+

∫ s

t

e(s−r)A
(E)

B∗u(r)dr.
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We consider first a target functional J , associated to the state equation, of type

(6.3) J(t, x, u(·)) =

∫ T

t

[L1 (s, x(s)) + L2 (s, u(s))] ds+ h(x(T ))

with L2(t, ·) real, convex, l.s.c., coercive, and L1(t, ·) and h real, convex, and
C1(D(A∗)′) (respectively, l.s.c. in D(A∗)′) in the x variable. The problem is
that of minimizing J(t, x, ·) over the set of admissible controls L2((t, T );U).

Remark 6.1. Indeed, in the applications, the target functional is rather of type

J0(t, x, u(·)) =

∫ T

t

[ξ (s, x(s)) + η (s, u(s))] ds+ ν(x(T ))

with η(t, ·) real, convex, l.s.c., coercive, and ξ(t, ·) and ν real, convex, and C1(X)
(respectively, l.s.c. in X) in the x variable, defined on X, but not necessarily
on D(A∗)′. Then we need to assume that ξ and ν allow C1 (respectively, l.s.c.)
extensions L1(t, ·) and h on the space D(A∗)′. The existence of such extensions is
a strong assumption, see [Fag05b] for details and comments upon this matter.

Remark 6.2. Actually the framework of [Fag05b] and [Fag06] allows to study
the a more general case in which we have an Hilbert space V such that V ⊆ X ⊆ V ′.
The case V = D(A∗) is included in such framework.

The value function is defined as

(6.4) V (t, x) = inf
u(·)∈L2((t,T );U)

J(t, x, u(·)),

The HJB equation in [0, T ]×D(A∗)′ associated to the problem is

(6.5)

{

vt(t, x) −H(t, B∇v(t, x)) + 〈A(E)x,∇v(t, x)〉 + L1(t, x) = 0,

v(T, x) = h(x),

for all t ∈ [0, T ] and x ∈ D(A(E)) where

H(t, q) = [L2(t, ·)]∗(−q) = sup
u∈U

{〈−u, q〉U − L2(t, u)}.

H(t, Bp) is well defined only for p in D(A∗), that is a proper subspace of X , to
which ∇v(t, x) (the spatial gradient of v) should belong.

With such a problem in mind, it is natural to investigate existence and unique-
ness for the following HJB equation
(6.6)
{

wt(t, x) + F (t,∇w(t, x)) − 〈A(E)x,∇w(t, x)〉 = L1(T − t, x) (t, x) ∈ [0, T ]×D(A∗)′

w(0, x) = h(x).

Note in fact that such a HJB equation is the forward version of (6.5) once one have
set

F (t, p) := H(t, Bp) = sup
u∈U

{〈−B∗u, p〉U − L2(t, u)}.

6.2.1. Regular data and strong solutions of HJB equations. This is
the case of regular data, from which the notion of strong solution originates. We
recall some notation: If Ω is an open set subset of X we define Cp(Ω) is the set

Cp(Ω) =

{

f : Ω → R : |f |Cp
:= sup

x∈Ω

|f(x)|
1 + |x|pX

< +∞
}

Moreover
Σ0(Ω) =

{

w ∈ C2(Ω) : w is convex, w ∈ C1
Lip(Ω)

}
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(C1
Lip(Ω) is defined at page 13) and

(6.7) Y([0, T ]× Ω)
def
=
{

w : [0, T ]× Ω → R : w ∈ C([0, T ];C2(Ω)),

w(t, ·) ∈ Σ0(Ω), ∇w ∈ C([0, T ];C1(Ω;X))
}

Hypothesis 6.3. Assume that

1. A(E) : D(A(E)) ⊂ D(A∗)′ → D(A∗)′ is the infinitesimal generator of a

strongly continuous semigroup {esA(E)}s≥0 on D(A∗)′;
2. B∗ ∈ L (U,D(A∗)′);

3. there exists w > 0 such that |eτA(E)

x|D(A∗)′ ≤Mewτ |x|D(A∗)′ , ∀τ ≥ 0;
4. F ∈ Y([0, T ]×D(A∗)), F (t, 0) = 0, supt∈[0,T ][Fp(t, ·)]L < +∞;

5. L1 ∈ Y([0, T ]×D(A∗)′), t 7→ [L1x(t, ·)]L ∈ L1(0, T )
6. h ∈ Σ0(D(A∗)′);
7. L2(t, ·) is convex, lower semi-continuous, D−L2(t, ·) is injective for all

t ∈ [0, T ].
8. H ∈ Y([0, T ]× U), H(t, 0) = 0, and supt∈[0,T ][∂qH(t, ·)]

L
< +∞.

Definition 6.4 (Strong solution). Let Assumptions 6.3 be satisfied. We say
that w ∈ C([0, T ], C2(D(A∗)′)) is a strong solution of (6.6) if there exists a family
{wε}ε ⊂ C([0, T ], C2(D(A∗)′)) such that:

(i) wε(t, ·) ∈ C1
Lip(D(A∗)′) and wε(t, ·) is convex for all t ∈ [0, T ]; wε(0, x) =

h(x) for all x ∈ D(A∗)′.
(ii) there exist constants Γ1,Γ2 > 0 such that

sup
t∈[0,T ]

[∇wε(t)]
L
≤ Γ1, sup

t∈[0,T ]

|∇wε(t, 0)|D(A∗) ≤ Γ2, ∀ε > 0;

(iii) for all x ∈ D(A(E)), t 7→ wε(t, x) is continuously differentiable;
(iv) wε → w, as ε→ 0+, in C([0, T ], C2(D(A∗)′));
(v) there exists L1ε ∈ C([0, T ];C2(D(A∗)′)) such that, for all t ∈ [0, T ] and

x ∈ D(A(E)),

wεt (t, x) − F (t,∇wε(t, x)) + 〈A(E)x,∇wε(t, x)〉v = L1ε(T − t, x)

with L1ε(t, x) → L1(t, x) pointwise, and
∫ T

0
|L1ε(s) − L1(s)|C2ds → 0, as ε→ 0+.

The main result contained in [Fag05b] is the following.

Theorem 6.5. Let Assumptions 6.3 be satisfied. There exists a unique strong
solution w of (6.6) in the class C([0, T ], C2(D(A∗)′)) with the following properties:

(i) for all x ∈ D(A(E)), w(·, x) is Lipschitz continuous;
(ii) w(t, ·) ∈ Σ0(D(A∗)′), for all t ∈ [0, T ].

Regarding applications to the optimal control problem, in [Fag00] the following
theorem is proved:

Theorem 6.6. Let Assumptions 6.3 be satisfied, with F (t, p) := H(t, Bp). Let
V be the value function of the control problem, and let w be the strong solution of
(6.6) described in Theorem 6.5. Then

V (t, x) = w(T − t, x), ∀t ∈ [0, T ], ∀x ∈ D(A∗)′,

that is, the value function V of the optimal control problem is the unique strong
solution of the HJB equation (6.5).
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6.2.2. Semicontinuous data and weak solutions of HJB equations. We
then treat the case of merely semicontinuous data, from which the notion of weak
solution originates.

Hypothesis 6.7. If Υ is a convex closed subset of D(A∗)′, define

(6.8) ΣΥ ≡ ΣΥ(D(A∗)′) :=

:=

{

w : D(A∗)′ → (−∞,+∞] : w is convex and l.s.c., Υ ⊂ D(w)

}

where D(w) = {x ∈ D(A∗)′ : w(x) < +∞}, and assume:

1. A(E) : D(A(E)) ⊂ D(A∗)′ → D(A∗)′ is the infinitesimal generator of a

strongly continuous semigroup {esA(E)}s≥0 on D(A∗)′;
2. B∗ ∈ L (U,D(A∗)′);

3. there exists w > 0 such that |esA(E)

x|D(A∗)′ ≤ ews|x|D(A∗)′ , ∀s ≥ 0;
4. F ∈ Y([0, T ]×D(A∗)), F (t, 0) = 0, supt∈[0,T ][Fp(t, ·)]L < +∞;

5. L1(t, ·) ∈ ΣΥ(D(A∗)′), for all t ∈ [0, T ]; L1(·, x) l.s.c. and L1(0, T ) for
all x ∈ D(A∗)′;

6. h ∈ ΣΥ(D(A∗)′);
7. L2(t, ·) is convex, lower semi-continuous, D−L2(t, ·) is injective for all

t ∈ [0, T ]; moreover L2(t, u) ≥ a(t)|u|2U + b(t), with a(t) ≥ c > 0,
a, b ∈ L1(0, T ; R) (and c a real constant).

8. H ∈ Y([0, T ]× U), H(t, 0) = 0, and supt∈[0,T ][∂qH(t, ·)]
L
< +∞.

Definition 6.8 (Weak solution). Let Assumptions 6.7 be satisfied. Let Υ ⊂
D(A∗)′ be a closed convex set, and let h ∈ ΣΥ and L1(t, ·) ∈ ΣΥ for all t in [0, T ].
Then w : [0, T ]×D(A∗)′ → (−∞,+∞] is a weak solution of (HJB) if:

(i) w(t, ·) ∈ ΣΥ, ∀t ∈ [0, T ];
(ii) there exist sequences {hn}n ⊂ Σ0, and {L1n} ⊂ Y([0, T ] ×D(A∗)′), such

that

hn(x) ↑ h(x), L1n(t, x) ↑ L1(t, x), ∀x ∈ D(A∗)′, ∀t ∈ [0, T ], as n→ +∞,

and moreover, if wn is the unique strong solution of
{

wt(t, x) + F (t,∇w(t, x)) − 〈A(E)x,∇w(t, x)〉 = L1n(t, x) (t, x) ∈ [0, T ]×D(A∗)′

w(0, x) = hn(x)

in C([0, T ], C2(D(A∗)′)), then

wn(t, x) ↑ w(t, x), ∀(t, x) ∈ [0, T ]×D(A∗)′.

Remark 6.9. Since strong solution were proved in [Fag05b] to be Lipschitz with
respect to the time variable and C1 with respect to the space variable, and the weak
solution w is a sup-envelop of strong solutions wn, then w is lower semi-continuous
in [0, T ]×D(A∗)′. For the same reason wn convex in the x variable implies that w
is convex in x as well.

Theorem 6.10. Let Assumptions 6.7 be satisfied. Let also L1 and L2 be of the
following type

L1(t, x) = e−ρtL10(x), L2(t, u) = e−ρtL20(u)

. Then the following properties are equivalent:
(i) there exists a unique weak solution of (6.6);
(ii) At each (t, x) ∈ [0, T ]× Υ there exists an admissible control.

Moreover if (i) or (ii) holds, there exists an optimal pair (u∗, x∗) and

w(T − t, x) = J(t, x, u∗(·)).
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Strong, weak and ultra-weak solutions
One of the advantages in the introduction of the notion of weak solutions is the
possibility to treat optimal control problems with state constraints. Indeed a way
to impose state constraints is to add a penalizing function in the target functional
(we use such technique in (6.16). The properties of the penalizing function do not
allow to treat it using strong solutions and then a more general definition is needed
so the definition of weak solution is introduced. So, if the data satisfy certain
assumptions (involving convexity, semicontinuity, and coercivity of L2), then the
value function of an optimal control problem with state constraints of type (6.17)
is indeed the unique weak solution to the HJB equation (6.5).

Some coercivity for the function L2 is indeed lacking for some applied example,
as the prototype of L20 is u1−σ

1−σ as mentioned in Section 6.3 which is sublinear on
the positive real axis. This causes the Hamiltonian of the problem - that is related
to the Legendre transform of L20 - to be possibly non-regular, so that all previous
definition of solutions do not apply. (Note indeed that, as more precisely stated in
the Section 6.2, a weak solution is limit of strong solutions of approximating equa-
tions, while a strong solution is itself limit of classical solutions of approximating
equations. All of these notions require the Hamiltonian to be differentiable with
respect to the co-state variable p.)

Here we are about to define a ultra-weak solution as limit of weak solutions
to (6.5). The concept of solution is indeed generalized, although not in the same
direction as before, due to the presence of possibly non-regular Hamiltonians.

We will proceed first showing some motivating examples and then using ultra-
weak solution for the case of HJB arising in optimal control problem governed by
linear delay equations. Such results are preliminary and a more in-depth study are
needed in the future.

6.3. Two examples

We present the two applied problems motivating this work.

6.3.1. An AK model with vintage capital. We consider here an optimal
control problem related to a generalization of the model presented by Boucekkine,
Puch, Licandro and Del Rio in [BLPdR05]. The model is in-deeply described in
Chapter 7, here the formulation is equivalent but a bit different because the control
variable is the consumption instead of investment. We assume that the system is
ruled by the same evolution law as the one in [BLPdR05], but we consider the finite
horizon problem with a (more) general concave target functional, as specified later.
The state equation of the model is

θ̇(s) = aθ(s) − aθ(s−R) − u(s) + u(s−R), s ∈ [t, T ]

where the state variable θ is the stock of capital at time t and the control u is the
consumption.

The social planner has to maximize the following functional

(6.9)
∫ T

t

e−ρsl20(c(s))ds + h0(k(T ))

where h0 and l20 are concave u.s.c. utility functions.
We assume that the capital at time s (and consequently the production) and

the consumption at time s cannot be negative:

(6.10) θ(s) ≥ 0, u(s) ≥ 0, ∀s ∈ [t, T ]

These constraints are different from the more restrictive ones of [BLPdR05], where
also the investment path i(·) was assumed positive.
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6.3.2. An advertising model with delay effects. The model we describe
was presented in the stochastic case in the papers [GMS06, GM04], and, in de-
terministic one, in [FG04] (see also [FHS94] and the references therein for related
models)1.

Let t ≥ 0 be an initial time, and T > t a terminal time (T < +∞ here).
Moreover let θ(s), with 0 ≤ t ≤ s ≤ T , represents the stock of advertising goodwill
of the product to be launched. Then the general model for the dynamics is given
by the following controlled Delay Differential Equation (DDE) with delay R > 0
where z models the intensity of advertising spending:
(6.11)






θ̇(s) = a0θ(s) +
∫ 0

−R
θ(s+ ξ)da1(ξ) + b0u(s) +

∫ 0

−R
u(s+ ξ)db1(ξ) s ∈ [t, T ]

θ(t) = φ0; θ(r) = φ1(r), u(r) = σ(r) ∀ξ ∈ [t−R, t],

with the following assumptions:

• a0 is a constant factor of image deterioration in absence of advertising,
a0 ≤ 0;

• a1(·) is the distribution of the forgetting time, a1(·) is a bounded vari-
ation function;

• b0 is a constant advertising effectiveness factor, b0 ≥ 0;
• b1(·) is the density function of the time lag between the advertising

expenditure u and the corresponding effect on the goodwill level, b1(·)
is a bounded variation function;

• φ0 is the level of goodwill at the beginning of the advertising campaign,
φ0 ≥ 0;

• φ1(·) and ω(·) are respectively the goodwill and the spending rate before
the beginning, φ1(·) ≥ 0, with φ1(0) = φ0, and ω(·) ≥ 0.

When a1(·), b1(·) are identically zero, equation (6.11) reduces to the classical
model contained in the paper by Nerlove and Arrow (1962). We assume that the
goodwill and the investment in advertising at each time s cannot be negative:

(6.12) θ(s) ≥ 0, u(s) ≥ 0, ∀s ∈ [t, T ].

Finally, we define the objective functional, to be maximized, as

(6.13) J(t, (φ0, φ1, ω), u(·)) = h0(θ(T )) −
∫ T

t

e−ρsl20(u(s)) ds,

where h0 is a concave utility function, l20 is a convex cost function, and the dynamic
of θ is determined by (6.11). The functional J has to be maximized over some set
of admissible controls U , for instance L2((t, T ); R+), the space of square integrable
nonnegative functions.

6.4. The state equation in the infinite dimensional setting.

To obtain the state equation inM2 of our control problem we need to specify the
general form considered in Section 1.3 considering the continuous linear application
B given by

B : C([−R, 0]) → R

B : ϕ 7→ −ϕ(0) + ϕ(−R)

and the continuous linear application N with norm ‖N‖ given by

N : C([−R, 0]) → R

N : ϕ 7→ aϕ(0) − aϕ(−R)

1We observe that also other models of delay type arising in economic theory can be treated
with our tools (see e.g. the paper by [BdlCL04]).
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Following the steps describe in Section 1.3 we define the structural state in our
specific case: In this particular case it can be explicitly found: If we call θ̃s, ũs ∈
L2(−R, 0) the applications

θ̃s : λ 7→ −θ(s−R− λ)
ũs : λ 7→ −u(s−R− λ)

the structural state can be written as

(6.14) x(s)
def
= (θ(s), aθ̃s − ũs + Ξ(s)x1).

(Ξ(·) is defined in (1.38)).
It solves, as better describe in Section 1.3 the equation

(6.15)







d

ds
x(s) = Ax(s) +B∗u(s)

x(t) = x.

where A is defined in (1.35).

6.4.1. The state equation of the advertising model in the Hilbert set-
ting. Similar arguments can be used for the advertising model. Following Section
1.3, if we call N , B the continuous linear functionals given by

N : C([−R, 0]) → R

N : ϕ 7→ a0ϕ(0) +
∫ 0

−r ϕ(ξ)da1(ξ)

B : C([−R, 0]) → R

B : ϕ 7→ b0ϕ(0) +
∫ 0

−r ϕ(ξ)db1(ξ)

we obtain that

• The structural state in the advertising model will have the following
expression (e0+, e0−, Ξ(s), N and B are the same of Section 1.3):

x(t) = (x0(s), x1(s))
def
= (θ(s), N (e0+θ)s −B(e0+u)s + Ξ(s)x1)

where x1 = N(φ1) −B(ω).
• The state equation becomes







d

ds
x(s) = Ax(s) +B∗u(s)

x(t) = x.

6.5. The target functional and the HJB equation

We now rewrite the profit functional for the first example in abstract terms,
noting that a similar reformulation holds for the target functional of the second
example. We consider a control system governed by the linear equation (6.15). We
assume that the set of admissible controls is defined by

U def
= {u(·) ∈ L2(t, T ) : u(·) ≥ 0 and x0(·) ≥ 0}

In order to apply the results contained in [Fag06] and recalled in Section 6.2,
we reformulate the maximization problem as a minimization problem and we take
the constraints into account by modifying the target functional as follows. If l20

and h0 are the concave u.s.c. functions appearing in (6.9), then we define

L20 : R → R

L20(u) =

{

−l20(u) if u ≥ 0
+∞ if u < 0
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(6.16)
h : R → R

h(r) =

{

−h0(r) if r ≥ 0
+∞ if r < 0

Moreover we set
L10 : R → R

L10(r) =

{

0 if r ≥ 0
+∞ if r < 0

Both L2, h and L1 are convex l.s.c. functions on R. Then we define the target
functional as

J(t, x, u(·)) =

∫ T

t

e−ρs[L20(u(s)) + L10(x
0(s))]ds+ h(x0(T ))

with u varying in the set of admissible controls L2(t, T ). It is easy to check that
the problem of maximizing (6.9) in the class U is equivalent to that of minimizing
J on the whole space L2(t, T ). Then the original maximization problem for the
AK-model can be reformulated as minimization problem:

(6.17) inf{J(t, x, u(·)) : u ∈ L2(t, T ), and x satisfies (6.15)},
The HJB equation naturally associated to such minimization problem by DP is

{

∂tv(t, x) + 〈∇v(t, x), Ax〉 −H(t,∇v(t, x)) + e−ρtL1(x) = 0
v(T, x) = h(x)

with H defined as follows
{

H : [0, T ]×D(A∗) → R

H(t, p)
def
= supu≥0 {−B(p)u− e−ρtL20(u)} = e−ρtL2

∗(−eρtB(p))

where L2
∗ is the Legendre transform of the convex function L2. We refer to H as

to the Hamiltonian of the system

6.6. The value function as ultra-weak solution of HJB equation

We define the value function of the optimal control problem described in the
previous sections as

V (t, x)
def
= inf

u(·)∈L2(t,T )
J(t, x, u(·)).

Our objective here is to provide a suitable definition of solution of the HJB equation,
so that the value function V is a solution, in such sense.

Definition 6.11 (Ultra-weak solution). We say that a function W is a
ultra-weak solution to

{

∂tv(t, x) + 〈∇v(t, x), Ax〉 −H(t,∇v(t, x)) + e−ρtL1(x) = 0
v(T, x) = (x)

if there exists a sequence {Hn}n of functions in the space Y([0, T ] ×D(A∗)), such
that Hn ↑ H pointwise, and

W (t, x) = lim
n→+∞

Wn(t, x) = inf
n≥0

Wn(t, x)

with Wn the unique weak solutions to
{

∂tv(t, x) + 〈∇v(t, x), Ax〉 −Hn(t,∇v(t, x)) + e−ρtL1(x) = 0
v(T, x) = h(x)
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Any weak solution V is convex in the state variable x, but not necessarily l .s .c
in (t, x). We are able to prove an existence result for equation (6.5) by proving that
the value function of the control problem set in the previous section is a ultra-weak
solution.

Theorem 6.12. The value function V of the optimal control problem (6.17) is
an ultra-weak solution of (6.5).

Proof. First of all we need to construct a sequence of Hamiltonians Hn having
the properties required by the definition above. We choose

Hn(t, p) := e−ρtL2
∗
n(−eρtB(p))

with

L2n(u) = L20(u) +
1

2n
|u|2, n ∈ N.

Indeed if we denote with Snf(x) = infy∈R

{

f(y) + n
2 |x− y|2

}

the Yosida approxi-
mation of a function f , then it is easy to check that [Snf ]∗(x) = f∗(x) + 1

2n |x|2,
so that

L2
∗
n(u) = Sn(L2

∗
0)(u).

Being L2
∗
n the Yosida approximations of a l.s.c. convex function, they result to be

Frechét differentiable with Lipschitz gradient, with Lipschitz constant [(L2
∗
n)

′]L ≤
n. Moreover, as L2n is a decreasing sequence, Hn is then increasing, as required
by Definition 6.11. Hence the assumptions in Theorem 6.10 are satisfied for the
problem of minimizing the functional

Jn(t, x, u(·)) = J(t, x, u(·)) +
1

2n

∫ T

t

e−ρs|u(s)|2ds

in L2(t, T ), and we derive as a consequence the following result:

Lemma 6.13. Let

Vn(t, x)
def
= inf

u∈L2(t,T )
Jn(t, x, u(·)),

be the value functions of the approximating optimal control problem. Then Vn is
convex in x and l.s.c. in x and t, and it is the unique weak solution of

{

∂tv(t, x) + 〈∇v(t, x), Ax〉 −Hn(t,∇v(t, x)) + e−ρtL1(x) = 0
v(T, x) = h(x)

Moreover there exists u∗n ∈ L2(t, T ) optimal for the approximating problems, i.e.
Vn(t, x) = Jn(t, x, u

∗
n(·)).

To complete the proof we need to show that Vn(t, x) ↓ V (t, x).

Lemma 6.14. The value function of (6.17) is given by

V (t, x) = lim
n→∞

Vn(t, x) = inf
n
Vn(t, x).

Proof. By definition of Jn, for all t, x and n we have Jn(t, x, u(·)) ≥
Jn+1(t, x, u(·)) for all admissible controls u, so that

Vn(t, x) ≥ Vn+1(t, x),

and {Vn(t, x)}n is a decreasing sequence. As a consequence, a ultra-weak solution
V of HJB equation exists, and it is given by

W (t, x)
def
= lim

n→∞
Vn(t, x) = inf

n∈N

Vn(t, x).

Next we show that a solution W built this way necessarily coincides with V . We
note that

J(t, x, u(·)) ≤ Jn(t, x, u(·)), ∀u ∈ L2(t, T ),
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so that by taking the infimum and then passing to limits, we obtain

(6.18) V (t, x) ≤W (t, x).

We then prove the reverse inequality. Let ε > 0 be arbitrarily fixed, and uε be an
ε-optimal control for the problem, that is V (t, x) + ε > J(t, x, uε(·)). By passing to
limits as n→ +∞ in

Vn(t, x) ≤ Jn(t, x, uε(·))
one obtains

W (t, x) ≤ J(t, x, uε(·)) < V (t, x) + ε,

which implies, together with (6.18), the thesis.
Doing so we proved the lemma and Theorem 6.12.

Remark 6.15. Note that we do not derive any uniqueness result for ultra-weak
solutions.
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CHAPTER 7

Vintage Capital in the AK growth model

In this Chapter we present the results of [FGa] where the explicit solution of a
first order HJB equation in the Hilbert space M2 is used to study a vintage capital
model. The attention is mainly on the economic side1. The reader not interested in
the economic problem can skip the introduction and the presentation of the model
starting from Section 7.3. We have chosen to maintain the Chapter (almost) self-
contained so the reader will find some concepts he already found in other parts of
the thesis. In particular in Section 7.4 some statements described in Section 1.3
will be revisited in the particular case of the AK model with vintage capital.

7.1. Introduction

We develop the Dynamic Programming approach to study a continuous time en-
dogenous growth model with vintage capital. We focus on the AK model proposed
by Boucekkine, Puch, Licandro and Del Rio in [BLPdR05] (see e.g. [BdlCL04],
[Ben91] for related models) which is summarized in Section 7.2.

In the literature continuous time endogenous growth models with vintage cap-
ital are treated by using the Maximum Principle. Here we develop the Dynamic
Programming approach to the representative model of [BLPdR05] getting sharper
results. The improvements we obtain mainly come from the fact that we are able to
find the value function and solve the optimal control problem in closed loop form,
a key feature of the Dynamic Programming approach.

We stress the fact that the novelty of this work is mainly on the methodolog-
ical side, i.e. we provide an example of the power of the Dynamic Programming
approach in the analysis of endogenous growth models.

In our opinion the Dynamic Programming approach to continuous time opti-
mal control problems arising in economic theory has not been exploited in its whole
power. This is especially true when the model presents some features like the pres-
ence of Delay Differential Equations and/or Partial Differential Equations and/or
state-control constraints. However the presence of such features is needed when we
want to look at problems with vintage capital, see for instance the quoted papers
[BLPdR05, BdlCL04, Ben91], and also [BG98, BG01], [FHKV06],[Fag05a, Fag05b]
on optimal technology adoption and capital accumulation.

The main methodological issues treated in this work are the following.

(I) (Explicit form of solutions).
Providing solutions in explicit form, when possible, helps the anal-

ysis of the model. In [BLPdR05] it is shown that the optimal consump-
tion path has a specific form (i.e. it is an exponential multiplied by a
constant Λ) but none is said about the form of Λ, the explicit expression
of the capital stock and investment trajectories. Moreover existence of

1The notation emphasizes this choice indeed the names of the variables are the ones used
in the economic literature: k, for "capital", is the name of the state variable, i, as investment,
is the name of control variable. Moreover we use the Hamiltonian with “supremum” instead of
“infimum”.
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a long run equilibrium for the discounted paths is established but none
is said about its form.

Here, using the fact that we can calculate explicitly the value func-
tion, we show a more precise result on the optimal consumption path
determining the constant Λ. So we explicitly determine an equation
for the optimal trajectories of the capital stock and of the investment.
This allows to find explicitly the long run equilibrium of the discounted
paths. So the study of their properties can be performed in a more
efficient way: in particular we can give more precise analysis of the
presence of oscillations in the capital and investment stock and in the
growth rates and we can make a precise comparison with the standard
AK model with zero depreciation rate of capital. See Section 7.6.1 for
further explanations.

(II) (Admissibility of candidate solutions).
When state/control constraints are present the necessary conditions

of Maximum Principle are difficult to solve. Often in studying growth
models one considers the problem without such constraints and then
checks if the optimal path for the unconstrained problem satisfy them.
This may be a difficult task and in some cases may even be not true.
Indeed, in [BLPdR05] it is not proved that the candidate optimal tra-
jectory of capital and investment is admissible (see the discussion in
Section 4.3, p. 60 of [BLPdR05]) so a nontrivial gap remains in the
theoretical analysis of the model.

Here we prove that the candidate optimal trajectory is admissible,
so fixing such gap: such difficult task is accomplished by changing the
point of view used in [BLPdR05] (and in many papers on continuous
time endogenous growth models) to find the optimal trajectory. See
Section 7.6.2 for further explanations.

(III) (Wider parameter set).
We work under more general assumptions on the parameters that

includes cases which may be still interesting from the economic point
of view. These cases are not included in [BLPdR05] and for this reason
the set of parameters for which their theory applies can be empty for
some values of σ ∈ (0, 1). See Section 7.6.3 for further explanations.

Concerning the economic interpretation of the methodological results listed
above we underline the following.

• We have at hand a power series expansion of the investment and capi-
tal path where the dependence of the coefficients on the initial invest-
ment path is explicit. This means that the short run fluctuations of
investment and capital and of their growth rates (which are driven by
replacement echoes) can be analyzed in terms of the deviation of the
investment’s history from the “natural” balanced growth path (see Sub-
section 7.6.1.1). Moreover the presence of explicit formulae opens the
door to a more precise empirical testing of the model.

• We provide a comparison of the model with the standard AK model
with depreciation rate of capital equal to 0. First we see that when the
lifetime R of machines goes to infinity the vintage AK model reduces
to such standard AK model. Moreover we show that in the vintage AK
model the “equivalent capital” (see Subsection 7.6.1.2 for a definition)
has a constant growth rate.
This may explain two qualitative characteristic of the model: first the
consumption path has a constant growth rate since the decision of the
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agent is to consume a constant share at the “equivalent capital” which
is the key variable of the system (see the closed loop relation (7.50));
second the agent adjusts the investments to keep constant the growth
rate of the “equivalent capital” (compare (7.50) and (7.51)) and this
gives rise to the fluctuations in the investment path (due to replacement
echoes). In this regard this is not a model of business cycle, as already
pointed out in [BLPdR05].

• In this setting, differently from the standard AK model with zero de-
preciation rate of capital, a positive investment rate is compatible with
a negative long run growth rate. This enlarge the scenarios where the
deviation between growth and investment rates can arise (see e.g. the
discussion on this given in [BLPdR05]).

We organize the chapter as follows.
In Section 7.2 we will briefly describe the model of [BLPdR05] and its rela-

tionship with the literature on vintage capital models. Moreover, in Subsection
7.2.1 we will describe our approach to the problem: rewrite the model in an infinite
dimensional space and apply the Dynamic Programming approach.

Then we come to the technical part of the chapter in Sections 3, 4, 5.
In Section 7.3 we give some preliminary results about the solution of the state

equation, the existence of optimal controls, the properties of the value function.
The mathematical core of the work is Section 7.4. Here we give, with complete

proofs: the precise formulation of the problem in infinite dimension (Subsection
7.4.1); the formulation of the HJB equation and its explicit solution (Subsection
7.4.2); the closed loop formula for the optimal strategies in explicit form (Subsection
7.4.3).

In Section 7.5 we come back to the original problem proving, as corollaries
of the results of Section 4, our results about the explicit form of the value func-
tion (Subsection 7.5.1), the explicit closed loop strategies (Subsection 7.5.2) and
the asymptotic behavior (long run equilibrium, costate dynamics, transversality
conditions, balanced growth paths) of the optimal trajectories (Subsection 7.5.3).

In Section 7.6 we discuss the implications of our results and make a compar-
ison with the previous ones. We divide it in three subsections, referring to the
methodological points (I)-(II)-(III) raised above.

Appendix 7.A is devoted to a quick development of the Dynamic Programming
approach to the standard AK model with zero depreciation rate of capital. It is
given here partly because we did not find it in the literature (even if it is standard),
partly for the commodity of the reader to have a sketch of the Dynamic Program-
ming approach in an easy case and to make more clear the comparison with the
present model (done in Subsection 7.6.1.2) and the related comments.

7.2. The AK model with vintage capital

We deal with the vintage capital model presented in [BLPdR05] as a repre-
sentative continuous time endogenous growth model with vintage capital. Vintage
capital is a well known topic in the growth theory literature of last ten years (see
for instance [Par94], [AH94], [JR97], [GGR99], [GJ98] [Ben91], [BdlCL04], [Iac02]).
Even in a simple setting like the one of AK models the introduction of vintage
capital involves the presence of oscillations in the short-run2 and this is one of the
main features that make the model interesting. Indeed the optimal paths in the
model of [BLPdR05] converge asymptotically to a steady state but the transition

2As we remind in Appendix 7.A, the optimal trajectories of the standard AK models are
simply exponential without transition towards steady state and this is one of main limits of such
models.
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is complex and involve nontrivial dynamics. So this model can be used to study
the contribution of the vintage structure of the capital in the transition and the
behavior of the system after economic shocks.

For an in-dept explanation of the model and its background see the Introduction
of [BLPdR05] or [BdlCL04]. We report here only its main features. First of all we
clarify that the model presented in [BLPdR05] is a vintage version of standard
AK model with CRRA (Constant Relative Risk Aversion) utility function (which
is recalled in Appendix 7.A in the case of zero depreciation rate of capital).

Obsolescence and deterioration of physical capital are simply modeled assuming
that all machines have the same technology and that they have a fixed lifetime R
(a constant “scrapping time”).

The time is continuous and t = 0 is the initial point (the horizon is infinite as
usual in growth models). However, since we want to introduce a delay effect in the
model due to the vintage capital structure, we assume that the economy exists at
least at time −R and that its behavior between t = −R and t = 0 is known. So all
variables of the model will be defined on [−R,+∞). Of course their paths between
t = −R and t = 0 will be considered data of the problem so we will define equations
and constraints for t ≥ 0.

We denote by k(t) the stock of capital at time t; i(t) and c(t) are the investment
and the consumption at time t. All of them are nonnegative. So

k(t) ≥ 0, i(t) ≥ 0, c(t) ≥ 0; ∀t ≥ 0.

The AK technology is the following: the aggregate production at time t is denoted
by y(t) and it satisfies, for t ≥ 0

(7.1) y(t) = a

∫ t

t−R

i(s)ds a > 0.

Interpreting the integral in the right hand side as the capital we then have, for t ≥ 0

y(t) = ak(t).

We have the following accounting relation, for t ≥ 0

(7.2) ak(t) = y(t) = i(t) + c(t)

so the non-negativity of all variables is equivalent to ask that, for t ≥ 0

(7.3) i(t), c(t) ∈ [0, y(t)] = [0, ak(t)].

If the investment function i(·) is assumed to be sufficiently regular (e.g. continuous),
then the above relation (7.1) can be rewritten as a Delay Differential Equation for
the capital stock

(7.4) k̇(t) = i(t) − i(t−R)

with initial datum k(0) given as function of the past investments by

(7.5) k(0) =

∫ 0

−R

i(s)ds.

The equilibrium is the solution of the problem of maximizing, over all investment-
consumption strategies that satisfy the above constraints (7.1), (7.2), (7.3), the
functional of CRRA (Constant Relative Risk Aversion) type

(7.6)
∫ +∞

0

e−ρt
c(t)1−σ

1 − σ
dt

where ρ > 0, σ > 0 (and σ 6= 1). Also more general set of parameters ρ and σ (e.g.
σ = 1 or some cases when ρ ≤ 0) can be treated without big effort, but we avoid
this for simplicity.
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From the mathematical point of view this model is an optimal control problem.
The state variable is the capital k, the control variables are the consumption c and
the investment i, the state equation is the Delay Differential Equation (7.4) with
the initial condition (7.5) (which is somehow unusual, see the following discussion
and Notation 7.1 for more explanations); the objective functional is (7.6). A control
strategy c(·), i(·) defined for t ≥ 0 is admissible if it satisfies for every such t the
constraints (7.2) and (7.3).

Since the two control functions i(·) and c(·) are connected by the relation (7.2)
then we can eliminate the consumption c(·) from the mathematical formulation of
the problem. Then the only control function is i(·) giving the present investment (as
said above its ‘history’ in the interval [−R, 0) is the initial datum ῑ(·)). We assume
that i(·) ∈ L2

loc([0,+∞); R+) Given an initial datum ῑ(·) and an investment strategy
i(·) we denote by kῑ,i(·) the associated solution (see Section 7.3 for its explicit form)
of the state equation (7.4). The strategy i(·) will be called admissible if it satisfies
the state-control constraints (coming from (7.3)):

(7.7) 0 ≤ i(t) ≤ akῑ,i(t) ∀t ≥ 0.

Now, using (7.2), we write the associated inter-temporal utility from consump-
tion as

J(ῑ(·); i(·)) def=

∫ ∞

0

e−ρs
(akῑ,i(t) − i(t))1−σ

(1 − σ)
ds

(we have explicitly written in the functional the dependence on the initial datum
ῑ(·)).

Given the above our problem is now the one of maximizing the functional
J(ῑ(·); i(·)) over all admissible investment strategies i(·).

It must be noted that the model reduces to the standard AK model with zero
depreciation rate of capital (described in the Appendix 7.A) when the delay R (i.e.
the “scrapping time”) is +∞3.

7.2.1. The Dynamic Programming Approach. In this subsection we see
how the general four steps of dynamic programming that we have described in the
Introduction, become in this applied case.

(i) First of all, given an initial datum ῑ(·) ∈ L2((−R, 0); R+) we define the
set of admissible strategies given ῑ(·) as

Iῑ =
{

i(·) ∈ L2
loc([0,+∞); R+) : i(t) ∈ [0, akῑ,i(t)], a.e.

}

and then the value function as

V (ῑ(·)) = sup
i(·)∈Iῑ

{
∫ ∞

0

e−ρs
(akῑ,i(t) − i(t))1−σ

(1 − σ)
ds

}

The first step of DP approach recommends to write the DP Principle
We cannot apply DP using state equation in delay form so we write
the problem in M2 (as describe in Section 1.3) and we write the HJB
equation in M2. We will use, for technical reasons, a setting where
the initial data will be both ῑ(·) and k(0) ignoring the relation k(0) =
∫ 0

−R
ῑ(s)ds that connects them. So in Section 7.4 we will consider an

artificial value function depending on ῑ(·) and k(0) and write and solve

3Indeed in such case

k(t) =

Z t

−∞

i(s)ds = k(0) +

Z t

0
i(s)ds

and so the Delay Differential Equation (7.4) becomes the Ordinary Differential Equation of the
standard AK model with zero depreciation rate of capital.
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the HJB equation for it (see Subsection 7.4.1). After this, in Section
7.5 we will go back to the value function defined here.

(ii) The second step of DP approach is now to solve the HJB equation. We
will find explicitly a solution of the HJB equation and prove that it
is the value function (see Propositions 7.24 and 7.32). The only other
examples of explicit solution of the HJB equation in infinite dimen-
sion involve, for what we know, linear state equations and quadratic
functionals (see Section 1.3 for references).

This HJB equation cannot be treated with the results of the exist-
ing literature. This is due, as previously said, to the presence of the
state/control constraint, to the unboundedness of the control operator
and the non-analyticity of the semigroup given by the solution operator
of the state equation (see Remark 7.21 for more details).

(iii) The third step will be then to write the closed loop (feedback) formula.
This means to write a formula that gives the present value of the optimal
control as function only of the present value of the state. In this case
the state is infinite dimensional and it is composed, for each t ≥ 0,
by the present value of the capital k(t) and by the past (at time t)
of the investment strategy {i(t + s), s ∈ [−R, 0)}. So the closed loop
formula will give the present value of the investment i(t) as a function
of the present value of the state and of the past of the investment itself
(see equation (7.39) for the feedback in infinite dimension and equation
(7.49) for its Delay Differential Equation version). This formula will be
given in term of the value function and so, using its explicit expression
found in step (ii), also the closed loop formula will be given in explicit
form. For details see Theorem 7.29 for the result in infinite dimensions
and Proposition 7.33 for the Delay Differential Equation version.

(iv) The closed loop formula will be then substituted into the state equation
(7.9) to get an equation for the optimal state trajectory (the so-called
Closed Loop Equation). Such equation will be a Delay Differential
Equation, as recalled at point (iii) above, and explicit solutions cannot
be given in general. However it allows to study the behavior of the
optimal paths and to perform numerical simulations. For details see
Theorem 7.35 and Subsections 7.5.3, 7.6.1.1.

7.3. Preliminary results on the control problem

We first introduce a notation.

Notation 7.1. We have to distinguish ῑ : [−R, 0) → R+ that is part of initial
data, i : [0,+∞) → R

+ that is the control strategy and ı̃ : [−R,+∞) → R
+ that is

piecewise defined as

(7.8) ı̃(s) =

{

ῑ(s) s ∈ [−R, 0)
i(s) s ∈ [0,+∞).

ı̃ is useful to rewrite more formally the state equation as in (7.9) below.

The state equation is now written as the Delay Differential Equation (on R+)

(7.9)







k̇(t) = ı̃(t) − ı̃(t−R), ∀t ≥ 0,
ı̃(s) = ῑ(s), ∀s ∈ [−R, 0),

k(0) =
∫ 0

−R
ῑ(s)ds,
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where R ∈ R is a positive constant, ῑ(·) and k(0) are the initial conditions. We
will assume ῑ(·) ≥ 0 and ῑ(·) 6≡ 0. Moreover ῑ(·) ∈ L2((−R, 0); R+). For every
i(·) ∈ L2

loc([0,+∞); R+) and every ῑ(·) ∈ L2((−R, 0); R+) the Delay Differential
Equation (7.9) admits a unique locally absolutely continuous solution given by

(7.10) kῑ,i(t)
def
=

∫ t

(t−R)∨0

i(s)ds +

∫ 0

(t−R)∧0

ῑ(s)ds =

∫ t

(t−R)

ı̃(s)ds

The functional to maximize is

J(ῑ(·); i(·)) def=

∫ ∞

0

e−ρs
(akῑ,i(t) − i(t))1−σ

(1 − σ)
ds

over the set

Iῑ def= {i(·) ∈ L2
loc([0,+∞); R+) : i(t) ∈ [0, akῑ,i(t)] for a.e. t ∈ R

+}.
Here a and σ are strictly positive constants with σ 6= 1. The choice of Iῑ implies
kῑ,i(·) ∈W 1,2

loc (0,+∞; R+) for every i(·) ∈ Iῑ.

Remark 7.2 (On the irreversibility constraint). In the definition of Iῑ
we have imposed two control constraints for each t ≥ 0: the first is of course
(akῑ,i(t) − i(t)) ≥ 0 that means exactly that the consumption cannot be negative;
the second is i(t) ≥ 0, i.e. irreversibility of investments. In the standard AK
growth model context (see Appendix 7.A) this assumption is usually replaced by
the constraint k(t) ≥ 0 (or some weaker “no Ponzi game” condition). There are some
arguments to believe that i(t) ≥ 0 is a more natural choice in our delay setting.
First of all in the vintage model i(t) is the investment in new capital and so the
irreversibility assumption is natural from the economic point of view. Moreover we
can observe that, unlike the non-delay case, see (7.69), i(t) ≥ 0 does not imply a
growth of the capital (see Subsection 7.6.3 on this). Finally if this constraint hold on
the datum ῑ(·) (as we assume) the set of admissible strategies is always nonempty.
If we take only the constraints k(t) ≥ 0 and (akῑ,i(t) − i(t)) ≥ 0 then there are
examples of initial data ῑ(·) (not always positive) with k(0) ≥ 0 such that the set of
admissible trajectories is empty (for instance ῑ(s) = 2χ[−R,−R/2](s)− 2χ(−R/2,0)(s)
for s ∈ [−R, 0)).

We will name Problem (P) the problem of finding an optimal control strategy
i.e. to find an i∗(·) ∈ Iῑ such that:

(7.11) J(ῑ(·); i∗(·)) = V (ῑ(·)) def= sup
i(·)∈Iῑ

{
∫ ∞

0

e−ρs
(akῑ,i(t) − i(t))1−σ

(1 − σ)
ds

}

.

We now give a preliminary study of the problem concerning the asymptotic behav-
ior of admissible trajectories, the finiteness of the value function, the existence of
optimal strategies and the positivity of optimal trajectories.

7.3.1. Asymptotic behavior of admissible trajectories. To find condi-
tions ensuring the finiteness of the value function we need first to study the asymp-
totic behavior of the admissible trajectories, in particular to determine which is the
maximum asymptotic growth rate of the capital.

Proposition 7.3. Given an initial datum ῑ(·) ∈ L2((−R, 0); R+) and a control
i(·) ∈ L2

loc([0,+∞); R+), we have that the solution kῑ,i(·) of (7.9) is dominated at
any time t ≥ 0 by the solution kM (·) obtained taking the same initial datum ῑ(·)
and the admissible control defined by the feedback relation iM (t) = akM (t) for all
t ≥ 0 (that is the maximum of the range of admissibility).
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Proof. The statement follows from the integral form of the Delay Differ-
ential Equation (equation (7.10)). Indeed by the admissibility constraints (7.7) we
have, for t ∈ [0, R],

kῑ,i(t) =

∫ 0

t−R

ῑ(s)ds+

∫ t

0

i(s)ds ≤
∫ 0

t−R

ῑ(s)ds+

∫ t

0

akῑ,i(s)ds

while the function kM (·) satisfies, for t ∈ [0, R],

kM (t) =

∫ 0

t−R

ῑ(s)ds+

∫ t

0

akM (s)ds

Given these the inequality kῑ,i(t) ≤ kM (t) for t ∈ [0, R], follows from a straightfor-
ward application of the Gronwall inequality (see e.g. [Hen81] page 6).
For t ∈ (R, 2R] we have, arguing as above

kῑ,i(t) =

∫ R

t−R

i(s)ds+

∫ t

R

i(s)ds ≤
∫ R

t−R

akῑ,i(s)ds+

∫ t

R

akῑ,i(s)ds

while the function kM (·) satisfies, for t ∈ (R, 2R],

kM (t) =

∫ R

t−R

akM (s)ds+

∫ t

R

akM (s)ds

Since from the first step we know that kῑ,i(t) ≤ kM (t) for t ∈ [0, R] then we have,

calling g(t) =
∫ R

t−R
akM (s)ds for t ∈ (R, 2R]:

kῑ,i(t) ≤ g(t) +

∫ t

R

akῑ,i(s)ds

kM (t) = g(t) +

∫ t

R

akM (s)ds

and then the Gronwall inequality gives the claim for t ∈ (R, 2R]. The claim for every
t ≥ 0 follows by an induction argument on the same line of the above steps. �

Observe now that, by its definition, kM (·) is the unique solution of

(7.12)











˙kM (t) = ı̃M (t) − ı̃M (t− R)

ı̃M (s) = ῑ(s) for s ∈ [−R, 0)

kM (0) =
∫ 0

−R
ῑ(r)dr > 0

and then for t ≥ R, kM (t) = h(t) where h(·) the unique solution of

(7.13)

{

ḣ(t) = a(h(t) − h(t−R)) for t ≥ R
h(s) = kM (s) for s ∈ [0, R)

For equation (7.13) we can apply standard statements on Delay Differential Equa-
tions as follows.

We define the characteristic equation of the Delay Differential Equation (7.13)
as

(7.14) z = a(1 − e−zR), z ∈ C

The characteristic equation is defined for general linear Delay Differential Equations
as described in [DVGVLW95] (page 27). In our case, by a convexity argument, we
can easily prove the following result.

Proposition 7.4. There exists exactly one strictly positive root of (7.14) if
and only if aR > 1. Such root ξ belongs to (0, a). If aR ≤ 1 then the only root with
non negative real part is z = 0.
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Since, as we will see in Proposition 7.6 and Remark 7.7, the maximum charac-
teristic root give the maximum rate of growth of the solution, to rule out the cases
where growth cannot occur it is natural to require the following.

Hypothesis 7.5. aR > 1.

We will assume from now on that Hypothesis 7.5 holds. Assuming Hypothesis
7.5 we have

(7.15)
g ∈ (0, ξ) =⇒ g < a(1 − e−gR)
g ∈ (−∞, 0) ∪ (ξ,+∞) =⇒ g > a(1 − e−gR).

Proposition 7.6. Let Hypothesis 7.5 hold true. Given an initial datum ῑ(·) ∈
L2((−R, 0); R+) with ῑ(·) 6≡ 0 and a control i(·) ∈ L2

loc([0,+∞); R+), we have that
for every ε > 0

lim
t→+∞

kM (t)

e(ξ+ε)t
= 0.

Proof. First we observe that being ῑ(·) 6≡ 0, kM (t) is strictly positive for
each t ≥ 0. To prove this it is enough to observe that, for t ≥ 0,

kM (t) =

∫ 0

(t−R)∧0

ῑ(s)ds+

∫ t

(t−R)∨0

akM (s)ds

and to argue by contradiction. Moreover, as we said above, for t ≥ R, kM (t) =
h(t) where h(·) the unique solution of (7.13). Now the solution h(t) of (7.13) is
continuous on [R,+∞) (see [BDPDM92] page 207). Moreover (see [DVGVLW95]
page 34) there exist at most N < +∞ (complex) roots {λj}Nj=1 of the characteristic
equation with real part exceeding ξ and there exist {pj}Nj=1 C-valued polynomial
such that

(7.16) h(t) = o(e(ξ+ε)t) +

N
∑

j=1

pj(t)e
λjt for t→ +∞

for every ε > 0. Since kM (t) and so h(t) remain strictly positive for all t ≥ R, then
all the pj vanish. So we have proved the claim. �

Remark 7.7 (On the Hypothesis 7.5). Hypothesis 7.5 has a clear economic
meaning: if there are no strictly positive root we can see, as in Proposition 7.3, that
the maximal growth of the capital stock4 is not positive since the the stock of capital
always goes to zero. So positive growth would be excluded from the beginning.
Moreover Hypothesis 7.5 is verified when we take the limit of the model as R goes
to +∞ which is “substantially” the standard AK model with zero depreciation rate
of capital. In this case we will have ξ → a.

The above Proposition 7.6 is what we need to analyze the finiteness of the value
function. Before to proceed with it we give a refinement of Proposition 7.4 that give
a more detailed analysis of the solutions of characteristic equation (7.14) and so of
the solution of equation (7.13) that will be useful later, see the proof of Proposition
7.36 and Subsection 7.6.1.1.

Proposition 7.8. Assuming Hypothesis 7.5 we can state that:

(a) The characteristic equation (7.14) has only simple roots.
(b) There are exactly 2 real roots of (7.14), i.e. ξ and 0.

4That occurs re-investing all capital.
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(c) There is a sequence {λk, k = 1, 2, ...} ⊂ C such that {λk, λk k = 1, 2, ...}
are the only complex and non real roots of (7.14).

For each k we have R · Imλk ∈ (2kπ, (2k + 1)π).
The real sequence {Reλk, k = 1, 2, ...}, is strictly negative and

strictly decreasing to −∞. Finally

(7.17) Reλ1 < ξ − a.

Proof. First of all we observe that z is a root of (7.14) if and only if w = zR
is a root of

(7.18) w = aR− aRe−w.

Then it is enough to apply Theorem 3.2 p. 312 and Theorem 3.12 p.315 of
[DVGVLW95]. The only statements which are not contained there are the fact
that Reλk → −∞ as k → +∞ and the inequality (7.17). To see the first observe
that, from (7.18) it follows, calling µk = R ·Reλk and νk = R · Imλk

aRe−µk sin νk = νk =⇒ e−µk >
νk
aR

and the claim is proved since νk → +∞ as k → +∞. The proof of inequality (7.17)
uses elementary arguments but it is a bit long so we give only a sketch of it. First
of all by (7.14) we get that, when aR > 1

(7.19) ξ > a

(

1 − 1

(aR)2

)

while, for aR > 5

(7.20) ξ > a

(

1 − 1

(aR)3

)

.

Moreover using (7.18) we get that

e−2µ1 − (a− µ1)
2 = ν2

1 > 4π2.

Now the function h(µ) = e−2µ−(a−µ)2 is strictly decreasing on (−∞, 0) and using
(7.19) and (7.20) we get that h(ξR − aR) < 4π2. This gives µ1 < ξR − aR and so
the claim. �

7.3.2. Finiteness of the value function. We now introduce the following
assumption that, given Hypothesis 7.5 will be a sufficient condition for the finiteness
of the value function for every initial datum5.

Hypothesis 7.9. ρ > ξ(1 − σ).

From now on we will assume that Hypotheses 7.5 and 7.9 hold. Now, thanks to
Proposition 7.3 and Hypothesis 7.9 we can exclude two opposite cases: on one hand,
when σ < 1, the existence of some ῑ(·) in which V (ῑ(·)) = +∞ (Corollary 7.10),
on the other hand, when σ > 1, the existence of some ῑ(·) in which V (ῑ(·)) = −∞
(Corollary 7.12).

Corollary 7.10. V (ῑ(·)) < +∞ for all ῑ(·) in L2((−R, 0); R+).

Proof. For σ > 1 it is true since J(ῑ(·); i(·)) ≤ 0 always. For σ ∈ (0, 1) we
observe that for every i(·) ∈ L2

loc([0,+∞); R+),

J(ῑ(·); i(·)) ≤ 1

1 − σ

∫ +∞

0

e−ρt(akῑ,i(t))
1−σdt ≤ 1

1 − σ

∫ +∞

0

e−ρt(akM (t))1−σdt.

5Indeed in the standard AK model with zero depreciation rate of capital such condition with
ξ = a is also necessary, see e.g. [FGS06]. In our case a similar result can be proved but we avoid
it for simplicity.
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so from the definition of the value function, Proposition 7.3 and Hypothesis 7.9,
the claim follows. �

Lemma 7.11. Given any initial datum ῑ(·) ∈ L2((−R, 0); R+), ῑ(·) 6≡ 0 there
exists an ε > 0 and an admissible control strategy i(·) such that i(t) = ε for all
t ≥ R. Moreover there exists a δ > 0 such that the control defined by the feedback
formula iδ(t) = akδ(t)− δ for all t ≥ 0 is admissible and iδ(t) ≥ δ > 0 for all t ≥ 0.

Proof. The idea: We give a constructive proof in four steps. We first find

a small α > 0 and a β < R such that the (constant) control i(t) = ε1
def
= aαβ

4 is
admissible in the interval (0, β4 ); then we see that such control can be lengthened

defining, on the interval [β4 , R − β
4 ), i(t) = ε2

def
= min{a2αβ2

32 , ε1}. Furthermore

we prove that we can extend such control on [R − β
4 , R) putting i(t) = ε

def
=

min{aε22
R
4 , ε2}. Observe that in view of the “minima” in the definitions of ε1, ε2, ε,

the control is decreasing on [0, R). Eventually (fourth step) we see that on the
interval [R,+∞) we can put our control constantly ε. The statement for δ follows
from this construction.

The proof:
first step: In view of the fact that ῑ(·) 6≡ 0 we can choose a positive number α

such that
β
def
= m({s ∈ (−R, 0) s.t. ῑ(s) ≥ α} > 0

where m is the Lebesgue measure. So
∫ 0

t−R

ῑ(s)ds ≥ αβ

2

for all t ∈ (0, β2 ) and in particular it is true for t ∈ (0, β4 ). Now for t ∈ [0, β4 ) we can

put i(t) = ε1
def
= aαβ

4 > 0 obtaining that

a

∫ t

t−R

ı̃(s)ds ≥ a

∫ 0

−R+ β
4

ῑ(s)ds ≥ aα
β

2
> aα

β

4
= i(t)

so the strategy is admissible on [0, β4 ). For such choice of i(t) we have ak(t)− i(t) ≥
aαβ
4 for t ∈ [0, β4 ).

second step: Choosing i(·) in the interval [0, β4 ) as in the first step, and for

t ∈ [β4 , R − β
4 ), i(t) = ε2

def
= min{a2αβ2

32 , ε1} > 0 (in view of the previous integral
such constant is in the range of admissible control for all t in the interval) we have
that for all t ∈ [β4 , R− β

4 )

a

∫ t

t−R

ı̃(s)ds ≥ a

∫ t

0

i(s)ds ≥ a
β

4

aαβ

4
=
a2αβ2

16
> a2α

β2

32
≥ i(t)

so the strategy is admissible on [β4 , R− β
4 ). For such choice of i(t) we have ak(t)−

i(t) ≥ aαβ2

32 for t ∈ [β4 , R− β
4 ).

third step: In particular we have put i(t) = ε2 > 0 for t ∈ (R/2, R− β
4 ) and so,

with a step similar to the previous one, we can put i(t) = ε
def
= min{aε22

R
4 , ε2} > 0

for t ∈ [R − β
4 , 0) and we have on such interval ak(t) − i(t) ≥ ε2

2
R
4 .

fourth step: In view of the “minima” in the definition of ε1, ε2 and ε we have
that ε ≤ ε2 ≤ ε1 and that i(t) ≥ ε in the interval [0, R). So, choosing i(t) = ε for
all t ≥ R, we get an admissible control, indeed ε > 0 and

a

∫ t

t−R

i(s)ds ≥ aRε > ε
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(the last follows by (H1)), for all t ≥ R. We have that, on [R,∞), ak(t) − i(t) ≥
aR−1

2 ε.
The second statement, related to the δ constant, follows from the previous proof

and from the observation we have done during the proof with respect to the term
ak(t) − i(t). If we consider the strategy of the previous proof we have that

ak(t) − i(t) ≥ δ
def
= min{ε, aR− 1

2
ε}

and i(t) ≥ δ for all t ≥ 0. Now if we consider such δ the strategy given by the
feedback formula iδ(t) = akδ(t)− δ satisfies the inequality iδ(t) > i(t) (where i(·) is
the strategy defined in first, second and third steps) for all t ≥ 0 arguing as in the
proof of the first statement of Proposition 7.3. Then we get that iδ(t) ≥ i(t) ≥ δ
for all t ≥ 0 so it is admissible and the claim is proved. �

Corollary 7.12. If ῑ(·) ∈ L2((−R, 0); R+) and ῑ(·) 6≡ 0 there exists a control
θ(·) ∈ Iῑ such that J(ῑ(·); θ(·)) > −∞.

Proof. It is sufficient to take the control iδ(t) s.t. ak(t) − iδ(t) = δ > 0
found in previous lemma. �

7.3.3. Existence of optimal strategies. We now state and prove the exis-
tence of optimal paths.

Proposition 7.13. An optimal control exists in Iῑ, i.e. we can find in Iῑ an
admissible strategy i∗(·) such that V (ῑ(·)) = J(ῑ(·); i∗(·)).

Proof. The proof is a simple application of a direct method (see also
[BLPdR05]. We will adapt the scheme of Askenazy and Le Van in [ALV99] to
our formulation.

We will indicate with µ the measure on R+ given by dµ(t) = e(−ε−ξ)tdt where
dt is the Lebesgue measure and ε > 0 is fixed. By L1(0,+∞; R;µ), or simply L1(µ)
we will denote the space of all Lebesgue measurable functions that are integrable
with respect to µ.

We consider Iῑ as subset of L1(µ).
We know that on a space of finite measure µ a subset G of L1(µ) is relatively

(sequentially) compact for the weak topology if and only if: for every ε > 0, there
exists a δ > 0 such that for every set I with µ(I) < δ and for all f ∈ G we have
∫

I f(x)dµ(x) < ε (this property is also known as Dunford - Pettis criterion see for
example [DS66] page 294 Corollary 11). In our case constraint (7.7), Proposition
7.3 and Proposition 7.6 guarantee such property for Iῑ.
We choose now a maximizing sequence in(·) ∈ Iῑ; thanks to the Dunford-Pettis
criterion we can we can find a subsequence inm

(·) ∈ L1(µ) and i∗(·) ∈ L1(µ) such
that inm

(·) ⇀ i∗(·) ∈ L1(µ). The functional

J(ῑ(·); ·) : L1(µ) ⊇ Iῑ → R,

that brings any i(·) ∈ L1(µ) to J(ῑ(·); i(·)), is concave and so it is weakly upper
semicontinuous on L1(µ) and so J(ῑ(·); i∗(·)) ≥ lim supm→∞ J(ῑ(·); inm

(·)).
It remain to show that i∗(·) ∈ Iῑ, i.e. i∗(·) satisfies the constraints (7.7). For
the positivity constraint inm

(·) ⇀ i∗(·) and inm
(·) ≥ 0 imply i∗(·) ≥ 0 since non-

negativity constraints are preserved under weak convergence. Concerning the other
constraint we observe that, thanks to (7.10) we know that kῑ,inm

(·) → kῑ,i∗(·)
uniformly on the compact sets and so akῑ,i∗(t) ≥ i∗(t) almost everywhere. This
also implies that i∗(·) ∈ L2

loc([0,+∞); R+). �
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7.3.4. Strict positivity of optimal trajectories. We can now prove the
strict positivity of optimal trajectories that we will use in Section 7.5. We have
already proved the strict positivity of the capital path kM in the proof of Proposition
7.6.

Lemma 7.14. Let ῑ(·) be in L2((−R, 0); R+) and ῑ(·) 6≡ 0 and let i∗(·) ∈ Iῑ be
an optimal strategy then kῑ,i∗(t) > 0 for all t ∈ [0,+∞).

Proof. For simplicity we will drop the ∗ writing i(·) instead of i∗(·) along
this proof. If there exist t̄ ∈ (0,+∞) such that kῑ,i(t̄) = 0 then by (7.10) (and a
simple Gronwall-type argument) kῑ,i(t) = 0 for all t ≥ t̄.
So if σ > 1 the statement is a consequence of Corollary 7.12.

Then suppose that (σ < 1) and that there exist a first t̄ > 0 such that kῑ,i(t̄) =
0. We assume that such t̄ is greater than R/2 but this imposition can be easily
overcome (indeed noting that t̄ > 0 we can choose n ∈ N such that t̄ > R/n and
proceed in a similar way).

We note that kῑ,i(t̄) = 0 implies i = 0 in the set [t̄−R, t̄].
Thanks to the fact that kῑ,i(t) is positive and continuous until t̄ and that i = 0

(or ı̃ = 0) in the set [t̄−R, t̄] we can say that exist ε > 0 such that the measure of
the set

Θε def= {t ∈ [t̄−R/2, t̄] : akῑ,i − i(t) > ε}
is strictly positive (for the Lebesgue measure m): let be h = m(Θǫ) > 0. We choose
̺ < ε and define the new strategy i̺(·):

i̺(t) =

{

i(t) + ̺ = ̺ for t ∈ Θε

i(t) otherwise

From the choice of Θε and ̺ we obtain that iε,̺(·) is in Iῑ. The following estimate
is valid:

J(ῑ(·); i̺(·)) = I1 + I2 + I3 + I4
def
=

∫ t̄−R/2

0

e−ρt
(akῑ,i(t) − i(t))1−σ

1 − σ
dt+

+

∫

([t̄−R/2,t̄]−Θε)

e−ρt
(akῑ,i̺(t) − i(t))1−σ

1 − σ
dt+

+

∫

Θε

e−ρt
(akῑ,i̺(t) − i̺(t))

1−σ

1 − σ
dt+

∫ t̄+R

t̄

e−ρt
(akῑ,i̺(t) − i̺(t))

1−σ

1 − σ
dt.

Moreover we have the following estimates (we use that i = 0 on the set [t̄−R, t̄]):

I2 ≥ I ′2
def
=

∫

([t̄−R/2,t̄]−Θε)

e−ρt
(akῑ,i(t))

1−σ

1 − σ
dt

I3 ≥
∫

Θε

e−ρt
(akῑ,i(t) − ̺)1−σ

1 − σ
dt ≥ (linearizing)

≥ I1
3 − I2

3
def
=

∫

Θε

e−ρt
(akῑ,i(t))

1−σ

1 − σ
−
∫

Θε

e−ρtε−σ̺dt+ o(̺).

Furthermore:

I4 ≥
∫ t̄+R/2

t̄

e−ρt
(akῑ,i̺(t) − i̺(t))

1−σ

1 − σ
dt ≥

∫ t̄+R/2

t̄

e−ρt
(ah̺)1−σ

1 − σ
dt

So I2
3 = a1̺ and I4 ≥ a2̺

1−σ where a1 and a2 are positive constants independent
by ̺. Summarizing:

J(ῑ(·); iε,̺(·)) ≥ (I1 + I ′2 + I1
3 ) + (−I2

3 + I4) ≥ J(ῑ(·); i(·)) + (−a1̺+ a2̺
1−σ) + o(̺)
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so for ̺ small enough we have J(ῑ(·); i̺(·)) > J(ῑ(·); i(·)) and this is a contradiction.
�

7.4. Writing and solving the infinite dimensional problem

7.4.1. Rewriting Problem (P) in infinite dimensions. Some of the def-
initions and results presented in this subsection was already introduced in Section
1.3. We choose to rewrite them for reader convenience.

Given any t ≥ 0 we indicate the “ history” of investments at time t with ı̃t
which is defined as follows:

(7.21)

{

ı̃t : [−R, 0] → R

ı̃t(s) = ı̃(t+ s)

The capital stock can then be rewritten as

k(t) =

∫ 0

−R

ı̃t(s)ds

and so the Delay Differential Equation (7.9) can be rewritten as

(7.22)

{

k̇(t) = B(̃ıt)

(k(0), ı̃0) = (
∫ 0

−R ῑ(s)ds, ῑ)

where B is the continuous linear map
{

B : C([−R, 0]) → R

B(f) = f(0) − f(−R)

Equation (7.22) has a pointwise meaning only if the control is continuous but always
has an integral sense (as in (7.10)).
The link between the initial condition for k(t) and ı̃t (that is k(0) =

∫ 0

−R
ı̃0(s)ds)

has a clear economic meaning but is, so to speak, nonstandard from a mathematical
point of view. We “ suspend” it in this section and will reintroduce it in section 7.5
when we will find the optimal feedback for Problem (P). So we consider now initial
data given by (k0, ῑ) where k0 and ῑ have no relationship. Our problem becomes a
bit more general:

(7.23)

{

k̇(t) = B(̃ı t)
(k(0), ı̃0) = (k0, ῑ)

Its solution is

(7.24) kk0,ῑ,i(t) = k0 −
∫ 0

−R

ῑ(s)ds+

∫ t

t−R

ı̃(s)ds

Clearly for every t ≥ 0, kR 0
−R

ῑ(s)ds,ῑ,i(t) = kῑ,i(t) as defined in equation (7.10). Now

we introduce the infinite dimensional space in which we re-formulate the problem,
it is:

M2 def= R × L2(−R, 0)

A generic element x of M2 will be denoted as a couple (x0, x1). The scalar product
on M2 will be the one on a product of Hilbert spaces i.e.:

〈(x0, x1), (z0, z1)〉M2
def
= x0z0 + 〈x1, z1〉L2

for every (x0, x1), (z0, z1) ∈M2. Now we introduce the operator A∗ on M2:










D(A∗)
def
= {(ψ0, ψ1) ∈M2 : ψ1 ∈ H1(−R, 0), ψ0 = ψ1(0)}

A∗ : D(A∗) →M2

A∗(ψ0, ψ1)
def
= (0, d

dsψ
1)
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Abusing of notation it is also possible to confuse, on D(A∗), ψ1(0) with ψ0 and
redefine

{

B : D(A∗) → R

B(ψ(0), ψ) = Bψ = ψ(0) − ψ(−R) ∈ R

Notation 7.15. We will indicate with F the application

F : L2(−R, 0) → L2(−R, 0)

z 7→ F (z)

where

(7.25) F (z)(s)
def
= −z(−R− s)

and with S the application

S : L2(−R, 0) → R

S : z 7→
∫ 0

−R

z(s)ds

Definition 7.16 (Structural state). Given initial data (k0, ῑ) we set for
simplicity y = (k0, F (ῑ)) ∈M2 (that will be the initial datum in the Hilbert setting).

Given ῑ ∈ L2((−R, 0)), i ∈ L2
loc[0,+∞), k0 ∈ R and kk0,ῑ,i(t) as in (7.24) we

define the structural state of the system the couple xy,i(t) = (x0
y,i(t), x

1
y,i(t))

def
=

(kk0,ῑ,i(t), F (̃ıt)). In view of what we have said x0
y,i(t) ∈ R and x1

y,i(t) ∈
L2((−R, 0); R) and so xy,i(t) ∈M2

Theorem 7.17. Assume that ῑ ∈ L2((−R, 0), i ∈ L2
loc[0,+∞), k0 ∈ R y =

(k0, F (ῑ)), then, for every T > 0, the structural state xy,i(t) = (x0
y,i(t), x

1
y,i(t)) =

(kk0,ῑ,i(t), F (̃ıt)) is the unique solution in

(7.26) Π
def
=

{

f ∈ C([0, T ];M2) :
d

dt
j∗f ∈ L2((0, T );D(A∗)′)

}

to the equation:

(7.27)

{

d
dtx(t) = Ax(t) +B∗i(t), t > 0
x(0) = y = (k0, F (ῑ))

where j∗, A and B∗ are the dual maps of the continuous linear operators

j : D(A∗) →֒M2,

A∗ : D(A∗) →M2,

B : D(A∗) → R.

Here j is simply the embedding, D(A∗) is equipped with the graph norm and D(A∗)′

is the topological dual of D(A∗).

Proof. We have already see this theorem in the general case in Theorem
1.33. The proof can be found in [BDPDM92] Theorem 5.1 page 258. �

Remark 7.18 (On the adjoint of the operators A∗ and B). A is the
adjoint of the linear operator A∗ and so it is linear and continuous from M2 to
D(A∗)′ = L(D(A∗),R). The explicit expression of A(ψ0, ψ1) for the the couples in
which ψ1 is differentiable is

A(ψ0, ψ1)[(ϕ0, ϕ1)] = ψ1(0)ϕ1(0) − ψ1(−R)ϕ1(−R)−

−
∫ 0

−R

d

ds
ψ1(s)ϕ1(s)ds ∀(ϕ0, ϕ1) ∈ D(A∗)
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Endowing D(A∗) with the graph norm we get that A is continuous and can be
extended on all M2 by density.
The expression for B∗ is simpler and it is

{

B∗ : R → D(A∗)′

B∗i = i(δ0 − δ−R)

Here δ0 and δ−R are the Dirac deltas in 0 and −R respectively and they are elements
of D(A∗)′.

We want to formulate an optimal control problem in infinite dimensions that,
thanks to results of the previous section, “contains” the Problem (P). To do this we
need first the following result that extends the existence and uniqueness results of
the previous Theorem 7.17.

Theorem 7.19. The equation
{

d
dtx(t) = Ax(t) +B∗i(t), t > 0
x(0) = y

for y ∈M2, i ∈ L2
loc[0,+∞) has a unique solution in Π (defined in (7.26)).

Proof. We have already seen this theorem in the general case in Theorem
1.33. The proof can be found in [BDPDM92] Theorem 5.1 page 258. �

Now we can formulate our optimal control problem in infinite dimensions. The
state space is M2, the control space is R, the time is continuous. The state equation
in M2 is given by

(7.28)

{

d
dtx(t) = Ax(t) +B∗i(t), t > 0
x(0) = y

for y ∈ M2, i ∈ L2
loc[0,+∞). Thanks to Theorem 7.19 it has a unique solution

xy,i(t) in Π, so t 7→ x0
y,i(t) is continuous and it makes sense to consider the set of

controls

Iy def= {i ∈ L2
loc([0,+∞); R+) : i(t) ∈ [0, ax0

y,i(t)] for a.e. t ∈ R
+}

We define the objective functional as

J0(y; i)
def
=

∫ ∞

0

e−ρs
(ax0

y,i(t) − i(t))1−σ

(1 − σ)
ds

The value function is then:


















V0(y)
def
= sup

i∈Iy

{
∫ ∞

0

e−ρs
(ax0

y,i(t) − i(t))1−σ

(1 − σ)
ds

}

, if Iy 6= ∅

V0(y)
def
= −∞, if Iy = ∅

Remark 7.20 (Connection with the starting problem). If we have for
some ῑ(·) ∈ L2((−R, 0); R+)

y =
(

S(ῑ), F (ῑ)
)

we find Iy = Iῑ, J0(y; i) = J(ῑ; i) and V0(y) = V (ῑ) and the solution of the differ-
ential equation (7.28) is given by Definition 7.16 as given in Theorem 7.17.
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7.4.2. The HJB equation and its explicit solution. We now describe the
Hamiltonians of the system. First of all we introduce the current value Hamiltonian:
it will be defined on a subset E of M2×M2×R (the product of state space, co-state
space and control space) given by6

E
def
= {(x, P, i) ∈M2 ×M2 × R : x0 > 0, i ∈ [0, ax0], P ∈ D(A∗)}

and its form is the following: (〈i, BP 〉R is simply the product on R):

HCV (x, P, i)
def
= 〈x,A∗P 〉M2 + 〈i, BP 〉R +

(ax0 − i)1−σ

(1 − σ)

When σ > 1 the above is not defined in the points in which ax0 = i. In such points
we set then HCV = −∞. In this way we take HCV with values in R.

We can now define the maximum value Hamiltonian (that we will simply call
Hamiltonian) of the system: we name G the subset of M2 ×M2 (the product of
state space and co-state space) given by:

G
def
= {(x, P ) ∈M2 ×M2 : x0 > 0, P ∈ D(A∗)}

The Hamiltonian is given by:
{

H : G→ R

H : (x, P ) 7→ supi∈[0,ax0]HCV (x, P, i)

The HJB equation is
ρw(x) −H(x,Dw(x)) = 0

i.e.

(7.29) ρw(x) − sup
i∈[0,ax0]

{

〈x,A∗Dw(x)〉M2 + 〈i, BDw(x)〉R +
(ax0 − i)1−σ

(1 − σ)

}

= 0

Now we give the definition of solution of the HJB equation.

Remark 7.21 (On the definition of solution of the HJB equation). As
we have already noted the HJB equation (7.29) cannot be treated with the results
of the existing literature. This is due to the presence of the state/control constraint
(i.e. the investments that are possible at time t ≥ 0 depend on k at the same time
t: i(t) ∈ [0, ak(t)]), to the unboundedness of the control operator (i.e. the term
BDV (x0, x1)) and the non-analyticity of the semigroup generated by the operator
A. To overcome these difficulties we have to give a suitable definition of solution.
We will require the following facts:

(i) the solution of the HJB equation (7.29) is defined on a open set Ω of
M2 and is C1 on such set;

(ii) on a subset Ω1 ⊆ Ω, closed in Ω where the trajectories interesting from
the economic point of view must remain, the solution has differential in
D(A∗) (on D(A∗) also the Dirac δ and so B make sense);

(iii) the solution satisfies (7.29) on Ω1.

Definition 7.22 (Regular solution). Let Ω be an open set of M2 and Ω1 ⊆ Ω
a subset closed in Ω. An application w ∈ C1(Ω; R) is a solution of the HJB equation
(7.29) on Ω1 if ∀x ∈ Ω1







(x,Dw(x)) ∈ G

ρw(x) −H
(

x,Dw(x)
)

= 0

6Recall that an element x ∈ M2 is done by two components: x0 and x1, so x = (x0, x1).
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Remark 7.23 (On the form of the Hamiltonian). If P ∈ D(A∗) and
(BP )−1/σ ∈ (0, ax0], by elementary arguments, the function

HCV (x, P, ·) : [0, ax0] → R

admits a unique maximum point given by

iMAX = ax0 − (BP )−1/σ ∈ [0, ax0)

and then we can write the Hamiltonian in a simplified form:

H((x0, x1), P ) = 〈(x0, x1), A∗P 〉M2 + ax0BP +
σ

1 − σ
(BP )

σ−1
σ(7.30)

The expression for iMAX will be used to write the solution of the Problem (P) in
closed-loop form.

We can now give an explicit solution of the HJB equation. For an explanation
of how we guess it (that comes from the economic interpretation of the term Γ0

defined in the following formula (7.31)) see Remark 7.25 and Subsection 7.6.1.2.
First define, for x ∈M2 the quantity

(7.31) Γ0(x)
def
= x0 +

∫ 0

−R

eξsx1(s)ds

and then define the set Ω ⊂M2 (which will be the Ω of the Definition 7.22) as

Ω
def
=

{

x = (x0, x1) ∈M2 : x0 > 0, Γ0(x) > 0

}

Finally
(

calling α =
ρ− ξ(1 − σ)

σξ

)

we define the set Y ⊆ Ω (which will be the Ω1

of the Definition 7.22) as

(7.32) Y
def
=

{

x = (x0, x1) ∈ Ω : Γ0(x) ≤
1

α
x0

}

It is easy to see that Ω is an open subset of M2 while Y is closed in Ω. We are
now ready to present an explicit solution of the HJB equation (7.29) which, in next
subsection, will be proved to be the value function under an additional assumption7.

Proposition 7.24. If Hypotheses 7.5 and 7.9 hold the function

v : Ω → R

(7.33) v(x)
def
= ν[Γ0(x)]

1−σ

with

ν =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)−σ
1

(1 − σ)
· a
ξ

is differentiable in all x ∈ Ω and is a solution of the HJB equation (7.29) on Y in
the sense of Definition 7.22.

Proof. The function v is of course continuous and differentiable in every
point of Ω and its differential in x = (x0, x1) is

Dv(x) = (ν(1 − σ)[Γ0(x)]
−σ , {s 7→ ν(1 − σ)[Γ0(x)]

−σeξs})

7The same procedure is used for the standard AK model, see Appendix 7.A in the case of
zero depreciation rate of capital.
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So Dv(x) ∈ D(A∗) for every x ∈ Ω.
We can also calculate explicitly A∗Dv and BDv getting:

A∗Dv(x) = (0, {s 7→ ν(1 − σ)[Γ0(x)]
−σξeξs})(7.34)

BDv(x) = ν(1 − σ)[Γ0(x)]
−σ(1 − e−ξR) > 0(7.35)

so, using the characteristic equation (7.14)

(7.36) [BDv(x)]−1/σ =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)

Γ0(x)

Form the definition of Ω we have [BDv(x)]−1/σ > 0 for x ∈ Ω. Moreover if x ∈ Y
then

(7.37) Γ0(x) ≤
1

α
x0

and then [BDv(x)]−1/σ ≤ ax0. So we can use Remark 7.23 and write the Hamil-
tonian in the form of equation (7.30). Substituting (7.34) and (7.35) in (7.30) we
find, by straightforward calculations, the relation:

(7.38) ρv(x) − 〈x,A∗Dv(x)〉M2 −−ax0BDv(x) − σ

1 − σ
(BDv(x))

σ−1
σ = 0.

The claim is proved. �

Remark 7.25 (On the solution of the HJB equation). The reason why the
function v solves the HJB equation comes from the meaning of the quantity Γ0(x)
which we call “equivalent capital” (see Subsection 7.6.1.2). Indeed from this inter-
pretation it is reasonable to expect the value function to be (1 − σ)-homogeneous
with respect to Γ0(x) where there are no corner solutions.

Moreover the choice of Y comes from the need of avoiding corner solutions.
Indeed we know that in the standard AK model, in presence of corner solutions,
the value function is different (see Appendix 7.A for the case of zero depreciation
rate of capital). The same would happen here. To prove that v is the value function
in next subsection we will need to prove that the closed loop strategy coming from v
are admissible and this will be true assuming another restriction on the parameters
of the model. This is a key point to solve the theoretical problem of [BLPdR05]
mentioned at point (II) of the Introduction and in Subsection 7.6.2.

7.4.3. Closed loop in infinite dimensions. We begin with some definitions.

Definition 7.26 (AFSy). Given y ∈ M2 we will call Φ ∈ C(M2) an admis-
sible feedback (closed loop) strategy related to the initial point y if the equation.

{

d
dtx(t) = Ax(t) +B∗(Φ(x(t))), t > 0
x(0) = y

has an unique solution xΦ(t) in Π and Φ(xΦ(·)) ∈ Iy. We will indicate the set of
admissible feedback (closed loop) strategies related to y with AFSy.

Definition 7.27 (OFSy). Given y ∈ M2 we will call Φ an optimal feedback
(closed loop) strategy related to y if it is in AFSy and

V0(y) =

∫ +∞

0

e−ρt
(

ax0
Φ(t) − Φ(xΦ(t))

)1−σ

(1 − σ)
dt.

We will indicate the set of optimal feedback (closed loop) strategies related to y with
OFSy.
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We have a solution of the HJB equation (7.29) only in a part of the state space
(that is Y ). So we can prove that closed loop optimal strategies are optimal only
if they remain in Y . This means that we have to impose another condition on the
parameters of the problem. As we will remark in Section 7.6.1 such hypothesis is
reasonable from an economic point of view as it requires to rule out corner solutions.

Hypothesis 7.28.
ρ− ξ(1 − σ)

σ
≤ a.

From now on we will assume that Hypotheses 7.5, 7.9, 7.28 hold true.

Theorem 7.29. Given ῑ ∈ L2((−R, 0); R+) with and ῑ 6≡ 0, if we call y =
(S(ῑ), F (ῑ)), then the application

Φ: M2 → R

(7.39) Φ(x)
def
= ax0 −

(

ρ− ξ(1 − σ)

σ
· a
ξ

)

Γ0(x)

is in OFSy.

Proof. Part 1. We prove that Φ ∈ AFSy.
We claim that

(7.40)

{

d
dtxΦ(t) = AxΦ(t) +B∗(Φ(xΦ(t))), t > 0
xΦ(0) = y = (S(ῑ), F (ῑ))

has a unique solution in Π (defined in 7.26). We consider first the following integral
equation (with unknown i: along this proof we drop the “tilde” sign to avoid heavy
notation).

(7.41)







































i(t) =

(

a− ρ− ξ(1 − σ)

σξ/a

)(
∫ t

t−R

i(s)ds

)

−

−ρ− ξ(1 − σ)

σξ/a

∫ 0

−R

eξsF (it)(s)ds, t ≥ 0

i(s) = ῑ(s), s ∈ [−R, 0).

Such equation has a solution i which is absolutely continuous solution on [0,+∞)
(see for example [BDPDM92] page 287 for a proof). We now claim that i(t) > 0
for all t ≥ 0. First we prove that i(0) > 0. Indeed

i(0) =

∫ 0

−R

[

a− ρ− ξ(1 − σ)

σξ/a

(

1 − eξ(−R−s)
)

]

ῑ(s)ds.

Since for every s ∈ (−R, 0), 1−eξ(−R−s) < ξ
a (in view of the fact that ξ is a positive

solution of equation (7.14)) then we get by Hypothesis 7.9

i(0) >

∫ 0

−R

[

a− ρ− ξ(1 − σ)

σ

]

ῑ(s)ds,

so, using Hypothesis 7.28 we obtain i(0) > 0. Now, if there exists a first point t̄ in
which the solution is zero then we have:

0 = i(t̄) =

∫ 0

−R

[

a− ρ− ξ(1 − σ)

σξ/a

(

1 − eξ(−R−s)
)

]

it̄(s)ds

but, arguing as for t = 0, we can see that the right side is > 0 so we have a
contradiction.

Now we consider the equation

(7.42)

{

d
dtx(t) = Ax(t) +B∗(i(t)), t > 0;
x(0) = y = (S(ῑ), F (ῑ)).
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We know, thanks to Theorem 7.17, that the only solution in Π of such equation is
x(t) = (η(t), F (it)) where η(t) is the solution of

(7.43)

{

ż(t) = B(it)
(z(0), i0) = (S(ῑ), ῑ)

(

that is η(t) =
∫ t

t−R i(s)ds
)

We claim that x(t) is a solution of (7.40). Indeed

(7.44) Φ(x(t)) = aη(t) −
(

ρ− ξ(1 − σ)

σξ/a

)(
∫ 0

−R

eξsF (it)(s)ds+ η(t)

)

and so (by (7.41):

Φ(x(t)) = η(t)

(

a− ρ− ξ(1 − σ)

σξ/a

)

+ i(t)−

−
(

a− ρ− ξ(1 − σ)

σξ/a

)(
∫ t

(t−R)

i(s)ds

)

and by (7.43) we conclude that

Φ(x(t)) = i(t)

and so x(t) = xΦ(t) is a solution of (7.40) and is in Π. Moreover thanks to the
linearity of Φ we obtain that xΦ(t) is the only solution in Π. We have now to show
that i(·) = Φ(xΦ(·)) ∈ Iy. The previous steps of the proof gives

xΦ(t) = (x0
Φ(t), x1

Φ(t)(·)) =
(

S(it), F (it)
)

where i is absolutely continuous and so in L2
loc[0,+∞). We claim that Φ(xΦ(t)) =

i(t) ∈ (0, ax0
Φ(t)). In view of the fact that i(t) > 0 for all t ≥ 0 it is enough to prove

that i(t) < ax0
Φ(t). Indeed by (7.41)

ax0
Φ(t) − i(t) =

(

ρ− ξ(1 − σ)

σξ/a

)

(

S(it) +

∫ 0

−R

eξsF (it)(s)ds
)

≥

≥
(

ρ− ξ(1 − σ)

σξ/a

)(
∫ 0

−R

it(s)(1 − eξ(−R−s))d

)

s > 0.

The last inequality is strict due to Hypothesis 7.9 and to the fact that i(t) > 0 for
all t > 0. So i(t) < ax0

Φ(t) and we know that Φ is an admissible feedback strategy
related to y = (S(ῑ), F (ῑ)).

Part 2. We prove now that Φ ∈ OFSy.
We consider v as defined in Proposition 7.24. It is easy to see from the first part

of the proof that xΦ(t) remain in Y as defined in (7.32) and so the Hamiltonian (as
in the proof of Proposition 7.24) can be expressed in the simplified form of equation
(7.30).
We introduce the function:

v0(t, x) : R × Ω → R

v0(t, x)
def
= e−ρtv(x) (v is defined in (7.33))

Using that (Dv(xΦ(t))) ∈ D(A∗) and that the application x 7→ Dv(x) is continuous
with respect to the norm of D(A∗), we find:

d

dt
v0(t, xΦ(t)) = −ρv0(t, xΦ(t)) +

+〈Dxv0(t, xΦ(t))|AxΦ(t) +B∗i(t)〉D(A∗)×D(A∗)′ =

= −ρe−ρtv(xΦ(t)) +(7.45)

+e−ρt
(

〈A∗Dv(xΦ(t)), xΦ(t)〉M2 + 〈BDv(xΦ(t)), i(t)〉R
)
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By definition (note that J0(y; i) = J0(y; Φ(xΦ))):

v(y) − J0(y; i) = v(xΦ(0)) −
∫ ∞

0

e−ρt
(ax0

Φ(t) − Φ(xΦ)(t))1−σ

(1 − σ)
dt =

Then, using (7.45) (we use Proposition 7.3 to guarantee that the integral is finite),
we obtain

=

∫ ∞

0

e−ρt
(

ρv(xΦ(t)) − 〈A∗Dv(xΦ(t)), xΦ(t)〉M2 − 〈BDv(xΦ(t)), i(t)〉R
)

dt−

−
∫ ∞

0

e−ρt
(

(ax0
Φ(t) − i(t))1−σ

(1 − σ)

)

dt =

=

∫ ∞

0

e−ρt
(

ρv(xΦ(t)) − 〈A∗Dv(xΦ(t)), xΦ(t)〉M2−

−〈BDv(xΦ(t)), i(t)〉R − (ax0
Φ(t) − i(t))1−σ

(1 − σ)

)

dt =

(7.46) =

∫ ∞

0

e−ρt
(

H(xΦ(t), Dv(xΦ(t))) −HCV (xΦ(t), Dv(xΦ(t)), i(t))

)

dt

The conclusion follows from Remark 7.20 and by the three observations listed below.

(1) Noting that H(xΦ(t), Dv(xΦ(t))) ≥ HCV (xΦ(t), Dv(xΦ(t)), i(t)) the
(7.46) implies that, for every admissible control i, v(y) − J0(y; i) ≥ 0
and then v(y) ≥ V0(y).

(2) The original maximization problem is equivalent to the problem of find-
ing a control i that minimizes v(y) − J0(y; i)

(3) The feedback strategy Φ achieves v(y)−J0(y; i) = 0 that is the minimum
in view of point 1.

�

From the above proof we get an explicit expression for the value function V0

that we state in the following corollary.

Corollary 7.30. Given any ῑ ∈ L2((−R, 0); R+) and setting y = (S(ῑ), F (ῑ))
we have that

V (ῑ) = V0(y) = v(y).

Remark 7.31 (Further regularity of the optimal strategies). From Theo-
rem 7.29 it follows that the optimal control i∗ : R+ → R is inH1

loc[0,+∞). Moreover
for every θ ∈ N we have i∗|(θR,+∞)(t) ∈ Hθ

loc[θR,+∞).

7.5. Back to Problem (P)

We now use the results we found in the infinite dimensional setting to solve the
original optimal control Problem (P).

7.5.1. The explicit form of the value function. First of all observe that,
given any initial datum ῑ(·) ∈ L2((−R, 0); R+) and writing y = (S(ῑ), F (ῑ)), the
quantity Γ0(y) defined in (7.31) becomes

(7.47)

Γ(ῑ(·)) def= Γ0 (S(ῑ), F (ῑ)) =

∫ 0

−R

(

1 − e−ξ(R+s)
)

ῑ(s)ds

= k(0) −
∫ 0

−R

e−ξ(R+s) ῑ(s)ds

A comment on the meaning of such quantity is given in Section 7.6.1.2. Now, as a
consequence of Corollary 7.30 we have:
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Proposition 7.32. If Hypotheses 7.5, 7.9 and 7.28 hold, the explicit expression
for the value function V related to Problem (P) is

V (ῑ(·)) = ν[Γ(ῑ(·))]1−σ = ν

(

k(0) −
∫ 0

−R

e−ξ(R+s) ῑ(s)ds

)1−σ

where

ν =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)−σ
1

(1 − σ)
· a
ξ

7.5.2. Closed loop optimal strategies for Problem (P). We now use the
closed loop in infinite dimension to write explicitly the closed loop formula and
the closed loop equation for Problem (P). First of all we recall that, given t ≥ 0,
ῑ(·) ∈ L2((−R, 0); R+) and i(·) ∈ Iῑ the “history” ı̃t(·) ∈ L2((−R, 0); R+) is defined
as in (7.21) and we can write

(7.48) Γ(̃ıt(·)) =

∫ 0

−R

(

1 − e−ξ(R+s)
)

ı̃t(s)ds =

∫ t

t−R

(

1 − e−ξ(R+s)
)

ı̃(s)ds.

We use the ∗ for the optimal investment (and capital) so ı̃∗t (·) ∈ L2((−R, 0); R+)
is the history of the optimal investment.

Next we apply Theorem 7.29 (in particular (7.39) and (7.41)) and (7.10) getting
the following result whose proof is immediate.

Proposition 7.33. Let Hypotheses 7.5, 7.9 and 7.28 be satisfied, given an ini-
tial datum ῑ(·) ∈ L2((−R, 0); R+) in equation (7.9) the optimal investment strategy
i∗(·) and the related capital stock trajectory k∗(·) satisfy for all t ≥ 0:

i∗(t) = ak∗(t) −
(

ρ− ξ(1 − σ)

σ
· a
ξ

)

Γ(̃ı∗t (·)).(7.49)

so calling c∗(t) = ak∗(t) − i∗(t) we have

c∗(t) =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)

Γ(̃ı∗t (·)).(7.50)

We now want to find a more useful closed loop formula. We start by the
following lemma.

Lemma 7.34. Let Hypotheses 7.5, 7.9 and 7.28 be satisfied, given an initial
datum ῑ(·) ∈ L2((−R, 0); R+) in equation (7.9), there exist constants Λ = Λ(ῑ(·)) >
0 , g ∈ R (g independent of ῑ(·)) such that the optimal investment strategy i∗(·) for
Problem (P) and the related capital stock trajectory k∗(·) satisfy for all t ≥ 0:

(7.51) ak∗(t) − i∗(t) = Λegt

(i.e. the optimal consumption path is of exponential type). Moreover

(7.52) g =
ξ − ρ

σ
∈ [ξ − a, ξ)

and

(7.53) Λ =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)

Γ(ῑ(·))

Proof. By Proposition 7.33, equation (7.49), along the optimal trajectories
we have, for t ≥ 0:

ak∗(t) − i∗(t) =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)

Γ(̃ı∗t (·)).

Now let us note that

Γ(̃ı∗t (·)) =

∫ 0

−R

eξsF (̃ı∗t (·))(s)ds + k∗(t) = 〈ψ, x(t)〉
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where ψ = (ψ0, ψ1) ∈M2 with ψ0 = 1, ψ1(s) = eξs and x(t) is the structural state
as in Definition 7.16 . We calculate now the the derivative of such expression: it is
easy to see that ψ ∈ D(A∗). So we have (by Theorem 7.17)

d

dt

(
∫ 0

−R

eξsF (̃ı∗t (·))(s)ds+ k∗(t)

)

=
d

dt
〈ψ, x(t)〉M2 =

(by equation (7.27) and by the definitions of A∗ and B)

= 〈A∗ψ, x(t)〉M2 + 〈Bψ, i∗(t)〉
R

=
〈

(0, ξψ1(s)), x(t)
〉

M2 +
〈

(1 − e−ξR), i∗(t)
〉

R
=

(finding x(t), the scalar products and using the (7.49))

=

[

ξ

(
∫ 0

−R

eξsF (̃ı∗t (·))(s)ds
)]

+

[

(1 − e−ξR)

(

ak∗(t) −
(

ρ− ξ(1 − σ)

σξ/a

)(
∫ 0

−R

eξsF (̃ı∗t (·)) (s)ds+ k∗
))]

=

(by simple calculations)

=

(

ξ − ρ− ξ(1 − σ)

σ

)(
∫ 0

−R

eξsF (̃ı∗t (·))(s)ds + k∗(t)

)

= g

(
∫ 0

−R

eξsF (̃ı∗t (·))(s)ds + k∗(t)

)

and so we have the claim. The bounds for g simply follows by Hypotheses 7.9 and
7.28. Finally, since, from (7.51) Λ = ak∗(0) − i∗(0) from (7.49) for t = 0 we find
(7.53) observing that ı̃∗0(·) = ῑ(·). �

Using the above Lemma 7.34 we can now write a more useful closed loop formula
with the associated closed loop equation.

Theorem 7.35. Let Hypotheses 7.5, 7.9 and 7.28 be satisfied, given an initial
datum ῑ(·) ∈ L2((−R, 0); R+) in equation (7.9), the optimal investment strategy for
Problem (P) i∗(·) is connected with the related state trajectory k∗(·) by the following
closed loop formula for all t ≥ 0:

(7.54) i∗(t) = ak∗(t) − Λegt

where Λ = Λ(ῑ(·)) is given in (7.53).
Moreover the optimal investment strategy i∗(·) is the unique solution in

H1loc([0,+∞); R) of the following integral equation:

(7.55)















ı̃∗(t) = a

∫ t

t−R

ı̃∗(s)ds− Λegt t ≥ 0

ı̃∗(s) = ῑ(s), s ∈ [−R, 0).

Finally the optimal capital stock trajectory k∗(·) is the only solution in
H1
loc([0,+∞); R+) of the following integral equation:

(7.56) k∗(t) =

∫ 0

(t−R)∧0

ῑ(s)ds+

∫ t

(t−R)∨0

[ak(s) − Λegs] ds, t ≥ 0.



7.5. BACK TO PROBLEM (P) 149

7.5.3. Growth rates and asymptotic behavior. We have seen that along
the optimal path the consumption is exponential. Nevertheless the optimal in-
vestment and the capital stock have a more irregular behavior that depends on
initial data. We can anyway describe the asymptotic behavior of them. Calling
c∗(t) = ak∗(t) − i∗(t) = Λegt the optimal consumption path we have the following.

Proposition 7.36. Let Hypotheses 7.5, 7.9 and 7.28 be satisfied, given an
initial datum ῑ(·) ∈ L2((−R, 0); R+) in equation (7.9), defining, for t ≥ 0, the
optimal detrended paths as:

kg(t)
def
= e−gtk∗(t)

ig(t)
def
= e−gti∗(t)

cg(t)
def
= e−gtc∗(t)

we have that the optimal detrended consumption path cg(t) =
(

akg(t) − ig(t)
)

is
constant and equal to Λ. Moreover there exist positive constants iB and kB such
that

lim
t→+∞

ig(t) = iB and lim
t→+∞

kg(t) = kB .

We have, when g 6= 0

iB =
Λ

a
g (1 − e−gR) − 1

> 0 and kB =
1 − e−gR

g
· iB =

Λ

a− g
1−e−gR

> 0.

while, when g = 0,

iB =
Λ

aR− 1
> 0 and kB = R · iB =

ΛR

aR− 1
> 0.

Proof. The proof of existence of the limits is proved also in [BLPdR05]
using the transversality conditions. Here we use the integral equation (7.55) and
the explicit form of Λ given in (7.53).

From(7.55) we can easily find that i(t) satisfies, for t ≥ 0 the following Delay
Differential Equation

(7.57)







i′(t) = a(i(t) − i(t−R)) − Λgegt, ∀t ≥ 0,
i(s) = ῑ(s), ∀s ∈ [−R, 0),

i(0) = a
∫ 0

−R
ῑ(s)ds− Λ,

The solution of this linear non homogeneous Delay Differential Equation is the sum
of the solution of the associated linear homogeneous Delay Differential Equation
plus a convolution term (see [HVL93] page 23). In our case it means that the
solution of equation (7.57) can be written as:

(7.58) i(t) =

∫ t

0

−γ(t− s)Λgegsds+ γ(t)i(0) − a

∫ 0

−R

γ(t−R− s)ῑ(s)ds

where γ(t) is the solution of the following Delay Differential Equation:

(7.59)







γ′(t) = a(γ(t) − γ(t−R)) ∀t ≥ 0,
γ(s) = 0, ∀s ∈ [−R, 0),
γ(0) = 1

We observe that equation (7.59) is similar to the Delay Differential Equation we
have seen in equation (7.13). In particular the characteristic equation is the same
and it is (like in (7.14))

(7.60) a(1 − e−zR) − z = 0

From Proposition 7.8 such characteristic equation has only simple roots: the only
real roots are ξ and 0 and all other complex roots have real part in (−∞, ξ − a)
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so, even if g < 0 we have Reλj < g for each j = 1, 2, .... Applying Corollary 6.4 of
[DVGVLW95], page 168 we see that the solution of (7.59) can be written as

γ(t) = αξe
ξt + α0 +

+∞
∑

j=1

[

αje
λjt + αje

λjt
]

where the series converges uniformly on compact subsets of (0,+∞), αξ, α0 are real
numbers and αj are complex numbers.

We have now only to substitute such expression in (7.58). In view of the
linearity of (7.58) with respect to γ we can analyze the contribution of three parts
of γ in three steps: first we estimate the term due to αξeξt, second we consider the
term α0 and then the series. We start with αξe

ξt: its contribution to i(t) is (in
view of (7.58) is (using (7.47) and (7.53))
∫ t

0

−αξeξ(t−s)Λgegsds+ a

∫ 0

−R

ῑ(s)dsαξe
ξt − Λαξe

ξt − a

∫ 0

−R

αξe
ξ(t−R−s)ῑ(s)ds =

= eξt
(

αξΛg

g − ξ
+ αξa

∫ 0

−R

ῑ(s)ds− αξa

∫ 0

−R

ῑ(s)e−ξ(R+s)ds− αξΛ

)

+egt
(

−αξΛg
g − ξ

)

=

= eξtαξ

(

Λg

g − ξ
+ aΓ(ῑ) − Λ

)

+ egtαξ

(

− Λg

g − ξ

)

=

= eξtαξ

(

Λg

g − ξ
+ aΛ

ξ

a

σ

ρ− ξ(1 − σ)
− Λ

)

+ egtαξ

(

− Λg

g − ξ

)

=

= eξtαξΛ

(

ξ−ρ
σ

ξ−ρ
σ − ξ

+
ξσ

ρ− ξ(1 − σ)
− 1

)

+egtαξ

(

− Λg

g − ξ

)

= 0+egtαξ

(

− Λg

g − ξ

)

Then the part αξeξt gives in i(t) a contribution of egtαξ
(

− Λg
g−ξ

)

.

The contribution of the term α0 is:

−
∫ t

0

α0Λge
gsds+ aα0

∫ 0

−R

ῑ(s)ds− Λα0 − aα0

∫ 0

−R

ῑ(s)ds = −α0Λe
gt.

Now to analyze the contribution of the series we use the dominated convergence
theorem that allows to exchange the series and the integral. Then for each term
αje

λjt we can develop the integrals as above obtaining the sum of two terms

− αjΛg

g − λj
egt +

[

αjΛg

g − λj
+ αja(Γj − Λ)

]

eλjt

where

Γj :=

∫ 0

−R

(1 − e−λj(R+s))ῑ(s)ds.

Since Reλj < g for each j, then the second term is of order smaller or equal to the

first. The same can be done for the terms αjeλjt.
So the solution can be written in the form

Cegt + o(egt)

where

C = −Λg





αξ
g − ξ

+
α0

g
+

+∞
∑

j=1

Re

(

αj
g − λj

)



 .

This proves the first statement of the Proposition: there exist positive constants
iB and kB such that

lim
t→+∞

ig(t) = iB and lim
t→+∞

kg(t) = kB .

We now calculate such iB and kB.
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From(7.55) we find that ig(t) satisfies, for t ≥ 0 the following integral equation:

(7.61) ig(t) = a

∫ 0

−R

egsig(t+ s)ds− Λ

and then iB has to satisfy

iB = aiB

∫ 0

−R

egsds− Λ

so we use the (7.61) to find the value of iB and kB.
The fact that iB > 0 follows, for g 6= 0 from the fact that g < ξ (Hypothesis

7.9) and from (7.15); for g = 0 from Hypothesis 7.5. �

Remark 7.37 (On the costate variable in our setting). In the Dynamic
Programming approach the costate is (under suitable assumptions) the gradient of
the value function along optimal trajectories. In our work we treat the problem
in an infinite dimensional setting so the costate is a function of t with infinite
dimensional values, more precisely its value at each time t is an element of M2 that
we call λ0(t). It has two parts: λ0

0(t) which is a real number and λ1
0(t) which is a

function for each t: the history of λ0
0(t) as introduced in Subsection 7.4.1.

Which is the relation between such costate and the “standard” costate intro-
duced in [BLPdR05], equations (13) and (14)) that we call it simply λ and is a real
valued function?

From the definition given in [BLPdR05] and from the results we have proved
it can be seen (see also Proposition 11 and equation (27) of [BLPdR05]) that along
optimal trajectories

λ(t) = e−ξt · acg(t)
−σ

σg + ρ

One other side

λ0(t) = ∇V0(S(i∗t ), F (i∗t ))

and from the explicit form of V0 given in equation (7.33) we find that (see the proof
of Proposition 7.24)

λ0
0(t) = λ(t)

so λ1
0 is the history of λ.

Remark 7.38 (On the transversality condition). In the necessary and
sufficient conditions proved in [BLPdR05] the following transversality condition
arises

lim
t→∞

λ(t)k(t) = 0.

We can observe that ex post such condition is verified along optimal trajectories
we have found. Indeed, as observed in Proposition 7.36 and Remark 7.38 λ(t) =
O(e−ξt) and k(t) = O(egt). It may also be possible to prove ex ante that such
property holds using the concavity of the value function on the line of [Ben82].

We now look at the existence of Balanced Growth Paths (BGP).

Definition 7.39 (BGP). We will say that an optimal pair for Problem (P)
(k∗, i∗) is a Balanced Growth Path (BGP) if there exist a0, b0 > 0, and real numbers
a1, b1 such that

ı̃∗(s) = a0e
a1s for s ∈ [−R,+∞) k∗(s) = b0e

b1sfor s ∈ [0,+∞).
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Proposition 7.40. Let Hypotheses 7.5, 7.9 and 7.28 be satisfied, the only
BGPs of the model are the trajectories of the form

(7.62) ı̃∗(s) = a0e
gs, for s ∈ [−R,+∞); k∗(s) = b0e

gs, for s ∈ [0,+∞);

where b0 = k(0) and a0 and b0 are connected by the relation:

(7.63) b0 = a0

∫ 0

−R

egsds =
a0

g

(

1 − e−gR
)

Proof. We give only a sketch of the proof avoiding standard calculations.
We know that the optimal discounted investment follows the Delay Differential

Equation (7.61). If we substitute inside such relation the generic solution a0e
(a1−g)s

we find that a1 = g. So the only possible BGPs are the ones described in (7.62).
We substitute then the solution a0e

gt in (7.55) and we find that the solution of
the form (7.62) are optimal. �

In [BLPdR05], Sections 4.2, 4.3 it is proved that detrended consumption is con-
stant over time and that balanced growth path are of the form given in Proposition
7.40. In particular equation (7.63) is the analogous of equation (19) in [BLPdR05].
Apart from other theoretical points, the main progress made here is the fact that
we calculate explicitly the constant Λ.

7.6. Discussion and comparison with the previous results

We now discuss the results of Sections 3-4-5 comparing them with the ones of
[BLPdR05], emphasizing the novelties and their economic implications.

We proceed by discussing in detail the three methodological points (I)− (II)−
(III) raised in the Introduction. We devote a subsection to each one of them.

7.6.1. The explicit form of the value function and its consequences in
the study of the optimal paths. In [BLPdR05] it is shown that the detrended
co-state path λ̂(t) := λ(t)eξt and the optimal detrended consumption path cg(·) :=
e−gtc∗(t) are both constant (depending only on the initial data) but none is said
about the explicit expression of the constants. Moreover the value function and its
relation with the costate are not considered.

Here the value function is explicitly given (Proposition 7.32) and using its closed
form, we explicitly calculate such constants8 i.e.

λ̂(t) ≡ a

ξ
Λ−σ and cg(t) ≡ Λ

where Λ is given by (7.53).
Moreover in [BLPdR05] it is shown that the optimal detrended investment

path ig(t) = e−gti∗(t) and the optimal detrended capital path kg(t) = e−gtk∗(t)
converge asymptotically to a constant (respectively iB and kB) but nothing is said
about their value.

Here, using (7.53) and the closed loop equations (7.55)-(7.56) for the optimal
investment and capital trajectories, we determine the explicit form of the constants
iB and kB, given in Proposition 7.36. This way the dependence of the long run
equilibrium on the initial datum is explicitly calculated and a comparative statics
can be easily performed.

In the following two subsections we discuss some implications of such explicit
formulae.

8To calculate the co-state λ̂(t) one has to observe that it is the gradient of the value function
as in Remark 7.38.
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7.6.1.1. The study of short run fluctuations. The closed loop equations (7.55)-
(7.56) for the optimal investment and capital cannot be explicitly solved (apart
from very special cases) but they turn out to be useful in studying the qualitative
properties of ig(·) and kg(·) and of their short run growth rates such as the presence
of oscillations and of short run deviations between saving rates and growth rates
(see [BLPdR05], Section 5.1).

To see this we first make some remarks on the integral equation (7.55). From
Proposition 7.36 and its proof we know that the optimal investment i∗(·) (that
solves the Delay Differential Equation (7.55)) can be written as

i∗(t) = iBe
gt +

+∞
∑

j=1

eReλjt
[

i1j cos(Imλjt) + i2j sin(Imλjt)
]

where the λj is the sequence described in Proposition 7.8 - (c) giving the complex
and non real roots of the characteristic equation ordered with decreasing real part.
We have Re(λj) < ξ − a ≤ g for each j and all λj ’s are simple roots. Moreover
for each compact interval I the number of λj ’s with real part in I is finite. Finally
iB is known from Proposition 7.36 and, with the notation used in the proof of
Proposition 7.36, for j ∈ N

i1j = 2Re

(

αjΛg

g − λj
+ αja(Γj − Λ)

)

, i2j = −2Im

(

αjΛg

g − λj
+ αja(Γj − Λ)

)

,

can be calculated from the initial datum ῑ, the characteristic roots {λj}j∈N and the
coefficients {αj}j∈N. The λj ’s and the αj ’s can be calculated at least in numerical
way (see for example [DVGVLW95], chapters IV and VI).

So we have a main part given by iBegt, that determines the asymptotic behav-
ior, and a rest, that gives the short run fluctuations, given by the series. To get a
first order approximation of the fluctuations in the long run it is enough to take
only the term with Re(λ1).

When the initial datum ῑ is on the steady state ῑ0 no fluctuation arise so
i1j = i2j = 0 for each j. Otherwise the size of the coefficients i1j , i

2
j will depend on

the deviation from the steady state, ῑ− ῑ0, through the terms Λ and Γj .
Using equation (7.56) (or (7.10)) we can moreover approximate the short run

fluctuations of the optimal capital

k∗(t) = kBe
gt +

+∞
∑

j=1

eReλj t
[

k1
j cos(Imλjt) + k2

j sin(Imλjt)
]

.

The term kB is known while k1
j , k

2
j (as i1j , i

2
j) can be calculated from ῑ, λj and αj .

Using the above formulae we can also study the behavior of the output and
investment rate (y

∗(·)′

y∗(·) = k∗(·)′

k∗(·) and i∗(·)′

i∗(·) ) in particular through the study of its
first order approximation.

Finally the above formulae can be a good basis for an empirical testing of the
model.

7.6.1.2. The “equivalent capital” and the convergence to the standard AK model.
We compare the model treated in this work with the standard one dimensional AK
model with zero depreciation rate of capital (which is described in Appendix 7.A,
so we send the reader to it for all formulae).

The value function is given by the formula

(7.64) V (ῑ(·)) = ν[Γ(ῑ(·))]1−σ

where

(7.65) Γ(ῑ(·)) def=

∫ 0

−R

(

1 − e−ξ(R+s)
)

ῑ(s)ds= k(0) −
∫ 0

−R

e−ξ(R+s) ῑ(s)ds
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and

(7.66) ν =

(

ρ− ξ(1 − σ)

σ
· a
ξ

)−σ
1

(1 − σ)
· a
ξ

The quantity Γ(ῑ(·)) has a clear economic interpretation: it is the initial amount
of capital minus the value of scrapped investments discounted at rate −ξ and may
be interpreted, in this model, as the initial equivalent amount of infinitely durable
capital, since the term

∫ 0

−R
e−ξ(R+s) ῑ(s)ds is exactly what is lost for production

due to the fact that machines are scrapped after a finite time R9. For R < +∞
such quantity is strictly less than the capital (except for the degenerate case ῑ ≡
0). When R → +∞, i.e. such amount tends to the initial capital k(0) since the
discounted integral term disappear.

If we take t > 0, the quantity Γ(̃ıt(·)) (recall that ı̃t(·) is the history of in-
vestments at time t, see (7.21)) is the “equivalent capital” at time t. The feedback
formula (7.50) shows that the consumption is chosen by taking a constant share of
Γ(̃ıt(·)). Moreover Lemma 7.34, together with formula (7.50) shows that Γ(̃ıt(·))
grows at constant rate g.

In view of this we may say that the key variable of the model is the “equivalent
capital” which has a constant growth rate g due to the AK nature of the model. The
consumption path is simply a constant share of the “equivalent capital” while the
investment fluctuates to keep it growing at such constant rate. So when R < +∞
the “equivalent capital” plays the role of the capital in the standard AK model.

The standard one dimensional AK model with zero depreciation rate of capital
(see Appendix 7.A) can be seen as the limit case of the model treated here when
R = +∞. Indeed in such standard AK model the value function V0 depends on
k(0) and is

(7.67) V0(k(0)) = ν0[k(0)]1−σ

where

(7.68) ν0 =

(

ρ− a(1 − σ)

σ

)−σ
1

(1 − σ)

Since ξ → a as R → +∞ then we clearly have, for every initial datum ῑ(·):
lim

R→+∞
V (ῑ(·)) = V0(k(0)).

Similarly, as R → +∞ we have (calling gAK the growth rate of the optimal paths
in the standard AK model with zero depreciation rate of capital),

Λ(ῑ(·)) → ρ− a(1 − σ)

σ
k(0), g =

ξ − ρ

σ
→ a− ρ

σ
= gAK ,

so the optimal consumption path converges uniformly on compact sets to the one of
the standard AK model described in Appendix 7.A. Consequently the closed loop
formula (7.54) converges and passing to the limit in equations (7.55)-(7.56) we get
the same convergence for the optimal investment and capital paths.

It is worth to remark that we are comparing the model treated here with an AK
model with zero depreciation rate of capital because is not easy task to re-conduct
a vintage capital model to a model with constant and positive depreciation rate of
capital.

9To understand better this fact we can think in a discrete time setting as follows: given
the initial distribution of investments, ῑ(·), the machines bought in the period [t0, t0 + 1), with
t0 ∈ [−R, 0) ∩ Z are ῑ(t0) and are scrapped at time t0 + R. If they would have been infinitely
durable then their value at the scrapping time should be e−ξ(R+t0) ῑ(t0). The discount rate is ξ

i.e. the maximum rate of reproduction of capital.
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7.6.2. The problem of admissibility of the candidate optimal paths.
In [BLPdR05] it is not proved that the candidate optimal trajectory of capital and
investment is admissible (see the discussion in Section 4.3, p. 60 of [BLPdR05])
leaving an unsolved gap in the analysis of the model.

Here we can prove that such candidate optimal trajectory is admissible. Indeed,
using the closed loop form given by (7.49) and the Hypothesis 7.28 (i.e. (ρ−ξ(1−σ))

σ ≤
a) we see, in the proof of Theorem 7.29, that the optimal investment i∗(t) remains
in the interval (0, ak(t)) for all t ≥ 0.

The emergence of this theoretical problem comes from the strategy used in
[BLPdR05] (and in much of the literature on continuous time endogenous growth
models) to attack the problem: first we consider the problem without taking ac-
count of the “difficult” state-control constraint (7.3) focusing on interior solutions
([BLPdR05], p.54) and then check afterwards if the optimal paths for the simplified
problem also satisfy (7.3). Of course this may not be true, or, even if it is true as
in this case, it may be very hard to check.

In our approach we always take account of (7.3) and then it cannot happen that
we find a non-admissible candidate optimal trajectory. We also focus on interior
solutions but we provide an if and only if condition on parameters (Hypothesis
7.28) for the existence of interior solutions. This can be done explicitly since we
know the explicit form of the value function.

To understand better this point one can consider the standard AK model with
zero depreciation rate of capital where one adds the constraint i(t) ≥ 0 for t ≥ 0
(see Appendix 7.A.2). In this case interior solutions arise if and only if gAK =
σ−1(a − ρ) > 0 (i.e. the economy grows at a strictly positive rate on the optimal
paths). If this is not the case then the optimal investment path is constantly 0, so
also the capital and the consumption are constant.

In the model of this work interior solutions arise for every nonzero initial datum
ῑ(·) if and only if g ≥ ξ − a10 which is exactly (Hypothesis 7.28) and reduces to
gAK ≥ 011 when R → +∞. Differently from the standard AK model here when
Hypothesis 7.28 does not hold we do not have constant optimal paths: this depends
on the shape of the initial investments profile ῑ.

7.6.3. The assumptions on the parameters. We work under more general
and sharper assumptions on the parameters that include cases which are interesting
from the economic point of view. Indeed the Hypotheses in [BLPdR05] are:

(H1) aR > 1.

(H2) ρ > (1 − σ)a.

(H3)
ρ− ξ

σ
< 0.

The first (H1) is the same of Hypothesis 7.5.
The second (H2) is strictly stronger than Hypothesis 7.9 because ξ < a. This

means that we can prove the existence and characterize the form of the optimal
trajectories in a more general case. Moreover, in the standard AK model with zero
depreciation rate of capital, (H2) is an if and only if conditions for the finiteness of
the value function and the existence of optimal paths (see Appendix 7.A, formula
(7.71)). Our Hypothesis 7.9 has “substantially” the same meaning for the AK
vintage model. Indeed the maximum rate of growth of capital is a in the standard
AK model and ξ in the vintage one and it may be proved that the value function is

10One may expect that interior solutions arise when a strict inequality is satisfied. This is
not the case here, as it comes from the proof of Theorem 7.29.

11This is not the same of gAK > 0 that guarantees interior solutions. This comes from the
passage to the limit as R → +∞.
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somewhere infinite when Hypothesis 7.9 is not satisfied. Note also that in the limit
for R → +∞ the Hypothesis 7.9 tends to (7.71).

Concerning assumption (H3) we also see that it is strictly stronger than Hy-
pothesis 7.28: we can re-write (H3) as g > 0 while Hypothesis 7.28 is g ≥ ξ − a so
our results also cover cases where negative growth rates arise. Since investments
always remain positive the occurrence of strictly negative long run growth rates
in the AK vintage capital model increases the number of cases where deviation
between growth and investment rates can arise (see [BLPdR05] for a discussion on
this).

It must also be noted that the assumptions (H2) and (H3) are not compatible
for certain values of σ. Indeed (H2) means ρ > (1−σ)a while (H3) means ρ < ξ. So,
when ξ ≤ a(1 − σ), i.e. when σ ≤ e−ξR, (H2) and (H3) are not satisfied together.
This means that the results of [BLPdR05] do not cover cases with small σ.

7.A. The standard AK-model with zero depreciation rate of capital

In this appendix we briefly recall the setup of the classical linear growth model
(named AK-model with Rebelo [Reb91]) with CRRA utility function and zero depre-
ciation rate of capital. We show how to find the optimal paths with the Dynamic
Programming approach. This way the comparison with the AK vintage capital
model can be more clear for the reader. Another reason to write this appendix is
the fact that, in the classical literature, see e.g. the Barro and Sala-i-Martin’s book
[BSiM95] this model is treated with the maximum principle.

We call y(t) the output level at time t, which is a linear function of the stock
of capital k(t): y(t) = ak(t) for some positive constant a. c(t) and i(t) are the con-
sumption and the investment at time t and the system is subject to an accounting
equation of the form

y(t) = i(t) + c(t).

The capital stock follows the state equation (here we use the consumption as control
variable, before we have chosen the investment, it is the same in view of the above
relation)

(7.69)

{

k̇(t) = ak(t) − c(t),
k(0) = k0 > 0.

We want to maximize (over the set of locally integrable consumption paths) the
intertemporal utility function given by

(7.70)
∫ ∞

0

e−ρs
c(t)1−σ

1 − σ
dt

under the constraints c(t), k(t) ≥ 0 for all t ≥ 0. We assume

(7.71) ρ− a(1 − σ) > 0

Hypothesis (7.71) is not only sufficient but also necessary to guarantee that the
finiteness of the value function and the existence of optimal strategies (see e.g. on
this [FGS06]).

In order to compare in a proper way this standard AK model with the one
treated in the paper we analyze separately the case where investments can be
negative and the case where we impose positivity of them.

7.A.1. The DP approach for possibly negative investments. Now we
see how to perform the steps (i),..., (iv) of the Dynamic Programming approach
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described in Subsection 7.2.1 in this one dimensional case.
Step (i): we write the HJB equation of the problem. It appears as

ρv(k) − sup
c≥0

(

v′(k) (ak − c) +
c1−σ

1 − σ

)

= 0.

Step (ii): we solve the HJB equation. It is easy to check that the function12

(7.72) v(k) = νk1−σ

with ν = 1
1−σ

(

ρ−a(1−σ)
σ

)−σ

is a solution of the HJB equation and it is also the

value function of the problem.
Step (iii): we use the value function to solve the optimal control problem in closed
loop form. We consider the closed loop relation given by



























Φ: R
+ → R

+

Φ(k)
def
= arg max

c∈R+

(

v′(k) (ak − c) +
c1−σ

1 − σ

)

=

= (v′(k))
−1/σ

=
ρ− a(1 − σ)

σ
· k.

Using a verification theorem it can be proved that the strategy given by such relation
is optimal.
Step (iv): We substitute c = Φ(k) in the state equation:

(7.73)







k̇∗(t) = ak∗(t) − Φ(k∗(t)) =

(

a− ρ

σ

)

k∗(t),

k∗(0) = k0.

So, calling gAK = a−ρ
σ the optimal capital and consumption path are:















k∗(t) = egAK tk0;

c∗(t) = Φ(k∗(t)) =

(

ρ− a(1 − σ)

σ

)

egAK tk0.

and the investment is

i∗(t) = ak∗(t) − c∗(t) = gAKe
gAKtk0.

We have positive growth rate gAK if and only if a ≥ ρ. Moreover the optimal
investment has always the same sign of the growth rate gAK .

7.A.2. The DP approach for positive investments. We call this case the
constrained case while the previous is the unconstrained one. When a ≥ ρ the
optimal path for the unconstrained case is admissible for the constrained case too,
as i∗(·) is always positive. This does not happen when a < ρ. In such case the
solution of the HJB equation is different as the sup is done over c ∈ [0, ak] instead
over c ≥ 0:

ρv(k) − sup
c∈[0,ak]

(

v′(k) (ak − c) +
c1−σ

1 − σ

)

= 0.

Arguing as in the unconstrained case one finds that the value function is v(k) =
a
ρ (ak)

−σ. We perform the step (iii) and (iv). The optimal feedback map is Φ(k) =

12It is clear from the structure of the problem that the value function must be (1 − σ)-
homogeneous; then the constant ν is calculated substituting into the HJB equation.
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ak so the optimal paths are constant, i.e. for every t ≥ 0






k∗(t) = k0

c∗(t) = ak0

i∗(t) = 0

Remark 7.41. We briefly point out the relations between the assumptions on
the AK vintage model and the standard one, recalling that the second is the limit
of the first for R→ +∞ (see Subsections 7.6.2 and 7.6.3 for comments).

The Hypothesis 7.5 (i.e. aR > 1) means that strictly positive growth is possible
and in the one dimensional case reduces to ask a > 0.

The Hypothesis 7.9 (i.e. ρ > (1−σ)ξ) is substantially an if and only if condition
for existence and is the analogous of (7.71) (indeed for R → ∞ they are the same).

The Hypothesis 7.28 (i.e. ρ−ξ(1−σ)
σ ≤ a) guarantees that the optimal investment

strategy is not a corner solution. The analogous assumption in the standard AK
model is a > ρ.



CHAPTER 8

An AK vintage model for obsolescence and

depreciation

In this Chapter we present a contribution based a model presented in [BdRM].
Here we use the explicit solution of a first order HJB equation in M2 is used to
study a model for obsolescence and physical depreciation.

The main ideas are similar to that we have seen in Chapter 7 but the different
explicit form of the HJB equation and of the the state equation needs to adapt
the proofs for the new case. When the proofs are “too similar” we refer to results
of Chapter 7. In particular we will skip the proofs of some preliminary results
(Subsection 8.4.1) that exploit the same ideas used in Section 7.3. The formal
analogy with respect to the problem treated in Chapter 7 is very significant in the
Hilbert space formulation so that we write the two HJB equations in the same way
(but the operators involved are different and the variables are not the same). See
[Fab06] for a family of problems that can be treated using the same techniques.

As in Chapter 7 we have chosen to emphasize with the notation the economic
meaning of the variable: y for the (net) production - that is the state variable, k
for the capital, i for the investment - that is the control... So the notations can
be different from that we used in first two parts of the thesis. Moreover we have
chosen to maintain the Chapter (almost) self-contained so it is possible the reader
find some concepts he already found in other parts of the thesis.

We begin presenting in Section 8.1 the model of [BdRM]. In Section 8.3 we
will use the instruments presented in Section 1.3 to restate the problem in M2.
In Section 8.4 we will use the instruments of the dynamic programming to solve
in closed loop form the problem. In last section (Section 8.5) we will come back
to the original problem and using the results obtained in Hilbert formulation we
will obtain results on original (delay) optimal control problem. We will find the
value function of original problem and its solution in closed form. We will find a
“constant of the motion” along optimal trajectory and we will study the Balanced
Growth Paths and asymptotically behavior.

8.1. The model

The production function is AK1:

Y (t) = ak(t), a > 0

where k(t) is the stock of capital at time t, which is given by

(8.1) k(t) =

∫ t

t−R(t)

n (z, t) i (z)dz

where i (z) is investment at time z, R (t) is the age of capital scrapped at time t,
n (z, t) is the average productivity of vintage z at time t relative to the average
productivity of capital.

1Here the constant is called a instead of A not to be confused with the generator of the
semigroup.

159
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We assume that the relative average productivity of each vintage depends on
the resources devoted to its maintenance and repair. The unit maintenance and
repair cost of vintage z at time t is assumed to be an increasing function of its age,
t− z, and its relative average productivity,

ω (t− z, n (z, t)) = βeγ(t−z)n (z, t)
µ

+ η, β > 0 , η > 0, µ > 1.

Production net of the maintenance and repair costs is

y (t) =

∫ t

t−R(t)

Q (t− z, n (z, t)) i (z)dz,

where

(8.2) Q (t− z, n (z, t)) = an (z, t)− ω (t− z, n (z, t))

is the average profitability of vintage z at time t.
The relative average productivity of each vintage at time t is chosen in order

to maximize the average profitability, Q (t− z, n (z, t)). The first order condition of
this maximization problem implies that the relative average productivity of vintage
z at time t is a decreasing function of its age and it is given by

(8.3) n (z, t) = n (t− z) = n0e
− γ

µ−1 (t−z).

where n0 =
(

a
βµ

)
1

µ−1

.

Substitution from n (t− z) into (8.2) yields:

(8.4) Q (t− z) ≡ Q (t− z, n (t− z)) = Ωe−
γ

µ−1 (t−z) − η

which is the average profitability of vintage z at time t and where Ω =

(µ− 1)β
(

a
βµ

)

µ
µ−1

.

A vintage will be used until that its profitability is zero, which implies that the
lifetime of a vintage, R, is given by

(8.5) Q (R) = Ωe−
γ

µ−1R − η = 0.

From previous equation it follows that the lifetime of a vintage is constant. We
assume that Ω > η which is needed to guarantee that there is a strictly positive
lifetime of capital.

The stock of capital at time t can vary due to (i) gross investment, (ii) the
change of the relative average productivity of capital, which is physical depreciation,
and (iii) the scrapping of unprofitable vintages, which is called obsolescence.

Differentiating equation (8.1), and using that n (t− z) is given by (8.3), yields
the following evolution law of capital:

(8.6)
·

k (t) = n0i (t) − (l (t) + δ) k (t)

where

(8.7) l (t) = n0e
− γ

µ−1R
i(t− R)

k(t)

is the fraction of scrapped capital at time t because it becomes unprofitable and
consequently it is called the obsolescence rate, and

(8.8) δ =
γ

µ− 1

is the decline rate of the average relative productivity of each vintage and conse-
quently it is called the physical depreciation rate.
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So the model allows to disentangle obsolescence and physical depreciation, in-
deed there is a big difference between the behavior of the obsolescence rate and the
physical depreciation rate: while the physical depreciation rate δ is constant, the ob-
solescence rate l(t) is not so because it depends on the scrapped investment-capital
ratio.

We assume that the planner have to solve the following problem:

(8.9) Max
∫ ∞

0

(

y(t) − i(t)

1 − σ

)1−σ

e−ρt dt

s.t.

(1) y (t) =

∫ t

t−R

Q (t− z) i (z)dz

where Q (t− z) is given by (8.4), and given i(t) = ῑ(t) > 0 for all t ∈ [−R, 0).
Parameters ρ > 0, σ > 0, and σ 6= 1.

so

(8.10) y(t) =

∫ t

t−R

(Ωe−δ(t−s) − η)i(s)ds

where i(t) is the investment at time t.

(8.11) η = Ωe−δR

Differentiating equation (8.10) and using equation (8.11) we find that y satisfies the
following delay differential equation:

ẏ(t) = (Ω − η)i(t) − δΩ

∫ 0

−R

eδri(r + t)dr

8.2. The optimal control problem

We use the notation introduced in Notation 7.1 to distinguish ῑ : [−R, 0) → R

that is part of initial data and i : [0,+∞) → R that is the control

(8.12) ı̃(s) =

{

ῑ(s) s ∈ [−R, 0)
i(s) s ∈ [0,+∞)

Now we give a precise formulation of the optimal control problem related to
the model. We consider the state equation

(8.13)











ẏ(t) = (Ω − Ωe−δR)̃ı(t) − δΩ
∫ 0

−R
eδr ı̃(r + t)dr

ı̃(s) = ῑ(s) ∀s ∈ [−R, 0)

y(0) =
∫ 0

−R ῑ(s)(Ωe
δs − Ωe−δR)ds

where ῑ(s) ∈ L2((−R, 0); R+) with ῑ 6≡ 0 and y(0) ∈ R are the initial conditions,
R,Ω, δ ∈ R are positive constants.

For every i : R+ → R locally integrable and every ῑ ∈ L2((−R, 0); R+) the
(8.13) admits a unique locally absolutely continuous solution given by:

(8.14) yῑ,i(t) =

∫ t

(t−R)

ı̃(s)(Ωe−δ(t−s) − Ωe−δR)ds

We want to maximize the functional

J(ῑ(·); i(·)) def=

∫ ∞

0

e−ρs
(yῑ,i(t) − i(t))1−σ

(1 − σ)
ds

over the set

Iῑ def= {i(·) ∈ L2
loc([0,+∞); R+) : i(t) ∈ [0, yῑ,i(t)] for a.e. t ∈ R

+}.
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Here σ is strictly positive constants with σ 6= 1. The choice of Iῑ implies
yῑ,i(·) ∈ W 1,2

loc ((0,+∞); R+) for every i(·) ∈ Iῑ.

We will name Problem (P) the problem of finding an optimal control strategy
i.e. to find an i∗(·) ∈ Iῑ such that:

(8.15) J(ῑ(·); i∗(·)) = V (ῑ(·)) def= sup
i(·)∈Iῑ

{
∫ ∞

0

e−ρs
(yῑ,i(t) − i(t))1−σ

(1 − σ)
ds

}

.

We’ll call V value function.

8.3. The infinite dimensional setting

8.3.1. Rewriting Problem (P) in infinite dimensions.

Notation 8.1. We use the notation ı̃ (and in general zt for some variable z)
that we introduced in (1.24). we consider the continuous linear application

B : C[−R, 0] → R

B : κ 7→ (Ω − Ωe−δR)κ(0) − δΩ

∫ 0

−R

eδrκ(r)dr

and the continuous linear application

S : L2(−R, 0),R) → R

S : ῑ 7→
∫ 0

−R

ῑ(s)(Ωeδs − Ωe−δR)ds

so we can re-write the state equation as

(8.16)







ẏ(t) = B(̃ıt)
ı̃(s) = ῑ(s) ∀s ∈ [−R, 0)
y(0) = S(ῑ)

Also equation (8.16) has not a pointwise meaning but has anyway an integral sense.
Eventually we’ll put νB the finite measure associate to B.

We can rewrite the (8.16) as:

(8.17)

{

ẏ(t) = B(̃ıt)
(y(0), ı̃0) = (S(ῑ), ῑ)

Similarly to what we did in Chapter 7 we embed the problem in the family:

(8.18)

{

ẏ(t) = B(̃ıt)
(y(0), ı̃0) = (y0, ῑ)

which has solution

(8.19) yy0,ῑ,i(t) = y0 − S(ῑ) +

∫ t

(t−R)∨0

i(s)(Ωe−δ(t−s) − Ωe−δR)ds +

+

∫ 0

(t−R)∧0

ῑ(s)(Ωe−δ(t−s) − Ωe−δR)ds

Note that yS(ῑ),ῑ,i(t) = yῑ,i(t). Similarly to Chapter 7 the problem can be reformu-
lated in M2 using the generator of a C0-semigroup defined in (1.35) and setting
(abusing notation)

{

B : D(A∗) → R

B(ψ(0), ψ) = Bψ ∈ R
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Notation 8.2. We’ll indicate with F the application

F : L2(−R, 0) → L2(−R, 0))

i 7→ F (i)

where

(8.20) F (i)(s)
def
=

∫ s

−R

i(−s+ r)dνB(r) =

∫ s

−R

−δΩi(−s+ r)eδrdr

Definition 8.3 (Structural state). Taken ῑ ∈ L2(−R, 0), i ∈ L2
loc[0,+∞),

y0 ∈ R and yy0,ῑ,i(t) we define the structural state of the system the couple xy,i(t) =

(x0
y,i(t), x

1
y,i(t)) = (yy0,ῑ,i(t), F (̃ıt)) where y

def
= (y0, F (ῑ))

Theorem 8.4. Assume that ῑ ∈ L2(−R, 0), i ∈ L2
loc[0,+∞), y0 ∈ R and that

yy0,ῑ,i(t) is defined by (8.19), then, for each T > 0, xp,i(t) = (x0
p,i(t), x

1
p,i(t)) =

(yy0,ῑ,i(t), F (̃ıt)) is the unique solution in

(8.21) Π
def
=

{

f ∈ C([0, T ];M2) :
d

dt
f ∈ L2((0, T );D(A∗)′)

}

to the equation:

(8.22)

{

d
dtx(t) = Ax(t) +B∗i(t), t > 0
x(0) = (y0, F (ῑ))

where j∗, A and B∗ are the dual maps of the continuous linear operators

j : D(A∗) →֒M2

A∗ : D(A∗) →M2

B : D(A∗) → R

and D(A∗) is equipped with the graph norm.

Proof. We have already see this theorem in the general case in Theorem
1.33. The proof can be found in [BDPDM92] Theorem 5.1 page 258. �

8.3.2. The optimal control problem in infinite dimensions. Now we
formulate an optimal control problem in infinite dimensions that, thanks to results
of the previous section, "contains" the Problem (P). We’ll need first of all a

Theorem 8.5. The equation
{

d
dtx(t) = Ax(t) +B∗i(t), t > 0
x(0) = p

for p ∈M2, i ∈ L2
loc[0,+∞) has an unique solution in Π (defined in (8.21))

Proof. We have already see this theorem in the general case in Theorem
1.33. The proof can be found in [BDPDM92] Theorem 5.1 page 258. �

After this long preamble we can methodically formulate the optimal control
problem in infinite dimensions: We consider the state equation in M2 given by

{

d
dtx(t) = Ax(t) +B∗i(t), t > 0
x(0) = p

for p ∈M2, i ∈ L2
loc[0,+∞). Thanks to Theorem 8.5 it has a unique solution xp,i(t)

in Π, so t 7→ x0
p,i(t) is continuous and it makes sense to consider the set of controls

Îp def= {i ∈ L2
loc[0,+∞) : i(t) ∈ [0, x0

p,i(t)]
∼

∀ t ∈ R
+}
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The objective functional is

Ĵ(p, i)
def
=

∫ ∞

0

e−ρs
(x0
p,i(t) − i(t))1−σ

(1 − σ)
ds.

The value function is then:






V̂ (p)
def
= supi∈Îp

{

∫∞

0
e−ρs

(x0
p,i(t)−i(t))

1−σ

(1−σ) ds

}

if Ip 6= ∅
V̂ (p) = −∞ if Ip = ∅

Remark 8.6. If we set
p =

(

S(ῑ), F (ῑ)
)

we find Îp = Iῑ, Ĵ(p, i) = J(ῑ, i) and V̂ (p) = V (ῑ) and the solution of differential
equation of Theorem 8.5 is given by 8.3.

8.4. The dynamic programming approach

8.4.1. Preliminary results. It is natural, as in the problem without delay,
to introduce a first restriction that ensure the finiteness of the value function V
at every point. To check the finiteness of value function is useful to observe that
the maximal growth of y(t) is obtained when the investment is maximal (that is
i(t) = y(t), the proof can be done as in Proposition 7.3). The delay differential
equation related to such strategy is

(8.23) ẏ(t) = (Ω − Ωe−δR)(y(t)) − δΩ

∫ t

−R+t

eδry(r + t)dr

The characteristic equation of (8.23) is

(8.24) z = ((Ω − Ωe−δR) − (δΩ)

δ + z
(1 − e−(δ+z)R))

Lemma 8.7. A strictly positive root of (8.24) exists if and only if

(H1) Ω >
δ

1 − δe−δR(1
δ +R)

> 0

If a strictly positive root ξ exists it is unique.

Proof. First step: If (H1) is satisfied a strictly positive root exists.
If we name ψ the continuous function

ψ : [0,+∞) → R

ξ 7→ ((Ω − Ωe−δR) − (δΩ)

δ + ξ
(1 − e−(δ+ξ)R))

we see that ψ(0) = 0,
lim
ξ→∞

ψ(ξ) = (Ω − Ωe−δR)

and ψ′(0) = Ω(1
δ − 1

δ e
−δR −Re−δR) > 1.

Second step: the root is unique and the condition (H1) is necessary
It is enough to observe that ψ is a strictly concave function. We have to calculate
two derivatives:

ψ′(ξ) =
δΩ

(δ + ξ)2
(1 − e−(δ+ξ)R) − δΩ

(δ + ξ)
(Re−(δ+ξ)R)

and

ψ′′(ξ) = (δΩ)
( −2

(δ + ξ)3
(

1 − e−(δ+ξ)R
)

+
1

(δ + ξ)2
(

Re−(δ+ξ)R
)

+

+
1

(δ + ξ)2
(

Re−(δ+ξ)R
)

− 1

(δ + ξ)

(

−R2e−(δ+ξ)R
)

)
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So the second derivative has the form:

−g(x) def= −
(

2 − 2e−x − 2xe−x − x2e−x
)

and

g′(x) = x2e−x > 0 when x > 0

moreover g(0) = 0 than −g(x) is always negative (except in 0) and so ψ′′(ξ) < 0
for all ξ ∈ [0,+∞) and ψ is strictly concave and we have the claim. �

Remark 8.8. We could go on for a while without Hypothesis (H1): all results
we see in this section don’t use substantially such hypothesis, but (H1) has a strong
economic meaning: if there aren’t positive root we can see, as in Proposition 8.9
that, also re-investing all y(t), it goes to zero and then it is not possible have positive
growth.

We will assume from now the Hypothesis (H1). We will call ξ the strictly
positive root of characteristic equation.

Observing that for, all admissible control and every t ≥ 0, y(t) ≤ f(t) where
f(·) solves the differential equation

{

ḟ(t) = (Ω − Ωe−δR)f(t)
f(0) = y(0)

,

we have

Proposition 8.9. The solution of (8.23) is continuous on R+ and satisfies for
every ǫ > 0

y(t)

e(Ω−Ωe−δR+ǫ)t
→ 0 when t→ +∞

Now, thanks to Proposition 8.9 we can introduce an hypothesis that will allow
us to exclude the existence of some ῑ in which V (ῑ) = +∞. The assumption is

(H2) ρ > (Ω − Ωe−δR)(1 − σ)

and we’ll always assume it in the sequel.

Corollary 8.10. V (ῑ) < +∞ for all ῑ in L2
loc([0,+∞); R+).

Proof. It is a consequence of Proposition 8.9 �

Now we state two proposition that can be proved using the same techniques of
Chapter 7.

Proposition 8.11. An optimal control exist in Iῑ, that is: we can find in Iῑ
an admissible strategy i∗(t) such that V (ῑ) = J(ῑ, i∗).

Proof. The proof can be done similarly to Proposition 7.13. �

We can now give a result that we’ll use in the section 8.5:

Lemma 8.12. Let ῑ be in L2((−R, 0); R+) and let i∗ ∈ Iῑ be an optimal strategy
then yῑ,i∗(t) 6= 0 for all t ∈ [0,+∞).

Proof. The proof can be done similarly to Lemma 7.14. �
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8.4.2. HJB equation and dynamic programming in infinite dimen-
sions. We now describe the Hamiltonians of the system. First of all we introduce
the current value Hamiltonian: it will be defined on a subset E of M2 ×M2 × R

(the product of state space, co-state space and control space) given by2

E
def
= {(x, P, i) ∈M2 ×M2 × R : x0 > 0, i ∈ [0, ax0], P ∈ D(A∗)}

and its form is the following:

HCV (x, P, i)
def
= 〈x,A∗P 〉M2 + 〈i, BP 〉R +

(x0 − i)1−σ

(1 − σ)

When σ > 1 the above is not defined in the points in which ax0 = i. In such points
we set then HCV = −∞. In this way we take HCV with values in R.

We can now define the maximum value Hamiltonian (that we will simply call
Hamiltonian) of the system: we name G the subset of M2 ×M2 (the product of
state space and co-state space) given by:

G
def
= {(x, P ) ∈M2 ×M2 : x0 > 0, P ∈ D(A∗)}

The Hamiltonian is given by:
{

H : G→ R

H : (x, P ) 7→ supi∈[0,x0]HCV (x, P, i)

The HJB equation is
ρw(x) −H(x,Dw(x)) = 0

i.e.

(8.25) ρw(x) − sup
i∈[0,ax0]

{

〈x,A∗Dw(x)〉M2 + 〈i, BDw(x)〉R +
(ax0 − i)1−σ

(1 − σ)

}

= 0

Definition 8.13 (Regular solution). Let Ω be an open set of M2 and Y ⊆ Ω
a closed subset. An application w ∈ C1(Ω; R) satisfies the HJB equation on Y if
∀(p0, p1) ∈ Y

{

Dw(p0, p1) ∈ D(A∗)
ρw(p0, p1) −H

(

(p0, p1), Dw(p0, p1)
)

= 0

Remark 8.14. If P ∈ D(A∗) and (BP )−1/σ ∈ (0, x0], by elementary argu-
ments, the function

HCV (x, P, ·) : [0, x0] → R

admits exactly a maximum in the point

iMAX = x0 − (BP )−1/σ ∈ [0, x0)

and then we can write the Hamiltonian in a simplified form:

H((x0, x1), P ) = 〈(x0, x1), A∗P 〉M2 + x0BP +
σ

1 − σ
(BP )

σ−1
σ(8.26)

The expression for iMAX will be used to write the solution of the problem (P) in
closed-loop form.

We define

X
def
=

{

(x0, x1) ∈M2 : x0 > 0,

(

x0 +

∫ 0

−R

eξsx1(s)ds

)

> 0

}

2Recall that an element x ∈ M2 is done by two components: x0 and x1, so x = (x0, x1).
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and
(

naming ω = ρ−ξ(1−σ)
σξ

)

(8.27) Y
def
=

{

(x0, x1) ∈ X :

∫ 0

−R

eξsx1(s)ds ≤ x0 1 − ω

ω

}

It is easy to see that X is an open set of M2 and Y ⊆ X is closed in X . We define,
for x ∈M2 the quantity

(8.28) Γ0(x)
def
= x0 +

∫ 0

−R

eξsx1(s)ds

Proposition 8.15. Let Hypotheses (H1) and (H2) be satisfied, then

v : X → R

v(x) = v(x0, x1)
def
= ν

(
∫ 0

−R

eξsx1(s)ds+ x0

)1−σ

= νΓ0(x)
1−σ

with

ν =

(

ρ− ξ(1 − σ)

σξ

)−σ
1

(1 − σ)ξ

is differentiable in all (x0, x1) ∈ X and is solution of the HJB equation in all the
points of Y in the sense of definition 8.13

Proof. v is continuous and differentiable in every point of X and its differ-
ential in (x0, x1) is

Dv(x0, x1) = (ν(1 − σ)Γ0(x)
−σ
, {s 7→ (1 − σ)νΓ0(x)

−σ
eξs})

So Dv(x0, x1) ∈ D(A∗) everywhere in X .
We can also calculate explicitly A∗Dv and BDv, we have:

A∗Dv(x0, x1) = (0, {s 7→ (1 − σ)νΓ0(x)
−σ
ξeξs})(8.29)

BDv(x0, x1) = (1 − σ)νΓ0(x)
−σ

((Ω − Ωe−δR) − (δΩ)

∫ 0

−R

e(δ+ξ)sds) =(8.30)

= (1 − σ)νΓ0(x)
−σξ > 0 on X(8.31)

so

(8.32) (BDv)−1/σ =

(

ρ− ξ(1 − σ)

σξ

(
∫ 0

−R

eξsx1(s)ds+ x0

))

(BDv)−1/σ ≥ 0.
If (x0, x1) ∈ Y then

(8.33) (

∫ 0

−R

eξsx1(s)ds+ x0) ≤ 1

ω
x0

and then (BDv)−1/σ ≤ x0. So we can use Remark 8.14 and use the Hamiltonian
in the form of equation (8.26).
Now it is sufficient substitute (8.29) and (8.30) in (8.26) and verify by easy calcu-
lations, the relation:

ρv(x0, x1) − 〈(x0, x1), A∗Dv(x0, x1)〉M2 −
−x0BDv((x0, x1) − σ

1 − σ
(BDv((x0, x1))

σ−1
σ = 0

�

Remark 8.16. Note the strong formal analogies with the problem treated in
Chapter 7. The HJB equation of the problem appears indeed as (8.25) but the
meaning of the objects that appear are different. Indeed the operator B in not the
same (moreover ξ has a different meaning and the state represent another DDE).
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8.4.3. Closed loop in infinite dimensions. We begin with some definitions:

Definition 8.17 (AFSp). Taken p ∈M2 we’ll call Φ ∈ C(M2) an the admis-
sible feedback strategy related to p if the equation

{

d
dtxΦ(t) = AxΦ(t) +B∗(Φ(xΦ(t))), t > 0
xΦ(0) = p

has an unique solution xΦ(t) in Π and Φ(xΦ(·)) ∈ Îp We’ll indicate the set of
admissible feedback strategies related to p with AFSp

Definition 8.18 (OFSp). Taken p ∈ M2 we’ll call Φ an optimal feedback
strategy related to p if it is in AFSp and

V̂ (p) =

∫ +∞

0

e−ρt
(

x0
Φ(t) − Φ(xΦ(t))

)1−σ

(1 − σ)
dt

We’ll indicate the set of optimal feedback strategies related to p with OFSp

We have a solution of the HJB equation only in a part of the state space (just
Y ). So we can prove a feedback result (and so the optimality of the feedback)
only if the admissible trajectories remain in Y . So we have to make some other
hypothesis. A sufficient condition is:

(H3)

(

ρ− ξ(1 − σ)

σξ

)

(

1 − δ

δ + ξ
− e−(δ+ξ)R

)

≤ 1(8.34)

we’ll assume it in the sequel.

Remark 8.19. We’ll see in the Theorem 8.24 the optimal consumption growth
as Λegt where g = ξ−ρ

σ (the optimal growth of other variables is more complex).
Then the condition to have a positive growth (of the consumption) is g > 0 that is
ρ−ξ(1−σ)

σξ < 1. The condition g > 0 implies (H3) (indeed
(

1 − δ
δ+ξ − e−(δ+ξ)R

)

is

in (0, 1)).
So if we impose the condition of positive growth we automatically have (H3).

Theorem 8.20. Taken p = (S(ῑ), F (ῑ)) for some ῑ ∈ L2((−R, 0); R+), the
application

Φ: M2 → R

Φ(x)
def
= x0 −

(

ρ− ξ(1 − σ)

σξ

)

Γ0(x)

is in OFSp

Proof. First of all we have to observe that Φ ∈ AFSp. We claim that

(8.35)

{

d
dtxΦ(t) = AxΦ(t) +B∗(Φ(xΦ(t))), t > 0
xΦ(0) = p = (S(ῑ), F (ῑ))

has a solution in Π:
We consider the solution i of the following delay-differential equation

(8.36)















i(t) =

(

1 − ρ−ξ(1−σ)
σξ

)(

∫ t

(t−R)
i(s)(Ωe−δ(t−s) − Ωe−δR)ds

)

−

− ρ−ξ(1−σ)
σξ

∫ 0

−R e
ξsF (it)(s)ds

i(s) = ῑ ∀ s ∈ [−R, 0)

that has an absolute continuous solution i on [0,+∞) (see for example [BDPDM92]
page 287 for a proof).
Then we consider the equation

(8.37)

{

d
dtx = Ax+B∗(i(t)), t > 0
x(0) = p = (S(ῑ), F (ῑ))
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We know, thanks to Theorem 8.4, that the only solution in Π of such equation is
(y(t), F (it)) where y(t) is the solution of

{

ẏ(t) = B(it)
(y(0), i0) = (S(ῑ), ῑ)

We claim that x(t) is solution of (8.35) indeed

(8.38) Φ(x(t)) = y(t) −
(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

eξsF (it)(s)ds+ y(t)

)

and so (by (8.36):

Φ(x(t)) = y(t)

(

1 − ρ− ξ(1 − σ)

σξ

)

+ i(t)−

−
(

1 − ρ− ξ(1 − σ)

σξ

)(
∫ t

(t−R)

i(s)(Ωe−δ(t−s) − Ωe−δR)ds

)

and by (8.37) we conclude that

Φ(x(t)) = i(t)

and so x(t) = xΦ(t) is a solution of (8.35) and is in Π. Moreover thanks to the
linearity of Φ we can observe that xΦ(t) is the only solution in Π. We have now to
observe that Φ(xΦ(·)) ∈ Îp, but the previous steps of the proof show that

xΦ(t) =
(

S(it), F (it)
)

where i|[0,+∞) is absolute continuous and so L2
loc. We claim that Φ(xΦ(t)) = i(t) ∈

[0, x0
Φ(t)) that is (by (8.38))

(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

eξsF (it)(s)ds+ y(t)

)

∈
(

0, S(it)
]

First we prove that i(t) ≥ 0:
(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

eξsx1
Φ(s)ds+ x0

Φ

)

=

=

(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

Ωit(r)

(

eδr − e−δR−

− δ

δ + ξ
eδre(δ+ξ)r +

δ

δ + ξ
eδre−(δ+ξ)R

)

dr

)

≤

≤
(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

Ωit(r)
(

(eδr − e−δR)
(

1 − δ

δ + ξ
e−R(δ+ξ)

))

dr

)

=

=

(

ρ− ξ(1 − σ)

σξ

)

(

1 − δ

δ + ξ
e−(δ+ξ)R

)

S(it) ≤

≤ S(it) = x0
Φ(t)

where the last inequality follows by Hypothesis (H3) and so i(t) ≥ 0. We prove
now that i(t) < x0

Φ(t): by (8.36)

x0
Φ(t) − i(t) =

(

ρ− ξ(1 − σ)

σξ

)(

S(it) +

∫ 0

−R

eξsF (it)(s)ds

)

and
(

S(it)+

∫ 0

−R

eξsF (it)(s)ds

)

=

∫ 0

−R

(Ωeδr−Ωe−δR)i(r+t)dr+

∫ 0

−R

eξs
∫ s

−R

i(r−s+t)dνB(r)ds =

=

∫ 0

−R

Ωi(r + t)

(

eδr − e−δR − δ

δ + ξ
eδre(δ+ξ)r +

δ

δ + ξ
eδre−(δ+ξ)R

)

dr
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We consider now the application Ψ: [−R, 0] → R given by

Ψ: r 7→ eδr − e−δR − δ

δ + ξ
eδre(δ+ξ)r +

δ

δ + ξ
eδre−(δ+ξ)R

We note that:
(i) Ψ(−R) = 0

(ii) Ψ(0) = Ω
1−e−δR− δ

δ+ξ
(1−e−(ξ+δ)R)

Ω = ξ
Ω > 0

(iii) Ψ′(r) = eδr
(

(δ2+δξ)(1−e(δ+ξ)r)−δ2(e(δ+ξ)r−e−(δ+ξ)R)
δ+ξ

)

So Ψ′(r) between −R and 0 is in a first part > 0 and then ≤ 0 But we know that
Ψ(−R) = 0 and Ψ(0) > 0 so Ψ(r) > 0 for all r in (−R, 0]. Eventually i(t) ≥ 0 for
all t > −R and i|[0,+∞) 6≡ 0 implies

x0
Φ(t) − i(t) =

(

ρ− ξ(1 − σ)

σξ

)

(

S(it) +

∫ 0

−R

eξsF (it)(s)ds
)

> 0

and so i(t) < x0
Φ(t).

Now we know that Φ is an admissible strategy related to p = (S(ῑ), F (ῑ)). It is easy
to see from what we have said in this first part of the proof that xΦ(t) remain in Y
as defined in (8.27) and so the Hamiltonian can be expressed in the simplified form
of equation (8.26) and v is a solution of the HJB equation on such points.
We see now that Φ ∈ OFSp:
We introduce:

ṽ(t, x) : R ×X → R

ṽ(t, x)
def
= e−ρtv(x)

H̃ : R × F → R

H̃(t, x, P )
def
= e−ρtH(x, P ) =

= sup
i∈[0,cx0]

{

e−ρt
(

〈(x0, x1), A∗P 〉M2+〈i, BP 〉R+
(x0 − i)1−σ

(1 − σ)

)}

Using that (Dv(xΦ(t))) ∈ D(A∗) and that the application x 7→ Dxv(x) is continuous
with respect to the norm of D(A∗), we find:

d

dt
ṽ(t, xΦ(t)) = −ρṽ(t, xΦ(t)) +

+〈Dxṽ(t, xΦ(t))|AxΦ(t) +B∗i(t)〉D(A∗)×D(A∗)′ =

= −ρe−ρtv(xΦ(t)) +(8.39)

+e−ρt
(

〈A∗Dv(xΦ(t)), xΦ(t)〉M2 +BDv(xΦ(t))i(t)
)

By definition (note that Ĵ(p, i) = Ĵ(p,Φ(xΦ))):

v(p) − Ĵ(p, i) = v(xΦ(0)) −
∫ ∞

0

e−ρt
(x0

Φ(t) − Φ(xΦ)(t))1−σ

(1 − σ)
dt =

using (8.39) and Proposition 8.9

=

∫ ∞

0

e−ρt
(

ρv(xΦ(t)) − 〈A∗Dv(xΦ(t)), xΦ(t)〉M2−

−〈BDv(xΦ(t)), i(t)〉R − (x0
Φ(t) − i(t))1−σ

(1 − σ)

)

dt =

(8.40) =

∫ ∞

0

e−ρt
(

H(xΦ(t), Dv(xΦ(t))) −HCV (xΦ(t), Dv(xΦ(t)), i(t))

)

dt
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The conclusion follows by three simple observation:

(1) The relation (8.40) implies that v(p) − Ĵ(p, i) ≥ 0 (this implies v(p) ≥
V̂ (p)).

(2) The original maximization problem is equivalent to the problem of find
a control i that minimize v(p) − Ĵ(p, i)

(3) The feedback strategy Φ achieves v(p) − Ĵ(p, i) = 0.

and from remark 8.6. �

Corollary (of the proof) 8.21. Taken p = (S(ῑ), F (ῑ)) for some ῑ ∈
L2((−R, 0); R+) we have that

V (ῑ) = V̂ (p) = v(p)

that is: on such point we have an explicit expression for the value function V̂ given
by v.

8.5. Back to Problem (P)

Now we can use the result we found in infinite dimensional setting to give some
results for original optimal control problem regulated by the delay differential equa-
tion: Problem (P).
First of all observe that, given any f(·) ∈ L2((−R, 0); R+) and writing y =
(S(f), F (f)), the quantity Γ0(y) defined in (8.28) becomes

(8.41) Γ(f(·)) def= Γ0 (S(f), F (f)) =

=

∫ 0

−R

(

Ωeδs − Ωe−δR
)

f(s)ds+

∫ 0

−R

eξs
∫ s

−R

−δΩf(−s+ r)eδrdrds =

= y(0) −
∫ 0

−R

eξs
∫ s

−R

δΩf(−s+ r)eδrdrds

We will use such notation both for initial datum (f = ῑ) and the generic f = ı̃t for
some t ≥ 0.

From Corollary 8.21 we can say that

Proposition 8.22. Let Hypotheses (H1), (H2) and (H3) be satisfied, then
the explicit expression for the value function V related to Problem (P), for some
ῑ ∈ L2((−R, 0); R+), is

(8.42) V (ῑ) = a(Γ(ῑ(·)))1−σ = a

(

y(0) −
∫ 0

−R

eξs
∫ s

−R

δΩῑ(−s+ r)eδrdrds

)1−σ

where

a =

(

ρ− ξ(1 − σ)

σξ

)−σ
1

(1 − σ)ξ

Moreover, as corollary of Proposition 8.20 we can give a first solution in closed
form for Problem (P):

Proposition 8.23. Let Hypotheses (H1), (H2) and (H3) be satisfied. Taken,
for some ῑ ∈ L2((−R, 0); R+), an initial data (y(0), ı̃0) = (S(ῑ), ῑ) in equation (8.13)
the optimal control for Problem (P) i∗ and the related state trajectory y∗ satisfy
for all t ≥ 0:

i∗(t) = y∗(t) −
(

ρ− ξ(1 − σ)

σξ

)

Γ(̃ı∗t (·))
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Theorem 8.24. Let Hypotheses (H1), (H2) and (H3) be satisfied. Taken, for
some ῑ ∈ L2((−R, 0); R+), an initial data (y(0), ı̃0) = (S(ῑ), ῑ) in equation (8.13),
there exists a Λ such that along the optimal trajectory the optimal control for Prob-
lem (P) i∗ and the related state trajectory y∗ satisfy for all t ≥ 0:

(8.43) C∗(t) = y∗(t) − i∗(t) = Λegt

where g = ξ−ρ
σ

Moreover the explicit value of Λ can be computed and it is

(8.44) Λ =

(

ρ− ξ(1 − σ)

σξ

)

Γ(ῑ(·)) =

=

(

ρ− ξ(1 − σ)

σξ

)(

y(0) −
∫ 0

−R

eξs
∫ s

−R

δΩῑ(−s+ r)eδrdrds

)

Proof. Along optimal trajectory we have:

yy0,ῑ,i(t) − i(t) =

(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

eξsF (̃ıt)(s)ds+ yy0,ῑ,i(t)

)

We calculate now the the derivative of such expression: We take ψ = (1, s 7→ eξs) ∈
M2. It is easy to see that ψ ∈ D(A∗). So we have (by Theorem 8.4)

d

dt

(
∫ 0

−R

eξsF (̃ıt)(s)ds+ yy0,ῑ,i(t)

)

=
d

dt
〈ψ, x(t)〉M2 =

(by equation (8.22) and that ξ is a root of (8.24))

= 〈A∗ψ, x(t)〉M2 + 〈B(ψ), i(t)〉
R

=
〈

(0, s 7→ ξeξs), x(t)
〉

M2 + 〈ξ, i(t)〉
R

=

(using the relation given by Proposition (8.23), that give as i(t) on optimal trajec-
tory, and the explicit expression of x(t) (see definition 8.3))

=

[

ξ

(
∫ 0

−R

eξsF (̃ıt)(s)ds

)]

+

[

ξ

(

yy0,ῑ,i(t) −
(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

eξsF (̃ıt)(s)ds+ yy0,ῑ,i

)

)

]

=

by simple calculations

=

(

ξ − ρ− ξ(1 − σ)

σ

)(
∫ 0

−R

eξsF (̃ıt)(s)ds+ yy0,ῑ,i(t)

)

= g

(
∫ 0

−R

eξsF (̃ıt)(s)ds + yy0,ῑ,i(t)

)

and so we have that there exists a Λ such that

y∗(t) − i∗(t) = Λegt

To find the value of Λ we use Proposition 8.23 that gives us the value of the optimal
control in 0:

Λ = yῑ,i(0) − i(0) =

(

ρ− ξ(1 − σ)

σξ

)

(

yῑ,i(0) +

∫ 0

−R

eξsF (i0)(s)ds
)

�

The following is a consequence of Theorem 8.24 but we want to emphasizes
such result:
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Corollary 8.25. Let Hypotheses (H1), (H2) and (H3) be satisfied. Taken an
initial data (y(0), ı̃0) = (S(ῑ), ῑ) in equation (8.13) i∗ is connected with the related
state equation trajectory y∗ by the following optimal feedback strategy:

(8.45) i∗(t) = y∗(t) − Λegt

for all t ≥ 0

Corollary 8.26. Re-scaling the variables:

ȳ(t)
def
= e−gty∗(t)

ı̄(t)
def
= e−gti∗(t)

we have that c∗(t) =
(

ȳ(t) − ı̄(t)
)

, that is the discounted consumption, is constant
on optimal trajectories.

From what we have seen we can state that:

Proposition 8.27. Let Hypotheses (H1), (H2) and (H3) be satisfied. Taken,
for some ῑ ∈ L2((−R, 0); R+), an initial data (y(0), ı̃0) = (S(ῑ), ῑ) in equa-
tion (8.13) the optimal control for Problem (P) ı̃∗(t) is the unique solution in
H1
loc([0,+∞); R+) of the following delay differential equation:

(8.46)

{

ı̃∗(t) =
∫ t

(t−R)
ı̃∗(s)(Ωe−δ(t−s) − Ωe−δR)ds− Λegt

ı̃∗0 = ῑ

Moreover the optimal y(·) is the unique solution in H1
loc([0,+∞); R+) of the follow-

ing integral equation

(8.47) y∗(t) =

∫ 0

(t−R)∧0

(Ωeδs − Ωe−δR)ῑ(s)ds+

+

∫ t

(t−R)∨0

(Ωe−δ(t−s) − Ωe−δR) [y∗(s) − Λegs] ds, t ≥ 0.

Definition 8.28 (BGP). We’ll say that the optimal control for Problem (P)
i∗ is a Balanced Growth Path (BGP) if there exists a0, b0 > 0, and real numbers
a1, b1 such that

ı̃∗(s) = a0e
a1s for s ∈ [−R,+∞ y∗(s) = b0e

b1sfor s ∈ [0,+∞)

We can try to understand if there are BGP in our model.

Proposition 8.29. If g = ξ−ρ
σ > 0 then there is a non trivial Balanced Growth

Path with a1 = b1 = g and

b0 =

∫ 0

−R

Ω(eδs − e−δR)a0e
gsds

Proof. It is enough to try the solution a0e
a1s in equation (8.46).

We find:

a0e
a1s =

(
∫ 0

−R

Ωe(δ+a1)sds−
∫ 0

−R

Ωea1se−δRds

)

a0e
a1s

(

ξ − ρ

σξ

)

+

+a0e
a1s

(

ρ− ξ(1 − σ)

σξ

)
∫ 0

−R

eξs
∫ s

−R

e−a1se(a1+δ)rdrds

then

1 = Σ(a1)
def
=

(

Ω
1

δ + a1
(1 − e−(δ+a1)R) − Ωe−δR

1

a1
(1 − e−(+a1)R)

)(

ξ − ρ

σξ

)

+
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+

(

ρ− ξ(1 − σ)

σξ

)
∫ 0

−R

e(ξ−a1)sδΩ
1

δ + a1
(e(a1+δ)s − e−(a1+δ)R)ds =

(

Ω
1

δ + a1
(1 − e−(δ+a1)R) − Ωe−δR

1

a1
(1 − e−(+a1)R)

)(

ξ − ρ

σξ

)

+

+

(

ρ− ξ(1 − σ)

σξ

)

δΩ

δ + a1

(

1

ξ + δ
(1−e−(ξ+δ)R)−e−(a1+δ)R

1

ξ − a1
(1−e−(ξ−a1)R)

)

so we can observe that, when g > 0:

lim
a1→−∞

Σ(a1) = +∞ lim
a1→+∞

Σ(a1) = 0

then there exists a a1 such that Σ(a1) = 1 and than such that a0e
a1· is the a BGP

for all positive a0. But from Theorem 8.24 we can deduce that the only possible
choice for a BGP is that a1 = b1 = g, then Σ(g) = 1 and a0e

g· is a BGP for all
positive a0. The related state evolution will be y(s) = b0e

gs where

b0 =

∫ 0

−R

Ω(eδs − e−δR)a0e
gsds

�

Proposition 8.30. There exist the limits

yl
def
= lim

t→+∞
e−gty∗(t) il

def
= lim

t→+∞
e−gti∗(t)

moreover

(8.48)











il = Λ

(
R 0
−R

Ω(eδs−e−δR)egsds)−1

yl = Λ

(

1 + 1

(
R

0
−R

Ω(eδs−e−δR)egsds)−1

)

Proof. In view of equation (8.46) and equation (8.47) we can develop i∗(·)
and y∗(·) as

i∗(t) =
∑

pj(t)e
θjt y∗(t) =

∑

qj(t)e
σjt

Since i∗ and k∗ remain ≥ 0 we can state that the root θj with greater real part
(we call it θ̄) is real and that the σj with greater real part (σ̄) is real. Moreover
the fact that y∗(t) − i∗(t) = Λegt implies that θ̄ = σ̄ ≥ g. The existence of the
limit is proved if we prove that θ̄ = σ̄ = g. We suppose now, by contradiction, that

ν
def
= θ̄ = σ̄ > g. So we can find a t̄ > R such that

i∗(t) > cegt for all t ≥ t̄−R

where c is such that

Λ =

(

ρ− ξ(1 − σ)

σξ

)(
∫ 0

−R

cegs(Ωeδs − Ωe−δR)ds+ c

∫ 0

−R

eξsF (r 7→ egr)(s)ds

)

Note that the control given by

is =

{

i∗(t) for t ≤ t̄
cegt for t > t̄

is admissible and the related consumption is






Λegt for t ≤ t̄
Λegt for t ≥ t̄+R
> Λegt for t ∈ (t̄, t̄+R)
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so J(is) > J(i∗) but i∗(·) is optimal and then we have a contradiction. So ν = g
and then the limits does exist. Now we compute the limits: we have that

{

yl − il = Λ

yl =
(

∫ 0

−R Ω(eδs − e−δR)egsds
)

il

so










il = Λ

(
R 0
−R

Ω(eδs−e−δR)egsds)−1

yl = Λ

(

1 + 1

(
R

0
−R

Ω(eδs−e−δR)egsds)−1

)

�





APPENDIX A

A verification theorem for the stochastic case in the

framework of viscosity solutions

In this appendix, as announced in Chapter 5, we present a verification theorem
for the stochastic case, in which a second order HJB is involved. A similar result
is available in the finite dimensional case, it appeared first in [Zho93, ZYL97] and
then in corrected form in [GŚZ05].

A.1. Notation, definitions and background

Here we study the verification theorem in stochastic setting. We try to use
as much common notation with the previous section as possible. X is a separable
Hilbert space, A the generator of a C0 semigroup of contraction, U a compact
metric space1. We call S(X) the set of bounded and selfadjoint operators on X .

We consider an optimal control problem in relaxed form: we look for optimal
control on the set of all admissible stochastic bases . A stochastic base is a five-tuple
of the form:

ν = (Ων , (Fν
t ),Pν ,W ν(·), uν(·))

where (Ων , (Fν
t ),Pν) is a filtered probability space, W ν(·) is a X-valued Wiener

process with covariance operator R for a fixed nuclear operator R; uν(·) is a pro-
gressively measurable process (with respect to Fν

t ) which takes values in U . The
expectation E = Eν is calculated with respect to the probability Pν). The set of
all admissible stochastic bases will be called Θ. In the following we will avoid the
index ν but all the elements of the stochastic base will be implicit in the choice of
an admissible control u(·).

We consider a state equation of the form2

(A.1)

{

dx(s) = (Ax(s) + f(x(s), u(s))) ds+ σ(x(s), u(s))dW (s)
x(t) = x

We assume:

Hypothesis A.1. A is the generator of a semigroup of contractions that is

‖esA‖ ≤ 1 for all s ≥ 0

Hypothesis A.2. f : X × U → X and σ : X × U → L (X) are continuous.
Moreover there exists M > 0 s.t.

|f(x, u) − f(y, u)| ≤M |x− y| ∀ x, y ∈ X, u ∈ U

|σ(x, u) − σ(y, u)| ≤M |x− y| ∀ x, y ∈ X, u ∈ U

The solution of such stochastic differential equation can be given in mild form
as in [DPZ02].

1The compactness assumption was not assumed in the deterministic case.
2In this section we use σ, as usual, for the drift term. We will use ω(·) for the moduli of

continuity.

177



178 A. VERIFICATION FOR STOCHASTIC CASE

We take a cost functional of the form:

J(t, x, ν) = E
ν

(

∫ T

t

L(r, x(r), u(r))dr + h(x(T ))

)

We assume that

Hypothesis A.3. L : [0, T ] × X × U → R and h : X → R are continuous.
Moreover there exists a local modulus ω(·, ·), a positive natural number m and a
constant M > 0 such that

|L(t, x, u)−L(s, y, u)| ≤ ω(|x− y|+ |s− t|, |x| ∨ |y|) ∀ x, y ∈ X, u ∈ U, s, t ∈ [0, T ]

|L(s, x, u)|, |h(x)| ≤M(1 + |x|m) ∀ x ∈ X, u ∈ U, s ∈ [0, T ]

.

We define the value function as

(A.2) V (t, x) = inf
ν∈Θ

J(t, x, ν)

and the HJB equation of the problem as

(A.3)

{

−vt(t, x) − 〈Ax,∇v(t, x)〉 −H(t, x,∇v(t, x), D2v(t, x)) = 0
v(T, x) = h(x)

where the Hamiltonian is

H(t, x, p,Q) = inf
u∈U

(

〈p, f(x, u)〉 + L(t, x, u) +
1

2
tr(S(x, u)Q)

)

in which S(x, u) = σ(x, u)Rσ∗(x, u).
As in deterministic case we want to proceed giving the definition of sub/super

solution of the HJB equation but we have to begin with some definitions and obser-
vations: The operator P and P -continuity We use, as in Section 2.2, Chapters
3 and Chapter 5 an operator P that is strictly positive, selfadjoint, bounded and
such that A∗P is bounded and3

A∗P ≤ P.

We can now describe the sets of test functions:

test1S = {ϕ ∈ C1,2((0, T ) ×X) : ϕ is P-continuous
∇ϕ : X → D(A∗) is continuous,
ϕ, ∂tϕ,∇ϕ,D2ϕ,A∗∇ϕ are
locally uniformly continuous and
have polynomial growth }

test2S = {g ∈ C1,2([0, T ] ×X) : g(t, x) = η(t)ψ(x) where
ψ is radial, non-decreasing,
ψ,∇ψ,D2ψ are loc. unif. continuous
and have polynomial growth.
η ∈ C1([0, T ]) is positive }

We pass to the definition of sub/super solution

Definition A.4 (Viscosity subsolution). v ∈ C([0, T ] × X), v P -upper
semicontinuous, is a (viscosity) subsolution of the HJB equation (A.3) if

v(T, x) ≤ h(x) for all x ∈ X

3We have already seen in Remark 2.24 we can always find an operator with such features.
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and for all ϕ ∈ test1S and g ∈ test2S and every (t, x) ∈ [0, T )×X global maximum
of v − ϕ− g we have
(A.4)
−ϕt(t, x) − gt(t, x) − 〈A∗∇ϕ(t, x), x〉 −H(t, x,∇(ϕ+ g)(t, x), D2(ϕ+ g)(t, x)) ≤ 0

Definition A.5 (Viscosity supersolution). v ∈ C([0, T ] × X), v P -lower
semicontinuous, is a (viscosity) supersolution of the HJB equation (A.3) if

v(T, x) ≥ h(x) for all x ∈ X

and for all ϕ ∈ test1 and g ∈ test2 and every (t, x) ∈ [0, T ) ×X global minimum
of v + ϕ+ g we have

ϕt(t, x)+ gt(t, x)+ 〈A∗∇ϕ(t, x), x〉 −H(t, x,−∇(ϕ+ g)(t, x),−D2(ϕ+ g)(t, x)) ≥ 0

Definition A.6 (Viscosity solution). v ∈ C([0, T ] × X) is a (viscosity)
solution of the HJB equation (A.3) if it is at the same time a subsolution and a
supersolution

With previous assumptions the following results can be proved (see [Kel02]
chapter 3 for a proof):

Lemma A.7. Let Hypotheses A.1, A.2 and A.3 hold. Let x(·) be a solution of
the (A.1) related to the choice of an admissible base ν ∈ Θ. Let ϕ be in test1S and
g ∈ test2S, then one has:

(A.5) E[ϕ(s, x(s)] − ϕ(t, x) =

= E

[
∫ T

t

∂tϕ(r, x(r)) + 〈x(r), A∗∇ϕ(r, x(r)〉+

+ 〈∇ϕ(r, x(r)), f(x(r), u(r))〉 +

+
1

2
tr
(

S(x(r), u(r))D2ϕ(r, x(r))
)

dr

]

and

(A.6) E[g(s, x(s)] − g(t, x) ≤

≤ E

[
∫ T

t

∂tg(r, x(r)) + 〈∇g(r, x(r)), f(x(r), u(r))〉 +

+
1

2
tr
(

S(x(r), u(r))D2g(r, x(r))
)

dr

]

Theorem A.8. Let Hypotheses A.1, A.2, A.3 hold. Then the value function V
defined in equation (A.2) is a solution of the HJB equation.

A.2. The verification theorem

We need, as in the proof of deterministic verification theorem, another assump-
tion that is very similar to Hypothesis 5.11:

Hypothesis A.9. There exists a G ⊆ {f ∈ C([0, T ] ×X) : f P-continuous}
such that:

(i) The value function V is in G
(ii) If v1, v2 ∈ G, v1 is a subsolution of the HJB equation and v2 is a super-

solution of the HJB equation then v1 ≤ v2

From (i) and (ii) we know that V is the only solution of the HJB equation in
G.

Now we need a definition similar to Definition 5.13:
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Definition A.10 (E1,2,+
v(t,x)). Given v ∈ C([0, T ]×X) and (t, x) ∈ [0, T ]×

X we define E1,2,+v(t, x), or simply Esv(t, x) as

Esv(t, x) =
= {(q, p1, p2, Q) ∈ : ∃ϕ ∈ test1, g ∈ test2 s.t.

∈ R ×D(A∗) ×X × S(X) v − ϕ− g attains a global max. in (t, x),
(∂t)(ϕ + g)(t, x) = q,
∇(ϕ)(t, x) = p1, ∇(g)(t, x) = p2,
v(t, x) = ϕ(t, x) + g(t, x) and
D2(ϕ+ g)(t, x) = Q}

Remark A.11. As in the deterministic case if we call

Es1v(t, x) = {(q, p,Q) ∈ R×X ×S(X) : p = p1 + p2 with (q, p1, p2, Q) ∈ Ev(t, x)}
then Es1v(t, x) ⊆ D1,2,+v(t, x) and in the finite dimensional case we have
Es1v(t, x) = D1,2,+v(t, x). We use p1 and p2 instead of p to underline the different
role of g and ϕ. We will need this fact in the proofs in the sequel.

In the proof of verification theorem we will need the following technical lemma:

Lemma A.12. Let Hypotheses A.1, A.2 and A.3 hold. Let (x(·), u(·)) be an
admissible pair at (t, x). Define the processes

z1(r) = f(x(r), u(r)) z2(r) = σ(x(r), u(r))σ∗(x(r), u(r))

Then

(A.7) lim
h→0+

E

[

1

h

∫ s+h

s

|zi(r) − zi(t)|dr
]

= 0 a.e. s ∈ [t, T ], i = 1, 2

Proof. See [GŚZ05] Proposition 3.7 page 2014. �

Theorem A.13. Let Hypotheses A.1, A.2, A.3 and A.9 hold. Let (x(·), u(·))
be an admissible pair at (t, x), let v ∈ G be a subsolution of the HJB equation (see
Definition A.4) such that

(A.8) v(T, x) = h(x) for all x in X

Let q(·) ∈ L2
Fs

((t, T ); R), p1(·) ∈ L2
Fs

((t, T );D(A∗)), p2(·) ∈ L2
Fs

((t, T );X) and

Q(·) ∈ L2
Fs

((t, T ); L (X)) be such that for almost every s ∈ (t, T )

(A.9) (q(s), p1(s), p2(s), Q(s)) ∈ Esv(s, x(s)) P − a.s.

Moreover we assume that

(A.10) E

[

∫ T

t

〈p1(s) + p2(s), f(s, x(s), u(s))〉 + q(s) + 〈A∗p1(s), x(s)〉+

+
1

2
tr(S(x(s), u(s))Q(s)) + L(s, x(s), u(s))ds

]

≤ 0

Then

(a) v(t, x) ≤ V (t, x) ≤ J(t, x, ν) ∀(t, x) ∈ [0, T ] × X for every stochastic
base ν.

(b) (x(·), u(·)) is an optimal pair at (t, x).

Proof. We will follows the scheme of the proof for the finite dimensional
case (see [GŚZ05]) but we will have to confront with some difficulties that are
typical of the infinite dimensional case. To be more precise: the presence of the
unbounded term A∗∇ϕ (step 2), the (almost) radial test function g and the related
terms (steps 1,4,6), the nuclear covariance of W (steps 5 and 6).
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We fix t0 ∈ [t, T ] s.t. (A.9) and (A.7) hold at t0. We fix a ω0 ∈ Ω such that
the (A.9) holds and the regular conditional probability given Fs

t0 , denoted by

P(·|Fs
t0)(ω0)

is well defined (see [KS99] page 84-85 for a proof that for P-a.e. ω0 ∈ Ω we can
define the regular conditional probability).

We consider x(t0), p1(t0), p2(t0), q(t0), Q(t0). They are P(·|F t
t0)(ω0)-a.s. con-

stant (see [YZ99] Proposition 2.13 Chapter 1) and they are respectively equal to:
x(t0)(ω0), p1(t0)(ω0), p2(t0)(ω0), q(t0)(ω0), Q(t0)(ω0). We call x0 := x(t0)(ω0).

The X-valued Wiener process W is still a Brownian motion with fixed covari-
ance operator R although now W (t0) = W (t0)(ω0) P(·|F t

t0)(ω0)-a.s.. The space is
now equipped with a new filtration:

(

F t0
r

)

r∈[t0,T ]

and the control process u(·) is adapted to this filtration. Moreover for P(·|F t
t0)(ω0)-

a.e. ω0 ∈ Ω x(·) is a solution of (A.1) on (t0, T ) in the probability space
(

Ω,F ,P(·|F t
t0)(ω0)

)

with initial condition x(t0) = x0.
We will write Eω0 to denote the expectation with respect to the measure

P(·|F t
t0)(ω0). We now take two test functions ϕ and g such that:

(A.11)

a ϕ+ g > v ∀(t, x) 6= (t0, x0)
b (ϕ+ g)(t0, x0) = v(t0, x0)
c ∂t(ϕ+ g)(t0, x0) = q(t0)(ω0)
d ∇(ϕ)(t0, x0) = p1(t0)(ω0) and ∇(g)(t0, x0) = p2(t0)(ω0)
e D2(ϕ + g)(t0, x0) = Q(t0)(ω0)

So

(A.12) Eω0

[

v(t0 + h, x(t0 + h)) − v(t0, x0)

h

]

≤

≤ Eω0

[

(ϕ+ g)(t0 + h, x(t0 + h)) − (ϕ+ g)(t0, x0)

h

]

≤

using Lemma A.7

(A.13) ≤ Eω0

[

1

h

∫ t0+h

t0

ϕt(r, x(r)) + 〈x(r), A∗∇ϕ(r, x(r))〉+

+ 〈∇ϕ(r, x(r)), f(x(r), u(r))〉 +
1

2
tr
(

S(x(r), u(r))D2ϕ(r, x(r))
)

dr

]

+

+ Eω0

[

1

h

∫ t0+h

t0

η′(r)ψ(r, x(r))+

+η(r) 〈∇ψ(x(r)), f(x(r), u(r))〉 +
1

2
tr
(

S(x(r), u(r))η(r)D2ψ(x(r))
)

dr

]

We pass now to verify the convergences of the different parts of the last expression:
we use the fact that a function f(·) : R

+ → F (where F is a Banach space) admit
the limit

lim
h→0+

f(h) = α

if and only if for each sequence of positive numbers hn → 0 there exists a subse-
quence hnj

such that
lim
j→∞

f(hnj
) = α
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As usual we will abuse of the notation using the expression hn also for the subse-
quence. Fix now a sequence of positive numbers {hn}n∈N such that limn→∞ hn = 0.

step 1: Thanks to the continuity of x(·) (see, for instance [DPZ02] Theorem 7.4
page 174), the continuity of ϕt and the continuity of η′ψ we have that P(·|F t

t0)(ω0)-
a.e.

(A.14)
∫ t0+hn

t0

ϕt(r, x(r)) + η′(r)ψ(r, x(r))dr
n→∞−−−−→

R

−→ ϕt(t0, x0) + η′(t0)ψ(t0, x0)

Moreover, under Hypotheses A.2 and A.1 we have (see [DPZ02] equation (7.16))
that there exists a KT such that for every l ≥ 0:

(A.15) Eω0 sup
r∈[t0,T ]

|x(r)|l ≤ KT (1 + |x0|l)

So, using the polynomial growth of ϕt and of η′ψ (that we have required in the
definition of test functions) we can dominate the convergence and find that:

lim
n→∞

Eω0

[

∫ t0+hn

t0

ϕt(r, x(r)) + η′(r)ψ(r, x(r))dr

]

= 0

step 2: We have

(A.16)

∣

∣

∣

∣

∣

1

hn
Eω0

[

∫ t0+hn

t0

〈x(r), A∗∇ϕ(r, x(r))〉 − 〈x0, A
∗∇ϕ(t0, x0)〉 dr

]∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

hn
Eω0

[

∫ t0+hn

t0

〈x(r) − x0, A
∗∇ϕ(r, x(r))〉 dr

]∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

1

hn
Eω0

[

∫ t0+hn

t0

〈x0, A
∗∇ϕ(r, x(r)) −A∗∇ϕ(t0, x0)〉 dr

]
∣

∣

∣

∣

∣

and (as in the previous step) by the continuity of x(t) and of A∗∇ϕ we obtain that
both the parts of the last expression go to zero P(·|F t

t0)(ω0)-a.s. and, as before,
using the polynomial estimates (A.15) we can dominate the expression and use the
Lebesgue theorem.

step 3: This step follows, without many variations, the proof of [GŚZ05]. The
term

Eω0

[

∫ t0+hn

t0

〈∇ϕ(r, x(r)), f(x(r), u(r))〉 − 〈∇ϕ(t0, x0), f(x0, u(t0))〉
hn

dr

]

can be divided into two parts: it becomes:

(A.17)
1

hn
Eω0

[

∫ t0+hn

t0

〈∇ϕ(r, x(r)) −∇ϕ(t0, x0), f(x(r), u(r))〉 dr

]

+

+
1

hn
Eω0

[

∫ t0+hn

t0

〈∇ϕ(t0, x0), f(x(r), u(r)) − f(x0, u(t0))〉dr

]
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step 3a: The first part can be estimate as follows

(A.18)

∣

∣

∣

∣

∣

1

hn
Eω0

[

∫ t0+hn

t0

〈∇ϕ(r, x(r)) −∇ϕ(t0, x0), f(x(r), u(r))〉 dr

]∣

∣

∣

∣

∣

≤

1

hn
Eω0

[

∫ t0+hn

t0

|∇ϕ(r, x(r)) −∇ϕ(t0, x0)| |f(x(r), u(r))| dr
]

≤

Eω0





(

1

hn

∫ t0+hn

t0

|∇ϕ(r, x(r)) −∇ϕ(t0, x0)|2 dr

)
1
2

×

×
(

1

hn

∫ t0+hn

t0

|f(x(r), u(r))|2 dr

)
1
2



 ≤

(

Eω0

[

1

hn

∫ t0+hn

t0

|∇ϕ(r, x(r)) −∇ϕ(t0, x0)|2 dr

])
1
2

×

×
(

Eω0

[

1

hn

∫ t0+hn

t0

|f(x(r), u(r))|2 dr

])
1
2

Arguing as in step 1 we get
(

Eω0

[

1

hn

∫ t0+hn

t0

|∇ϕ(r, x(r)) −∇ϕ(t0, x0)|2 dr

])
1
2

] → 0

and the other term is bounded indeed, from Hypothesis A.2, A.1 and (A.15) we
have

(

Eω0

[

1

hn

∫ t0+hn

t0

|f(x(r), u(r))|2 dr

])
1
2

≤ 2M2
(

1 +KT (1 + |x0|2)
)

step 3b: The second part of (A.17) can be estimated as follows:

(A.19)

∣

∣

∣

∣

∣

1

hn
Eω0

[

∫ t0+hn

t0

〈∇ϕ(t0, x0), f(x(r), u(r)) − f(x0, u(t0))〉 dr

]∣

∣

∣

∣

∣

≤

|∇ϕ(t0, x0)|Eω0

[

1

hn

∫ t0+hn

t0

|f(x(r), u(r)) − f(x0, u(t0))|
]

But in view of the choice of t0 the (A.7) holds and then

(A.20) 0 = lim
n→∞

= E

[

1

hn

∫ t+hn

t

|f(x(r), u(r)) − f(x0, u(t0)|dr
]

=

lim
n→∞

= E

[

1

hn
E

[

∫ t+hn

t

|f(x(r), u(r)) − f(x0, u(t0)|dr
∣

∣

∣

∣

Fs
t0

]]

=

lim
n→∞

= E

[

Eω0

[

1

hn

∫ t+hn

t

|f(x(r), u(r)) − f(x0, u(t0)|dr
]]

This means that

Eω0

[

1

hn

∫ t+hn

t

|f(x(r), u(r)) − f(x0, u(t0)|dr
]

n→∞−−−−−→
L1(Ω;R)

0
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So, up to consider a subsequence of {hn}n∈N, we have that for P-a.e. ω0

(A.21) Eω0

[

1

hn

∫ t+hn

t

|f(x(r), u(r)) − f(x0, u(t0)|dr
]

n→∞−−−−→ 0

and this prove the convergence for the ω0s that satisfy the (A.21). We proceed
assuming that ω0 is such that the last expression holds.

step 4: The term

Eω0

[

1

hn

∫ t+hn

t

η(r) 〈∇ψ(x(r)), f(x(r), u(r))〉 dr

]

can be treated with arguments similar to step 3. We obtain that, up to consider a
subsequence of {hn}n∈N, for P-a.e. ω0

(A.22) Eω0

[

1

hn

∫ t+hn

t

η(r) 〈∇ψ(x(r)), f(x(r), u(r))〉 −

η(t0) 〈∇ψ(x0), f(x0, u(t0))〉dr

]

n→∞−−−−→ 0

so we can proceed assuming that ω0 is such that the last expression holds.
step 5: Note that (see [DPZ02] page 416) if A is nuclear operator and B ∈

L (X) then AB and BA are nuclear and tr(AB) = tr(BA) moreover if A1 and A2

are nuclear operators than A1 + A2 is a nuclear operator and tr(A1) + tr(A2) =
tr(A1 +A2). We pass now to estimate the term:

Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

S(x(r), u(r))D2ϕ(r, x(r))
)

dr

]

We argue like in step 4:

(A.23) Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

S(x(r), u(r))D2ϕ(r, x(r))
)

−

1

2
tr
(

S(x0, u(t0))D
2ϕ(t0, x0)

)

dr

]

=

Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

S(x(r), u(r))
(

D2ϕ(r, x(r)) −D2ϕ(t0, x0)
))

+

Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

(S(x(r), u(r)) − S(x0, u(t0)))D
2ϕ(t0, x0)

)

dr

]

=

And then, arguing like in step 4, we can conclude that, up to consider a subsequence
of {hn}n∈N and up to exclude another set of measure zero in the choice of ω0, we
have

(A.24) Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

S(x(r), u(r))D2ϕ(r, x(r))
)

−

−1

2
tr
(

S(x0, u(t0))D
2ϕ(t0, x0)

)

dr

]

step 6: The term

Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

S(x(r), u(r))η(r)D2ψ(x(r))
)

dr

]
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can be treated with arguments similar to step 5 and so, up to consider a subsequence
and up to exclude another set of measure zero in the choice of ω0, we have that

(A.25) Eω0

[

1

hn

∫ t0+hn

t0

1

2
tr
(

S(x(r), u(r))η(r)D2ψ(x(r))
)

−

1

2
tr
(

S(x0, u(t0))η(t0)D
2ψ(x0)

)

dr

]

n→∞−−−−→ 0

Now we can summarize what we have seen in the six steps: There exists a
set Ω′ ⊆ Ω of full measure (with respect to the measure P = Pν) such that, for
every ω0 ∈ Ω′ and for every sequence of positive numbers hn → 0, up to consider a
subsequence, the convergences of steps 1..6 hold. Then, for ω0 that varies on a full
measure set, we have that the (A.13) admits a limit for h→ 0 and it is

(A.26) ϕt(t0, x0) + η′(t0)ψ(x0) + 〈x0, A
∗∇ϕ(t0, x0)〉+

〈∇ϕ(t0, x0), f(x0, u(t0))〉 + η(t0) 〈∇ψ(x0), f(x0, u(t0))〉+

1

2
tr
(

S(x0, u(t0))D
2ϕ(t0, x0)

)

+
1

2
tr
(

S(x0, u(t0))η(t0)D
2ψ(x0)

)

So, using (A.12) and (A.13) and using the relations (A.11) we have that, for ω0 in
a P-full measure set

(A.27) lim sup
h→0+

Eω0

[

v(t0 + h, x(t0 + h)) − v(t0, x0)

h

]

≤

≤ q(t0)(ω0) + 〈x0, A
∗p1(t0)(ω0)〉+

+ 〈p1(t0)(ω0) + p2(t0)(ω0), f(x0, u(t0))〉 +
1

2
tr (S(x0, u(t0))Q(t0)(ω0))

Then

(A.28) lim sup
h→0+

E

[

v(t0 + h, x(t0 + h)) − v(t0, x0)

h

]

=

= lim sup
h→0+

E

[

Eω0

[

v(t0 + h, x(t0 + h)) − v(t0, x0)

h

]]

≤

for the Fatou’s lemma

≤ E

[

lim sup
h→0+

Eω0

[

v(t0 + h, x(t0 + h)) − v(t0, x0)

h

]]

≤

for equation (A.27)

(A.29) ≤ E

[

q(t0)(ω0) + 〈x0, A
∗p1(t0)(ω0)〉+

+ 〈p1(t0)(ω0) + p2(t0)(ω0), f(x0, u(t0))〉 +
1

2
tr (S(x0, u(t0))Q(t0)(ω0))

]

The end of the proof is similar to the deterministic case one: we use the Lemma
5.12 with g(s) = Ev(s, x(s)) and (A.10) and (A.29). Then

E [v(s, x(s))] − v(t, x) ≤ E

[

∫ T

t

−L(r, x(r), u(r))dr

]

But, in view of the fact that v is a subsolution and v ∈ G we know that v ≤ V and
using the (A.8) we know that v(T, x(T )) = V (T, x(T )) = h(x(T )), then

E

[

∫ T

t

L(r, x(r), u(r))dr + h(x(T ))

]

≤ V (t, x)
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and this prove that the pair x(·), u(·) is optimal. �



Abbreviations

CRRA Constant relative risk aversion

DDE Delay differential equation

DP Dynamic programming

DPA Dynamic programming approach

HJ equation Hamilton-Jacobi equation

HJB equation Hamilton-Jacobi-Bellman equation

HJI equation Hamilton-Jacobi-Isaacs equation

LQ Linear quadratic

ODE Ordinary differential equation

PDE Partial differential equation
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[FGŚ] G. Fabbri, F. Gozzi, and A. Świȩch, A verification result within the
framework of viscosity solutions in infinite dimensions, work in progress.

[FGS06] G. Freni, F. Gozzi, and N. Salvadori, Existence of optimal strategies
in linear multisector models, Economic Theory (2006), to appear.

[FHKV06] G. Feichtinger, R. Hartl, P. Kort, and V. Veliov, Anticipation
effects of technological progress on capital accumulation: a vintage capital
approach, Journal of Economic Theory 20 (2006), 645–668.

[FHS94] G. Feichtinger, R.F. Hartl, and S.P. Sethi, Dynamic optimal
control models in advertising: Recent developments, Management Science
40 (1994), no. 2, 195–226.

[FPV04] G. Feichtinger, A. Prskawetz, and V.M. Veliov, Age-structured
optimal control in population economics, Theoretical Population Biology
65 (2004), no. 4, 373–387.

[FR75] W.H. Fleming and R.W. Rishel, Deterministic and stochastic opti-
mal control., Applications of Mathematics. Vol. 1. Berlin-Heidelberg-New
York: Springer-Verlag. XIII, 222 p., 1975.

[FS94] H.O. Fattorini and S.S. Sritharan, Necessary and sufficient condi-
tions for optimal controls in viscous flow problems, Proc. Roy. Soc. Edin-
burgh Sect. A 124 (1994), no. 2, 211–251.

[GGR99] M. Gort, J. Greenwood, and P. Rupert, Measuring the rate of
technological progress in structures, Rev. Econ. Dynam 2 (1999), 107–230.

[GJ98] J. Greenwood and B. Jovanovic, Accounting for growth, NBER
(1998), no. 6647.



BIBLIOGRAPHY 195

[GJ06] S. Gombao and Raymond J.P., Hamilton-jacobi equations for control
problems of parabolic equations, ESAIM, Control Optim. Calc. Var. 12

(2006), 311–349.

[GM04] F. Gozzi and C. Marinelli, Optimal advertising under uncertainty
with memory and lags, mimeo, 2004, to appear in the proceedings of the
conference "SPDE and Applications" 2004.

[GMS06] F. Gozzi, C. Marinelli, and S. Savin, Optimal advertising under
uncertainty with carryover effects, march 2006.

[GNMR03] M.K. Ghosh, A.K. Nandakumaran, and K.S. Mallinkar-
juna Rao, A zero sum differential game in a hilbert space, J. Math. Anal.
Appl. 283 (2003), 167–179.

[Goz88] F. Gozzi, Some results for an optimal control problem with a semilinear
state equation i, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
82 (1988), no. 8, 423–429.

[Goz89] F. Gozzi, Some results for an infinite horizon control problem governed
by a semilinear state equation, Internat. Ser. Numer. Math. 91 (1989),
145–163.

[Goz91] F. Gozzi, Some results for an optimal control problem with semilinear
state equation ii, SIAM J. Control Optim. 29 (1991), no. 4, 751–768.

[GRŚ00] F. Gozzi, E. Rouy, and A. Świȩch, Second order Hamilton-Jacobi
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[GŚZ05] F. Gozzi, A. Świȩch, and X.Y. Zhou, A corrected proof of a stochastic
verification theorem within the framework of viscosity solutions, SIAM J.
Control Optim. 43 (2005), no. 6, 2009–2019.

[Hen81] D. Henry, Geometric theory of semilinear parabolic equations, Lecture
Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981.

[HKVF03] R. Hartl, P. Kort, V. Veliov, and G. Feichtinger, Capital ac-
cumulation under technological progress and learning: a vintage capital
approach, mimeo, 2003, Istitute of menagement, University of Vienna.

[HVL93] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional
differential equations - applied mathematical sciences 99, Springer-Verlag,
1993.

[Iac02] M. Iacopetta, Vintage capital and technology adoption: A survey,
march 2002.

[Ian95] M. Iannelli, Mathematical theory of age-structured population dynam-
ics, Applied mathematics monographs. Comitato Nazionale perle scienze
matematiche. C.N.R. 7, Giardini, Pisa, 1995.



196 BIBLIOGRAPHY

[Ich77] A. Ichikawa, Evolution equations, quadratic control, and filtering with
delay, Analyse et contrôle de systèmes (Papers, IRIA Sem., Rocquencourt,
1977), IRIA, Rocquencourt, 1977, pp. 117–126.

[Ich82] A. Ichikawa, Quadratic control of evolution equation with delay in con-
trol, SIAM J. Control Optim. (1982), no. 20, 645–668.

[IMM05] M. Iannelli, M. Martcheva, and F. A. Milner, Gender-structured
population modeling, Frontiers in Applied Mathematics, vol. 31, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005,
Mathematical methods, numerics, and simulations.

[Ish87] H. Ishii, Perron’s method for hamilton-jacobi equations., Duke Math. J.
55 (1987), 369–384.

[Ish92] H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in
Hilbert spaces, J. Funct. Anal. 105 (1992), no. 2, 301–341.

[Ish93] H. Ishii, Viscosity solutions of nonlinear second-order partial differen-
tial equations in Hilbert spaces, Comm. Partial Differential Equations 18

(1993), no. 3-4, 601–650.

[JR97] B. Jovanovich and R. Rob, Solow vs. solow: machine prices and
development, NBER (1997), no. 5871.

[Kel02] D.A. Kelome, Viscosity solution of second order equations in a sep-
arable hilbert space and applications to stochastic optimal control, Ph.D.
thesis, Georgia Institute of Technology, 2002.
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