
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

DIPARTIMENTO DI MATEMATICA “GUIDO CASTELNUOVO”

Dottorato di Ricerca in Matematica XXVI ciclo

The Target-Based Utility Model.
The role of Copulas and of

Non-Additive Measures

Candidate: Fabio FANTOZZI

Thesis advisor: Prof. Fabio SPIZZICHINO



Fabio Fantozzi

The Target-Based Utility Model
The role of Copulas and of Non-Additive Measures

Ph.D. Thesis. Sapienza – Università di Roma
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Introduction

This thesis covers topics that recently emerged in the field of decisions
under risk and uncertainty. The main topic of this work is the target-based
approach to utility theory. A rich literature has been devoted in the last
decade to this approach to economic decisions (see [19, 20, 28, 29, 138,
139]). Originally, interest has been concentrated on the single-attribute case
[19, 28, 29] and, more recently, extensions to multi-attribute case have been
studied [20, 138, 139]. This literature is still growing, with a main focus on
applied aspects (see, for example, [13, 144, 145]). We will, on the contrary,
concentrate attention on some aspects of theoretical type, related with the
multi-attribute case.

Various mathematical concepts, such as non-additive measures, aggre-
gation functions, multivariate probability distributions, and notions of sto-
chastic dependence emerge in the formulation and the analysis of target-
based models, see [38]. It is to be said that notions in the field of non-
additive measures and aggregation functions are quite common in the mod-
ern economic literature. They are used in game theory (see, for example,
[71, 142]) and multi-criteria decision aid (see [3, 62, 63, 69, 80, 85]). In
such fields, one aims to finding the best alternative for a Decision Maker
(DM), or classifying the set of good alternatives in choices with many cri-
teria, for situations where uncertainty is not present. These notions have
generally been used to go beyond the classical principle of maximization
of expected utility in decision theory [59, 77, 79, 91, 121, 141]. Along our
work, on the contrary, we show how non-additive measures and aggrega-
tion functions are of interest even in the frame of the classical utility theory.
More precisely we show that they emerge in a natural way in the target-
based approach when considering the multi-attribute case. Furthermore we
explain how they combine with the analysis of multivariate probability dis-
tributions and with concepts of stochastic dependence.

For what concerns non-additive measures, we pay particular attention
to the concept of capacity, or fuzzy measure, that constitutes a specific class
of such measures that enjoys the property of monotonicity. Capacities, on
the family of subsets of a finite space, have been introduced by Choquet in
[34] and independently defined by Sugeno in [135] in the context of fuzzy
integrals. Given a finite set Ω, with corresponding power set 2Ω, a capacity
is a set function m : 2Ω → [0, 1] satisfying

• m(∅) = 0, m(Ω) = 1;
• m(S) ≤ m(T ) for all sets S, T ∈ 2Ω such that S ⊆ T .

v
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Such capacities find many applications. For example, as mentioned above,
in game theory, where they are used to assess the right importance to each
component of a coalition, or in multi-criteria decision making, representing
degrees of satisfaction of investors fulfilling a defined set of objectives (see,
for example, [64]). Capacities can be better studied through the use of some
algebraic transforms, like the Möbius transform [115], the Shapley [125]
and the interaction transforms [103], and others.

In particular the Möbius transform Mm of a capacity m is a function
satisfying the equality

Mm(S) =
∑
T⊆S

(−1)|T |+1m(T ),

for any set S ∈ 2Ω. This object turns out to be very useful in multi-
criteria decisional problems (see [66]) as, in particular, for problems de-
scribed by the target-based model, as we will see later. A first applica-
tion of the Möbius transform for capacities arises in the theory of aggre-
gation functions and of non-additive integrals. Aggregation functions are
built from capacities and inherit their basic feature of monotonicity. The
idea of aggregation consists in summarizing the information contained in
an n−dimentional vector to a single representative value. This value is a
sort of average and it is expressed in terms of the underlying capacity. Also
non-additive integrals are built by means of capacities, of which they rep-
resent a natural extension. They are also known as fuzzy integrals and take
this name from the fuzzy measures from which they derive. An important
feature of this kind of integrals is that, in their turn, they provide an exten-
sion of Lebesgue-kind integrals based on additive measures.

The most common fuzzy integral is the Choquet integral, introduced by
Choquet in 1953 and rediscovered in 1986, when David Schmeidler [121]
first put forward an axiomatic model of choice with non-additive beliefs.
Let m be a capacity defined on a discrete set of indices N := {1, . . . , n}
and let x1, . . . , xn ∈ R+. The discrete Choquet integral of a function x :
N → R+ with respect to the capacity m is then defined as

Chm(x) :=
n∑

i=1

[x(i) − x(i−1)]m({σ(i), . . . , σ(n)}),

where σ(i) is the element of N corresponding to x(i), x(1) ≤ . . . ≤ x(n) and
x(0) := 0.

The Choquet integral, together with Sugeno integral [135] and other
fuzzy integrals, has been largely used in the context of decision making and
analysis of decisions under uncertainty, see [62, 63, 69]. In this paper we
will show how the Choquet integral emerges as natural in the target-based
approach to utilities, in the case in which the coordinates of the target vector
manifest comonotonicity. In this view, we will show how our model may
represent an extension of the Choquet integral for capacities.
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The concept of decision analysis under uncertainty has seen a first for-
malization in 1944 [142], when Von Neumann and Morgenstern (NM) laid
the foundations of what is known as the axiomatic theory expected utility
theory. It should however be remember that a first hint to the use expected
utility (instead of the simple average) was introduced by Bernoulli during
the 18th century, in the evaluation of the proceeds of a lottery.

Consider a set of random variables X with values in Z and consider a
preference ordering ≻ that we want to use to describe our preferences on X ;
consider Z as a complete and separable metric space with its sigma-algebra
σ(Z). The set X , assumed finite for our purposes, takes the meaning of the
set of possible choices, or the set of lotteries, while Z is the set of possible
consequences of such choices, or possible outcomes of the lotteries, named
prospects. The best possible choice will then be the one with best possible
outcome. In this perspective, to give a qualitative analysis of the prefer-
ences, Decision Makers will try to measure, or at least to order, outcomes
by means of some utility function.

First of all we have to notice that the goodness of the outcomes is not
evaluated in the same way by all the Decision Makers, since the degree
of satisfaction for a same result shall be different according to the feelings
of each DM. The choice of the utility function is evidently subjective and
linked to the behavior of the DM toward risk and uncertainty. So every
DM is asked to choose his own function in order to express his preferences
among elements of Z . Hence, the utility function will be expressed as u :
Z → R, where u is assumed to be non-decreasing, following the idea that
better outcomes shall be associated with bigger values. To be more precise,
according to the preference relation ≻ and to NM principles, we have

X ≻ Y ⇔ E[u(X)] > E[u(Y )] ∀X, Y ∈ X ,

where E has the meaning of the expected value of the function u.
Von Neumann and Morgenstern also devoted attention to the study of

the attitudes of DMs towards risk. They classified them according to three
categories of behavior, namely risk neutral, risk-seeking and risk-averse
Decision Makers. The former are indifferent in choosing between two risky
prospects, but with the same expected value; risk-averse Decision Makers,
among prospects with the same expected value, prefer the less risky (for
them you have u(E[X]) ≥ E[u(X)], then they make use of a concave util-
ity function); risk-seeker DMs, finally, will manifest the opposite attitude
towards risk (and hence will choose a convex utility function).

In this perspective it is interesting to compare investors through their
attitudes toward risk. Between two DM playing the same game, but with
two different utility functions, it is interesting, for example, to establish
which of them is the more risk averse. De Finetti in [37] was the first to
give a solution of this problem, by introducing the concept of measure of
risk aversion. Such a concept is strictly linked to the one of risk premium,
that is the quantity the DM is willing to pay in order to replace the utility
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of her risky prospect with its expected value. De Finetti’s measure of risk
aversion is a function that quantifies the risk premium of each DM on the
basis of her utility function, describing as more risk averse an individual
willing to pay a bigger risk premium.

Other substantial contributions in this direction, have been made over
the years by Samuelson [118], Pratt [109], Rothschild and Stiglitz [116],
Arrow [7], and Fishburn [57]. However, objections have also been made to
the models based on the maximization of expected utility: first of all Allais,
in 1953, offered a paradox in contrast to the theory proposed by Neumann
and Morgenstern; Ellsberg [52] casted doubts on the axiomatic formulation
of Savage [119], giving rise to a expected utility theory based on generalized
Choquet integrals. However, it was only around 1980 that theories alterna-
tive to the expected utility began to be proposed (with the active partici-
pation of scholars from disciplines different from the traditional economic,
statistical, and mathematical, as philosophers and psychologists). Among
the main contributions in this period: Kahneman and Tversky [77], Machina
[91, 92], Quiggin [111], Karni [79], Gilboa [59], Schmeidler [121], and
others. The theory of choice under uncertainty has taken, since then, very
different features than before.

Among the newest concepts of utilities, the one of target-based utility
plays a central role in our work. Firstly introduced by Castagnoli and Li-
Calzi in 1996 [28], then extended by Bordley and LiCalzi in 2000 [19], it
gives a quite innovative perspective in the frame of decision theory under
risk. In such a model the classical utility function is seen as a distribution
function of a (random) target, which the DM wants to overcome with the
largest confidence possible. The principle of maximization of the expected
utility, in these settings, will then be applied by the DM to the probability of
achieving her target. It is interesting to notice that, in the one-dimensional
case, the model built in this way is still a utility model in the sense of Von
Neumann Morgenstern (NM), while in higher dimensions this parallel, in
general, fails. One of the most important and amazing result in this paper is
that, the multi-dimensional model that we are going to introduce perfectly
fits with the utility models built according to the NM principles, although
we make use of non-additive measures to describe preferences involved in
it.

Consider, for instance, a utility function u, increasing and with values
in [0, 1]. The degree of satisfaction of a DM adopting such a function u is
then ranged, without loss of generality, in this interval, where 1 represents
full accomplishment of DM’s objective and 0 stand for a total failure. Now
consider a random variable T , with values in R, with the meaning of a target
to fulfill, and consider its distribution function

FT (x) = P(T ≤ x).

As a function ranging in [0, 1], the utility u can be considered as the distri-
bution function FT of the target T . Then the degree of satisfaction of the
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DM will be a non-decreasing function according to FT . For any prospect
X ∈ Z it will be of interest, then, to analyze and maximize the quantity

P(T ≤ X)

as the expected utility of the prospect X . In fact one has

E(X) =

∫
u(X) dFX(x) =

∫
P(T ≤ x) dFX(x) = P(T ≤ X).

The one-dimensional model naturally follows the one of expected util-
ity, but extensions of the target-based model to the multi-attribute case
are not immediate and may not describe multi-attribute utility functions.
Some proposal have been made in the recent years, for example by Bor-
dley and Kirkwood [20], that considered multi-attribute target-based deci-
sional model with independent targets, by Tsetlin and Winkler [138, 139],
that look for correspondence between a target-oriented formulation corre-
sponding to a multi-attribute utility function, with particular attention to the
two-dimensional case. Given two targets T1, T2 with cdf F1, F2 and joint
law F12, Tsetlin and Winkler describe their target-oriented utility function
by

u(x1, x2) = u1F1(x1) + u2F2(x2) + (1− u1 − u2)F12(x1, x2),

where u1, u2 are coefficient representing utilities of single targets achieved.
In our work we introduce and study a more extended version of this

multi-attribute model. Our model considers n correlated targets T1, . . . , Tn
and describes the importance of achieving each one of them by means of a
capacity m and its Möbius transform Mm. More in particular, let m be a
capacity defined on a indices set N = {1, . . . , n}; for any B ⊆ N , consider
now FB,B as the probability of achieving exactly the targets with indices in
B and to fail with respect to the others. The utility function u can now be
written as

u(x) =
∑
B⊆N

m(B)FB,B(x).

By means of the Möbius transform of m, an analogous representation can
be given by

u(x) =
∑
B⊆N

Mm(B)FB(x),

where FB is the joint law of the targets whose indices are in B. The utility
is then described by the capacity m and by the marginal contribution of F ,
both evaluated over all the subsets of N . The analysis of the capacity m can
then be shifted to the study of its transform Mm, analogously the joint laws
FB of the targets can be rewritten in terms of their connecting copulas CB,
for any B ⊆ N .

The concept of copula constitutes a very important tool for this work.
Properties of the copulas are for first studied to better describe the target-
based multi-attribute model: to represent the interaction among goods in
which a DM invests and to define properties of risk aversion and correlation
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aversion of the DM. Moreover they draw a link between target-based model
and the Choquet integral, since, in the case when the connecting copula
of the targets is the comonotonicity copula, the expression of the expected
utility is actually given by a Choquet integral.

Copulas play an important role also in the last part of the work, in
which we discuss the comparison between classical stochastic order and
the concept of stochastic precedence. The stochastic precedence between
two real-valued random variables has often emerged in different applied
frameworks: it finds applications in various statistical contexts, including
testing and sampling (see [18]), reliability modeling, tests for distributional
equality versus various alternatives, and the relative performance of com-
parable tolerance bounds (see [5, 118]). Furthermore, this concept arises in
the probabilistic context of Markov models for waiting times to occurrences
of words in random sampling of letters from an alphabet (for references, see
[40, 41, 42, 43]).

For two given random variables X1 and X2, with distributions F1 and
F2, we have that X1 ≺st X2 in the sense of the usual stochastic order if

F1(x) ≥ F2(x), at any point x,

while we say that X1 stochastically precedes X2 (X1 ≼sp X2) if

P(X1 ≤ X2) ≥
1

2
.

In this paper we consider a slightly more general, and completely nat-
ural, concept of stochastic precedence and analyze its relations with the
notions of stochastic ordering. Motivations for our study arise from differ-
ent fields, in particular from the frame of Target-Based Approach in deci-
sions under risk. Although this approach has been mainly developed under
the assumption of stochastic independence between Targets and Prospects,
our analysis concerns the case of stochastic dependence, that we model by
means of a special class of copulas, introduced for the purpose. Examples
are provided to better explain the behavior of the target-based model un-
der changes in the connecting copulas of the random variables, especially
regarding their properties of symmetry and dependence.

Along our work we also trace connections to reliability theory, whose
aim is studying the lifetime of a system through the analysis of the life-
time of its components. In these settings, the target-based model finds an
application in representing the behavior of the whole considered system by
means of the interaction of its components.

More in particular our work consists of five Chapters that are briefly
summarized as follows:

• In the first Chapter we outline some basic notions of monotone
(non-additive) measures and related concepts of integral. This
topic has been of large importance in last decades and found many
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applications in decision theory under risk and game theory in par-
ticular. Here we introduce the basic concept of capacity and pro-
vide an insight to what is called “theory of aggregation”.

• In Chapter 2 we fix attention on the concept of copula. Copulas
are the most common aggregation function that are used for ex-
pressing joint laws of random variables in terms of their marginal
distributions. We will review some of the main characteristics of
such functions and provide examples useful for our work.

• Chapter 3 gives an overview of the theory of risk and decisions un-
der risk and uncertainty. It introduces the von Neumann-Morgen-
stern theory of expected utility and gives a brief discussion about
the main features of behavior of Decision Makers facing risky sit-
uations.

• In Chapter 4 we discuss the target-based approach to utility theory
and we show the related role of capacities and multi-dimensional
copulas. The multi-attribute model for target-based utility intro-
duced in the work also provides connections with different fields,
such as the ones of aggregation theory and system reliability. We
provide extensions and application of such a model for both fields.
Furthermore, we investigate properties of risk aversion and cor-
relation aversion for Decision Makers who adopt this model for
establishing their utility in investments involving more than one
asset.

• The results presented in Chapter 5 are focused on the compari-
son between the classical stochastic order and the quite new con-
cept of stochastic precedence among random variables. Such a
relationship is explained in terms of their connecting copulas and
relative properties and it is enclosed with an application to one-
dimensional target-based model for utilities. We also provides sev-
eral examples showing disagreement between stochastic order and
stochastic precedence, principally due to properties concerning de-
pendence and symmetry of connecting copulas.

At the end of this work, a final Section will present concluding remarks
and perspectives for future work.





CHAPTER 1

Non-Additive Measures

Non-additive measure theory has made a significant progress in recent
years and has been intensively used in many fields of applied mathematics,
in economics, decision theory and artificial intelligence. In particular, non-
additive measures are used when models based on classical measures are
not appropriate.

In this work we will concentrate our attention in the possible applica-
tions for the study of expected utility models. Von Neumann and Morgen-
stern proposed in [142] a model that have been widely used for solving
decision theoretical problems through decades, though it has its limitations.
Savage in [119] improved it significantly by including subjective probabili-
ties. However, probabilities used in his model remained additive. To make
expected utility models more flexible, additive subjective probabilities were
later replaced by non-additive probabilities, called capacities or fuzzy mea-
sures.

Capacities used in expected utility models prove to be a very flexible
tool to model different kinds of behavior. Most Decision Makers, for exam-
ple, overestimate small and underestimate large probabilities. Further, most
Decision Makers prefer decisions where more information is available to
decisions with less available information. Such a behavior is known as un-
certainty aversion and turns out to be impossible to be expressed through an
additive model. On the other side, it is possible to describe basic properties
of risk aversion through additive model by transforming utility functions.
For a deeper analysis of the aversion towards risk it is necessary to pass to
non-additive measures.

Many other results and concepts related with additive measure or proba-
bility theory have natural generalizations to non-additive theory. Integration
with respect to nonadditive measures, for example, ca be made by replacing
the usual Lebesgue integral with the more general concept of fuzzy integral.
Fuzzy integrals, in particular, are important tools used to solve problems of
decision under risk in finance as well as in game theory.

We start this Chapter recalling the very basic aspects of probability mea-
sures. We will then introduce the more general concept of capacity or fuzzy
measure, obtained by dropping some of the main properties of the proba-
bility measures, and many of its most important properties. Finally we will
briefly discuss about integrals built with respect to fuzzy measures, with
particular attention to the well known Choquet integral. For our purposes
we restrict our study to the case of finite sets.

1



2 1. NON-ADDITIVE MEASURES

1. The Inclusion-Exclusion Principle

In combinatorics, the inclusionexclusion principle is a counting tech-
nique which generalizes the familiar method of obtaining the number of
elements in the union of finite sets. Giancarlo Rota said in [115]: “One of
the most useful principles of enumeration in discrete probability and com-
binatorial theory is the celebrated principle of inclusionexclusion. When
skillfully applied, this principle has yielded the solution to many combina-
torial problems”. Actually, this basic combinatorial tool also finds many
applications in number theory and in measure theory and, for our purposes,
will be very useful for the statement of the Target-Based model for utility.

We start by introducing some useful notation. We consider the set of
indices N := {1, . . . , n}, with I a subset of N with cardinality |I|. Further-
more, we consider a collection of finite sets {E1, . . . , En}. We will denote
with EI the set ∩i∈IEi.

The inclusion-exclusion principle can be used to calculate the cardinal-
ity of the union of the sets {Ei}i∈N , as follows.

THEOREM 1.1 (Inclusion-Exclusion Principle). LetE1, . . . , En be finite
sets. The cardinality of their union is given by∣∣∣∣ n∪

i=1

Ei

∣∣∣∣ = ∑
I⊆N

(−1)|I|+1|EI |. (1.1)

Notice that, when the cardinality of intersections is regular (namely
|EI | = αI , for all I ⊆ N ), the formula can be rewritten as follows∣∣∣∣ n∪

k=1

Ek

∣∣∣∣ = n∑
I:|I|=1

(−1)|I|+1

(
n

|I|

)
αI . (1.2)

A similar formula can be found in probabilistic terms, when studying the
probability of events in a given probability space. For this purpose fix a
finite state space Ω and define by 2Ω its power set. In these hypothesis we
can introduce the following Definitions.

DEFINITION 1.2. A σ−algebra F is a family of sets in 2Ω such that

(1) ∅ ∈ F ;
(2) for any set E, if E ∈ F then its complement Ec ∈ F ;
(3) given a countable family of sets {En}n≥1, ∪nEn ∈ F .

DEFINITION 1.3. A probability measure over (Ω,F) is a function P :
F → [0, 1] such that

(1) for all set E ∈ F , P(E) ≥ 0;
(2) P(Ω) = 1 (and P(∅) = 0);
(3) for any countable collection of mutually disjoint sets {En}n≥1, one

has that P(∪nEn) =
∑

n P(En) (countably additivity).
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A triplet (Ω,F ,P) will be called a (finite) probability space. Under
these hypothesis we are ready to introduce the probabilistic version of the
principle.

PROPOSITION 1.4. Given a probability space (Ω,F ,P) and a finite
family of events {E1, . . . , En} ∈ F , the inclusion-exclusion principle reads

P
( n∪

i=1

Ei

)
=
∑
I⊆N

(−1)|I|+1P
(∩

i∈I

Ei

)
. (1.3)

For practical purposes we give explicit formula for the case n = 2, for
which the principle reduces to

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2). (1.4)

An analogous of formula (1.2) can be given in probabilistic settings, when
the measure of each event depends only on its cardinality. We have

P
( n∪

i=1

Ei

)
=

n∑
I:|I|=1

(−1)|I|+1

(
n

|I|

)
P(EI). (1.5)

We remember that no hypothesis about dependence of events {En}n
are given. In case that the events are mutually pairwise independent, for
the countably additivity property of the probability measure, formula (1.3)
reduces to

P
( n∪

k=1

Ek

)
=

n∑
k=1

P(Ek).

2. Capacities

In this Section we will discuss about measures that do not benefit from
the additivity, typical property of probability measures. By the way we will
concentrate our attention on the weaker property of monotonicity, and to its
extensions, by introducing the concept of k−monotonicity. This property is
strictly linked to the inclusion-exclusion principle presented in the previous
Section. We start considering the following

DEFINITION 1.5. Given a set Ω, a relationship ⊆ over 2Ω with the prop-
erties of reflexivity, antisymmetry and transitivity is called a partial order.
The set 2Ω embedded with such relationship will be then called a partially
ordered set, i.e. a poset.

The notation (2Ω,⊆) is sometimes used in literature to identify such
poset. Over this structure the following property can be considered.

DEFINITION 1.6. Let the poset 2Ω be given. A function m : 2Ω → R is
called monotone if and only if, for all sets E,B ∈ 2Ω such that E ⊆ B,

m(E) ≤ m(B). (1.6)
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It is straightforward to notice that any probability measure enjoys the
property of monotonicity. Notice also that such definition can be given for
set functions by replacing Ω with an set of indexes N . Let now k be an
integer such that k ≥ 2. We have the following

DEFINITION 1.7. Let K := {1, . . . , k}. A function m is said k−mono-
tone if and only if

m

( ∪
j∈K

Ej

)
≥
∑
I⊆K

(−1)|I|+1m

(∩
i∈I

Ei

)
, (1.7)

for all Ej ∈ 2Ω, j ∈ K. Furthermore we will say that such a function m is
totally monotone if it is k−monotone for all k ≥ 2.

For the special case k = 2 formula (1.7) can be rewritten as

m(E1 ∪ E2) ≥ m(E1) +m(E2)−m(E1 ∩ E2). (1.8)

Such a property of 2−monotonicity is also called supermodularity. Notice
that if m is k−monotone for some k ≥ 2, than it is k′−monotone for any
k′ ≤ k. Notice furthermore that, if m is a probability measure, we have
an equality in (1.7) (and in (1.8)), and such an equation coincides with the
one of inclusion-exclusion principle given in (1.3) (respectively in (1.4)).
This fact is due to the additivity of the measure and can be interpreted in the
sense that any probability measure is ∞−monotone.

As we were saying at the beginning of this Section, we want to study
functions that are not assumed to be additive. Even for such functions,
some useful properties can be given, such as the following result, due to
Chateneuf and Jaffray (see [31]).

PROPOSITION 1.8. Let m : 2Ω → R be a k−monotone function. If
m({ω}) ≥ 0 for all ω ∈ Ω, then the function m is also monotone (and
hence non-negative).

By means of Definition 1.6 and Proposition 1.8 we are now ready to
introduce the following

DEFINITION 1.9. A fuzzy measure or capacity is a bounded function
m : 2Ω → R that satisfies

(1) m(∅) = 0;
(2) m(A) ≤ m(B) for any A,B sets in 2Ω such that A ⊆ B.

Since a capacity is a bounded set function, it is usual to rescale it to the
set of values [0, 1], so that m(Ω) = 1. We now give some basic example of
capacities.

EXAMPLE 1.10. Let N = {1, . . . , n} as usual. For any set E ⊆ N
define

m0(E) :=

{
1, if E = N ;
0, otherwise.
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Such a capacity is the minimal possible over the set N . On the other side
one can define the maximal capacity by a function

m1(E) :=

{
0, if E = ∅;
1, otherwise.

Both minimal and maximal capacities are examples of 0− 1 capacities, i.e.
capacities assuming only values 0 and 1. This kind of capacities are very
used in reliability theory and describe the functioning of series and parallel
systems respectively. For further details on the topic see, for example, [10].
Notice that the former enjoys the property of ∞−monotonicity, while the
latter is ∞−alternating, property that we introduce in the following Defini-
tion.

DEFINITION 1.11. A function m : 2Ω → R is said k−alternating if for
all families of subsets of Ω of k elements

m

( ∩
j∈K

Ej

)
≤
∑
I⊆K

(−1)|I|+1m

(∪
i∈I

Ei

)
, (1.9)

where once more K stands for the set {1, . . . , k}. A totally alternating
function is k−alternating for every k ≥ 2.

A 2−alternating set function is also called submodular and its expres-
sion reads

m(E1 ∩ E2) ≤ m(E1) +m(E2)−m(E1 ∪ E2). (1.10)

DEFINITION 1.12. A fuzzy measure m : 2Ω → R is said symmetric if its
values depend only on the cardinality of the underlying sets, i.e if for any
set E ∈ 2Ω, m(E) = m(|E|).

Generally speaking to know a capacity down pat one needs 2|Ω| pieces
of information, for a symmetric one the amount of information needed is
drastically reduced to |Ω|. Under such condition one can rewrite equation
(1.7) as

m

( ∪
j∈K

Ej

)
≥

|K|∑
I:|I|=1

(−1)|I|+1

(
|K|
|I|

)
m(|I|). (1.11)

An analogous formula for condition (1.9) can be written in a similar way.

DEFINITION 1.13. A function m : 2Ω → R is said superadditive if, for
any family of sets {En}n≥1 ∈ 2Ω,

m

( ∪
n≥1

En

)
≥
∑
n≥1

m(En). (1.12)

It will be called subadditive if the inequality in (1.12) is reversed. The
function m will be called additive if both superadditive and subadditive.

A more general notion of additivity can be given for capacities as it
follows.



6 1. NON-ADDITIVE MEASURES

DEFINITION 1.14. A fuzzy measure m : 2Ω → R is said k−additive if,
for any family of sets of Ω with k elements A1, . . . , Ak,∑

I⊆K

(−1)|K\I|m

(∪
i∈I

Ai

)
= 0. (1.13)

We introduce now the concept of dual of a fuzzy measure.

DEFINITION 1.15. Given a fuzzy measure m : 2Ω → [0, 1], its dual
measure m∗ is defined by

m∗(A) = 1−m(Ac), (1.14)

for all sets A ∈ 2Ω. The set Ac, as usual, stands for the complement of A.

The dual m∗ is a fuzzy measure itself and can enjoy all the properties of
fuzzy measures. In particular, if a fuzzy measure m is superadditive its dual
m∗ will be subadditive and, viceversa, ifm is subadditive its dual will enjoy
the property of superadditivity; ifm is supermodular thenm∗ is submodular
and reciprocally; finally if one of them is k−monotone the other one will
be k−alternating (see [65] for further details). An example in this direction
is given by the minimal and maximal capacities introduced above. It is
straightforward to notice that one is the dual of the other one.

Capacities may arise by manipulating probability measures, as follows.

EXAMPLE 1.16. Let P a given class of probability measures defined on
(Ω,F). For any given E ⊆ Ω, the functions

msup(E) = sup
P∈P

P(E)

minf(E) = inf
P∈P

P(E)

are examples of capacities built in this way. Notice that on {1, 2} the first
capacity is submodular while the second is supermodular. Furthermore
they are reciprocally dual measures.

Capacities can be also obtained through the composition of a probability
measure P with a distortion γ, in the following way.

DEFINITION 1.17. Let P a probability measure defined on a state space
Ω. Let furthermore γ : [0, 1] → [0, 1] be an increasing function with γ(0) =
0 and γ(1) = 1. The function m = γ ◦ P is called distorted probability
while γ is the corresponding distortion.

Such a capacity enjoy an important property.

PROPOSITION 1.18. A function built by means of a probability measure
and a distortion, as in Definition 1.17, is monotone and hence a capacity.
Furthermore, if γ is convex then the capacity m is supermodular; with γ
concave, m is submodular.

For the proof of the proposition above and for further details see for
example [44].
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3. Möbius Transforms

Due to August Möbius (1790 - 1868), the so called Möbius Transform
is a particular and very useful tool that belongs to number theory, but finds
many applications also in other fields, especially in the one of non-additive
measures. In this Section we introduce only the basic concepts needed for
our dissertation. For further details see [115].

Let Ω be a poset, with 2Ω the associated power set. We often refer to
Ω like to an index set N := {1, . . . , n}. To any function m : 2Ω → [0, 1]
(or more in general with values in R) it can be associated another function
Mm : 2Ω → [0, 1] by

Mm(A) =
∑
B⊆A

(−1)|A\B|m

(∪
i∈I

Bi

)
for all A ∈ 2Ω. (1.15)

If furthermore Ω is finite, equation (1.15) can be rewritten as

Mm(A) =
∑
B⊆A

(−1)|A\B|m(B) for all A ∈ 2Ω. (1.16)

A particular feature of this correspondence is that it is one-to-one, since
conversely

m(A) =
∑
B⊆A

Mm(B) for all A ∈ 2Ω. (1.17)

The validity of formula (1.17) is proved by Shafer in [123].
The Möbius transform is very useful in the study of capacities since

many of the properties of such measures can be expressed through their
Möbius representation. First of all notice that any set of 2n coefficients
{m(A)}A⊆Ω does not necessarily correspond to the Möbius transform of a
capacity on Ω. The boundary and monotonicity conditions must be ensured
(see [31]), i.e. we must have

Mm(∅) = 0,
∑
B⊆Ω

Mm(B) = 1, and
∑
B⊆A

Mm(B) ≥ 0 ∀A ∈ 2Ω.

(1.18)
A very important property concerns k−monotonicity and reads as follows.

PROPOSITION 1.19. A fuzzy measure m is k−monotone if and only if
its Möbius transform Mm is non-negative for any set of cardinality less or
equal than k i.e., for all E ∈ 2Ω with |E| ≤ k, Mm(E) ≥ 0.

As a corollary of the above proposition, we can say that the Möbius
transform of a totally monotone fuzzy measure is always non-negative.

PROPOSITION 1.20. A fuzzy measure m is k−additive if and only if its
Möbius transform Mm of order greater than k are null i.e., for all A ∈ 2Ω

with |A| > k, Mm(A) = 0, and Mm(B) > 0 for at least one element B
with |B| = k.
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The result above follows directly from Definition 1.14 of k−additivity.
Finally, an alternative useful representation, given by Shafer in [123], is the
following.

DEFINITION 1.21. The co-Möbius representation M̌m of m is defined
by

M̌m(T ) :=
∑
S⊃T

m(S). (1.19)

This definition let to an useful property linking the transform of a ca-
pacity m to its dual m∗.

PROPOSITION 1.22. Letm andm∗ a pair of dual measures andMm and
Mm∗ be their Möbius representation respectively. Then, for any T ⊆ N ,

Mm∗(T ) = (−1)|T |+1
∑
S⊃T

m(S) = (−1)|T |+1M̌m(T ). (1.20)

4. Interaction Indices

In the framework of cooperative game theory, the concept of interac-
tion index, which can be regarded as an extension of that of value, has been
recently proposed to measure the interaction phenomena among players.
The expression “interaction phenomena” refers to either complementarity
or redundancy effects among players of coalitions resulting from the non-
additivity of the underlying game. Thus far, the notion of interaction index
has been primarily applied to multi-criteria decision making in the frame-
work of aggregation by the Choquet integral. We will provide an insight of
these concepts in the following Sections.

For a better comprehension of the interaction phenomena modeled by
a capacity, several numerical indices can be computed (see [94, 95]). In
the sequel, we present two of them in details, the Shapley value and the
interaction transform. The Shapley value was introduced in 1953 by Lloyd
Shapley and it is a very important tool in cooperative games. Its main func-
tion is that of defining the importance of a single player within the coalition
to which he belongs. As an extension of the Shapley value, the interaction
transform assigns importance to subsets of any cardinality concerning such
a given coalition. Further information on the topic can be found in [103]
and [125].

Shapley noticed in [125] that the overall importance of a criterion i ∈ N
into a decision problem is not solely determined by the number m({i}), but
also by all m(T ) such that i ∈ T . Indeed, we may have m({i}) = 0,
suggesting that element i is unimportant, but it may happen that for many
subsets T ∈ N \ {i}, m(T ∪ {i}) is much greater than m({i}), suggesting
that i is actually an important element in the decision. To overcome the
difficulties in attributing the right weight to each component i of a coalition,
Shapley proposed a definition of a coefficient of importance like follows.
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DEFINITION 1.23. The importance index of criterion i with respect to
m is defined by:

Φm(i) :=
∑

T⊆N\{i}

(n− t− 1)!t!

n!
[m(T ∪ {i})−m(T )], (1.21)

where is intended that t = |T |. The Shapley value is the vector of impor-
tance indices {Φm(1), . . . ,Φm(N)}.

Having in mind that, for each subset of criteria T ∈ N , m(T ) can be
interpreted as the importance of T in the decision problem, the Shapley
value of i can be thought of as an average value of the marginal contribution
m(T ∪ {i})−m(T ) of criterion i to a subset T not containing it. To make
this clearer, it is informative to rewrite the index as follows:

Φm(i) :=
1

n

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{i}:|T |=t

[m(T ∪ {i})−m(T )]. (1.22)

A fundamental property is that the numbers Φm(1), . . . ,Φm(n) form a prob-
ability distribution over N , in fact

Φm(i) ≥ 0 ∀i ∈ N and
n∑

i=1

Φm(i) = 1.

The best known axiomatic supporting the Shapley value is given in the fol-
lowing

THEOREM 1.24. The numbers Φm(i), with m : 2N → [0, 1], i =
1, . . . , n, satisfy the following conditions:

(1) are linear w.r.t. the fuzzy measure, that is, there exist real constants
piT (T ⊆ N) such that

Φm(i) =
∑
T⊆N

piTm(T );

(2) are symmetric, that is, for any permutation σ on N , we have

Φm(i) = Φσm(σ(i));

(3) fulfill the null criterion axiom, that is,

m(T ∪ {i}) = m(T ) ∀T ⊆ N \ {i} ⇒ Φm(i) = 0;

(4) fulfill the efficiency axiom, that is
n∑

i=1

Φm(i) = 1.

Let us comment on the axioms presented in this characterization. First
of all we ask the importance indices to be linear w.r.t. the corresponding
fuzzy measure. Next, the symmetry axiom demands that the indices are
independent of the name (label) given to each criterion. The third axiom,
which is quite natural, says that when a criterion does not contribute in
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the decision problem then it has a zero global importance. The last axiom
naturally acts as a normalization property.

A very useful property consists in the possibility of rewriting Shapley
value in terms of the Möbius representation of m, as

ΦMm(i) :=
∑

T⊆N\{i}

1

t+ 1
Mm(T ∪ {i}). (1.23)

Another interesting concept is that of interaction among criteria. Of
course, it would be interesting to appraise the degree of interaction among
any subset of criteria. Let’s start considering a pair of criteria {i, j} ∈ N . It
may happen that m(i) and m(j) are small and at the same time m({i, j}) is
large. Clearly, the number Φm(i) merely measures the average contribution
that criterion i brings to all possible combinations, but it does not explain
why criterion i may have a large importance. In other words, it gives no
information on the interaction phenomena existing among criteria. Sup-
pose that i and j are positively correlated or substitutable (resp. negatively
correlated or complementary). Then the marginal contribution of j to ev-
ery combination of criteria that contains i should be strictly less than (resp.
greater than) the marginal contribution of j to the same combination when
i is excluded. Thus, depending on whether the correlation between i and j
is positive or negative, the quantity

(∆i,jm)(T ) := (T ∪ {i, j})−m(T ∪ {i})−m(T ∪ {j}) +m(T )

is ≤ 0 or ≥ 0 for all T ⊆ N \{i, j}, respectively. We call this expression the
marginal interaction between i and j. Now, an interaction index for {i, j}
is given by an average value of this marginal interaction. Murofushi and
Soneda in [103] proposed to calculate this average value as for the Shapley
value.

DEFINITION 1.25. The interaction index of criteria i and j related to m
is defined by

Im(i, j) :=
∑

T⊆N\{i,j}

(n− t− 2)!t!

(n− 1)!
(∆i,jm)(T ). (1.24)

We immediately see that this index is negative as soon as i and j are
positively correlated or substitutable. Similarly, it is positive when i and j
are negatively correlated or complementary. Moreover, it has been shown
in [65] that Im(i, j) ∈ [−1, 1] for all i, j ∈ 2N . The interaction index
among a combination S of criteria was introduced by Grabisch in [65] as
a natural extension of the case |S| = 2 and lately axiomatized by Grabisch
and Roubens [71].

DEFINITION 1.26. The interaction index of S (|s| ≥ 2) related to m, is
defined by

Im(S) :=
∑

T⊆N\S

(n− t− s)!t!

(n− s+ 1)!
(∆Sm)(T ), (1.25)
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where s = |S| and

(∆Sm)(T ) :=
∑
L⊆S

(−1)s−lm(L ∪ T ).

Finally, it can be also written, in terms of the Möbius representation, as

IMm(S) :=
∑

T⊆N\S

1

t+ 1
Mm(T ∪ S). (1.26)

There is a rich literature regarding this kind of index including, for ex-
ample, the Banzhaf index, andness and orness indices, veto and favor and
others more. For such a literature reference is made to [69, 93].

5. Aggregation Functions

Aggregation functions became in the last decade a very important field
of mathematics and information sciences. The idea of aggregation functions
is rather simple: they aim to summarize the information contained in a vec-
tor of n values by means of a single representative one. Starting from the
most simple example, the arithmetic mean, many other kinds aggregation
functions were applied in various sectors of research.

The basic feature of all aggregation functions is their nondecreasing
monotonicity, as fuzzy measures have. Another axiomatic constraint of ag-
gregation functions concerns the boundary conditions, expressing the idea
that “minimal (or maximal) inputs are aggregated into minimal (maximal)
output of the scale we work on”.

By these first definitions, the class of aggregation functions results really
huge and the problem of choosing the right function for a given application
really difficult. The study of the main classes of aggregation functions is
then very complex, so we just report some of the main examples and fea-
tures relative to such operators. More information about aggregation func-
tions and operator can be found, for example, in [12].

Before recalling the basic definitions, it is opportune to introduce some
notations. We will use R for the extended real line [−∞,∞], while I will
stand for a generic closed subset of R. The symbol N , when not dif-
ferently specified, will refer to a set of indices with n elements, namely
N := {1, . . . , n}.

DEFINITION 1.27. An aggregation function in In is a function A(n) :
In → I that

(1) is non-decreasing in each variable;
(2) satisfies infx∈IA(n)(x) = inf I and supx∈IA

(n)(x) = sup I;
(3) A(1)(x) = x for all x ∈ I.

The integer (n) represents the number of variables considered for A.
From now on, when no possibility of mistakes may occur, we will omit to
write it. Now we introduce some basic aggregation functions.
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• the arithmetic mean AM, defined by

AM(x) :=
1

n

n∑
i=1

xi,

that represents an aggregation function for any domain In;
• the product Π(x) =

∏n
i=1 xi on [0, 1] or on [1,∞];

• the minimum and the maximum, defined on any I, respectively by

Min(x) = min{x1, . . . , xn} and Max(x) = max{x1, . . . , xn};

• the k−order statistics OSk : In → I, defined for any choice of I
as OSk(x) = x(k), where x(k) is the k−th elements of the ordered
vector (x(1), . . . , x(n));

• the k−th projection Pk : In → I with Pk(x) = xk;
• for any i ∈ N , the Dirac measure centered on i, defined for any
A ⊆ Ω as

δi(A) =

{
1 if i ∈ A,
0 otherwise;

• the threshold measure τk defined, for any integer k ∈ N , by

τk(A) =

{
1 if |A| ≥ k,
0 otherwise;

As for fuzzy measures, it can be introduced the dual of the aggregation
function, in the special case in which I is limited. If not specified, from now
on we will assume I = [0, 1].

DEFINITION 1.28. LetA : In → I be an aggregation function. The dual
of A is a function Ad : In → I such that

Ad(x) = 1− A(1− x1, . . . , 1− xn). (1.27)

Notice that the dual of an aggregation function is an aggregation func-
tion itself. Moreover it can be easily extended to any limited interval [a, b] ⊂
R, as Ad(x) = a+ b− A(a+ b− x1, . . . , a+ b− xn).

The aggregation functions may have many properties that we briefly list
below.

DEFINITION 1.29 (Monotonicity). The aggregation function A : In →
I is strictly increasing in each argument if for any two different vectors x and
x′ with x < x′ (xi < x′i for at least for one index i) one has A(x) < A(x′).
It is called jointly strictly increasing if for any x,x′ ∈ In, such that xi < x′i
for all entries i = 1, . . . , n, A(x) < A(x′).

It is immediate to notice that any strictly increasing aggregation function
is also jointly strictly increasing, while the viceversa is not true. The product
Π on [0, 1] is an example of aggregation function that has the latter property
but not the former.
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DEFINITION 1.30 (Lipschitz condition). Let ∥ · ∥: Rn → R+ be a
norm. If A : In → I satisfies

|A(x)− A(y)| ≤ c∥x− y∥ (1.28)

for all x,y ∈ Rn and for some positive constant c, then A is called Lips-
chitzian. The infimum value c for which equation (1.28) holds is called the
Lipschitz constant.

Important examples of norms are given by the Lp norm, i.e. the Min-
kowski norm of order p

∥x∥p :=
( n∑

i=1

|xi|p
)1/p

(1.29)

and its limit case ∥x∥∞ := maxi |xi| which is the Chebyshev norm. Notice
that the aggregation functions Min,Max,AM are Chebyshev norms of
constant 1, while Π on [0, 1] is 1−Lipschitz w.r.t. to norm Lp but no more
than n−Chebyshev.

DEFINITION 1.31 (Symmetry). The aggregation function A : In → I is
symmetric if A(x) = A(σ(x)) for any vector x ∈ In and any permutation
σ of the elements of the vector x, namely σ(x) = (x(1), . . . , x(n)).

The symmetry property is essential when considering criteria that do
not depend on the order in which they are chosen, maybe because they have
the same importance or the original importance attributed by an anonymous
Decision Maker is unknown. Notice that all the aggregation functions intro-
duced so far, as Min, Max, AM , Π and so on, are symmetric. An example
of non-symmetric aggregation function is given by the Weighted Arithmetic
Mean

WAMw(x) =
n∑

i=1

wixi, (1.30)

where the weights wi are such that
∑n

i=1wi = 1. This aggregation function
represents the simplest way to assess importance to different criteria in a de-
cision problem. Notice that it is a simple extension of the arithmetic mean
in fact, when all weights are equal to 1/n, it trivially reduces to AM . Any
non-symmetric function can, anyway summarized by replacing the vari-
ables xi with the corresponding order statistics x(i), i = 1, . . . , n. One of
the simplest examples in this direction is given by the Ordered Weighted
Average function defined as

OWAw(x) =
n∑

i=1

wix(i). (1.31)

This function trivially reduces to WAM when considering an ordered vec-
tor and, in turn, to AM if symmetrized.
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DEFINITION 1.32 (Idempotence). An idempotent aggregation function
A : In → I is one that satisfies A(n · x) = x, where with n · x we stands for
a vector with all identical components x, i.e. (x1, . . . , xn) = (x, . . . , x).

Many of the aggregation functions mentioned above, like AM , WAM ,
OSk, Pk, Min, andMax enjoy this property while, for example, Π doesn’t.

DEFINITION 1.33 (Associativity). Let A : I2 → I an aggregation func-
tion. Then it is called associative if for all x1, x2, x3 ∈ I we have

A(A(x1, x2), x3) = A(x1, A(x2, x3)). (1.32)

This property can be suitably extended to generic n−ary aggregation
functions, as shown in [70]. Such functions are easy to build, starting from
any 2−ary associative one, once all inputs to be aggregated are known.

Other interesting properties to highlight regard the elements to be ag-
gregated.

DEFINITION 1.34 (Neutral element). An element e ∈ I is called neutral
element of an aggregation function A : In → I if A(x{i}e) = x, where the
vector x{i}e is the one with all components equal to e except the i−th one
which is x.

DEFINITION 1.35 (Annihilator). An element a ∈ I is called annihilator
element of an aggregation function A : In → I if for any vector x ∈ In such
that a ∈ {x1, . . . , xn} (at least one element of the vector x is equal to a) we
have A(x) = a.

Finally, like fuzzy measures do, aggregation functions may enjoy the
following properties.

DEFINITION 1.36. An aggregation function is called

• additive, if for any x,y ∈ In such that x+ y ∈ In we have

A(x+ y) = A(x) + A(y);

it is then superadditive (subadditive) if the equality is replaced with
the symbol ≥ (≤);

• modular, if for any x,y ∈ In we have

A(x ∨ y) + A(x ∧ y) = A(x) + A(y);

it is supermodular (submodular) if the equality is replaced with the
symbol ≥ (≤).

The arithmetic mean AM satisfies all the four properties mentioned
above, while Π on [0, 1] is supermodular and superadditive, but neither mod-
ular nor additive.
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6. Fuzzy Integrals based on Aggregation Functions

Fuzzy measures can be seen as a tool useful to resume all the values
of a function to a single point. To this aim Sugeno in [135] extended such
concept to the one of fuzzy integrals. These integrals are built on the real
with respect to a fuzzy measure, like Lebesgue integral is built with an or-
dinary (additive) one. As an ordinary integral can be seen in a certain sense
as the average of a function, a fuzzy integral can be seen as an averaging
aggregation operator. At the same time the classical notion of measure ex-
tends the notion of weight to infinite universes, and the Lebesgue integral on
a finite universe coincides with the weighted arithmetic mean. Therefore,
the existence of more general notions of measure than the classical additive
one, together with the appropriate integrals, offer a new realm of aggrega-
tion functions when these integrals are limited to a finite universe. Since
additivity is replaced by monotonicity, we deal with monotone measures al-
though the most common name, which we will use, is capacity, introduced
by Choquet in [34] and resumed in Section 2. The term fuzzy measure
introduced by Sugeno is often used in the fuzzy set community.

There are many types of integrals defined with respect to a capacity.
The most common ones are the Choquet integral and the Sugeno integral,
leading to two interesting classes of aggregation functions, developed in
this section. To introduce these arguments we will need some notation first.
Let N := {1, . . . , n} an set of indexes of n elements.

DEFINITION 1.37. For any subset A ⊆ N , eS represents the character-
istic vector of A, i.e. the vector of {0, 1}n whose i−th component is 1 if and
only if i ∈ A.Geometrically, the characteristic vectors are the 2n vertices of
the hypercube [0, 1]n.

In game theory N represents a group of n players, whose subgroups As
indicate coalitions among such players. The function v allows to assign to
each coalition the proper worth (for example the amount of money earned
if the game is played). One can also define the unanimity game for A ⊆ N
as the game vB such that vB(A) = 1 if and only if B ⊆ A, and 0 otherwise.

DEFINITION 1.38. A pseudo-Boolean function is a function defined as
f : {0, 1}n → R.

Any real valued set function m : 2N → R can be assimilated unam-
biguously with a pseudo-Boolean function. The correspondence is straight-
forward: we have

f(x) =
∑
A⊆N

m(A)
∏
i∈A

xi
∏
i/∈A

(1− xi), (1.33)

for x ∈ {0, 1}n, and m(A) = f(eA) for all A ∈ N . In particular, a pseudo-
Boolean function that corresponds to a fuzzy measure, is increasing in each
variable and fulfils the boundary conditions f(0) = 0 and f(1) = 1, where
0 indicates the vector with all null components, while 1’s components are
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all equal to 1. Hammer et al. in [72] showed that any pseudo-Boolean
function has a unique expression as a multilinear polynomial in n variables:

f(x) =
∑
A⊆N

Mm(A)
∏
i∈A

xi, (1.34)

for x ∈ {0, 1}n. The coefficients Mm(A) are the ones of the Möbius trans-
form, defined in (1.16). In game theory, these coefficients are called the
dividends of the coalitions in game m (for further details see, for exam-
ple, [108]). In view of Definition 1.37, equation (1.34) can be seen w.r.t.
unanimity games as

v(A) = f(eA) =
∑
B⊆N

Mm(B)
∏
i∈B

(eA)i =
∑
B⊆N

Mm(B)vB(A). (1.35)

Thus, any game v has a canonical representation in terms of unanimity
games that determine a linear basis for v (extensions of this topic to general
(infinite) spaces of players can be found in [60]).

Let now m be a fuzzy measure defined on a discrete set N and let
x1, . . . , xn ∈ R. We are now ready to introduce the following

DEFINITION 1.39. The (discrete) Choquet integral of a function x :
N → R, with respect to a fuzzy measure m on N , is defined by

Chm(x) :=
n∑

i=1

[x(i) − x(i−1)]m(σ(i), . . . , σ(n)) (1.36)

where, as usual, x(1) ≤ . . . ≤ x(n) and x(0) := 0. An equivalent formulation
of the integral can also be given

Chm(x) :=
n∑

i=1

x(i)[m(σ(i), . . . , σ(n))−m(σ(i+ 1), . . . , σ(n))] (1.37)

Notice that the link with the Lebesgue integral is strong, since both
coincide when the measure m is additive:

Chm(x) :=
n∑

i=1

mixi.

In this sense the Choquet integral can be seen as a generalization of the
Lebesgue integral.

DEFINITION 1.40. The (discrete) Sugeno integral of a function x : N →
[0, 1], with respect to a fuzzy measure m on N , is defined by

Sum(x) :=
n∨

i=1

[x(i) ∧m(σ(i), . . . , σ(n))]. (1.38)

Given a fuzzy measure m on N , the Choquet and Sugeno integrals can
be regarded as aggregation operators defined on Rn and [0, 1]n, respectively.
But they are essentially different in nature, since the latter is based on non-
linear operators (min and max), and the former on usual linear operators.
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It can be said that the Choquet integral is suitable for cardinal aggregation
(where numbers have a real meaning), while the Sugeno integral seems to
be more suitable for ordinal aggregation (where only order makes sense).
One of the common properties of the two integrals, instead, is that both
compute a kind of distorted average of x1, . . . , xn.

Let now introduce another kind of integral useful for its simplicity in
aggregation models. Let us consider first the additive fuzzy measure p,
derived from the Shapley value Φm defined in 1.23:

p(S) :=
∑
i∈S

Φm({i}), (1.39)

for any set S ⊆ N . Then we can define the Shapley integral as follows.

DEFINITION 1.41. The Shapley integral of a function x : N → [0, 1]
with respect to a fuzzy measure m is defined by

Shm(x) =
∑
i∈N

Φm({i})xi. (1.40)

Thus defined, the Shapley integral is actually a weighted arithmetic
mean operator WAMω whose weights are the Shapley power indices ωi =
Φm({i}), for all i = 1, . . . , n. Starting from any fuzzy measure, we can
define the Shapley additive measure and aggregate by the corresponding
weighted arithmetic mean. Note that, contrary to the Choquet and Sugeno
integrals, the Shapley integral w.r.t. the fuzzy measurem is not an extension
of m. Indeed, for any S ⊆ N , we generally have

Shm(eS) =
∑
i∈S

Φm({i}) ̸= m(S).

More general definitions and properties can be found, for example, in
[62] and [63].

7. The Choquet Integral and its Extensions

In what follows, we give particular attention to the Choquet integral, its
extensions and properties. We start recalling that Lovász in [90] observed
that any x ∈ Rn

+ \ {0} can be written uniquely in the form

x =
k∑

i=1

λieAi
, (1.41)

with λi ≥ 0 for all i = 1, . . . , k and ∅ ̸= A1 ( . . . ( Ak ⊆ N . Hence any
function f : {0, 1}n → R with f(0) = 0 can be extended to f̂ : Rn

+ → R,
with f̂(0) = 0 and

f̂(x) =
k∑

i=1

λif(eAi
). (1.42)

Notice that f̂ it is unique and represents an extension of f since f̂ = f on
{0, 1}n. Such an extension f̂ is called the Lovász extension of the function
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f and it benefits of many interesting properties (that on may find, for exam-
ple, in [96]). The most important, for this dissertation, are the following.

THEOREM 1.42. Let f : {0, 1}n → R, with Lovász extension f̂ : Rn
+ →

R. For any σ ∈ ΣN , set of all the permutation of N = {1, . . . , n}, and for
any x ∈ Rn we set

Ψσ(x) :=
n∑

i=1

xσ(i)[f(e{σ(i),...,σ(n)})− f(e{σ(i+1),...,σ(n)})]. (1.43)

Then the following are equivalent:
(1) f is submodular;
(2) f̂ is convex;
(3) we have

f̂(x) = f(0) + max
σ∈ΣN

Ψσ(x), for x ∈ Rn
+;

(4) we have

f(x) = f(0) + max
σ∈ΣN

Ψσ(x), for x ∈ {0, 1}n.

In this view we have that the convexity (concavity, linearity) of f̂ corre-
sponds to the submodularity (supermodularity, modularity)of f . The proof
of the Theorem can be found in [128]. From (1.43) we get a useful for-
mulation for the extension of pseudo-Boolean functions, that we give in the
following

PROPOSITION 1.43. Let f a pseudo-Boolean function. Then its Lovász
extension f̂ is given by

f̂(x) =
∑
A⊆N

Mm(A)
∧
i∈A

xi, (1.44)

for x ∈ Rn
+. The coefficients Mm are the Möbius representation of f .

What immediately follows from (1.44) is that, when m is a fuzzy mea-
sure on N , the Choquet integral Chm on Rn

+ defined in (1.36) is nothing
else than the Lovász extension of the pseudo-Boolean function fm which
represents m:

Chm = f̂m (1.45)

on Rn
+. Thus, the Choquet integral is a piecewise affine function on [0, 1]n;

moreover it can be seen as the unique liner interpolation the vertices of the
hypercube [0, 1]n. In fact, the vertices of [0, 1]n correspond to the vectors
eA, so that

Chm(eA) = m(A) for all A ⊆ N.

Moreover, we clearly see that Chm is an increasing function if and only if
m is as well. Proposition 1.43 can be rewritten as follows (see also [31]).
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PROPOSITION 1.44. Assume E ⊇ [0, 1]. Any Choquet integral Chm :
En → R can be rewritten as

Chm(x) =
∑
A⊆N

Mm(A)
∧
i∈A

xi, (1.46)

where x ∈ En and Mm is the Möbius transform of the capacity m.

Notice that the integral is unique since the representation Mm of m is.
Many other properties of Choquet integral can be found in literature, as the
ones listed below.

PROPOSITION 1.45. The Choquet integral satisfy the following proper-
ties (see [94] for further details).

(1) The Choquet integral is linear with respect to the capacity: for any
two capacities m1,m2 on N and any two real numbers α, β ≥ 0
we have

Chαm1+βm2 = α · Chm1 + β · Chm2 .

(2) The Choquet integral is monotone w.r.t. capacities: for any two
capacities m and m′ we have that m ≤ m′ if and only if Chm ≤
Chm′ .

(3) If m is a 0− 1 capacity then

Chm(x) =
∨

A⊆N :m(A)=1

∧
i∈A

xi, ∀x ∈ [0, 1]n.

(4) The Choquet integral Chm is symmetric if and only if the capacity
m is symmetric.

(5) The Choquet integral is invariant under positive affine transforma-
tions, that is, for any c > 0 and any a ∈ R,

Chm(cx+ a1x) = c · Chm(x) + a.

(6) For any capacity m we have Ch∗m = Chm∗ , i.e. the dual of the
Choquet integral with respect to the capacity m is the Choquet
integral with respect to the dual of the capacity m.

A property that, in general, a Choquet integral lacks of is that one of ad-
ditivity, since the corresponding capacity m is not additive itself. However
there is a particular situation in which the property of additivity is granted,
that is when the integrand vectors satisfy comonotonic additivity. There are
many definitions of comonotonic additivity (briefly said comonotonicity)
as, for example, the following regarding real vectors.

DEFINITION 1.46. Two vectors x,x′ ∈ Rn are said comonotonic if
there exists a permutation σ on N that gives the same order to both vectors,
i.e. xσ(1) ≤ . . . ≤ xσ(n) and x′σ(1) ≤ . . . ≤ x′σ(n). Equivalently we can say
that there are no couples of indices i, j for which xi < xj and x′i > x′j at
the same time.

Under such hypothesis we have the following result.
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PROPOSITION 1.47. If x,x′ are comonotonic vectors of Rn
+ then, for

any capacity m,

Chm(x+ x′) = Chm(x) + Chm(x
′). (1.47)

The following gives a characterization of the Choquet integral.

THEOREM 1.48. Let F : Rn → R be a given function. Then there
exists a unique capacity m such that F = Chm if and only if the function F
satisfies the following properties:

(1) comonotonic additivity;
(2) nondecreasing monotonicity;
(3) boundary conditions, i.e. F (0) = 0, F (1) = 1.

Moreover, m is defined through F as m(A) := F (1A) for any A ⊆ N .

This result was showed by De Campos in [35], assuming in addition
positive homogeneity, condition that can be deduced from hypothesis (1)
and (2). The proof in the continuous case is due to Schmeidler and can be
found in [121].

We now present the connections between the Choquet integral and the
most common aggregation functions introduced in the previous Section.

PROPOSITION 1.49. Let m be a capacity and consider I = R. The
following holds

(1) Chm = Min if and only if m = mMin is the minimal capacity;
in the same way we can state that Chm = Max if and only if
m = mMax;

(2) Chm = OSk, the k−th order statistic, if and only if the capacity
m is the threshold measure τn−k+1;

(3) Chm = Pk, the k−th projection, if and only if m is the Dirac
measure δk;

(4) Chm = WAMw if and only if m is additive, with wi = m({i}) for
all i ∈ N ;

(5) Chm = OWAw if and only if m is symmetric, with weights wi =
m(An−i+1)−m(An−i) for all i = 2, . . . , n and w1 = 1−

∑n
i=2wi;

any subset Ai of Ω is such that |Ai| = i and its measure m(A) =∑i−1
j=0wn−j .

We already mentioned the problem of the complexity of the capacity
m: one requires, in fact, 2n − 2 information to know it completely. To re-
duce this problem significatively one can make use of capacities owning the
property of k−additivity, like proposed by Grabisch in [65]. The Choquet
integral considerably simplifies in this case, in particular, when the underly-
ing capacity is 2−additive (or equivalently, m is a 2−order fuzzy measure),
we have the following result, du to Marichal [93].
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THEOREM 1.50. Let m a 2−order fuzzy measure on N . Then the best
weighted arithmetic mean that minimizes∫

[0,1]n
[Chm(x)−WAMω(x)]

2 dx (1.48)

is given by the Shapley integral Shm. Moreover, if E ⊇ [0, 1], we have

Chm(x) = Shm(x)−
1

2

∑
{i,j}⊆N

Im({i, j})[xi ∨ xj − xi ∧ xj], (1.49)

for x ∈ En.

Equation (1.49) shows that the Choquet integral can be decomposed in
a linear part, represented by Shm, and a non-linear part divided, in turn,
into 2 components: the one considering positive indices I({i, j}) and the
second one consisting in the negative indices. The positive part, for which
I({i, j}) ∈ [0, 1] implies a complementary behavior, that means that both
criteria need to be satisfied to have a better global score; the negative com-
ponents I({i, j}) ∈ [−1, 0] describe negative interaction between the cou-
ples {i, j}, that means that the components are substitutable, i.e. the satis-
faction of either i or j is sufficient to have a significant effect on the global
score. A more specific result in this direction is showed by Grabisch in [64].

THEOREM 1.51. Let m be a 2−order fuzzy measure on N and assume
E ⊇ [0, 1]. Then we have

Chm(x) =
∑
i∈N

(
Φm({i})−

1

2

∑
j∈N\{i}

|Im({i, j})|
)
xi

+
∑

Im({i,j})≥0

Im({i, j})(xi ∨ xj)−
∑

Im({i,j})≤0

Im({i, j})(xi ∧ xj)

(1.50)

for all x ∈ En. Moreover, we have Φm({i})− 1
2

∑
j∈N\{i} |Im({i, j})| ≥ 0

for all i ∈ N .

This decomposition emphasizes the role of the positive and negative
components: a Choquet integral with strong positive (negative) component
will be strongly conjunctive (disjunctive); if the values Im({i, j}) are low
the integral will be, with good approximation, linear. In this view it is
possible to write the integral as the sum of two components, namely

Chm(x) = Chm+(x) + Chm−(x), (1.51)

where m+ and m− are defined through their interaction representation

Im+(T ) = max{Im(T ), 0} Im−(T ) = min{Im(T ), 0}.



22 1. NON-ADDITIVE MEASURES

Due to linearity of I on set functions we have m = m+ + m− and
equation (1.51) holds true. More in particular it can be rewritten as

Chm(x) =
∑
T⊆N

Mm+(T )
∧
i∈T

xi +
∑
T⊆N

M̌m−(T )
∨
i∈T

xi, (1.52)

whereMm+ represents the Möbius transform of the positive componentm+

while M̌m− is the co-Möbius representation of m−.
A more general extension of formula (1.50) can be given for any k−ad-

ditive measure m. Grabisch in [64] reports an example of order 3. For such
measures it seems that an interpretation similar to the previous one can no
longer be given.

Many other extensions of the Choquet integral, that we do not consider
in this work, have been presented in literature in the last years, see for exam-
ple the concave integral proposed by Lehrer [88], or the universal integral
by Klement et al. in [83].



CHAPTER 2

Copulas: an overview

Copulas are specific aggregation operators, that are applied to aggre-
gate marginal distribution functions into an output joint distribution func-
tion. Nelsen in [106] referred to copulas as “functions that join or couple
multivariate distribution functions to their one-dimensional marginal dis-
tribution functions” and as “distribution functions whose one-dimensional
margins are uniform”. But neither of these statements is a definition, hence
we will devote this Chapter to giving a precise definition of copulas and to
examining some of their elementary properties.

1. Basic Concepts and Definitions

We first define subcopulas as a certain class of grounded 2−increasing
functions with margins; then we define copulas as subcopulas with domain
I2 = [0, 1]2.

DEFINITION 2.1. A two-dimensional subcopula (or 2−subcopula, or
briefly, a subcopula) is a function C ′ with the following properties

(1) Dom(C ′) = S1 × S2 where S1 and S2 are subset of I containing
0;

(2) C ′ is grounded, namely C ′(0, v) = C ′(u, 0) = 0 for all u, v ∈ I ,
and 2−increasing, i.e. increasing in each variable;

(3) C ′(u, 1) = u and C ′(1, v) = v, for all u, v ∈ I .

DEFINITION 2.2. A two-dimensional copula (or briefly a copula) is a
2−subcopula C whose domain is I2. Equivalently, a copula is a function C
from I2 to I with the following properties:

(1) For every u, v ∈ I , C(u, 0) = C(0, v) = 0 and C(u, 1) = u and
C(1, v) = v;

(2) 2. For every u1, u2, v1, v2 ∈ I such that u1 < u2 and v1 < v2,

VC([u,v]) = C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The value VC([u,v]) is the volume of the 2−copula over the set
[u1, u2]× [v1, v2].

We give now some general properties of copulas, for reference see [106].

PROPOSITION 2.3. The following hold for any copula C.
• C is increasing in each argument;
• C is Lipschitz (and hence uniformly) continuous;
• for i = 1, 2 ∂iC exists a.e. and 0 ≤ ∂iC ≤ 1;

23
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• The functions t → ∂1C(u, t) and t → ∂2C(t, v) are defined and
increasing a.e. on I .

There are three distinguished copulas, namely

W (u, v) = max(u+ v − 1, 0); M(u, v) = min(u, v); Π(u, v) = uv,
(2.1)

see Figure 2.1. Copulas M and W are called the Fréchet-Hoeffding upper
and lower bounds, respectively, since for any copula C and any u, v ∈ I we
have

W (u, v) ≤ C(u, v) ≤M(u, v). (2.2)

FIGURE 2.1. Copulas W,Π,M respectively

One of the most important results about copulas, that one that links them
with the concepts of joint distribution function, is the following due to Sklar.

THEOREM 2.4. Let H be a joint distribution function with margins F
and G. Then there exists a copula C such that for all x, y ∈ R,

H(x, y) = C(F (x), G(y)). (2.3)

If F and G are continuous, then C is unique; otherwise, C is uniquely
determined on RanF × RanG. Conversely, if C is a copula and F and
G are distribution functions, then the function H defined by (2.3) is a joint
distribution function with margins F and G.

LEMMA 2.5. Let H be a joint distribution function with margins F and
G. Then there exists a unique subcopula C ′ such that

(1) DomC ′ = RanF ×RanG;
(2) for all x, y ∈ R, H(x, y) = C ′(F (x), G(y)).

DEFINITION 2.6. Let F be a distribution function. Then a quasi-inverse
of F is any function F (−1) with domain I such that

• if t is in RanF , then F (−1)(t) is any number x in R such that
F (x) = t, i.e., for all t ∈ RanF ,

F (F (−1)(t)) = t;

• if t /∈ RanF , then

F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}.
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If F is strictly increasing, then it has but a single quasi-inverse, which is of
course the ordinary inverse, for which we use the customary notation F−1.

COROLLARY 2.7. Let H,F,G, and C ′ be as in Lemma 2.5, and let
F (−1) and G(−1) be quasi-inverses of F and G, respectively. Then for any
(u, v) in DomC,

C ′(u, v) = H(F (−1)(u), G(−1)(v)).

When F and G are continuous, the above result holds for copulas as well
and provides a method of constructing copulas from joint distribution func-
tions.

LEMMA 2.8. Let C ′ be a subcopula. Then there exists a copula C such
that C(u, v) = C ′(u, v) for all (u, v) ∈ DomC ′; i.e., any subcopula can be
extended to a copula. The extension is generally non-unique.

THEOREM 2.9. Let X and Y be continuous random variables. Then X
and Y are independent if and only if CXY = Π.

THEOREM 2.10. Let X and Y be continuous random variables with
copula CXY . If a and b are strictly increasing on RanX and RanY , re-
spectively, then Ca(X)b(Y ) = CXY . Thus CXY is invariant under strictly
increasing transformations of X and Y .

THEOREM 2.11. Let X and Y be continuous random variables with
copula CXY . Let a and b be strictly monotone on RanX and RanY , re-
spectively. Then

(1) if a is strictly increasing and b is strictly decreasing, then

Ca(X)b(Y )(u, v) = u− CXY (u, 1− v);

(2) if a is strictly decreasing and b is strictly increasing, then

Ca(X)b(Y )(u, v) = v − CXY (1− u, v);

(3) if a and b are both strictly decreasing, then

Ca(X)b(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).

A copula is a continuous function C : [0, 1]n → [0, 1], but is not nec-
essarily absolutely continuous. Any copula C can, in fact, be written as
C(u, v) = AC(u, v) + SC(u, v), where

AC(u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
C(s, t) dtds, SC(u, v) = C(u, v)− AC(u, v).

A copula C coinciding with AC (SC = 0) is then absolutely continuous,
while if C = SC (AC = 0) the copula is said singular. Otherwise it has a
singular component SC and an absolutely continuous one AC . The Fréchet-
Hoeffding bounds W and M are singular copulas: the mass of M is con-
centrated on the line u = v while W is distributed on the line u+ v = 1; on
the other hand, the independence copula Π is absolutely continuous.
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In many applications, the random variables of interest represent the life-
times of individuals or objects in some population. The probability of an
individual living or surviving beyond time x is given by the survival func-
tion (or reliability function) F (x) = P(X > x) = 1 − F (x), where as
before, F denotes the distribution function of X . For a pair (X, Y ) of ran-
dom variables with joint distribution function H , the joint survival function
is given by H(x, y) = P(X > x, Y > y). The margins of H are the func-
tions are the univariate survival functions F and G, respectively. We are
going to show the relationship between univariate and joint survival func-
tions. Suppose that C is the copula between the variables X and Y . Then

H(x, y) = 1− F (x)−G(x) +H(x, y)

= F (x) +G(x)− 1 + C(F (x), G(x))

= F (x) +G(x)− 1 + C(1− F (x), 1−G(x))

so we can define Ĉ : [0, 1]2 → [0, 1] by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (2.4)

then we have H(x, y) = Ĉ(F (x), G(x)).
Two other functions closely related to copulas (and survival copulas)

are the dual of a copula and the co-copula (Schweizer and Sklar 1983).
The dual of a copula C is the function C̃ defined by

C̃(u, v) = u+ v − C(u, v) (2.5)

and the co-copula is the function C∗ defined by

C∗(u, v) = 1− C(1− u, 1− v). (2.6)

Neither of these is a copula, but when C is the copula of a pair of random
variables X and Y , the dual of the copula and the co-copula each express a
probability of an event involving X and Y . More in details we know that

C(F (x), G(y)) = P(X ≤ x, Y ≤ y),

C̃(F (x), G(y)) = P(X > x, Y > y),

and we also have

C̃(F (x), G(y)) = P(X ≤ x ∨ Y ≤ y),

C∗(F (x), G(y)) = P(X > x ∨ Y > y).

Extension to generic dimension n can be given as we are going to report
below.

DEFINITION 2.12. An n−dimensional subcopula (or n−subcopula) is
a function C ′ with the following properties:

(1) DomC ′ = S1×. . .×Sn , where each Si is a subset of In containing
0 and 1;

(2) C ′ is grounded and n−increasing;
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(3) C ′ has (one-dimensional) margins C ′
i, i = 1, . . . , n, which satisfy

C ′
i(u) = u for all u ∈ Si.

Note that for every u ∈ DomC ′, 0 ≤ C ′(u) ≤ 1, so that RanC ′ is also a
subset of I .

DEFINITION 2.13. An n−dimensional copula (or simply an n−copula)
is an n−subcopula C whose domain is In. Equivalently, an n−copula is a
function C : In → I with the following properties:

(1) for every u ∈ In, C(u) = 0 if at least one coordinate of u is 0,
and if all coordinates of u are 1 except uk, then C(u) = uk;

(2) for every a,b ∈ In such that a ≤ b, the n−volume VC([a,b]) ≥
0.

It is easy to show that for any n−copula C with n ≥ 3, each k−margin of
C is a k−copula, 2 ≤ k ≤ n.

The main properties of the copulas as well as Sklar’s Theorem are still
valid in dimension n. Any n−dimensional copula C satisfy the Fréchet-
Hoeffding upper and lower bounds, so takes values between

W (u1, . . . , un) = max(u1 + . . .+ un − n+ 1, 0) (2.7)

and
M(u1, . . . , un) = min(u1, . . . , un).

It is important to notice that, for n > 2, W (u1, . . . , un) is no longer a
copula.

For the 2−dimensional case, the Fréchet-Hoeffding bounds inequality
introduced in (2.2), suggests a partial order on the set of copulas.

DEFINITION 2.14. If C1 and C2 are copulas, we say that C1 is smaller
than C2, and write C1 ≺ C2 (or C2 ≻ C1), if C1(u, v) ≤ C2(u, v) for all
u, v ∈ I.

Recalling that W (u, v) ≤ C(u, v) ≤ M(u, v) for every copula C and
all u, v ∈ I, the lower bound copula W is smaller than every copula, and
the upper bound copula M is larger than every copula. This point-wise par-
tial ordering of the set of copulas is called the concordance ordering. It is
a partial order rather than a total order because not every pair of copulas
is comparable. It assumes importance in the study of the dependence of
random variables, through the use of their connecting copulas. A similar
definition can be given for the multi-dimensional case. We delay it discus-
sion to next Section, in which we introduce the main ideas of dependence
among random variables.

1.1. Archimedean Copulas. An important class of copulas is that one
of Archimedean copulas. This class has a wide range of application, due
to the great variety of copulas belonging to it, the ease with which they can
be built and the many properties they enjoy. We encountered the particu-
lar case of independence between variables, whose copula is expressed by
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the product copula Π. From a practical point of view, we are interested
in similar simple expressions useful for the construction of copulas, like
ϕ(C(u, v)) = ϕ(u) + ϕ(v), for some function ϕ. So we need to find an
appropriate inverse ϕ[−1], with opportune properties, that solves

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (2.8)

DEFINITION 2.15. Let ϕ : I → [0,∞] be continuous, strictly de-
creasing and with ϕ(1) = 0. The pseudo-inverse of ϕ is the function
ϕ[−1] : [0,∞] → I given by

ϕ[−1](t) =

{
ϕ−1(t), if 0 ≤ t ≤ ϕ(0);
0, if ϕ(0) ≤ t ≤ ∞.

(2.9)

Notice that ϕ(ϕ[−1](t)) = min(t, ϕ(0)) and if ϕ(0) = ∞ then ϕ[−1](t) =
ϕ−1(t).

A function C defined as in (2.8) is, indeed, a copula, since the following
holds.

LEMMA 2.16. Let ϕ and ϕ[−1] as in Definition 2.15 and let C : I2 → I
be a function satisfying Eq. (2.8). Then C is 2−increasing and satisfies the
Fréchet-Hoeffding boundary conditions, so it is a copula.

Moreover, it can be given a characterization as follows.

THEOREM 2.17. Let ϕ and ϕ[−1] and C as in the previous Lemma. Then
C is a copula if and only if ϕ is convex.

Some important properties of Archimedean copulas are the following.

THEOREM 2.18. Let C be an Archimedean copula with generator ϕ.
Then:

(1) C is symmetric, i.e. C(u, v) = C(v, u) for all u, v ∈ I;
(2) C is associative, namely C(C(u, v), w) = C(u,C(v, w)) for all

u, v, w ∈ I;
(3) cϕ is a generator of C, for any constant c > 0.

A first simple example of Archimedean copulas is given by the inde-
pendence copula Π. Consider ϕ = − ln t, so ϕ[−1] = exp(−t) and with
straightforward calculation we get, from (2.8),

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) = exp(ln u+ ln v) = uv = Π(u, v).

In a similar way one can prove that also the minimal copula W is
Archimedean, while M is not. Other important families of Archimedean
copulas the ones attributed to Clayton, Ali-Mikhail-Haq, Frank and Gum-
bel. These classes of copulas are called one-parameters families, since all
the copulas belonging to any of this families can be obtained by changing
the value of the generating parameter. Consider, for example, the copulas
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from the Ali-Mikhail-Haq family (see Figure 2.2), namely those one that
can be written as

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
, (2.10)

with parameter θ ranging in [−1, 1] and generator given by

ln(1− θ(1− t)/t).

The independence copula belongs to this family, since can be obtained sub-
stituting to θ the value 0. Many other examples and interesting properties
won’t be discussed in this paper, but can be found, for example, in [106].

FIGURE 2.2. Copula from the Ali-Mikhail-Haq family, with pa-
rameter θ = −0.5 and its support

1.2. Copulas for capacities. It is interesting to highlight connections
between copulas and non-additive measures, especially with capacities. As
for additive probabilities, copulas for non-additive measures can be defined,
with just some minor requirements.

Consider, for instance, the extended line R = R ∪ {−∞,∞} and a
capacity µ on (Rd

,B(Rd
)). Let µi the i−th projection of µ: for S ∈ B(R),

µi(S) = µ(R× R× . . .× S × . . .R),

where S is in the i−th coordinate of the vector. It can be defined, as natural,
the distribution function Fµ : Rd → R associated to µ as follows:

Fµ(x1, . . . , xd) = µ([−∞, x1]× . . .× [−∞, xd]).

Marginal components are defined as well, namely Fµi
: R → R such that

Fµi
(x) = µi([−∞, x]).

It is easy to see that Fµ is increasing, since the capacity µ, for definition,
is monotone. In general Fµ is not right continuous and, of course, does
not characterize µ on the whole Borel σ−field, since even the distribution
function of a finitely additive probability measure in general does not have
these properties. Some properties can, in any case, be attributed to µ, as the
following.
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DEFINITION 2.19. Let

∆yi
si=xi

f(s1, . . . , si, . . . , sd) = f(s1, . . . , yi, . . . , sd)−f(s1, . . . , xi, . . . , sd).

A function F : Rd → R is called n−increasing (n ≤ d) if

∆
yi1
si1=xi1

· · ·∆yin
sin=xin

f(. . . , si1 , . . . , sin , . . .) ≥ 0

for any possible values of the indices i1, . . . , in.

Any d−variate distribution function associate with a finitely additive
probability measure is n-increasing for all n ≤ d. This is true also for
d−monotone capacities. In the case of probability measures the result is
a consequence of the fact that the probability of any d−dimensional rec-
tangle in Rd

is nonnegative and this probability can be expressed as the
multiple finite difference of the distribution function. The same procedure
cannot be applied for capacities, due to lack of additivity, but the definition
of d−monotonicity gives the result, resumed as follows.

LEMMA 2.20. If µ is d−monotone, then Fµ is n−increasing for every
n ≤ d.

This result is due to Scarsini, see [120]. In particular for the case
d = 2, the distribution function of any convex capacity is increasing and
2−increasing. Other important properties are the following.

COROLLARY 2.21. If µ is a d−monotone capacity on (Rd
,B(Rd

)), then
there exists a finitely additive probability measure ν on (Rd

,B(Rd
)) such

that Fµ = Fν .

THEOREM 2.22. If µ is convex then Fµ satisfies the Fréchet-Hoeffding
upper and lower bounds (see (2.2)), namely

max(Fµ1(x1) + Fµ2(x2)− 1, 0) ≤ Fµ(x1, x2) ≤ min(Fµ1(x1), Fµ2(x2)).

The same result holds for d−dimensional bounds, like in (2.7).

These two results allow us to state the following Theorem.

THEOREM 2.23. Let µ be a convex capacity on (Rd
,B(Rd

)). Then there
exists a function Cµ : Id → I , called a generalized copula of µ, such that

(1) Fµ(x1, . . . , xd) = Cµ(Fµ1(x1), . . . , Fµd
(xd));

(2) Cµ(x1, . . . , xd) = 0 if xi = 0 for at least one index i ∈ {1, . . . , n};
(3) Cµ(1, . . . , 1, xi, 1, . . . , 1) = xi;
(4) Cµ is increasing.

The proof of this statement is left to [120]. Notice that, when the under-
lying measure µ is a probability measure, then the generalized copula coin-
cide with the usual copula, defined in 2.2. If the measure µ is d−monotone,
then the generalized copula Cµ is n−increasing for all n ≤ d. Generally,
it is enough to assume convexity of the capacity to establish the existence
of a function that relates the joint distribution function to its margins, but
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d−monotonicity is required for this function to have all the analytic prop-
erties of a copula.

2. Dependence

The concepts of dependence are needed in the analysis of multivariate
models. The literature is rich of such models, so we list some of the most
important concept of dependence that we have found useful for our study.
These are:

• the positive quadrant dependence (PQD) and the concordance or-
dering, basic for copulas to determine wherever a multivariate pa-
rameter is a dependence parameter;

• the stochastic increasing positive dependence (SI);
• the TP2 dependence, necessary for constructing families of closed-

form copulas with wide range of dependence;
• the tail dependence for extreme values copulas;
• Kendall’s tau, Spearman’s rho and Gini’s gamma, as functions to

study concordance among variables from the analysis of their con-
necting copulas.

We will consider principally dependence concepts for bivariate distribu-
tions. For reference about this literature see, for example, [10], [76], and
[106]. We start with the following

DEFINITION 2.24 (Lehmann [87]). Let X = (X1, X2) a bivariate ran-
dom vector with cdf F . We say that X (or F ) is positive quadrant dependent
(PQD) if

P(X1 > x1, X2 > x2) ≥ P(X1 > x1)P(X2 > x2) ∀x1, x2 ∈ R. (2.11)

Condition (2.11) is equivalent to

P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1)P(X2 ≤ x2) ∀x1, x2 ∈ R. (2.12)

The reason why this consists in a positive dependence concept is that
X1 and X2 are more likely to be large (or small) together than two other
variables with same marginal laws but independent. If the inequalities in
(2.11) and (2.12) are reversed we will talk about negative quadrant de-
pendence (NQD). A similar definition can be given for multidimensional
random vectors.

DEFINITION 2.25. Let X = (X1, . . . , Xn) a multivariate random vec-
tor with cdf F . We say that X (or F ) is positive upper orthant dependent
(PUOD) if

P(X1 > x1, . . . , Xn > xn) ≥
n∏

i=1

P(Xi > xi) ∀x = (x1, . . . , xn) ∈ R,

(2.13)
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and that is positive lower orthant dependent (PLOD) if

P(X1 ≤ x1, . . . , Xn ≤ xn) ≥
n∏

i=1

P(Xi ≤ xi) ∀x = (x1, . . . , xn) ∈ R.

(2.14)
If both conditions (2.13) and (2.14) hold, then X (F ) is said positive orthant
dependent (POD). Notice that, in the multivariate case, these two expres-
sions are not necessarily equivalent.

If the inequality are reversed, we can state, in a similar way, the concepts
of negative upper orthant dependence (NUOD), negative lower orthant de-
pendence (NLOD), and negative orthant dependence.

The Definitions given above can be restated in terms of copulas. For
example PQD condition becomes as follows.

DEFINITION 2.26. Consider two random variables X1, X2 with contin-
uous marginal distributions G1, G2, cdf F , and connecting copula C. We
say that C is PQD (as X1, X2 are) if

C(G1(u), G2(v)) ≥ Π(G1(u), G2(v)), (2.15)

for all (u, v) ∈ I2. If the inequality in (2.15) is reversed, then the copula C
is said NQD.

Similar arguments can be used to define PLOD, PUOD, and POD con-
ditions in terms of multivariate copulas (and NLOD, NUOD, and NOD too).
According to the definition of concordance ordering for copulas, given in
2.14, we can make comparisons between couples of random variables to
establish their degree of concordance on the basis of the degree of con-
cordance expressed by their connecting copulas respectively. For exam-
ple a 2−copula C1 is more PQD than another 2−copula C2 if C1(u, v) ≥
C2(u, v) for all (u, v) ∈ [0, 1]2. In dimension n, C1 will be more PLOD
than C2 if C1(u) ≥ C2(u), and more PUOD if C1(u) ≥ C2(u), for every
u ∈ [0, 1]n (then POD if both hold).

An other concepts of dependence is the following, regarding tail mono-
tonicity of copulas.

DEFINITION 2.27. Let X = (X1, X2) a bivariate random vector with
cdf F . We say that X2 is stochastically increasing in X1, or the conditional
distribution F2|1 is stochastically increasing SI(X2|X1), if

P(X2 > x2 |X1 = x1) = 1− F2|1(x2|x1) (2.16)

is an increasing function of x1, for all x2 ∈ R. By reversing the direction
of the monotonicity in (2.16), the stochastically decreasing (SD) condition
results.

In terms of copulas, this result can be restated as follows.

DEFINITION 2.28. LetX1 andX2 be continuous random variables with
copula C. Then SI(X2|X1) holds if and only if for any v ∈ [0, 1] and for
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almost all u, ∂
∂u
C(u, v) is non-increasing in u or, equivalently, if C is a

concave function of u.

Other important definitions are that ones of right tail increasing (RTI),
right tail decreasing (RTD) or totally positivity of order 2 (TP2), with some
properties defining connections among them, can be found in [106].

Dependance is also modeled by some concept better known as measure
of concordance between random variables. Given a pair of random vari-
ables (X, Y ), we say that two observation (x1, y1) and (x2, y2) from the
pair are concordant if (x1−x2)(y1− y2) > 0, discordant if the inequality is
reversed. This means that the values of one of the random variables tends to
be big or small in the same way as the values of the other variable do. We
give for first the following

DEFINITION 2.29. A numeric measure k of association between two
continuous random variables X and Y whose copula is C is a measure of
concordance if it satisfies the following properties (we write kX,Y or kC):

• k is defined for every pair of continuous random variables;
• 1 ≤ kX,Y ≤ 1, kX,X = 1, and kX,−X = 1;
• kX,Y = kY,X;
• if X, Y are independent then kX,Y = kΠ = 0;
• k−X,Y = kX,−Y = −kX,Y ;
• if C1 ≺ C2 then kC1 ≤ kC2;
• if {(Xn, Yn)} is a sequence of continuous random variables with

copulas Cn, and if {Cn} converges pointwise to C, then we have
that limn→∞ kCn = kC .

Now we introduce some of the most known examples of measures of
concordance.

DEFINITION 2.30. Let (X1, Y1) and (X2, Y2) be independent and iden-
tically distributed random vectors with joint distribution F . Kendall’s tau
measure of concordance is defined as

τX,Y = P[(X1−X2)(Y1−Y2) > 0]−P[(X1−X2)(Y1−Y2) < 0]. (2.17)

For independent vectors of random variables not sharing the same joint
distributions, one can define a “concordance function” Q as follows. If
C1, C2 are the connecting copulas for the couples (X1, Y1), (X2, Y2) then
we can write

Q = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]

and obtain the following integral representation for Q:

Q = Q(C1, C2) = 4

∫
I2
C2(u, v)dC1(u, v)− 1. (2.18)
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Such a representation can be used to express Kendall’s tau by means of the
copula C:

τX,Y = τC = Q(C,C) = 4

∫
I2
C(u, v)dC(u, v)− 1. (2.19)

It is interesting to notice that this value, although expressed in terms of
integrals, can be used to compute dependance also for copulas that contains
a singular component. To do this we just need to rewrite the integral in
(2.19) as

τC = 1− 4

∫
I2

∂

∂u
C(u, v)

∂

∂v
C(u, v) dudv. (2.20)

The proof of this result rises from an application of integration by parts.
An interesting example is given in [106] of Kendall’s tau for the copulas of
Marshall-Olkin family (see section 5). In this particular case the measure of
concordance coincides with the measure of the singular component of the
copula.

Another important measures are given by Spearman’s rho and Gini’s
Gamma. Both of them can be defined by means of function Q. Namely
ρ = 3Q(C,Π) while γ = Q(C,M) + Q(C,W ). In a sense, Spearman’s
rho measures a concordance relationship or “distance” between the distri-
bution of X and Y as represented by their copula C and independence as
represented by the copula Π. On the other hand, Gini’s gamma measures
a concordance relationship or “distance” between C and monotone depen-
dence, as represented by the copulas M and W .

Notice that, for Archimedean copulas, this expressions can be written
by means of their generators, and assume a simpler form. For example,
given an Archimedean copula C with generator ϕ, Kendall’s Tau can be
written as

TC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (2.21)

For further details and properties of dependance measures see [106].

3. Methods of constructing copulas

Nelsen in [106] presents several general methods of constructing bivari-
ate copulas. By means of Sklar’s theorem one can produce copulas directly
from joint distribution functions. Using geometric methods, one may con-
struct singular copulas whose support lies in a specified set and copulas with
sections given by simple functions such as polynomials. He also discusses
some geometrical procedures that produce copulas known as ordinal sums,
shuffles of M , and convex sums. In the algebraic method, he constructs
copulas from relationships involving the bivariate and marginal distribu-
tions functions. In this Section we briefly report some of these methods and
provide examples for them.

We start introducing the “inversion method”, based on Sklar’s inversion
theorem presented in 2.7. Given a bivariate distribution function H with



3. METHODS OF CONSTRUCTING COPULAS 35

continuous margins G1 and G2, we can obtain a copula by “inverting” via
the expression 2.7:

C(u, v) = H(G
(−1)
1 (u), G

(−1)
2 (v)).

With this copula, we can construct new bivariate distributions with arbitrary
margins, say

H ′(x, y) = C(G′
1(x), G

′
2(y)).

Of course, this can be done equally as well using survival functions: by
recalling 2.4

Ĉ(u, v) = H(G
(−1)

1 (u), G
(−1)

2 (v)).

where G
(−1)

denotes a quasi-inverse of G, defined analogously to G(−1) in
(2.6), like

G
(−1)

(t) = G
(−1)

(1− t).

An example of a family of copulas built in this way is given by the Marshall-
Olkin system of bivariate exponential distributions (see e.g [76, 102, 106]).
This family is modeled by two parameter, say α1, α2, with values in [0, 1],
and its expression reads

Ĉ(α1,α2)(u, v) := u v min{u−α1 , v−α2}. (2.22)

This model is suitable to describe the lifetime a system with two compo-
nents, which are subject to shocks that are fatal to one or both of them. For
this reason it is a model that fits well with reliability problems and finds
many applications in such field. We discuss its construction in Chapter 5,
also giving some of its properties, useful for our purposes.

FIGURE 2.3. Copulas from the Marshall-Olkin family with pa-
rameters (α1, α2) respectively (0.3, 0.6), (0.5, 0.5) and (0.9, 0.3)

Other examples of copulas constructed by using the inversion method
can be found in [106], like the one from the circular uniform distribution
and others with Gaussian or Cauchy margins.

Another kind of approach in building copulas arise for geometric-type
methods. One can, indeed, construct grounded 2−increasing functions on
I2 with uniform margins, by using some information of a geometric nature,
such as the shape of the graphs of horizontal, vertical, or diagonal sections.
Nelsen in [106] examines ordinal sum construction, wherein the members
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of a set of copulas are scaled and translated in order to construct a new cop-
ula; the shuffles of M , which are constructed from the Fréchet-Hoeffding
upper bound; and the convex sum construction, a continuous analog of con-
vex linear combinations. For our purposes we will discuss about the second
kind of geometric method mentioned, the shuffles of M , the maximal cop-
ula.

It is known that M and W are singular copulas, whose support consists
in a single segment. For M it consists of the line connecting (0, 0) with
(1, 1), with slope 1, while W is supported by the line connecting (0, 1) to
(1, 0), with slope −1. All copulas with support consisting in segments of
slope −1 and 1 are called shuffles of M .

Informally speaking, we can say that such copulas are obtained by cut-
ting the support of M in small parts and rearranging into the unit square by
translating and flipping them.

More formally, a shuffle of M is determined by a positive integer n, a
finite partition {Ji}i=1,...,n of I into n closed subintervals, a permutation σ
on N = 1, 2, . . . , n, and a function ω : N → {−1, 1} where ω(i) is −1 or
1 according to whether or not the strip Ji × mI is flipped. The shuffle of
M resulting from a permutation σ will be denoted by M(n, {Ji}, σ, ω). A
shuffle of M with ω = 1, i.e., for which none of the strips are flipped, is a
straight shuffle, and a shuffle of M with ω = −1 is called a flipped shuffle.
We will also write In for {Ji} when it is a regular partition of I, i.e., when
the width of each subinterval Ji is 1/n.

As an example of shuffle consider the following copula Cγ , described
by a parameter γ ∈ (0, 1).

Cγ(u, v) =

 min(u, v − γ), if (u, v) ∈ [0, 1− γ]× [γ, 1]
min(u+ γ − 1, v), if (u, v) ∈ [1− γ, 1]× [0, γ]
W (u, v), otherwise.

(2.23)
This copulas are built by one single cut at γ and represents a straight shuffle
of M , since no strips are flipped. The graph of the support consists in two
lines with slope 1 connecting (0, γ) to (1 − γ, 1) and (1 − γ, 0) to (1, γ).
This example arise when considering two uniform random variables U and
V , with V = U ⊕ γ, with the meaning that the value of V is given by the
fractional part of the sum U + γ. Then one can see that the joint behavior
of U and V is expressed in terms of the copula Cγ . We make a deeper
investigation of this copula in Section 5, see Proposition 5.10.

Many other methods of constructing copulas exist in literature, as the al-
gebraic methods, involving both bivariate and marginal distributions of the
random variables considered. Some examples of copulas built with these
methods are given by the Plackett family and the Ali-Mikhail-Haq family
of distributions. These and other examples are studied accurately in [106].
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4. Symmetry and exchangeability

An important concept in the study of copulas is due to its property of
symmetry. Symmetry of copulas is strictly liked with the concept of ex-
changeability of the random variables described by them. The first to intro-
duce the concept of exchangeability was De Finetti in [36].

DEFINITION 2.31. We say that two random variables X1 and X2, with
marginal laws G1 and G2 and joint law F1,2, are exchangeable if and only
if G1 = G2 and F1,2 = F2,1.

A similar definition can be given for groups of random variables. If we
consider n identically distributed random variables X1, . . . , Xn, they are
exchangeable if F1,...,n = Fσ(1),...,σ(n), for any permutation σ of the indices
1, . . . , n.

It is immediate to think to, when two random variables are not ex-
changeable, how to measure they degree of non-exchangeability.

DEFINITION 2.32. Let H(F ) be the class of all random pairs (X1, X2)
such that X1 and X2 are identically distributed with continuous d.f. F . A
function µ̂ : H(F ) → R+ is a measure of non-exchangeability for H(F ) if
it satisfies the following properties:

A1: µ̂ is bounded, viz. there exists K ∈ R+ such that, for all
(X1, X2) ∈ H(F ), µ̂(X1, X2) ≤ K;

A2: µ̂(X1, X2) = 0 if, and only if, (X1, X2) is exchangeable;
A3: µ̂(X1, X2) is symmetric, i.e., for all (X1, X2) ∈ H(F ), one has
µ̂(X1, X2) = µ̂(X2, X1);

A4: µ̂(X1, X2) = µ̂(f(X1), f(X2)) for every strictly monotone func-
tion f and for all (X1, X2) ∈ H(F );

A5: if (Xn
1 , X

n
2 ) and (X1, X2) are pairs of random variables with

joint distribution functions Hn and H , respectively, and if Hn con-
verges weakly to H as n tends to ∞, then µ̂(Xn

1 , X
n
2 ) converges to

µ̂(X1, X2) as n tends to ∞.

Axioms A1 and A2 ensures that the measure is bounded and non always
equal to 0. The other axioms state that the measure must be invariant under
permutation of components, strictly monotone transformations and distri-
butional limit. This Definition is due to Durante et al. (see [49]), where
they showed in addition that, by means of Sklar’s Theorem, an equivalent
formulation of measure of non-exchangeability can be given w.r.t. the con-
necting copula of the random variables X1 and X2.

PROPOSITION 2.33. Let X1, X2 be continuous r.v.s and let CX1,X2 be
their connecting copula. The random variables X1 and X2 are exchange-
able if, and only if, they are identically distributed, i.e. FX1 = FX2 , and
CX1,X2 is symmetric, viz. CX1,X2(u, v) = CX1,X2(v, u) for every u, v ∈
[0, 1].

In this view one can rewrite Definition 2.32 by
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DEFINITION 2.34. Let C the class of all copulas. A function µ : C →
R+ is a measure of non-exchangeability for C if it satisfies the following
properties:

B1: µ is bounded, viz. there exists K ∈ R+ such that, for all C ∈ C,
µ(C) ≤ K;

B2: µ(C) = 0 if, and only if, C is symmetric;
B3: µ(C) = µ(Ct) for every C ∈ C;
B4: µ(C) = µ(Ĉ) for every C ∈ C;
B5: if (Cn) and C are in C and if Cn converges uniformly to C, then
µ(Cn) converges to µ(C) as n tends to ∞.

Several measures of non-exchangeability, that satisfy B1 − B5, have
been presented in [49]. Consider, for example, dp, the classical Lp distance
in C (with p ∈ [1,∞]). For all A,B ∈ C one has

dp(A,B) :=

(∫ 1

0

∫ 1

0

|A(u, v)−B(u, v)|pdudv
)1/p

(2.24)

for p finite and, for p = ∞,

d∞(A,B) := max
(u,v)∈I2

|A(u, v)−B(u, v)|. (2.25)

It has been showed in [49] that µp : C → R+ is a measure of non-exchan-
geability for every p ∈ [1,∞]. Klement and Mesiar in [82] and Nelsen in
[107] showed that, for every copula C, µ∞(C) ≤ 1/3 and that the upper
bound is attained. More in particular two copulas are considered for this
purpose, namely

C1(u, v) =min
(
u, v,max

(
u− 2

3
, 0
)
+max

(
v − 1

3
, 0
))
,

C2(u, v) =max
(
u+ v − 1,

1

3
−max

(1
3
− u, 0

)
−max

(2
3
− v, 0

)
, 0
)
,

whose support are described by Figure 2.4.

FIGURE 2.4. The supports of C1 and C2
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Notice that copula C1 is part of the one-parameter family Cγ introduced
in (2.23) (in particular, it corresponds to the value γ = 1/3). In Chapter 5
we will investigate, among other things, some properties of symmetry and
dependence of copulas, also by means of the family Cγ cited above (see
Proposition 5.10).





CHAPTER 3

Decisions under Risk and Utility Theory

The field of decision theory under risk and uncertainty represents a very
important area of interest in economics and finance. Conditions of uncer-
tainty are typically considered in situations involving a Decision Maker
(from now on, a DM) that is facing a choice among different opportunities,
or acts, whose consequences are not deterministic. These choices may in-
volve investments in financial assets or insurances as well as bets in gambles
or lotteries, and so on. All these situations involve objective facts (known or
unknown), regarding the possible choices and its consequences, and subjec-
tive matters, as the will of the DM when facing risky or uncertain situations,
as well.

The utility theory had arisen and developed in time, to describe diversi-
ties among DMs and their attitudes toward risk and uncertainty. The main
practical argument studied in this Chapter is the one of utility functions, that
are used to describe the behavior of the DM by attempting to order the set
of consequences corresponding to her choices.

1. Choice under Uncertainty

The modern analysis of decisions under uncertainty has seen its first
formalization in 1944 [142], when Von Neumann and Morgenstern (NM)
laid the foundations of what is known as the axiomatic theory of expected
utility. Their starting point is the study of people’s preferences with regard
to choices that have uncertain outcomes, namely gambles. Their hypothesis
state that if certain axioms are satisfied, the subjective value associated with
a gamble by an individual is the expectation of that individual’s valuations
of the outcomes of that gamble. According to the principle of maximiza-
tion of the utility, Decision Makers make use of their (subjective) utility
functions to evaluate gambles and then they try to maximize their expected
outcome.

In their work, Von Neumann and Morgenstern also devoted attention to
the attitude of investors towards risk. Decision Makers can be, in particular,
classified according to three categories of behavior: risk neutral, risk averse
and risk seeker. The first one represents people that, when facing two risky
prospects with the same expected value, will feel indifferent in the choice
between them. The second one is the attitude of DMs that, when asked
to choose between two such prospects, will prefer the less risky one, in
contraposition to the risk seeker people that will behave in the complete
opposite way.

41
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Consider, for instance, the set of random variables taking values in the
finite set Z . Since variables are characterized by their probability laws, we
are led to consider a preference relation ≻ on P(Z), the set of all probability
measures on Z or, in fact, on its σ−algebra σ(Z); by abuse of language,
each element p ∈ P(Z) will be called a lottery. The representation of
the expected utility according to NM principles for the preference relations
consists now in establishing a utility function U : P(Z) → R built from a
function u : Z → R such that

U(p) = E(u(X)) =
∑
z∈Z

p(z)u(z) (3.1)

for any random variable X ∈ Z with law p, being E the expected value
evaluated over u(X).

Let now recall some basic properties that are required for preference
relations.

Asymmetry: x ≻ y implies y � x;
Negative transitivity: x � y and y � z imply x � z.

From a strict preference relation we can immediately define some related
ones: the equivalence ∼, the weak relation ≽, and the reverse relation ≺,
with same characteristics of ≻. Concerning the first one, we write x ∼ y
when x � y and y � x simultaneously. This is an indifference relation (or
equivalence relation), as it is reflexive, symmetric and transitive. On the
other hand, we write x ≽ y when y � x or, equivalently, when both x ≻ y
or x ∼ y may occur: the weak relation is a complete and transitive relation.
We now focus on the relation ≻ and give some of its basic properties in
what follows.

DEFINITION 3.1. The preference relation ≻ is said to be rational if it
satisfies the following two axioms:

Continuity or Archimedean: For all p, q, r ∈ P(Z), if p ≻ q ≻ r,
then there exist α, β ∈ (0, 1) such that

αp+ (1− α)r ≻ q ≻ βp+ (1− β)r (3.2)

Independence: For all p, q, r ∈ P(Z) and α ∈ (0, 1], if p ≻ q then

αp+ (1− α)r ≻ αq + (1− α)r. (3.3)

Furthermore we introduce the following two lemmas.

LEMMA 3.2. If the preference relation ≻ is rational, then the following
hold:

(1) for two given real numbers a, b ∈ [0, 1], with a < b, one has

p ≻ q ⇒ bp+ (1− b)q ≻ ap+ (1− a)q;

(2) the conditions p ≽ q ≽ r and p ≻ r imply that there exist an
unique a∗ ∈ [0, 1] such that

q ∼ a∗p+ (1− a∗)r;
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(3) for a ∈ [0, 1], p ∼ q imply, for any r ∈ P(Z)

ap+ (1− a)r ∼ aq + (1− a)r.

In the following we indicate, with the symbol δz(A), Dirac’s delta for
the element z into set A, as a quantity equal to 1 if z ∈ A and 0 otherwise.

LEMMA 3.3. If ≻ satisfy the axioms of Definition 3.1, then there exist
z0 and z0 in Z such that δz0 ≽ p ≽ δz0 for any p ∈ P(Z).

Finally, we can state the following

THEOREM 3.4. Any rational preference relation ≻ can be uniquely
represented by a function u up to a positive linear transformation, i.e., if
u : Z → R is such that

p ≻ q ⇔
∑
z∈Z

p(z)u(z) >
∑
z∈Z

q(z)u(z)

then the same holds with u being replaced by v(·) = au(·) + b, for any two
real numbers a, b with a > 0.

Proofs for the two lemmas together with Theorem 3.4 can be found in
[130].

We turn now to consider more realistic random quantities with the mean-
ing of economic tools, as possible losses in investment portfolios. Consider
Z as a possibly infinite set of random variables, with range on R. Let Z
be a complete and separable metric space with its sigma-algebra σ(Z).
As a generalization of the finite case, the numerical representation of a
preference relation ≻ on a class of random variables X , according to the
NM-principles, is the following. For any DM with preference relation ≻
there exists an unique (or unique up to positive linear transformations) util-
ity function u : Z → R such that

X ≻ Y ⇔ E(u(X)) > E(u(Y )),

for any X,Y ∈ X , provided that the expectations exist. This is known as
the von Neumann-Morgenstern expected utility representation of preference
relations (for references, see [142]).

Let now Z = R for simplicity, with its usual topology generated by
open intervals; the Borel σ−field of R is denoted as B(R). So P(Z) (P(R))
will be the set of all probability measures defined on B(R). A topology on
P(R) is defined by specifying a concept of convergence in it. Here we say
that pn converges weakly to p in P(R) if, for any f ∈ Cb(R) (bounded
continuous functions with support R),∫

R
f(x) dpn(x) →

∫
R
f(x) dp(x). (3.4)

The associated topology, generated by the neighborhoods of each p, will be
called the weak topology on P(R).

We now need to extend the axiom of continuity defined in (3.2).
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DEFINITION 3.5. Given a separable and complete metric space P(Z),
for any pn, p ∈ P(Z) with pn → p in the weak topology, the following hold:

(1) if p ≻ q for some q ∈ P(Z), then pn ≻ q for sufficiently large n;
(2) if q ≻ p, then q ≻ pn for all sufficiently large n.

By means of this new Definition of weak continuity, we can extend
result given in Theorem 3.4 to P(R).

THEOREM 3.6. Let X, Y random variables in X with probability laws
p, q ∈ P(R) respectively. A preference relation ≻ on P(R) satisfies the
independence and the weak continuity axioms if and only if there exists a
bounded and continuous utility function u : R → R such that

p ≻ q ⇔ Ep(u(X)) =

∫
Z
u(z) dp(z) >

∫
Z
u(z) dq(z) = Eq(u(Y )).

(3.5)
Moreover this representation is unique up to positive affine transformations.

2. The Expected Utility Principle and Risk Attitudes

In this Section we sketch the basics of the attitudes of Decision Makers
facing risky or uncertain situations. From a qualitative point of view, we
can say that there are essentially three types of risk attitudes (or three kind
of people), namely risk neutral, risk averse and risk seeker. As we said in
the previous Section, the former are indifferent in choosing between two
risky prospects, but with the same expected value; risk-averse ones, among
prospects with the same expected value, prefer the less risky (for them you
have u(E[X]) ≥ E[u(X)], then they make use of a concave utility function);
those risk seeker, finally, share the opposite attitude (and hence make use of
a convex u).

For example, suppose that our DM is asked to choose between accepting
100e or playing the following game. The DM flips a coin, if head occur
she gets 200e, otherwise nothing. The expected value of both prospects
is the same, 100e, but DMs with different concepts of risk will act differ-
ently in deciding what to do. A risk neutral DM will be indifferent in the
choice of prospect, maybe she will decide to toss the coin at first to decide
whether accepting money or playing the lottery. A risk averse DM will in-
stead accept the money (as a risk seeker will try to win the best possible
prize).

To be more precise we restate the problem in the following way. Let
X be a random variable taking values 0 or 200, both with probability 1/2.
So we have that the expected value of the lottery is given by E(X) = 100.
Now the three conditions of neutrality, aversion, and propensity to risk can
be restated as follows. A DM is

Risk Neutral: when her utility function u is such that u(E(X)) =
E(u(X)), for example she may consider u(x) = x;

Risk Averse: when u(E(X)) > E(u(X)), if she chooses a concave
utility function, for example u(x) = log(x);
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Risk Seeker: when u(E(X)) < E(u(X)), or when her utility func-
tion is convex.

Let’s consider a utility function u ∈ C2(R), the space of differentiable
functions with continuous derivatives until order 2. It is intuitive to no-
tice, for first, that when considering monetary incomes or any kind of prof-
itable goods as prospects, the satisfaction in receiving them shall grow as the
amount of the prospect grows. This is the reason for which it is generally
assumed (as we do in this work) that the utility function must be nonde-
creasing. Namely, for a given utility u, its first derivative u′ is supposed to
be greater or equal than zero. Moreover the sign of the second derivative
plays an important role, since it determines univocally the behavior of the
DM towards risk, placing her in one of the three categories of risk listed
above. So we can state the following

THEOREM 3.7. A DM with nondecreasing utility u is risk averse if and
only if u is concave, risk seeker if and only if u is convex.

The proof of this Theorem mainly follows from a direct application of
Jensen’s inequality.

Let now focus our attention on comparisons between risk and risk aver-
sion. Risk aversion is the attitude to avoid uncertainty as well as to insure
oneself from unpredictable events. So, up to von Neumann-Morgenstern
principles of utility maximization, a risk averse DM will behave like fol-
lows.

Suppose that our DM has an initial capital x, that is a deterministic
(positive) amount of money. Suppose that she is also risk averse, so that
her utility function u will be nondecreasing and concave. The DM is now
going to make an investment whose uncertain profit consists of a random
variable Z (that is not necessarily nonnegative). In this terms, she will be
ready to pay a premium π in order to replace Z with its expected value
E(Z). This premium will depend on both the initial capital x and the law of
the random profit Z, so π = π(x, FZ). So we can uniquely define it as the
value satisfying

u(x+ E(Z)− π(x, FZ)) = E(u(x+ Z)). (3.6)

DEFINITION 3.8. Given an initial capital x and a random profit Z, the
quantity π(x, FZ) satisfying equation (3.6) is called risk premium.

For the sake of simplicity, let E(Z) = 0 and indicate with σ2
Z the vari-

ance of Z. By Taylor expansion we have

u(x− π) = u(x)− πu′(x) +O(π2) (3.7)

E(u(x+ Z)) = E(u(x) + Zu′(x) +
1

2
Z2u′′(x) +O(Z3))

= u(x) +
1

2
σ2
Zu

′′(x) + o(σ2
Z). (3.8)
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Thus, rearranging the terms in (3.7) and (3.8) we obtain

π(x, FZ) =
1

2
σ2
ZA(x) + o(σ2

Z), (3.9)

where

A(x) = −u
′′(x)

u′(x)
= − d

dx
log u′(x). (3.10)

DEFINITION 3.9. The function A(x) introduced in (3.10) is called ab-
solute local measure of risk aversion, and represents the local propensity to
insure at point x under the utility function u.

If Z is not actuarially neutral, namely if E(Z) ̸= 0, the expression for
the risk premium will take the form

π(x, FZ) =
1

2
σ2
ZA(x+ E(Z)) + o(σ2

Z). (3.11)

If the profit of the investment is expressed by a multiplicative utility, the
proportional risk premium π∗ will be defined as the value that satisfies

u(xE(Z)− xπ∗(x, FZ)) = E(u(xZ)). (3.12)

In case that E(Z) = 0, the expression for π∗ will be

π∗(x, FZ) =
1

2
σ2
ZR(x) + o(σ2

Z), (3.13)

where R(x) = xA(x).

DEFINITION 3.10. The functionR(x) satisfying (3.13) is called relative
local measure of risk aversion.

One can notice that there is a relationship linking the two risk premiums,
that is expressed by

π(x, FxZ) = xπ∗(x, FZ).

Notice furthermore that the above representations of risk premium are “lo-
cal” representations, since they describe DM’s behavior towards small (in-
finitesimal) risks. The following Theorem shows that there is an analogy
between local and global behaviors in terms of risk aversion.

THEOREM 3.11 (Arrow, Pratt). Let u1, u2 be two utility functions with
absolute local measures of risk aversion A1, A2 and risk premiums π1, π2
respectively. Then, for any choice of x and Z, the following conditions are
equivalent:

(1) A1(x) ≥ A2(x);
(2) π1(x, FZ) ≥ π2(x, FZ);
(3) u1(·) = k(u2(·)), with k increasing and concave.

See [8] and [110] for further details.

DEFINITION 3.12. If the hypothesis of Theorem 3.11 are satisfied, then
a DM with utility function u1 is said more risk averse than a DM preferring
u2.
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Connections between small risks and measures of risk aversion have
been noticed for first by De Finetti (see [37]).

Another important property is given by the following result.

THEOREM 3.13. The following conditions hold: A(x) is decreasing in
x if and only if π(x, FZ) is decreasing in x for all Z. Analogously, R(x) is
decreasing in x if and only if π∗(x, FZ) is decreasing in x for all Z.

If the conditions of Theorem 3.13 are met we say that u exhibits de-
creasing (absolute or relative) risk aversion.

3. Multi-attribute utilities and related properties

Recent years witnessed numerous attempts to generalize various aspects
of the these notions to the case of multivariate risk (see, for example, the
works by Duncan [48], Karni [78], Kihlstrom and Mirman [81], and Stiglitz
[133]). The univariate case is qualitatively different from the multivariate
one: in the first case the ordinal preferences of all decision makers are iden-
tical, whereas in the latter the preference orderings may differ among them.

Let x = (x1, . . . , xn) be the (deterministic) commodity vector of an in-
vestor facing a risk Z, that is expressed, in turn, by a n−dimensional (ran-
dom) vector (Z1, . . . , Zn). Let u any real-valued function which is in the
equivalence class of von Neumann-Morgenstern utility functions consistent
with the individual’s preferences. We assume that u is strictly increasing in
each component and that Eu(x+ Z) is finite.

We define a family of risk premium functions π(x,Z) in the following
way. For a given risk vector Z, with E(Z) = 0, the vector π = (π1, . . . , πn)
must satisfy

u(x− π) = Eu(x+ Z). (3.14)

Note that the risk premium is unique in the univariate case while in the
multivariate case the existence of a vector π is granted but uniqueness does
not necessarily hold. A simple example of this situation is given by the
following utility function: u(x1, x2) = x1x2. Equation (3.14) is satisfied if
π1π2 − π1x2 − π2x1 = σ12.

A matrix measure of multivariate local risk aversion, which is directly
related to the multivariate risk premiums, can be given as follows. Consider
the Taylor series expansion of both members of equation (3.14). At first
consider uij(x) = ∂2u(x)/∂xi∂xj to be continuous; we obtain

u(x− π) = u(x)−
n∑

i=1

πiui(x) +
1

2

n∑
i,j=1

πiπjuij(x− θπ)

with θ ∈ [0, 1]. Secondly, if Var(Z) = Σ = [σij] exists,

Eu(x+ Z) = u(x) +
1

2

n∑
i,j=1

σijuij(x) + o(trΣ),
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where trΣ =
∑n

i=1 σii. Combining these two approximation one gets to

u′π = −1

2
trUΣ, (3.15)

where the n × n Hessian matrix U = [uij(x)] and the n−vector u =
(ui(x)). Any approximate solution of (3.15) will be of the form

π̂ =
1

2
dgAΣ (3.16)

where

A = [aij] =

[
−uij
ui

]
= [diagu]−1U. (3.17)

Reducing the problem to one dimensional case, A coincides with the abso-
lute measure A presented in (3.10), so we can call A absolute risk aversion
matrix. The importance of off-diagonal elements is given by the following
two results (proofs are in [48]).

PROPOSITION 3.14. The matrix A is diagonal if and only if u is addi-
tive. In this case the commodities are mutually risk independent.

PROPOSITION 3.15. If there exists a nonnegative risk premium vector
π for all two-point gambles Z, then u is concave. The viceversa also holds
true.

In this direction, it is clear that interactions among acts play a fundamen-
tal role in assessing risk and defining aversion to it. Comparisons among
risk between risk averse DMs can be made by the comparison of their risk
premiums, but one can see that this model is suitable only when dealing
with small risks. Kihlstrom and Mirman, in fact, showed in [81] that under
these hypothesis, a DM that is more risk averse than another DM in one
direction will be more risk averse in any direction. This is due to the strong
hypothesis that two utility functions represent the same preference ordering.

Extensions to the Arrow-Pratt concept of risk aversion to the multivari-
ate case are somehow problematic. A more precise concept of multivariate
aversion is that one of correlation aversion (CAV), introduced by Epstein
and Tanny in [53]. For the sake of simplicity we restrict, for the moment, to
the 2−dimensional case.

Consider two vectors of outcomes (x1, x2) and (y1, y2), with x1 < y1,
x2 < y2, and two lotteries L1, L2 such that

L1 =

{
(x1, x2), w.p. 1/2;
(y1, y2), w.p. 1/2; L2 =

{
(x1, y2), w.p. 1/2;
(y1, x2), w.p. 1/2;

In this respect, we can say that x is the vector of “bad” outcomes, while
y is the “good” one (see [45, 51]). So lottery L2 associates bad with good
outcomes while L1 is some kind of “all or nothing”. Since the marginal
outcomes of the two lotteries are the same, intuitively a DM preferring L2
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to L1 will manifest a form of bivariate risk aversion. The above preference
holds for all x ≤ y if and only if DM’s utility function u satisfies

u(x1, x2) + u(y1, y2) ≤ u(x1, y2) + u(y1, x2), (3.18)

condition that corresponds to submodularity of the function u (compare
with equation (1.10) in Definition 1.11). Furthermore, if u is twice dif-
ferentiable, condition (3.18) can be simply rewritten as

u12 ≤ 0. (3.19)

Notice that, in dimension 2, such a formulation follows the one of multivari-
ate local risk aversion introduced above. A deeper analysis of risk attitudes
has been made in this direction, based on the sign of higher order deriva-
tives of the utility function. This led to the introduction of properties like
prudence and temperance (and cross-prudence, cross-temperance for mul-
tivariate case) and other general properties, that can be found, for example,
in [45, 46, 51, 140].

4. Non-Expected Utility Theory

Decision Makers, intended to be rational in the sense of Theorem 3.4,
usually try to maximize their expected utility according to the so-called ex-
pected utility maximization principle. But in the real world, assuming that
everybody is rational is pure utopia. In the last years, in fact, many objec-
tions to this principle have been formulated, by means of some paradoxical
examples. First of all Allais, in 1953, proposed a paradox in contrast to
the theory proposed by von Neumann and Morgenstern; Ellsberg (1961)
doubted the axiomatic formulation of Savage (1954), subsequently giving
rise to an alternative expected utility theory based on generalized Choquet
integrals (1965).

Actually, the very first example of this contradiction was proposed by
Daniel Bernoulli over the 18th century, becoming over the years the well-
known St. Petersburg paradox. This example presents a casino that offers a
lottery for a single player, described as follows.

At each stage a fair coin is tossed. The pot starts at 2 dollars and is
doubled every time a head appears. The first time a tail appears, the game
ends and the player wins whatever is in the pot. Thus the player wins 2
dollars if a tail appears on the first toss, 4 dollars if a head appears on the
first toss and a tail on the second, and so on. In short, the player wins 2k

dollars, where k equals number of tosses. These events may appear with
probability, respectively, 1/2, 1/4, . . . , 2−k. To evaluate the expected value
of the gamble, on just need to evaluate the quantity

E =
∞∑
i=1

2i ·
(1
2

)i
=

∞∑
i=1

1 = ∞. (3.20)

Assuming that the game can continue as much as the gambler wants, and
that both gambler and casino have infinite amounts of money, the game
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result to have infinite expected utility, as the expected win seems not finite.
Under this viewpoint any gambler should be willing to pay any amount of
money to have the chance of participating to such a game. But this situation
is obviously unfeasible. The paradox is then in the discrepancy between
what people seem willing to pay to enter the game and its infinite expected
value.

Another interesting example is the one of Allais’s paradox (1953), that
describes inconsistencies in choices when people are deciding between op-
tions in two gambling games, one of which involves a certain outcome.

Gamble A consists in a choice between A1 and A2, with
• A1: 1 million e with certainty;
• A2: 1% chance of zero, 89% chance of 1 million e, and 10%

chance of 5 million e.
Gamble B is the following

• B1: 89% chance of zero, 11% chance of 1 million e;
• B2: 90% chance of zero and 10% chance of 5 million e.

Standard economic theory predicts that a person with consistent preferences
will chose B1 in the second gamble if prefers A1 in the first (or B2 if A2).
The expected value forA1 and forB1 are, respectively, smaller than the ones
for A2 and B2, but chances to get zero are diminished (or completely elim-
inated). However, experimental evidence shows that real people commonly
choose the inconsistent combinations (A1, B2) and (A2, B1). Kahneman
and Tversky attributed this violation to expected utility principles to a “cer-
tainty effect”, as they explain in [77], introducing the formulation of the so
called “Prospect Theory”. This new concept was mainly based on two prin-
ciples, such as the effect of context in which decisions are assumed and the
investor’s aversion to losses. According to the former one has to consider
that an investor usually makes different choices for a same decisional prob-
lem depending on the context in which such problem is presented; the latter
makes the investor more risk seeker than she would have been risk averse
in case of gain.

Ellsberg paradox (1961) can be illustrated by an urn game. An urn
contains 90 balls, 30 of which are red, and the remaining 60 are divided
into black and yellow balls, with unknown proportion. Subjects playing the
game are asked for their preferences over two gambles. In both gambles
one ball is drawn from the urn and players have to guess its color.

Gamble C is given by
• C1: the ball is red;
• C2: the ball is black.

Gamble D is divided into
• D1: the ball is red or yellow;
• D2: the ball is black or yellow.

Ellsberg found that many people prefer to bet on gambles C1 and D2, vi-
olating the “sure thing principle”, which requires that if C1 is preferred
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to C2, than D1 should be preferred to D2. Ellsberg attributed this inconsis-
tency to ambiguity aversion in the face of Knightian uncertainty. As defined
by Knight in 1921 (see [84]), it describes fundamental uncertainty and un-
knowable probabilities. Knightian risk describes probabilities that can be
quantified because they capture observable, repeatable events, which can be
measured or which are given as prior information about proportion. With
this example Ellsberg showed that the expected utility model fails in situa-
tions in which uncertain events are associated with probabilities that cannot
be quantified, subsequently giving rise to an alternative expected utility the-
ory based on generalized Choquet integrals (1965).

Other alternative theories have been proposed since the early ’80s, like
the ones from Machina (1982), Karni (1985), Yaari (1987) and other au-
thors.





CHAPTER 4

The target Based Model for utility

We introduce a formal description of the Target-Based approach to util-
ity theory for the case of n > 1 attributes and point out the connections
with aggregation-based extensions of capacities on finite sets. Although ca-
pacities have been used in literature to go beyond the classical principle of
maximization of expected utility, we show how such measures emerge in
a natural way in the frame of the target-based approach to classical utility
theory, when considering the multi-attribute case. Our discussion provides
economic interpretations of different concepts of the theory of capacities.
In particular, we analyze the meaning of extensions of capacities based on
n-dimensional copulas. The latter describes stochastic dependence for ran-
dom vectors of interest in the problem. We also trace the connections be-
tween the case of {0, 1}-valued capacities and the analysis of “coherent”
reliability systems.

1. Introduction to Target Based model

A rich literature has been devoted in the last decade to the Target-Based
Approach (TBA) to utility functions and economic decisions (see [19, 20,
28, 29, 138, 139]). This literature is still growing, with a main focus on
applied aspects (see, for example, [13, 144, 145]).

Even from a theoretical point of view, however, some issues of inter-
est demand for further analysis. In this direction, the present Chapter will
consider some aspects that emerge in the analysis of the multi-attribute case.
Generally TBA can provide probabilistic interpretations of different notions
of utility theory. Here we will in particular interpret in terms of stochastic
dependence the differences among copula-based extensions of a same fuzzy
measure.

In order to explain the basic concepts of the TBA it is, in any case, con-
venient to start by recalling the single-attribute case. Let Ξ := {Xα}α∈A be
a family of real-valued random variables, that are distributed according to
probability distribution functions Fα respectively. Each element Xα ∈ Ξ
is seen as a prospect or a lottery and a Decision Maker is expected to
conveniently select one element out of Ξ (or, equivalently, α ∈ A). Let
U : R → R be a (non-decreasing) utility function, that describes the Deci-
sion Maker’s attitude toward risk. Thus, according to the Expected Utility

53
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Principle (see [142]), the DM’s choice is performed by maximizing the in-
tegral

E [U (Xα)] =

∫
R
U(x) dFα(x). (4.1)

In the Target-Based approach one in addition assumes U to be right-conti-
nuous and bounded so that, by means of normalization, it can be seen as a
probability distribution function over the real line. This approach suggests
looking at U as at the distribution function FT of a random variable T .
This variable will be considered as a target, stochastically independent of
all the prospects Xα. If T is a (real-valued) random variable stochastically
independent of Xα in fact, one has

E(FT (Xα)) =

∫
P(T ≤ x)Fα(dx) = P(T ≤ Xα), (4.2)

and then, by setting U = FT , the Expected Utility Principle prescribes a
choice of α ∈ A which maximizes the quantity E [U (Xα)] = P (T ≤ Xα).

The conceptual organization and formalization of basic ideas have been
proposed at the end of nineties of last century by Castagnoli, Li Calzi, and
Bordley. Some arguments, that can be regarded nowadays as related with
the origins of TBA, had been around however in the economic literature
since a long time (see [19, 28] and references therein).

After the publication of these papers, several developments appeared
in the subsequent years concerning the appropriate way to generalize the
TBA to the case of multi-attribute utility functions, see in particular [20,
138, 139]. As already mentioned such an approach, when applicable, offers
probabilistic interpretations of notions of utility theory, and this is accom-
plished in terms of properties of the probability distribution of a random
target. Such interpretations, in their turn, are easily understandable and
practically useful. In particular, they can help a Decision Maker in the pro-
cess of assessing her/his own utility function.

A natural extension of the concept of Target-Based utility from the case
n = 1 to the case of n > 1 attributes is based on a specific principle of
individual choice pointed out in [20]. In this Chapter, we formalize such
a principle in terms of the concept of capacity and analyze a TBA multi-
attribute utility as a pair (m,F ) where m is a capacity over N = {1, . . . , n}
and F is an n-dimensional probability distribution function. For our pur-
poses it is convenient to use the Sklar decomposition of F in terms of its
one-dimensional margins and of its connecting copula. In such a frame,
some aspects of aggregation functions and of copula-based extensions of
capacities emerge in a straightforward way.

More precisely, the Chapter will present the following structure. In the
next section, we will introduce the appropriate notation and detail the basic
aspects of the multi-criteria Target-Based approach. Starting from the argu-
ments presented in [20], we show how every Target-Based n-criteria utility
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is basically determined by a couple of objects: an n-dimensional probabil-
ity distribution function and a fuzzy measure over N := {1, . . . , n}. This
discussion will allow us to point out, in Section 3, that some of the re-
sults presented by Kolesárová et al. in [86] admit, in a completely direct
way, probabilistic interpretations and applications in terms of the TBA. It
will in particular turn out that n-dimensional copulas, that can be used for
the extension of fuzzy measures, describe stochastic dependence among the
components of random vectors relevant in the problem. Section 4 will be
devoted to the special case of {0, 1}−valued capacities. We shall see how,
under such a specific condition, our arguments are directly related to the
field of reliability and of lattice polynomial functions. Some final remarks
concerning the relations between the parameters of TBA utilities and eco-
nomic attitudes of a Decision Maker will be presented in Section 5. The
notation we used is motivated by our effort to set a bridge between the two
different settings. The term “attribute”, as used in the present Chapter, is
substantially a synonymous of “criteria”.

2. Multi-Attribute Target-Based Utilities

In this section we deal with the TBA form of utility functions with
n > 1 attributes. As recalled in the introduction, in the single-attribute
case, n = 1, a TBA utility is essentially a non-decreasing, right-continuous,
bounded function that, after suitable normalization, is regarded as the distri-
bution function of a scalar random variable T with the meaning of a target.
Actually even more general, non-necessarily increasing, “utilities” can be
considered in the TBA when possibility of stochastic dependence is admit-
ted between the target and the prospect (see [19], see also [38]), but our
interest here is limited to the case of independence between such two ob-
jects.

At a first glance, one could consider the functions F (x1, . . . , xn) as the
appropriate objects for a straightforward generalization of the definition of
the TBA utilities to the n-attributes case. A given F should be interpreted
as the joint distribution function of a target vector T := (T1, . . . , Tn). But
such a choice would be extremely restrictive, however. A more convincing
definition, on the contrary, can be based on the following principle: in the
cases when a single deterministic target ti (i = 1, . . . , n) has been assessed
for any attribute i by the Decision maker, the utility Um,t(x) corresponding
to an outcome x := (x1, . . . , xn) depends only on the subset of those targets
that are met by x (as in [20], Definition 1). More precisely, we assume the
existence of a set function m : 2N → R+ such that

Um,t(x) = m(Q(t,x)), (4.3)

where Q (t,x) is the subset of N defined by

Q(t,x) := {i ∈ N |ti ≤ xi}. (4.4)
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It is natural to require that the function m is finite, non-negative, and
non-decreasing, namely such that

0 = m(∅) ≤ m(I) ≤ m(N) <∞
Without loss of generality one can also assume that m is scaled, in such

a way that
m(N) = 1. (4.5)

In other words, we are dealing with a capacity or a fuzzy measure m : 2N

→ [0, 1].
Rather than deterministic targets however, it is generally interesting to

admit the possibility that the vector T of the targets is random, as it happens
in the single-attribute case. Denoting by FT the joint distribution function
of T, we replace the definition of a multi-attribute utility function given in
(4.3) with the following more general

DEFINITION 4.1. A multi-attribute target-based utility function, with
capacity m and with a random target T has the form

Um,F (x) =
∑
I⊆N

m(I)P

(∩
i∈I

{Ti ≤ xi} ∩
∩
i/∈I

{Ti > xi}

)
. (4.6)

It is clear that Um,F (x) = Um,t(x) when the probability distribution de-
scribed by FT is degenerate over the point t ∈ Rn. On the other hand the
special choice Um,F (x) = FT(x), mentioned above, is obtained by impos-
ing the condition (4.5) together with

m(I) = 0 for all I ⊂ N (4.7)

This position corresponds then to a Decision Maker who is only satisfied
when all the n targets are achieved.

The class of n-attributes utilities is of course much wider than the one
constituted by the functions of the form (4.6). The latter class is however
wide enough and the choice of a utility function within it is rather flexible,
since a single function is determined by the pair (m(·), FT). Sufficient or
necessary conditions, under which a utility function is of the form (4.6),
have been studied by Bordley and Kirkwood in [20]. Several situations,
where such utilities can emerge as natural, have also been discussed.

For our purposes, the following notation will be useful. We denote by
Mm : [0, 1] → R the set-function obtained by letting, for I ∈ 2N ,

Mm(I) :=
∑
J⊆I

(−1)|I\J |m(J) (4.8)

where |I| indicates the cardinality of the set I . The function Mm(·) is the
Möbius Transform of m(·) and, as a formula of the inverse Möbius Trans-
form, we also have m(I) =

∑
J⊆I Mm(J) (see e.g. [115]). For x ∈ Rn and

I ⊆ N , we set

xI := {u1, . . . , un} where uj =

{
xj j ∈ I,
+∞ otherwise. (4.9)



2. MULTI-ATTRIBUTE TARGET-BASED UTILITIES 57

If F (x) is a probability distribution function over Rn, F (I)(xj1 , . . . , xj|I|) =

F (xI) will be its |I|-dimensional marginal. Now we denote by Gi(·) the
marginal distribution of F for i = 1, . . . , n and we assume it to be continu-
ous and strictly increasing. Furthermore we will denote byC the connecting
copula of F :

C(y) := F (G−1
1 (y1), . . . , G

−1
n (yn)). (4.10)

Using a notation similar to (4.9), for y ∈ [0, 1]n we set

yI := {v1, . . . , vn} where vj =

{
yj j ∈ I,
1 otherwise.

In this way for the connecting copula C(I)
F of F (I) we can write

C
(I)
F (yj1 , . . . , yj|I|) = C(yI). (4.11)

The following result can be seen as an analogue of several results pre-
sented in different settings (see in particular [86] and [93]).

PROPOSITION 4.2. The utility function Um,F can also be written in the
equivalent form

Um,F (x) =
∑
I⊆N

Mm(I)P(T ≤ xI). (4.12)

PROOF. The proof amounts to a direct application of the inclusion-
exclusion principle. Set Ai = {Ti ≤ xi} and we denote its complement
by Ac

i ; we also set AI = ∩i∈IAi and ÂI = ∩i/∈IA
c
i . Then Equation (4.6)

can be rewritten as

Um,F (x) =
∑
I⊆N

m(I)P(AI ∩ ÂI).

By a direct application of the inclusion-exclusion principle we have

Um,F (x) =
∑
I⊆N

m(I)
∑

J⊆N\I

(−1)|J |P(AI ∩ AJ),

then

Um,F (x) =
∑
I⊆N

∑
H⊆I

(−1)|H|m(H)P(AI) =
∑
I⊆N

Mm(I)P(AI),

which is the right hand side of (4.12). �

We now consider the function Um,F (G
−1
1 (y1), . . . , G

−1
n (yn)). In view of

(4.10) we see that such a function depends on F only through the connect-
ing copula C and it will be denoted by Ûm,C . Furthermore, the quantities
G1(x1), . . . , Gn(xn) can be given the meaning of utilities, thus Ûm,C be-
comes the aggregation function of the marginal utilities y1, . . . , yn.
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COROLLARY 4.3. In the case in which the one-dimensional distribu-
tions G1(x1), . . . , Gn(xn) of F are continuous and strictly increasing, one
can also write

Ûm,C(y) =
∑
I⊆N

Mm(I)C(yI). (4.13)

For any fixed pair (m,F ), we now turn to considering the expected util-
ity corresponding to the choice of a prospect X := (X1, . . . , Xn) distributed
according to FX:

EX (Um,F (X)) =

∫
Rn

Um,F (x) dFX(x)

=
∑
I⊆N

Mm(I)P(TI ≤ XI). (4.14)

By taking into account (4.14) and by interchanging the integration order,
we can also write

EX(Um,F (X)) = EX [ET(Um,T(X))]

=

∫
Rn

[∫
Rn

Mm(I(t,x)) dFX(x)

]
dFT(t). (4.15)

See also the logic scheme of Figure 4.1.

TB Utility - Deterministic Target
Um,t(x) = m(Q(t,x))

TB Utility - Random Target
Um,FT

(x) = ET[Um,T(x)]

Expected TB Utility
Random Prospect, Deterministic Targets

EX[Um,t(X)]

Expected TB Utility - Random Prospect
EX[ET[Um,T(X)]] = ET[EX[Um,T(X)]]

Integrating w.r.t.
FT

Integrating w.r.t.
FT

Integrating w.r.t.
FX

Integrating w.r.t.
FX

1

FIGURE 4.1. TB Utility Scheme

The formula (4.14) points out that, when evaluating the choice of a
prospect X, the random vector of interest is D = T−X. Let us assume that
the marginal distribution function of Di, denoted by Hi(ξ), is continuous
and strictly increasing in ξ = 0 for i = 1, . . . , n, and put γ = (γ1, . . . , γn)
with

γi = Hi(0). (4.16)
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Similarly to (4.11), let furthermore denote by C(I)
FD

the connecting copula of
the marginal distribution corresponding to the coordinates subset I ⊆ N .
Then (4.14) becomes

Ũm,F (γ) := EX (Um,F (X)) =
∑
I⊆N

Mm(I)C
(I)
FD

(γ)

=
∑
I⊆N

Mm(I)CFD
(γI). (4.17)

This formula highlights that, concerning the joint distribution of D, we only
need to specify the vector γ and CFD

= C
(N)
FD

, the connecting copula of D.
From CFD

, we can derive in fact the family of all marginal copulas C(I)
FD

by
means of the formula (4.11) above.

3. Multi-Attribute TBA and Extensions of Fuzzy Measures

Let a capacity m(·) over 2N and a n-dimensional copula C : [0, 1]n →
[0, 1] be given. For y ∈ [0, 1]n, we can consider the aggregation function

Vm,C(y) =
∑
I⊆N

Mm(I)C(yI), (4.18)

where Mm(·) denotes the Möbius transform of m(·) and C(yI) is the con-
necting copula of F (I), see (4.11). We remind

DEFINITION 4.4. An aggregation function A : [0, 1]n → [0, 1] is a
function non-decreasing in each component and that satisfies the boundary
conditions A(0) = 0 and A(1) = 1.

(see e.g. [24]). By the usual identification of {0, 1}n with 2N (where
a subset I ⊆ N is identified with its indicator function) one has, for y ∈
{0, 1}n and for any copula C,

Vm,C(y) = m(I), (4.19)

where I = {i|yi = 1}. Thus any aggregation function of the form (4.18)
can be seen as the extension to [0, 1]n of the capacity m(·) defined over
{0, 1}n. Extensions of a capacity over {0, 1}n have been of interest in the
fuzzy sets literature. Several properties of such extensions have been in par-
ticular studied by Kolesárová et al in [86]. In that paper the authors consider
extensions of the form (4.18), where C is replaced by a more general ag-
gregation function A. As corollaries of their general results, it follows that
- in the special cases when A coincides with a copula C - Vm,C is actually
an aggregation function, and special properties of it are analyzed therein.

It is in particular noticed that, when C is the product copula one obtains
the Owen extension and, when C is the copula of comonotonicity, namely

C(u1, . . . , un) = min{u1, . . . , un}, (4.20)

then one obtains the Lovász extension, or the Choquet integral of y.
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In the present framework, it is useful to give the aggregation function in
(4.18) the form of a Riemann-Stiltjes in integral over [0, 1]n as follows.

THEOREM 4.5. Let m be a capacity over 2N and C an n-dimensional
copula. For y ∈ [0, 1]n one has

Vm,C(y) =

∫
[0,1]n

m[Q(z,y)] dC(z) (4.21)

where Q(z,y) is the set defined as in (4.4).

PROOF. Let I ⊆ N . By definition of Q we have that Q(z,y) = I holds
if and only if zi ≤ yi for i ∈ I and zi > yi for i /∈ I . Hence

m[Q(z,y)] =
∑
I⊆N

m(I)
∏
j∈I

1{zj≤yj}
∏
j /∈I

1{zj>yj}

=
∑
I⊆N

Mm(I)
∏
j∈I

1{zj≤yj}.

By integrating this function over [0, 1]n w.r.t. the probability measure asso-
ciated to C, one has∫

[0,1]n
m[Q(z,y)] dC(z) =

∫
[0,1]n

∑
I⊆N

Mm(I)
∏
j∈I

1{zj≤yj} dC(z)

=
∑
I⊆N

Mm(I)

∫
[0,1]n

∏
j∈I

1{zj≤yj} dC(z)

=
∑
I⊆N

Mm(I)C(yI). (4.22)

�

REMARK 4.6. Theorem 4.5 shows in which sense Vm,C can be seen as
a generalization of the Choquet integral. In fact Vm,C reduces to a Choquet
integral when C is the copula of comonotonicity.

REMARK 4.7. Consider now the case when Cz is the probability dis-
tribution function degenerate over z ∈ [0, 1]n. In this case, as shown by
(4.21), Vm,Cz

reduces to

Vm,Cz
(y) = m[Q(z,y)]. (4.23)

One can notice that, for any copula C, Vm,Cz
(y) = Vm,C(w), where w ∈

{0, 1}n is defined by

wi =

{
1 if zi ≤ yi,
0 if zi > yi.

Notice also that Equation (4.23) is just a different way to read the principle
that led us to the Definition (4.1) of a TB multi-attribute utility function.
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As seen in the previous section, aggregation functions of the form (4.18)
emerge in a natural way in the frame of TBA utilities. In such a frame the
copula C takes a specific meaning as the copula that describes stochastic
dependence properties of random vectors relevant in the decision problem
at hand.

Let us consider the expected utility, associated to a multi-attribute pros-
pect X, of the target-based utility with target T. As shown by expression
(4.17), such expected utility has the form (4.18), when it is seen as a func-
tion of the quantities γi = Hi(0), i = 1, . . . , n, introduced in (4.16). In
such a case, C has then the meaning of the connecting copula of the vector
D ≡ (T1 −X1, . . . , Tn −Xn).

Let furthermoreG1, . . . , Gn, the one-dimensional marginal distributions
of T1, . . . , Tn, be assumed continuous and strictly increasing and let C de-
note, this time, the connecting copula of (T1, . . . , Tn). Under these hy-
pothesis Vm,C(y1, . . . , yn) takes the meaning of an aggregation function
Ûm,C(y1, . . . , yn) of the marginal utilities y1, . . . , yn, as (4.13) shows.

We then see that both the functions Ûm,CT
(·) and Ũm,CD

(·), defined over
[0, 1]n, have the same formal expression (4.18) and are thus two different
extensions of the capacity m. Starting from a same TBA utility function as
in (4.13), they get different economic meanings. Both of them are definite
integrals over Rn, however. In particular, for Ûm,CT

and Ũm,F we can obtain,
as a corollary of Theorem 4.5,

PROPOSITION 4.8. The aggregation functions Ûm,CT
and Ũm,F are re-

spectively given by

Ûm,CT
(y) =

∫
[0,1]n

m[Q(z,y)] dCT (z). (4.24)

Ũm,F (γ) =

∫
[0,1]n

m[Q(z,γ)] dCD(z). (4.25)

PROOF. As to the integral corresponding to Ûm,CT
(y), recall that, for

t ∈ Rn and x ∈Rn, we had set Q(t,x) := {i|ti ≤ xi}. By using formula
(4.15), where F is the distribution function of the target vector T, one has

Um,F (x) = ET(Um,T(x)) = ET[m(Q(T,x))] =

∫
Rn

m[Q(t,x)] dFT (t).

Notice now that Q(t,x) and Q(z,y) are exactly the same set, since {i|ti ≤
xi} = {i|G−1(ti) ≤ G−1(xi)} = {i|zi ≤ yi}. Thus, recalling that x =
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(G−1
1 (y1), . . . , G

−1
n (yn)), one has

Ûm,F (y)=

∫
Rn

m[Q(t, G−1
1 (y1), . . . , G

−1
n (yn))] dFT(t)

=

∫
In
m[Q(G−1

1 (z1), . . . , G
−1
n (zn), G

−1
1 (y1), . . . , G

−1
n (yn))] dC(z)

=

∫
In
m[Q(z,y)] dC(z) = Vm,C(y). (4.26)

A similar argument can be used to prove (4.25). �

REMARK 4.9. In the present frame, the Choquet integral admits the fol-
lowing economic interpretation. The choice of the copula of comonotonicity
stands for the choice of a n-dimensional target, where all the random co-
ordinates are just deterministic transformations of one and a same random
variable. In this case Ûm,CT

(y) reduces to a Choquet integral.

4. Reliability-structured TBA utilities

A very special class of capacities m(·) emerges as an immediate gener-
alization of the case in (4.7) and is of interest in the frame of TBA utilities.
For a brief introduction to the topic of reliability of systems we refer to
Appendix A and to [10].

DEFINITION 4.10 (See [20], Definition 4). A Target-Based utility func-
tion has a reliability structure when the capacitym(·) satisfies the condition

m(I) ∈ {0, 1} for all I ∈ N.

Any such m(·) can then be seen as the structure function of a coherent
reliability system S or, more generally, of a semi-coherent one (for further
details see [10] and [112]).

We concentrate our attention on the case when both the coordinates
(T1, . . . , Tn) of the target and the coordinates (X1, . . . , Xn) of the prospect
are non-negative random variables that can then be interpreted as the vec-
tors of the lifetimes of the components of S. The above reliability-based
interpretation applies in a completely natural way, in this case.

For ξ ∈ Rn
+, we denote by τ(ξ) the lifetime of S when ξ1, . . . , ξn are the

values taken by such lifetimes, respectively. Then, as pointed out in [96],
τ(·) is a lattice polynomial function. Then (see [15]) it can be written both
in a disjunctive and in a conjunctive form as a combination of the operators
∧ and ∨ (see also [96], Proposition 2). When, in particular, the system
admitting m as its structure function is coherent, such forms can be based
on the path sets and the cut sets of the system (see again [10] and [112]).

The random variable τ(T) is the lifetime of S when the lifetimes of the
components coincide with the coordinates of the DM’s target and τ(X) is
the lifetime of the system when the lifetimes of components coincide with
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the coordinates of a (random) prospect X. Under such positions, the utility
function Um,F (x1, . . . , xn) can be read as a probability. More exactly

Um,F (x1, . . . , xn) = P(τ(T) ≤ τ(x)), (4.27)

and the expected utility in (4.14) becomes

E (Um,F (X)) = P(τ(T) ≤ τ(X)). (4.28)

We can then summarize as follows our conclusions. Consider a reliability-
structured multi-attribute Target-Based utility Um,F (x1, . . . , xn) with F the
joint distribution function of n non-negative random variables and let xi ≥
0, i = 1, . . . , n. Denote furthermore by

Gτ(T)(ξ) := P(τ(T) ≤ ξ)

the marginal distribution function of the lifetime τ(T). Then we have

PROPOSITION 4.11.

Um,F (x1, . . . , xn) = Gτ(T)(τ(x)). (4.29)

This result shows that, in the reliability-structured case, a multi-attribute
Target-Based utility Um,F reduces to a single-attribute Target-Based with a
prospect τ(X) and a target τ(T). In particular the operator τ is a mean (see
e.g. [70]): for x > 0, τ(x, . . . , x) = x. Thus we obtain from (4.27) that the
probability distribution function of τ(T) is given by

Gτ(T)(ξ) = Um,F (ξ, . . . , ξ). (4.30)

For a different but strictly related expression of Gτ(T)(ξ) see [47].

The formula (4.29) can be used in the two different directions: one can
analyze questions about systems’ reliability by using tools in the theory of
aggregation operators and of extensions of capacities or, viceversa, different
aspects of aggregation operators can be interpreted in terms of reliability
practice, when the capacities are {0, 1}-valued. In particular, the aggre-
gation function Ûm,C in (4.13) can be given special interpretations in the
present setting. From a technical point of view, in a reliability-structured
frame, G1, . . . , Gn are the one-dimensional marginal distributions of the
components’ lifetimes T1, . . . , Tn of a system and C denotes the connect-
ing copula of T. By taking into account the equation (4.29) we obtain, for
y ∈ [0, 1]n,

Ûm,C(y) = Gτ(T)(τ(G
−1
1 (y1), . . . , G

−1
n (yn))). (4.31)

Notice that the operator τ(x) appearing in (4.27) and (4.31) is only de-
termined by the capacitym, whereas the probability lawGτ(T) also depends
on the copula C of F . In any case Ûm,C(y) is an integral, w.r.t. the capacity
m, and the function to be integrated depends on C.

We also notice that, from a purely mathematical viewpoint, m can be
paired with any copula C. Any capacity m, for instance, can be paired with
the comonotonicity copula to obtain that Ûm,C(y) is a Choquet Integral. We
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also notice in this respect that, in such case, Ûm,C(y) is a lattice polynomial
as well. From the economic point of view, on the contrary, imposing con-
ditions describing the attitudes towards risk by part of a Decision Maker,
creates some constraints on the choice of the pair (m,C). See also the brief
discussion in the next section.

4.1. Symmetric Reliability-Structured Cases. Here we consider spe-
cial conditions of invariance with respect to permutations. First we look at
the very restrictive, but important, case of symmetric, reliability-structured
capacities. The reliability systems admitting permutation-invariant struc-
ture functions ϕ are those of the type k-out-of-n. More precisely, a system
is k-out-of-n when, for x ∈ {0, 1}n, its structure function has the form

ϕk:n(x1, . . . , xn) =

{
1 if

∑
i xi ≥ k,

0 if
∑

i xi < k.
(4.32)

This is then the case of a system which is able to work as far as at least
k of its components are working or, in other words, which fail at the instant
of the (n−k+1)−th failure among its components. In (4.32), the structure
function is seen as a function over N . Equivalently, when ϕk:n is seen as a
set function, the value ϕk:n(I) is 0 or 1, only depending on the cardinality
of I being larger or smaller than k.

PROPOSITION 4.12. In the case of a k-out-of-n capacity m = ϕk:n, we
have

Um,F (x) =
∑

I⊆N,|I|≥k

(−1)|I|−k

(
|I| − 1

|I| − k

)
P (T ≤ xI) .

PROOF. Recall Equation (4.12) and notice that, for m = ϕk:n, the coef-
ficients of the Möbius transform are given by

Mm(I) =

 (−1)|I|−k

(
|I| − 1

|I| − k

)
|I| ≥ k,

0 otherwise.

�
It is clear that, in the case of a k-out-of-n systems, we have that

τ(ξ) = ξ(n−k+1),

where ξ(1), . . . , ξ(n) denote the order statistics of ξ1, . . . , ξn and the formula
(4.29) takes the special form

Uϕk:n,F (x) = GT(n−k+1)
(x(n−k+1)).

From (4.30), we in particular obtain the probability law of T(n−k+1):

GT(n−k+1)
(ξ) := P(T(n−k+1) ≤ ξ) = Uϕk:n,F (ξ, . . . , ξ). (4.33)

A different remarkable case of reliability-structured TBA utilities is ob-
tained by imposing the condition of permutation-invariance over the joint
distribution F , rather than over the capacity m. This is the case when
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T1, . . . , Tn, the coordinates of the target T, are assumed to be non-negative
exchangeable random variables, namely the joint distribution F (x1, . . . , xn)
is assumed invariant under permutations of its arguments x1, . . . , xn. In this
case the concept of signature of the system enters in the expression of the
utility function Um,F .

Given the structure function ϕ : {0, 1}n → {0, 1} of a semi-coherent
system, the signature s(ϕ) = s = (s1, . . . , sn) is a probability distribu-
tion over N = {1, . . . , n} (as a basic reference, see e.g. [117]). For
j = 1, . . . , n, consider the events

Ej :=
(
τ(T) = T(j)

)
,

with T1, . . . , Tn denoting again the lifetimes of the components and τ(T)
the lifetime of the system. When T1, . . . , Tn are such that

P (Ti′ = Ti′′ , for some i′, i′′) = 0, (4.34)

E1, . . . , En are exhaustive and pair-wise disjoint, and we have
n∑

j=1

P(Ej) = 1.

The components s1, . . . , sn of the signature are defined as sj = P(Ej).
It is easy to prove that, when T1, . . . , Tn are exchangeable, the following
properties hold:

a): s(ϕ) does not depend on the joint probability distribution of the
targets T1, . . . , Tn;

b): For ξ > 0 and j = 1, . . . , n, the event (T(j) ≤ ξ) is stochastically
independent of E1, . . . , En.

By the formula of total probabilities we then can write, for any ξ > 0,

P(τ(T) ≤ ξ) =
n∑

j=1

P(Ej)P(τ(T) ≤ ξ|Ej)

=
n∑

j=1

P(τ(T) = T(j))P(τ(T) ≤ ξ|τ(T) = T(j))

=
n∑

j=1

s
(ϕ)
j P(T(j) ≤ ξ). (4.35)

By the property a) the signature s(ϕ) is a combinatorial invariant of the
system. See in particular [97] for the relations between the signature s(ϕ)

and the “reliability function” of the system in case of i.i.d. components. For
a discussion about the relations between s(ϕ) and symmetry properties see
also [129]).

In view of (4.35) the signature s(ϕ) has a role in the representation of the
utility function Uϕ,F when F is exchangeable. By (4.30) we obtain
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PROPOSITION 4.13. Let F be an exchangeable joint distribution func-
tion over Rn

+, satisfying the condition (4.34). For any reliability-structured
capacity m : 2N → {0, 1} and for x ∈ Rn

+, one has

Um,F (x) =
n∑

j=1

s
(m)
j P(T(j) ≤ τ(x)). (4.36)

The terms s(m)
j and τ(x) in (4.36) are determined by m, whereas F

determines the probability law of T(j), for j = 1, . . . , n. The formula (4.35)
is a special case of (4.36): for x = (ξ, . . . , ξ) we obtain once more

Gτ(T)(ξ) = Um,F (ξ, . . . , ξ) =
n∑

j=1

s
(m)
j P(T(j) ≤ ξ)

=
n∑

j=1

s
(m)
j Uϕk:n,F (ξ, . . . , ξ).

5. TBA utilities and attitudes toward goods and risk

Here we think of a Decision Maker who describes her/his attitudes to-
wards n goods G1, . . . ,Gn through a capacity m and defines her/his utility
by choosing a target T with joint distribution function F . Thus Um,F (x)
evaluates the satisfaction of the DM in receiving the quantity x1 for the
good G1, x2 for the good G2 and so on. Different properties with eco-
nomic meaning of a multi-attribute utility function can take a special form
in the TBA case and in the reliability-structured TBA case, more in partic-
ular. One should analyze how can different properties be influenced by the
choice of the parameters m, F or, in other terms, which constraints on the
pair (m,F ) are induced by fixing the attitudes of the DM. In this Section,
we concentrate our attention on the basic concepts of supermodularity and
submodularity (see [136, 137]) and present some related comments.

For a function U : Rn → R and for x′,x′′ ∈ Rn, set

νU(x′,x′′) := U(x′ ∨ x′′) + U(x′ ∧ x′′)− U(x′)− U(x′′). (4.37)

DEFINITION 4.14. The function U is supermodular when νU(x′,x′′) ≥
0 for all x′,x′′ ∈ Rn, and submodular when νU(x′,x′′) ≤ 0. If U is both
supermodular and submodular, then it is called modular.

Under the condition that the function U is twice differentiable, an equiv-
alent formulation in terms of the second order derivatives of U can be given.
In particular the condition of supermodularity is given by

∂2U(x)/∂xi∂xj ≥ 0 (4.38)

for all x ∈ Rn and i ̸= j, i, j = 1, . . . , n.
For a utility function, it is well-known that supermodularity describes

the case of complementary goods (see [50, 118, 137]), while submodularity
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is associated to substitutable goods. Two or more goods are called com-
plementary if “they have little or no value by themselves, but they are more
valuable when combined together”, while they are called substitutable when
“each of them satisfies the same need of the DM that the other good fulfills”.
In these settings we can say that a collection of goods are complements (and
each pair is said to be complementary) if they have a real-valued supermod-
ular utility function (Bulow et al. [23] use the term strategic complements
to describe any two activities i and j for which formula (4.38) holds).

As a related interpretation, the properties of supermodularity, submod-
ularity, and modularity of a multi-attribute utility U respectively describe,
in an analytic language, the properties of correlation affinity, correlation
aversion, and correlation neutrality (see e.g. [136] and [137]). In particular
the concept of submodularity gives rise to a specific definition of greater
correlation between two joint probability distributions (see Definition 4 in
[53]).

Let us now come to TB utilities and to related problems of prospects
choosing. We are essentially interested in decision problems where the fol-
lowing objects are considered to be fixed: the capacity m, the marginal dis-
tributions G1, . . . , Gn of the targets’ components T1, . . . , Tn, and the mar-
ginal distributions GX1 , . . . , GXn for the components of the prospect. Since
we have assumed stochastic independence between X and T, the marginal
probability distribution function Hi(·) of Di = Ti −Xi is suitably obtained
by convolution from Gi and GXi

. Then, at least in principle, the vector
γ = (γ1, . . . , γn) is known, where γi = Hi(0). The DM is supposed to
declare the copula C of the target vector T and, on this basis, to select a
copula for the random prospect X. The choice of a prospect then amounts
to the choice of a copula CD for the vector D = T−X.

For a TB utility function U , the expression in (4.37) becomes

νU(x′,x′′) =
∑
I⊆N

Mm(I)ν
F (x′

I,x
′′
I ) (4.39)

for any pair of vectors x′,x′′ ∈ Rn. The notation x′
I,x

′′
I is as used in (4.9).

Then the conditions of supermodularity, or submodularity, become∑
I⊆N

Mm(I)ν
F (x′

I,x
′′
I ) R 0. (4.40)

Let the DM manifest correlation aversion or correlation affinity. Namely
she/he wants to use a submodular, or supermodular, utility function. Of
course correlation aversion/affinity concerns attitudes toward dependence
among the coordinates of the prospect. On the other hand, for fixed m, the
properties of supermodularity and submodularity are expressed through the
choice of the connecting copula C for the target T. Such properties are
generally determined by the interplay between m and F . In conclusion, we
are interested in conditions on the pair (m,F ) for which condition (4.40)
holds. In this direction we now discuss some special cases.
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First of all we consider the case in which the capacitym is totally mono-
tone. We remind that a capacity m is said totally monotone if its Möbius
transform M(I) is positive for all I ⊆ N (see [66]). Since all the multi-
variate distribution functions are supermodular, we immediately see from
(4.40) that if m is totally monotone, the utility function Um,F is supermod-
ular whatever the distribution function F of the target is. So, in this special
case, the condition of supermodularity is completely determined by the ca-
pacity m.

A further interesting case is met when the capacity m is additive: in this
situation the interplay among variables has no effect on the overall amount
of the utility Um,F . In fact, the formula for Um,F reduces to

Um,F (x) =
n∑

i=1

miP(Ti ≤ xi),

with m1+ . . .+mn = 1. The expression in the r.h.s. represents an Ordered
Weighted Average (see [66]) of the marginal distributions of the targets Ti.
It is immediate to notice that Um,F (x) is modular for any choice of F . Fur-
thermore it does not depend on the copula C of F . We notice that, in this
case, the expected value of the utility E[Um,F (X)] (see formulas (4.14) and
(4.17)) for a fixed prospect X becomes Ũm,F (γ) =

∑n
i=1miγi.

Another likely situation is that in which the DM only considers interac-
tions among small groups of goods, say k at most. In other words the DM is
not interested in how they behave when considered in groups of cardinality
larger than k. This condition leads to the choice of a k−additive capacity
(see e.g. [65]). More in details

DEFINITION 4.15. A capacity m is said k-additive if the coefficients of
its Möbius transform Mm satisfy the condition Mm(I) = 0 for all I such
that |I| > k, and Mm(I) ̸= 0 for at least one element I with |I| = k.

The assumption of k-additivity generally simplifies the study of the util-
ity function. Under this hypothesis condition (4.40) reduces to

νU(x′,x′′) =
∑

I:|I|=2,...,k

Mm(I)ν
F (xI

′,xI
′′) R 0.

We notice, in any case, that the possible validity of the conditions of sub-
modularity and supermodularity generally depends on both the capacity m
and the distribution F . In particular, in the case k = 2, a sufficient condi-
tion for supermodularity (submodularity) reads Mm({i, j}) ≥ 0 (≤ 0), for
all i ̸= j.

Also of interest is the special case of reliability-structured utility func-
tions, that we have considered in the previous section. First we notice that
m being {0, 1}-valued has a direct economic interpretation: like a binary
system, that can be up or down according to the current state (up or down)
of each of its n components, so the DM is completely satisfied or com-
pletely unhappy according to which is the subset of targets that have been
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achieved. Cases where such utilities can be of economic relevance are dis-
cussed in [20]. Also, the special forms of TB utilities with m describing
series systems or parallel systems are discussed there: these are the cases
when m is the minimal or the maximal capacity, respectively, and corre-
spond to the two extreme cases of perfect complementarity and perfect sub-
stitutability. In such cases we encounter supermodularity and submodular-
ity, respectively, independently of the form of F . In all the other cases the
condition of supermodularity, or submodularity respectively, reads

Gτ(T )(τ(x
′ ∨ x′′)) +Gτ(T )(τ(x

′ ∧ x′′))

−Gτ(T )(τ(x
′))−Gτ(T )(τ(x

′′)) R 0. (4.41)

The validity of such a condition depends on the behavior of both the capac-
ity m and the distribution function F of the targets. Notice that, when T is
exchangeable, Gτ(T ) is of the form (4.35), then condition (4.41) becomes

n∑
j=1

s
(ϕ)
j ·

[
G(j)(τ(x

′ ∨ x′′)) +G(j)(τ(x
′ ∧ x′′))

−G(j)(τ(x
′))−G(j)(τ(x

′′))
]
R 0,

where G(j)(x) = P(T(j) ≤ x).
Still concerning the properties of supermodularity/submodularity, a very

clear situation is met in the special case n = 2. We first notice that, in this
case, formula (4.12) becomes

Um,F (x1, x2) =M1 P(T1 ≤ x1) +M2 P(T2 ≤ x2)

+M1,2 P(T1 ≤ x1, T2 ≤ x2), (4.42)

where we have used, for m and Mm the shorter notation m1 = m({1}),
M1 =Mm({1}), and so on. As a strongly simplifying feature of the present
case, the utility function Um,F in (4.42) is, in any case, supermodular or
submodular. In fact condition (4.39) reads

νU(x′,x′′) =M1,2 ν
F (x′,x′′).

Hence, since any joint distribution function F is supermodular, submodu-
larity and supermodularity are respectively equivalent to the conditions

M1,2 ≤ 0 and M1,2 ≥ 0, (4.43)

or, in terms of m,

m1 +m2 ≥ 1 and m1 +m2 ≤ 1. (4.44)

Focus now attention, in particular, to the cases of perfect complementar-
ity and perfect substitutability. The first one is equivalent to the condition
m1 = m2 = 0 or, equivalently, M1,2 = 1, and describes the maximal possi-
ble affinity to correlation of the DM. Here the expression of the utility Um,F

reduces to
Um,F (x1, x2) = F (x1, x2), (4.45)
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which is exactly the joint distribution function of the two-dimensional tar-
get. In the opposite case, the utility reduces to Um,F (x1, x2) = G1(x1) +

G2(x2) − F (x1, x2) or, analogously, Ûm,C(y1, y2) = C∗(y1, y2), where C∗

stands for the dual of the copula C (for further details see [106]). All other
cases can be grouped mainly into two sets, the strictly supermodular ones,
with m1 + m2 < 1, and the submodular ones, with m1 + m2 > 1. Fi-
nally we notice a region of neutrality, along the diagonal corresponding to
m1 + m2 = 1: this is the case of additivity of the capacity m, already
discussed above. All these cases are summarized in Figure 4.2.

b

b

0 1

1

m1

m2

m1 = m2 = 0

Perfect Complementarity

m1 = m2 = 1

Perfect Substitutability

m1 +m2 < 1

Complementarity
Correlation Affinity

m1 +m2 > 1

Substitutability
Correlation Aversion

m1 +m2 = 1

Correlation Neutrality

1

FIGURE 4.2. Scheme for complementarity and substitutability
among two goods depending on their utility parameters m1,m2

We already noticed that, w.r.t. the capacity m, the aggregation function
Ûm,C is an integral of m, depending on C, the connecting copula of F . For
a fixed m, there is no restriction in the choice of C, from a purely mathe-
matical point of view. We can see, on the contrary, that certain constraints
on the pair (m,C) can arise from an economic point of view, depending on
the attitudes of our Decision Maker. In other words, the type of integral of
m, that the DM is led to consider as an aggregation Ûm,C , depends on m
itself once the attitudes of the DM have been fixed. As a simple example,
let us consider the case of perfect complementarity in (4.45). In such case
Ûm,C becomes Ûm,C(y1, y2) = C(y1, y2). Thus the aggregation function
Ûm,C will grow with the growth of the copula C. This entails that a DM,
who will manifest risk aversion besides correlation affinity, will choose the
target which exhibits the greatest possible copula. Thus the most profitable
choice is the maximal copula, C(u, v) = u∧ v, namely the one of comono-
tonicity. Similar arguments can be developed for the study of the extreme
opposite case, m1 = m2 = 1 (M1,2 = −1).

6. Summary and concluding remarks

By introducing the target-based approach, Bordley and Li Calzi in [19]
and Castagnoli and Li Calzi in [28] had in particular developed a new way
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to look at utility functions, and related extensions, in the field of decision
problems under risk. In those papers, emphasis was given to the single-
attribute case where, practically, there is no loss of generality in considering
target-based utilities. As to the multi-attribute case, a treatment proposed a
few years later (in [20, 138, 139]) had further added some new ideas to the
field. In fact, the proposed extension is something different from the single-
attribute definition. Actually, a direct generalization of the latter would lead
one to consider much too special and restrictive forms of utilities, as we
have remarked in the Introduction.

A principle of individual choice, clearly enucleated in [20], is at the
basis of the given definition of multi-attribute target-based utilities. This
principle is indeed quite natural and is related to the evaluation, by part of
a Decision Maker, about the relative importance attributed to any possible
subset of achieved targets. It emerges then that such an evaluation depends
on the individual propensity toward the possible “coalitions” of attributes
and that it is related with the concept of capacity.

Starting from the latter observation, we have formally considered a
multi-attribute target-based utility (Definition 4.1) as a pair (m,F ), where
m is a capacity over 2N = {0, 1}n and F is a probability distribution func-
tion over Rn. On this basis, we have pointed out that the theory of multi-
attribute target-based utilities can hinge on a formal apparatus, provided by
the field of fuzzy measures, extensions of fuzzy measures, and fuzzy, or
universal, integrals. On the other hand, multi-attribute target-based utili-
ties give rise to applications of the concepts and of results in this field. In
particular, under special conditions, the arguments and results presented in
[86] can have an interpretation useful to an heuristic view of the differences
among various fuzzy integrals. As we have briefly recalled in Section 3,
operators of the form

Vm,A(y) =
∑
I⊆N

Mm(I)A(yI) (4.46)

have been analyzed in [86] as extensions of capacitiesm over 2N . Generally
speaking, the function A appearing in (4.46) is an aggregation function. In
our frame, interest is concentrated on the special case when A is replaced
by an n-dimensional copula C. The effect of such a particular condition
is two-fold: on the one hand, it makes Vm,A = Vm,C to have, itself, the
properties of an aggregation function. On the other hand, it gives Vm,C the
meaning of an aggregation of marginal utilities; the special form of aggre-
gation depends on the special type of stochastic dependence that is assumed
among the coordinates of the target. An extreme condition of dependence
with a special decisional meaning of its own, namely positive comonotonic-
ity, lets such an aggregation coincide with a Choquet integral. We thus see
the aggregation functions Ûm,C as a natural class of operators generalizing
such integrals.
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Concerning Choquet integrals, it is well known that they have been very
widely studied and discussed in the past literature concerning utilities and
decision under risk. In particular, in [30] and [121], it is shown how this
concept allows one to build a quite general model of decision making under
uncertainty, generalizing the Expected Utility model, in the frame of single-
attribute decisions. We point out that its role in the present study appears
under a rather different form: it is not used in fact to explain a general
principle for decisions under uncertainty. It emerges as an extremely special
case, just in the frame of Expected Utility. However its meaning in the TB
Approach is peculiar of the multi-attribute case.

In multi-attribute decision problems under risk, the profile of a Decision
Maker can be specified by taking into account different types of attitudes
and forms of behavior, such as risk-aversion (or risk-affinity), correlation-
aversion (or correlation-affinity), cross-prudence, etc. Generally these con-
ditions are described in terms of qualitative properties of the utility func-
tions (see e.g. [45, 46, 51]).

Let us come to the specific case of multi-attribute utility functions, that
we had identified with the pairs (m,F ). As a challenging program for fu-
ture research, one should detail how the mentioned qualitative properties
of utility functions determine (or are determined by) the form of m and F
and reciprocal relations between them. For a DM with given attitudes to-
ward risk, the choice of F - and then, in particular, of the copula C - is
not completely free, but is influenced by the form of m itself. In the above
Section 5, we have considered some significant special cases and sketched
some conclusion in this direction. A more general analysis may result from
future achievements about qualitative descriptions of target-based utilities.

Further research suggested by our work also concerns specific aspects
of multivariate copulas. As shown by formula (4.17), the analysis of the
present approach would benefit from new results concerning the connecting
copula of the vector D obtained as the difference between the vectors T and
X. Here we have assumed stochastic independence.

More complex arguments would be involved in the cases when the pos-
sibility of some correlation between the vectors T and X is admitted. Some
specific aspects in this direction, for the special case n = 1, have been dealt
with in [38].



CHAPTER 5

Stochastic Precedence, Stochastic Orderings and
connections to Utility Theory

The concept of stochastic precedence between two real-valued random
variables has often emerged in different applied frameworks. It finds appli-
cations in various statistical contexts, like testing and sampling, reliability
modeling, tests for distributional equality versus various alternatives (see,
for example, [5, 18, 118]). Furthermore, this concept has been studied in
the probabilistic context of Markov models for waiting times to occurrences
of words in random sampling of letters from an alphabet (for references, see
[40, 41, 42, 43]). Further applications can also arise in the fields of reliabil-
ity and in the comparison of pool obtained by two opposite coalitions.

Motivations for our study arise, in particular, from the frame of Target-
Based Approach in decisions under risk. In the previous Chapter we de-
veloped this model for multi-dimensional attributes, under the assumption
of stochastic independence between Targets and Prospects. In this Chapter
our analysis concerns the one-dimensional case, but with the assumption of
stochastic dependence.

To our purposes, we introduce a slightly more general, and completely
natural, concept of stochastic precedence and analyze its relations with the
usual notions of stochastic ordering. Such a study leads us to introducing
some special classes of bivariate copulas, namely the classes Lγ . Proper-
ties of such classes are useful to describe the behavior of the Target-Based
model under changes in the connecting copulas of the random variables, es-
pecially regarding their properties of symmetry and dependence. Examples
are provided in this direction.

More precisely the structure of the Chapter is as follows. In Section
1 we introduce the concept of generalized stochastic precedence and the
classes Lγ . In Section 2, we analyze the main aspects of such classes and
present a related characterization. Connections to measures of asymmetry
of copulas are analyzed in Section 3, where we introduce a weak measure of
non-exchangeability for the copulas in Lγ . Some further basic properties of
this class are detailed in Section 4, where a few examples are also presented.
Finally, in Section 5, we trace connections to Target-Based utilities in the
case of stochastic dependence between targets and prospects.

73
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1. Basic Definitions

Let X1, X2 be two real random variables defined on a same probability
space (Ω,F ,P). We will denote by F the joint distribution function and
by G1, G2 their marginal distribution functions, respectively. For the sake
of notational simplicity, we will initially concentrate our attention on the
case when G1, G2 belong to the class G of all the probability distribution
functions on the real line, that are continuous and strictly increasing in the
domain where they are positive and smaller than one. As we shall see later,
we can also consider more general cases, but the present restriction allows
us to simplify the formulation and the proofs of our results. In order to
account for some cases of interest with P(X1 = X2) > 0, we will not
assume that the distribution function F is absolutely continuous.

The random variable X1 is said to stochastically precede X2 if P(X1 ≤
X2) ≥ 1/2, writtenX1 ≼sp X2. The interest of this concept for applications
has been pointed out several times in the literature (see in particular [6],
[18] and [104]). We recall the reader’s attention on the fact that stochastic
precedence does not define a stochastic order in that, for instance, it is not
transitive. However it can be considered in some cases as an interesting
condition, possibly alternative to the usual stochastic ordering X1 ≼st X2,
defined by the inequality G1(t) ≥ G2(t), ∀t ∈ R, see [124].

When X1, X2 are independent the implication X1 ≼st X2 ⇒ X1 ≼sp

X2 holds (see [6]). It is also easy to find several other examples of bi-
variate probability models where the same implication holds. For instance
the condition X1 ≼st X2 even entails P(X1 ≤ X2) = 1 when X1, X2 are
comonotonic (see e.g. [106]), i.e. when P(X2 = G−1

2 (G1(X1))) = 1. On
the other hand, cases of stochastic dependence can be found where the im-
plication X1 ≼st X2 ⇒ X1 ≼sp X2 fails. A couple of examples will be
presented in Section 4. See also Proposition 5.10. On the other hand the
frame of words’ occurrences produces, in a natural way, examples in the
same direction, see e.g. [40].

In this framework we replace the notionX1 ≼sp X2 with the generalized
concept defined as follows

DEFINITION 5.1 (Generalized Stochastic Precedence). For any given
γ ∈ [0, 1], we say that X1 stochastically precedes X2 at level γ if the con-
dition P(X1 ≤ X2) ≥ γ holds. This will be written X1 ≼(γ)

sp X2.

Let C denote the class of all bivariate copulas (see also [76, 106]). Sev-
eral arguments along the Chapter will be based on the concept of bivariate
copula. The class of all bivariate copulas will be denoted by C. We recall
that the pair of random variables X1, X2, with distributions G1, G2, respec-
tively, admits C ∈ C as its connecting copula whenever its joint distribution
function is given by

F (x1, x2) = C(G1(x1), G2(x2)). (5.1)
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It is well known, by Sklar’s Theorem 2.4 that the connecting copula is
unique when G1 and G2 are continuous. We will use the notation

A := {(x1, x2) ∈ R2 : x1 ≤ x2}, (5.2)

so that we write

P(X1 ≤ X2) =

∫
A

dF (x1, x2) =

∫
R2

1A(x1, x2) dF (x1, x2). (5.3)

For given G1, G2 ∈ G and C ∈ C we also set

η(C,G1, G2) := P(X1 ≤ X2), (5.4)

where X1 and X2 are random variables with distributions G1, G2 respec-
tively, and connecting copula C. Thus the condition X1 ≼(γ)

sp X2 can also
be written η(C,G1, G2) ≥ γ.

Suppose now that X1, X2 satisfy the condition X1 ≼st X2. As a main
purpose of this Chapter, we give a lower bound for the probability P(X1 ≤
X2) in terms of the stochastic dependence betweenX1 andX2 or, more pre-
cisely, in terms of conditions on the integral

∫
A∩[0,1]2 dC. More specifically

we will analyze different aspects of the special classes of bivariate copulas,
defined as follows.

DEFINITION 5.2. For γ ∈ [0, 1], we denote by Lγ the class of all copu-
las C ∈ C such that

η(C,G1, G2) ≥ γ (5.5)

for all G1, G2 ∈ G with G1 ≼st G2.

Concerning the role of the concept of copula in our study, we point out
the following simple facts. Consider the random variables X ′

1 = ϕ(X1)
and X ′

2 = ϕ(X2) where ϕ : R → R is a strictly increasing function. Thus
X ′

1 ≼st X
′
2 if and only if X1 ≼st X2 and X ′

1 ≼
(γ)
sp X ′

2 if and only if X1 ≼(γ)
sp

X2. At the same time the pair X ′
1, X

′
2 also admits the same connecting

copula C.

2. A characterization of the class Lγ

This Section will be devoted to providing a characterization of the class
Lγ (see Theorem 5.7 and 5.8) along with related discussions. We start by
detailing a few basic properties of the quantities η(C,G1, G2), for G1, G2 ∈
G and C ∈ C. In view of the condition G1, G2 ∈ G we can use the change
of variables u = G1(x1), v = G2(x2). Thus we can rewrite the integral in
(5.3) according to the following

PROPOSITION 5.3. For given G1, G2 ∈ G and C ∈ C, one has

η(C,G1, G2) =

∫
[0,1]2

1A(G
−1
1 (u), G−1

2 (v)) dC(u, v). (5.6)
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The use of the next Proposition is two-fold: it will be useful both for
characterizing the class Lγ and establishing lower and upper bounds on the
quantity η(C,G1, G2).

PROPOSITION 5.4. Let G1, G
′
1, G2, G

′
2 ∈ G. Then

G2 ≼st G
′
2 ⇒ η(C,G1, G2) ≤ η(C,G1, G

′
2);

G1 ≼st G
′
1 ⇒ η(C,G1, G2) ≥ η(C,G′

1, G2).

PROOF. We prove only the first relation of Proposition 5.4, since the
proof for the second one is analogous. By hypothesis, and sinceG1, G

′
2 ∈ G

for each x ∈ (0, 1), one has

G−1
2 (x) ≤ G′−1

2 (x).

Therefore

(G−1
1 (x), G−1

2 (x)) ∈ A⇒ (G−1
1 (x), G′−1

2 (x)) ∈ A.

Hence, the proof can be concluded by recalling (5.6). �

From Proposition 5.4, in particular we get

η(C,G,G) ≤ η(C,G′, G) and η(C,G,G) ≤ η(C,G,G′′), (5.7)

for any choice of G,G′, G′′ ∈ G such that G′ ≼st G ≼st G
′′.

A basic fact in the analysis of the classes Lγ is that the quantities of the
form η(C,G,G) only depend on the copula C. More formally we state the
following result.

PROPOSITION 5.5. For any pair of distribution functions G′, G′′ ∈ G,
one has

η(C,G′, G′) = η(C,G′′, G′′). (5.8)

PROOF. Recalling (5.6) one obtains∫
I2
1A(G

′−1(u), G′−1(v)) dC(u, v) =

∫
I2
1A(G

′′−1(u), G′′−1(v)) dC(u, v)

because 1A(G
′−1(u), G′−1(v)) = 1A(G

′′−1(u), G′′−1(v)) = 1A(u, v), so
equality in (5.8) is proved. �

As a consequence of Proposition 5.5 we can introduce the symbol

η(C) := η(C,G,G), (5.9)

and, by letting G1 = G2 = G in (5.6), write

η(C) =

∫
A∩[0,1]2

dC (5.10)

for G ∈ G. From Proposition 5.4 and from the inequalities (5.7), we obtain

PROPOSITION 5.6. For G1, G2 ∈ G the following implication holds

G1 ≼st G2 ⇒ η(C) ≤ η(C,G1, G2).
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We then see that the quantity η(C) characterizes the class Lγ, 0 ≤ γ ≤
1, in fact we can state the following

THEOREM 5.7. C ∈ Lγ if and only if η(C) ≥ γ.

We thus have
Lγ = {C ∈ C : η(C) ≥ γ} (5.11)

and we can also write

η(C) = inf
G1,G2∈G

{η(C,G1, G2) : G1 ≼st G2}. (5.12)

In other words the infimum in formula (5.12) is a minimum and it is attained
when G1 = G2. We notice furthermore that the definition of η(C,G1, G2)
can be extended to the case when G1, G2 ∈ D(R), the space of distribution
functions on R. The class G has however a special role in the present setting,
as it is shown in the following result.

THEOREM 5.8. Let C ∈ C and G,H ∈ D(R) with G ≼st H . Then
η(C,G,H) ≥ η(C).

PROOF. Consider two sequences (Gn : n ∈ N), (Hn : n ∈ N) such that
Gn, Hn ∈ G and Gn

w→ G, Hn
w→ H . Applying Theorem 2 in [122], we

obtain that C(Gn, Hn)
w→ C(G,H).

Consider now the new sequence (H̃n : n ∈ N), where we have posed
H̃n(x) := min{Gn(x), Hn(x)}. Notice that H̃n ∈ G, moreover Gn ≼st H̃n

and H̃n
w→ H . This implies C(Gn, H̃n)

w→ C(G,H).
Now, by using the standard characterization of weak convergence on

separable spaces (see [14] p. 67 Theorem 6.3),

lim sup
n→∞

∫
B

dF̃n ≤
∫
B

dF,

for any closed set B ∈ R2, where F = C(G,H) and F̃n = C(Gn, H̃n).
Taking the closed set A defined in (5.2) one has

η(C) ≤ lim sup
n→∞

∫
A

dF̃n ≤
∫
A

dF = η(C,G,H). (5.13)

�

REMARK 5.9. Theorem 5.8 shows that the minimum of η(C,G,H), for
G,H ∈ D(R), is attained at (C,G,G), for any G ∈ G ⊂ D(R). This
result allows us to replace the class G with D(R) in the expression of Lγ

given in (5.12). We notice furthermore that one can have η(C,G′, G′) ̸=
η(C,G′′, G′′) when G′, G′′ are in D(R).

Concerning the classes Lγ , we also define

Bγ := {C ∈ C | η(C) = γ}, (5.14)
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so that
Lγ =

∪
γ′≥γ

Bγ′ .

We now show that the classes Bγ , γ ∈ [0, 1], are all non empty. Several
natural examples might be produced on this purpose. We fix attention on
a simple example built in terms of the random variables X1, X

(γ)
2 defined

as follows. On the probability space ([0, 1],B[0, 1], λ), where λ denotes the
Lebesgue measure, we take X1(ω) = ω, and

X
(γ)
2 (ω) =

{
ω + 1− γ if ω ∈ [0, γ],
ω − γ if ω ∈ (γ, 1].

(5.15)

As it happens forX1, also the distribution ofX(γ)
2 is uniform in [0, 1] for

any γ ∈ [0, 1] and the connecting copula of X1, X
(γ)
2 , that is then uniquely

determined, will be denoted by Cγ .

PROPOSITION 5.10. For any γ ∈ (0, 1], one has
(i) Cγ ∈ Bγ .

(ii) Cγ(u, v) = min{u, v,max{u− γ, 0}+max{v + γ − 1, 0}}.

PROOF. (i) First we notice that P(X1 ≤ X
(γ)
2 ) = γ. In fact

P(X1 ≤ X
(γ)
2 ) = P(X1 ≤ X1 + 1− γ,X1 ≤ γ)

+ P(X1 ≤ X1 − γ,X1 > γ) = γ.

Whence, η(Cγ) = P(X1 ≤ X
(γ)
2 ) = γ, since both the distributions of

X1, X
(γ)
2 belong to G.

(ii) For x1, x2 ∈ [0, 1] we can write

F
X1,X

(γ)
2
(x1, x2) := P(X1 ≤ x1, X

(γ)
2 ≤ x2)

= P(X1 ≤ x1, X1 + 1− γ ≤ x2, X1 ≤ γ)

+ P(X1 ≤ x1, X1 ≤ x2 + γ, X1 > γ)

= P(X1 ≤ min{x1, x2 + γ − 1, γ}) + P(γ < X1 ≤ min{x1, x2 + γ})
= max{min{x1, x2 + γ − 1, γ}, 0}+max{min{x1, x2 + γ} − γ, 0}
= min{x1, x2,max{x1 − γ, 0}+max{x2 + γ − 1, 0}}.

Since both the marginal distributions ofX1 andX(γ)
2 are uniform, it follows

that

Cγ(u, v) = min{u, v,max{u− γ, 0}+max{v + γ − 1, 0}}.

�

The copulas Cγ have also been considered for different purposes in the
literature, see e.g. [107] and [127]. We point out that the identity η(Cγ) = γ
(for γ ∈ (0, 1]) could also have been obtained directly from formula (5.10).
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In this special case the computation of P(X1 ≤ X2) is however straightfor-
ward.

As an immediate consequence of Proposition 5.10 we have that Lγ′ is
strictly contained in Lγ for any 0 ≤ γ < γ′ ≤ 1. We notice furthermore
that L0 = C and L1 = {C ∈ C :

∫
A∩[0,1]2 dC = 1} ̸= ∅.

Graphs of Cγ for different values of γ are provided in Figure 5.1.

FIGURE 5.1. Copulas from the family Cγ with parameter γ =
0.3, 0.5, 0.8 respectively

3. A weak measure of non-exchangeability

For what follows it is now convenient also to consider the quantities
ξ(C,G1, G2) and ξ(C) defined as follows:

ξ(C,G1, G2) := P(X1 = X2), (5.16)

ξ(C) := ξ(C,G,G), (5.17)

where X1 and X2 are random variables with distributions G1, G2 ∈ G re-
spectively and connecting copula C.

For a given bivariate model we have considered so far the quantities
η(C) with C denoting the connecting copula. In what follows we point out
the relations among η(C), η(Ĉ), η(Ct) where Ĉ and Ct denote the survival
copula and the transposed copula, respectively. The transposed copula Ct

is defined by
Ct(u, v) := C(v, u) (5.18)

so that ifC is the connecting copula of the pair (X1, X2), thenCt is the cop-
ula of the pair (X2, X1). Whence, if X1 and X2 have the same distribution
G ∈ G, then

η(Ct) = P(X2 ≤ X1).

On the other hand the notion of survival copula of the pair (X1, X2),
which comes out as natural when considering pairs of non-negative random
variables, is defined by the equation

FX1,X2(x1, x2) = Ĉ
[
G1(x1), G2(x2)

]
, (5.19)

with G1 and G2 respectively denoting the marginal survival functions:

G1(x1) = P(X1 > x1), G2(x2) = P(X2 > x2).
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The relationship between the survival copula Ĉ of (X1, X2) and the
connecting copula C is given by (see [106])

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v). (5.20)

The following result shows the relations tying the different quantities
η(C), η(Ĉ), η(Ct).

PROPOSITION 5.11. Let C ∈ C. The following relation holds:

η(Ĉ) = η(Ct) = 1− η(C) + ξ(C). (5.21)

PROOF. By the definition of η applied to Ĉ one has

η(Ĉ) =

∫
I2
1A(u, v) dĈ(u, v) =

∫
I2
1A(1− u′, 1− v′) dC(u′, v′)

= 1−
∫
I2
1A\∂A(u

′, v′) dC(u′, v′) = 1− η(C) + ξ(C).

Once again, by definition of η, we have

η(Ct) =

∫
I2
1A(u, v) dC

t(u, v) =

∫
I2
1A(v

′, u′) dC(u′, v′)

= 1−
∫
I2
1A\∂A(u

′, v′) dC(u′, v′) = 1− η(C) + ξ(C),

and finally η(Ct) = η(Ĉ). �
Fix now G ∈ G and let X1, X2 be random variables with a symmetric

connecting copula C and both marginal distribution functions coinciding
with G. Then their joint distribution function FX1,X2 is exchangeable and
P(X1 < X2) = P(X2 < X1) = (1− ξ(C))/2. Thus

η(C) = P(X1 < X2) + ξ(C) =
1 + ξ(C)

2
≥ 1

2
. (5.22)

We have η(C) = 1/2 when ξ(C) = 2η(C)− 1 = 0. As an immediate con-
sequence of Theorem 5.7, we then get that any symmetric copula belongs
to Lγ for any γ ≤ 1/2, in other words when the copula is symmetric one
has that the stochastic order implies the stochastic precedence.

On the other hand we are also interested in conditions under which the
probability P(T ≤ X) is “large enough”, even if the marginal distributions
of T and X are close each other. As a matter of fact, for random vari-
ables T and X with “close” marginal distributions, P(T ≤ X) can be large
only when the copula C is far from being symmetric. For this purpose it is
opportune to recall the concept of exchangeability of random variables, in-
troduced in 2.31: two random variablesX1 andX2, with marginsG1 andG2

and joint law F1,2, are exchangeable if and only ifG1 = G2 and F1,2 = F2,1.
In Chapter 2 we also introduced the concept of measure of non-exchan-

geability, useful to understand the degree of non-exchangeability of couples
of random variables or, analogously, the level of asymmetry of their con-
necting copula. Our aim is now to check if the index η can be considered as
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a suitable measure of asymmetry, or if, in any case, may give us information
about copulas in this direction. To this purpose one can rather consider the
quantity

ν(C) := |η(C)− η(Ct)|, (5.23)

for C ∈ C. We are now going to show that the function ν defined above is
a weak measure of non-exchangeability.

PROPOSITION 5.12. The function ν : C ∈ R+ defined in 5.23 satisfies
properties B1,B3,B4,B5 of Definition (2.34).

We give hints for the proof of Proposition 5.12.

B1: ν is bounded: |η(C)− η(Ct)| ≤ η(C) + η(Ct) ≤ 2;
B3-B4: ν(C) = ν(Ct) = ν(Ĉ) by a direct application of (5.21);
B5: if (Cn) and C are in C and if Cn converges uniformly to C, then
µ(Cn) converges to µ(C) as n tends to ∞, see Theorem 2 in [122].

For what concerns property B2, we shall need that ν(C) = 0 if, and only
if, C is symmetric. Of course if the copula C is symmetric, provided that
ξ(C) = 0, we have ν(C) = 0, but the opposite implication may fail. In
this sense ν can be seen as a weak measure, because may lack of such a
property. Notice that, for computational purposes, ν can also be written as

ν(C) = |2η(C)− 1− ξ(C)|. (5.24)

In the special case of copulas Cγ (see Proposition 5.10) the equivalence
holds, for γ ∈ [0, 1]. In this case we have

ν(Cγ) =

{
|2γ − 1| for γ ∈ (0, 1),
0 for γ = 0, 1.

ξ(Cγ) =

{
0 for γ ∈ (0, 1),
1 for γ = 0, 1.

The curve of the function ν is represented in Figure 5.2. Notice that, for
the special cases γ = 1/3 and γ = 2/3, we have ν(C) = 1/3, value that
coincides with the one given by the measure d∞ proposed in [107].

FIGURE 5.2. Graph of ν for the copulas Cγ
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4. Further properties of Lγ and examples

We start this Section by analyzing further properties of the classes Lγ

that can also shed light on the relations between stochastic precedence and
stochastic orderings. First we notice that the previous Definition 5.2 has
been formulated in terms of the usual stochastic ordering ≼st. However
similar results can also be obtained for other important concepts of stochas-
tic ordering that have been considered in the literature, such as the hazard
rate, the likelihood ratio, and the other orderings (see Appendix B for fur-
ther details about the topic, as well as [124]).

Let us fix, in fact, a stochastic ordering ≼∗ different from ≼st. Definition
5.2 can be modified by replacing therein ≼st with ≼∗ and this operation
leads us to a new class of copulas that we can denote by L(∗)

γ . More precisely
we set

L(∗)
γ := {C ∈ C : η(C,G1, G2) ≥ γ, ∀G1, G2 ∈ G s.t. G1 ≼∗ G2}

(5.25)
or equivalently

L(∗)
γ = {C ∈ C : η∗(C) ≥ γ} (5.26)

where
η∗(C) := inf

G1,G2∈G
{η(C,G1, G2) : G1 ≼∗ G2}. (5.27)

For given γ ∈ (0, 1), one might wonder about possible relations between
L(∗)

γ and Lγ . Actually one has the following result, which will be formulated
for binary relations (not necessarily stochastic orderings) over the space
D(R).

PROPOSITION 5.13. Let ≼∗ be a relation satisfying
(a) for any G ∈ D(R) one has G ≼∗ G;
(b) for any G1, G2 ∈ D(R) with G1 ≼∗ G2 one has G1 ≼st G2.

Then Lγ = L(∗)
γ .

PROOF. In view of (b), one has that η(C) ≤ η∗(C). In fact both the
quantities η(C) and η∗(C) are obtained as an infimum of the same func-
tional and, compared with η, the quantity η∗ is an infimum computed on a
smaller set.

Due to (a), however, η(C) and η∗(C) are both obtained, in (5.12) and
(5.27) respectively, as minima attained on a same point (G,G). We can then
conclude that L(∗)

γ = Lγ . �

Concerning Proposition 5.13 we notice that, for example, the hazard rate
and the likelihood ratio orderings, ≼hr and ≼lr, both satisfy the conditions
(a) and (b).

In applied problems it can be relevant to remark that imposing stochas-
tic orderings stronger than ≼st does not necessarily increase the level of
stochastic precedence.
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For the sake of notational simplicity we come back to considering the
usual stochastic ordering ≼st and the class Lγ .

A basic property of the classes Lγ and Bγ is given by the following
result.

PROPOSITION 5.14. For γ ∈ [0, 1], the classes Lγ , Lc
γ = C \ Lγ , and

Bγ are convex.

PROOF. We consider two bivariate copulas C1, C2 ∈ Lγ and a convex
combination of them, i.e. take α ∈ (0, 1) and C := αC1 + (1 − α)C2. We
show that C ∈ Lγ , indeed

η(C) =

∫
A

dC(u, v) = α

∫
A

dC1(u, v) + (1− α)

∫
A

dC2(u, v)

= αη(C1) + (1− α)η(C2).

Since η(C1), η(C2) are larger or equal than γ then η(C) ≥ γ, whence Lγ is
convex. Now one can use the same argument in order to show that Lc

γ and
Bγ are convex as well. �

An immediate application of Proposition 5.14 concerns the case when,
given a random parameter Θ, all the connecting copulas of the conditional
distributions of (T,X), belong to a same class Lγ . Proposition 5.14 in fact,
guarantees that the copula of (T,X) belongs to Lγ as well.

Some aspects of the definitions and results given so far will be demon-
strated here by presenting a few examples. We notice that, as shown by
Proposition 5.10, the condition ≼st does not imply ≼(γ)

sp , with γ ∈ (0, 1).
For the special case γ = 1/2 we now present an example of applied interest.

EXAMPLE 5.15.

Let X,Y be two non-negative random variables, where Y has an expo-
nentially density fY (y) with failure rate λ and where stochastic dependence
between X and Y is described by a “load-sharing” dynamic model as fol-
lows: conditionally on (Y = y), the failure rate of X amounts to α = 1 for
t < y and to β for t > y. We assume 1 < λ < β < 1 + λ. This position
gives rise to a jointly absolutely continuous distribution for which we can
consider

P(X > x|Y = y) :=

∫ +∞

x

fX,Y (t, y)dt,

fX,Y denoting the joint density of X,Y . As to the survival function of X ,
for any fixed value x > 0, we can argue as follows.

FX(x) := P(X > x) =

∫ +∞

0

P(X > x|Y = y)fY (y)dy
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The integral over R+ can be split in two parts, as follows. Over the interval
[0, x], we have∫ x

0

P(X > x|Y = y)fY (y)dy =∫ x

0

P(X > y|Y = y)P(X > x|Y = y,X > y)fY (y)dy =∫ x

0

e−ye−b(x−y)fY (y)dy

while, over [x,+∞],∫ +∞

x

P(X > x|Y = y)fY (y)dy =

∫ +∞

x

e−xfY (y)dy.

Then we have, for all x > 0,

FX(x) = e−bx λ

1 + λ− b
[1− e−(1+λ−b)x] + e−(1+λ)x

=

(
1− λ

1 + λ− β

)
e−(1+λ)x +

λ

1 + λ− β
e−βx ≤ e−λx.

We can then conclude that X ≼st Y . On the other hand the same position
gives also rise to P(X ≤ Y ) = 1/(1 + λ) < 1/2.

The next example shows that for three random variables T,X ′, X ′′, the
implication T ≼st X

′ ≼st X
′′ ⇒ P(T ≤ X ′′) ≤ P(T ≤ X ′) can fail when

the connecting copulas of (T,X ′) and (T,X ′′) are different.

EXAMPLE 5.16.

Let Y1, . . . , Y5 be i.i.d. random variables, with a continuous distribution
and defined on a same probability space, and set

T = min{Y1, Y2}, X ′ = max{Y1, Y2}, X ′′ = max(Y3, Y4, Y5).

Thus X ′ ≼st X
′′, but P(T ≤ X ′) = 1 and P(T ≤ X ′′) < 1.

REMARK 5.17. For some special types of copula C, the computation
of η(C,G1, G2) can be carried out directly, in terms of probabilistic argu-
ments, provided the distributions G1, G2 belong to some appropriate class.
This circumstance in particular manifests for the models considered in the
subsequent examples. Let C be a copula satisfying such conditions. Then
Proposition 5.4 can be used to obtain inequalities for η(C,H1, H2) even if
H1, H2 do not belong to G provided, e.g., that H1 ≼st G1, G2 ≼st H2 and
G1, G2 ∈ G.

The next example will be devoted to bivariate gaussian models, i.e. to a
relevant case of symmetric copulas.

EXAMPLE 5.18. Gaussian Copulas.
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The family of bivariate gaussian copulas (see e.g. [106]) is parameter-
ized by the correlation coefficient ρ ∈ (−1, 1). The corresponding copula
C(ρ) is absolutely continuous and symmetric, and η(C(ρ)) = 1/2 and, thus,
it does not depend on ρ. For fixed pairs of distributions G1, G2, on the
contrary, the quantity η(C(ρ), G1, G2) does actually depend on ρ, besides
on G1 and G2. This class provides the most direct instance of the situa-
tion outlined in the above Remark 5.17. The value for η(C(ρ), G1, G2) is
in fact immediately obtained when G1, G2 are gaussian. Let X1, X2 de-
note gaussian random variables with connecting copula C(ρ) and parame-
ters µ1, µ2, σ

2
1, σ

2
2 . Since the random variable Z = X1 − X2 is distributed

according to N (µ1 − µ2, σ
2
1 + σ2

2 − 2ρσ1σ2) we can write

η(C(ρ), G1, G2) = P(Z ≤ 0) = Φ

(
µ2 − µ1√

σ2
1 + σ2

2 − 2ρσ1σ2

)
. (5.28)

We recall that, when Xi ∼ N (µi, σ
2
i ) for i = 1, 2, the necessary and

sufficient condition for X1 ≼st X2 is µ1 ≤ µ2 and σ1 = σ2 (see e.g. [6]).
In other words, for G1, G2 gaussian, G1 ≼st G2 means X1 ≼sp X2 and
σ1 = σ2. By using the formula in (5.28), with σ1 = σ2 = σ, we have

η(C(ρ), G1, G2) = Φ

(
µ2 − µ1

σ
√
2(1− ρ)

)
. (5.29)

Thus G1 ≼st G2 ⇒ η(C(ρ), G1, G2) ≥ 1/2, as shown by Proposition 5.6
and Theorem 5.8. We notice that η(C(ρ), G1, G2) is an increasing function
of ρ.

Proposition 5.4 can be extended to obtain, say, that

η(C(ρ), G1, G2) ≤ η(C(ρ), H1, H2),

when H1 ≼st G1 and G2 ≼st H2, for G1, G2 ∈ G and H1, H2 /∈ G. We
then can give inequalities for η(C(ρ), H1, H2) in terms of (5.28), provided
H1, H2 are suitably comparable in the ≼st sense with gaussian distributions.

In the cases when ξ(C) > 0, we should obviously distinguish between
computations of P(X1 ≤ X2) and P(X1 < X2), where C is the connecting
copula of X1, X2. A remarkable case when this circumstance happens is
considered in the following example.

EXAMPLE 5.19. Marshall-Olkin Models

We consider the Marshall-Olkin copulas (see e.g [76, 102, 106]), namely
those whose expression is the following:

Ĉ(α1,α2)(u, v) := u v min{u−α1 , v−α2}

for 0 < αi < 1, i = 1, 2. We notice that the Marshall-Olkin copula has a
singular part that is concentrated on the curve uα1 = vα2 (see also Figure
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5.3). Actually the measure of such a singular component is given by
α1α2

α1 + α2 − α1α2

.

FIGURE 5.3. Marshall-Olkin Copula (left) and graph of uα1 =
vα2 (right). Special case α1 = 0.4, α2 = 0.2.

As for the computation of η(Ĉ(α1,α2)) we use the expression in (5.10).
By separately considering the curve uα1 = vα2 and the domains where
Ĉ(α1,α2) is absolutely continuous, we obtain

η(Ĉ(α1,α2)) =
1

2− α1 ∧ α2

(
1− (α1 − α1 ∧ α2)(α1 ∧ α2)

α1 − α2

)
.

Consider the copula

C(α1,α2)(u, v) := Ĉ(α1,α2)(1− u, 1− v) + u+ v − 1.

We will see now that the value of η(C(α1,α2), G1, G2) directly follows from
probabilistic arguments, provided G1, G2 are exponential distributions with
appropriate parameters. Let in fact V , W and Z be three random variables
independent and exponentially distributed with parameters µ1 = 1/α1 − 1,
µ2 = 1/α2 − 1 and µ = 1, respectively. The new random variables

X1 := V ∧ Z, X2 := W ∧ Z,

have survival copula Ĉ(α1,α2), connecting copula C(α1,α2), and exponential
distributions G(α1)

1 and G(α2)
2 , with parameters 1/α1 and 1/α2 respectively.

We now proceed with the computation of

η(C(α1,α2), G
(α1)
1 , G

(α2)
2 ) = P(X1 ≤ X2).

We can write

ξ(C(α1,α2), G
(α1)
1 , G

(α2)
2 ) = P(X1 = X2) = P(Z ≤ V ∧W )

=
1

µ1 + µ2 + 1
=

α1α2

α1 + α2 − α1α2

,

furthermore

P(X1 < X2) = P(V < W ∧ Z) = (1− α1)α2

α1 + α2 − α1α2

,
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and finally we obtain

P(X1 ≤ X2) =
α2

α1 + α2 − α1α2

.

Then
η(C(α1,α2), G

(α1)
1 , G

(α2)
2 ) =

α2

α1 + α2 − α1α2

.

Finally, the evaluation of ν(C) is straightforward and we obtain

ν(C(α1,α2)) =
α1 ∧ α2

2− α1 ∧ α2

.

We notice that, also in the present Marshall-Olkin case, the index ν defined
in (5.23) perfectly fits with the definition of measure of non-exchangeability
given in [49]. In fact one has that ν(C) = 0 only in the case α1 = α2 = 0,
that corresponds to C(u, v) = uv, the independence copula.

We now conclude this Section with an example showing an extreme
case in the direction of Remark 5.17.

EXAMPLE 5.20. Copulas of order statistics

Let A,B be two i.i.d. random variables with d.f. G ∈ G and denote by
X1, X2 their order statistics, namely X1 = min{A,B}, X2 = max{A,B}.
The distributions of X1, X2 depend on G and are respectively given by

F
(G)
1 (x1) = P(min{X1, X2} ≤ x1) = 2G(x1)−G(x1)

2,

F
(G)
2 (x2) = P(max{X1, X2} ≤ x2) = G(x2)

2 .

Let Z := {(u, v) ∈ I2 : v ≥ (1− (1− u)1/2)2}. The connecting copula of
(X1, X2), represented in Figure 5.4, is given by

K(u, v) =

{
2(1− (1− u)1/2)v1/2 − (1− (1− u)1/2)2 if (u, v) ∈ Z,
v otherwise.

We have, by definition,

η(K,F
(G)
1 , F

(G)
2 ) = 1,

and it does not depend on G. We notice, on the other hand, that the com-
putation of η(K) = η(K,G,G), with G ∈ G, is to be carried out explicitly,
since the pair (G,G) can never appear as the pair of marginal distributions
of order statistics. By recalling (5.6) one obtains

η(K) =

∫
[0,1]2

1A(u, v)

2
√
v
√
1− u

dv du = 2− π

2
<

1

2
,

ν(K) = |2η(K)− 1| = π − 3.

We can extend this example to the case when the connecting copula of A,B
is a copula D different from the product copula Π, but still A and B are
identically distributed according to a distribution function G. In this case
the connecting copula K of X1, X2 depends on D, but again it does not
depend on G (see [105] page 478).
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FIGURE 5.4. Ordered Statistic Copula K

5. The classes Lγ in the Target-Based Approach

In this Section we trace connections between our results about stochas-
tic precedence, introduced in the previous sections, and the Target-Based
Approach to decision problems under risk.

So far we introduced the Target-Based Model of utility and studied
many of its properties, especially in the multi-attribute case and in the case
of independence between targets and prospects. Here we concentrate at-
tention on the single-attribute case, where (T,X) is a pair of real-valued
random variables. Furthermore, we are interested in the case where there is
dependence between T and X .

It is clear that the objects of central interest in the TBA are, for a fixed
target T , the probabilities P(T ≤ X) and the analysis developed in the
previous sections can reveal of interest. Here we assume the existence of
regular conditional distributions and, in particular, for any prospect X we
assume that we can determine the function υ(X)

T (x) := P(T ≤ x|X = x).
Hence we can write

P(T ≤ X) =

∫
R
υ
(X)
T (x) dFX(x).

Before continuing it is useful to remind the special case when X and T
are stochastically independent. In this case we can write

P(T ≤ X) =

∫
R
υ
(X)
T (x) dFX(x) =

∫
R
FT (x) dFX(x).

In such a case, as we already remarked in Chapter 4, P(T ≤ X) can be
seen as the expected value of a utility: by considering U = FT as the utility
function, we have (see formula (4.2))

E(U(X)) =

∫
R
U(x) dFX(x) =

∫
R
FT (x) dFX(x) = P(T ≤ X).

Under the condition of independence, any bounded and right-continuous
utility function can thus be seen as the distribution function of a target T ,
and vice-versa. Such an hypothesis represented a balance point in the study
of Target-Based model illustrated in Chapter 4. In this sense, our model can
be seen as an extension of classical models for utility, although it adapts
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to the expected utility principle. TBA however becomes, in a sense, more
general than the expected utility approach by allowing for stochastic de-
pendence between targets and prospects. In fact the TBA considers more
general decision rules, if we admit the possibility of some correlation be-
tween X and T . In this case, υ(X)

T (x) does not coincide anymore with the
distribution function FT (x) of the target. We refer to [19, 28] for further
discussion in this sense.

We now briefly summarize the arguments of previous sections in the
perspective of a decision problem where, for a fixed target T , we aim to
rank two different prospects X1, X2, with marginal distributions GX1 , GX2 ,
and with connecting copulas C1, C2, corresponding to the pairs (T,X1) and
(T,X2), respectively.

In the case of independence, a prospect X2 should be obviously pre-
ferred to a prospect X1 if X1 ≼st X2. In the case of dependence, on the
contrary, this comparison is not sufficient anymore. In fact the choice of a
prospect X should be based not only on the corresponding distribution FX ,
but also on the connecting copula of the pair (T,X).

For fixed C, the quantity η(C,GT , GX) = P(T ≤ X) is equal to the
quantity η(C) for all pairs such that GT = GX = G, with G belonging
to the class G (See Proposition 5.5) while, for GT ̸= GX , the implication
T ≼st X ⇒ P(T ≤ X) ≥ γ does not necessarily hold (see Proposition
5.10 and Example 5.15).

For two different prospects X1, X2, Proposition 5.4 guarantees that,
when C1 = C2 = C, the condition GT ≼st GX1 ≼st GX2 implies

η(C,GT , GX1) = P(T ≤ X1) ≤ η(C,GT , GX2) = P(T ≤ X2).

As shown by Example 5.16, when C1 ̸= C2, we can have both the
conditions η(C1, GT , GX1) > η(C2, GT , GX2) and GT ≼st GX1 ≼st GX2

(GX1 ̸= GX2).
Concerning the quantities η(C1, GT , GX1) and η(C2, GT , GX2), Theo-

rems 5.7 and 5.8 show that, for GT ≼st GXi
(i = 1, 2),

P(T ≤ Xi) = η(Ci, GT , GXi
) ≥ η(Ci).

Finally, let us consider the case when the only available information
about C1 and C2 is that η(Ci) ≥ γi (i.e. that Ci belongs to the class Lγi).
Then a rough and conservative choice betweenX1 andX2 suggests to select
Xi with the larger value of γi, provided GX1 ≼st GX2 or that X1, X2 are
nearly identically distributed.

All these apparently paradoxical results suggest that the criteria for se-
lection of random variables based only on stochastic orderings are not suit-
able enough for decision-making problems, such as those described by the
TBA, when dependance among variables is present. We have shown, in fact,
that the usual stochastic orderings can give results in disagreement with the
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expected utility concepts expressed by TBA. Furthermore we explicitly pro-
vided examples in which the choice of a prospect which is “better” in the
stochastic sense may give worse results in the utility context.

In order to describe his preferences to the best, a DM adopting the
Target-Based model will then also need to take into account properties of
dependence of the random variables involved in his choices, trough the
study of their connecting copulas. To this purpose a deeper analysis of the
copulas of the classes Lγ is to be performed, especially for what concerns
the properties of dependence and asymmetry.



Conclusions and Future Work

In this work we showed the importance of the target-based model in
decision making and utility theory. We presented an extension of multi-
attribute target-based model, representing preferences according to the von-
Neumann Morgenstern utility theory, although built by means of non-addi-
tive measures. This model provides, in fact, an analysis of the joint behavior
of targets and prospects, describing them in terms of their joint probability
distributions, by means of properties of copulas, and by (non-additive) im-
portance weights defined in terms of capacities. On this basis, we have
pointed out that the theory of multi-attribute target-based utilities can hinge
on a formal apparatus, provided by the field of fuzzy measures, extensions
of fuzzy measures, and fuzzy, or universal, integrals.

Further improvements can be made to this model, from one side, by
deeply investigating the role of capacities in establishing the importance of
groups of prospects. On the other side, properties of risk aversion in high
dimensions have to be mastered, through the analysis of the connecting
copulas of targets and prospects. An overall interaction between copulas
and capacities is to be studied in deep, by taking into account the features
that these objects jointly assume in our model.

In this work we also presented an extension of the concept of stochastic
precedence and provided comparison with the usual concepts of stochastic
orders, in terms of properties of copulas. We provided some examples in
this direction and found link to the target-based model of utility.

Extensions of this topic can be made trough a more accurate analy-
sis of properties of copulas, especially regarding dependence and asymme-
try. Connections with the existing concept of measures of concordance and
measures of asymmetry can be improved for this purpose.
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APPENDIX A

A brief introduction to Reliability of Systems

Reliability is defined as the probability that a device will perform its in-
tended function during a specified period of time under stated conditions. In
this brief note we will consider reliability of a system for a fixed moment of
time, so that the state of the system is assumed to depend only on the state
of its components. We will distinguish between only two states: a function-
ing state and a failed one. Let’s refer to a variable ϕ to indicate the state
of the whole system, made up of n components, {1, . . . , n}. To indicate
the state of a single component, say the i−th component, we use a binary
indicator variable xi that may assume two values: xi = 1 if component i is
functioning, xi = 0 if component i is failed. The value of ϕ, in turn, can
be 0 or 1 if the system is failed or working. The function ϕ(x) is called the
structure function of the system, where x = (x1, . . . , xn) is the vector of its
components.

The most common examples of systems built in this way are the ones of
series system and parallel system. The series system has structure function
given by

ϕ(x) =
n∏

i=1

xi = min(x1, . . . , xn),

and represents a system that can only work if all components are working.
Parallel system represents the very opposite case, in which the system works
if at least one of its component is functioning. Its structure function is given
by

ϕ(x) =
n⨿

i=1

xi = 1−
n∏

i=1

(1− xi) = max(x1, . . . , xn).

These two are examples of symmetric systems, in which the state of the
system only depends on the number of working components, regardless of
what they are. They are particular cases of the k-out-of-n system presented
in (4.32), in which the system works if at least k components out of n work.
Notice that the systems introduced above are expressed by means of lattice
polynomial functions, roughly speaking by functions only made by simple
logical operators like min and max (for a better explanation and some prop-
erties about lattice polynomial functions see, for example, [47]).

We now list some definitions that will be useful later on.

DEFINITION A.1. Given a structure ϕ, its dual ϕ∗ is given by

ϕ∗(x) = 1− ϕ(1− x),
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where 1− x := (1− x1, . . . , 1− xn).

It is easy to check that the dual of a series system is a parallel one and
vice-versa, while the dual of a k-out-of-n structure is a (n−k+1)-out-of-n
structure.

DEFINITION A.2. The i−th component is irrelevant to the structure ϕ if
ϕ is constant in xi, i.e. if ϕ(1i,x) = ϕ(0i,x) for all ϕ(·i,x). Namely

ϕ(·i,x) = (x1, . . . , xi−1, ·i, xi+1, . . . , xn).

Otherwise i will be called relevant.

DEFINITION A.3. A system of components is coherent if its structure
function ϕ is increasing and each component is relevant. If ϕ is only non-
decreasing the system will be called semi-coherent.

The property of monotonicity is important for physical systems, for
which there is no opportunity that while improving the performance of a
component, the system may tend to deteriorate. Coherent systems also en-
joy the following boundary property:

n∏
i=1

xi ≤ ϕ(x) ≤
n⨿

i=1

xi.

Alternative ways to represent a coherent structure can be given by means
of its working/failing states, as follows. Let x indicate the states of the sets
of components CN = {1, . . . , n}. Then we define CN0(x) = {i|xi = 0}
and CN1(x) = {i|xi = 1}. Assume that the structure (CN, ϕ) is coherent.

DEFINITION A.4. A path vector is a vector x such that ϕ(x) = 1 and
CN1(x) is the corresponding path set. A minimal path vector is a vector
x such that ϕ(x) = 1 and, for any y < x, ϕ(y) = 0. The corresponding
minimal path set is CN1(x).

A cut vector is a vector x such that ϕ(x) = 0 and CN0(x) is the corre-
sponding cut set. A minimal cut vector is a vector x such that ϕ(x) = 0 and,
for any y > x, ϕ(y) = 1. The corresponding minimal cut set is CN0(x).

If we denote by Pj the j−th minimal path set of ϕ, we may define

ρj(x) =
∏
xi∈Pj

xi

as the j−th minimal path series structure, which takes values 1 if all com-
ponents in the minimal path set function, 0 otherwise (j = 1, . . . , p, where
p is the number of minimal path sets of ϕ). Then we can write the represen-
tation of ϕ through its path sets as

ϕ(x) =

p⨿
j=1

ρj(x) =

p⨿
j=1

∏
xi∈Pj

xi.
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A similar result can be obtained in view of the cut sets of ϕ,

ϕ(x) =
k∏

j=1

κj(x) =
k∏

j=1

∏
xi∈Kj

xi,

where Kj is the j−th minimal cut set of ϕ, j = 1, . . . , k, and κj is the j−th
minimal parallel cut structure.

We are now ready to introduce the concept of reliability of a system.

DEFINITION A.5. Assume that the states of the components of a system
ϕ are random variables X1, . . . , Xn, with

P(Xi = 1) = pi = E[Xi],

for i = 1, . . . , n. We refer to pi as the reliability of i. The reliability of the
system is similarly defined by

P(ϕ(X) = 1) = h = E[ϕ(X)].

The reliability of the examples mentioned above can be easily evaluated.
Series systems, as well as parallel and k-out-of-n systems, are symmetric,
so every component has the same reliability, say p. We have

(1) ϕ(X) = pn for series system;
(2) ϕ(X) = 1− (1− p)n for parallel systems;
(3) ϕ(X) =

∑n
i=k

(
n
i

)
pi(1− p)n−i for k-out-of-n systems.

We give a final remark about lower and upper bounds for reliability. Let
Er be the event that all the components in minimal path set Pr work. Then

P(Er) =
∏
i∈Pr

pi.

System success corresponds to the event E = ∪p
r=1Er, if the system has p

minimal path sets. Then

h = P
( p∪

r=1

Er

)
.

Let
Sk =

∑
1≤i1<...<ik≤p

P(Ei1 ∩ . . . ∩ Eik),

then, by means of the inclusion-exclusion principle, we have

h =

p∑
k=1

(−1)k−1Sk,

and
h ≤ S1, h ≥ S1 − S2, h ≤ S1 − S2 + S3,

and so on. This method provides, hence, successive upper and lower bounds
on system reliability, which converge to the exact system reliability.

For further properties of systems and a deeper study of their reliability
we refer to [10].





APPENDIX B

Some notions of Stochastic Orderings

Here we briefly introduce the main stochastic orders with a few proper-
ties useful in this paper.

DEFINITION B.1. Let X and Y be two random variables such that

P(X > z) ≤ P(Y > z)

for all z ∈ R. Then X is said to be smaller than Y in the usual stochastic
order, and it will be written X ≼st Y .

Roughly speaking, X is less likely than Y to take large values, when
“large” means for values bigger than any fixed z ∈ R. Characterization of
stochastic ordering can be given, as the following two results state.

THEOREM B.2. Two random variables X and Y satisfy X ≼st Y if,
and only if, there exist two random variables X̂ and Ŷ , defined on a same
probability space, such that

X̂ =st X, Ŷ =st Y, and P(X̂ ≤ Ŷ ) = 1.

Another way to read the previous Theorem is the following

THEOREM B.3. Two random variables X and Y satisfy X ≼st Y if,
and only if, there exist a random variable Z and two functions ψ1 and ψ2

such that ψ1(z) ≤ ψ2(z) for all z and X =st ψ1(Z) and Y =st ψ2(Z).

For proofs of these Theorems and some properties of stochastic order
we refer to [124]. Consider now the following

DEFINITION B.4. If X is a non-negative variable with an absolutely
continuous distribution function F , then the hazard rate of X at t ≥ 0 is
defined as

r(t) =
d

dt
(− log(F (t))) =

f(t)

F (t)
,

where F (t) = 1 − F (t) is the survival function and f(t) = ∂tF (t) is the
corresponding density function.

The hazard rate is a very important instrument in reliability theory, since
many properties of systems follow from its definition (we refer to [10] for
further information). Moreover, a new type of ordering can be built upon it.

DEFINITION B.5. Let X and Y be two non-negative random variables
with hazard rates, respectively, r(t) and q(t), t ≥ 0. ThenX is smaller than
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Y in the hazard rate order (denoted by X ≼hr Y ) if, and only if, r(t) ≥ q(t)
for all t ≥ 0.

An equivalent condition is the following: if F andG are the distribution
functions ofX and Y respectively, thenX ≼hr Y if, and only if, F (t)/G(t)
is a decreasing function of t. The link between hazard rate and stochastic
order is determined by the following

THEOREM B.6. If X and Y are two random variables such that X ≼hr

Y , then X ≼st Y .

Consider now the property of monotone likelihood ratio, a property re-
garding the ratio of two probability density functions. As usual for mono-
tonic relationships, the likelihood ratio’s monotonicity comes in handy in
statistics, particularly when using maximum-likelihood estimation. In our
context, it gives rise to a corresponding ordering, that can be stated as fol-
lows.

DEFINITION B.7. Two random variables X and Y , with density func-
tions f and g respectively, have decreasing likelihood ratio if f(t)/g(t)
decreases over the union of the supports of X and Y . In this case we say
that X is smaller than Y in the likelihood ratio order, written X ≼lr Y .

The connection between likelihood ratio and the other two orderings is
given by the following result.

THEOREM B.8. If X and Y are two random variables such that X ≼lr

Y , then X ≼hr Y .

It is then clear that this ordering is stronger than the other two orderings
presented here, in fact we have

X ≼lr Y ⇒ X ≼hr Y ⇒ X ≼st Y.

Many other orderings are present in literature, for knowledge we refer again
to [10].
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