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Introduction

It is a remarkable fact that evolution equations with different algebraic structures have
solutions with similar behaviors; throughout the standard classification of Partial Differential
Equations in hyperbolic, parabolic and elliptic, the class off dispersive equations is an inter-
esting family, which presents some typical and characterizing phenomena.

Among the others, dispersive equations include the following ones:

• the Schrödinger equation

(0.1)

{
iut(t, x) + ∆xu(t, x) = 0 in R× Rn

u(0, x) = f(x);

• the wave equation

(0.2)


utt(t, x)−∆xu(t, x) = 0 in R× Rn

u(0, x) = f(x)
ut(0, x) = g(x);

• the Klein-Gordon equation

(0.3)


utt(t, x)−∆xu(t, x) + u(t, x) = 0 in R× Rn

u(0, x) = f(x)
ut(0, x) = g(x);

• the Dirac equation

(0.4)

{
iut(t, x) +Hu(t, x) = 0 in R× R3

u(0, x) = f(x).

For the Schrödinger equation, the unknown u : R1+n → C is a complex-valued function; for the
wave and Klein-Gordon equations u : R1+n → R is real-valued. Finally, for the Dirac equation,
the unknown u : R1+3 → C4 is a spinor-valued function. The Dirac operator H is defined by

(0.5) H = −i
3∑

j=1

αj∂j + β,

where the coefficients αj , β ∈M4×4(C) are the standard Hermitian 4× 4 Dirac matrices, which
are explicitly defined by

(0.6) α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , α2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , α3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,
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(0.7) α4 := β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

We also recall that αj , β, for j = 1, 2, 3, satisfy the well known anti-commutation rules

αjαk + αkαj = 2δjkI4, j, k = 1, . . . , 4

(see e.g. [108] for more details on the derivation of the equation). We will usually denote by D
the massless Dirac operator defined by

D = −i
3∑

j=1

αj∂j .

In the above mentioned Cauchy problems, the unknown u has the physical meaning of a
quantum wavefunction. The Schrödinger equation describes the free motion of a non-relativistic
particle; the wave and Klein-Gordon equations describe the free motion of a relativistic par-
ticle with spin-0, while the Dirac equation describes the motion of spin-1

2 particles (electrons,
neutrinos).

From a strictly algebraic point of view, the Schrödinger equation (0.1) is different from (0.2),
(0.3) and (0.4): actually wave, Klein-Gordon and Dirac equations are hyperbolic, hence they
have finite speed of propagation, while the Schrödinger equation has infinite speed of propagation
(hence it is not hyperbolic). On the other hand, the solutions of all these equations present some
peculiar and common behaviors, which are summarized in the terminology of dispersion.

Let us also observe that all the above examples can be written in the form

ut + ih(D)u = 0, h(D) = F−1 (h(ξ)F) ,

where F is the Fourier transform with respect to x; as a consequence, the solutions can be defined
by u = eith(D)f , once we impose the initial conditions. Hence it is not unnatural to think that
these equations show some common properties, which have to be related to the structure of the
propagators eith(D).

In order to introduce dispersion from a physical point of view, let us consider the wave
equation (0.2); in space dimension n = 3, when the initial datum f is null, it is well known that
the solution of 

utt −∆u = 0
u(0, x) = 0
ut(0, x) = g(x)

can be uniquely expressed via the Kirchhoff formula

(0.8) u(t, x) =
∫

∂B(x,t)
− tg(y) dS(y),

for t > 0, where B(x, t) denotes the ball in R3 of center x and radius t, ∂B(x, t) its boundary
and dS the two-dimensional surface-measure on ∂B(x, t). By the Stokes Theorem, we can pass
to a volume integral in (0.8) and immediately obtain the following estimate

(0.9) sup
x∈R3

|u(t, x)| ≤ C

t
‖∇g‖L1 ,
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for some C > 0 and for all times t > 0. Estimate (0.9) is interesting for large times, in fact it
says that the L∞-norm of u decays to 0 when t→ +∞. This is a very well known phenomenon,
and it has a physical explanation. The energy

E(u, t) =
1
2

∫
R3

(
|ut|2 + |∇u|2

)
dx

is conserved under the wave flow, namely the identity

E(u, t) = E(u, 0)

holds for all times t ∈ R, on each solution u ∈ H1 of the equation. On the other hand, due to the
finite speed of propagation, if we start with a compactly supported initial datum, at each time
t the solution is compactly supported (in space) in a bounded region whose diameter increases
as t. As a consequence, the solution tends to spread over this increasing region, and the energy
conservation forces the intensity necessarily to decay.

This fact seems to be strictly related to the finite speed of propagation, but it is in fact (from
a mathematical point of view) a consequence of the functional properties of the propagator of
the equation.

For example, also the Schrödinger equation (0.1), which has infinite speed of propagation,
has this property. The solution of (0.1) is uniquely determined by the propagator S(t) = eit∆,
which is a unitary group of operators on L2, hence it conserves the mass (spacial L2-norm). It
can be directly represented by its explicit convolution kernel, or by Fourier transforming with
respect to the space variable, we obtain the representation

(0.10) u(t, x) '
∫

Rn

ei(t|ξ|
2+x·ξ)f̂(ξ) dξ

for the solution of (0.1). The right hand side in (0.10) is an oscillatory integral (of the 1st kind),
and by standard stationary phase methods (see e.g. [100]) it is possible to prove the dispersive
estimate

(0.11) sup
x∈Rn

|u(t, x)| ≤ C

tn/2
‖f‖L1

(which is also immediate if we look at the kernel of eit∆). The last estimate is very similar to
(0.9); in dimension n = 3 the Schrödinger solution decays faster than the wave one, with no
loss of regularity with respect to the data. It is a fact that, if the initial datum is compactly
supported, the solution of the Schrödinger equation looses istantaneously this property, due to
the infinite speed of propagation; on the other hand, we can observe that most of the mass stays
localized in a finite region, with increasing diameter. This, together with the L2-conservation,
causes the same physical phenomenon which has been shown for the wave equation, and which
is described by estimate (0.11).

In both cases of wave and Schrödinger equation, for more general initial data, we can de-
compose them into elementary wavepackets and observe that, during the evolution, the single
packets travel independently with different speeds, but the same dispersive phenomena occur
for the total L∞-norm of the solution.
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In the last 30 years, dispersion has rapidly become one of the crucial tools in evolution
equations. This kind of physical phenomena can be summarized in a hierarchy of linear a priori
estimates for the solutions of the equations.

In this PhD thesis, we are interested in the above equations; we will focus our attention on
the following family of linear estimates:

• decay estimates
• Strichartz estimates
• Kato-smoothing estimates.

We give some examples, using the Schrödinger equation as a model.

0.1. Decay Estimates. Let us consider a solution u of (0.1); as we previously said, u satis-
fies the L1−L∞ decay estimate (0.11). By interpolation between (0.1) and the L2-conservation,
we immediately obtain the whole family of decay estimates for the Schrödinger equation

(0.12) ‖u(t)‖Lp ≤ Ct
−n

2
+n

p ‖f‖Lp′ , p ≥ 2,
1
p

+
1
p′

= 1.

Similar estimates hold for the wave, Klein-Gordon and Dirac equations, with a loss of derivatives
on the initial data (see Chapter 1).

These estimates are well known and very interesting from a physical point of view. Their
interest was historically motivated by the phenomenon itself; in the last years, once it was
discovered that decay estimates are basic to prove Strichartz estimates, they also became a
mathematical topic.

0.2. Strichartz Estimates. Strichartz estimates were introduced by R. Strichartz in [101],
as a consequence of Fourier restriction theorems. In the fundamental papers [45], [47] by J.
Ginibre and G. Velo, using the so called TT ∗ they proved Strichartz estimates as a consequence
of decay estimates. In the paper [66] by M. Keel and T. Tao the program was completed with
the proofs of the endpoint estimates.

The natural norms which are considered in this family of estimates are of mixed type, namely
we deal with Lp

tL
q
x-spaces. If u is the unique solution of the Schrödinger equation (0.1), then

the following estimates

(0.13) ‖u‖Lp
t Lq

x
= ‖eit∆f‖Lp

t Lq
x
≤ C‖f‖L2

hold for any couple (p, q) satisfying the Schrödinger admissibility condition
2
p = n

2 −
n
q

p ≥ 2 if n ≥ 3
p > 2 if n = 2.

For the wave, Klein-Gordon and Dirac equation, similar estimates hold, with different admissi-
bility conditions and different initial spaces (see the Appendix of Chapter 2).

Strichartz estimates represent the crucial instrument to perform fixed point arguments in
the study of nonlinear problems. One of the first examples of nonlinear application of Strichartz
estimates was given in [46] for the nonlinear Schrödinger equation. Later, also for the nonlinear
wave equation some critical problems were solved by this technique (see e.g. [52], [94]).



INTRODUCTION 7

0.3. Kato-smoothing and local smoothing estimates. The last family of estimates
we introduce are commonly referred to as smoothing effects. It is frequent for equations with
infinite speed of propagation that the solution is more regular then the initial data. The gain
of derivatives, which is in fact related to the algebraic structure of the equations, is a very
interesting fact, and is often a crucial improvement for nonlinear techniques.

The smoothing effect was discovered by T. Kato for the Kortweg-de Vries equation; for the
Schrödinger equation, Kato and Yajima in [65] proved the well known inequality

(0.14) ‖〈x〉−
1
2
−|D|

1
2 eit∆f‖L2

t L2
x
≤ C‖f‖L2 ;

a stronger local version of the previous inequality (see the standard references [23], [109], [110])
is the following:

(0.15) sup
R∈(0,+∞)

1
R

∫ ∞

−∞

∫
BR

∣∣∇ (eit∆f)∣∣2 dx dt ≤ C‖f‖
Ḣ

1
2
.

Here |D|
1
2 = F−1(|ξ|

1
2F), F is the standard Fourier transform, BR is the ball of radius R

centered in 0, and Ḣ
1
2 is the usual homogeneous Sobolev space with the norm

‖f‖
Ḣ

1
2

= ‖|D|
1
2 f‖L2 .

Both estimates (0.14) and (0.15) show that the unique solution of the free Schrödinger equation
with initial datum f gains half derivative in L2 with respect to f , if we look to a weighted L2

tL
2
x

norm.
For the wave, Klein-Gordon and Dirac equations, we cannot expect a gain of derivatives on

the solutions, because of the finite speed of propagation; on the other hand, estimates which
are analogous to the previous ones for Schrödinger hold also for these equations, with the same
regularity for all times (see Chapter 2).

An example of application of Kato-smoothing-type estimates is given in Chapter 2, where
they are a tool to prove Strichartz estimates.

0.4. Aim of the thesis and plan of the work. The aim of this PhD work was to study
dispersive phenomena for some perturbations of the above mentioned equations. In particular,
we are interested in:

• electromagnetic and electrostatic potentials (linear perturbations)
• nonlinear perturbations.

When we deal with physical models in which particles interact with some external source, it
is a fundamental problem to compare the asymptotic behavior of free and perturbed solutions.
This is a physical motivation to investigate on dispersive estimates for equations with external
potentials of electromagnetic type, which are usually represented by lower order terms in the
equations.

From a mathematical point of view, it is clear that dispersive-type estimates have to be
considered as a tool, more than a goal: they turn out to be crucial to prove existence and
uniqueness results. In particular, the well-posedness problem for some nonlinear equations can
be easily solved by standard fixed point arguments in which Strichartz estimates are involved. In
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a sense, Strichartz estimates play the role which have the Sobolev embeddings in the nonlinear
elliptic theory.

The first part of this thesis (Chapters 1,2,3) is devoted to linear equations with potentials.
In Chapter 1 we prove some decay estimates for the wave and massless Dirac equations with
magnetic potentials (see also [31]), using functional techniques based on the Spectral Theorem
and resolvent estimates. In Chapter 2, with similar techniques, we study Strichartz and Kato-
smoothing estimates for Schrödinger, wave, Klein-Gordon, massless and massive Dirac equations
with magnetic potentials (see also [32]). Chapter 3 concludes the linear part of the work;
here we present a different and indirect technique to prove linear dispersive estimates for 1D
Schrödinger, wave and Klein-Gordon equations with an electric potential. It is based on the
mapping properties of the wave operators, which are at the core of Scattering Theory (see
[30]). Chapter 4 completes the work, with two nonlinear applications. The first is a nonlinear
Schrödinger equation with time dependent coefficients, possibly vanishing; we are interested in
existence and uniqueness results, and some Lorentz spaces version of Strichartz estimates are
also proved (see [38]). The second example is a system of two coupled nonlinear Schrödinger
equations; here we prove existence, uniqueness and blow-up results, and we explicitly estimate
a blow-up threshold for the the initial data (see also [40]).

Ringraziamenti e Dediche. Il mio primo ringraziamento va a Piero D’Ancona, per tutto
il tempo che mi ha dedicato, per la serietá e la portata del suo insegnamento e per essere stato
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Ringrazio tutti gli amici del Castelnuovo, per essermi stati, ognuno a modo suo, sempre
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CHAPTER 1

Decay estimates for the magnetic Dirac and wave equations

1. Introduction

The first part of this thesis is devoted to the study of dispersive a priori estimates for solutions
of the perturbed equations. A very natural problem consists in extending the known estimates
for the free equations to some typical perturbative equations coming out from physical models.
In particular, we are interested to the case of electrostatic or electromagnetostatic potentials,
for which some examples are given here and in the following chapters. In the present chapter
we treat Dirac and wave equations with electromagnetic potentials, and we prove some decay
estimates for both the equations; the proofs of the main Theorem were given in [31].

Dispersive properties of evolution equations play a crucial role in the study of nonlinear
problems, and for this reason they have attracted a great deal of attention in recent years.
In particular, for the Schrödinger and the wave equation a well established theory exists, see
[47] and [66]. On the other hand, in the variable coefficient case the theory is very far from
complete. The simplest situtation is a perturbation with a term of order zero; this is already
very interesting from the physical point of view (electrostatic potential). Several results are
available for the equations

i∂tu−∆u+ V (x)u = 0, �u+ V (x)u = 0.

We cite among the others [17], [50], [49], [60], [84] [90] and the recent survey [92] for Schrö-
dinger; and [11], [12], [24], [33], [44] for the wave equation. We must also mention the wave
operator approach of Kato and Yajima (see [62], [5], [115], [116], [117]) which permits to
deal with the above equations in a unified way, although under nonoptimal assumptions on the
potential in dimensions 1 and 3.

The next step in generality is a perturbation with a first order differential operator a(x) ·∇;
from the physical point of view this corresponds to a magnetic potential. In this case only a
handful of results are available: Strichartz estimates for the 3D wave equation [25], provided the
coefficients are small and in the Schwartz class; and smoothing estimates for the 3D Schrödinger
and wave operators [106]. The most general case of variable coefficients has been studied in
[53], [88] and [97], where local Strichartz estimates have been proved, in various degrees of
complexity; see also [13].

In the present chapter, our main focus will be on the three dimensional wave equation with
an electromagnetic potential

(1.1) utt − (∇+ iA(x))2u+B(x)u = 0, u : R× R3 → C,
9
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and the closely related massless Dirac system with a potential:

(1.2) iut −Du+ V (x)u = 0, u : R× R3 → C4.

Here A : R3 → R3, B : R3 → R, V (x) = V ∗(x) is a 4×4 complex matrix on R3, and the symbol
D denotes the constant coefficient, elliptic, L2 selfadjoint operator

D =
1
i

3∑
j=1

αk∂k,

where the Dirac matrices α1, α2, α3 have the following structure:

(1.3) α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , α2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , α3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 .

We neglect the physical constants (i.e., we set c = ~ = 1), and we consider the zero mass case
exclusively; the case of a positive mass, whose second order counterpart is the Klein-Gordon
equation, has an additional term α4u with

(1.4) α4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

The relation between massless Dirac and wave equation is readily explained: indeed, the Dirac
matrices satisfy the commutation rules

α`αk + αkα` = 2δklI4

which imply immediately
D2 = −∆I4,

where I4 is the 4×4 identity matrix. Thus we have the fundamental relation

(i∂t −D)(i∂t +D) = (∆− ∂2
tt)I4,

which can be intepreted as follows: squaring the Dirac system produces a diagonal system of
wave equations (or, conversely: taking the square root of a wave equation produces a Dirac
system. According to the folklore, this was the route that led Dirac to his equation). When a
potential is present in the Dirac system, the above reduction produces an electromagnetic wave
equation in a natural way. A discussion of this can be found e.g. in [67] (Volume 4, Chapter 4);
see also section 6 below.

Our goal here is to establish the decay rate of the spatial L∞ norm of the solution, with
minimal assumptions on the potentials. The expected decay rate is t−1, both for the wave
equation and the Dirac system. Indeed, known results for hyperbolic systems (for constant
coefficients see e.g. [70], [73], and for C∞0 perturbations thereof see [61]) suggest a t−

n−1
2 decay

rate in n space dimensions.
Before stating our first result we introduce some basic notations. Under the assumptions of

Theorem 1.1 below, the perturbed laplacian

(1.5) H := −(∇+ iA(x))2 +B(x),
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where A(x) = (A1(x), A2(x), A3(x)) : R3 → R3 and B(x) : R3 → R, is a selfadjoint unbounded
operator on R3; the explicit standard construction is recalled in Section 2. Spectral calculus
allows us to define the operators ψ(H) for any well behaved function ψ(s).

In particular, consider a (non-homogeneous) Paley-Littlewood partition of unity on R3, de-
fined as follows: fix a radial nonnegative function ψ(r) ∈ C∞0 with ψ(r) = 1 for r < 1, ψ(r) = 0
for r > 2, define φj(r) = ψ(2−j+2r) − ψ(2−j+1r) for all j ≥ 1, and φ0 = ψ. Then 1 =

∑
j≥0 φj

is the required partition of unity on R3. The operators φj(
√
H) will be used in the following to

define suitable norms associated to the operator H. We shall also use the notations

〈x〉 = (1 + |x|2)1/2, 〈D〉sf = (1−∆)s/2f ≡ F−1(〈ξ〉sf̂)

Our first result concerns the Cauchy problem for the wave equation perturbed with a small
rough electromagnetic potential

utt(t, x)− (∇+ iA(x))2u+B(x)u = 0, (t, x) ∈ R× R3,(1.6)

u(0, x) = 0, ut(0, x) = g(x).(1.7)

We can prove:

Theorem 1.1. Assume the potentials A : R3 → R3, B : R3 → R satisfy

(1.8) |Aj | ≤
C0

|x|〈x〉(| log |x||+ 1)β
,

3∑
j=1

|∂jAj |+ |B| ≤ C0

|x|2(| log |x||+ 1)β
,

for some constant C0 > 0 sufficiently small and some β > 1. Then any solution of the Cauchy
problem (1.6), (1.7) satisfies the decay estimate

(1.9) |u(t, x)| ≤ C

t

∑
j≥0

22j‖〈x〉w1/2
β ϕj(

√
H)g‖L2 ,

where wβ(x) := |x|(| log |x||+ 1)β. If in addition we assume that, for some ε > 0,

(1.10) 〈D〉1+εAj ∈ L∞, 〈D〉εB ∈ L∞

then u satisfies for any δ > 0 the estimate

(1.11) |u(t, x)| ≤ C

t
‖〈x〉3/2+δg‖H2+ε .

Remark 1.1. Under out assumptions, the potentials A,B are close to the scale invariant
case A ∼ |x|−1, B ∼ |x|−2, both from the point of view of singularity and decay at infinity. This
is the main source of difficulty in the proof of Theorem 1.1, and requires the use of nonstandard
Lorentz space techniques in conjuction with the classical spectral methods.

Remark 1.2. The norm appearing in (1.9) can be regarded as a distorted analogue of a
standard Besov norm, generated by the operator H. Similar norms already appeared in [25] for
magnetic potentials with coefficients in the Schwartz class; in that case, however, it was possible
to prove the equivalence with standard Besov norms (see also [33], [44] for the analogous norms
generated by −∆ + V (x), which are also equivalent to the nondistorted norms). Under the
slightly stronger assumptions (1.10) on the coefficients, it is possible to prove an estimate like
(1.11) expressed in terms of standard weighted Sobolev norms.
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Moreover, we remark that in our estimate we lose 2 derivatives; we do not know if this is
optimal. Recall that in the corresponding dispersive estimate for the free wave equation on R3,
the derivative loss is exactly 1.

Remark 1.3. As an essential step in the proof of Theorem 1.1, we need to establish the
limiting absorption principle (LAP) for the operator H. This is obtained in Section 3 through
several steps: starting from the “weak” LAP of [6] for the free resolvent, we first prove a strong
version of the LAP for the free operator in the weighted spaces

L2(wβ(x)dx), wβ(x) := |x|(| log |x||+ 1)β

and then we get the LAP for the perturbed operator. For the precise statements see Proposition
1.4. See also [106] for related results.

Remark 1.4. When the initial data are of the form

u(0, x) = f, ut(0, x) = 0,

Theorem 1.1 implies, by standard arguments, the estimate

(1.12) |u(t, x)| ≤ C

t

∑
j≥0

23j‖〈x〉w1/2
β ϕj(

√
H)f‖L2

with an additional loss of one derivatives as expected. If in addition we assume that for some
ε > 0

(1.13) 〈D〉2+εAj ∈ L∞, 〈D〉1+εB ∈ L∞

then also the simpler estimate

(1.14) |u(t, x)| ≤ C

t
‖〈x〉3/2+δf‖H3+ε .

holds for all δ > 0.

Our second result concerns the perturbed Dirac system

iut −Du+ V (x)u = 0, (t, x) ∈ R× R3,(1.15)

u(0, x) = f(x).(1.16)

By exploiting the above mentioned relation between the magnetic wave equation and the Dirac
system, we can prove the following Theorem as a direct consequence of Theorem 1.1:

Theorem 1.2. Assume the 4×4 complex valued matrix V (x) = V ∗(x) satisfies

(1.17) |V (x)| ≤ C0

|x|〈x〉(| log |x||+ 1)β
, |DV (x)| ≤ C0

|x|2(| log |x||+ 1)β
,

for some C0 > 0 small enough and some β > 1. Then the solution of the Cauchy problem (1.15),
(1.16) satisfies the decay estimate

(1.18) |u(t, x)| ≤ C

t

∑
j≥0

23j‖〈x〉w1/2
β ϕj(D + V )f‖L2 ,

where wβ(x) = |x|(| log |x||+ 1)β. If in addition we assume that, for some ε > 0,

(1.19) 〈D〉2+εV ∈ L∞,
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then u satisfies for any δ > 0 the estimate

(1.20) |u(t, x)| ≤ C

t
‖〈x〉3/2+δf‖H3+ε .

We remark that for the unperturbed Dirac system, with vanishing mass, the loss of deriva-
tives is exactly 2 (see Proposition 1.7).

Since Theorem 1.2 is proved essentially by “squaring” the perturbed Dirac operator, a con-
dition on the derivative DV is essential in order to apply Theorem 1.1 to the resulting wave
equation. On the other hand, we can study the Cauchy problem (1.15), (1.16) by a direct appli-
cation of the spectral calculus for the selfadjoint operator D + V (x); this alternative approach
allows us to consider much rougher potentials V (x) (see (1.21)). The price to pay is an additional
loss of one derivative, so that the total loss is 4 derivatives in our last result:

Theorem 1.3. Assume the 4×4 complex valued matrix V (x) = V ∗(x) satisfies

(1.21) |V (x)| ≤ C0

|x|1/2〈x〉3/2(| log |x||+ 1)β/2
,

for some C0 > 0 small enough and some β > 1. Then the solution of the Cauchy problem (1.15),
(1.16) satisfies for any ε > 0 the decay estimate

(1.22) |u(t, x)| ≤ C

t

∑
j≥0

24j‖〈x〉3/2+εϕj(D + V )f‖L2 .

Remark 1.5. As a byproduct of our method of proof, we obtain the limiting absorption
principle for the perturbed Dirac operator under assumption (1.21) (see Section 3.2). The LAP
had been proved earlier for the free Dirac equation by Yamada [119], and for the Dirac equation
with potential (and with mass) in [82] under quite stronger assumptions.

2. The self-adjointness of the perturbed operators

In this section we check the selfadjointness of the perturbed operators ∆W and DV under
quite general assumptions on the potentials A,B, V , which in particular are implied by the
assumptions of Theorems 1.1, 1.2 and 1.3. Most of the material here is standard; however we
decided to include a sketch of the proof for the sake of completeness. Moreover, the use of Lorentz
spaces techniques (see the Appendix for a short review) makes the proofs quite straightforward.

It will be useful sometimes to express the magnetic laplacian both in the covariant form

(1.23) H = −(∇+ iA(x))2 +B(x)

and in the expanded form

(1.24) H = −∆ +W (x,D), W (x,D) =
3∑

j=1

aj(x)∂j + b(x)

where

(1.25) aj(x) = −2iAj(x), b(x) = −i
3∑

j=1

∂jAj(x) + |A(x)|2 +B(x), Aj , B ∈ R.

Then we have the following:
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Proposition 1.1. Consider the operator on C∞0 (Rn)

(1.26) H = −(∇+ iA(x))2 +B(x),

where A(x) : Rn → Rn and B(x) : Rn → R are measurable functions. Assume that the Lorentz
(weak Lebesgue) norms of the coefficients

(1.27) ‖A‖Ln,∞ ≤ C0, ‖B‖Ln/2,∞ ≤ C0

are bounded by some constant C0 > 0 small enough. Then H has a (unique) self-adjoint exten-
sion to H2(Rn).

Proof. Our proof is based on the standard results on quadratic forms, see e.g. the standard
reference [86]. First of all we notice that by (1.27) we have immediately

|A(x)|2 ∈ Ln/2,∞

with a small norm. Now, the quadratic form q(φ, ψ) given by

q(ϕ,ψ) = ((∇+ iA)ϕ, (∇+ iA)ψ)L2 + (Bϕ,ψ)L2

is well defined on the form domain H1 under assumptions (1.27). Indeed, consider the identity

(1.28) q(ψ,ψ) = ‖∇ψ‖2
L2 + ((|A|2 +B)ψ,ψ)L2 + 2=(A∇ψ,ψ)L2 ;

using the embeddingH1 ⊂ L2n/(n−2),2, the Hölder inequality in Lorentz spaces (see the Appendix
at the end of the paper for a quick synopsis of the relevant results), and recalling assumption
(1.27), we have easily

|q(ψ,ψ)| ≤‖∇ψ‖2
L2 + C‖|A|2 +B‖Ln/2,∞‖ψψ‖

L
n

n−2 ,1 + C‖A‖Ln,∞‖∇ψ · ψ‖
L

n
n−1 ,1

≤‖∇ψ‖2
L2 + CC0‖ψ‖2

L
2n

n−2 ,2
+ CC0‖∇ψ‖L2,2‖ψ‖

L
2n

n−2 ,2 ≤ C‖∇ψ‖2
L2 .

It is clear that the form is symmetric, since A and B are real valued. Now, recalling Theorem
VIII.15 in [86], in order to prove that q is the form associated to a (uniquely defined) self-adjoint
operator, it will be sufficient to show that it is closed, i.e., its domain H1(Rn) is complete under
the norm

(1.29) |||ψ|||2 = q(ψ,ψ) + C‖ψ‖2
L2

for some C > 0, and that it is semibounded, i.e.,

(1.30) q(ψ,ψ) ≥ −C‖ψ‖2
L2

for some C > 0. Both properties follow from the identity (1.28); indeed, by estimating as above
we obtain easily

q(ψ,ψ) ≥ ‖∇ψ‖2
L2 − CC0‖∇ψ‖2

L2 .

In particular this implies that the norm (1.29) is equivalent to the H1(Rn) norm, provided C0

is small enough, so that the form is closed; and this implies also that (1.30) is satisfied with
C = 0. �

For the perturbed Dirac operator we have a similar result:



3. THE LIMITING ABSORPTION PRINCIPLE 15

Proposition 1.2. Let V (x) = V ∗(x) be a 4×4 complex valued matrix on R3. Assume that

(1.31) ‖V ‖L3,∞ ≤ C0,

for some C0 > 0 sufficiently small. Then the perturbed Dirac operator DV = D+V is self-adjoint
on H1(R3,C4).

Proof. The proof is analogous to the proof of Theorem 1.1. We define the quadratic form
q : H1/2 ×H1/2 → C associated to the operator DV as

q(ϕ,ψ) := (Dϕ,ψ) + (V ϕ, ψ).

First we prove that the domain of q is H1/2. With the same arguments of the previous theorem
we estimate

|q(ϕ,ϕ)| ≤ ‖ϕ‖2
H1/2 + C‖V ‖L3,∞‖ϕ2‖Ln/(n−1),1

≤ ‖ϕ‖2
H1/2 + C‖V ‖L3,∞‖ϕ‖2

L2n/(n−1),2

≤ (1 + C‖V ‖L3,∞) ‖ϕ‖H1/2

(where we used the embedding H1/2 ⊂ L2n/(n−1),2). From this point on, the proof proceeds
exactly as in Proposition 1.1 �

3. The limiting absorption principle

The essential tool in our proof will be the spectral theorem in the following version: given
a selfadjoint (unbounded) operator A on L2 and a continuous bounded function f(λ) on R, the
operator f(A) can be defined as the L2 limit

(1.32) f(A)φ = − 1
π
· lim

ε↓0

∫
f(λ)=R(λ+ iε)φdλ

for any φ ∈ L2. HereR(z) = (A−z)−1 denotes the resolvent operator of A (see e.g. [107]). Under
suitable assumptions on H, the limit operators R(λ± i0) = limε↓0R(λ± iε) are well defined as
bounded operators in weighted L2 spaces; this is usually called the limiting absorption principle
(see below for details). Thus we have also the simpler representation

(1.33) f(A)φ = − 1
π
·
∫
f(λ)=R(λ+ i0)φdλ.

Recalling the definition (1.25), consider now the operators

H = −∆ +W (x,D) ≡ −∆ +
3∑

j=1

aj(x)∂j + b(x)

and

DV = D + V (x).

In Section 2 we proved that, under assumptions (1.27) on aj , b and V (x), both H and DV are
selfadjoint operators on L2. In particular, the spectral formula (1.32) holds for both. We shall
use the following notations: the free resolvents will be written as

R0(z) = (−z −∆)−1, RD(z) = (−zI4 +D)−1
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while we shall use the notation R(z) for both perturbed resolvents:

R(z) = (−z −∆ +W )−1, R(z) = (−z +D + V )−1.

From the context the meaning of R(z) will always be clear. Note that R0(z) is defined for
all z 6∈ R+ while RD(z) is defined for z 6∈ R, and the same properties hold for the perturbed
resolvents.

Our first task will be to show that the stronger representation (1.33), i.e., the limiting
absorption principle, holds also for the perturbed operators. For A = −∆ this is a classical
result (see e.g. Agmon [2]); here we shall use a very precise version of the principle, due to
Barcelo, Ruiz and Vega [6]. On the other hand, for the Dirac operator only a few results are
available, which concern the case with a nonzero mass term (see [82], [119]).

The classical results on R0 (see [2]) state that the limits

(1.34) lim
ε↓0

R0(λ± iε) = R0(λ± i0)

exist in the norm of bounded operators from L2(〈x〉sdx) to H2(〈x〉−sdx) for any s > 1; the
convergence is uniform for λ belonging to any compact subset of ]0,+∞[, and the following
estimate holds

(1.35) ‖〈x〉−sR0(λ± i0)〈x〉−sf‖L2 ≤
C(s)√
λ
‖f‖L2 ∀λ > 0, s >

1
2
.

In n = 3 dimensions, the operators R0(λ± i0) have the explicit representation

(1.36) R0(λ± i0)g(x) =
1
4π

∫
e±i

√
λ|x−y|

|x− y|
g(y)dy, λ ≥ 0.

Recall also that for λ < 0 we have the similar formula

(1.37) R0(λ)g(x) =
1
4π

∫
e−
√
|λ| |x−y|

|x− y|
g(y)dy, λ ≤ 0.

These results were extended in [6] to more general weights. Introduce the norm

(1.38) |||a(x)||| = sup
µ>0

∫ +∞

µ

h(r)r
(r2 − µ2)1/2

dr where h(r) ≡ sup
|x|=r

|a(x)|.

For any measurable function on Rn such that supp f ⊆ supp a, we can consider the (semi-)norm

‖f‖L2(a(x)dx) ≡ ‖a(x)1/2f‖L2 <∞

and we can define a Hilbert space L2(a(x)dx) as the closure in this norm of the subspace of C∞0
functions with support contained in supp a. Then we can summarize Theorems 1 and 2 in [6]
as follows:

Theorem 1.4 ([6]). Let a(x) be a nonnegative function on Rn with |||a||| <∞, and denote by
R0(λ± i0) the limit operators (1.34). Then the operators R0(z) for z 6∈ R+ and R0(λ± i0) can
be extended to bounded operators from L2(a(x)−1dx) to L2(a(x)dx), and the following estimates
hold:

(1.39) ‖R0(λ± i0)f‖L2(a(x)dx) ≤
C√
|λ|
|||a||| · ‖f‖L2(a(x)−1dx), λ 6= 0
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(here of course R0(λ± i0) ≡ R0(λ) for λ < 0)

(1.40) ‖∇R0(λ± i0)f‖L2(a(x)dx) ≤ C|||a||| · ‖f‖L2(a(x)−1dx).

Moreover, the limiting absorption principle holds in the weak form: for all f, g ∈ L2(a(x)−1dx)

(1.41) lim
ε↓0

(R0(λ± iε)f, g) = (R0(λ± i0)f, g).

Remark 1.6. It is not difficult to extend the estimates (1.39) and (1.40) to the whole complex
plane. Indeed, fix two functions f, g ∈ C∞0 with support contained in supp a and consider on
the half plane

S = {z : =z > 0}
the holomorphic function

(1.42) F (z) = z1/2(R0(z)f, g).

It is clear that F (z) is continuous on S up to the boundary, moreover it satisfies the estimate

(1.43) |F (x)| ≤ C|||a||| · ‖f‖L2(a(x)−1dx)‖g‖L2(a(x)−1dx)

on the boundary =z = 0, and finally it has a polynomial growth for |z| → +∞, as it easily follows
from the explicit expression of R0(z) as a convolution operator (see [6]). By the Phragmén-
Lindelöf Theorem (see e.g. [100]) on the half plane we immediately obtain that estimate (1.43)
holds on all of S. A similar argument can be applied in the lower half plane =z < 0. In
conclusion we obtain

(1.44) ‖R0(z)f‖L2(a(x)dx) ≤
C√
|z|

|||a||| · ‖f‖L2(a(x)−1dx)

for all f ∈ L2(a(x)−1dx) (see also part (ii) in Theorem 1, [6]). Notice that this estimate holds
on the whole complex plane, in the sense that we apply it to R0(λ± i0) when z ∈ R+ .

If we apply the same argument to the function

G(z) = (∇R0(z)f, g)

we obtain in an analogous way the estimate

(1.45) ‖∇R0(z)f‖L2(a(x)dx) ≤ C |||a||| · ‖f‖L2(a(x)−1dx), z ∈ C.

We now specialize the theorem to a particular choice of weights. Precisely, consider the
family of functions

(1.46) wβ(x) = |x|(| log |x||+ 1)β, β > 1.

As it is proved in [6] (see Proposition 1), the norms

|||w−1
β ||| < +∞

are finite for all β > 1, hence we can apply 1.4 with the choice

a(x) = (wβ(x))−1 =
1

|x|(| log |x||+ 1)β
.

In this case it is possible to improve the above result and to obtain a stronger version of the
limiting absorption principle. To this end, we need the following Lemma, which is inspired by
[2]:
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Lemma 1.1. Let H be a Hilbert space, H ′ its dual, and H0 a second Hilbert space compactly
embedded in H ′. Let Tj , T (j = 1, 2, . . . ) be bounded operators in L(H,H ′) such that

(i) Tj , T are symmetric for the pairing 〈·, ·〉H′×H , i.e.,

〈Tf, g〉H′×H = 〈Tg, f〉H′×H ∀f, g ∈ H;

(ii) Tj , T ∈ L(H,H0) and, for some constant C independent of j,

‖Tj‖L(H,H0) ≤ C.

Assume that

(1.47) Tjf ⇀ Tf weakly in H ′ for all f ∈ H.

Then Tj → T in the operator norm of L(H,H ′).

Proof. Fix an f ∈ H; the sequence Tjf converges weakly to Tf in H ′, and is bounded in
H0 by (ii), hence it admits a subsequence which converges in the norm of H ′, and the limit must
be the same i.e. Tf . By applying the same argument to any subsequence of Tjf , we conclude
that the entire sequence Tjf converges to Tf in the norm of H.

Now, let fj be any sequence which converges to f weakly in H. Then we have for all g ∈ H

〈Tjfj , g〉 = 〈Tjg, fj〉 → 〈Tf, g〉

since Tjg → Tg strongly in H ′ and fj ⇀ f weakly in H. In other words, for any fj ⇀ f weakly
in H we have that Tjfj ⇀ Tf weakly in H ′. But, as in the first step, we can remark that the
sequence Tjfj is bounded in H0 and by compact embedding we obtain that the convergence is
strong: Tjfj → Tf in the norm of H ′.

By the same argument we obtain that, for any fj ⇀ f weakly in H, the sequence Tfj

converges to Tf in the norm of H ′.
Finally, assume by contradiction that Tj does not converge to T in the operator norm of

L(H,H ′). This means that we can find a sequence fj ∈ H with norm ‖fj‖H = 1 such that

‖Tjfj − Tfj‖H′ > ε > 0

for some ε independent of j. By extracting a subsequence we can assume that fj ⇀ f weakly
in H, and by the above steps we immediately obtain a contradiction. �

Then we can prove:

Proposition 1.3. Let wβ(x), x ∈ Rn be one of the radial weights (1.46) for some fixed
β > 1. Then, for all λ 6= 0, the limits

(1.48) lim
ε↓0

R0(λ± iε) = R0(λ± i0)

exist in the norm of bounded operators from L2(wβ(x)dx) to H2(wβ(x)−1dx) and satisfy the
estimates

(1.49) ‖R0(λ± i0)f‖L2(w−1
β dx) ≤

C(b)√
|λ|

‖f‖L2(wβdx), ∀λ 6= 0,

(1.50) ‖∇R0(λ± i0)f‖L2(w−1
β dx) ≤ C(b) ‖f‖L2(wβdx).
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Proof. We apply Lemma 1.1 with the choices: H = L2(wβ(x)dx), and hence H ′ =
L2(wβ(x)−1dx) with the standard L2 pairing; H0 = H1(wβ0(x)

−1dx) for some arbitrary β0

with β > β0 > 1; the norm of H0 of course is

‖f‖2
H0

= ‖w−1/2
β0

f‖2
L2 + ‖w−1/2

β0
∇f‖2

L2 .

Finally, as operators Tj we shall take (any subsequence of) the resolvent operators R0(λ ± iε)
as ε ↓ 0, while T = R0(λ± i0), for some fixed λ ∈ R.

We now check the assumptions of the lemma. The compact embedding of H0 into H ′ is
clear. Also the symmetry of the operators in the sense of (i) is evident. The uniform bounds on
Tj , T as bounded operators from H to H ′ are simply the estimates (1.44), (1.45) applied with
the choice a(x) = wβ(x)−1. But it is clear that the estimate (1.44) implies also the following
estimate

(1.51) ‖R0(z)f‖L2(w−1
β0

dx) ≤
C(β0)√
|z|

‖f‖L2(wβdx), ∀z 6= 0,

which is only apparently stronger, in view of the trivial embedding

L2(wβdx) ⊆ L2(wβ0dx).

In a similar way we have

(1.52) ‖∇R0(z)f‖L2(w−1
β0

dx) ≤ C(β0) ‖f‖L2(wβdx).

These inequalities show that assumption (ii) of the Lemma is satisfied. Finally, assumption
(1.47) is nothing but the weak limiting absorption principle of Barcelo, Ruiz, Vega (see (1.41)).

In conclusion, Lemma 1.1 implies that the limit (1.48) exists in the norm of bounded oper-
ators from L2(wβdx) to L2(w−1

β dx). Moreover, by the identity

∆R0(z) = −I − zR0(z)

we obtain that the limit exists also in the norm of bounded operators from L2(wβdx) to
H2(w−1

β dx). The estimates (1.49) and (1.50) follow from the corresponding estimates for general
z. �

3.1. The limiting absorption principle for the magnetic laplacian. In what follows,
we shall focus on the case n = 3 exclusively. We follow the standard approach, based on the
resolvent identity

R(z) = (−z −∆ +W (x,D))−1 = R0(z)(I +WR0(z))−1.

Thus the main step of the proof will consist in inverting the operator I + WR0 in suitable
weighted spaces. We shall assume that the coefficients aj(x) and b(x) in W (x,D), defined as in
(1.25), satisfy the assumptions

(1.53) |aj(x)| ≤
C0

|x|〈x〉s(| log |x‖+ 1)β
, |b(x)| ≤ C0

|x|2(| log |x‖+ 1)β

for some s ∈ [0, 1], β > 1 and some constant C0 small enough.
Our result is the following:
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Proposition 1.4. Assume the coefficients of W (x,D) =
∑
aj(x)∂j + b(x) satisfy (1.53) for

some C0 small enough, some s ∈ [0, 1] and some β > 1.
Then the operator I + WR0 is invertible on the weighted space L2(wβ(x)〈x〉2sdx), and the

inverse operators (I + WR0(z))−1 are uniformly bounded for all z ∈ C. Moreover, the strong
limiting absorption principle holds for R(z), in the following sense:

(i) the boundary values

(1.54) lim
ε↓0

R(λ± iε) = R(λ± i0)

exist in the norm of bounded operators from L2(wβ(x)dx) to H2(w−1
β (x)dx);

(ii) the following estimate

(1.55) ‖R(z)f‖L2(wβ(x)dx) ≤
C(β)√
|z|

· ‖f‖L2(wβ(x)−1dx)

holds for all z ∈ C, z 6= 0.

Remark 1.7. In the case s = 0 we recover exactly the strong limiting absorption principle
proved in Proposition 1.3 above for the free operator R0. The additional weight 〈x〉s was
considered in view of the estimates that will be needed in the following section.

Proof. Consider the operator

W (x,D)R0(z)f =
∑

aj(x)∂jR0(z)f + b(x)R0(z)f ;

we estimate the two terms separately.
First of all we have

‖w1/2
β 〈x〉saj(x)∂jR0f‖L2 ≤ ‖wβ〈x〉saj‖L∞‖w−1/2

β ∂jR0f‖L2 ≤ C0‖w1/2
β f‖L2

by estimate (1.52), and this implies trivially

(1.56) ‖w1/2
β 〈x〉saj(x)∂jR0f‖L2 ≤ C0‖w1/2

β 〈x〉sf‖L2 .

In order to estimate the electric term, we recall that, from the explicit expression of the free
resolvent, we can write

|R0(z)f | ≤
1
4π

∣∣∣∣ 1
|x|

∗ |f |
∣∣∣∣ .

Then we have

(1.57) ‖w1/2
β b(x)R0(z)f‖L2 ≤ ‖w1/2

β b(x)‖L2‖R0(z)f‖L∞ ≤ ‖w1/2
β b(x)‖L2 · C

∥∥∥∥ 1
|x|

∗ |f |
∥∥∥∥

L∞
.

Recalling Young and Hölder inequalities in Lorentz spaces (see Theorems 1.5, 1.6), we have∥∥∥∥ 1
|x|

∗ |f |
∥∥∥∥

L∞
≤ C‖f‖L3/2,1 = C‖w−1/2

β w
1/2
β f‖L3/2,1 ≤ C‖w−1/2

β ‖L6,2‖w1/2
β f‖L2 .

Since w−1/2
β ∈ L6,2 for any β > 1 (Proposition 1.8), (1.57) gives

‖w1/2
β b(x)R0(z)f‖L2 ≤ C‖w1/2

β b(x)‖L2 · ‖w1/2
β f‖L2 .

Now, by assumption (1.53) on b(x) we have easily

‖w1/2
β b(x)‖L2 ≤ CC0
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and we conclude that

(1.58) ‖w1/2
β b(x)R0(z)f‖L2 ≤ CC0 · ‖w1/2

β f‖L2 .

In a similar way we have

(1.59) ‖w1/2
β 〈x〉bR0(z)f‖L2 ≤ ‖w1/2

β 〈x〉b‖L6‖R0(z)f‖L3 ≤ ‖w1/2
β 〈x〉b‖L6 · C

∥∥∥∥ 1
|x|

∗ |f |
∥∥∥∥

L3

and ∥∥∥∥ 1
|x|

∗ |f |
∥∥∥∥

L3

≤ C‖f‖L1 =C‖w−1/2
β 〈x〉−1w

1/2
β 〈x〉f‖L1

≤C‖w−1/2
β 〈x〉−1‖L2‖w1/2

β 〈x〉f‖L2 .

As above, we notice that w−1/2
β 〈x〉−1 ∈ L2 for any β > 1, hence we have from (1.59)

‖w1/2
β 〈x〉bR0(z)f‖L2 ≤ C‖w1/2

β 〈x〉b‖L6 · ‖w1/2
β 〈x〉f‖L2 .

Assumption (1.53) guarantees that

‖w1/2
β 〈x〉b(x)‖L6 ≤ CC0

and, in conclusion,

(1.60) ‖〈x〉w1/2
β b(x)R0(z)f‖L2 ≤ CC0 · ‖〈x〉w1/2

β f‖L2

If we interpolate between (1.58) and (1.60), we obtain the estimate

(1.61) ‖〈x〉sw1/2
β b(x)R0(z)f‖L2 ≤ CC0 · ‖〈x〉sw1/2

β f‖L2

Summing up, from estimates (1.56) and (1.61) we get for all z ∈ C

(1.62) ‖〈x〉sw1/2
β WR0(z)f‖L2 ≤ CC0 · ‖〈x〉sw1/2

β f‖L2 .

Then it is clear that we can invert the operator I + WR0 by a Neumann series on the space
L2(〈x〉2swβdx). Hence, the standard representation

(1.63) R(z) = R0(z)(I +WR0(z))−1

is valid. To conclude the proof of the Proposition, it is now sufficient to remark that, from
property (1.48) of Proposition 1.3 and the uniform bounds on the norm of (I +WR0(z))−1 we
have just obtained (for s = 0), the limits in (1.54) exist in a weak sense. Proceeding as in the
proof of Proposition 1.3, using Lemma 1.1, we deduce (i). Finally, (ii) is a consequence of (1.63)
and the corresponding estimate (1.51) for R0. �

Remark 1.8. Note that the assumptions of the preceding proposition can be expressed in
terms of the original coefficients A,B as follows:

(1.64) |A(x)| ≤ C0

|x|〈x〉s(| log |x‖+ 1)β
, |∇A(x)|+ |B(x)| ≤ C0

|x|2(| log |x‖+ 1)β

for some β > 1 and a constant C0 > 0 small enough.
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3.2. The limiting absorption principle for the Dirac operator and its pertur-
bation. In this section we will study the limiting absorption principle for the massless Dirac
operator D; this property was studied by Yamada in [119] for the operator with mass. Moreover,
as in the case of the magnetic Laplacian, we will extend this result to the perturbed operator
DV = D + V (x), under a suitable assumption on the potential V .

It is well known that the spectrum of the free operator D is the whole real line. Due to the
relation D2 = −∆I4, we immediately obtain the representation

(1.65) RD(z) = R0(z2)(D + zI4),

for all z ∈ C with <z = 0. Using this formula and the Proposition 1.3, we easily prove the
following:

Proposition 1.5. Let wβ(x), x ∈ R3 be defined as in (1.46), for some fixed β > 1. Then,
for all λ ∈ R, the limits

(1.66) lim
ε↓0

RD(λ± iε) = RD(λ± i0) := R0(λ2 ± i0)(D + λI4)

exist in the norm of bounded operators from L2(wβ(x)dx) to H1(wβ(x)−1dx) and satisfy the
estimate

(1.67) ‖RD(z)f‖L2(wβ(x)−1dx) ≤ ‖f‖L2(wβ(x)dx),

for all z ∈ C. Moreover, we have the explicit representation

RD(λ± i0)f =
i|λ|
4π

∫
R3

ei|λ|·|x−y|

|x− y|

I4 − 3∑
j=1

αj
xj − yj

|x− y|

 f(y) dy

+
1
4π

∫
R3

ei|λ|·|x−y|

|x− y|2
3∑

j=1

αj
xj − yj

|x− y|
f(y) dy..(1.68)

Proof. The strong convergence of RD(λ ± iε) to RD(λ ± i0) in the space of bounded
operators from L2(wβ(x)dx) to H1(wβ(x)−1dx) is obtained by interpolation using the property
(1.48) and the representation (1.65); estimate (1.67) immediately follows from (1.65) and the
estimates (1.49), (1.50), (1.51), (1.52). In conclusion, recalling the explicit representation (1.36)
for R0(λ ± i0), after an integration by parts we get the formula (1.68) and this concludes the
proof. �

At this point, we will proceed in a similar way to the case of the perturbed Laplacian and
we will prove that it is possible to extend the above result to small electric perturbations of the
free Dirac operator. As for the magnetic coefficients of W (x,D), we need to assume that the
potential V satisfies

(1.69) |V (x)| ≤ C0

|x|〈x〉s(| log |x‖+ 1)β
,

for some s ∈ [0, 1], β > 1 and some constant C0 small enough. We prove the following result:

Proposition 1.6. Assume the potential V satisfies (1.69) for some C0 sufficiently small,
some s ∈ [0, 1] and some β > 1.
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Then the operator I + V RD is invertible on the weighted space L2(wβ(x)〈x〉2sdx), and the
inverse operators (I + V RD(z))−1 are uniformly bounded for all z ∈ C. Moreover, the strong
limiting absorption principle holds for R(z), in the following sense:

(i) the limits

(1.70) lim
ε↓0

R(λ± iε) = R(λ± i0)

exist in the norm of bounded operators from L2(wβ(x)dx) to H1(w−1
β (x)dx);

(ii) the following estimate

(1.71) ‖R(z)f‖L2(wβ(x)−1dx) ≤ C(β) · ‖f‖L2(wβ(x)dx)

holds for all z ∈ C, z 6= 0.

Proof. The argument is the same of the proof of Proposition 1.4 for the magnetic part of
W . First we observe that, by hypothesis (1.69), we have

‖w1/2
β 〈x〉sV (x)RDf‖L2 ≤ ‖wβ〈x〉sV (x)‖L∞‖w−1/2

β RDf‖L2 ≤ C0 · ‖w−1/2
β f‖L2 .

Hence we obtain the estimate

‖w1/2
β 〈x〉sV (x)RD(z)f‖L2 ≤ ‖w1/2

β 〈x〉sf‖L2 ,

uniformly in z ∈ C; thus we can invert the operator I +V RD by a Neumann series on the space
L2(wβdx). Again, we can exploit the representation

(1.72) R(z) = RD(z)(I + V RD(z))−1.

By property (1.66) of Proposition 1.5 and the uniform bounds of (I + V RD)−1, it follows that
the limits in (1.70) exist in a weak sense. Then we can procede as in the previous cases, using
Lemma 1.1 and obtain (i). In conclusion, the estimate (ii) is an immediate consequence of (1.72)
and the inequality (1.67). This concludes the proof. �

In the following we shall also need a weaker version of the last result: we shall require that
V satisfies

(1.73) |V (x)| ≤ C0

|x|1/2〈x〉s(| log |x‖+ 1)β/2
,

for some s > 1
2 , β > 1 and some constant C0 small enough. Then we have

Corollary 1.1. Assume the potential V satisfies (1.53) for some C0 sufficiently small,
s > 1

2 and β > 1.
Then the operators I+V RD are invertible on the space L2(〈x〉2sdx), and the inverse operators

(I + V RD(z))−1 are uniformly bounded for all z ∈ C. Moreover, the strong limiting absorption
principle holds for R(z), in the following sense:

(i) the limits

(1.74) lim
ε↓0

R(λ± iε) = R(λ± i0)

exist in the norm of bounded operators from L2(〈x〉2sdx) to H1(〈x〉−2sdx);
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(ii) the following estimate

(1.75) ‖R(z)f‖L2(〈x〉−2sdx) ≤ C · ‖f‖L2(〈x〉2sdx)

holds for all z ∈ C, z 6= 0.

Proof. The proof is analogous to the proof of Proposition 1.6. Indeed, from estimate (1.67)
and assumption (1.73) we have immediately

‖〈x〉sV RD‖L2 ≤ ‖〈x〉sw1/2
β V ‖L∞‖w−1/2

β RDf‖L2 ≤ C0‖w1/2
β f‖L2

and by the trivial inequality
w

1/2
β ≤ Cs〈x〉s,

valid for all s > 1/2, we conclude that

‖〈x〉sV RD‖L2 ≤ C0‖〈x〉sf‖L2 .

Thus we can again invert (I + V RD) with a Neumann series, and proceeding exactly as before
we obtain the proof of the Corollary. �

4. Resolvent Estimates

In this section we prepare the crucial resolvent estimates that will be used in the proof of the
main results. In order to use the spectral formula, we need estimates on the perturbed resolvent
operators and their derivatives with respect to λ as bounded operators from suitable weighted
Lp spaces to L∞. We shall use the Hölder and Young inequalities in Lorentz spaces extensively;
for the convenience of the reader, we give a sketch of the main useful results in the Appendix.

We consider first the resolvent of the magnetic laplacian. We recall that, by Proposition 1.4,
the operators R(λ ± i0) = R0(λ ± i0)(I + W (x,D)R0(λ ± i0))−1 are well defined as bounded
operators from L2(wβ(x)dx) to H2(wβ(x)−1dx); moreover, we have the explicit representation
(1.36). Our first result is the following:

Lemma 1.2. Let R(λ±i0) = R0(λ±i0)(I+W (x,D)R0(λ±i0))−1 be the resolvent of −∆+W
and assume the coefficients of W (x,D) =

∑
aj(x)∂j + b(x) satisfy (1.53). Then, for all λ ≥ 0,

the following estimates hold:

(1.76) ‖R(λ± i0)f‖L∞ ≤ C‖w1/2
β f‖L2 ,

(1.77) ‖∂λR(λ± i0)f‖L∞ ≤ C

(
1 +

1√
λ

)
‖〈x〉w1/2

β f‖L2 .

Proof. The estimate (1.76) is the easiest one. In fact, by formula (1.63) and the explicit
representation (1.36) for R0, we obtain

‖R(λ± i0)f‖L∞ ≤ C · ‖ 1
|x|

∗ |(I +WR0)−1f |‖L∞ ;

using Young inequality in Lorentz spaces, we get

‖R(λ± i0)f‖L∞ ≤ ‖(I +WR0)−1f‖L3/2,1

≤ ‖wβ(x)−1/2wβ(x)1/2(I +WR0)−1f‖L3/2,1

≤ ‖wβ(x)−1/2‖L6,2‖wβ(x)1/2(I +WR0)−1f‖L2 .
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The uniform bound for the operators (I+WR0)−1 proved in Proposition 1.4 and the observation
that w−1/2

β ∈ L6,2, for all β > 1 (see Proposition 1.8) are sufficient now to conclude the proof of
estimate (1.76).

In order to proceed with the proof of (1.77) we observe that from (1.36) we immediately
obtain the following explicit representations, for all λ > 0:

(1.78) ∂λR0(λ± i0)f = R2
0(λ± i0)f = ± i

8π
√
λ

∫ ∞

0
e±i

√
λ|x−y|f(y)dy,

(1.79) ∂jR
2
0(λ± i0)f = ± 1

8π

∫ ∞

0
e±i

√
λ|x−y|

∑ xj − yj

|x− y|
f(y)dy.

At this point, differentiating in (1.63) we get

(1.80) ∂λR(λ± i0) = A+B

where

A = R2
0(λ± i0)(I +WR0(λ± i0))−1

and

B = R0(λ± i0)(I +WR0(λ± i0))−1WR2
0(λ± i0)(I +WR0(λ± i0))−1.

We treat separately the two terms. By (1.78), we estimate

‖Af‖L∞ ≤ C√
λ
‖(I +WR0)−1f‖L1

≤ C√
λ
‖〈x〉−1wβ(x)−1/2‖L2‖〈x〉wβ(x)1/2(I +WR0)−1f‖L2 .

We observe (Proposition 1.8) that 〈x〉−1wβ(x)−1/2 ∈ L2 for all β > 1 and, by the uniform bound
for the norms of (I +WR0)−1 in the space of bounded operators onto L2(〈x〉wβ(x)dx) for (see
Proposition 1.4), we conclude that, for some C > 0

(1.81) ‖Af‖L∞ ≤ C√
λ
‖〈x〉wβ(x)1/2f‖L2 .

For the estimate of the term B, we start with some computation on the operator WR2
0. Using

the representation (1.79), we obtain

‖w1/2
β aj∂jR

2
0f‖L2 ≤ ‖w1/2

β aj‖L2‖∂jR
2
0f‖L∞ ≤ C · ‖w1/2

β aj‖L2‖f‖L1 .

By the above observation that

‖f‖L1 ≤ ‖〈x〉w1/2
β (x)f‖L2 ,

it turns out that, if w1/2
β aj ∈ L2, then

(1.82) ‖wβ(x)1/2aj(x)∂jR
2
0f‖L2 ≤ C · ‖〈x〉w1/2

β (x)f‖L2 .

In a similar way, using (1.78), we have

‖w1/2
β bR2

0f‖L2 ≤ ‖w1/2
β b(x)‖L2‖R2

0f‖L∞ ≤ C√
λ
‖w1/2

β b‖L2‖f‖L1 .
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If we assume that w1/2
β b ∈ L2, we conclude that

(1.83) ‖wβ(x)1/2b(x)R2
0f‖L2 ≤

C√
λ
· ‖〈x〉w1/2

β (x)f‖L2 .

Inequalities (1.82) and (1.83) can be unified now, to show that, under the assumptions

(1.84) w
1/2
β aj ∈ L2, w

1/2
β b ∈ L2,

the estimate

(1.85) ‖wβ(x)1/2W (x,D)R2
0(λ± i0)f‖L2 ≤ C

(
1 +

1√
λ

)
‖〈x〉wβ(x)1/2f‖L2

holds, for some C > 0. Observe that assumptions (1.84) are weaker than (1.53), so that they
are obviously satisfied by the hypothesis of the Lemma.

Now we are ready for the estimate of the term B. First, we use the representation (1.36) for
R0 to obtain

‖Bf‖L∞ ≤
∥∥∥∥ 1
|x|

∗ |(I +WR0)−1WR2
0(I +WR0)−1f |

∥∥∥∥
L∞

≤ ‖(I +WR0)−1WR2
0(I +WR0)−1f‖L3/2,1 =: ‖Tf‖L3/2,1 .

As before, we use the properties of the weights wβ(x) to observe that

‖g‖L3/2,1 ≤ ‖wβ(x)1/2g‖L2 .

Then, the last series of inequalities gives

‖Bf‖L∞ ≤ ‖wβ(x)1/2Tf‖L2 .

Now we use the uniform bounds for the inverse operators (I +WR0)−1 (see Proposition 1.4) to
proceed with

‖Bf‖L∞ ≤ ‖wβ(x)1/2WR2
0(I +WR0)−1f‖L2 ;

finally, by inequality (1.85) and the above mentioned estimates on the norms of (I + WR0)−1

in the space of bounded operators onto L2(〈x〉wβ(x)1/2dx), we obtain the estimate

(1.86) ‖Bf‖L∞ ≤ C

(
1 +

1√
λ

)
‖〈x〉wβ(x)1/2f‖L2 .

In conclusion, estimates (1.81), (1.86) and the representation (1.80) conclude the proof of (1.77)
and the Lemma. �

Remark 1.9. The limiting absorption principle allows us to rewrite the spectral formula in
the following way: for any (smooth, compactly supported) function φ(λ) on R, and any test
function f ,

(1.87) φ(−∆ +W )f =
∫ +∞

0
φ(λ)=R(λ+ i0)fdλ.

where the integral is restricted to the positive real axis since of course =R(λ) = 0 for negative
λ.

The resolvent estimates just proved imply that we can integrate by parts in the above
formula, i.e., if

φ(λ) = ψ′(λ)
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then

φ(−∆ +W )f =
∫ +∞

0
ψ′(λ)=R(λ+ i0)fdλ(1.88)

=−
∫ +∞

0
ψ(λ)∂λ=R(λ+ i0)fdλ

The problems arising from the singularity at λ = 0 are easily overcome. To prove this, consider
a cutoff function χ(λ) supported in [−L,L], and write

φ(−∆ +W )f = lim
L→+∞

∫ +∞

0
φ(λ)(1− χ(λL))=R(λ+ i0)fdλ

whence

φ(−∆ +W )f =− lim
L→+∞

L

∫ 1/L

0
ψ(λ)χ′(λL)=R(λ+ i0)fdλ

− lim
L→+∞

∫ +∞

0
(1− χ(λL))ψ(λ)∂λ=R(λ+ i0)fdλ.

=uL + vL.

The last term vL converges to (1.88) uniformly, thanks to estimate (1.77) (and Lebesgue’s
dominated convergence theorem), hence it is clear that uL = φ(−∆ +W )f − vL also converges
uniformly, and it will be sufficient to show that its limit is 0, e.g., in distribution sense. To
estimate the integral

uL = −L
∫ 1/L

0
ψ(λ)χ′(λL)=R(λ+ i0)fdλ

we can use the identity

(1.89) =R(λ+ i0) = (I +R0(λ− i0)W )−1=R0(λ+ i0)(I +WR0(λ+ i0))−1.

Consider then the L2 product

(=R(λ+ i0)f, g) = (=R0(λ+ i0)(I +WR0(λ+ i0))−1f, (I +WR0(λ+ i0))−1g).

From the explicit formula

=R0(λ+ i0)h = C

∫
sin(

√
λ|x− y|)

|x− y|
h(y)dy

we have

|=R0(λ+ i0)h| ≤ C
√
λ

∫
|h(y)|dy

which implies
‖=R0(λ+ i0)h‖L∞ ≤ C

√
λ‖h‖L1 ≤ C

√
λ‖〈x〉w1/2

β h‖L2

for any β > 1. Recalling now the uniform bound for (I +WR0(λ+ i0))−1 in Proposition 1.4 in
the weighted L2 norms with weight 〈x〉w1/2

β , we obtain easily

|(=R(λ+ i0)f, g)| ≤ C
√
λ‖〈x〉w1/2

β f‖L2‖〈x〉w1/2
β g‖L2 .

From this estimate it is easy to prove that

(uL, g) = −L
∫ 1/L

0
ψ(λ)χ′(λL)(=R(λ+ i0)f, g)dλ→ 0



28 1. DECAY ESTIMATES FOR THE MAGNETIC DIRAC AND WAVE EQUATIONS

as L→ +∞, which concludes the argument.

We will prove now an analogue of Lemma 1.2 for the Dirac operator. In what follows,
R(z) = (−zI4 +D+V )−1 denotes the resolvent of the perturbed Dirac operator. Our approach
here will be slightly different: we shall use the formula

(1.90) R(z) = RD(z) +RD(z)V (x)RD(z)(I + V (x)RD(z))−1,

valid for all z ∈ C (to be interpreted of course, for z = λ ∈ R, as the extended resolvents
R(λ) := R(λ ± i0) on the weighted L2 spaces, as given by Proposition 1.6 and Corollary 1.1).
When inserted in the spectral formula, the first term RD at the right hand side reproduces the
solution to the free Dirac equation, and the main part of our proof will be the estimate of second
term

(1.91) Q := RDV RD(I + V RD)−1.

To this end, we shall need an explicit representation for RD(λ ± i0), which is easily obtained
from the formula

(1.92) RD(λ± i0) = R0(λ2 ± i0)(D + λI4).

Recalling (1.36), after an integration by parts we obtain

RD(λ± i0)f =
iλ

4π

∫
R3

e±iλ|x−y|

|x− y|

I4 ∓ 3∑
j=1

αj
xj − yj

|x− y|

 f(y)dy

+
1
4π

∫
R3

e±iλ|x−y|

|x− y|2
3∑

j=1

αj
xj − yj

|x− y|
f(y)dy.(1.93)

¿From here we derive immediately an analogous representation for

R2
D(λ) =

∂

∂λ
RD(λ);

indeed, differentiating (1.93) with respect to λ, we get

R2
D(λ± i0)f =

λ

4π

∫
R3

e±iλ|x−y|

∓I4 +
3∑

j=1

αj
xj − yj

|x− y|

 f(y)dy

± i

4π

∫
R3

e±iλ|x−y|

|x− y|

3∑
j=1

αj
xj − yj

|x− y|
f(y)dy.(1.94)

We collect all the necessary estimates in the following lemma (we write for simplicity RD(λ)
instead of RD(λ± i0) since the estimates are the same):

Lemma 1.3. Suppose that

(1.95) |V (x)| ≤ C0

|x|1/2〈x〉s(| log |x‖+ 1)β/2
,

for some s > 3
2 , β > 1, C0 > 0. Then the following estimates hold for all ε > 0 small enough

and all λ ∈ R:

(1.96) ‖〈x〉1/2+εV R2
D(λ)f‖L2 ≤ Cε · 〈λ〉 · ‖〈x〉3/2+εf‖L2 ,
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(1.97) ‖RD(λ)V RD(λ)f‖L∞ ≤ Cε · 〈λ〉2 · ‖〈x〉1/2+εf‖L2

(1.98) ‖R2
D(λ)V RD(λ)f‖L∞ + ‖RD(λ)V R2

D(λ)f‖L∞ ≤ Cε · 〈λ〉2 · ‖〈x〉3/2+εf‖L2

for some C = Cε independent of λ.

Proof. In the following we shall use the shorthand notation, for s ∈ R,

(1.99) ‖f‖L2
γ

:= ‖〈x〉γf‖L2

From the explicit representations (1.93) and (1.94) we have the simple pointwise estimates

(1.100) |RD(λ)f | ≤ C(|λ| · |x|−1 + |x|−2) ∗ f, |R2
D(λ)f | ≤ C(|λ|+ |x|−1) ∗ f.

Since |x|−1 ∈ L3,∞, by the Young inequality in Lorentz spaces (see the Appendix) we get

‖V R2
D(λ)f‖L2

γ
≤ ‖V ‖L2

γ
· |λ| · ‖1 ∗ f‖L∞ + ‖V ‖L2

γ
‖|x|−1 ∗ f‖L∞

≤ ‖V ‖L2
γ
(|λ| · ‖f‖L1 + ‖f‖L3/2,1) .

By the obvious inequalities valid for all ε > 0

(1.101) ‖f‖L1 ≤ C(ε)‖f‖L2
3/2+ε

, ‖f‖L3/2,1 ≤ C(ε)‖f‖L2
1/2+ε

,

we arrive at the first estimate

(1.102) ‖V R2
D(λ)f‖L2

γ
≤ C(ε)‖V ‖L2

γ
〈λ〉‖f‖L2

3/2+ε
.

Since ‖V ‖L2
γ
<∞ by assumption (1.95) as soon as γ = 1/2+ε < s−1, we see that (1.96) follows

provided ε is suitably small.
In a similar way, in order to prove (1.97) we use again (1.100) and we write (recall that

|x|−2 ∈ L3/2,∞)

‖RD(λ)V RD(λ)f‖L∞ ≤ C
(
|λ| · ‖|x|−1 ∗ V RDf‖L∞ + ‖|x|−2 ∗ V RDf‖L∞

)
≤ C (|λ| · ‖V RD(λ)f‖L3/2,1 + ‖V RD(λ)f‖L3,1) .

For the first term we can write, recalling again (1.100),

‖V RD(λ)f‖L3/2,1 ≤ ‖V ‖L3/2,1 |λ| · ‖|x|−1 ∗ f‖L∞ + ‖V ‖L2‖|x|−2 ∗ f‖L6,2(1.103)

≤ ‖V ‖L3/2,1 |λ| · ‖f‖L3/2,1 + ‖V ‖L2‖f‖L2

≤ (‖V ‖L3/2,1 |λ|+ ‖V ‖L2) ‖f‖L2
3/2+ε

(see (1.101)), while for the second term we have

‖V RD(λ)f‖L3,1 ≤ ‖V ‖L3,1 |λ| · ‖|x|−1 ∗ f‖L∞ + ‖V ‖L6,2‖|x|−2 ∗ f‖L6,2(1.104)

≤ ‖V ‖L3,1 |λ| · ‖f‖L3/2,1 + ‖V ‖L6,2‖f‖L2

≤ (‖V ‖L3,1 |λ|+ ‖V ‖L6,2) ‖f‖L2
3/2+ε

where we have used (1.101) and the trivial inequality ‖f‖L2 ≤ ‖f‖L2
γ
, ∀γ > 0. Summing up, we

get

(1.105) ‖RD(λ)V RD(λ)f‖L∞ ≤ C · C(V )〈λ〉2‖f‖L2
3/2+ε

where the quantity

(1.106) C(V ) := ‖V ‖L3/2,1 + ‖V ‖L3,1 + ‖V ‖L6,2 + ‖V ‖L2 <∞
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is finite by assumption (1.95) (see also the Appendix 8).
The proof of (1.98) is similar: by (1.100) we get

‖R2
D(λ)V RD(λ)f‖L∞ ≤ C

(
|λ| · ‖1 ∗ V RDf‖L∞ + ‖|x|−1 ∗ V RDf‖L∞

)
≤ C (|λ| · ‖V RD(λ)f‖L1 + ‖V RD(λ)f‖L3/2,1) .

We have already estimated the second term in (1.103), and for the first one we have

‖V RD(λ)f‖L1 ≤ ‖V ‖L3/2 |λ| · ‖|x|−1 ∗ f‖L3 + ‖V ‖L3‖|x|−2 ∗ f‖L3/2(1.107)

≤ (‖V ‖L3/2 |λ|+ ‖V ‖L3) ‖f‖L1

≤ (‖V ‖L3/2 |λ|+ ‖V ‖L3) ‖f‖L2
3/2+ε

and hence

(1.108) ‖R2
D(λ)V RD(λ)f‖L∞ ≤ C · C ′(V )〈λ〉2‖f‖L2

3/2+ε

where the quantity

(1.109) C ′(V ) := ‖V ‖L3/2 + ‖V ‖L3/2,1 + ‖V ‖L3 + ‖V ‖L2 <∞

is finite again by assumption (1.95).
Finally, the last estimate can be obtained as follows:

‖RD(λ)V R2
D(λ)f‖L∞ ≤ C

(
|λ| · ‖|x|−1 ∗ V R2

Df‖L∞ + ‖|x|−2 ∗ V R2
Df‖L∞

)
≤ C (|λ| · ‖V RD(λ)f‖L3/2,1 + ‖V RD(λ)f‖L3,1) .

Proceeding as above, we estimate

‖V R2
D(λ)f‖L3/2,1 ≤ ‖V ‖L3/2,1 |λ| · ‖1 ∗ f‖L∞ + ‖V ‖L3/2,1‖|x|−1 ∗ f‖L∞(1.110)

≤ ‖V ‖L3/2,14〈λ〉 (‖f‖L1 + ‖f‖L3/2,1)

≤ ‖V ‖L3/2,14〈λ〉‖f‖L2
3/2+ε

and

‖V R2
D(λ)f‖L3,1 ≤ ‖V ‖L3,1 |λ| · ‖1 ∗ f‖L∞ + ‖V ‖L3,1‖|x|−1 ∗ f‖L∞(1.111)

≤ ‖V ‖L3,14〈λ〉 (‖f‖L1 + ‖f‖L3/2,1)

≤ ‖V ‖L3,14〈λ〉‖f‖L2
3/2+ε

whence

(1.112) ‖RD(λ)V R2
D(λ)f‖L∞ ≤ C · C ′′(V )〈λ〉2‖f‖L2

3/2+ε

where the quantity

(1.113) C ′′(V ) := ‖V ‖L3/2,1 + ‖V ‖L3,1 <∞

is finite by assumption (1.95). �

Remark 1.10. The same remark concerning the simpler version of the spectral formula
(1.87) and the integration by parts formula (1.88) applies also to the Dirac resolvent, with
obvious modifications in the proof.
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5. Proof of Theorem 1.1

Let (ϕj)j=0,1,... be a standard Paley-Littlewood partition of the unity, with the properties

(1.114) ϕj(λ) = ϕ0(2−jλ), ϕ0 +
∑
j≥1

ϕj = 1,

for a suitable ϕ0 ∈ C∞0 . We consider the Cauchy problem

(1.115)
{
utt(t, x)−∆u(t, x) +W (x,D)u = 0
u(0, x) = 0, ut(0, x) = ϕj(

√
−∆ +W )g(x),

The solution can be represented using the spectral formula as follows:

(1.116) u(t, x) =
1

2πi

∫ +∞

0
ϕj(

√
λ)

sin(t
√
λ)√

λ
R(λ)gdλ,

and after an integration by parts (see Remark 1.9) this gives

(1.117) u(t, x) =
C

t

∫ +∞

0
cos(t

√
λ)
[
∂λϕj(

√
λ)R(λ)g + ϕj(

√
λ)∂λR(λ)g

]
dλ.

Thus, recalling estimates (1.76) and (1.77), we have

|u(t, x)| ≤ C

t
‖〈x〉w1/2

β g‖L2

∫ +∞

0

(
|∂λϕj(

√
λ)|+

(
1 +

1√
λ

)
|ϕj(

√
λ)|
)
dλ

and a change of variables λ = 22jµ in the integral gives immediately

(1.118) |u(t, x)| ≤ C

t
22j‖〈x〉w1/2

β g‖L2

with some constant C independent of j and g.
If we now define as usual

ϕ̃j = ϕj−1 + ϕj + ϕj+1, ϕ−1 = 0,

so that ϕj ≡ ϕjϕ̃j , we see that the Cauchy problem (1.115) can be written equivalently

(1.119)
{
utt(t, x)−∆u(t, x) +W (x,D)u = 0
u(0, x) = 0, ut(0, x) = ϕj(

√
−∆W )ϕ̃j(

√
−∆W )g(x),

hence our estimate (1.118) implies also the estimate

(1.120) |u(t, x)| ≤ C

t
22j‖〈x〉w1/2

β ϕ̃j(
√
−∆W )g‖L2 .

Finally, consider the original Cauchy problem (1.6), and decompose g as a sum

g =
∑
j≥0

ϕj(
√
−∆W )g(x).

By estimate (1.120) we obtain easily estimate (1.9).

(1.121) |u(t, x)| ≤ C

t

∑
j≥0

22j‖〈x〉w1/2
β ϕj(

√
−∆W )g‖L2 .

The computations in the case of initial data of the form

u(0, x) = f, ut(0, x) = 0

are completely analogous, and we thus obtain estimate (1.12).
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Remark 1.11. In view of the application to the Dirac system, the following remark will be
useful. If the initial datum g has the form

(1.122) g = (−∆W )sh

for some s > 0, a direct application of estimate (1.121) would give only

(1.123) |u(t, x)| ≤ C

t

∑
j≥0

22j‖〈x〉w1/2
β ϕj(

√
−∆W )(−∆W )sh‖L2 .

Actually, if we go back to the spectral formula (1.117), we see that the solution can be written

(1.124) u(t, x) =
C

t

∫ +∞

0
λs/2 cos(t

√
λ)
[
∂λϕj(

√
λ)R(λ)h+ ϕj(

√
λ)∂λR(λ)h

]
dλ.

with an additional factor λs/2. Thus, proceeding as above, we arrive at the simpler estimate

(1.125) |u(t, x)| ≤ C

t

∑
j≥0

2(2+s)j‖〈x〉w1/2
β ϕj(

√
−∆W )h‖L2 .

We now prove estimate (1.11) under the stronger assumption (1.10) on the potentialW (x,D).
Consider first the case of initial data of the form

u(0, x) = 0, ut(0, x) = g.

We can write g as follows:

g = (1−∆ +W )−1−ε(1−∆ +W )1+εg

for some fixed ε > 0. Then the solution u can be represented as

u(t, x) =
1

2πi

∫ +∞

0
ψ(
√
λ)

sin(t
√
λ)√

λ
R(λ)hdλ

where
h = (1−∆ +W )1+εg, ψ(

√
λ) = (1 + λ)1+ε.

Proceeding as above, after an integration by parts we arrive at

|u(t, x)| ≤ C

t
‖〈x〉w1/2

β h‖L2

∫ +∞

0
((1 + λ)−1−ε + (1 + λ)−2−ε)dλ

and hence

(1.126) |u(t, x)| ≤ C

t
‖〈x〉w1/2

β (1−∆ +W )1+εg‖L2 ≤
C

t
‖〈x〉3/2+ε(1−∆ +W )1+εg‖L2 .

To conclude the proof of the Theorem, it remains to show that

(1.127) ‖〈x〉3/2+ε(1−∆ +W )1+εg‖L2 ≤ ‖〈x〉3/2+εg‖H2+2ε .

We start from the inequality

‖〈x〉s(1−∆ +W )f‖L2 ≤ ‖〈x〉sf‖H2

which is obviously valid for any s ≥ 0. By a standard complex interpolation argument, interpo-
lating with the trivial inequality

‖〈x〉sf‖L2 ≤ ‖〈x〉sf‖L2

we obtain that
‖〈x〉s(1−∆ +W )εf‖L2 ≤ ‖〈x〉sf‖H2ε
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for all 0 ≤ ε ≤ 1 and all s ≥ 0. This implies

(1.128) ‖〈x〉s(1−∆ +W )1+εf‖L2 ≤ ‖〈x〉s(1−∆ +W )f‖H2ε ≤ ‖〈x〉sf‖H2+2ε + ‖〈x〉sWf‖H2ε .

The last term is of the form

(1.129) ‖〈x〉sW (x,D)f‖H2ε ≤ ‖〈x〉sa(x)Df‖H2ε + ‖〈x〉sb(x)f‖H2ε ;

in order to estimate it, we recall the Kato-Ponce inequality (see [64])

(1.130) ‖〈D〉q(vw)‖Lp ≤ C‖〈D〉qv‖Lp1‖w‖Lp2 + C‖v‖Lp3‖〈D〉qw‖Lp4

which is valid for all q ≥ 0, p−1 = p1
1 + p−1

2 = p−1
3 + p−1

4 . With the choices v(x) = a(x),
w(x) = 〈x〉sDf(x), q = 2ε, p1 = p3 = ∞ and p2 = p4 = 2, we obtain

‖〈D〉2ε〈x〉sa(x)Df‖L2 ≤ C‖〈D〉2εa‖L∞‖〈x〉sDf‖L2 + C‖a‖L∞‖〈D〉2ε(〈x〉sDf)‖L2 .

Now it is clear that

‖〈D〉2ε(〈x〉sDf)‖L2 ≤ C‖〈x〉sf‖H1+2ε

(use again complex interpolation between the cases ε = 0 and ε = 1) and in conclusion we obtain

‖〈D〉2ε〈x〉sa(x)Df‖L2 ≤ C‖〈D〉2εa‖L∞‖〈x〉sf‖H1+2ε .

Here we have used the simple fact that

‖a‖L∞ ≤ C‖〈D〉2εa‖L∞ .

The corresponding estimate for the electric term is analogous (actually simpler):

‖〈D〉2ε〈x〉sb(x)f‖L2 ≤ C‖〈D〉2εb‖L∞‖〈x〉sf‖H2ε .

Recalling now (1.128) and (1.129) we conclude the proof of estimate (1.11).
On the other hand, when the data are of the form

u(0, x) = f, ut(0, x) = 0

the computations are completely analogous and we obtain estimate (1.14) under the stronger
assumptions (1.13) on the coefficients.

6. Proof of Theorem 1.2

Remark 1.12. We notice that Theorem 1.1 (and Remark 1.4) can be trivially extended to
a system of wave equations of the form

(1.131) utt − (∇+ iA(x))2u+B(x)u = 0

where u(t, x) is a CN valued function and A1(x), A2(x), A3(x), B(x) are CN×N matrices whose
coefficients satisfy the assumptions of the Theorem. The resulting dispersive estimates have
exactly the same form as in the scalar case.

Consider now the Cauchy problem

(1.132)
{
iut −Du− V (x)u = 0
u(0, x) = f(x).
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If we apply to the pertubed Dirac system the operator i∂t + D + V we obtain that u is also a
solution of a 4×4 system of perturbed wave equations of the form (1.131) with

(1.133) Aj(x) = −1
2
(αjV (x) + V (x)αj),

(1.134) B(x) = DV (x) + V (x)2 +A2
1 +A2

2 +A2
3 + i

∑
∂jAj

and initial data

(1.135) u(0, x) = f, ut(0, x) = i−1(D + V )f.

Note that the perturbed operator

(1.136) −∆W = −(∇+ iA(x))2 +B(x)

is exactly the square of the operator D + V :

(1.137) −∆W = (D + V )2

and hence the initial data for (1.131) can be written

(1.138) u(0, x) = f, ut(0, x) = i−1(−∆W )1/2f.

We are in position to apply to the solution u the estimates already proved in Theorem 1.1;
keeping Remark 1.11 into account, we arrive easily at the estimate

(1.139) |u(t, x)| ≤ C

t

∑
j≥0

23j‖〈x〉w1/2
β ϕj(D + V )f‖L2 ,

provided the coefficients aj(x) and b(x) satisfy the assumptions (1.8). Recalling the explicit
form (1.133) of the coefficients in terms of V (x), we see that V must satisfy the conditions

|V (x)| ≤ C0

|x|〈x〉(| log |x||+ 1)β

from the magnetic term, and

|V (x)2|+ |DV (x)| ≤ C0

|x|2(| log |x||+ 1)β
,

from the electric term, for some β > 1 and some small constant C0. Summing up, we obtain
that (1.139) holds under assumption (1.17).

The estimate in terms of the Sobolev norm can be obtained in exactly the same way as for
the perturbed wave equation. Indeed, proceeding as in (1.126) we arrive at the estimate

(1.140) |u(t, x)| ≤ C

t
‖〈x〉3/2+ε(−∆W )3/2+εf‖L2 .

The same arguments used at the end of Section 5 give here

(1.141) |u(t, x)| ≤ C

t
‖〈x〉3/2+εf‖H3+2ε

provided
〈D〉1+2εAj ∈ L∞, 〈D〉1+2εB ∈ L∞,

which is implied by
〈D〉2+2εV ∈ L∞.
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7. Proof of Theorem 1.3

By exploiting the connection between the massless Dirac and the wave equation, it is easy
to obtain an optimal dispersive estimate in the unperturbed case. In order to state it, we recall
the definition of the homogeneous Besov space Ḃs

1,1. The Besov norm is given by

‖v‖Ḃs
1,1

=
∑
j∈Z

2js‖φj(
√
−∆)v‖L1 ,

where φj is a homogeneous Paley-Littlewood sequence, i.e., fixed a test function ψ(r) ∈ C∞0
such that ψ(r) = 1 for r < 1, ψ(r) = 0 for r > 2, we have φj(r) = ψ(2−j+2r)−ψ(2−j+1r) for all
j ∈ Z.

Now, let u(t, x) be a smooth solution of the free massless Dirac equation

(1.142) iut(t, x) = Du(t, x)

with initial data

(1.143) u(0, x) = f(x).

Then we have:

Proposition 1.7. The solution u(t, x) of problem (1.142),(1.143) satisfies the dispersive
estimate

(1.144) |u(t, x)| ≤ C

t
‖f‖Ḃ2

1,1
.

Proof. Recall the identity

(i∂t +D)(i∂t −D) = (∆− ∂2
tt)I4;

if we apply the operator i∂t +D to the system (1.142) we see that u solves the Cauchy problem
for the wave equation

utt −∆u = 0

with initial data
u(0, x) = f, ut(0, x) = i−1Df.

Then, as a consequence of the well known decay estimates for solutions to the free wave equation
(see e.g. [95]), we obtain

|u(t, x)| ≤ C

t

(
‖f‖Ḃ2

1,1
+ ‖Df‖Ḃ1

1,1

)
whence (1.144) follows immediately. �

The proof of Theorem 1.3 follows the same lines as the proof of Theorem 1.1. Consider the
Cauchy problem with frequency truncated data

(1.145)
{
iut(t, x) = DV u(t, x)
u(0, x) = ϕj(DV )f,

where (ϕj(λ))j=0,1,... is the standard Paley-Littlewood partition of the unity defined in (1.114).
By means of spectral formula, we can represent the solution of (1.145) as

(1.146) u(t, x) =
1

2πi

∫ +∞

−∞
ϕj(λ)eiλtI[RV (λ)]f dλ.
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Using the identity

(1.147) RV (λ) = RD −RDV RD(I + V RD)−1,

which is valid thanks to Corollary 1.1, we can split the integrals in (1.146) into two terms, the
first one containing the contribution of the free resolvent RD and the second one containing the
contribution of the operator RDV RD(I + V RD)−1. The first term

A :=
1

2πi

∫ +∞

−∞
ϕj(λ)eiλt= [RD(λ)] f dλ

was estimated above (see (1.144)); it remains to estimate the term

(1.148) B = − 1
2πi

∫ +∞

−∞
ϕj(λ)eiλt= [Q(λ)] f dλ,

where

Q(λ) := RD(λ)V RD(λ)(I + V RD(λ))−1.

After an integration by parts, we obtain

(1.149) B = − 1
2πt

[∫ +∞

−∞
ϕj(λ)eiλt ∂

∂λ
I(Q(λ))f dλ+

∫ +∞

−∞
ϕ′j(λ)eiλtI[Q(λ)]f dλ

]
;

an explicit computation shows that

∂Q

∂λ
= R2

DV RD(I4 + V RD)−1 +RDV R
2
D(I4 + V RD)−1

+RDV RD(I4 + V RD)−1V R2
D(I4 + V RD)−1.

Now we can apply Lemma 1.3: under assumption (1.21), estimates (1.96), (1.97) and (1.98) are
satisfied, and the Lemma gives

(1.150) ‖Q(λ)f‖L∞ ≤ C〈λ〉2‖〈x〉3/2+εf‖L2 ,

(1.151)
∣∣∣∣∣∣∣∣ ∂∂λQ(λ)f

∣∣∣∣∣∣∣∣
L∞

≤ C〈λ〉3‖〈x〉3/2+εf‖L2 ,

for some C > 0. Using (1.150) and (1.151) in (1.149) we arrive at the estimate

|B| ≤ C

t
‖f‖L2

3/2+ε

[∫ +∞

−∞

(
〈λ〉3|ϕj(λ)|+ 〈λ〉2

∣∣ϕ′j(λ)
∣∣) dλ

]
.

Recalling that φj(λ) = φ0(2−jλ), after a change of variables 2−jλ = µ we easily obtain

(1.152) |B| ≤ C

t
24j‖〈x〉3/2+εf‖L2 .

From this point on, we can proceed as in the proof of Theorem 1.1 and complete the proof of
Theorem 1.3.
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8. An appendix on Lorentz spaces

For the convenience of the reader, we recall here the definitions and the main properties of
the Lorentz spaces Lp,q, in view of the applications needed in the proof of our results.

For any measurable function f : Rn → C and any s ≥ 0 we define the upper-level Ef
s as the

set
Ef

s := {x : |f(x)| > s}.
The non-increasing rearrangement of f is then the function

f∗(t) := inf{s > 0 : |Ef
s | ≤ t}, t ∈ (0,+∞).

It is also useful to consider the average of f∗ defined by

f∗∗(t) =
1
t

∫ t

0
f∗(r) dr.

The standard definition of the Lorentz spaces is the following:

Definition 1.1. For any 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ we define the quasinorm ‖f‖Lp,q as
follows:

(1.153) ‖f‖Lp,q =

{[∫∞
0 (t1/pf∗(t))q dt

t

]1/q
, 1 ≤ q <∞

supt>0 t
1/pf∗(t), q = ∞.

When p 6= 1, if we replace f∗ with f∗∗ in the above definitions we obtain an equivalent quasinorm
which is actually a norm (see [10], [19]). The Lorentz space Lp,q is defined by

(1.154) Lp,q = {f : ‖f‖Lp,q <∞}.

Moreover we define
L1,1 := L1, L∞,∞ = L∞.

The spaces L∞,q for 1 ≤ q < ∞ are usually left undefined (although L∞,1 is defined in [19] as
the closure of L∞ compactly supported functions in the L∞ norm).

With the above definitions, one obtains the elementary properties

Lp,p = Lp, 1 ≤ p ≤ ∞;

Lp,q1 ⊆ Lp,q2 , 1 < p <∞, 1 ≤ q1 ≤ q2 ≤ ∞
(with continuous embedding). When the second index is ∞ we obtain the weak Lebesgue spaces
(Marcinkiewicz spaces):

Lp,∞ = Lp
w, 1 ≤ p ≤ ∞.

Moreover, the Lorentz spaces can be obtained by an equivalent construction using real interpo-
lation:

Lp,q = (Lp0 , Lp1)θ,q, p−1 = (1− θ)p−1
0 + θp−1

1

provided
p0 < p1, p0 < q ≤ ∞, 0 < θ < 1.

An alternative characterization of the Lorentz norm can be given using the so-called atomic
decomposition:
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Lemma 1.4. Let f : Rn → C be a measurable function and let 1 ≤ p < ∞, 1 ≤ q ≤ ∞;
then f ∈ Lp,q if and only if there exist a sequnce of sets (Ej)j∈Z and a sequence of numbers
a = (aj)j∈Z such that |Ej | = O(2j), a ∈ lq and the following estimate

(1.155) |f(x)| ≤ C
∑
j∈Z

aj2−j/pχEj (x)

holds, for some C > 0.

It is possible to see that the best constant C in (1.155) is equivalent to the Lorentz norm of
the function f .

The most useful properties of Lorentz spaces are the Hölder and Young inequalities, which
extend the classical ones for Lebesgue spaces. These were originally proved by O’Neil in [80].
We collect them in the following theorems:

Theorem 1.5 (Hölder inequality). Let f ∈ Lp1,q1 , g ∈ Lp2,q2. The following estimates hold:

• if p1, p2, p ∈]1,∞[, q1, q2, q ∈ [1,∞], then

(1.156) ‖fg‖Lp,q ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 , 1 > p−1
1 + p−1

2 = p−1, q−1
1 + q−1

2 ≥ q−1;

• if p1, p2 ∈ [1,∞[, q1, q2 ∈ [1,∞], then

(1.157) ‖fg‖L1 ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 , p−1
1 + p−1

2 = 1, q−1
1 + q−1

2 ≥ 1.

We remark that the above statement does not cover the trivial inequality

(1.158) ‖fg‖Lp,q ≤ ‖f‖L∞‖g‖Lp,q

which is evidently true whenever Lp,q is defined.

Theorem 1.6 (Young inequality). Let f ∈ Lp1,q1 , g ∈ Lp2,q2. Then the following estimates
hold:

• if p1, p2, p ∈]1,∞[, q1, q2, q ∈ [1,∞], then

(1.159) ‖f ∗ g‖Lp,q ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 , p−1
1 + p−1

2 = 1 + p−1, q−1
1 + q−1

2 ≥ q−1;

• if p1, p2 ∈]1,∞[, q1, q2 ∈ [1,∞], then

(1.160) ‖f ∗ g‖L∞ ≤ C‖f‖Lp1,q1‖g‖Lp2,q2 , p−1
1 + p−1

2 = 1, q−1
1 + q−1

2 ≥ 1.

As before, we remark that the above statement does not cover the inequality

(1.161) ‖f ∗ g‖Lp,q ≤ C‖f‖L1‖g‖Lp,q

which is easily seen to be true in all cases when Lp.q is defined (e.g., by real interpolation).
We conclude this section by studying the weight functions wβ(x) = |x|(| log |x||+ 1)β, with

β > 1 which plays a crucial role in our results; in the following proposition we determine precisely
to which Lorentz the powers w−s

β belong.

Proposition 1.8. For any s > 0, q ∈ [1,∞] we have w−s
β ∈ Ln/s,q, provided β > 1/sq.
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Proof. We will use the equivalent Lorentz norm (1.155). For any j ∈ Z consider the ball
Bj := B2j/n = {x : |x| ≤ 2j/n} and the rings Ej := Bj+1 \Bj ; it is clear that |Ej | = Cn2j , where
Cn depends only on the dimension n. Then, for all x ∈ Rn we have the estimate

|w−s
β (x)| =

∑
j∈Z

1
|x|s(| log |x||+ 1)βs

χEj (x) ≤ C
∑
j∈Z

(|j| log 2 + 1)−βs2−js/nχEj (x).

The proof is concluded by the remark that the sequence aj = (|j| log 2 + 1)−βs is in lq if and
only if β > 1/sq. �





CHAPTER 2

Strichartz estimates and Kato-smoothing effect

1. Introduction

Following the previous chapter, we continue the investigation on equations with electromag-
netic potentials; here we point our attention to the other dispersive-type estimates we presented
in the Introduction, namely Strichartz and Kato-smoothing estimates. In this chapter we present
some results in this direction, concerning Schrödinger, Wave, Klein-Gordon and Dirac equations.
The reference for the results in the present chapter is [32].

Strichartz estimates have become a standard tool in the study of linear and nonlinear evo-
lution equations. They are available for a large class of constant coefficient equations, by the
methods of [47] and [66]. In a sense, they represent the modern energy estimates, and are
especially effective for problems of low regularity and global existence for nonlinear equations.

Using the notations LpLq = Lp(Rt;Lq(Rn
x)), ‖f‖ . ‖g‖ to mean ‖f‖ ≤ C‖g‖, and Hs

q and
Ḣs

q to denote the spaces with norms

‖f‖Ḣs
q

= ‖〈D〉sf‖Lq , ‖f‖Ḣs
q

= ‖|D|sf‖Lq .

where 〈D〉 = (1 −∆)1/2, |D| = (−∆)1/2, the Strichartz estimates for the Schrödinger equation
take the following form: for n ≥ 2,

‖eit∆f‖LpLq . ‖f‖L2 ,

provided the couple (p, q) is Schrödinger admissible:

(2.1)
2
p

+
n

q
=
n

2
, 2 ≤ p ≤ ∞,

2n
n− 2

≥ q ≥ 2, q 6= ∞.

The couple (p, q) = (2, 2n/n− 2) is called the endpoint and is allowed when n > 2.
For the wave equation the estimates can be written as follows: for n ≥ 3,

‖eit|D|f‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2 ,

provided the couple (p, q) is wave admissible:

(2.2)
2
p

+
n− 1
q

=
n− 1

2
, 2 ≤ p ≤ ∞,

2(n− 1)
n− 3

≥ q ≥ 2, q 6= ∞.

The wave equation endpoint is (p, q) = (2, 2(n− 1)/(n− 3)) and is allowed in dimension n > 3.
Finally for the Klein-Gordon equation we have: for n ≥ 2,

‖eit〈D〉f‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2 ,

provided (p, q) is Schrödinger admissible (see Section 4 for a proof of the last estimate, for which
a reference is not immediately available).

41
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We shall also be interested in the decay properties of the Dirac equation, which has been
already introduced in the previous chapters. We recall that this is a 4 × 4 constant coefficient
system of the form

iut +Du = 0

in the massless case, and
iut +Du+ βu = 0

in the massive case. Here u : Rt × R3
x → C4, the operator D is defined as

D =
1
i

3∑
k=1

αk∂k

and αj , β are the 4× 4 Dirac matrices. Then the solution u(t, x) = eitDf of the massless Dirac
system with initial value u(0, x) = f(x) satisfies the Strichartz estimate:

‖eitDf‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2 , n = 3,

for all wave admissible (p, q), while in the massive case we have

‖eit(D+β)f‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2 , n = 3,

for all Schrödinger admissible (p, q) (see Section 4 for more details).
In view of the applications, it is an important problem to extend Strichartz estimates to

more general equations with variable coefficients, possibly of low regularity in order to retain
the advantages over classical energy methods. Indeed, in recent years a large number of works
have investigated this kind of problem. In the case of potential perturbations like

iut −∆u+ V (x)u = 0, �u+ V (x)u = 0,

Strichartz estimates are now fairly well understood. We mention among the many works [18],
[49], [50], [90], [93] and the survey [92] for the Schrödinger equation, and [24], [44], [33] for
the wave equation. We also mention the wave operator approach of Yajima ([115], [116], [117],
[5]), which was recently optimized in dimension 1 in [30].

Results are much less complete in the case of first order perturbations i.e. magnetic potentials

iut + ∆u+ a · ∇u+ bu = 0, �u+ a · ∇u+ bu = 0.

Concerning Strichartz estimates for the Schrödinger equation with small potentials a, b we recall
at least the papers [98], [43]; in 3D the recent work [37] handles for the first time the case of large
magnetic potentials. For the wave equation with small magnetic potentials, partial Strichartz
estimates were obtained in 3D in [25] in the case of smooth, rapidly decaying coefficients. The
dispersive estimate in 3D was proved in [31] for the magnetic wave equation with small singular
potentials and for the massless Dirac system with a small singular matrix potential. We must
also mention the papers [97], [88], [42] containig some local estimates in the fully variable
coefficient case. Only in the one dimensional case the optimal dispersive estimates for the case
of fully variable singular coefficients have been proved in [30].

A method of proof which is very efficient in the case of electric potentials was introduced in
[90] and further developed in [18], [17]. The main idea is to combine Strichartz estimates for
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the free equation with Kato smoothing estimates for the perturbed equation. The same method
is used in [37] for the 3D Schrödinger equation with a large magnetic potential.

Our goal here is to apply a suitable modification of this method in a systematic way to several
equations perturbed with magnetic potentials: Schrödinger, wave and Klein-Gordon equations,
and the Dirac system with and without mass.

Thus consider a magnetic Schrödinger operator

(2.3) H = −(∇+ iA(x))2 +B(x),

which is selfadjoint under the following assumptions: Aj and B are real valued, and, denoting
by B− (resp. B+) the negative (resp. positive) part of B,

(2.4) ‖B‖Ln/2,∞ <∞, ‖B−‖Ln/2,∞ < δ, ‖A‖Ln,∞ < δ

for some δ sufficiently small (see Lemma 2.1 below). Here Lp,∞ = Lp
w denotes the Lorentz or

weak Lebesgue space. However, in order to state our results, it is more convenient to represent
the operator in the form

(2.5) H ≡ −∆ +W (x,D) ≡ −∆ + a(x) · ∇+ b(x)

and to make the abstract assumption that H is selfadjoint. In view of (2.4), the following explicit
conditions on a, b are sufficient (but not necessary) for the selfadjointness of H:

(2.6) a(x) is pure imaginary, =b = −i∇ · a

and

(2.7) ‖∇a‖Ln/2,∞ + ‖b‖Ln/2,∞ <∞, ‖<b−‖Ln/2,∞ < δ, ‖a‖Ln,∞ < δ

for a small enough δ.
In what follows, we shall always assume that the coefficients a, b are measurable functions;

the assumptions on their decay at infinity and singularity at the origin are specified in each
single statement of our main results.

Our first result concerns smoothing estimates of Kato-Yajima type for the scalar Schrödinger,
wave and Klein-Gordon equations. Besides being a necessary tool to prove the Strichartz es-
timates, they have also an independent interest (see e.g. [8], [62], [65]). Notice in particular
that we allow a singularity at 0 in the coefficient, and that the electric potential can be large,
while the magnetic term must satisfy a smallness condition. We shall use the following weight
functions:

τε(x) =

{
|x|

1
2
−ε + |x| if n ≥ 3,

|x|
1
2
−ε + |x|1+ε if n = 2

and

wσ(x) = |x|(1 + | log |x||)σ, σ > 1.

Then we have:

Proposition 2.1 (Smoothing estimates for scalar equations). Let n ≥ 2. Assume the
operator

−∆ +W (x,D) = −∆ + a(x) · ∇+ b1(x) + b2(x)
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is selfadjoint with

(2.8) |a(x)| ≤ δ

τεw
1/2
σ

, |b1(x)| ≤
δ

τ2
ε

, 0 ≤ b2(x) ≤
C

τ2
ε

for some δ, ε > 0 sufficiently small and some σ > 1, C > 0. Moreover assume that 0 is not a
resonance for −∆ + b2.

Then the following smoothing estimates hold: for the Schrödinger equation

‖τ−1
ε eit(−∆+W )f‖L2L2 + ‖τ−1

ε |D|1/2eit(−∆+W )f‖L2L2 . ‖f‖L2

while for the wave and Klein-Gordon equations

‖τ−1
ε eit

√
−∆+W f‖L2L2 + ‖τ−1

ε eit
√

1−∆+W f‖L2L2 . ‖f‖L2 .

The assumption that 0 is not a resonance for −∆ + b2(x) here means: if (−∆ + b2)f = 0
and 〈x〉−1f ∈ L2 then f ≡ 0.

We can then prove Strichartz estimates for the perturbed scalar equations as a consequence
of the above smoothing properties. Notice that we must require some additional regularity on
the magnetic coefficient a(x). Moreover, the use of the Christ-Kiselev lemma (see Section 3 for
details) prevents us from reaching the endpoint.

Theorem 2.1 (Strichartz for Schrödinger). Let n ≥ 2, −∆ + W be as in Proposition 2.1
and assume in addition that

(2.9) 〈x〉1+3εχ(x)aj(x) ∈ C
1
2
+2ε for some function χ & w1/2

σ .

Then, for any non-endpoint Schrödinger admissible couple (p, q), the following Strichartz esti-
mate holds:

(2.10) ‖eit(−∆+W )f‖LpLq . ‖f‖L2 .

Theorem 2.2 (Strichartz for wave). Let n ≥ 3, −∆+W be as in Proposition 2.1 and assume
in addition that

(2.11) |a(x)| ≤ C

τ2
ε

, |b1 + b2 −∇ · a| ≤ C

|x|τε
.

Then, for any non-endpoint wave admissible couple (p, q) the following Strichartz estimate holds:

(2.12) ‖eit
√
−∆+W f‖

LpḢ
1
q−

1
p−

1
2

q

. ‖f‖L2 .

Theorem 2.3 (Strichartz for Klein-Gordon). Let n ≥ 2, −∆ +W be as in Proposition 2.1
and assume in addition that

(2.13) |a(x)| ≤ C

τ2
ε

, |b1 + b2 −∇ · a| ≤ C

〈x〉τε
.

Then, for any non-endpoint Schrödinger admissible couple (p, q), the following Strichartz esti-
mate holds:

(2.14) ‖eit
√
−∆+1+W ‖

LpH
1
q−

1
p−

1
2

q

≤ C‖f‖L2 .

Our final results concern the Dirac system:
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Theorem 2.4 (Massless Dirac). Let n = 3, and let V (x) = V (x)∗ be a 4×4 complex valued
matrix such that

(2.15) |V (x)| ≤ δ

wσ(x)

for some δ sufficiently small and some σ > 1. Then the following smoothing estimate holds:

(2.16) ‖w−1/2
σ eit(D+V )f‖L2L2 . ‖f‖L2

and, for any non-endpoint wave admissible couple (p, q), the following Strichartz estimate holds:

(2.17) ‖eit(D+V )f‖
LpḢ

1
q−

1
p−

1
2

. ‖f‖L2 .

Theorem 2.5 (Massive Dirac). Let n = 3, and let V (x) = V (x)∗ be a 4×4 complex valued
matrix such that

(2.18) |V (x)| ≤ δ

τε(x)

for some δ, ε > 0 sufficiently small. Then the following smoothing estimate holds:

(2.19) ‖τ−1
ε eit(D+β+V )f‖L2L2 . ‖f‖L2

and, for any non-endpoint Schrödinger admissible couple (p, q), the following Strichartz estimate
holds:

(2.20) ‖eit(D+β+V )f‖
LpH

1
q−

1
p−

1
2

. ‖f‖L2 .

The paper is organized as follows: in Section 2 we prove resolvent estimates for the perturbed
operator, which are equivalent to smoothing estimates for the corresponding flow via Kato theory,
while Section 3 is devoted to the proof of the main theorems. A short Appendix collects the
estimates for the free Klein-Gordon and Dirac equations; these can be obtained by a standard
application of the Ginibre-Velo and Keel-Tao methods, and we decided to include a sketch of
the proof for the sake of completeness.

2. Resolvent Estimates

In this section we shall prove the basic resolvent estimates for the perturbed operators,
which are the crucial step in the proof. As an immediate consequence we shall obtain smoothing
estimates for the corresponding evolution operators, by a standard application of the well-known
result of Kato (see [87]):

Theorem 2.6 (Kato smoothing Theorem, [62]). Let X,Y be Hilbert spaces, let H : X → X

be a self-adjoint operator whose resolvent we denote by R(λ) = (H − λ)−1, and let A : X → Y

be a closed, densely defined operator, which may be unbounded. Assume that

(2.21) ‖AR(λ)A∗g‖Y ≤M‖g‖Y ∀g ∈ D(A∗), λ 6∈ R.

Then the operator A is H-smooth, i.e., eitHf ∈ D(A) for all f ∈ X and a.e. t, and

(2.22)
∫ ∞

−∞
‖Ae−itHf‖2

Y dt ≤
2
π
M2‖f‖2

X ∀f ∈ X.



46 2. STRICHARTZ ESTIMATES AND KATO-SMOOTHING EFFECT

2.1. The magnetic Schrödinger operator. The following lemma gives sufficient condi-
tions for the magnetic Schrödinger operator H = −(∇ + iA(x))2 + B(x) to be selfadjoint. We
sketch a proof since the assumptions on the coefficients are not completely standard:

Lemma 2.1. Let Aj(x), A = (A1, . . . , An) and B(x) be real valued functions satisfying

(2.23) ‖B+‖Ln/2,∞ < C, ‖B−‖Ln/2,∞ < δ, ‖A‖Ln,∞ < δ

for some C, δ > 0. Then, if δ is sufficiently small, the operator

(2.24) H = −(∇+ iA(x))2 +B(x)

can be uniquely defined as a selfadjoint nonnegative operator in L2, with form domain H1(Rn).
Moreover we have

(2.25) ‖H1/2g‖L2 ' ‖g‖Ḣ1 .

Proof. The quadratic form

q(φ, ψ) = ((∇+ iA(x))φ, (∇+ iA(x))ψ)L2 + (B(x)φ, ψ)L2

is well defined on H1 × H1 under assumptions (2.23). Indeed, using the embedding Ḣ1 ⊂
L2n/(n−2),2, Hölder’s inequality in Lorentz spaces [80] and assumptions (2.23), we have

|q(ϕ,ϕ)| ≤‖∇ϕ‖2
L2 + 2‖A‖Ln,∞‖∇ϕ · ϕ‖

L
n

n−1 ,1 + ‖|A|2 + |B|‖
L

n
2 ,∞‖ϕ2‖

L
n

n−2 ,1

.‖∇ϕ‖2
L2 .

The form q is symmetric since A and B are real valued. By standard results (see e.g. [87],
Theorem VIII.15), q is the form associated to a unique defined self-adjoint operator provided
the form is closed, i.e. its domain H1(Rn) is complete under the norm

(2.26) |||ϕ|||2 = q(ϕ,ϕ) + C‖ϕ‖2
L2 ,

for some C > 0, and it is semibounded, i.e.

(2.27) q(ϕ,ϕ) ≥ −C‖ϕ‖2
L2 ,

for some C > 0. To prove this we estimate the form from below as follows

q(ϕ,ϕ) = ‖∇ϕ‖2
L2 + 2=(A · ∇ϕ,ϕ)L2 + ((|A|2 +B+)ϕ,ϕ)L2 − (B−ϕ,ϕ)L2

≥ ‖∇ϕ‖2
L2 + 2=(A · ∇ϕ,ϕ)L2 − (B−ϕ,ϕ)L2 .

Proceeding as for the upper bound we obtain

(2.28) q(ϕ,ϕ) ≥ ‖∇ϕ‖2
L2 − Cδ‖∇ϕ‖2

L2 & ‖∇ϕ‖2
L2

for δ small enough. This proves the semiboundedness of the form and (2.25), which implies that
the norm (2.26) is equivalent to the norm of H1 and hence the form is closed. �

We now investigate in some detail the properties of the resolvent operators

(2.29) R(z) = (−∆ +W − z)−1

R0(z) = (−∆− z)−1, Rb2(z) = (−∆ + b2(x)− z)−1.

The following weight functions will appear in our resolvent estimates (ε > 0, σ > 1):

(2.30) 〈x〉 = (1 + |x|2)
1
2 , wσ(x) = |x|(1 + | log |x||)σ,
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and

(2.31) τε(x) =

{
|x|

1
2
−ε + |x| if n ≥ 3,

|x|
1
2
−ε + |x|1+ε if n = 2.

Notice that
|x| ≤ τε(x), w

1
2
σ (x) ≤ Cτε(x),

and
τε(x) ≤ C〈x〉, for n ≥ 3, τε(x) ≤ C〈x〉1+ε, for n = 2

for some constant C = C(ε, σ).
In order to estimate the resolvent R we shall use the formal identity

(2.32) R = R0(I + b2R0)−1(I + (a · ∇+ b1)Rb2)
−1.

Our first goal will be to prove that the operators (I + b2R0)−1 and (I + (a · ∇+ b1)Rb2)
−1 are

well defined and uniformly bounded in suitable weighted L2 spaces. In the following lemma, the
assumption that 0 is not a resonance of −∆ + b(x) means that the only distribution solution f
of the equation −∆f + bf = 0 belonging to L2(〈x〉−2dx) is f ≡ 0.

Lemma 2.2. Let b(x) be real valued and such that, for some ε, δ > 0 small enough (recall
(2.31)),

(2.33) ‖τ2
ε b+‖L∞ <∞, ‖τ2

ε b−‖L∞ < δ.

Assume that 0 is not a resonance for −∆+ b(x). Then I + bR0(z) is invertible with a uniformly
bounded inverse on L2(τ2

ε dx):

(2.34) ‖τε(I + bR0(z))−1f‖L2 ≤ C‖τεf‖L2 .

Proof. We recall the following estimates for the free resolvent R0: fix any σ > 1, then for
all z ∈ C

(2.35) ‖w−
1
2

σ R0(z)f‖L2 ≤
C√
|z|
‖w

1
2
σ f‖L2 ,

(2.36) ‖w−
1
2

σ ∇R0(z)f‖L2 ≤ C‖w
1
2
σ f‖L2 ,

(2.37) ‖ |x|−1R0f‖L2 ≤ C‖ |x|f‖L2 , n ≥ 3

(2.38) ‖ |x|−1+ε|D|εR0f‖L2 ≤ C‖ |x|1−ε|D|−εf‖L2 , n = 2 (0 < ε < 1/2)

(see [6], [31] for (2.35), (2.36), and [65] for (2.37)-(2.38)). As usual, for λ ∈ R+ the resolvent
R0(z) must be replaced with the limit operators R0(λ ± i0). By the elementary inequalities

|x| ≤ τε(x), w
1
2
σ (x) ≤ Cτε(x), we can condense the estimates (2.35) and (2.37) in the following

(weaker) one for n ≥ 3:

(2.39) ‖τ−1
ε R0(z)f‖L2 ≤

C√
〈z〉
‖τεf‖L2 , for all z ∈ C.

In dimension n = 2 we deduce by duality from (2.38) the following

‖ |D|ε|x|−1+εR0f‖L2 ≤ C‖ |D|−ε|x|1−εf‖L2 ,
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which implies, via Sobolev embedding and Hölder inequality,

‖〈x〉−σ|x|−1+εR0f‖L2 ≤ C‖〈x〉σ|x|1−εf‖L2 , σ > ε

and hence (2.39) follows also for n = 2 (recall (2.31))
Now, using assumption (2.33), we have

(2.40) ‖τεbR0(z)f‖L2 ≤ ‖τ2
ε b‖L∞‖τ−1

ε R0(z)f‖L2 ≤
C√
〈z〉
‖τ2

ε b‖L∞‖τεf‖L2 ,

with C as in (2.39); hence, if z is sufficiently large, namely so large that

〈z〉 > C2‖τ2
ε b‖2

L∞ ,

we can invert the operator I + bR0 by a Neumann series in the weighted space L2(τ2
ε dx), with

a uniform bound on the norm of the inverse.
In the low frequency case

(2.41) 〈z〉 ≤ C2‖τ2
ε b‖2

L∞ ,

the family of operators (I+ bR0(z)) is uniformly bounded in L2(τ2
ε dx) by (2.40). We also notice

that bR0 is a compact operator on L2(τ2
ε dx); indeed, R0 is a compact operator from L2(τ2

ε dx) to
L2(τ−2

ε dx) (see (2.35)–(2.36)), while multiplication by b is bounded from L2(τ−2
ε dx) to L2(τ2

ε dx).
Thus by standard analytic Fredholm theory we can invert I + bR0(z) uniformly in z, provided
I + bR0(z) is injective on L2(τ2

ε dx) for each fixed z. This is obvious for z outside R+, since by
our assumptions the operator −∆ + b is nonnegative and selfadjoint, and is true by assumption
for z = 0, hence we need only check the case z = λ > 0.

Thus let λ ≥ 0 and f ∈ L2(τ2
ε dx) such that f+b(x)R0(λ+i0)f = 0 (the −i0 case is identical).

We notice that estimate (2.36) implies that R0(z)f ∈ H1
loc and hence in particular R0(z)f is

in L2n/(n−2) locally. Since |b| . τ−2
ε which is locally in Ln, we conclude that f = −bR0(λ)f

is locally in L2. Recalling that f ∈ L2(τ2
ε dx) this implies f ∈ L2(〈x〉2dx). Thus we are in the

framework of the standard Agmon theory and we deduce that λ is an eigenvalue of −∆ + b(x);
but this is excluded under our assumptions on b, for instance by the results of [58] (Theorem
2.1).

In conclusion, we can invert (I + bR0(z)) in L2(τ2
ε dx), for z 6= 0, with an uniform bound for

the inverse (I + bR0)−1, and this completes the proof. �

The preceding lemma allows us to construct the resolvent operator

(2.42) Rb(z) = R0(z)(I + bR0(z))−1,

which, in view of (2.34) and (2.39), is a bounded operator from L2(τ2
ε dx) to L2(τ−2

ε dx) for all
z ∈ C.

We have next:

Lemma 2.3. Consider the operator −∆ + a(x) · ∇ + b1(x) + b2(x) under the following as-
sumptions: the operator is selfadjoint, b2 is real valued and nonnegative, and for some δ, ε > 0
small enough, σ > 1,

(2.43) ‖τεw
1
2
σ a‖L∞ + ‖τ2

ε b1‖L∞ < δ, ‖τ2
ε b2‖L∞ <∞.
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Moreover assume that 0 is not a resonance for −∆+ b2(x). Then I+(a ·∇+ b1)Rb2 is invertible
with a bounded inverse on L2(τ2

ε dx):

(2.44) ‖τε(I + (a · ∇+ b1)Rb2)
−1f‖L2 ≤ C‖τεf‖L2 .

Proof. Using assumptions (2.43), Hölder inequality and estimate (2.36), we can write

‖τεa · ∇Rb2f‖L2 ≤ ‖τεa · ∇R0(I + b2R0)−1f‖L2

≤ ‖τεw
1
2
σ a‖L∞‖w

− 1
2

σ ∇R0(I + b2R0)−1f‖L2

. δ · ‖w
1
2
σ (I + b2R0)−1f‖L2

. δ · ‖τε(I + b2R0)−1f‖L2

and Lemma 2.2 gives finally

‖τεa · ∇Rb2f‖L2 . δ · ‖τεf‖L2 .

On the other hand, by (2.43) and estimate (2.39)

‖τεb1Rb2f‖L2 ≤ ‖τ2
ε b1‖L∞‖τ−1

ε R0(I + b2R0)−1f‖L2

. δ · ‖τε(I + b2R0)−1f‖L2

and again by Lemma 2.2 we have

‖τεb1Rb2f‖L2 . δ · ‖τεf‖L2 .

Thus, if δ is sufficiently small, we can invert I + (a · ∇ + b1)Rb2 via a Neumann series, and we
obtain (2.44). �

We collect and complete the above estimates in the following

Proposition 2.2. Consider the operator −∆ + W (x,D) ≡ −∆ + a(x) · ∇ + b1(x) + b2(x)
under the assumptions: the operator is selfadjoint, b2 is real valued and nonnegative, and for
some δ, ε > 0 small enough, σ > 1,

(2.45) ‖τεw
1
2
σ a‖L∞ + ‖τ2

ε b1‖L∞ < δ, ‖τ2
ε b2‖L∞ <∞.

Moreover assume that 0 is not a resonance for −∆+ b2(x). Then the resolvent operator R(z) =
(−∆ +W − z)−1 satisfies the following estimates for all z ∈ C:

(2.46) ‖τ−1
ε R(z)f‖L2 ≤

C√
〈z〉
‖τεf‖L2 ,

(2.47) ‖τ−1
ε ∇R(z)f‖L2 ≤ C‖τεf‖L2 .

and

(2.48) ‖〈x〉−1R(z)f‖H1 ≤ C‖〈x〉f‖L2 , n ≥ 3;

replace the weights 〈x〉−1, 〈x〉 by 〈x〉−1−ε, 〈x〉1+ε respectively in dimension 2. As a consequence,
the Schrödinger flow eit(−∆+W )f has the smoothing property

(2.49) ‖τ−1
ε eit(−∆+W )f‖L2L2 + ‖τ−1

ε |D|1/2eit(−∆+W )f‖L2L2 ≤ C‖f‖L2 .
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Remark 2.1. For the following applications it will be convenient to rewrite the (second)
smoothing estimate above in the equivalent form

(2.50) ‖τ−1
ε ∇|D|−1/2eit(−∆+W )f‖L2L2 ≤ C‖f‖L2 .

This follows immediately from the fact that ∂j |D|−1/2 = iRj |D|1/2, where Rj = i−1∂j |D|−1 is
the j-th Riesz operator, and on the other hand τ−1

ε is an A2 weight, as proved in Lemma 2.4
below.

Proof. Estimates (2.46) and (2.47) are immediate consequences of (2.32), (2.36) and of
Lemmas 2.2, 2.3. Moreover, (2.46) implies in particular

‖τ−1
ε R(z)f‖L2 ≤ C‖τεf‖L2 ,

and the Kato smoothing theorem with the choices A = τ−1
ε , X = Y = L2 gives the first estimate

in (2.49).
To prove (2.48), write

‖〈x〉−1Rf‖H1 . ‖〈x〉−1Rf‖L2 + ‖〈x〉−2Rf‖L2 + ‖〈x〉−1∇Rf‖L2

. ‖〈x〉−1Rf‖L2 + ‖〈x〉−1∇Rf‖L2

The first term at the right hand side can be estimated by (2.46)

(2.51) ‖〈x〉−1Rf‖L2 ≤ C‖τ−1
ε Rf‖L2 ≤ C‖τεf‖L2 ≤ C‖〈x〉f‖L2 ,

while the third term is bounded using (2.47):

(2.52) ‖〈x〉−1∇Rf‖L2 ≤ ‖τ−1
ε ∇Rf‖L2 ≤ C‖τεf‖L2 ≤ C‖〈x〉f‖L2

and this proves (2.48).
Now write (2.48) in the equivalent forms

‖〈D〉〈x〉−1R(z)〈x〉−1f‖L2 ≤ C‖f‖L2

and, by duality,
‖〈x〉−1R(z)〈x〉−1〈D〉f‖L2 ≤ C‖f‖L2 .

The last two estimates state that the operator 〈x〉−1R(z)〈x〉−1 is bounded, uniformly in z ∈ C,
from L2 to H1 and from H−1 to L2. By complex interpolation this implies that it is also bounded
from H−1/2 to H1/2, i.e.,

‖〈D〉1/2〈x〉−1R(z)〈x〉−1〈D〉1/2f‖L2 ≤ C‖f‖L2

Then by Kato smoothing we obtain also the second estimate in (2.49).
The proof for the case n = 2 is completely analogous. �

2.2. The wave and Klein-Gordon generators. We consider now the operator
√
−∆ +W ,

where as usual
W = W (x,D) = a · ∇+ b, b = b1 + b2

which generates the flow eit
√
−∆+W of the perturbed wave equation. The free operator |D| :=√

−∆ is self-adjoint and nonnegative on L2, and can be handled as follows. If we denote its
resolvent by R|D|(z) = (|D| − z)−1, we have

(2.53) R|D|(z) = (|D|+ z)R0(z2).
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This simple identity allows us to estimate R|D| using some standard techniques from harmonic
analysis. We need a lemma:

Lemma 2.4. Let n ≥ 2. For any σ > 1, the weight wσ = |x|(1 + | log |x||)σ is an A2 weight,
i.e., there exist a constant A such that, for any ball B = B(x0, R),

(2.54) A(x0, R) ≡
[

1
|B|

∫
B
wσdx

]
·
[

1
|B|

∫
B
w−1

σ dx

]
≤ A <∞.

Obviously, we have also w−1
σ ∈ A2. The same property holds for the weights τε, τ−1

ε defined in
(2.31).

Proof. The bound for the function A(x0, R) is trivial if R ≤ |x0|/2, indeed it is sufficient
to write

A(x0, R) ≤ Cmax
B

wσ ·max
B

w−1
σ ≤ C ′

since the ball B is at a distance greater than |x0|/2 from the origin.
If, on the other hand, R ≥ |x0|/2, it is easy to check that A(x0, R) is bounded by a constant

(depending only on the space dimension n) times A(0, 3R). Thus we are reduced to the case of
balls B(0, R) centered in 0.

For small R ≤ 10 the function A(0, R) is bounded. Indeed, Hôpital’s theorem gives

lim
ε↓0

∫ ε

0

rn−2dr

(1 + | log r|)σ
· (1 + | log ε|)σ

εn−1
=

1
n− 1

which implies for small R

(2.55)
∫ R

0

rn−2dr

(1 + | log r|)σ
∼ Rn−1

(1 + | logR|)σ

and similarly ∫ R

0
rn(1 + | log r|)σdr ∼ Rn+1(1 + | logR|)σ

whence we get A(0, R) ≤ C.
For large R > 10 we rescale and obtain

A(0, R) =
∫ 1

0

τn−2dτ

(1 + | logR+ log τ |)σ
·
∫ 1

0
τn(1 + | logR+ log τ |)σdτ

The second integral is clearly bounded by C(logR)σ. The first integral can be split into∫ 1/
√

R

0

τn−2dτ

(1 + | logR+ log τ |)σ
≤
∫ 1/

√
R

0

τn−2dτ

(1 + | log τ |)σ
∼ R−

n−1
2

(1 + 1
2 logR)σ

≤ R−
1
2

where we used again (2.55), and∫ 1

1/
√

R

τn−2dτ

(1 + | logR+ log τ |)σ
≤
∫ 1

1/
√

R

τn−2dτ

(1 + 1
2 logR)σ

≤ C(logR)−σ.

Putting everything together, we obtain the required bound also for large R, and this concludes
the proof of the Lemma.
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The proof for τε is much simpler. We reduce as above to the case of spheres B(0, R) centered
in the origin. For R ≤ 1 we can use the equivalence τε ' |x|1/2−ε and the bound follows from
the well-known fact that |x|1/2−ε is an A2 weight. For R > 1 we use the estimate

A(0, R) .
1
|B|

∫
B

(1 + |x|)dx · 1
|B|

∫
B

dx

|x|

(replace |x| with |x|1+ε for n = 2) whence the bound follows easily. �

Knowing that w−1
σ ∈ A2, we see that the Riesz operators

Rj = i−1 ∂j

|D|

are bounded on the space L2(w−1
σ dx) by standard results (see e.g. the Corollary to Theorem 2,

§V.4.2 of [99]). Writing |D| = i−1
∑
Rj∂j , we have

‖w−1/2
σ |D|g‖L2 ≤

∑
j

‖w−1/2
σ Rj∂jg‖L2 ≤ C‖w−1/2

σ ∇g‖L2 .

Thus estimate (2.53) implies

(2.56) ‖w−
1
2

σ R|D|(z)f‖L2 ≤ C‖w−
1
2

σ ∇R0(z2)f‖L2 + C|z| · ‖w−
1
2

σ R0(z2)f‖L2 .

Then, inequalities (2.35) and (2.36) yield immediately the following estimate for the free resol-
vent: for any fixed σ > 1,

(2.57) ‖w−
1
2

σ R|D|(z)f‖L2 ≤ C‖w
1
2
σ f‖L2 ,

uniformly in z ∈ C.
We are ready to prove a corresponding estimate for the resolvent of the perturbed operator

R(z) = (
√
−∆ +W − z)−1, W = a(x) · ∇+ b(x),

following the same approach as in the preceding cases.

Lemma 2.5. Consider the operator −∆+W (x,D) ≡ −∆+a(x) ·∇+b1(x)+b2(x) under the
assumptions: the operator is selfadjoint, b2 is real valued and nonnegative, and for some δ, ε > 0
small enough, σ > 1,

(2.58) ‖τεw
1
2
σ a‖L∞ + ‖τ2

ε b1‖L∞ < δ, ‖τ2
ε b2‖L∞ <∞.

Moreover assume that 0 is not a resonance for −∆+ b2(x). Then the resolvent operator R(z) =
(
√
−∆ +W − z)−1 satisfies

(2.59) ‖τ−1
ε R(z)f‖L2 ≤ C‖τεf‖L2 ,

for all z ∈ C. As a consequence, the perturbed wave flow eit
√

∆+W satisfies the smoothing
estimate

(2.60) ‖τ−1
ε eit

√
−∆+W f‖L2L2 ≤ C‖f‖L2 .

Proof. We write for brevity

|DW | =
√
−∆ +W (x,D).
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By the (Phragmén-Lindelöf) maximum principle, it is sufficient to prove estimate (2.59) for real
z = λ. We notice that by the same arguments used in the proof of Lemma 2.1, we have

‖|DW |g‖L2 ' ‖g‖Ḣ1 ;

thus for λ ≤ 0 we can write

‖(|DW | − λ)g‖2
L2 = ‖|DW |g‖2

L2 + λ2‖g‖2
L2 − 2λ(|DW |g, g)L2 & ‖g‖Ḣ1

by the nonnegativity of |DW |. This implies for all λ ≤ 0

‖R(λ)g‖Ḣ1 . ‖g‖L2 ,

whence by duality we have also
‖R(λ)g‖L2 . ‖g‖Ḣ−1 ,

and interpolating we obtain

‖R(λ)g‖Ḣ1/2 . ‖g‖Ḣ−1/2 , λ ≤ 0.

Now, using the Hardy’s inequalities

‖|x|−1/2f‖L2 . ‖f‖Ḣ1/2 or equivalently ‖f‖Ḣ−1/2 . ‖|x|1/2f‖L2

we obtain the estimate

(2.61) ‖|x|−1/2R(λ)g‖L2 . ‖|x|1/2g‖L2 , λ ≤ 0

which implies (2.59) for z = −λ ≤ 0 (and is actually stronger).
Consider now R(λ), λ ≥ 0; we use the identity

R(λ) = (|DW | − λ)−1 = 2λRW (λ2) + (|DW |+ λ)−1

where RW (λ) = (−∆ + W − λ)−1. The second term at the right hand side has already been
estimated, while the first one can be estimated using (2.46), and this concludes the proof of
(2.59). The last inequality (2.60) is an application of Kato’s theorem as usual. �

We conclude this section with a study of the operator
√
−∆ + 1 +W associated with the

perturbed Klein-Gordon flow eit
√
−∆+1+W . In the free case W = 0 the operator reduces to

〈D〉 = (1−∆)1/2 and its resolvent

R〈D〉(z) = (〈D〉 − z)−1

can be handled in a similar way as R|D|.
We start from estimates (2.36) and (2.39) which imply

〈z〉1/2‖τ−1
ε R0(z)f‖L2 + ‖w−1/2

σ ∇R0(z)f‖L2 . ‖τεf‖L2 .

As above, using the fact that w−1
σ is an A2 weight, we can replace ∇ with |D| in the left hand

side and hence (recalling that w
1
2
σ . τε) we arrive at

(2.62) 〈z〉1/2‖τ−1
ε R0(z)f‖L2 + ‖τ−1

ε 〈D〉R0(z)f‖L2 . ‖τεf‖L2 .

Then using the identity
R〈D〉(z) = (〈D〉+ z) ·R0(1− z2)

we obtain from (2.62) the estimate

(2.63) ‖τ−1
ε R〈D〉(z)f‖L2 . ‖τεf‖L2 .
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For the perturbed operator we have:

Lemma 2.6. Consider the operator −∆+W (x,D) ≡ −∆+a(x) ·∇+b1(x)+b2(x) under the
assumptions: the operator is selfadjoint, b2 is real valued and nonnegative, and for some δ, ε > 0
small enough, σ > 1,

(2.64) ‖τεw
1
2
σ a‖L∞ + ‖τ2

ε b1‖L∞ < δ, ‖τ2
ε b2‖L∞ <∞.

Moreover assume that 0 is not a resonance for −∆+ b2(x). Then the resolvent operator R(z) =
(
√

1−∆ +W − z)−1 satisfies

(2.65) ‖τ−1
ε R(z)f‖L2 ≤ C‖τεf‖L2 .

As a consequence, the perturbed Klein-Gordon flow eit
√

∆+1+W satisfies the smoothing estimate

(2.66) ‖τ−1
ε eit

√
−∆+1+W f‖L2L2 ≤ C‖f‖L2 .

Proof. Writing

|DW | =
√
−∆ +W (x,D), 〈DW 〉 =

√
1−∆ +W (x,D)

we notice that
‖〈DW 〉f‖L2 ' ‖f‖L2 + ‖|DW |f‖L2 ' ‖f‖H1

by the same arguments used in the proof of Lemma 2.1 and the identity

‖〈DW 〉f‖2
L2 = ((1−∆ +W )f, f).

Proceeding as in the proof of Lemma 2.5, we arrive at

‖R(λ)g‖H1/2 . ‖g‖H−1/2 , λ ≤ 0

for the resolvent R = (〈DW 〉 − z)−1, and by Hardy inequality as before we obtain half of(2.66).
For positive λ we write

R(λ) = (〈DW 〉 − λ)−1 = 2λRW (λ2 − 1) + (〈DW 〉+ λ)−1

where RW (z) = (−∆+W − z)−1, and by (2.46) and the first part of the proof we obtain (2.65).
Kato’s theorem gives (2.66) as usual. �

2.3. The magnetic Dirac operators. We now consider the resolvent of a perturbed Dirac
operator D + V (x). The proofs here will be short since we shall rely on a few results proved in
[31]; in particular, we recall that if V = V ∗ has a sufficiently small L3,∞ norm, hence under the
assumptions of Theorem 2.4, the operator D+V is self-adjoint on L2(R3,C4), with form domain
H1(R3,C4) and spectrum R. The same holds for the operator with nonzero mass D + β + V ,
but the spectrum is R\]− 1, 1[.

Let us consider the massless case first. We shall use the notations

(2.67) RD(z) = (−D − zI4)−1, R(z) = (−D + V − zI4)−1

where I4 denotes the identity 4× 4-matrix. The following result is contained in Proposition 3.6
of [31], apart from the smoothing estimate which is a standard consequence of Kato’s theorem
as above:
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Proposition 2.3. Assume that the 4× 4 matrix V (x) = V ∗(x) satisfies

(2.68) ‖wσV ‖L∞ < δ,

for some δ sufficiently small and some σ > 0. Then D + V satisfies the limiting absorption
principle, i.e., the limit operators R(λ ± i0) exist in the topology of bounded operators from
L2(w1/2

σ dx) to H1(w1/2
σ dx). Moreover the resolvent operator R = (−D+V − zI4)−1 satisfies the

estimate

(2.69) ‖w−1/2
σ R(z)f‖L2 ≤ C‖w1/2

σ f‖L2 , z ∈ C.

As a consequence, the Dirac flow satisfies the smoothing estimate

(2.70) ‖w−1/2
σ eit(D+V )f‖L2L2 ≤ C‖f‖L2 .

We consider now the operators with mass D+ β and D+ β+ V . We shall use the notations

Rβ(z) = (D + β − zI4)−1, R(z) = (D + β + V − zI4)−1.

From the identities
D2 = −∆I4, (D + β)2 = (1−∆)I4,

we obtain the following representations in terms of R0(z) = (−∆− z)−1

RD(z) = R0(z2)(D + zI4), Rβ(z) = R0(z2 − 1)(D + β + zI4);

and hence we can write

(2.71) Rβ(z) = R0(z2 − 1)D +R0(z2 − 1)(β + zI4).

Then a straightforward application of estimate (2.62) gives

(2.72) ‖τ−1
ε Rβ(z)f‖L2 ≤ C‖τεf‖L2 .

uniformly in z ∈ C.
In the perturbed case we can prove

Proposition 2.4. Assume that the 4× 4 matrix V (x) = V ∗(x) satisfies

(2.73) ‖τ2
ε V ‖L∞ < δ,

for some δ sufficiently small and ε > 0. Then the perturbed resolvent operator R(z) = (D+ β +
V − zI4)−1 satisfies

(2.74) ‖τ−1
ε R(z)f‖L2 ≤ C‖τεf‖L2 .

As a consequence, the flow eit(D+β+V ) satisfies the smoothing estimate

(2.75) ‖τ−1
ε eit(D+β+V )f‖L2L2 ≤ C‖f‖L2 .

Proof. The operator V Rβ(z) is bounded on L2(τ2
ε dx) with norm bounded by Cδ since

‖τεV Rβ(z)‖L2 ≤ ‖τ2
ε V ‖L∞‖τ−1

ε Rβ(z)‖L2 ≤ Cδ‖τεf‖L2

by (2.73) and (2.72). Thus for δ small a Neumann expansion shows that (I +V Rβ(z))−1 is well
defined and uniformly bounded on L2(τ2

ε dx). Hence the usual representation

R(z) = Rβ(z)(I + V Rβ(z))−1

together with (2.72) gives (2.74), and (2.75) follows. �



56 2. STRICHARTZ ESTIMATES AND KATO-SMOOTHING EFFECT

3. Proof of the Strichartz Estimates

The method we shall follow is inspired by [90], [17] and consists in mixing Strichartz and
smoothing estimates for the free operator with smoothing estimates for the perturbed operator.
The main tool will be the well-known Christ-Kiselev lemma [22], which can be stated as follows:
given two Banach spaces X,Y and a bounded integral operator Tf =

∫
RK(t, s)f(s)ds from

Lp(R, X) to Lp̃(R, Y ), then its truncated version Sf =
∫ t
0 K(t, s)f(s)ds is also bounded on the

same spaces, provided p < p̃ (the Hilbert transform being a trivial counterexample for p = p̃).
Thus to prove an estimate of the form∥∥∥∥∫ t

0
ei(t−s)AF (s)ds

∥∥∥∥
Lp

t Lq
x

. ‖F‖
Lp̃

t Lq̃
x

it is sufficient to prove the untruncated estimate∥∥∥∥∫
R
ei(t−s)AF (s)ds

∥∥∥∥
Lp

t Lq
x

. ‖F‖
Lp̃

t Lq̃
x

but only if p < p̃, which in particular excludes endpoint-endpoint estimates where p = p̃ = 2.

3.1. Schrödinger equation: proof of Theorem 2.1. Notice that u(t, x) = eit(−∆+W )f

satisfies the equation iut −∆u = −Wu, hence we can write

eit(∆−W )f = eit∆f −
∫ t

0
ei(t−s)∆W (x,D)u ds = I − II − III

with

I = eit∆f, II =
∫ t

0
ei(t−s)∆b(x)u ds, III =

∫ t

0
ei(t−s)∆a(x) · ∇u ds.

The first term I can be estimated directly with standard Strichartz estimates:

(2.76) ‖eit∆f‖Lp
t Lq

x
≤ C‖f‖L2

for any admissible couple (p, q). In order to estimate the second term we resort to the Christ-
Kiselev lemma and we are reduced to estimate the untruncated integral

II1 = eit∆
∫
e−is∆b(x)u ds.

To this end we apply first the Strichartz estimates for the free group, then the dual of the
smoothing estimate from Proposition 2.2 in the special case W = 0, i.e.,∥∥∥∥∫ e−is∆F (s)ds

∥∥∥∥
L2

. ‖τεF‖L2L2

obtaining

‖II1‖LpLq .

∥∥∥∥∫ e−is∆bu ds

∥∥∥∥
L2

. ‖τεbu‖L2L2 ≤ ‖τ2
ε b‖L∞‖τεu‖L2L2 .

Then by assumption (2.45) and again the smoothing estimate (2.49) we conclude

(2.77) ‖II‖LpLq . ‖f‖L2

for any non-endpoint admissible couple (p, q).
The last term III is more delicate. We reduce it as above to the untruncated form

III1 = eit∆
∫
e−is∆a · ∇u ds
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and we apply to it the free Strichartz estimate and then the following dual smoothing estimate:

(2.78)
∥∥∥∥∫ e−is∆F (s)ds

∥∥∥∥
L2

. ‖|D|−1/2χF‖L2L2 ,

valid for any function χ(x) & wσ(x)1/2. Estimate (2.78) is proved as follows: from (2.36) we
deduce, using the fact that wσ is an A2 weight, the equivalent property

‖w−1/2
σ |D|1/2R0(z)f‖L2 ≤ C‖w1/2

σ |D|−1/2f‖L2

which implies, via Kato smoothing,

‖w−1/2
σ |D|1/2eit∆f‖L2L2 ≤ ‖f‖L2 .

Since χ & w
1/2
σ this gives also

‖χ−1|D|1/2eit∆f‖L2L2 ≤ ‖f‖L2

and by duality we get (2.78). Thus we arrive at

(2.79) ‖III1‖LpLq . ‖|D|−1/2χa(x) · ∇u‖L2L2

Now assume we can prove the inequality

(2.80) ‖|D|−1/2χa(x) · ∇g‖L2 . ‖τ−1
ε ∇|D|−1/2g‖L2 ;

then from (2.79) and the smoothing estimate (2.50) we finally obtain

(2.81) ‖III1‖LpLq . ‖τ−1
ε ∇|D|−1/2u‖L2 . ‖f‖L2

which, together with (2.76) and (2.77), concludes the proof of the Theorem.
It remains to check inequality (2.80). We rewrite it in the equivalent form

‖|D|−1/2χa(x)|D|1/2τεh‖L2 . ‖h‖L2 ,

i.e., we need to prove that the operator

(2.82) T = |D|−1/2χa(x)|D|1/2τε

is bounded on L2. We shall use the following lemma, where we shall make use of several
properties of Lorentz spaces Lp,q (see [80]).

Lemma 2.7. Let α(x), β(x) be measurable functions on Rn such that for some 0 < δ < 1/2,
some ρ ∈ [0, n/2− δ[, and a radial function γ(|x|), with γ(s) decreasing, we have

(i) |α(x)− α(y)| . |x− y|1/2+δ(γ(|x|) + γ(|y|)) and γ ∈ L
2n

1+2ρ+2δ
,∞

(ii) αβ ∈ L∞, |x|−ρβ(x) ∈ L∞ and |x|ργ(|x|) ∈ L
2n

1+2δ
,∞

Then the operator T = |D|−1/2α(x)|D|1/2β(x) is bounded on L2.
The same result holds in the range ρ ∈ [0, n/2 + δ[ if we replace (i) with
(i’) |α(x)− α(y)| ≤ 〈x− y〉−2δ|x− y|1/2+δ(γ(|x|) + γ(|y|)) and γ ∈ L

2n
1+2ρ−2δ

,∞.

Proof. Since αβ is bounded, we can equivalently prove that the modified operator

T̃ = T − αβ = |D|−1/2 · [α, |D|1/2] · β

is bounded on L2. Moreover, by the Sobolev embedding in Lorentz spaces (proved e.g. by real
interpolation)

‖|D|−1/2g‖L2 . ‖g‖
L

2n
n+1 ,2
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it is sufficient to prove that the following reduced operator S satisfies

S = [α, |D|1/2] · β : L
2n

n+1
,2 → L2.

Now we observe that the commutator [α, |D|1/2] admits an explicit representation of the form

[α, |D|1/2]f = c(n)
∫

Rn

α(x)− α(y)
|x− y|n+1/2

f(y)dy

for a constant c(n) depending only on the space dimension. Indeed, by standard Fourier trans-
form techniques we see that

[α, |D|z]f = c(z)
∫

Rn

α(x)− α(y)
|x− y|n+z

f(y)dy

and this formula is valid for <z < 0 under quite general assumptions on α; moreover our
assumptions show that the right hand side is a well defined and analytic function of z for
<z < 1/2 + δ (as proved below), hence by analytic continuation the representation is valid also
in this larger region and in particular for z = 1/2.

In order to estimate S we split it as S = S1 + S2 with

S1f = c

∫
|y|≥2|x|

α(x)− α(y)
|x− y|n+1/2

β(y)f(y)dy

S2f = c

∫
|y|≤2|x|

α(x)− α(y)
|x− y|n+1/2

β(y)f(y)dy

In the region |y| ≥ 2|x| we deduce by assumption (i) that

|α(x)− α(y)| ≤ 2|x− y|1/2+δγ(|x|)

since γ is decreasing; moreover we have |x− y| ' |y|, hence∣∣∣∣α(x)− α(y)
|x− y|n+1/2

β(y)f(y)
∣∣∣∣ . γ(|x|) |β(y)|

|y|ρ
|f(y)|

|x− y|n−ρ−δ
. γ(|x|) |f(y)|

|x− y|n−ρ−δ

using (ii). Thus, by Hölder inequality in Lorentz spaces, we get

‖S1f‖
L

2n
n+1 ,2 . ‖γ‖

L
2n

1+2ρ+2δ
,∞

∥∥∥∥∫ |f(y)|
|x− y|n−ρ−δ

dy

∥∥∥∥
L

2n
n−2ρ−2δ

,2

(provided ρ < n/2− δ) and by (i) and Young inequality we arrive at

‖S1f‖
L

2n
n+1 ,2 . ‖|y|−n+ρ+δ‖

L
n

n−ρ−δ
,∞‖f‖L2

which concludes. the estimate of the first piece S1.
In the region |y| ≤ 2|x|, on the other hand, we can write∣∣∣∣α(x)− α(y)

|x− y|n+1/2
β(y)f(y)

∣∣∣∣ . |β(y)|
|y|ρ

|y|ρ|γ(|y|/2)f(y)|
|x− y|n−δ

.
|y|ρ|γ(|y|/2)f(y)|

|x− y|n−δ

so that by Young inequality

‖S2f‖
L

2n
n+1 ,2 .

∥∥∥∥∫ |y|ρ|γ(|y|/2)f(y)|
|x− y|n−δ

∥∥∥∥
L

2n
n+1 ,2

. ‖|y|δ−n‖
L

n
n−δ

,∞‖γ|y|ρf‖
L

2n
n+1+2δ

,2

and by Hölder inequality we get

‖S2f‖
L

2n
n+1 ,2 . ‖|y|ργ‖

L
2n

1+2δ
,∞‖f‖L2

and this concludes the proof under assumptions (i)-(ii).
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The case of assumptions (i’)-(ii) is almost identical. No change is necessary in the estimate
of S2f , while for S1f it is sufficient to write

‖S1f‖
L

2n
n+1 ,2 . ‖γ‖

L
2n

1+2ρ−2δ
,∞

∥∥∥∥∫ |f(y)|
|x− y|n−ρ+δ

dy

∥∥∥∥
L

2n
n−2ρ+2δ

,2

which is true if ρ < n/2 + δ, and then proceed as above. �

Notice that if we restrict to the special choice β = |x|ρ, γ(x) = 〈x〉−λ, α(x) = χ(x)a(x), the
following conditions imply that (i), (ii), (i’) are all satisfied:

(2.83) 0 < δ <
1
2
, 0 ≤ ρ <

n

2
+ δ, λ ≥ 1

2
+ ρ+ δ

and

(2.84) 〈x〉λχ(x)a(x) ∈ C1/2+δ

(recall that ‖f‖Cµ = ‖f‖L∞ + supx 6=y |x − y|−µ|f(x) − f(y)|). All conditions in (i), (ii), (i’)
are trivial to check apart from Hölder continuity; actually we shall now see that the following
stronger inequality holds:

(2.85) |α(x)− α(y)| . min{1, |x− y|}1/2+δ(〈x〉−λ + 〈y〉−λ).

Indeed, when |x − y| ≥ 1 condition (2.85) follows from 〈x〉λχ(x)a(x) ∈ L∞ which is contained
in (2.84). When |x− y| ≤ 1, we write

|α(x)− α(y)| ≤ A+B,

where

A = χ(x)a(x)〈x〉λ|〈x〉−λ − 〈y〉−λ|,

and

B = 〈y〉−λ|〈x〉λχ(x)a(x)− 〈y〉λχ(y)a(y)|.

Then we have directly from (2.84)

B . 〈y〉−λ|x− y|1/2+δ ≤ (〈x〉−λ + 〈y〉−λ)|x− y|1/2+δ

while for A we use the elementary inequality

|〈x〉−λ − 〈y〉−λ| . sup
ξ∈[x,y]

|∇〈z〉−λ|z=ξ · |x− y| . (〈x〉−λ + 〈y〉−λ)|x− y|1/2+δ

together with the bound 〈x〉λχ(x)a(x) ∈ L∞.
We can finally apply the lemma to the operator (2.82); since τε = |x|1/2−ε + |x| for n ≥ 3

and τε = |x|1/2−ε + |x|1+ε for n = 2, by the above computation it is sufficient to check conditions
(2.83), (2.84) for ρ = 1/2 − ε and ρ = 1 (ρ = 1/2 − ε and ρ = 1 + ε in dimension 2). We
see that the choices δ = 2ε and λ = 1 + 3ε work in all cases, thus it is sufficient to assume
〈x〉1+3εχ(x)a(x) ∈ C1/2+2ε i.e. assumption (2.9). The proof is concluded.
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3.2. Wave and Klein-Gordon equations: proof of Theorems 2.2, 2.3. Since u(t, x) =
eit
√
−∆+W f solves the Cauchy problem

(2.86)


utt −∆u = −Wu
u(0, x) = f(x)
ut(0, x) = i

(√
−∆ +W

)
f(x),

we have the alternative representation

(2.87) eit
√
−∆+W f = cos(t|D|)f + i

sin(t|D|)
|D|

√
−∆ +Wf −

∫ t

0

sin((t− s)|D|)
|D|

Wuds.

The first two terms satisfy the standard Strichartz estimates for the free wave equation (see
(2.2) in the Introduction, and recall also (2.25)). For the third term we apply as usual the
Christ-Kiselev lemma and we are reduced to the untruncated integral∫

sin((t− s)|D|)
|D|

Wuds = I + II

where, writing c(x) = −∇ · a+ b1 + b2,

I =
∫

sin((t− s)|D|)
|D|

∇ · (a(x)u)ds, II =
∫

sin((t− s)|D|)
|D|

c(x)uds.

Consider I; clearly, it is sufficient and actually stronger to estimate the integral

I1 = |D|−1eit|D|
∫
e−is|D|∇ · (a(x)u)ds = |D|−1∇ · eit|D|

∫
e−is|D|a(x)uds.

To this end we recall the standard Strichartz estimate

(2.88) ‖eit|D|f‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2

valid for any wave admissible couple (p, q). Moreover, the smoothing estimate (2.60) holds also
in the free case W ≡ 0

(2.89) ‖τ−1
ε eit|D|f‖L2L2 . ‖f‖L2

and by duality is equivalent to

(2.90)
∥∥∥∥∫ e−is|D|F (s)ds

∥∥∥∥
L2

. ‖τεF‖L2L2 .

Applying (2.88) and (2.90) to I1 we obtain, since the Riesz operators are bounded in all Lp with
1 < p <∞,

‖I1‖
LpḢ

1
q−

1
p−

1
2

q

. ‖τεa(x)u‖L2L2 ≤ ‖τ2
ε a(x)‖L2‖τ−1

ε u‖L2L2 .

Using again the smoothing estimate (2.60) and assumption (2.11), we conclude

‖I1‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2 .

Consider now the second term II, or more generally

II1 = eit|D|
∫
|D|−1e−is|D|c(x)uds.

Proceeding as in [18], we shall use the following estimate from [8] (see also [56])

‖|x|−1|D|−1eit|D|f‖L2L2 . ‖f‖Ḣ−1/2
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in the dual form:

(2.91)
∥∥∥∥∫ |D|−1e−is|D|F (s)ds

∥∥∥∥
Ḣ1/2

. ‖|x|F‖L2L2 .

Then, applying the Strichartz estimate for the wave equation (2.88) in the form

‖eit|D|f‖
LpḢ

1
q−

1
p

q

. ‖f‖
Ḣ

1
2

followed by (2.91), we obtain

‖II1‖
LpḢ

1
q−

1
p−

1
2

q

. ‖|x|c(x)u‖L2L2 . ‖|x|τεc(x)‖L∞‖τ−1
ε u‖L2L2 .

Recalling assumption (2.11) and the smoothing estimate (2.60) we finally obtain

‖II1‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2

which concludes the proof of Theorem 2.2.
The proof of Theorem 2.3 is completely analogous, using the Strichartz estimate for the free

equation
‖eit〈D〉f‖

LpH
1
q−

1
p−

1
2

q

. ‖f‖L2 ,

which is valid for all Schrödinger admissible couple (p, q), and the following estimate from [8]:

‖〈x〉−1eit〈D〉f‖L2L2 . ‖f‖L2

which implies by duality ∥∥∥∥∫ e−is〈D〉F (s)ds
∥∥∥∥

L2

. ‖〈x〉F‖L2L2

and hence also ∥∥∥∥∫ 〈D〉−1e−is〈D〉F (s)ds
∥∥∥∥

H1/2

. ‖〈x〉F‖L2L2 .

This estimate replaces (2.91) in the above computation.

3.3. Dirac equation: proof of Theorems 2.4, 2.5. As proved in the Appendix, the
Strichartz estimate for the free massless Dirac equation is the following:

(2.92) ‖eitDf‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2

for any wave admissible couple (p, q). On the other hand, as a special case of the smoothing
estimate (2.70), we have

(2.93) ‖w−
1
2

σ eitDf‖L2L2 . ‖f‖L2

and by duality we obtain

(2.94)
∥∥∥∥∫ e−isDF (s)ds

∥∥∥∥
L2

. ‖w
1
2
σF‖L2L2 .

Consider now the perturbed Dirac flow u = eit(D+V )f . An alternative representation of u is
the following:

(2.95) u(t, x) = eitDf − eitD
∫ t

0
e−isDV u(s)ds.
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The term eitDf satisfies the free Strichartz estimates (2.97); in order to estimate the Duhamel
term as usual we apply the Christ-Kiselev lemma and switch to the untruncated integral. Then,
using (2.20), (2.94) and Hölder inequality, we have∥∥∥∥eitD ∫ e−isDV uds

∥∥∥∥
LpḢ

1
q−

1
p−

1
2

q

.

∥∥∥∥∫ e−isDV uds

∥∥∥∥
L2

. ‖w
1
2
σ V u‖L2L2 ≤ ‖wσV ‖L∞ · ‖w

− 1
2

σ u‖L2L2 .(2.96)

Recalling the smoothing estimate (2.70) we obtain∥∥∥∥eitD ∫ e−isDV uds

∥∥∥∥
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2

and this completes the proof of 2.4.
The proof of Theorem 2.5 is completely analogous.

4. Strichartz estimates for the free flows: an Appendix

Strichartz estimates for the free Schrödinger and wave equations are well known, see the
Introduction for the precise statements. It is less easy to find in the literature optimal results
for Klein-Gordon and Dirac equations. Hence we devote this appendix to a quick proof of the
estimates in these cases.

The massless Dirac flow is trivial since it can be reduced to the wave equation:

Proposition 2.5. Let n = 3. The following Strichartz estimates hold:

(2.97) ‖eitDf‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2

for any wave admissible couple (p, q).

Proof. By the identity

(i∂t +D)(i∂t −D) = −�I4,

we obtain that u(t, x) = eitDf satisfies the Cauchy problem

(2.98)

 utt −∆I4u = 0
u(0, x) = f(x)
ut(0, x) = iDf(x)

and hence each component of u satisfies the same Strichartz estimates as for the 3D wave
equation. �

The Klein-Gordon and massive Dirac equations need some work. We begin by the free Klein-
Gordon flow u = eit〈D〉f . We shall apply a precise stationary phase result due to Hörmander
[55]:

Lemma 2.8. Assume that φ : Rn → R has a Fourier transform φ̂ ∈ C∞ with the decay
property

(2.99)
∣∣∣Dαφ̂(ξ)

∣∣∣ ≤ Cα〈ξ〉−
n
2
−1−|α| ∀ξ ∈ Rn, α ∈ Nn.
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Then the following estimate holds: for some C > 0,

(2.100)
∣∣∣eit〈D〉φ∣∣∣ ≤ C(|t|+ |x|)−

n
2 .

Now, using an inhomogeneous dyadic decomposition {ψ0, ϕj(D)}j≥1 with the usual proper-
ties: ψ0(ξ) supported in B(0, 1), ϕ0(ξ) = ψ0(ξ/2)− ψ0(ξ),

ϕj(ξ) = ϕ0(2−jξ), ψ0 +
∑
j≥1

ϕj = 1

we can localize the estimate as follows:

Lemma 2.9. The flow eit〈D〉f satisfies the localized dispersive estimate

(2.101) |eit〈D〉ϕj(D)f | ≤ C|t|−
n
2 2j(n

2
+1)‖ϕ̃j(D)f‖L1 ,

for each t ∈ R, x ∈ Rn, j ≥ 0 and some C > 0; here ϕ̃j denotes ϕj−1 +ϕj +ϕj+1, with ϕ−1 = 0.

Proof. We can write

eit〈D〉ϕj(D)f = eit〈D〉〈D〉−
n
2
−1〈D〉

n
2
+1ϕj(D)f = eit〈D〉F−1

(
〈ξ〉−

n
2
−1
)
∗ (ϕj(D)f) ,

where F−1 denotes the inverse Fourier transform. Then, applying Lemma 2.8 with φ =
F−1

(
〈ξ〉−

n
2
−1
)
, we obtain

(2.102)
∣∣∣eit〈D〉ϕj(D)f

∣∣∣ ≤ C|t|−
n
2 ‖〈D〉

n
2
+1ϕj(D)f‖L1 .

Since
〈D〉

n
2
+1ϕj(D)f = F−1

(
〈ξ〉

n
2
+1ϕj(ξ)

)
∗ f,

Young inequality gives

(2.103) ‖〈D〉
n
2
+1ϕj(D)f‖L1 ≤ ‖F−1

(
〈ξ〉

n
2
+1ϕj(ξ)

)
‖L1‖f‖L1 .

Notice that we can replace in this computation f with ϕ̃j(D)f since ϕj(D)ϕ̃j(D) = ϕj(D).
Thus to conclude the proof it is sufficient to get the following estimate:

(2.104) ‖F−1
(
〈ξ〉

n
2
+1ϕj(ξ)

)
‖L1 ≤ C2j(n

2
+1).

Using the scaling operators Sλφ(x) = φ(λx), we can write

F−1
(
〈ξ〉

n
2
+1ϕj(ξ)

)
= F−1

(
〈ξ〉

n
2
+1S2−jϕ0(ξ)

)
= 2j(n

2
+1)2jnS2jF−1

(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
and hence

‖F−1
(
〈ξ〉

n
2
+1ϕj(ξ)

)
‖L1 ≤ 2j(n

2
+1)‖F−1

(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
‖L1 .

Moreover, multiplying and dividing by 〈x〉2m for some integer m, we obtain

‖F−1
(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
‖L1 ≤ C‖〈x〉2mF−1

(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
‖L2

= C‖(1−∆)m
(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
‖L2 ,(2.105)

provided

(2.106) m >
n

4
.
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We shall choose m as the smallest integer satisfying (2.106). We are interested in the growth
with respect to j of the quantity

I := (1−∆)m
(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
.

When n is even,
(
2−2j + |ξ|2

)n
2
+1 is a polynomial, and hence we obtain

‖I‖L2 ≤ C‖ϕ0‖L2

with C independent of j. When n is odd, it is clear that almost all the terms in the expansion
of I are uniformly bounded in j, apart from the (possibly) worst one

II = ∆m
(
2−2j + |ξ|2

)n
2
+1
.

We have the two possibilities

n = 4k + 3 or n = 4k + 1,

with m = k + 1. If n = 4k + 3, we have

|II| '
∣∣∣D2k+2

(
(2−2j + |ξ|2)2k+ 5

2

)∣∣∣
which expands in a sum of bounded terms. If n = 4k + 1, we have

|II| '
∣∣∣D2k+2

(
(2−2j + |ξ|2)2k+ 3

2

)∣∣∣ . (2−2j + |ξ|2
)−1/2 |ξ|2k+2 + bounded terms,

and also in this case we have a uniform bound in j. In conclusion, we have proved that

‖(1−∆)m
(
(2−2j + |ξ|2)

n
2
+1ϕ0(ξ)

)
‖L2 ≤ C,

for some C > 0, which implies (2.104), and the proof is complete. �

Remark 2.2. By interpolation between estimate (2.101) and the localized L2 conservation

(2.107) ‖eit〈D〉ϕj(D)f‖L2 ≤ ‖ϕj(D)f‖L2 ,

we obtain the following Lq − Lq′ decay estimates:

(2.108) ‖eit〈D〉ϕj(D)f‖Lq ≤ C|t|−
n
2
+n

q 2j(n
2
+1)(1− 2

p
)‖ϕ̃j(D)f‖Lq′

for any q ≥ 2 with 1/q + 1/q′ = 1.

Starting from estimates (2.108) and using the standard techniques of [47], [66], in particular
the abstract Theorem 10.1 of [66], we obtain the full set of estimates including the endpoint
case:

Theorem 2.7. The Klein-Gordon flow u = eit〈D〉f satisfies the Strichartz estimates

(2.109) ‖eit〈D〉f‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2

for any Schrödinger admissible couple (p, q).

Finally, the Dirac equation with mass can be handled in a similar way to Proposition 2.5:

Proposition 2.6. Let n = 3. The following Strichartz estimates hold:

(2.110) ‖eit(〈D〉+β)f‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2 ,

for any Schrödinger admissible couple (p, q).
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Proof. As in the proof of Proposition 2.5, by the identity

(i∂t + (D + β))(i∂t − (D + β)) = (−�− 1)I4

we obtain that each component of u solves a Klein-Gordon equation with initial data f and
(D + β)f . Thus estimate (2.110) follows immediately from the Strichartz estimates for the
Klein-Gordon equation in space dimension n = 3. �





CHAPTER 3

Dispersion via wave operators

1. Introduction

To conclude the investigation on linear a priori estimates, we present in this chapter a slightly
different approach to this kind of problems. It comes from the Mathematical Scattering
Theory, and it is based on the study of the functional properties of the main object of this
topics, which is called Wave Operator. As we see in the following, the boundedness of the
wave operators in suitable functional spaces can be used to obtain dispersive-type estimates for
perturbed equations as simple corollaries of the known estimates for the free equations. The
main result of this Chapter (Theorem 3.1) has been proved in [30].

Let H0 = −d2/dx2 be the one-dimensional Laplace operator on the line, and consider the
perturbed operator H = H0 + V (x). For a potential V (x) ∈ L1(R), the operator H can be
realized uniquely as a selfadjoint operator on L2(R) with form domain H1(R). The absolutely
continuous spectrum ofH is [0,+∞[, the singular continuous spectrum is absent, and the possible
eigenvalues are all strictly negative. Moreover, the wave operators

(3.1) W±f = L2 − lim
s→±∞

eisHe−isH0f

exist and are unitary from L2(R) to the absolutely continuous space L2
ac(R) of H. A very useful

feature of W± is the intertwining property. If we denote by Pac the projection of L2 onto L2
ac(R),

the property can be stated as follows: for any Borel function f ,

(3.2) W±f(H0)W ∗
± = f(H)Pac

(see e.g. [36], [22]).
Thanks to (3.2), one can reduce the study of an operator f(H), or more generally f(t,H),

to the study of f(t,H0) which has a much simpler structure. When applied to the operators
eitH , sin(t

√
H)√

H
, sin(t

√
H+1)√

H+1
, this method can be used to prove decay estimates for the Schrödinger,

wave and Klein-Gordon equations

iut −∆u+ V u = 0, utt −∆u+ V u = 0, utt − uxx −∆u+ u+ V u = 0,

provided one has some control on the Lp behaviour of W±, W ∗
±. Indeed, if the wave operators

are bounded on Lp, the Lq − Lq′ estimates valid for the free operators extend immediately to
the perturbed ones via the elementary argument

‖eitHPacf‖Lq ≡ ‖W+e
itH0W ∗

+f‖Lq ≤ C‖eitH0W ∗
+f‖Lq ≤ Ct−α‖W ∗

+f‖Lq′ ≤ Ct−α‖f‖Lq′

Such a program was developed systematically by K.Yajima in a series of papers [115], [116],
[117] where he obtained the Lp boundedness for all p of W±, under suitable assumptions on
the potential V , for space dimension n ≥ 2. The analysis was completed in the one dimensional

67



68 3. DISPERSION VIA WAVE OPERATORS

case in Artbazar-Yajma [5] and Weder [111]. We remark that in high dimension n ≥ 4 the
decay estimates obtained by this method are the best available from the point of view of the
assumptions on the potential; only in low dimension n ≤ 3 more precise results have been
proved (see [49], [50], [90], [112], [118] and [33]). We also mention [51] for an interesting class
of related counterexamples.

In order to explain the results in more detail we recall a few notions. The relevant potential
classes are the spaces

(3.3) L1
γ(R) ≡ {f : (1 + |x|)γf ∈ L1(R)}.

Moreover, given a potential V (x), the Jost functions are the solutions f±(λ, x) of the equation
−f ′′+V f = λ2f satisfying the asymptotic conditions |f±(λ, x)−e±iλx| → 0 as x→ ±∞. When
V (x) ∈ L1

1, the solutions f± are uniquely defined ([36]). Now consider the Wronskian

(3.4) W (λ) = f+(λ, 0)∂xf−(λ, 0)− ∂xf+(λ, 0)f−(λ, 0).

The function W (λ) is always different from zero for λ ∈ R \ 0, and hence for real λ it can only
vanish at λ = 0. Then we say that 0 is a resonance for H when W (0) = 0, and that it is not a
resonance when W (0) 6= 0. The first one is also called the exceptional case.

In [111] Weder proved that the wave operators are bounded on Lp for all 1 < p < ∞,
provided V ∈ L1

γ for γ > 5/2 (see also the following remark). The assumption can be relaxed
to γ > 3/2 provided 0 is not a resonance. It is natural to conjecture that these conditions may
be sharpened, also in view of the results Goldberg and Schlag [49] proved under the milder
assumption γ = 2 in the general and γ = 1 in the nonresonant case.

Indeed, the main result of the present chapter is the following:

Theorem 3.1. Assume V ∈ L1
1 and 0 is not a resonance, or V ∈ L1

2 in the general case.
Then the wave operators W±,W

∗
± can be extended to bounded operators on Lp for all 1 < p <∞.

Moreover, in the endpoint L∞ case we have the estimate

(3.5) ‖W±g‖L∞ ≤ C‖g‖L∞ + C‖Hg‖L∞ ,

for all g ∈ L∞ ∩ Lp for some p < ∞ such that Hg ∈ L∞, where H is the Hilbert transform on
R; the conjugate operators W ∗

± satisfy the same estimate.

Remark 3.1. The appearence of the Hilbert trasform (see the beginning of Section 4 for a
quick reminder) at the endpoint p = ∞ is not a surprise. Indeed, Weder proved that, under the
assumptions V ∈ L1

γ for γ > 5/2 in the general case and γ > 3/2 in the nonresonant case, the
wave operator involves explicitly the Hilbert transform. More precisely, let χ(x) ∈ C∞(R) be
such that χ = 0 for x < 0 and χ = 1 for x > 1, then formula (1.12) in [111] states that

W± = W±,r ± χ(x)f+(0, x)HΨ(D)(c1 + c2P )± (1− χ(x))f−(0, x)HΨ(D)(c3 + c4P )

where the operators W±,r are bounded on L1 and L∞, Pf(x) := f(−x), Ψ(ξ) ∈ C∞0 is a
suitable cutoff, and the constants cj can be expressed in terms of the transmission and reflection
coefficients. From this decomposition it is clear that the wave operator in general can not be
bounded on L∞, but only from L∞ to BMO. Notice also that the Hilbert transform terms
vanish in the unperturbed case V ≡ 0.
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At the opposite endpoint p = 1, we get an even weaker result by duality (see Remark 3.8).
Weder’s decomposition suggests that the stronger bound

(3.6) ‖W±g‖L1 ≤ C‖g‖L1 + C‖Hg‖L1

should be true (and is indeed true under his assumptions on the potential). Notice that (3.6)
is equivalent to say that W± are bounded operators from the Hardy space H1 to L1, and by
duality this would also imply that W± are bounded operators from L∞ to BMO.

Remark 3.2. Our proof is based on the improvement of some results of Deift and Trubowitz
[36], combined with the stationary approach of Yajima [115], [5], and some precise Fourier
analysis arguments. Quite inspirational have been the papers [49] and [113], both for showing
there was room for improvement in the assumptions on the potential, and for the very effective
harmonic analysis approach.

Remark 3.3. In the proof of Theorem 3.1 we split as usual the wave operator into high
and low energy parts; the high energy part is known to be easier to handle since the resolvent
is only singular at frequency λ = 0. Here we can prove that the high energy part is bounded on
Lp for all p, including the cases p = 1 and p = ∞, under the weaker assumption V ∈ L1(R) (see
Section 2 and Lemma 3.1).

Remark 3.4. An essential step in the low energy estimate is a study of the Fourier properties
of the Jost functions; this kind of analysis is classical (see [1]) and the fundamental estimates
were obtained by Deift and Trubowitz in [36]. In Section 3 we improve their results by showing
that the L1 norms of the Fourier transforms of the Jost functions satisfy a linear bound as
|x| → +∞ instead of an exponential one as in [36]. In the resonant case we can prove a
quadratic bound (see Lemmas 3.3, 3.4 and Corollary 3.1).

Remark 3.5. It is possible to continue the analysis and prove that the wave operators are
bounded on Sobolev spaces W k,p, under the additional assumption V ∈ W k,1 (see also [111]
where the boundedness from W k,∞ to BMOk is proved under stronger assumptions on the
potential), but we prefer not to pursue this question here.

Theorem 3.1 has several applications; here we shall focus on the dispersive estimates for the
one dimensional Schrödinger and Klein-Gordon equations with variable rough coefficients.

Consider first the initial value problem

(3.7) iut − a(x)uxx + b(x)ux + V (x)u = 0, u(0, x) = f(x).

Then we obtain the following decay result, where the notation f ∈ L2
1 means (1 + |x|)f ∈ L2.

Notice that the following result can also be obtained as a consequence of the dispersive L∞−L1

estimate proved in [49] (and in [112] under stronger assumptions on the potential).

Proposition 3.1. Assume V ∈ L1
2, a ∈W 2,1(R) and b ∈W 1,1(R) with

(3.8) a(x) ≥ c0 > 0 a′, b ∈ L2
1, a′′, b′ ∈ L1

2

for some constant c0. Then the solution of the initial value problem (3.7) satisfies

(3.9) ‖Pacu(t, ·)‖Lq ≤ Ct
1
q
− 1

2 ‖f‖Lq′ , 2 ≤ q <∞,
1
q

+
1
q′

= 1.
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The same result holds if a = 1, b = 0 and V ∈ L1
1, provided 0 is not a resonance for H.

Proof. It is sufficient to perform the change of variables u(t, x) = σ(x)w(t, c(x)) with

(3.10) c(x) =
∫ x

0
a(s)−1/2ds, σ(x) = a(x)1/4 exp

(∫ x

0

b(s)
2a(s)

ds

)
to reduce the problem to a Schrödinger equation with a potential perturbation Ṽ (y) defined by

(3.11) Ṽ (c(x)) = V (x) +
1

16a(x)
(2b(x) + a′(x))(2b(x) + 3a′(x))− 1

4
(2b(x) + a′′(x));

notice that Ṽ satisfies the assumptions of Theorem 3.1 provided (3.8) hold. Hence the solution
of the transformed problem satisfies a dispersive estimate like (3.9), and coming back to the
original variables we conclude the proof. �

Remark 3.6. The range of indices allowed in (3.9) is sufficient to deduce the full set of
Strichartz estimates, as it is well known. It is interesting to compare this with the result of Burq
and Planchon [16] who proved the Strichartz estimates for the variable coefficient equation

iut − ∂x(a(x)∂xu) = 0

assuming only that a(x) is of BV class and bounded from below.

Remark 3.7. In view of the next application, we recall the definition of nonhomogeneous
Besov spaces. Choose a Paley-Littlewood partition of unity, i.e., a sequence of smooth cutoffs
φj ∈ C∞0 (R) with

∑
j≥0 φj(λ) = 1 and suppφj = [2j−1, 2j+1] for j ≥ 1, suppφ0 = [−2, 2]. Then

the Bs
p,r Besov norm is defined by

‖g‖r
Bs

p,r
≡
∑
j≥0

2jsr‖φj(
√
H0)g‖r

Lp

with obvious modification for r = ∞. It is then natural to define the perturbed Besov norm
corresponding to the selfadjoint operator H = H0 + V as

‖g‖r
Bs

p,r(V ) ≡
∑
j≥0

2jsr‖φj(
√
H)g‖r

Lp .

Now, from the Lp boundedness of the wave operators and the intertwining property in the form

φj(
√
H)W± = W±φj(

√
H0)

we obtain immediately the Besov space bounds

(3.12) ‖W±f‖Bs
p,r(V ) ≤ C‖f‖Bs

p,r
, ‖W ∗

±f‖Bs
p,r
≤ C‖f‖Bs

p,r(V )

(in the second one we used the inequality ‖Pacφ(H)f‖Lp ≤ C‖φ(H)f‖Lp which is true since the
eigenfunctions belong to L1 ∩ L∞).

We now consider the initial value problem for the one dimensional Klein-Gordon equation

(3.13) utt − a(x)uxx + u+ b(x)ux + V (x)u = 0, u(0, x) = 0, ut(0, x) = g(x).

Our second application is the following, proved in an identical way as Proposition 3.1:
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Proposition 3.2. Assume a = 1, b = 0 and V ∈ L1
2, or V ∈ L1

1 and 0 is not a resonance.
Then the solution of the initial value problem (3.13) satisfies

(3.14) ‖Pacu(t, ·)‖Lq ≤ Ct
1
q
− 1

2 ‖g‖
B

1
2−

3
q

q′,q (V )
, 2 ≤ q <∞,

1
q

+
1
q′

= 1.

The same decay rate is true for general coefficients a, b, V satisfying the assumptions of Propo-
sition 3.1 (with the Besov norm replaced by a suitable norm of the initial data).

Proof. In the unperturbed case, (3.14) can be obtained as usual by interpolating the dis-
persive L∞−B1/2

1,1 estimate with the conservation of the H1 norm i.e. the energy. The perturbed
case is handled by the change of variables (3.10) and an application of Theorem 3.1 as in the
proof of Proposition 3.1. In the general case the Besov norm in (3.14) must be replaced by
‖h‖

B
1
2−

3
q

q′,q (eV )
with Ṽ as in (3.11) and h = (g/σ)|c−1(y). �

The rest of the paper is devoted to the proof of Theorem 3.1. We first analyze the high
energy part, in Section 2; Section 3 contains a detailed study of the Fourier properties of the
Jost functions, necessary for the analysis of the low energy part studied in Section 4.

2. The high energy analysis

In the estimate of the high frequency part of the wave operator we shall use the standard
representation as a distorted Fourier transform; considering e.g. the operator W−, we have

(3.15) W−g(x) =
1
2π

∫ +∞

−∞

(∫ +∞

−∞
ϕ(λ, x)e−iλy dλ

)
g(y) dy,

where the generalized eigenfunction ϕ(λ, x) is defined as the solution to the Lippman-Schwinger
equation (see e.g. [5], [111])

(3.16) ϕ(λ, x) = eiλx −R0(λ2 + i0)V ϕ(λ, x).

Here R0 denotes the free resolvent R0(z) = (−∆− z)−1; we recall that the limits

(3.17) R0(λ± i0) = lim
ε→0

R0(λ± iε) =
1
2i

∫
e±iλ|x−y|

λ
f(y) dy,

exist in the norm of bounded operators from the weighted L2
1/2+ε to the weighted L2

−1/2−ε spaces,
for any λ ∈]0,∞[ (see e.g. [2]). The strong singularity at λ = 0 is the main source of difficulties
in the study of the wave operator.

The perturbed resolvent RV (z) = (−∆ + V − z)−1 is related to R0 by the identity

(3.18) RV = R0(I + V R0)−1.

We recall that under the assumption V ∈ L1
1 the limiting absorption principle (3.17) holds also

for RV (see [6], [31]).
By the representation (3.17) it is clear that for λ ≥ λ0 = ‖V ‖L1 the operator R0V is

bounded on L∞ with norm less than 1/2. In particular, for λ large enough, I + R0(λ2 + i0)V
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can be inverted by a Neumann series, the solution φ(λ, x) of (3.16) is well defined and it can be
represented by a uniformly convergent series

(3.19) ϕ(λ, x) =
∑
n≥0

(−1)n
(
R0(λ2 + i0)V

)n
eikx, |λ| ≥ λ0 := ‖V ‖L1 , x ∈ R.

Now take a smooth cutoff function Φ ∈ C∞(R+) such that

0 ≤ Φ ≤ 1, Φ(λ2) = 0 for 0 ≤ λ ≤ λ0, Φ(λ2) = 1 for λ ≥ λ0 + 1

and consider the high energy part of the wave operator

W−Φ(H0)g(x) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
ϕ(λ, x)e−iλyg(y)Φ(λ2) dλdy.

We split this operator into positive and negative frequencies, i.e., writing

χ(λ) =

{
Φ(λ2) for λ > 0,
0 for λ ≤ 0

ψ(λ) =

{
Φ(λ2) for λ < 0,
0 for λ ≥ 0

we define the operators
(3.20)

Ag(x) =
1
2π

∫ ∫
ϕ(λ, x)e−iλyg(y)χ(λ) dλdy, Bg(x) =

1
2π

∫ ∫
ϕ(λ, x)e−iλyg(y)ψ(λ) dλdy.

In the following we shall study the positive part Ag; clearly the estimate of the negative piece
Bg is completely analogous. By (3.15) and (3.19), the integral kernel K(x, y) of the operator A
can be represented as

(3.21) K(x, y) =
∑
n≥0

(−1)n

∫ {(
R0(λ2 + i0)V

)n
eiλ·
}

(x) e−iλyχ(λ) dλ.

We shall estimate the terms of the series (3.21) separately. Notice that for n ≥ 2 we can write
them explicitly as
(3.22)

Kn(x, y) =
(
i

2

)n ∫
. . .

∫
χ(λ)
λn

eiλ(|x−y1|+|y1−y2|+···+|yn−1−yn|+yn−y)
n∏

j=1

V (yj) dy1 . . . dyn dλ.

On the other hand, for n = 0, 1 we have the formal expressions

(3.23) K0(x, y) =
∫
eiλ(x−y)χ(λ) dλ, K1(x, y) =

i

2

∫ ∫
χ(λ)
λ

eiλ(|x−y1|+y1−y)V (y1) dy1 dλ

which can defined precisely by adding a cutoff on [0, L] and then sending L→ +∞ (see below).
Denoting by An the operator with kernel Kn(x, y), we have

(3.24) Ag(x) = (2π)−1
(
A0g(x)−A1g(x) +

∑
n≥2

Ang(x)
)
.

Then we have:

Lemma 3.1. Assume V ∈ L1(R) and let 0 ≤ Φ ≤ 1 be a smooth function such that Φ(λ2) = 0
for λ < ‖V ‖L1 and Φ(λ2) = 1 for λ > ‖V ‖L1 + 1. Then the high energy parts of the wave
operators W± are bounded on Lp for all 1 ≤ p ≤ ∞:

(3.25) ‖W±Φ(H0)g‖Lp ≤ C‖g‖Lp .
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The same holds for the conjugate operators Φ(H0)W ∗
±.

Proof. By standard duality arguments, it will be sufficient to prove the estimates for p = ∞;
since the proof is completely analogous for any of the four operators W±, W ∗

±, we shall consider
only W−. By the discussion above, we see that it is sufficient to estimate the operator A defined
in (3.24).

We shall estimate each term An in the series (3.24) separately. For the term A0, we can
write by (3.23)

A0g(x) =
∫ (∫

eiλ(x−y)χ(λ)g(y)
)

=
∫ ∫

eiλ(x−y)[1− (1−χ(λ))]g(y) = g(x)− [ ̂(1− χ) ∗ g](x),

(recall the notations ĥ = Fh for the Fourier transform of a function h) whence we obtain

(3.26) ‖A0g‖L∞ ≤
(
1 + ‖ ̂(1− χ)‖L1

)
‖g‖L∞ ≤ C0‖g‖L∞ .

Consider now the term A1, which by (3.23) can be written formally

(3.27) A1g(x) =
i

2

∫ (∫ (∫
χ(λ)
λ

eiλ(|x−z|+z−y)V (z)g(y) dz
)
dλ

)
dy.

More precisely, fixed a function ψ(λ) ∈ C∞c equal to 1 on [−1, 1] and vanishing outside [−2, 2],
we define the truncated operators

(3.28) A1,Lg =
i

2

∫ (∫ (
γL(λ)eiλ(|x−z|+z−y)V (z)g(y) dz

)
dλ

)
dy, γL(λ) =

1
λ
χ(λ)ψL(λ),

where ψL(λ) ≡ ψ(λ/L). We claim that the operators A1,L are uniformly bounded on L∞, and
that for each g ∈ L∞ the sequence A1,Lg converges to A1g uniformly as L → +∞. To prove
this, we notice that by Fubini’s theorem (3.28) can be rewritten as

(3.29) A1,Lg(x) =
i

2

∫ ∫
γ̂L(|x− z|+ z − y)V (z)g(y) dz dy,

It is clear that the claim follows as soon as we can prove that γ̂L converges in L1(R) when
L→ +∞: indeed, we have

‖A1,Lg −A1,Mg‖L∞ ≤ ‖V ‖L1‖γ̂L − γ̂M‖L1‖g‖L∞ .

To prove the claim, decompose γL as follows:

(3.30) γL(λ) = ψL(λ) · η(λ), η(λ) =
λ

1 + λ2
+ (χ− 1)

λ

1 + λ2
+

χ(λ)
λ(1 + λ2)

.

We notice that η̂(ξ) ∈ L1; indeed, the Fourier transform of the first term is proportional to
sgn(ξ) exp(−|ξ|), while the remaining terms are smooth and decay faster than |λ|−3. Since ψ̂L

is a δ-sequence, we conclude that γ̂L = ψ̂L ∗ η̂ converges to η̂ in L1(R). As a consequence, A1,Lg

converge uniformly to

A1g ≡
i

2

∫ ∫
η̂(|x− z|+ z − y)V (z)g(y)dzdy

which is then a bounded operator on L∞:

(3.31) ‖A1g‖L∞ ≤ ‖V ‖L1‖η̂‖L1‖g‖L∞ .
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To conclude the proof, it remains to estimate the operators An for n ≥ 2. By the explicit
formula (3.22) we obtain

Ang(x) =
in

2n

∫
ψn(λ)eiλ(|x−y1|+|y1−y2|+···+|yn−1−yn|+yn−y)

n∏
j=1

V (yj)g(y) dy1 . . . dyn dλ dy,

where ψn(λ) := χ(λ)/λn. By Fubini’s Theorem this can be written

Ang(x) =
in

2n

∫
ψ̂n(|x− y1|+ |y1 − y2|+ · · ·+ |yn−1 − yn|+ yn − y)

n∏
j=1

V (yj)g(y) dy1 . . . dyn dy,

and then we immediately get the inequality

(3.32) ‖Ang(x)‖L∞ ≤ 1
2n
‖V ‖n

L1‖ψ̂n‖L1‖g‖L∞ .

To compute the norm of ψ̂n, introduce the scaling operators Sh defined as Shg(x) = g(hx); then
we can write

ψn(λ) = λ−n
0 · S1/λ0

(
χ0(λ)
λn

)
where χ0(λ) := χ(λ · λ0), λ0 = ‖V ‖L1 .

and hence

‖ψ̂n‖L1 = λ−n
0 ‖F (χ0/λ

n) ‖L1 ≤ Cλ−n
0 ‖〈ξ〉2F (χ0/λ

n) ‖L∞

≤ Cλ−n
0 ‖(1−∆) (χ0/λ

n) ‖L1 ≤ C0n
2λ−n

0 ≡ C0n
2‖V ‖−n

L1

for some constant C0 independent of n and λ0 This inequality together with (3.32) gives

(3.33) ‖Ang(x)‖L∞ ≤ C0n
22−n‖g‖L∞ .

By the estimates (3.26), (3.31), (3.33) and by formula (3.24) we conclude the proof of the
Lemma. �

3. Fourier properties of the Jost Functions

Throughout this section we shall assume that V ∈ L1
1(R) (at least).

The Jost functions f±(z, x) are defined as the solutions of −f ′′±(z, x) + V (x)f±(z, x) =
z2f±(z, x) satisfying the asymptotic conditions

∣∣f±(z, x)− e±izx
∣∣ → 0 as x → ±∞. It is well

known (see [36]) that f±(λ, x) are well defined for all λ, x ∈ R. Using the Jost functions it
is possible to write the following explicit representation of the integral kernel of the perturbed
resolvent RV (λ2 ± i0):

(3.34) K±(x, y) =
1

2πi
f+(±λ, y)f−(±λ, x)

W (±λ)
for x < y,

and x and y reversed for x > y; here W (λ) denotes the Wronskian of f+, f− defined in (3.4). It
is always true (see [36]) that W (λ) 6= 0 for any real λ 6= 0; thus the only possible real zero of
the Wronskian is at λ = 0, and when W (0) = 0 we say that 0 is a resonance for −∆ + V .

The modified Jost functions m± are given by the relation f±(λ, x) = e±iλxm±(λ, x); equiva-
lently, they can be characterized as the unique solutions of the equationsm′′

±(λ, x)±2iλm′
±(λ, x) =
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V (x)m±(λ, x) satisfying the asymptotic conditions m±(λ, x) → 1 for x → ±∞. Moreover, we
can also obtain m±(λ, x) as the unique solutions of the Volterra integral equations

(3.35) m±(λ, x) = 1±
∫ +∞

x
Dλ(±(t− x))V (t)m±(λ, t) dt, Dλ(x) :=

e2iλx − 1
2iλ

.

The properties of the functions m±(λ, x) are well known, see e.g. [36]. Here we shall only need
a few basic facts: in particular, when V ∈ L1

1, then m±(λ, x) ∈ C(R2); and when V ∈ L1
2, then

m±(λ, x) ∈ C1(R2) and λ
W (λ) ∈ C(R).

As customary we shall denote by B± the Fourier transform w.r. to λ of the functions m±−1,
and precisely

(3.36) B±(ξ, x) =
∫

R
e−2iλξ (m±(λ, x)− 1) dλ.

(notice the factor 2 in the exponential). For each x ∈ R the function B+(ξ, x) is well defined,
real valued, belongs to L2(R) and actually vanishes for ξ < 0; this means that m+(·, x) − 1
belongs to the Hardy space H2+ (see [36] for details). Analogously, B−(ξ, x) belongs to L2(R)
and vanishes for ξ > 0, i.e., m−(·, x)− 1 ∈ H2−.

If we take the Fourier transform of equation (3.35), we obtain that B+(ξ, x) satisfies the
Marchenko equation

(3.37) B+(ξ, x) =
∫ ∞

x+ξ
V (t) dt+

∫ ξ

0
dz

∫ ∞

x+ξ−z
V (t)B+(z, t) dt

(B−(ξ, x) satisfies a symmetric equation).
The functions B±(ξ, x) have many additional properties of boundedness and regularity;

however we shall only be concerned here with the properties of the L1 norms ‖B±(·, x)‖L1 .
Writing

η(x) =
∫ ∞

x
|V (t)|dt, γ(x) =

∫ ∞

x
(t− x)|V (t)|dt ≡

∫ ∞

x

∫ ∞

y
|V (t)|dtdy,

the well-known estimate of Deift and Trubowitz is the following:

Lemma 3.2. Assume V ∈ L1
1. Then, for all ξ, x ∈ R, the solution B+(ξ, x) to (3.37) is well

defined and satisfies the estimates

(3.38) |B+(ξ, x)| ≤ eγ(x)η(ξ + x), |∂xB+(ξ, x) + V (x+ ξ)| ≤ eγ(x)η(x+ ξ).

In particular, B(·, x) is in L1 ∩ L∞ for any x and

(3.39) ‖B+(·, x)‖L1 ≤ eγ(x)γ(x), ‖∂xB+(·, x)‖L1 ≤ η(x) + eγ(x)γ(x).

The function B− has similar properties, with the behaviours at ±∞ reversed. Notice that
the behaviour of γ(x) is the following:

(3.40) γ(x) ≤ ‖V ‖L1
1

for x ≥ 0, γ(x) ≤ ‖V ‖L1
1
+ |x| · ‖V ‖L1 for x ≤ 0.

In other words, the estimate shows that ‖B+(·, x)‖L1 is bounded by a constant depending on
‖V ‖L1

1
for x > 0, but it gives only an exponential bound for negative x. A similar estimate holds

for the function B−, exchanging the behaviours as x→ +∞ and x→ −∞.
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A crucial tool in the study of the low energy case will be an essential improvement of the
(3.39): indeed, we can prove that the norm of B+ (resp. B−) has at most a linear growth as
x→ −∞ (resp. x→ +∞).

Lemma 3.3. Assume V ∈ L1
1; then the functions B±(ξ, x) satisfy the estimates

(3.41) ‖B±(·, x)‖L1 ≤ C for ±x ≥ 0, ‖B±(·, x)‖L1 ≤ C〈x〉 for ±x ≤ 0

for some constant C depending on ‖V ‖L1
1
.

Proof. We prove the result for B+, the proof for B− is identical. The behaviour for positive
x is already contained in the Deift-Trubowitz estimate. Now, starting from the Marchenko
equation (3.37), we integrate with respect to ξ from 0 to ∞ (recall that B± vanish for ξ < 0)
and we have immediately

‖B+(·, x)‖L1 ≤
√

2〈x〉 · ‖V ‖L1
1
+
∫ ∞

0
dξ

∫ ξ

−∞
dz

∫ ∞

x+ξ−z
|V (t)| · |B+(z, t)| dt.

Setting z′ := ξ − z and exchanging the order of integration we obtain

(3.42) ‖B+(·, x)‖L1 ≤
√

2〈x〉 · ‖V ‖L1
1
+
∫ ∞

x
|V (t)| · (t− x) · ‖B+(·, t)‖L1 dt.

Now we remark that∫ ∞

x
t|V (t)| · ‖B+(·, t)‖L1dt ≤

∫ ∞

0
t|V (t)| · ‖B+(·, t)‖L1dt

which is obvious when x > 0 and is also evident for x < 0 since the integral from x to 0 is
negative. Using the Deift-Trubowitz estimate (3.39) we see that ‖B+(·, t)‖ ≤ C0 = C0(‖V ‖L1

1
)

for t > 0, and hence in conclusion∫ ∞

x
t|V (t)| · ‖B+(·, t)‖L1dt ≤ C1 ≡ C1(‖V ‖L1

1
) for all x ∈ R.

Thus inequality (3.42) gives

‖B+(·, x)‖L1 ≤
√

2〈x〉 · ‖V ‖L1
1
+ C1(‖V ‖L1

1
) + |x|

∫ ∞

x
|V (t)| · ‖B+(·, t)‖L1dt

which implies

(3.43)
1
〈x〉

‖B+(·, x)‖L1 ≤ C2(‖V ‖L1
1
) +

∫ ∞

x
〈t〉|V (t)|‖B+(·, t)‖L1

〈t〉
dt.

Applying Gronwall’s lemma for x < 0 we conclude the proof. �

In the resonant case W (0) = 0 it will be necessary to make the stronger assumption V ∈ L1
2.

In this case, we know that the Jost functions are C1 in both variables and we shall study the
behaviour of the functions

(3.44) C±(ξ, x) =
∫

R
e−2iλξ∂λm±(λ, x)dξ ≡ 2iξB±(ξ, x).

As above, a direct application of the Deift-Trubowitz estimate gives an optimal bound only on
a half line. Indeed, if we multiply (3.38) by 2ξ and integrate in ξ we obtain

(3.45) ‖C+(·, x)‖L1 ≤ 2eγ(x)

∫ ∞

0
ξ

∫ ∞

x+ξ
|V (t)|dtdξ = eγ(x)

∫ ∞

x
(t− x)2|V (t)|dt
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after exchanging the order of integration. Recalling (3.40) we obtain that ‖C+(·, x)‖L1 ≤
C(‖V ‖L1

2
) for x ≥ 0, but we can only get an exponential growth for negative x (symmetric

result for C−).
We can improve this estimate by a different argument:

Lemma 3.4. Assume V ∈ L1
2; then the functions C±(ξ, x) = 2iξB±(ξ, x) satisfy

(3.46) ‖C±(·, x)‖L1 ≤ C for ±x ≥ 0, ‖C±(·, x)‖L1 ≤ C〈x〉2 for ±x ≤ 0

for some constant C depending on ‖V ‖L1
2
.

Proof. We will consider only C+; the proof for C− is identical. We have already proved
above the estimate of C+ on the positive half-line. To prove the estimate for x < 0 we start
again from Marchenko’s equation (3.37); if we multiply both sides by 2ξ and integrate in ξ we
obtain

‖C+(·, x)‖L1 ≤ 2
∫ ∞

0

∫ ∞

x+ξ
|V (t)| · ξ dtdξ + 2

∫ ∞

0
dξ

∫ ξ

0
dσ

∫ ∞

x+ξ−σ
|V (t)| · |B+(σ, t)| · ξ dt

≡ 2
∫ ∞

x
(t− x)2|V |dt+

∫ ∞

x
|V |(t− x)2‖B+(·, t)‖L1dt+

∫ ∞

x
|V |(t− x)‖C+(·, t)‖L1dt(3.47)

after a suitable rearrangement of the order of integration. Call the three integrals on the right
I, II, III respectively. For the first one we have obviously I ≤ 4〈x〉2‖V ‖L1

2
. For the second one,

we remark that (t− x)2 ≤ x2 when x < t < 0, while (t− x)2 ≤ 2t2 + 2x2 when t > 0, so that

II ≤ x2

∫ 0

x
|V (t)| · ‖B(·, t)‖L1dt+ 2

∫ ∞

0
(t2 + x2)|V (t)| · ‖B(·, t)‖L1dt;

recalling (3.41), this implies

(3.48) II ≤ x2

∫ 0

x
|V (t)|〈t〉dt · C(‖V ‖L1

1
) + 2

∫ ∞

0
(t2 + x2)|V (t)| · C(‖V ‖L1

1
) ≤ 〈x〉2C(‖V ‖L1

2
).

For the last term we proceed as follows: we write

III =
∫ ∞

x
t|V (t)|‖C+(·, t)‖L1dt− x

∫ ∞

x
|V (t)|‖C+(·, t)‖L1dt

and, as above, we remark that the first integral increases if we replace the lower integration limit
with 0: ∫ ∞

x
t|V (t)|‖C+(·, t)‖L1dt ≤

∫ ∞

0
t|V (t)|‖C+(·, t)‖L1dt ≤ C(‖V ‖L1

2
)

where we have used the bound for x > 0 already proved. Thus we have

(3.49) III ≤ C(‖V ‖L1
2
) + 〈x〉

∫ ∞

x
〈t〉2|V (t)| · 〈t〉−2‖C+(·, t)‖L1dt.

In conclusion we have proved that

(3.50) 〈x〉−2‖C+(·, x)‖L1 ≤ C(‖V ‖L1
2
) +

∫ ∞

x
〈t〉2|V (t)| · 〈t〉−2‖C+(·, t)‖L1dt.

Applying as before Gronwall’s lemma for x < 0, we conclude the proof of the Lemma. �
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A useful consequence of (3.46) is an estimate of the Fourier transform of the functions

(3.51) n±(λ, x) =
m±(λ, x)−m±(0, x)

λ

which are clearly related to the derivatives ∂λm±; the usefulness of these quantities in the
resonant case had already been remarked in [5].

Corollary 3.1. Assume V ∈ L1
2; then the functions C̃±(ξ, x) =

∫
R e

−2iλξn±(λ, x)dλ satisfy

(3.52) ‖C̃±(·, x)‖L1 ≤ C for ±x ≥ 0, ‖C̃±(·, x)‖L1 ≤ C〈x〉2 for ±x ≤ 0

for some constant C depending on ‖V ‖L1
2
.

Proof. Since n±(λ, x) =
∫ 1
0 ∂λm±(λs, x)ds, we can write, using Fubini’s theorem and the

rescaling properties of the Fourier transform,

C̃±(ξ, x) =
∫ 1

0
Fλ→ξ (∂λm±(λs, x)) ds =

∫ 1

0
s−1C±(ξ/s, x)ds.

The integral Minkowski inequality now gives

‖C̃±(·, x)‖L1 ≤
∫ 1

0
s−1‖C±(·/s, x)‖L1ds ≡

∫ 1

0
‖C±(·, x)‖L1ds ≡ ‖C±(·, x)‖L1

and by (3.46) the proof is concluded. �

We conclude this section by studying the Fourier properties of the Wronskian W (λ) defined
in (3.4), which can be equivalently written

W (λ) = m+(λ, 0)∂xm−(λ, 0)− ∂xm+(λ, 0)m−(λ, 0)− 2iλm+(λ, 0)m−(λ, 0).

Notice that the following result is also proved in [49] by partly different arguments.

Lemma 3.5. Let χ(λ) ∈ C∞0 (R) be a smooth cutoff. If V ∈ L1
1(R) and W (0) 6= 0 then

(3.53) F
(
χ(λ)
W (λ)

)
∈ L1(R).

On the other hand, if V ∈ L1
2(R) and W (0) = 0 then

(3.54) F
(
χ(λ)λ
W (λ)

)
∈ L1(R).

Proof. Let χ1 ∈ C∞0 (R) be a second cutoff such that χ1 ≡ 1 on the support of χ. By the
Deift-Trubowitz estimates (see Lemma 3.2) we know that both m±(λ, 0) − 1 and ∂xm±(λ, 0)
have Fourier transform in L1; then writing

χ1W (λ) ≡ χ1m+(λ, 0)∂xm−(λ, 0)− χ1∂xm+(λ, 0)m−(λ, 0)− 2iλχ1m+(λ, 0)m−(λ, 0)

we see that χ1W can be written as a sum of products in which each factor has a Fourier
transform in L1, and we conclude that χ1W has Fourier transform in L1.

Recall now that by Wiener’s Lemma, if a function a(λ) does not vanish on the support of
b(λ) and both â, b̂ ∈ L1, we have also F(b/a) ∈ L1. This implies that∥∥∥∥Fλ→ξ

(
χ(λ)
W (λ)

)∥∥∥∥
L1

ξ

≡
∥∥∥∥Fλ→ξ

(
χ(λ)

χ1(λ)W (λ)

)∥∥∥∥
L1

ξ

<∞.
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Consider now the resonant case with V ∈ L1
2. Using the functions n± defined in (3.51) we

can rewrite W as follows:

W (λ) = λn+(λ, 0)∂xm−(λ, 0) + λm+(0, 0)∂xn−(λ, 0) +m+(0, 0)∂xm−(0, 0)

− λn−(λ, 0)∂xm+(λ, 0)− λm−(0, 0)∂xn+(λ, 0)−m−(0, 0)∂xm+(0, 0)− 2λm+(λ, 0)m−(λ, 0);

from this formula and the assumption W (0) = 0 we see that the term m+(0, 0)∂xm−(0, 0) −
m−(0, 0)∂xm+(0, 0) must vanish, hence we obtain

W (λ)
λ

=n+(λ, 0)∂xm−(λ, 0) +m+(0, 0)∂xn−(λ, 0)−

− n−(λ, 0)∂xm+(λ, 0)−m−(0, 0)∂xn+(λ, 0)− 2m+(λ, 0)m−(λ, 0).(3.55)

We know already that the functions m±(λ, 0) − 1, ∂xm±(λ, 0) and n±(λ, 0) have Fourier
transform in L1; this follows as above from the Deift-Trubowitz estimate and from our Corol-
lary 3.1 (see (3.52)). We can show that also ∂xn±(λ, 0) have the same property. Indeed,
write ∂xn±(λ, x) =

∫ 1
0 ∂x∂λm±(λs, x)ds; by Fubini’s theorem and the rescaling properties of

the Fourier transform and the integral Minkowski inequality we have

‖Fλ→ξ (∂xn±(λ, 0)) ‖L1
ξ

=
∥∥∥∥∫ 1

0
2iξs−1∂xB±(ξ/s, 0)ds

∥∥∥∥
L1

ξ

≤ 2
∫ 1

0
‖ξs−1∂xB±(ξ/s, 0)‖L1

ξ
ds

whence

(3.56) ‖Fλ→ξ (∂xn±(λ, 0)) ‖L1
ξ
≤ ‖ξ∂xB±(ξ, 0)‖L1

ξ
.

Recalling now the Deift-Trubowitz estimate (3.38), we have immediately

|ξ∂xB±(ξ, 0)| ≤ C|ξ| ·
[
η(ξ) + |V (ξ)|

]
=⇒ ‖ξ∂xB±(ξ, 0)‖L1

ξ
≤ C‖V ‖L1

2

and this proves that the Fourier transform of ∂xn±(λ, 0) belongs to L1(R).
Now, coming back to (3.55), and choosing a cutoff χ1 as above, we see that χ1(λ)W (λ)/λ

can be written as a sum of products of functions with Fourier transform in L1 and hence it
also has Fourier transform in L1; applying Wiener’s Lemma exactly as before we conclude the
proof. �

4. The low energy analysis

In this section we shall study the low energy part of the wave operator W+; the estimate for
W− is completely analogous. By the stationary representation formula (see e.g. [115]), given a
cutoff Φ(λ2) supported near zero, we can represent the low energy part of W+ as follows:

(3.57) W+Φ(H0)g = Φ(H0)g −
2
π

∫ +∞

0
RV (λ2 − i0)V =R0(λ2 + i0)λΦ(λ2)g dλ.

Thus it is sufficient to study the boundedness in Lp of the operator

(3.58) Ag :=
∫ +∞

0
RV (λ2 − i0)V =R0(λ2 + i0)λχ(λ)g dλ

for an even cutoff function χ(λ) = Φ0(λ2) ∈ C∞0 (R).
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As remarked in the Introduction, an L∞−L∞ estimate will be impossible in general, owing
to the presence of a Hilbert transform term in the wave operator. We recall that the Hilbert
transform on R is the operator

Hg(y) =
1
π
V.P.

∫
R

g(s)
y − s

ds ≡ 1
2πi

∫
eiyλ λ

|λ|
ĝ(λ)dλ.

We also recall that H2 = −1, and that H is a bounded operator on Lp for all 1 < p < ∞, but
not on L1 and on L∞.

In order to state a simple but useful interpolation lemma we introduce the space L∞0 of
bounded functions vanishing at infinity (i.e., g → 0 as |x| → ∞), with the L∞ norm, and

(3.59) Lp
H = {g ∈ Lp : Hg ∈ Lp}, ‖g‖Lp

H
= ‖g‖Lp + ‖Hg‖Lp .

Notice that the last definition is relevant only when p = 1 or p = ∞, since we have otherwise
Lp
H ' Lp for 1 < p <∞. Our interpolation lemma is then the following:

Lemma 3.6. Let T be a bounded operator on L2, and assume that

(3.60) ‖Tg‖L∞ + ‖T ∗g‖L∞ ≤ C‖g‖L∞ + C‖Hg‖L∞ , ∀g ∈ C∞0 .

Then T and T ∗ can be extended to bounded operators on Lp for all 1 < p <∞.

Proof. The complex interpolate X = [Lp, L∞0 ∩ L∞H ]θ coincides with Lpθ as expected:

(3.61) X = [Lp, L∞0 ∩ L∞H ]θ = Lpθ ,
1
pθ

=
1− θ

p
, 0 < θ < 1, 1 < p <∞.

To prove this, first of all notice that the inclusions C∞0 ⊆ Lp ⊆ Lp and C∞0 ⊆ L∞0 ∩ L∞H ⊆ L∞

imply that C∞0 ⊆ X ⊆ Lpθ as sets. Moreover, the (bounded) injection operator i : Lp → Lp and
i : L∞0 ∩ L∞H → L∞ is also bounded from X to Lpθ by complex interpolation with norm ≤ 1,
i.e., ‖f‖Lpθ ≤ ‖f‖X . Finally, given any compact set K, denote by Lp(K) the subspace of Lp of
functions with support contained in K; if we consider the injection operator

i : Lp(K) ∩ Lp
H ≡ Lp(K) → Lp ∩ Lp

H ≡ Lp and i : L∞(K) ∩ L∞H → L∞0 ∩ L∞H
and we use again complex interpolation, we obtain that the injection i : Lpθ(K) → X is bounded
with norm ≤ 1. Summing up, we have proved that ‖f‖X = ‖f‖Lpθ for all functions f ∈ Lpθ

with compact support. Since X contains C∞0 , this proves the claim that X = Lpθ as Banach
spaces.

Now, by a density argument we see that (3.60) implies that T, T ∗ can be extended to bounded
operators from L∞0 ∩L∞H to L∞, and on the other hand they are bounded on L2 by assumption.
Using (3.61), by interpolation we obtain that T, T ∗ are bounded on all Lp for 2 ≤ p < ∞, and
by duality we conclude the proof. �

Remark 3.8. In the endpoint case p = ∞ we can modestly improve (3.60) to

(3.62) ‖Tg‖L∞ ≤ C‖g‖L∞ + C‖Hg‖L∞ , ∀g ∈ L∞ ∩ L∞H ∩ Lp

for some p < ∞; this follows immediately by a density argument. Moreover, in the opposite
endpoint p = 1, by duality, we obtain that ‖Tg‖L1+L1

H
≤ C‖g‖L1 where L1 + L1

H is the Banach
space with norm ‖g‖ = inf{‖g1‖L1 + ‖g2‖L1

H
}, g = g1 + g2, g1 ∈ L1, g2 ∈ L1

H.
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We are now ready to prove our estimate of the low frequency part of the wave operator:

Lemma 3.7. Assume V ∈ L1
1 and the nonresonant condition W (0) 6= 0 is satisfied. Let

Φ(λ2) be a smooth compactly supported cutoff function. Then the low energy parts of the wave
operators W± satisfy the estimates

(3.63) ‖W±Φ(H0)g‖L∞ ≤ C (‖g‖L∞ + ‖Hg‖L∞) ∀g ∈ L1 ∩ L∞ ∩ L∞H
and hence can be extended to bounded operatos on Lp, for all 1 < p <∞. The same properties
hold for the conjugate operators Φ(H0)W ∗

±.

Proof. The proof for the operators W± and W ∗
± is completely analogous, hence we shall

focus on the estimate for W+. By Lemma 3.6, it is sufficient to prove that W+Φ(H0) satisfies
(3.63); moreover, using the stationary representation formula (3.57), the problem is reduced to
estimating the operator A defined by (3.58).

By the explicit expression of the kernel of RV in terms of the Jost functions (3.34), we can
split A as A = A1 +A2 where (forgetting constants)

(3.64) A1g(x) =
∫ +∞

0
dλ

∫
x<y

dy
f+(−λ, y)f−(−λ, x)

W (−λ)
V (y)λχ(λ)=R0(λ2 + i0)g(y)

while A2 is given by a symmetric formula. In the following we shall estimate the operator A1;
the proof for A2 is completely analogous.

By the relations f±(λ, x) = e±iλxm±(λ, x) and

m±(−λ, x) = m±(λ, x), W (−λ) = W (λ)

(see. e.g. [36]), we have

(3.65) A1g(x) =
∫ +∞

0
dλ

∫
x<y

dy
m+(λ, y)m−(λ, x)

W (λ)
V (y)eiλ(x−y)λχ(λ)=R0(λ2 + i0)g(y).

By Fubini’s Theorem we can exchange the order of integration and rewrite (3.65) as follows:
(3.66)

A1g(x) =
∫

x<y
Fλ→ξ

(
m+(λ, y)m−(λ, x)

W (λ)
χ(λ)1(0,+∞)(λ)=R0(λ2 + i0)g(y)

)∣∣∣∣∣
ξ=x−y

V (y)dy

where F denotes the standard Fourier transform from the λ to the ξ variable and 1(0,+∞) is the
characteristic function of the half line (0,+∞).

Now choose a C∞0 cutoff function ψ(λ) such that ψ ≡ 1 on suppχ ; then the function

G(λ, x, y) =
m+(λ, y)m−(λ, x)

W (λ)
χ(λ)1(0,+∞)(λ)=R0(λ2 + i0)g(y)

can be written as a product

(3.67) G(λ, x, y) = F1(λ, y)F2(λ, x)F3(λ)F4(λ, y)

where

F1(λ, y) = m+(λ, y)ψ(λ), F2(λ, x) = m−(λ, x)ψ(λ), F3(λ) =
ψ(λ)
W (λ)

and
F4(λ, y) = χ(λ)1(0,+∞)(λ)=R0(λ2 + i0)g(y).
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We are interested in the Fourier transform of G with respect to λ; this can be written as the
convolution of the transforms F̂j , j = 1, 2, 3, 4.

By Lemma 3.5 (see (3.53)) we already know that

(3.68) ‖F̂3(ξ)‖L1
ξ

= C0 <∞.

Consider now F̂1(ξ, y), which can be written

F̂1(ξ, y) = F((m+(λ, y)− 1)ψ1 + ψ1) = B+(−ξ/2, y) ∗ ψ̂1 + ψ̂1

(the inessential factor 1/2 comes from the nonstandard Fourier transform used in Definition
(3.36), and the minus sign from the conjugation). Recalling Lemma 3.3, we get

‖F̂1(·, y)‖L1 ≤

{
C for y ≥ 0
C〈y〉 for y ≤ 0

‖F̂2(·, x)‖L1 ≤

{
C for x ≤ 0
C〈x〉 for x ≥ 0

for some C depending on ‖V ‖L1
1
. Recalling that in (3.66) we have x < y, we can write

‖F(F1F2)‖L1
ξ
≤ ‖F̂1(·, y)‖L1‖F̂2(·, x)‖L1 ≤


C〈y〉 for x < y < 0
C for x < 0 < y

C〈x〉 ≤ C〈y〉 for 0 < x < y

and in conclusion

(3.69) ‖F(F1F2)‖L1
ξ
≤ C(‖V ‖L1

1
) · 〈y〉.

Coming back to G(λ, x, y), if we put together (3.68) and (3.69) and we use Young’s inequality,
we have proved that, for x < y,

(3.70) ‖Ĝ(·, x, y)‖L∞ ≤ C(‖V ‖L1
1
) · 〈y〉 · ‖F̂4(·, y)‖L∞ .

It remains to estimate

‖F̂4(·, y)‖L∞ ≡ sup
ξ

∣∣Fλ→ξ

(
χ(λ)1(0,+∞)(λ)λ=R0(λ2 + i0)g(y)

)∣∣ .
We have

F
(
χ(λ)1(0,+∞)(λ)λ=R0(λ2 + i0)g(y)

)
=

∫ ∞

0
eiλξλχ(λ)=R0(λ2 + i0)g(y)dλ

≡ Ceiξ
√

H0χ(
√
H0)g

by the spectral theorem. Now we remark that the function

U(ξ, y) = eiξ
√

H0χ(
√
H0)g

is a solution of the one dimensional wave equation

Uξξ +H0U ≡ Uξξ − Uyy = 0,

with initial data

U(0, y) = U0(y) = χ(
√
H0)g, Uξ(0, y) = U1(y) = i

√
H0χ(

√
H0)g.

By the explicit representation formula of the solution to the wave equation we have then

U(ξ, y) =
U0(ξ + y) + U0(ξ − y)

2
+

1
2

∫ ξ+y

ξ−y
U1(σ)dσ.
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The first term is easy to bound:

(3.71)
∣∣∣∣U0(ξ + y) + U0(ξ − y)

2

∣∣∣∣ ≤ ‖U0‖L∞ = ‖χ(
√
H0)g‖L∞ ≤ C‖g‖L∞

since χ(
√
H0) is bounded on L∞ as it is well known. On the other hand, we can write

U1(y) = i
√
H0χ(

√
H0)g(y) =

∫
eiλy|λ|χ(λ)ĝ(λ)dλ ≡

∫
eiλy(−iλ)χ(λ)

iλ

|λ|
ĝ(λ)dλ

and this implies, apart from a constant,

U1(y) =
d

dy
χ(
√
H0)Hg =⇒

∫ ξ+y

ξ−y
U1(σ)dσ = χ(

√
H0)Hg(ξ + y)− χ(

√
H0)Hg(ξ − y).

In conclusion ∣∣∣∣12
∫ ξ+y

ξ−y
U1(σ)dσ

∣∣∣∣ ≤ ‖χ(
√
H0)Hg‖L∞ ≤ C‖Hg‖L∞

and summing up we have proved that

(3.72) ‖F̂4‖L∞ξ,y
≤ C‖U‖L∞ξ,y

≤ C (‖g‖L∞ + ‖Hg‖L∞) .

By (3.66), (3.70) and (3.72) we finally obtain

‖A1g‖L∞ ≤ C(‖V ‖L1
1
) · (‖g‖L∞ + ‖Hg‖L∞) .

The operator A2 can be estimated in a similar way, and this concludes the proof of the Lemma.
�

We pass to the analysis of the resonant case W (0) = 0.

Lemma 3.8. Assume V ∈ L1
2 and we are in the resonant case W (0) = 0. Let Φ(λ2) be a

smooth compactly supported cutoff function. Then the following estimate holds:

(3.73) ‖W+Φ(H0)g‖L∞ ≤ C (‖g‖L∞ + ‖Hg‖L∞) ∀g ∈ L1 ∩ L∞ ∩ L∞H
where H is the Hilbert transform on R, and hence can be extended to bounded operators on Lp,
for all 1 < p <∞. The same estimate holds for the conjugate operators Φ(H0)W ∗

±.

Proof. As in the proof of Lemma 3.7, the problem is reduced to estimating the L∞ norm
of Ag = A1g + A2g where Ajg are defined as above (see (3.65)). The new difficulty now is of
course the denominator W (λ) which vanishes at λ = 0. Thus we decompose Ag into several
terms:

Ag = I1 + I2 + II1 + II2 + III1 + III2

where, recalling the notation (3.51).

(3.74) I1 =
∫ +∞

0
dλ

∫
x>y

dy
−λ

W (−λ)
n+(−λ, y)m−(−λ, x)eiλ(y−x)V (y)λχ(λ)=R0(λ2 + i0)g(y),

(3.75) II1 =
∫ +∞

0
dλ

∫
x>y

dy
−λ

W (−λ)
m+(0, y)n−(−λ, x)eiλ(y−x)V (y)λχ(λ)=R0(λ2 + i0)g(y),

(3.76) III1 =
∫ +∞

0
dλ

∫
x>y

dy
m+(0, y)m−(0, x)

W (−λ)
V (y)eiλ(y−x)λχ(λ)=R0(λ2 + i0)g(y).



84 3. DISPERSION VIA WAVE OPERATORS

while as usual, I2, II2 and III2 have symmetric expressions with x and y interchanged. We
notice the expression for III2 which will be necessary in the following:

(3.77) III2 =
∫ +∞

0
dλ

∫
x<y

dy
m+(0, x)m−(0, y)

W (−λ)
V (y)eiλ(x−y)λχ(λ)=R0(λ2 + i0)g(y)

Since W (0) = 0, we know that for λ = 0 the Jost functions f+(0, x) ≡ m+(0, x) and
f−(0, x) ≡ m−(0, x) are linearly dependent, i.e.,

(3.78) m−(0, x) = c0 ·m+(0, x)

for some constant c0 6= 0. Moreover, by definition m±(0, x) → 1 as ±x→∞, and together with
(3.78) this implies that m±(0, x) are bounded on R:

(3.79) |m±(0, x)| ≤ c1, x ∈ R.

Finally, when W (0) = 0 we have (see e.g. [5])

(3.80)
∫ +∞

−∞
V (y)m±(0, y)dy = 0.

The terms of type I and II are handled in a way very similar to the proof of Lemma 3.7.
In order to estimate the term I1, we write it as

I1 =
∫

x<y
Fλ→ξ (G(λ, x, y))|ξ=y−x V (y)dy, G(λ, x, y) = F1(λ, y)F2(λ, x)F3(λ)F4(λ, y),

where, choosing a C∞0 (R) cutoff function ψ such that ψ ≡ 1 on suppχ,

F1(λ, y) = n+(−λ, y), F2(λ, x) = m−(−λ, x)ψ(λ), F3(λ) =
ψ(λ)λ
W (−λ)

and

F4(λ, y) = λχ(λ)1(0,+∞)(λ)=R0(λ2 + i0)g(y).

Then we have

sup
x<y

‖Ĝ(·, x, y)‖L∞ ≤ sup
x<y

(
‖F̂1(·, y)‖L1 · ‖F̂2(·, x)‖L1 · ‖F̂3‖L1 · ‖F̂4(·, y)‖L∞

)
Using Lemma 3.5 we see that ‖F̂3‖L1 = C0 <∞, and by Lemma 3.2 and Corollary 3.1 we obtain
as before (by considering the three cases x < y < 0, x < 0 < y and 0 < x < y)

‖F̂1(·, y)‖L1 · ‖F̂2(·, x)‖L1 ≤ C(‖V ‖L1
2
) · 〈y〉2 for x < y.

Thus we arrive at

‖Ĝ(·, x, y)‖L∞ ≤ C(‖V ‖L1
2
) · 〈y〉2 · ‖F̂4(·, y)‖L∞

and the remaining term ‖F̂4(·, y)‖L∞ has already been estimated in (3.72). Summing up we
have proved that

|I1| ≤ C(‖V ‖L1
2
) · (‖g‖L∞ + ‖Hg‖L∞) .

The estimate of I2 is completely analogous; the estimate of the terms II1 and II2 is even easier,
keeping into account that the functions m±(0, x) are bounded on R (see (3.79)).
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Consider now the more delicate terms III1, III2. Since m−(0, x) = c0 ·m+(0, x) we can put
the two integrals back together as follows:

III1 + III2 = c0

∫ +∞

0
dλ

∫
dy
m+(0, y)m+(0, x)

W (−λ)
V (y)eiλ|y−x|λχ(λ)=R0(λ2 + i0)g(y).

We decompose this integral in a different way:

III1 + III2 = c0IV1 + c0IV2

where

(3.81) IV1 =
∫ +∞

0
dλ

∫
dy
m+(0, y)m+(0, x)

W (−λ)
V (y)

[
eiλ|y−x| − eiλ|x|

]
λχ(λ)=R0(λ2 + i0)g(y)

and

(3.82) IV2 =
∫ +∞

0
dλ

∫
dy
m+(0, y)m+(0, x)

W (−λ)
V (y)eiλ|x|λχ(λ)=R0(λ2 + i0)g(y).

Using the identity

eiλ|y−x| − eiλ|x| =
∫ 1

0
eiλ(s|x−y|+(1−s)|x|)ds · iλ · (|x− y| − |x|)

and Fubini’s theorem we can rewrite IV1 as follows:

IV1 =
∫ 1

0
ds

∫
Fλ→ξ

(
λ

W (−λ)
λχ(λ)1(0,+∞)(λ)=R0(λ2 + i0)g(y)

)∣∣∣∣
ξ=s|x−y|+(1−s)|x|

K dy

where
K = K(x, y) = im+(0, y)m+(0, x)V (y) (|x− y| − |x|) ;

notice that

(3.83) |K(x, y)| ≤ C|y| · |V (y)|

by (3.79). At this point, we can proceed as above using Lemma 3.5 and (3.72) to obtain∥∥∥∥Fλ→ξ

(
λ

W (−λ)
λχ(λ)1(0,+∞)(λ)=R0(λ2 + i0)g(y)

)∥∥∥∥
L∞ξ

≤ C(‖V ‖L1
2
) · (‖g‖L∞ + ‖Hg‖L∞) .

whence the estimate of IV1 follows immediately.
To conclude the proof, it remains to estimate the term IV2. By property (3.80) we have

trivially

(3.84)
∫ +∞

0
dλ

∫
dy
m+(0, y)m+(0, x)

W (−λ)
V (y)eiλ|x|λχ(λ)=R0(λ2 + i0)g(0) ≡ 0

(indeed, in the inner integral only V (y) and m+(0, y) depend on y). Thus we can subtract (3.84)
from IV2 and rewrite it in the form

IV2 =
∫ +∞

0
dλ

∫
dy
m+(0, y)m+(0, x)

W (−λ)
V (y)eiλ|x|λχ(λ)

[
=R0(λ2 + i0)g(y)−=R0(λ2 + i0)g(0)

]
.

We now use the elementary identity

=R0(λ2 + i0)g(y)−=R0(λ2 + i0)g(0) =
∫ y

0
∂s

(
=R0(λ2 + i0)g(s)

)
ds
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and we obtain, after applying Fubini’s theorem,

(3.85) IV2 =
∫
dy

∫ y

0
dsm+(0, y)m+(0, x)V (y)

∫ +∞

0
eiλ|x|

λχ(λ)
W (−λ)

∂s

(
=R0(λ2 + i0)g(s)

)
dλ

Since

=R0(λ2 + i0)g(x) = − 1
4λ

∫ ∞

−∞
(eiλ(x−y) + e−iλ(x−y))g(y)dy = − 1

4λ
(eiλxĝ(λ) + e−iλxĝ(−λ))

we can write for λ > 0

∂x=R0(λ2 + i0)g(x) = − i

4λ
· λ ·

(
λ

|λ|
eiλxĝ(λ) +

−λ
| − λ|

e−iλxĝ(−λ)
)

and comparing the two identities and recalling the characterization of the Hilbert transform as
a Fourier multiplier, we arrive at the formula

∂x=R0(λ2 + i0)g(x) = Cλ=R0(λ2 + i0)Hg(x)

for a suitable constant C. Thus, by (3.85), we obtain (apart from a constant)

IV2 =
∫
dy

∫ y

0
dsm+(0, y)m+(0, x)V (y)

∫ +∞

0
eiλ|x|

λ

W (−λ)
λχ(λ)=R0(λ2 + i0)Hg(s)dλ

and this can be estimated exactly as the other terms considered above.
The proof is concluded. �



CHAPTER 4

Nonlinear Schrödinger equations

The final chapter of this thesis is devoted to some nonlinear applications of the dispersive-
type estimates we introduced in the previous part of the work. A lot of physical models are
usually described by nonlinear equations, and the first natural mathematical questions for these
equations are related to existence and unicity of the solutions. Here we give two examples of
nonlinear Schrödinger equations, and point out the attention on existence, unicity and blow-up
of the solutions. The reference for the details of this chapter are [38] and [40].

1. NLS with time dependent coefficients

The interest for nonlinear Schrödinger equations finds motivations in the great number of
physical models they describe. Here we consider the following problem:

(4.1)
{
iut(t, x) + a(t)∆u(t, x) = ±|u|γ−1u(t, x)
u(0, x) = f(x),

where u : R × Rn → C, f : Rn → C, n ≥ 2, γ ≥ 1 and a(t) ≥ 0 is a real valued function. In
analogy with the case a(t) ≡ 1, we frequently refer to defocusing equation when we take the
positive sign at the right hand side of (4.1), otherwise we speak of focusing equation.

It is well known that the Cauchy problem (4.1), in the case a(t) = 1, is well posed in L2 for
γ < 1+ 4

n and in H1 for γ < 1+ 4
n−2 ; in the critical cases, global well-posedness holds, provided

the initial data are small enough, while blow up phenomena can occur for the focusing equation
when the initial datum is not assumed to be small (see [20], [46], [63]). If a(t) > 0 is strictly
positive, the same techniques used for the constant case a(t) = 1 permit to obtain the same
classical results.

On the other hand, the literature for the case in which a(t) ≥ 0 can vanish is very small; this
case can be regarded as a model for a nonrelativistic particle with variable speed of propagation
(or equivalently with variable mass), and we are interested in the treatment of the case in which
the speed can vanish (or equivalently the mass can explode). The motivation for our approach to
this kind of problem is strictly mathematical: the question is how the degeneration of operator
a(t)∆ can influence the critical exponents γ for the well-posedness of the Cauchy problem (4.1).

The analogous situation for the semilinear wave equation was treated in [28] first, and
followed in [29], [34], [39], [72]: the main step is to reduce the problem to a wave equation with
a time-dependent potential of order zero, with a suitable change in the time variable, and then
find suitable a priori energy estimates for the solution. The algebraic structure of Schrödinger
equation permits to regard equation (4.1) as a standard nonlinear Schrödinger equation, as
it is shown in Section 3; this gives the possibility to use the linear technology for the free
Schrödinger equation (namely Strichartz estimates), with some refinement, and it represents a

87
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strong difference with the case of the wave equation, in which the resulting potential does not
allow to use classical linear estimates, because it is too singular.

In what follows, the coefficient a will satisfy the following assumptions:

(4.2) a ∈ C(R), a ≥ 0;

(4.3) a vanish on a discrete set Z = {tn}n=0,1,,... ⊂ R with maximum order λ > 0;

(4.4) ∃ε > 0 : a′(t) < 0, if ti − ε < t < ti, and a′(t) > 0, if ti < t < ti + ε, i ∈ N.

The small ε in (4.4) is uniform with respect to i; assumption (4.4) avoids the possibility that a
could reach the zeroes with infinite oscillations. Moreover observe that the primitive function

(4.5) A(t) =
∫ t

0
a(s) ds

is well defined at each t ∈ R.
The simplest example is given by

(4.6) a(t) = |t− t0|λ

with λ > 0.
The natural questions of well-posedness of the Cauchy problem (4.1) in L2

x and H1
x are solved

in the main theorems of this paper. The sketch of the proofs is standard: a contraction argument
based on Strichartz-type estimates permits to prove local (in time) well-posedness in the natural
spaces, then the continuation to global solution is performed by means on the conservation laws
of equation (4.1), that are investigated in Section 4. The lack of energy conservation for this
equation (see Section 4) represent a strong difference with the case a(t) ≡ 1 and hence the proof
of global well-posedness in C(R;H1) requires a more direct investigation on the lifespan of the
local solutions (see Section 7).

In the special case when a is given by (4.6), the equation is invariant under the following
scaling

(4.7) vε(t, x) = εαu(εβt, εx),

with

(4.8) α =
2

(λ+ 1)(γ − 1)
, β =

2
λ+ 1

.

The mass is conserved by this scaling if

(4.9) γ = 1 +
4

n(λ+ 1)
,

while the H1
x-norm is conserved for

(4.10) γ = 1 +
4

(n− 2)(λ+ 1)
.

This suggests that (4.9) and (4.10) should be the critical powers for the L2 and H1 well-
posedness, respectively, and we can state our main results:
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Theorem 4.1. Let n ≥ 2, a satisfy assumptions (4.2), (4.3), (4.4) and let λ > 0 be the
highest order of the zeroes of a. Assume that

1 ≤ γ < 1 +
4

n(λ+ 1)
;

then, for each initial datum f ∈ L2 there exists a unique global solution u ∈ C(R;L2) of the
Cauchy problem (4.1).

In the critical case
γ = 1 +

4
n(λ+ 1)

,

we have global well-posedness in C(R;L2), provided ‖f‖L2 < ε0, for some ε0 > 0 sufficiently
small.

In the following Theorem we state the local H1 well-posedness for equation (4.1):

Theorem 4.2. Let n ≥ 2, a satisfy assumptions (4.2), (4.3), (4.4) and let λ > 0 be the
highest order of the zeroes of a. Assume that

1 ≤ γ < 1 +
4

(n− 2)(λ+ 1)
;

then, for each initial datum f ∈ H1 there exists a unique local solution u ∈ C(I;H1) of the
Cauchy problem (4.1), where I is the greatest interval including the origin in which a does not
vanish. In the critical case

γ = 1 +
4

(n− 2)(λ+ 1)
we have local well-posedness in C(I;H1), provided ‖f‖H1 < ε0, for some ε0 > 0 sufficiently
small.

Remark 4.1. The result of previous theorem includes also the case in which a(0) = 0; in
that case the interval I contains the origin and does not contain any other zero point for the
funcion a. We also remark that the subcritical result in Theorem 4.2 is already known (see for
example Lemma 3.1 in [21]).

We conclude with the following global theorem (valid only in the sub-critical range):

Theorem 4.3. Let n ≥ 3 and let a satisfy assumptions (4.2), (4.3), (4.4) and let λ > 0 be
the highest order of the zeroes of a. Assume that

(4.11) 1 ≤ γ < 1 +
4

(n− 2)(λ+ 1)
;

then, for each initial datum f ∈ H1 there exists a unique global solution u ∈ C(R;H1) of the
defocusing Cauchy problem (4.1).

In the case n = 2, the same result holds, under the more restrictive assumption

(4.12) 1 ≤ γ ≤ 1 +
2(λ+ 1)

λ
.

Let n ≥ 3 and let us impose the above assumptions, with the more restrictive condition

(4.13) 1 ≤ γ < 1 + min
{

4
(n− 2)(λ+ 1)

, 1 +
4
n

}
;
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then, for each initial datum f ∈ H1 there exists a unique global solution u ∈ C(R;H1) of the
focusing Cauchy problem (4.1).

In the case n = 2, the same result holds, under the more restrictive assumption

(4.14) 1 ≤ γ < min
{

1 +
2(λ+ 1)

λ
, 1 +

4
n

}
.

Remark 4.2. Observe that Theorems 4.1 and 4.3 (that are in fact valid also for λ = 0) cover
the known results for a ≡ 1, also in the case n = 2 (in fact the critical exponent there is ∞).

The crucial role in the contraction argument for the local well-posedness is played by
Strichartz estimates. We recall here some well known facts, starting with the following Def-
inition:

Definition 4.1. Let n ≥ 2; a couple (p, q) is said to be Schrödinger admissible if the
following conditions are satisfied:

(4.15)
2
p

=
n

2
− n

q
,

(4.16) p > 2 if n = 2, p ≥ 2 if n ≥ 3.

The Schrödinger propagator eit∆ is unitary on L2(Rn) and satisfies the following Strichartz
estimates

(4.17) ‖eit∆f‖Lp(I;Lq) ≤ C‖f‖L2 ,

(4.18)
∥∥∥∥∫ t

0
ei(t−s)∆F (s, ·) ds

∥∥∥∥
Lp(I;Lq)

≤ C‖F‖Lep′ (I;Leq′ ),

for all Schrödinger admissible couples (p, q), (p̃, q̃), with p̃′ and q̃′ the Hölder conjugates (see
[47], [66]).

In order to use a contraction argument, we need some refinement of estimates (4.17) and
(4.18). In the last years, several papers (see e.g. [3], [79]) treated the question of extending
Strichartz estimates to the more general setting of Lorentz spaces Lp,r, that are usually also
defined by real interpolation of Lp spaces (see [10]). In particular, it has been recently proved
in [3] that, for any admissible pair (p, q), (p̃, q̃) and r with 2 < r ≤ p, we have

(4.19)
∥∥∥∥∫ t

0
ei(t−s)∆F (s)ds

∥∥∥∥
Lp,r(I;Lq)

≤ C‖F‖
Lep′,2(I;Leq′ )∩L2(I;L

2n
n+2 ,2

)
.

The advantage of this estimate is that it reaches the endpoint, but the space Lep′,2(I;Leq′) ∩
L2(I;L

2n
n+2

,2) is too ”small” to be mapped in a generally bigger space and perform a contraction.
Hence we need to prove directly a slightly different family of estimates, as stated in the following
Theorem:

Theorem 4.4. For any Schrödinger admissible pair (p, q), (p̃, q̃), with 2 < p, p̃ <∞, and r, s
satisfying

(4.20) p̃′ ≤ s′ < r ≤ p, r ≥ 2
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the following estimates hold:

(4.21) ‖eit∆f‖Lp,r(I;Lq,r) ≤ C‖f‖L2 ,

(4.22)
∥∥∥∥∫ t

0
ei(t−s)∆F (s, ·) ds

∥∥∥∥
Lp,r(I;Lq,r)

≤ C‖F‖Lep′,s′ (I;Leq′,s′ ).

Remark 4.3. We find that estimates (4.21) and (4.22) are of independent interest. They
involve Lorentz spaces, both t and x variables, and the nontrivial fact is that these spaces are
not characterized as real interpolation of mixed Lp

tL
q
x spaces, except for some very particular

cases (see for example [10], [26]); our proof is based on direct dispersive methods. Moreover,
we remark that the space at the right hand side in (4.22) is bigger than the space at the right
hand side in (4.19), hence (4.22) is stronger in this sense. On the other hand, Theorem 4.4 does
not comprehend the endpoint estimate, that actually is not needed in the proof of the previous
well-posedness theorems.

The rest of the paper is organized as follows: Section 2 is devoted to the proof of Theorem
4.4; in Section 3, by algebraic computations, we transform equation (4.1) into a nonlinear
Schroedinger equation with constant coefficients for the linear part; in Section 4 we investigate
on the conservation laws of equation (4.1), and in the final part (Sections 5, 6 and 7) we prove
Theorems 4.1, 4.2 and 4.3.

2. Strichartz estimates

This section is devoted to the proof of the generalized Strichartz estimates in Theorem 4.4.
We prove (4.21) and (4.22) by a standard TT ∗ method based on dispersive estimates (see [47]).
For simplicity of notations, we denote the Schrödinger group by U(t) = eit∆. Let us start by
the well known decay

(4.23) ‖U(t)f‖Lq ≤ t
−n

2
+n

q ‖f‖Lq′ ,

for q ≥ 2, and 1/q + 1/q′ = 1. By interpolation of Lq-dispersive estimates, we immediately
obtain their generalization to Lorentz spaces:

(4.24) ‖U(t)f‖Lq,r ≤ t
−n

2
+n

q ‖f‖Lq′,r ,

for all q, r such that
2 < q <∞, r ≥ 1.

Hence we can estimate∥∥∥∥∫ t

0
U(t− s)F (s, ·)ds

∥∥∥∥
Lq,r

x

≤
∫ t

0
‖U(t− s)F (s, ·)‖Lq,r

x
ds

≤
∫ t

0
|t− s|−

n
2
+n

q ‖F (s, ·)‖
Lq′,r

x
ds,(4.25)

by (4.24). Then, for the mixed norm we have:

(4.26)
∥∥∥∥∫ t

0
U(t− s)F (s, ·)ds

∥∥∥∥
Lp,r(I;Lq,r)

≤
∥∥∥|t|−n

2
+n

q ∗ ‖F (s, ·)‖
Lq′,r

x

∥∥∥
Lp,r(I)

;
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by Young inequality in Lorentz spaces (see [80]), observing that

|t|−α ∈ L
1
α

,∞, α > 0,

we obtain

(4.27)
∥∥∥∥∫ t

0
U(t− s)F (s, ·)ds

∥∥∥∥
Lp,r(I;Lq,r)

≤ ‖F‖Lp′,r(I;Lq′,r) ,

under the admissibility conditions
2
p

=
n

2
− n

q
, 2 < p <∞.

Observe that the space at the right hand side of (4.27) is not the dual of the space at the left
hand side, in fact

(Lp,r)′ = Lp′,r′ .

We claim that estimate (4.27) can be improved, substituting r with r′ at the right hand side.
To this aim, let us consider the operator

TF =
∫
U(t)F (t, ·)dt,

and

‖TF‖2
L2 =

∫ (∫
U(t)F (t, ·)dt

∫
U(−s)F (s, ·)ds

)
dx.

By Fubini’s Theorem we integrate with respect to s first and we use Hölder inequality in Lorentz
spaces in t and x to obtain

(4.28) ‖TF‖2
L2 ≤ ‖F‖Lp′,r′ (I;Lq′,r′ )

∥∥∥∥∫ U(t− s)F (s, ·)ds
∥∥∥∥

Lp,r(I;Lq,r)

;

applying (4.27) we get

(4.29) ‖TF‖2
L2 ≤ ‖F‖Lp′,r′ (I;Lq′,r′ )‖F‖Lp′,r(I;Lq′,r).

Now, since r ≥ 2 (i.e. r′ ≤ r) by assumption (4.20), and since

Lp,r ⊂ Lp,s, r ≤ s,

by (4.29) we conclude

(4.30) ‖TF‖L2 ≤ ‖F‖Lp′,r′ (I;Lq′,r′ ),

for any Schrödinger admissible couple (p, q) with 2 < p < ∞ and r ≥ 2. Observe that U(t) is
the adjoint operator of T , hence the dual of estimate (4.30) reads

(4.31) ‖U(t)f‖Lp,r(I;Lq,r) ≤ ‖f‖L2 ,

and this proves (4.21). Mixing (4.21) and (4.30) we also obtain

(4.32)
∥∥∥∥∫ U(t− s)F (s, ·)ds

∥∥∥∥
Lp,r(I;Lq,r)

≤ ‖F‖Lep′,s′ (I;Leq′,s′ ),
where the admissible pairs (p, q), (p̃, q̃) and the Lorentz exponents r, s ≥ 2 are unrelated. To
conclude the proof of (4.22) it is sufficient to apply Proposition 2.1 in [3], that is the Lorentz
generalization of the well known result by Christ and Kiselev in the Lp setting (see [22]).
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3. Reduction to a nonlinear Schrödinger equation

As a first step we reduce equation (4.1) into a nonlinear Schrödinger equation with constant
coefficients, by a suitable change of variables. Let us consider the function A(t), defined in
(4.5); by the assumptions (4.2), (4.3), (4.4), A is strictly increasing, then the inverse function is
well-defined and continuous at each t ∈ R; we will denote with c(t) the inverse. Differentiating,
we notice that c solves the Cauchy problem

(4.33)
{
c′(t)a(c(t)) = 1
c(0) = 0.

Then c is almost everywhere differentiable, except for the finite number of points whose images
via c are the zeroes of a. In such points, the first derivative c′ is singular, and we can easily
estimate the order of the singularities, with the following Lemma, whose proof is an immediate
consequence of assumptions (4.2), (4.3), (4.4):

Lemma 4.1. Let a satisfy assumptions (4.2), (4.3) and (4.4) and let λ be the highest order
of the zeroes of a; let us consider the set

Z := {t ∈ R : a(c(t)) = 0}.

Then, c′ has a pole in each t0 ∈ Z, and the highest order of these singularities is λ/(λ+ 1). In
particular, for any real interval I, we have

(4.34) c′ ∈ L
λ+1

λ
,∞(I).

Now, let u be a solution of (4.1), and let us define

(4.35) w(t, x) := u(c(t), x);

we easily check that w solves

(4.36)
{
iwt + ∆w = ±c′(t)|w|γ−1w
w(0, x) = f(x).

In what follows, we are going to look to solutions of (4.1) (or equivalently (4.36) of the integral
form

(4.37) u(t) = eiA(t)∆f ± i

∫ t

0
eiA(t−s)∆|u|γ−1u(s, ·) ds,

(4.38) w(t) = eit∆f ± i

∫ t

0
ei(t−s)∆c′(s)|w|γ−1w(s) ds.

4. Conservation laws

The aim of this section is to present the main conservation properties of equation (4.1), to
be applied in the passage from local to global well-posedness.

We start by the conservation of mass, i.e. the L2
x-norm of the solution. By a formal com-

putation, multiplying the equation in (4.1) by u, integrating and taking the imaginary parts of
the resulting identity we obtain

(4.39) ‖u(t)‖L2 = ‖u(0)‖L2 .
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Clearly, this computation makes sense if some regularity property is assumed for u: more pre-
cisely, if u is a, H1 solution of (4.1), the above identity holds. In view to prove the well-posedness
of (4.1) in C(R;L2), we need to extend the a priori conservation (4.39) to a class of solutions
with less regularity. By the change of variables (4.35), it is sufficient to prove the property for
any solution w of (4.36): we prove the following Lemma.

Lemma 4.2. Let U(t) = eit∆, f ∈ L2 and let w be a solution of the integral equation

(4.40) w(t) = U(t)f ± i

∫ t

0
U(t− s)(c′(s)|w(s)|γ−1w(s))ds,

with w ∈ Lp,r(I;Lq,r), for some Schrödinger admissible pair (p, q), and r ≥ 2. Then the mass
of w is conserved, i.e. (4.39) holds.

Proof. The argument is identical to the one introduced by Ozawa in [81], Proposition 1;
we write here the details for sake of completeness. Let us rewrite (4.40) as

(4.41) U(−t)w(t) = f ± i

∫ t

0
U(−s)(c′(s)|w(s)|γ−1w(s))ds.

Since U(t) is unitary on L2 we have

‖w(t)‖2
L2 = ‖U(−t)w(t)‖2

L2

= ‖f‖2
L2 ± 2=

(
f,

∫ t

0
U(−s)c′(s)|w(s)|γ−1w(s)ds

)
+
∥∥∥∥∫ t

0
U(−s)c′(s)|w(s)|γ−1w(s)ds

∥∥∥∥2

L2

.(4.42)

Following [81], we exchange the order of the time integral and the scalar product in the middle
term at the right hand side of (4.42), that turns to be equal to

(4.43) ±2=
∫ t

0

(
U(s)f, c′(s)|w(s)|γ−1w(s)

)
ds;

this has to be interpreted as the duality coupling on(
L∞(I;L2) ∩ Lp,r(I;Lq+1,r)

)
×
(
L1(I;L2) + Lp′,r′(I;L

q+1
q

,r′)
)
,

with the choice

p =
4(q + 1)
n(q − 1)

.

Finally, a direct computation shows that the last term at the right hand side of (4.42) cancels
out the quantity (4.43) (see [81] for details), hence the proof is complete. �

In view to prove global H1-well-posedness for (4.1) we introduce the defocusing and focusing
energies Ed(t), Ef (t), defined by

(4.44) Ed(t)[u] =
1
2
a(t)‖∇u(t)‖2

L2 +
1

γ + 1
‖u(t)‖γ+1

Lγ+1 ,

(4.45) Ef (t)[u] =
1
2
a(t)‖∇u(t)‖2

L2 −
1

γ + 1
‖u(t)‖γ+1

Lγ+1 .
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As for the mass, a formal computation consisting in multiplying the equation (4.1) by ut, inte-
grating by parts with respect to x and taking the resulting real parts, we see that

(4.46) E′
d(t)[u] =

1
2
a′(t)‖∇u‖2

L2 ,

(4.47) E′
f (t)[u] =

1
2
a′(t)‖∇u‖2

L2 .

In terms of the solution w of (4.36), the energies are defined as

(4.48) Ed(t)[w] =
1
2
‖∇w(t)‖2

L2 +
c′(t)
γ + 1

‖w(t)‖γ+1
Lγ+1 ,

(4.49) Ef (t)[w] =
1
2
‖∇w(t)‖2

L2 −
c′(t)
γ + 1

‖w(t)‖γ+1
Lγ+1 ,

where c is defined by (4.33). The same formal computations as above lead to the identities

(4.50) E′
d(t)[w] =

c′′(t)
γ + 1

‖w‖γ+1
Lγ+1 ,

(4.51) E′
f (t)[w] =

c′′(t)
γ + 1

‖w‖γ+1
Lγ+1 ,

that are equivalent to (4.46) and (4.47). All these computations makes sense under the assump-
tion of H2-regularity for u or equivalently w; as for the mass conservation we need to show that
identities (4.46), (4.47), (4.50), (4.51) are true for H1-solutions of (4.1) or equivalently (4.36):
hence we state the following Lemma:

Lemma 4.3. Let f ∈ H1 and let w be a solution of the integral equation (4.40), with w ∈
Lp,r(I;W 1

q′r), for some Schrödinger admissible pair p, q, and r ≥ 2. Then (4.50) and (4.51)
hold.

We omit here the details of the proof, that follows the same lines of Proposition 2 in [81];
we only remark that the inverse change of (4.35) permits to obtain estimates (4.46) and (4.47)
for solutions u of (4.1) satisfying the same assumptions of the previous Lemma.

It is clear from the above estimates that both in the defocusing and in the focusing case the
energy is not conserved, and this is a difference with the case a(t) ≡ 1. By (4.46), E′

d[u] has
the sign of a′, hence it is clear that, by the assumptions on a, the energy cannot blow up in any
point t. This gives the following information about the gradient of u:

(4.52) a(t)‖∇u‖2
L2 ≤ Ed(t)[u] ≤ C.

As a consequence, the only points in which ‖∇u‖L2 can blow up are the zeroes of a, and the left
hand side of (4.52) is bounded for all t.

The situation for the focusing equation is different: using the Gagliardo-Niremberg inequality

(4.53) ‖u‖γ+1
Lγ+1 ≤ C‖u‖2+(γ−1) 2−n

2

L2 ‖∇u‖(γ−1)n
2

L2 ,

we see by (4.47) that the energy is bounded from below by

(4.54) Ef (t)[u] ≥ ‖∇u‖2
L2

(
1
2
a(t)− C

γ + 1
‖u‖2+(γ−1) 2−n

2

L2 ‖∇u‖(γ−1)n
2
−2

L2

)
.
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Now, suppose by contradiction that ‖∇u(t)‖L2 blows up at some t such that a(t) 6= 0. Then, if
γ < 1 + 4

n (in other words (γ − 1)n
2 − 2 < 0), as the mass is conserved, the right hand side in

(4.54) is positive and we have the estimate

(4.55) ‖∇u(t)‖2
L2 ≤ CEf (t)[u],

for some C > 0; hence also the energy blows up in t. By (4.47), (4.55) and the Gronwall’s
Lemma we see that Ef (t)[u] <∞, and this is a contradiction. As a consequence, the only points
at which the energy can blow up are the zeroes of a. On the other hand, suppose that a(ti) = 0
and

‖∇u(t)‖L2 →∞,

as t→ t−i , in such a way that

(4.56)
1
2
a(t)− C

γ + 1
‖u‖2+(γ−1) 2−n

2

L2 ‖∇u‖(γ−1)n
2
−2

L2 ≥ 0,

if t is very close to ti (in other words let us assume that the Ḣ1-norm blows up sufficiently fast).
Then, by (4.54) we get

(4.57) Ef (t)[u] ≥ Ca(t)‖∇u‖2
L2 ;

hence the energy is positive and, by (4.47), we have Ef (ti) < ∞ (because a′ is negative at the
left of ti). This means that (4.52) holds also in this case, i.e.

(4.58) a(t)‖∇u‖2
L2 ≤ C,

for all t. We traduce (4.52) and (4.58) in terms of w, in fact by (4.35), (4.33) and (4.33) we
immediately obtain the following a priori estimate:

(4.59) ‖∇w‖2
L2 ≤ C(ti − c(t))−

λ
λ+1 ,

for each ti such that a(ti) = 0 and c(t) close to ti. This estimate will be crucial in the proofs of
the global results.

5. L2 global well-posedness

This Section is devoted to the proof of Theorem 4.1. Let us consider a solution w of (4.36)
and denote by g(w) = ±c′(t)|w|γ−1.

The solution of (4.36) is obtained as a fixed point of the map φ defined by:

(4.60) φ(w)(·) = U(t)f(·)− i

∫ t

0
U(t− s)g(w(s, ·)) ds,

where as usual we denote U(t) = eit∆. In what follows, we will prove that φ is a contraction in
suitable Banach spaces, by means of Strichartz estimates; we start with the critical case, that
is the simplest one.
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5.1. The critical case. Here we put our attention on the critical power

(4.61) γ = 1 +
4

n(λ+ 1)
.

Let I = [−T, T ] be a real interval, and let us denote

(4.62) X = X(p, q) = L∞(I;L2) ∩ Lp,2(I;Lq,2),

for any Schrödinger admissible couple (p, q), with 2 < p < ∞; X is a Banach space with the
norm

‖F‖X = ‖F‖L∞(I;L2) + ‖F‖Lp,2(I;Lq,2).

Applying estimates (4.21) and (4.22), with the choice s′ = 2− ε, for a small ε > 0, we have

(4.63) ‖φ(w)‖X ≤ C
(
‖f‖L2 +

∥∥c′|w|γ∥∥
Lp̃′,s′ (I;Lq̃′,s′ )

)
.

By Hölder inequality in Lorentz spaces (see [80]), and recalling (4.34), we have

(4.64) ‖φ(w)‖X ≤ C
(
‖f‖L2 + ‖ |w|γ‖Ler′,s′ (I;Leq′,s′ )

)
,

where r̃′ is defined by

(4.65)
1
r̃′

=
1
p̃′
− λ

λ+ 1
;

combining (4.65) with the admissibility condition
2
p̃

=
n

2
− n

q̃
, p̃ > 2,

it turns out that r̃ = r̃′/(r̃′ − 1) satisfies

(4.66)
2
r̃

=
2λ
λ+ 1

+
n

2
− n

q̃
,

in the range

(4.67) max
{

2(λ+ 1)
3λ+ 1

, 1
}
< r̃ <

λ+ 1
λ

.

By the definition of the Lorentz norms, we easily see that

‖ |h|α‖Lp,r(Rn) = ‖h‖α
Lpα,rα(Rn),

for any α ≥ 0; hence, coming back to (4.64), we have proved that

(4.68) ‖φ(w)‖X ≤ C
(
‖f‖L2 + ‖w‖γ

Ler′γ,s′γ(I;Leq′γ,s′γ)

)
.

Now, since the critical value of γ is bigger than 1, we can choice ε sufficiently small such as
s′γ > 2; hence, by the embedding

Lp,r ↪→ Lp,s, r ≤ s,

we conclude that

(4.69) ‖φ(w)‖X ≤ C
(
‖f‖L2 + ‖w‖γ

Ler′γ,2(I;Leq′γ,2)

)
.

By simple algebraic computations, we see that the couple (p0, q0) defined by

(4.70) p0 = r̃′γ, q0 = q̃′γ
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satisfies the admissibility condition
2
p0

=
n

2
− n

q0

if and only if γ is the critical value in (4.61).

Remark 4.4. In Lemma 4.4, we will prove that the range condition p0 > 2 can be satisfied,
by a suitable choice of r̃ in the interval (4.67).

At this point, we come back to (4.69); with the choice (p, q) = (p0, q0), we have the following
inequality:

(4.71) ‖φ(w)‖X ≤ C
(
‖f‖L2 + ‖w‖γ

X

)
,

for some C > 0. It is clear from estimate (4.71) that the map φ has a convex closed invariant
set, provided the initial datum f satisfies

‖f‖L2 ≤ ε0,

for some ε0 > 0 sufficiently small; with similar computations, we prove that φ is a contraction
on X, then the local existence of a unique solution of (4.36). By the conservation of mass, we
conclude that the solution is global in time.

The proof will be complete after the following Lemma:

Lemma 4.4. There exists a suitable choice of r̃ in the range (4.67), such that the condition
p0 = r̃′γ > 2 is satisfied.

Proof. We distinguish the cases λ ≥ 1 and 0 < λ < 1.
In the case λ ≥ 1, the condition (4.67) is

(4.72) 1 < r̃ <
λ+ 1
λ

;

the function

r̃′ =
r̃

r̃ − 1
is strictly decreasing with respect to r̃, and the lowest endpoint r̃ = 1 obviously satisfies the
condition 2 < r̃′γ <∞; hence we can choose r̃ greatest as possible in the range (4.72), in order
to obtain the lowest value of p0 > 2. We omit here the precise computations.

In the case 0 < λ < 1 the condition (4.67) becomes

(4.73)
2(λ+ 1)
3λ+ 1

< r̃ <
λ+ 1
λ

;

as in the previous case, it is sufficient to prove that the lowest endpoint r̃ = 2(λ + 1)/(3λ + 1)
largely satisfies the range condition r̃′γ > 2. By a trivial computation we see that the inequality

2(λ+ 1)
3λ+ 1

γ =
2(λ+ 1)
3λ+ 1

[
1 +

4
n(λ+ 1)

]
> 2

is satisfied, for λ ∈ (0, 1), in any dimension n ≥ 1, hence we conclude as in the previous case.
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5.2. The subcritical case. We pass to the study of the subcritical case

(4.74) 1 ≤ γ < 1 +
4

n(λ+ 1)
.

Let us consider the map φ defined in (4.60); the computations in the previous Section work until
estimate (4.68); to pass to (4.69) we need to exclude the case γ = 1, for which we are not able
to choice ε in such a way that s′γ > 2. Anyway, the case γ = 1 can be easily recovered by an
approximation argument that is identical to the one presented at the end of Section 6.2.

Once we have (4.69), we can apply Hölder inequality in Lorentz spaces, and we get

(4.75) ‖φ(w)‖X ≤ C
(
‖f‖L2 + ‖w‖γ

Lp,2(I;Leq′,2)
T θ,

)
where

(4.76) θ =
1
r̃′
− γ

p

and T = sup I. Now we impose the conditions

θ > 0, q̃′γ = q,

that, in terms of r̃′ and p are the following:

(4.77) r̃′γ < p, q̃′γ = q.

Combining (4.77) with (4.66), (4.67) and the admissibility for the couple (p, q) we see that this
are compatible with the subcritical range (4.74). Moreover, with the same computations of
Lemma 4.4, we check that there always exists a choice of r̃ such that r̃′γ > 2.

In conclusion, we obtained the following estimate

(4.78) ‖φ(w)‖X ≤ C
(
‖f‖L2 + T θ‖w‖γ

X

)
;

it is clear that, if T is sufficiently small, φ has a closed convex invariant set, and with the same
computations we prove that φ is a contraction in X; finally, by the conservation of mass we
conclude that the solution is global in time.

6. H1 local well-posedness

We pass to the proof of Theorem 4.2. At this level, the proof does not make any difference
between the defocusing and the focusing cases. As in the previous Section, we only have to show
the H1 local well-posedness for (4.36). Differentiating the equation (4.36) with respect to x, we
see that ∇w solves the system

(4.79)

{
i (∇w)t + ∆(∇w) = ±c′(t)

(
γ+1

2 |w|γ−1∇w + γ−1
2 |w|γ−3w2∇w

)
∇w(0, x) = ∇f(x),

at each component. Hence, writing

(4.80) G(w) = ±γ + 1
2

|w|γ−1∇w +
γ − 1

2
|w|γ−3w2∇w,

if w is a solution of (4.36) then ∇w is a fixed point of the map

(4.81) φ(w) = U(t)∇f − i

∫ t

0
U(t− s)c′(s)G(w(s, ·)) ds.
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Observe that we have the estimate

(4.82) |G(w)| ≤ C|w|γ−1|∇w|,

where the constant C > 0 depends on γ.

6.1. The critical case. We start with the critical case

(4.83) γ = 1 +
4

(n− 2)(λ+ 1)
.

As before, let us consider a real interval I = [−T, T ] and the spaces X(p, q) introduced in (4.62).
Let w be a solution of (4.36); by Strichartz estimates (4.21) and (4.22) applied to (4.81), we
have

(4.84) ‖φ(v)‖X(p,q) ≤ C‖∇f‖L2 + C
∥∥c′|w|γ−1∇w

∥∥
Lep′,s′ (I;Leq′,s′ ) ,

with the choice s′ = 2−ε, for some small ε > 0. After recalling (4.34), we apply Hölder inequality
in Lorentz spaces and we obtain

(4.85) ‖φ(v)‖X(p,q) ≤ C‖∇f‖L2 + C
∥∥|w|γ−1∇w

∥∥
Ler′,s′ (I;Leq′,s′ ) ,

where r̃′ is defined in (4.65). Moreover, the conjugate r̃ satisfies the admissibility condition
(4.66) and the range condition (4.67).

We estimate the last term in inequality (4.85): by Hölder inequalities in Lorentz and Lp

spaces, in both time and space variables, we have

(4.86)
∥∥ |w|γ−1∇w

∥∥
Ler′,s′ (I;Leq′,s′ ) ≤

∥∥|w|γ−1
∥∥

Lr1,α(I;Lq1,α)
‖∇w‖Lr2,2(I;Lq2,2) ,

under the following conditions:

(4.87)
1
r̃′

=
1
r1

+
1
r2
,

1
q̃′

=
1
q1

+
1
q2
,

1
α

+
1
2
≥ 1
s′
.

First, we impose the couple (r2, q2) to be Schrödinger admissible, i.e.

(4.88)
2
r2

=
n

2
− n

q2
, r2 > 2 :

this permits to treat the term of order one in inequality (4.86). For the nonlinear term in (4.86),
we need further conditions on the exponents r1, s, q1. If we impose that

(4.89) (γ − 1)r1 ≥ 1, (γ − 1)q1 ≥ 1, (γ − 1)α ≥ 1,

we get the identity

(4.90)
∥∥ |w|γ−1

∥∥
Lr1,α(I,Lq1,α)

= ‖w‖γ−1

L(γ−1)r1,(γ−1)α(I;L(γ−1)q1,(γ−1)α)
.

A crucial comment on the exponent α: by the third condition in (4.87), as s′ = 2 − ε and
ε is arbitrarily small, we can choose α arbitrarily big. In particular, let us take α such that
(γ − 1)α > 2 (this is possible because the critical value of γ is strictly bigger than 1); by (4.90)
and the Lorentz embeddings we can then estimate

(4.91)
∥∥ |w|γ−1

∥∥
Lr1,α(I,Lq1,α)

≤ ‖w‖γ−1

L(γ−1)r1,2(I;L(γ−1)q1,2)
.

Remark 4.5. In Lemma 4.5 we will prove that all the conditions we are imposing are
compatible, and hence we can choose the right exponents to have well-posedness in the suitable
spaces.
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Using (4.91), the inequality (4.86) gives

(4.92)
∥∥ |w|γ−1∇w

∥∥
Ler′,s′ (I;Leq′,s′ ) ≤ ‖w‖γ−1

L(γ−1)r1,2(I;L(γ−1)q1,2)
‖∇w‖Lr2,2(I;Lq2,2).

By Sobolev embeddings in Lorentz spaces (see e.g. [105]), we estimate

(4.93) ‖w‖γ−1

L(γ−1)r1,2(I;L(γ−1)q1,2)
≤ ‖∇w‖γ−1

L(γ−1)r1,2(I;Ly,2)
,

where

(4.94) 1− n

y
= − n

(γ − 1)q1
.

We are ready to impose the admissibility of the couple ((γ − 1)r1, y), i.e.

(4.95)
2

(γ − 1)r1
=
n

2
− n

y
, (γ − 1)r1 > 2.

A simple algebraic computation shows that (4.66), (4.87), (4.88), (4.94) and (4.95) are satisfied
if and only if γ is the critical value in (4.83).

Finally, recollecting (4.85), (4.86) and (4.93), with the conditions (4.88) and (4.95), there
exist a Schrödinger admissible couple (p, q) such that

(4.96) ‖φ(v)‖X(p,q) ≤ C‖∇f‖L2 + C‖∇w‖γ−1
X(p,q),

for some C > 0. The last estimate, together with Sobolev embeddings, proves that the map φ has
a closed convex invariant set in L∞(I;H1) ∩ Lp,1(I;W 1,q), provided ‖∇f‖L2 < ε0 is sufficiently
small, for some Schrödinger admissible couple (p, q). With similar computations, we prove that
φ is a contraction on the same space, then there exists a local solution of (4.36); finally, by the
energy arguments discussed in the Introduction, we conclude that the solution exists until the
first zero of a, in which the gradient can blow up.

The following Lemma concludes the proof, showing that all the conditions we imposed on
the exponents are compatible.

Lemma 4.5. There exists a nonempty range for r̃ in which the conditions (4.66), (4.87),
(4.88), (4.89) and (4.95) are compatible.

Proof. By (4.87), (4.89) and (4.95), we have

1
r2
>

1
r̃′
− γ + 1

2
,

1
q2
≥ 1
q̃′
− γ + 1;

then, summing the last two inequalities, we estimate
2
r2

+
n

q2
>

2
r̃′

+
n

q̃′
− (1 + n)(γ + 1),

and using (4.88) and the admissibility condition (4.66) we obtain

(4.97) γ ≥ 1 +
2

(λ+ 1)(n+ 1)
.

The H1-critical value of γ satisfies the last inequality, because

γ = 1 +
4

(n− 2)(λ+ 1)
≥ 1 +

2
(λ+ 1)(n+ 1)

,
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for each n, λ. The last effort we have to do is to control that the condition r2 > 2 in (4.88) can
be satisfied. By (4.87), (4.89) and (4.95) we have

(4.98)
1
r2
> 1− 1

r̃
− γ − 1

2
;

the condition (4.98) has to be consistent with r2 > 2, then we observe that

(4.99) 1− 1
r̃
− γ − 1

2
<

1
2
⇔ r̃(2− γ) < 2.

In the case γ > 2, the condition (4.99) is obviously satisfied when r̃ is in the range (4.67). On
the other hand, in the case 1 ≤ γ ≤ 2, we easily verify that

max
{

2(λ+ 1)
3λ+ 1

, 1
}
<

2
2− γ

;

hence, the new range condition for r̃ is

(4.100) max
{

2(λ+ 1)
3λ+ 1

, 1
}
< r̃ < min

{
λ+ 1
λ

,
2

2− γ

}
.

Hence the proof is complete.

6.2. The subcritical case. We pass to the study of the subcritical nonlinearity

(4.101) 1 +
2

(λ+ 1)(n+ 2)
≤ γ < 1 +

4
(n− 2)(λ+ 1)

.

The computations made for the H1-critical case in the previous Section work until estimate
(4.93), provided we exclude the case γ = 1: then we have

(4.102) ‖φ(v)‖X(p,q) ≤ C‖∇f‖L2 + C‖∇w‖γ−1

L(γ−1)r1,2(I;Ly,2)
‖∇w‖Lr2,2(I;Lq2,2),

for some C > 0. The exponents r1, r2, y, q2 satisfies conditions (4.66), (4.67), (4.87), (4.88),
(4.89) and (4.94); the consistence of these conditions will be studied in Lemma 4.6.

To treat the nonlinear term in (4.102), we apply Hölder inequality for Lorentz spaces, with
respect to time, and we get

(4.103) ‖∇w‖γ−1

L(γ−1)r1,2(I;Ly,2)
≤ T θ‖∇w‖γ−1

Lp,2(I;Ly,2)
,

where

(4.104) θ =
1
r1
− γ − 1

p

and T = sup I. Here the exponent p is fixed in the space X(p, q). We need to impose the
condition θ ∈ (0, 1], that means

(4.105)
p

p+ 1
≤ (γ − 1)r1 < p;

the inequality on the left of (4.105) is weaker than the condition (4.89) for r1, that will be
discussed in Lemma 4.6. Hence, we impose the conditions

(4.106) (γ − 1)r1 < p, y = q,

that with a simple algebraic computation turn out to be true for the subcritical values

1 ≤ γ < 1 +
4

(n− 2)(λ+ 1)
.
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Finally, by (4.102) and (4.103), there exists a Schrödinger admissible couple (p, q) such that

(4.107) ‖φ(v)‖X(p,q) ≤ C‖∇f‖L2 + CT θ‖∇w‖γ
X(p,q).

Now let us denote by

(4.108) M = 2C‖∇f‖L2

and by BM the ball of radius M in the Banach space X(p, q); by (4.107) we see that φ maps
BM into itself if

(4.109) T ≤ C1M
1−γ

θ .

With the same computation we see that φ is a contraction on X(p, q) provided (4.109) holds:
consequently, φ has a (unique) fixed point in X(p, q) and the local existence is proved. This
local solution can be uniquely extended in time until the first possible blow up point, by means
of the energy estimates in Section 4. Estimate (4.109) will be the crucial information to prove
global existence in the following Section.

To complete the local theory we need the following Lemma, analogous to Lemma 4.5:

Lemma 4.6. There exists a nonempty range for r̃ in which the conditions (4.66), (4.87),
(4.88) and (4.89) are compatible.

Proof. The proof is identical to Lemma 4.5; here we don’t have the condition (4.95). By
(4.87) and (4.89) we obtain

1
r2
≥ 1
r̃′
− γ + 1,

1
q2
≥ 1
q̃′
− γ + 1;

summing the last inequalities we get
2
r2

+
n

q2
≥ 2
r̃′

+
n

q̃′
− (2 + n)(γ − 1).

By (4.88) and the admissibility (4.66) the last inequality gives

γ ≥ 1 +
2

(λ+ 1)(n+ 2)
,

as required in the assumptions. Finally, as in Lemma 4.5 we prove that the condition r2 > 2
can be satisfied, in a suitable range for r̃. In fact, by (4.87) and (4.89) we have

1
r2
≥ 2− 1

r̃
− γ;

to be consistent with r2 > 2 we need that

2− 1
r̃
− γ <

1
2
⇔ 1

r̃
>

3− 2γ
2

.

In the case γ ≥ 3
2 , the last condition is always satisfied in the range (4.67). On the other hand,

we easily see that

max{2(λ+ 1)
3λ+ 1

, 1} < 2
3− 2γ

,

for any λ ≥ 0 and 1 ≤ γ < 3
2 . Hence, the required range for r̃ is

(4.110) max{2(λ+ 1)
3λ+ 1

, 1} < r̃ ≤ min{λ+ 1
λ

,
2

3− 2γ
},
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and the proof is complete.
By means of Lemma 4.6 and the above computations, we have proved Theorem 4.2 in the

range

(4.111) 1 +
2

(λ+ 1)(n+ 2)
≤ γ < 1 +

4
(λ+ 1)(n− 2)

.

Now, with a simple approximation argument, we treat the lower powers

(4.112) 1 ≤ γ < 1 +
2

(λ+ 1)(n+ 2)
.

First, let us observe that

1 +
2

(λ+ 1)(n+ 2)
< 1 +

4
(λ+ 1)(n)

,

for each λ ≥ 0, n ≥ 2. Hence, by Theorem 4.1, for any initial datum f ∈ H1, there exists
a unique global solution w ∈ C(R;L2) of (4.36), when γ satisfies (4.112). Approximating the
nonlinearity with a sequence of sufficiently regular functions, and applying the standard theory
(see e.g. [20]), we produce a sequence of approximated local solutions wn ∈ C(I;H1), with the
uniform bound

(4.113) ‖wn‖C(I;H1) ≤ C,

or some C > 0. Moreover, the sequence wn converges to w strongly in C(I;L2), and by (4.113)
has a subsequence that converges weakly in C(I;H1). By the uniqueness of the limit we conclude
the proof.

7. Global H1 theory

This final Section is devoted to the proof of the global Theorem 4.3. As discussed in the
Section 4, the main difficulty is that the energy does not control the gradient of the solution,
hence we cannot say a priori that, starting from an initial datum in H1, the solution remains in
H1 for all times. Moreover, as it is clear from (4.109), the lifespan of the local solution goes to
0 as the initial norm goes to ∞: hence we are not a priori able to say that, iterating the local
existence, the series of the lifespans diverges, in such a way that the solution is global.

On the other hand, the energy investigation of Section 4 produced the information (4.59)
about the blow up rate of the gradient: by mixing (4.59) and (4.109) we show that our solution
is in fact global (under the assumptions of Theorem 4.3).

Let us denote by t0 the first zero of a. Let ε > 0 be small and t be such that t0 − c(t) < ε;
by the local theory we know that the solution w is in H1 at the time t. Starting with the initial
datum in t, we iterate the proof of local solution: if we are able to cross the possible blow up
point we have done. By (4.109) and (4.59) we obtain the lower bound

(4.114) T ≥ C(t0 − c(t))−
λ(1−γ)
2θ(λ+1) ,

where T is the new lifespan. We claim that the new solution cross the point t̃0, whose image
via c is t0: this means that c(t) + T > t0, i.e.

(4.115) C(t0 − c(t))−
λ(1−γ)
2θ(λ+1) ≥ t0 − c(t).
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If ε is sufficiently small, we can neglect the constants and (4.115) holds if

− λ(1− γ)
2θ(λ+ 1)

≤ 1,

or equivalently

(4.116) θ ≥ λ(γ − 1)
2(λ+ 1)

.

The condition (4.116) has to be compatible with θ ∈ (0, 1], then we impose

(4.117)
λ(γ − 1)
2(λ+ 1)

≤ 1 ⇒ γ < 1 +
2(λ+ 1)

λ
.

It is easy to verify that, if n ≥ 3, the critical exponent satisfies

(4.118) 1 +
4

(n− 2)(λ+ 1)
≤ 1 +

2(λ+ 1)
λ

,

for each λ > 0; hence, by (4.116), we have a final condition on θ that is

(4.119)
λ(γ − 1)
2(λ+ 1)

≤ θ ≤ 1.

The upper inequality in (4.119) was already discussed in Section 6. As for the lower condition,
by the definition (4.104) we have

(4.120)
γ − 1
p

≤ 1
r1
− λ(γ − 1)

2(λ+ 1)
.

We impose that

(4.121)
1
r1
− λ(γ − 1)

2(λ+ 1)
≥ δ > 0 ⇒ (γ − 1)r1 <

2(λ+ 1)
λ

− δ

γ − 1
,

for some small δ > 0. If we assume that

(4.122) p ≥ 2(λ+ 1)
λ

,

inequality (4.121) is compatible with (4.89) and (4.106), and we have the final condition on r1:

(4.123) 1 ≤ (γ − 1)r1 <
2(λ+ 1)

λ
− δ

γ − 1
.

We recall that, by (4.87), it is necessary that r1 ≥ r̃′; moreover the Hölder conjugate r̃ has to
live in the range (4.110). A simple computation shows that these conditions are compatible with
(4.123). Assumption (4.122) is not restrictive, in fact, once we performed a fixed point argument
for one choice of X(p0, q0), we can make the same, by interpolation, for all the choices p > p0.
At this point, by (4.120) we get

(4.124) p ≥ 2r1(λ+ 1)(γ − 1)
2(λ+ 1)− λ(γ − 1)r1

.

The right hand side of the last inequality is bounded by a great constant depending on δ, that
is fixed. Hence there is a suitable choice of p (sufficiently large) such that (4.124) is satisfied.

In conclusion, all the above considerations hold in dimension n = 2, provided the more
restrictive assumption (4.117) is satisfied by γ. This completes the proof.
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8. Blow-up threshold for weakly coupled NLS

We can pass to another nonlinear example. Let us consider the following Cauchy problem
for two coupled nonlinear Schrödinger equations

(4.125)


iφt + ∆φ+

(
|φ|2p + β|ψ|p+1|φ|p−1

)
φ = 0

iψt + ∆ψ +
(
|ψ|2p + β|φ|p+1|ψ|p−1

)
ψ = 0

φ(0, x) = φ0(x) ψ(0, x) = ψ0(x),

where φ, ψ : R× Rn → C, φ0, ψ0 : Rn → C, p ≥ 0 and β is a real positive constant.
This kind of problems arises as a model for propagation of polarized laser beams in bire-

fringent Kerr medium in nonlinear optics (see, for example, [76, 9, 41, 68] and the references
therein for a complete discussion of the physics of the problem). The two functions φ and ψ

are the components of the slowly varying envelope of the electrical field, t is the distance in the
direction of propagation, x are the orthogonal variables and ∆ is the diffraction operator. The
case n = 1 corresponds to propagation in a planar geometry, n = 2 is the propagation in a bulk
medium and n = 3 is the propagation of pulses in a bulk medium with time dispersion (in this
case x includes also the time variable).

The focusing nonlinear terms in (4.125) describe the dependence of the refraction index of
the material on the electric field intensity and the birefringence effects. The parameter β > 0
has to be interpreted as the birefringence intensity and describes the coupling between the two
components of the electric field envelope. The case p = 1 (i.e. cubic nonlinearities in (4.125)) is
known as Kerr nonlinearity in the physical literature.

We are interested in a slightly more general model, in order to cover the physical cases and
to discuss some results about Cauchy problem (4.125) from a more general point of view.

Our aim is to study the H1 × H1 well-posedness of problem (4.125), with respect to the
nonlinearity, in analogy with the case of the single focusing nonlinear Schrödinger equation

(4.126)

{
iψt + ∆ψ + |ψ|2pψ = 0
ψ(0, x) = f(x),

for ψ : R1+n → C and f : Rn → C.
The well known results for the single equation can be summarized as follows. By standard

scaling arguments it possible to claim that the critical exponent for theH1 local well-posedness of
(4.126) is p = 2/(n− 2) (see [20]). Indeed, contraction techniques based on Strichartz estimates
(see [47], [66]), permit to prove that (4.126) is locally well-posed in H1 for p < 2/(n − 2) (see
[46], [20]).

To pass from local to global well-posedness, it is natural to introduce the energy function
given by

E(t) =
1
2
‖∇ψ‖2

2 −
1

2p+ 2
‖ψ‖2p+2

2p+2,

that is conserved along any solution ψ of (4.126). For p < 2/n the unique local H1 solution can
be extended globally in time by a continuation argument. In the critical case p = 2/n, we can
also extend local solutions to global ones, provided the initial data are not too large in the L2.
Finally, for 2/n ≤ p < 2/(n− 2) without restriction on the data, it is possible to prove that the



8. BLOW-UP THRESHOLD FOR WEAKLY COUPLED NLS 107

L2 norm of the gradient, in general, blows up in a finite time (see e.g. the original work [48] or
[20]).

By a physical point of view it is very interesting to determine the threshold for the initial
mass of the wave packet, that is the L2 norm of the initial datum, which separates global
existence and blow-up in the critical case. We recall that ψ = eitu(x) ∈ H1 is a ground state
solution for (4.126) if u is a nonzero critical point of the action functional

A(u) = E(u) +
1
2
‖u‖2

2 =
1
2
(
‖∇u‖2

2 + ‖u‖2
2

)
− 1

2 + 4/n
‖u‖2+4/n

2+4/n,

having the smallest action level; clearly u solves

(4.127) −∆u+ u = |u|4/nu.

In [114], Weinstein proved that if the initial mass is smaller than a constant Cn, depending only
on the space dimension n, than there exists a unique global H1 solution; moreover Cn is the
L2 norm of any ground state solutions of (4.126) and can be numerically estimated. Moreover
we want to point out that this kind of phenomena for the single equation present other kind
of universality properties related, for example, to the blow-up profile (see [9, 77, 78] and the
references therein).

Our main goal is to state the analogous result for the coupled system (4.125). The critical
exponent for the local H1×H1 well-posedness has to be again p = 2/(n−2); so for p < 2/(n−2)
it is possible to prove that (4.125) possesses a unique local solution (see Remark 4.2.13 in [20]
and Section 9 below). The natural energy for (4.125) is the following:

(4.128) E(t) =
1
2
(
‖∇φ‖2

2 + ‖∇ψ‖2
2

)
− 1

2p+ 2

(
‖φ‖2p+2

2p+2 + 2β‖φψ‖p+1
p+1 + ‖ψ‖2p+2

2p+2

)
.

Also here it is possible to prove that E(t) is conserved (see Section 9); hence the same techniques
for the single equation can be applied to extend local solution to global ones. Now we can state
our first result.

Theorem 4.5. Assume that p < 2/n. Then the Cauchy problem (4.125) is globally well
posed in H1 × H1, i.e. for any (φ0, ψ0) ∈ H1 × H1 there exists a unique solution (φ, ψ) ∈
C
(
R;H1 ×H1

)
.

Also here ground state solutions of (4.125) play a crucial role in the dynamics of the system.
In this case they are solutions of the form (φ, ψ) = eit (u(x), v(x)), where the functions u and v
have to be a least action solution of a elliptic system (see (4.136) below).

Since the birefringence tends to split a pulse into two pulses in two different polarization
directions, the properties of the ground state solutions of (4.125) depend strongly on the coupling
parameter. If β is sufficiently small, that is the interaction is weak, any ground state is a scalar
solution, i.e. one of the two components is zero. On the other hand when the birefringence is
strong, β � 1, we have vector ground states, i.e. all the components are distinct from zero (see
[4, 74]). This suggest that the also the blow-up phenomena, in the critical case, should depend
on the parameter β. It is natural to claim that in a weak interaction regime the behaviour has
to be exactly the same of the single equation. Otherwise if β � 1, we expect that the analogous
of the Weinstein threshold Cn should depend on β also. These claims are proved in the following
main theorem.
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Theorem 4.6. Assume that p = 2/n. Then there exists a constant C = Cn,β such that the
Cauchy problem (4.125) is globally well posed in H1 ×H1 if

‖φ0‖2
2 + ‖ψ0‖2

2 < C.

Moreover there exists a pair (φ0, ψ0) such that ‖φ0‖2
2 + ‖ψ0‖2

2 = Cn,β and the corresponding
solution blows up in a finite time. The constant Cn,β has the following behaviour

(4.129)

Cn,β = Cn if β ≤ 22/n − 1,

Cn,β ≥ Cn
(1 + β)
22/n

if β ≥ 22/n − 1,

where Cn is the blow-up threshold of a single equation.

Remark 4.6. In the supercritical case the solution of the Cauchy problem for (4.125) exists
locally in time, by the results in [20]. It is possible to prove that the solution exists globally in
time if the assumption ‖φ0‖2, ‖ψ0‖2 � 1 is satisfied (see Theorem 6.1.1 in [20]).

Remark 4.7. As observed above, the Kerr nonlinearities (corresponding to p = 1) are
physically relevant; in this case the system (4.125) becomes

(4.130)

{
iφt + ∆φ+

(
|φ|2 + β|ψ|2

)
φ = 0

iψt + ∆ψ +
(
|ψ|2 + β|φ|2

)
ψ = 0.

The above results (Theorems 4.5 and 4.6) can be summarized in the following way:

i) if n = 1 the Cauchy problem (4.130) is globally (in time) well posed in H1 ×H1,
ii) if n = 2 the cubic nonlinearity is critical, so the Cauchy problem (4.130) is globally

well posed for small data; moreover the blow-up threshold C2,β is constant for any
β ≤ 1 and tends to infinity as β → +∞,

iii) if n ≥ 3 a solution of the Cauchy problem (4.130) exists globally in time provided the
initial datum is sufficiently small in L2 × L2.

The single equation with a Kerr nonlinearity has been studied also in bounded domains or
on compact manifolds (see, for example, [14, 15] and the references therein). The study of
coupled nonlinear Schrödinger equations in bounded domains or on compact manifolds should
be interesting in view to extend the results for a single equation.

The paper is organized in the following way: Section 9 is devoted to the proofs of the
existence results above, in Section 10 it is proved a Gagliardo-Nirenberg inequality (see (4.133))
which is the fundamental tool to obtain Theorems 4.5 and 4.6. Section 11 deals with a blow-up
result which shows the sharpness of constant Cn,β, while in Section 12 the proof of Theorem 4.6
is completed.

9. Global existence results

The first part of this work is devoted to the proof of Theorem 4.5. The theory for the single
nonlinear Schrödinger equation (4.126) was developed in [46] and [63]; the proof of the local
well-posedness is a contraction argument based on Strichartz estimates, and the conservation of
both the mass and the energy allows to extend the local solution globally in time. The fixed
point technique also works in the case of a system, hence problem (4.125) is locally well-posed
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in H1 for 0 ≤ p ≤ 2/(n − 2). We omit here the straightforward computations, see for example
Remarks 4.2.13 and 4.3.4 in [20].

Let us now study the conservation laws for system (4.125). Multiplying the equations in
(4.125) by φ and ψ respectively, integrating in x and taking the resulting imaginary parts, we
see that

(4.131)
d

dt
‖φ‖2

2 = 0,
d

dt
‖ψ‖2

2 = 0,

i.e. the conservation of the masses. Note that these computations make sense if φ, ψ are H1

solutions (it is possible to prove (4.131) also in the case of L2 solutions, following for example
the techniques of [81]).

Now we consider the energy E(t) defined in (4.128). Let (φ, ψ) be a solution to (4.125);
multiplying the equations in (4.125) by φt and ψt respectively, integrating by parts in x and
taking the resulting real parts, we easily obtain the energy conservation

(4.132) E′(t) = 0.

This formal computation needs H2 regularity for φ, ψ, but (4.132) makes sense (and can be
proved) also for H1 solutions. To prove this, following exactly the same computations of Ozawa
in [81], Proposition 2; we omit here the details.

In order to obtain an a priori control on the gradient of the solutions, we introduce a
Gagliardo-Nirenberg inequality (see Section 10 below):
(4.133)(

‖u‖2p+2
2p+2 + 2β‖uv‖p+1

p+1 + ‖v‖2p+2
2p+2

)
≤ Cn,p,β

(
‖u‖2

2 + ‖v‖2
2

)p+1−p n
2
(
‖∇u‖2

2 + ‖∇v‖2
2

)p n
2 ,

that gives the following bound from below:

(4.134) E(t) ≥ 1
2
(‖∇φ‖2

2 + ‖∇ψ‖2
2)
[
1−

Cn,p,β

p+ 1
(
‖φ‖2

2 + ‖ψ‖2
2

)p+1−p n
2
(
‖∇φ‖2

2 + ‖∇ψ‖2
2

)p n
2
−1
]
.

If p < 2/n, we easily see by (4.134) that the norms ‖∇φ‖2, ‖∇ψ‖2 cannot blow up in a finite
time, because of the conservation of both the mass and the energy; as a consequence, global
well-posedness in H1 is proved in the subcritical range. The power p = 2/n is critical, in the
sense that this nonlinearity is sufficiently high to generate H1 solutions blowing up in a finite
time. On the other hand, also in this case, the smallness assumption

(4.135) (‖φ‖2
2 + ‖ψ‖2

2)
2/n <

p+ 1
Cn,p,β

allows by (4.134) to obtain the same a priori control for the gradient in terms of the energy,
hence the global existence in the Theorems 4.5 and 4.6 is proved. The last part of Theorem 4.6
is proved in Section 11.

10. Gagliardo-Nirenberg inequality

Our next step is to discuss, following the approach of [114], the behavior of the best constant
Cn,p,β in the Gagliardo-Nirenberg inequality (4.133); this will allow us to understand which is
the critical initial level defining the border line between global well-posedness and blow-up
phenomena. This involves the existence of minimal energy stationary solutions of (4.125) and
allows us to clarify the concept of ground state.
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Consider the functional

Jn,p,β(u, v) =

(
‖∇u‖2

2 + ‖∇v‖2
2

)pn/2 (‖u‖2
2 + ‖v‖2

2

)p+1−pn/2(
‖u‖2p+2

2p+2 + 2β‖uv‖p+1
p+1 + ‖v‖2p+2

2p+2

) , u, v ∈ H1;

the infimum of Jn,p,β on H1×H1 is clearly the reciprocal of the best constant Cn,p,β in (4.133).
First of all we want to point out that, for any u, v ∈ H1 and for any µ, λ > 0, if we set
uµ,λ(x) = µu(λx) and vµ,λ(x) = µv(λx) it follows

‖uµ,λ‖2
2 = µ2λ−n‖u‖2

2, ‖∇uµ,λ‖2
2 = µ2λ2−n‖∇u‖2

2,

‖vµ,λ‖2
2 = µ2λ−n‖v‖2

2, ‖∇vµ,λ‖2
2 = µ2λ2−n‖∇v‖2

2,

‖uµ,λ‖2p+2
2p+2 = µ2p+2λ−n‖u‖2p+2

2p+2, ‖vµ,λ‖2p+2
2p+2 = µ2p+2λ−n‖v‖2p+2

2p+2,

so that
Jn,p,β(uµ,λ, vµ,λ) = Jn,p,β(u, v).

Assume that the infimum of Jn,p,β is achieved by (ũ, ṽ): since the value of the functional is
invariant with respect to the above scalings, we can assume that the best constant in (4.133) is
achieved by the pair (ũ, ṽ) such that(

‖ũ‖2
2 + ‖ṽ‖2

2

)
=
(
‖∇ũ‖2

2 + ‖∇ṽ‖2
2

)
= 1.

Therefore (ũ, ṽ) is a weak solution of the following system of two weakly coupled elliptic
equations 

−pn
2

∆ũ+
(2− n)p+ 2

2
ũ =

1
Cn,p,β

(
|ũ|2p + β|ũ|p−1|ṽ|p+1

)
ũ

−pn
2

∆ṽ +
(2− n)p+ 2

2
ṽ =

1
Cn,p,β

(
|ṽ|2p + β|ṽ|p−1|ũ|p+1

)
ṽ,

Now consider the pair (ũµ,λ, ṽµ,λ), corresponding to the choice of parameters

µ =
(

2
Cn,p,β(2p+ 2− pn)

)1/2p

, λ =
(

pn

(2p+ 2− pn)

)1/2

;

this pair solves the following elliptic system

(4.136)

{
−∆ũµ,λ + ũµ,λ =

(
|ũµ,λ|2p + β|ũµ,λ|p−1|ṽµ,λ|p+1

)
ũµ,λ

−∆ṽµ,λ + ṽµ,λ =
(
|ṽµ,λ|2p + β|ṽµ,λ|p−1|ũµ,λ|p+1

)
ṽµ,λ.

Note that the preceding system is variational in nature, so that any (weak) solution is a critical
point of the functional

In,p,β(u, v) =
1
2
(
‖∇u‖2

2 + ‖∇v‖2
2 + ‖u‖2

2 + ‖v‖2
2

)
− 1

2p+ 2

(
‖u‖2p+2

2p+2 + β‖uv‖p+1
p+1 + ‖v‖2p+2

2p+2

)
.

Recently the problem of existence of positive solutions for elliptic systems of this kind has
been studied by many authors (see, for example, [4, 7, 35, 71, 74, 96, 120]). In [74] particular
attention is given to the existence and some qualitative properties of the ground state solutions
of (4.136): a ground state solution is a nontrivial solution (i.e. distinct from the pair (0, 0))
which has the least critical level. In particular it is possible to prove existence of ground state
solutions for system (4.136) solving the following minimization problem

(4.137) inf
(u,v)∈N

In,p,β(u, v),
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where N ⊂ H1 ×H1 is the Nehari manifold, that is

N =
{

(u, v) 6= (0, 0) : ‖∇u‖2
2 + ‖∇v‖2

2 + ‖u‖2
2 + ‖v‖2

2 = ‖u‖2p+2
2p+2 + 2β‖uv‖p+1

p+1‖v‖
2p+2
2p+2

}
.

Since N is a smooth (of class C2) manifold containing all the nontrivial critical points of the
functional, that is all the weak solutions of (4.136), clearly a ground state solution has to realize
the minimum. We want to point out that In,p,β is bounded from below onN , so the minimization
problem (4.137) is well-posed, moreover it is possible to prove that any minimizing sequences is
compact (up to translations) and that the minimum is achieved.

Let
mn,p,β = inf

N
In,p,β = In,p,β(ũµ,λ, ṽµ,λ)

be the level of any ground state solution of (4.136); we want to prove that there is a direct
relation between Cn,p,β and mn,p,β. Recalling that any critical point of In,p,β is a weak solution
of (4.136), multiplying (4.136) by (ũµ,λ, ṽµ,λ) and integrating on Rn we obtain that

(4.138)
‖∇ũµ,λ‖2

2 + ‖ũµ,λ‖2
2 = ‖ũµ,λ‖2p+2

2p+2 + β‖ũµ,λṽµ,λ‖p+1
p+1,

‖∇ṽµ,λ‖2
2 + ‖ṽµ,λ‖2

2 = ‖ṽµ,λ‖2p+2
2p+2 + β‖ũµ,λṽµ,λ‖p+1

p+1.

Moreover in this case, Pohozaev identity reads

(4.139)

n− 2
2

(
‖∇ũµ,λ‖2

2 + ‖∇ṽµ,λ‖2
2

)
+
n

2
(
‖ũµ,λ‖2

2 + ‖ṽµ,λ‖2
2

)
=

n

2p+ 2

(
‖ũµ,λ‖2p+2

2p+2 + 2β‖ũµ,λṽµ,λ‖p+1
p+1 + ‖ṽµ,λ‖2p+2

2p+2

)
.

Putting together the above identities we have that

µ2λ2−n
(
‖∇ũ‖2

2 + ‖∇ṽ‖2
2

)
=
(
‖∇ũµ,λ‖2

2 + ‖∇ṽµ,λ‖2
2

)
= nmn,p,β,

µ2λ−n
(
‖ũ‖2

2 + ‖ṽ‖2
2

)
=
(
‖ũµ,λ‖2

2 + ‖ṽµ,λ‖2
2

)
=
(

2− n+
2
p

)
mn,p,β,

µ2p+2λ−n
(
‖ũ‖2p+2

2p+2 + 2β‖ũṽ‖p+1
p+1 + ‖ṽ‖2p+2

2p+2

)
=
(
‖ũµ,λ‖2p+2

2p+2 + 2β‖ũµ,λṽµ,λ‖p+1
p+1 + ‖ṽµ,λ‖2p+2

2p+2

)
=

2p+ 2
p

mn,p,β.

All the above calculations imply that the following equalities hold

(4.140)
1

Cn,p,β
= Jn,p,β(ũ, ṽ) = Jn,p,β(ũµ,λ, ṽµ,λ) = mp

n,p,β

npn/2(2p+ 2− pn)p+1−pn/2

2(p+ 1)pp−pn/2
.

Note that, in the critical case p = 2/n, (4.140) becomes

(4.141)
1

Cn,2/n,β
= 22/n n

n+ 2
m

2/n
n,2/n,β =

n

n+ 2
(
‖ũµ,λ‖2

2 + ‖ṽµ,λ‖2
2

)2/n
.

The arguments above, in particular (4.140), show that a minimum point of Jn,p,β, through
a suitable scaling, has to correspond to a ground state solution of (4.136) (or to a least energy
nontrivial critical point of In,p,β). Now, since in [74] it is proved the existence of ground state
solutions to (4.136), we have obtained the existence of a minimum point for the functional Jn,p,β;
this shows that inequality (4.133) is sharp and that there exists at least a pair of functions for
which equality holds. More generally we have proved that the functionals Jn,p,β and In,p,β possess
the same number of critical values.
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The validity of inequality (4.133) follows by the above arguments.

11. Blow-up results

In view to prove the sharpness of the constant C inthe statement of Theorem 4.6, we intro-
duce (following [48] and [89]) another physically relevant quantity, that plays a crucial role in
the analysis of blow-up phenomena: the variance V (t), which is defined by

(4.142) V (t) =
∫
|x|2|φ(t, x)|2 dx+

∫
|x|2|ψ(t, x)|2 dx.

As in the case of a single Schrödinger equation, we will prove a relation between the time
behavior of V and that of the H1-norm of the solutions: as we will see in the following, the
precise calculation of the first and second derivatives of V in terms of the solutions of (4.125) is
the main tool for the description of the blow-up (see for example [20] for a proof in the case of
a single equation).

More precisely, we prove the following Lemma:

Lemma 4.7. Let (φ, ψ) be a solution of system (4.125) on an interval I = (−t1, t1); then,
for each t ∈ I, the variance satisfies the following identities:

V ′(t) =4=
∫ [(

x · ∇φ
)
φ+

(
x · ∇ψ

)
ψ
]
dx,(4.143)

V ′′(t) =8
∫ (

|∇φ|2 + |∇ψ|2
)
dx− 4np

p+ 1

∫ (
|φ|2p+2 + 2β|φψ|p+1 + |ψ|2p+2

)
dx.(4.144)

Proof. We introduce the following notations:

z =(z1, . . . , zn) ∈ Cn;

z · w =
∑

i

ziwi, z, w ∈ Cn;

ui =
∂u

∂xi
, u : Rn → C.

Multiplying the equations in (4.125) by 2φ and 2ψ respectively, and taking the resulting
imaginary parts, we obtain

∂

∂t
|φ|2 =− 2=(φ∆φ) = −2∇ · (=φ∇φ),(4.145)

∂

∂t
|ψ|2 =− 2=(ψ∆ψ) = −2∇ · (=ψ∇ψ).(4.146)

Now, multiplying (4.145) and (4.146) by |x|2, and integrating by parts in x, we immediately
obtain (4.143).

In order to prove (4.144), let us multiply the equations in (4.125) by 2(x ·∇φ) and 2(x ·∇ψ)
respectively, let us integrate in x and sum the equations for the real parts, to get:

0 =2<
∫
i
[
(x · ∇φ)φt(x · ∇ψ)ψt

]
dx+ 2<

∫ [
(x · ∇φ)∆φ+ (x · ∇ψ)∆ψ

]
dx

+ 2<
∫ [

(x · ∇φ)(|φ|2p + β|ψ|p+1|φ|p−1)φ+

+(x · ∇ψ)(|ψ|2p + β|φ|p+1|ψ|p−1)ψ
]
dx.
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We rewrite the last identity in the form

(4.147) I = II + III,

where

I =2<
∫
i
[
(x · ∇φ)φt(x · ∇ψ)ψt

]
dx,

II =− 2<
∫ [

(x · ∇φ)∆φ+ (x · ∇ψ)∆ψ
]
dx,

III =− 2<
∫ [

(x · ∇φ)(|φ|2p + β|ψ|p+1|φ|p−1)φ

+(x · ∇ψ)(|ψ|2p + β|φ|p+1|ψ|p−1)ψ
]
dx.

For the first term, we have

I = −<
∫
i
∑

j

(
xjφjφt − xjφjφt + xjψjψt − xjψjψt

)
dx,

which can be written in the form

I =<
∫
i
∑

j

xj
[
(φjφ)t − (φφt)j + (ψjψ)t − (ψψt)j

]
dx

=
d

dt
<
∫
i
[
(x · ∇φ)φ+ (x · ∇ψ)ψ

]
dx+ n<

∫
i(φφt + ψψt) dx.

Now we evaluate the last equality using the equations in (4.125), obtaining

I =
d

dt
=
∫ [

(x · ∇φ)φ+ (x · ∇ψ)ψ
]
dx− n

∫ (
|∇φ|2 + |∇ψ|2

)
dx(4.148)

+ n

∫ [
(|φ|2p + β|ψ|p+1|φ|p−1)|φ|2 + (|ψ|2p + β|φ|p+1|ψ|p−1)|ψ|2

]
dx

=
d

dt
=
∫ [

(x · ∇φ)φ+ (x · ∇ψ)ψ
]
dx− n

∫ (
|∇φ|2 + |∇ψ|2

)
dx

+ n

∫ (
|φ|2p+2 + 2β|ψφ|p+1 + |ψ|2p+2

)
dx.

A multiple integration by parts in II gives the Pohozaev identity

(4.149) II = (2− n)
∫ (

|∇φ|2 + |∇ψ|2
)
dx.

As for the term III, we write it by components:

III =−
∑

j

∫ {
xj
[
|φ|2p(2<φjφ) + |ψ|2p(2<ψjψ)

]
(4.150)

+βxj
[
|φ|p−1|ψ|p+1(2<φjφ) + |ψ|p−1|φ|p+1(2<ψjψ)

]}
dx.

Observe that

|φ|2p(2<φjφ) + |ψ|2p(2<ψjψ) =
1

p+ 1

(
|φ|2p+2

j + |ψ|2p+2
j

)
,

|φ|p−1|ψ|p+1(2<φjφ) + |ψ|p−1|φ|p+1(2<ψjψ) =
2β
p+ 1

(
|φ|p+1|ψ|p+1

)
j
;
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hence, integrating by parts in (4.150) we have

(4.151) III =
n

p+ 1

∫ (
|φ|2p+2 + |ψ|2p+2 + 2β|φ|p+1|ψ|p+1

)
dx.

Finally, recollecting (4.147), (4.148), (4.149), (4.151) and (4.143), we complete the proof of
(4.144).

Remark 4.8. Note that (4.144) can be rewritten, recalling the definition of E, in the fol-
lowing equivalent form

(4.152) V ′′(t) = 16E(t)− 8
np− 2
2p+ 2

∫ (
|φ|2p+2 + 2β|φψ|p+1 + |ψ|2p+2

)
dx.

In the critical case p = 2/n the equation above reduces to

V ′′(t) = 16E(t);

hence the variance V of any solution of (4.125) with negative initial energy vanish in a finite
time. For each h : Rn → C we can estimate

‖h‖2
L2 = ‖|h|2‖L1 ≤ ‖|x|h‖L2

∥∥∥∥ h|x|
∥∥∥∥

L2

,

by Cauchy-Schwartz inequality. As a consequence of the standard Hardy’s inequality we obtain

‖h‖2
L2 ≤ ‖|x|h‖L2‖∇h‖L2 .

Applying the last inequality to any solution of of (4.125) with negative initial energy, since the
mass is conserved and the variance vanish in a finite time the L2 norm of the gradient needs
necessarely to blow up in a finite time.

Remark 4.9. Consider the following pair

e
−i
|x|2−4
4(1−t)

(1− t)n/2

(
U

(
x

1− t

)
, V

(
x

1− t

))
,

where (U, V ) is a ground state solution of (4.136). This is an explicit example of a blow-up
solution, which shows that Theorem 4.6 is sharp. Indeed the pair solves (4.125) and has initial
value e−i(|x|2−4)/4(U(x), V (x)) which attains the critical blow-up threshold.

12. On the blow-up threshold

If p = 2/n, we have obtained the following characterization of the blow-up threshold

(4.153)
1

Cn,2/n,β
=

1
Cn,β

=
n

n+ 2
(
‖U‖2

2 + ‖V ‖2
2

)2/n
,

where (U, V ) is a ground state solution of (4.136). In order to prove Theorem 4.6 we have to
estimate the quantities involved in (4.153).

In [74] (see Theorem 2.5) it is proved that, if β < 22/n − 1, then any ground state of the
elliptic system (4.136) is a scalar function, that is one of the components of the ground state
solution is zero. So we can assume, without loss of generality, that the ground state is (z, 0),
where z ∈ H1 is the unique ground state solution (see [114]) of the equation

(4.154) −∆z + z = |z|
4
n z.
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This implies that the constant Cn,β = Cn depends only on n for any β ≤ 22/n − 1, since
the coupling parameter β now does not play a role in the problem of selecting the ground
state solution. Moreover Cn is exactly the blow-up threshold for a single nonlinear Schrödinger
equation, introduced and numerically computed in [114].

If β ≥ 22/n−1, Cn,β depends on n and β and its expression is unknown, but we can estimate
it using a suitable test-pair. Let ẑ be the unique positive ground state solution of

−∆ẑ + ẑ = (1 + β)|ẑ|
4
n ẑ,

it is easy to see that the pair (ẑ, ẑ) is a positive solution of (4.136) for any β; and the following
inequality holds

1
Cn,β

=
n

n+ 2
(
‖U‖2

2 + ‖V ‖2
2

)2/n ≤ n

n+ 2
(
2‖ẑ‖2

2

)2/n
.

Clearly we have an inequality since (ẑ, ẑ) could not be a ground state solution of (4.136).
Using the scaling as in Section 10 we can estimate Cn,β with Cn. Recalling that z is the

ground state solution of (4.154) and noticing that the L2 norm of z is related to Cn (see (1.3)
in [114] and also (4.141)) we obtain that

‖ẑ‖2
4/n =

‖z‖2
4/n

1 + β
=

n+ 2
n(1 + β)Cn

.

Collecting the inequalities above we have

Cn,β ≥
(

1 + β

22/n

)
Cn,

so that the claim is proved.

Now we give some concluding remarks.

Remark 4.10. Note that it is possible to extend this argument to systems with more than
two nonlinear Schrödinger equations, using some results about the elliptic counterpart contained
in [4], Section 6.
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