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Introduction

Irreducible symplectic varieties are a class of Kähler manifolds introduced by A.
Beauville in [Bea83b]. They arise naturally, together with Calabi-Yau and abelian
varieties, in the classification of Kähler manifolds with vanishing first Chern class.
Their study has been carried on by many authors, notably Beauville himself, C.
Voisin, F. Bogomolov, D. Huybrechts, A. Fujiki, K. O’Grady, S. Mukai, Y. Nami-
kawa, E. Markman and many others. In many respects (period map, structure of
the ample cone, behaviour of linear systems, Chow groups. . . ) the theory mimics
that of the K3 surfaces, which are exactly the irreducible symplectic varieties of
dimension 2.

Often this parallel is only conjectural. One outstanding difficulty in testing these
conjectures is that few examples of irreducible symplectic varieties are currently
known. This true in the sense of deformation theory: except in dimension 6 and
10 there are only two distinct known examples, up to deformation. Of course
deformation equivalent varieties can have quite different geometric properties, so
this does not render the theory poor. But it is also true in the sense of projective
families.

In the surface case, we have a complete description of the families of polarized
K3 when the polarization has low degree. Namely (in the generic case)

• a degree 2 K3 is a double covering of P2 ramified over a smooth sextic curve;

• a degree 4 K3 is just a smooth quartic in P3;

• a degree 6 K3 is the intersection of a quadric and a cubic in P4;

• a degree 8 K3 is the intersection of three quadrics in P5;

and the list goes on (see [Muk88]). This is partly due to the good understanding
that we have of linear systems on K3 surfaces ([SD74]).

In contrast the known families of polarized irreducible symplectic varieties of
higher dimension are rarely complete, even locally. Actually only few examples are
known, all in dimension 4. The first are the Fano varieties of smooth cubic fourfolds,
introduced by Beauville and Donagi in [BD85]. A closely related example has been
given by Iliev and Ranestad in [IR01]; the remark that their construction yields a
family actually distinct from the previous one is due to Markman. The third is the
example studied in the present thesis, namely the double coverings of EPW sextics.
Finally a new construction by Debarre and Voisin has appeared in [DV09].

EPW sextics were introduced by Eisenbud, Popescu and Walter, as a side ex-
ample, in [EPW00]. O’Grady has shown in [O’G08a] that, in the generic case, they
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admit a smooth double covering which is an irreducible symplectic variety, and that
the family thus obtained is complete.

The aim of this thesis has been to test a conjecture of Beauville and Voisin about
the Chow groups of irreducible symplectic varieties, on the case of the double EPW
family. The conjecture is the following:

Conjecture. Let X be an irreducible symplectic variety. Any polynomial relation

P (D1, . . . ,Dk, ci(X)) = 0

in the fundamental classes of divisors and in the Chern classes of X which holds in
H∗(X) already holds in CH∗(X).

For a discussion of the meaning of this, and its motivation, we refer to Section
1.5.

We were able to test the truth of the conjecture for a very general double EPW
sextic; this is the content of Theorem 4.9. In doing so we have proved a number
of auxiliary results concerning the local structure of EPW sextics and the existence
of special subvarieties. In particular it was crucial for the proof of the theorem the
construction of an Enriques surface inside the generic EPW sextic.

We explain this in more detail. Claire Voisin was able to prove her conjecture
in the case where X is the Fano variety of a cubic fourfold in [Voi08]. We partly
follow her proof; the difficulty is that the geometry of cubics in P5 is quite concrete
and thoroughly studied, while that of EPW sextics is still rather mysterious. In
particular the point of departure for her analysis is a standard construction of a
Lagrangian surface in X which is singular enough to be rational. This is part
of a family of Lagrangian surfaces on X, which are simply the Fano varieties of
hyperplane sections of the cubic.

In our case this construction is the most delicate point: it turns out that the
right analog for this surface is Enriques, but exhibiting such a surface is complicated.
This is mostly because the Lagrangian surfaces which are analog of those on the
Fano variety are not sections of a global Lagrangian vector bundle. We have to turn
to a degeneration argument instead.

We now introduce the content of the various chapters in more detail.

Chapter 1 introduces irreducible symplectic varieties. We start from the Iitaka
fibration as a motivation to study varieties of Kodaira dimension 0, and then we
specialize to the case where the canonical class is trivial, giving the classification of
Beauville in Section 1.2.

Next we move to the real content of the Chapter, which is the study of irreducible
symplectic manifolds: we introduce their main properties and the fundamental ex-
amples, and we end with a discussion of the conjectures of Beauville and Voisin and
some other related conjectures. This chapter is introductory and nothing here is
new.

In Chapter 2 we introduce EPW sextics and their double coverings, following
O’Grady. Section 2.6 is rather long: we analyze the local structure of EPW sextics,
especially in degenerate cases, and of some related subvarieties. Most of the content
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of this chapter is due to O’Grady; some local descriptions are new, following ideas
in [O’G]. The local description we give allows us to explicitly desingularize a surface
which sits inside these sextics; this should allow us to prove that it is birational to
an Enriques surface in the case we need, although we don’t follow this path.

Chapter 3 is about the geometry of quartic surfaces S ⊂ P3 and their surface of
bitangents, with a special regard to the case where S acquires finitely many nodes.
The motivation is the following. One can exhibit a degeneration of double EPW
sextic to the Hilbert scheme S[2] of 2 points on a quartic. Under this degeneration,
the surface we are interested in is sent to the surface Bit(S) of bitangent lines to S.
These matters are explained in Sections 3.1 and 3.2.

The rest of the chapter studies the geometry of these objects, which are quite
more concrete than EPW sextics. First we recall some general results due to Welters
([Wel81]), mostly in the smooth case; these should be the results needed to prove
that the surface we are interested in is Enriques (in particular the computations of
the canonical class and the irregularity).

Next we study the singular case: in Section 3.6 we give examples of a quartic S
with 11 nodes such that Bit(S) is rational, while in Section 3.7 we give an example
of a quartic S with 10 nodes such that Bit(S) is birational to an Enriques surface.
The rational case would be even better for our aims, but unfortunately it holds on
a too small locus, so we use the Enriques case instead.

These sections are preceded by a discussion of the relationship between quartic
surfaces and cubic threefold, using the classical case of quartic curves and cubic
surfaces as a motivation. I believe that the construction in Section 3.5 is new, at
least this explicit; although it is sometimes hinted, I could not find any reference in
the literature.

Finally Chapter 4 puts it all together to give the proof of the main theorem.
We begin with some cohomological computations on a double EPW sextics, mostly
following [O’G08b]. The geometric argument is given in Sections 4.2 and 4.3.

I have tried to give proper credit for the existing results and conjectures which
appear in this thesis; any error or omission in this respect should be attributed to
my ignorance.
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Notation

Here we briefly recall the notation we use. Everything we do is over the field C of
complex numbers.

Linear algebra

Given vectors v1, . . . , vn in a vector space V ,

〈v1, . . . , vn〉

denotes their span. The class of a vector v in the associated projective space P(V )
is instead [v]. For us the projective space is the Grassmannian of lines in V , so we
don’t follow Grothendieck’s convention.

The Grassmannian Gr(k, V ) denotes the set of k-dimensional vector subspaces
of V ; when we write Gr(k, n) we mean Gr(k,Cn). When we want to see this as a set
of projective subspaces of P(V ) we write Gr(k− 1,P(V )) (notice the shift of index).

Quadratic forms

If q is a quadratic form on V , the symmetric bilinear form from which it is obtained
is written as q̃. Usually the class of q up to multiples is identified with the quadric
defined in P(V ), and denoted by Q. When we could not avoid it we denote by q̃ the
linear map

q̃ : V � V ∨

which corresponds to the bilinear form. The kernel of q is by definition V ⊥, which
is just ker q̃. We have tried to avoid to write ker q. When more than one bilinear
form is involved, the orthogonal with respect to q is denoted V ⊥q.

Cohomology and Chow rings

Given a subvariety Y ⊂ X, the fundamental class of Y in cohomology is denoted [Y ]
too; this should not cause any trouble. When we write Hn(X) without specifying
any coefficient ring, it means that the ring is irrelevant in that context.

The Chow groups of X are

CHn(X) = {cycles on X of codimension k}/rational equivalence,

in particular they are comparable with integral cohomology. The Chow groups
with coefficients in Q are denoted CHn(X)Q = CHn(X)⊗Q. When we perform an
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intersection product between classes of subvarieties Y1 and Y2 of X and we think
that the ambient space is not clear from the context we write

(Y1 · Y2)X

EPW sextics

Next we come to notation specific to EPW sextics. Given a symplectic vector
space U of dimension 2n, the subvariety of the Grassmannian Gr(n,U) consisting
of Lagrangian subspaces is denoted by LG(U). Usually V refers to a fixed vector
space of dimension 6. Inside LG(

∧3 V ) we have the open set LG(
∧3 V )0 consisting

of those Lagrangian subspaces A such that

• A does not contain any decomposable form and

• the locus YA[3] is empty.

This is the locus where XA is smooth; it is defined in Section 2.3. At the other end
we will need to consider the closure of the set of Lagrangian subspaces containing
10 independent decomposable forms; this is denoted Σ10.

The subbundle F of the constant vector bundle
∧3 V over P(V ) is defined in

Section 2.1. It has fiber
F[v] = v ∧

∧2 V.

Given a A ∈ LG(
∧3 V ) we let

λA : F � OP(V ) ⊗ (
∧3 V/A)

be the inclusion of F in the trivial bundle
∧3 V followed by projection. The k-th

degeneracy locus of λA is

YA[k] =
{
[v] ∈ P(V ) | dim

(
A ∩ F[v]

)
≥ k

}

and YA = YA[1] is called an EPW sextic, see Section 2.1.
Under mild hypothesis it admits a double covering, denoted XA; this is con-

structed in Section 2.2. This double covering is ramified over YA[2], hence it contains
an isomorphic copy of YA[2]; to avoid confusion this is usually denoted ZA.

When A contains a decomposable form, say A ⊃
∧3W for some W ⊂ V of

dimension 3, the plane P(W ) is contained in YA. The intersection

P(W ) ∩ YA[2]

is a sextic curve in P(W ) and we denote it by CA,W , see Section 2.5.
Finally let U ⊂ A be a subspace of dimension 9. Given any other Lagrangian

subspace B with
A ∩B = U,

the sextics YA and YB are tangent along a divisor D = DU of YA, which only
depends on U . We define it in Subsection 4.4.2. It comes equipped with a rational
map

rD : D 99K ℓD,

where ℓD is the pencil of Lagrangian subspaces containing U .
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Chapter 1

Holomorphic symplectic

manifolds

1.1 A glimpse of the classification of algebraic varieties

The most ambitious task in algebraic geometry would be to classify all algebraic
varieties up to isomorphism. Experience with successful cases of such classifications
shows that this breaks up in several steps. If one wants to classify all varieties
of dimension n, the first task is to identify a set of discrete invariants, the main
example being the genus of a smooth curve. In higher dimension we have more
invariants, like the plurigenera, and a first rough invariant which actually gives an
idea of the geometric properties of a variety is its Kodaira dimension.

Having fixed a set of such discrete invariants, one would want to create a rea-
sonable bĳective correspondence between the set of isomorphism classes of varieties
with given invariants and some object with more structure, usually another alge-
braic variety. The meaning of reasonable can be adequately specified, giving rise to
the concept of coarse and fine moduli spaces.

Usually before being able to create a moduli space one has to relax the con-
dition under which two varieties should be identified, and work with birational
isomorphism instead. This difference cannot be seen at the level of curves, where
birational maps are actually regular, but is a typical feature already of surface clas-
sification, where the concept of minimal surface (a preferred representative of its
birational class, at least when the Kodaira dimension is non-negative) arises. So a
further step would be to describe what varieties do appear inside a given birational
class. This is in a sense the object of minimal model theory.

A different approach to the problem of classification, due to Iitaka, is the fol-
lowing. Given a variety X we try to fit it into a fibration

π : X � B

where the base B and the typical fiber F have a particularly simple structure. Of
course then we can expect to recover information on X only if we have a good
understanding of the properties of fibrations, given the base and the general fiber;
a first instance of this question is the classification of elliptic surfaces by Kodaira in
[Kod63].

1



2 1. Holomorphic symplectic manifolds

The construction that we have in mind in this case is the Kodaira-Iitaka fi-
bration. To give a precise statement let us first recall the definition of Kodaira
dimension, which we have already mentioned.

Definition 1.1. Let X be a smooth algebraic variety and denote by KX or simply
K its canonical divisor. Assume that for some n > 0 the line bundle OX(nK) has
some nonzero section; then we have a rational map

ϕn : X 99K P(H0(X,O(nK))∨).

The Kodaira dimension of X, denoted by κ(X), is the maximum of the dimensions
of the images ιn(X) for n ∈ N>0. If H0(X,O(nK)) = 0 for all n > 0, we agree to
put κ(X) = −∞.

It is easily seen that the Kodaira dimension is a birational invariant for smooth
varieties, so we can extend the notion to the singular case as follows. Given a sin-
gular variety X we choose some smooth desingularization Y and define the Kodaira
dimension of X by κ(X) = κ(Y ). Our previous remark implies that this does not
depend on the choice of the desingularization Y .

By definition the Kodaira dimension is −∞ or an integer between 0 and dim(X).
A priori we should study all this cases separately. The Iitaka fibration allows us,
for some purposes, to restrict to the extreme cases. The next theorem allows us to
put together all the maps ϕn and build some kind of limit map. The precise result
is the following (see [Laz04, sec. 2.1.C]):

Theorem 1.1 (Iitaka). Let X be a smooth projective variety of positive Kodaira
dimension. Then there exists a fibration

ϕ : X ′ � B

such that X and X ′ are birational and for every sufficiently big n such that

h0(X,nKX) 6= 0

the pluricanonical map ϕn is identified with ϕ up to birational equivalence. This
means that, if Yn is the image of ϕn, we have a commutative diagram

−−�
ϕ

−−−� ��� ϕn����X ′ X

B Yn,

where the horizontal maps are birational.
Moreover one has

κ(X) = κ(B) = dim(B)

and the very general fiber F of ϕ has κ(F ) = 0.

The theorem tells us that, in a sense, the fundamental cases to study are those
of varieties with κ(X) = −∞, 0 or dim(X).

The case where κ(X) = −∞ is studied in Mori theory: there varieties are
conjectured to be Mori spaces (see [KM98] for this topic). Of particular interest



1.2 Varieties with trivial first Chern class 3

inside this class are the varieties X such that −KX is ample, the so-called Fano
varieties; a huge literature is devote to their study.

At the other extreme there is the case of varieties of general type: those having
κ(X) = dim(X). Although they have received much attention, this class has proved
to be too wide to be studied systematically, even in the case of surfaces, where only
partial results on the classification are available.

So we shall concentrate on the case where κ(X) = 0, and actually a sub-case of
it. A typical situation when one finds κ(X) = 0 is when the canonical KX is trivial,
or more generally it is a torsion class. If KX is torsion, there exists a unramified
finite covering π : Y � X such that KY is trivial, so, up to finite coverings, we can
deal with this simpler case.

In the next section we will give a description, due to Beauville, of these varieties.

1.2 Varieties with trivial first Chern class

So far we should have given some motivation to study varieties with trivial canonical
class, and why they occupy a relevant place between all varieties. But where do
we go from here? The fundamental result here is a classification, due to Beauville
([Bea83b]), of the bricks that are used to build all such varieties. The technique
here is highly non-algebraic, so we’d better remark again that we’re working over C.
Actually the classification is achieved through the study of holonomy, and the main
ingredient is the famous solution due to Yau of the Calabi conjecture in [Yau78]. I
could not improve upon the presentation in [Bea83b], hence the following is nothing
more than a short digest of it.

The idea is roughly to translate a classification of holonomy groups due to Berger
in algebro-geometric terms. Recall that given a Riemannian manifold M and a point
p ∈M , one has the holonomy group

Hp < O(TpX, g);

if M is connected of (real) dimension n, the conjugacy class of Hp in O(n) is
independent of p. One can view Hp as an abstract Lie group with a given n-
dimensional representation.

One can assume that this is representation is irreducible, thanks to the

Theorem (De Rham). Let M be a complete, simply connected Riemannian mani-
fold. Then M splits uniquely as a product of manifolds

M = M0 ×M1 × · · · ×Mk,

where M0 is the Euclidean space and each factor Mi for i ≥ 1 has irreducible
holonomy representation.

Remark. It follows immediately that M has the product representation of the Mi.
So, the reducibility of the holonomy representation is reflected in the reducibility of
M itself.

The classification of holonomy subgroups with irreducible representation was
achieved by Berger:
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Theorem (Berger). Let M be Riemannian manifold, and assume that M is not
locally a symmetric space. Then the identity component of the holonomy subgroup
H is one of the following list:

SO(n) U(m), n = 2m

SU(m), n = 2m SP (r), n = 4r

Sp(1)× SP (r), n = 4r Spin(9), n = 16

Spin(7), n = 8 G2, n = 7.

The fundamental remark now is that if H leaves some tensor invariant, one can
obtain a tensor field on M by parallel transport, and this will not depend on the
choice of a path. For instance if H = U(m), H leaves invariant a complex structure
J on TpM . By extending this to M one obtains a quasi-complex structure which is
invariant for parallel transport. It is well known that the structure is then integrable,
so M becomes a complex manifold. Moreover the compatibility condition between
the complex structure and the metric says that M has a Kähler metric.

Since we work in the realm of algebraic geometry we are interested in the cases
where this happens, so that we obtain a Kähler manifold. The only groups in the
Berger list which are subgroups of U(m) are SU(m) and Sp(r).

In the first case, the elements of SU(m) also preserve a complex volume form,
hence we obtain on M a parallel volume form. The compatibility condition be-
tween the metric and the complex structure then implies that this form is actually
holomorphic.

In the second case the elements of Sp(r) also preserve a complex 2-form in p.
Again, by extending it we obtain a parallel 2-form, which is then holomorphic.

The last ingredient in the story is the following result of Bochner, together with
Yau’s theorem.

Theorem (Bochner). Let M be a compact Kähler manifold, and assume that M
has zero Ricci curvature. Then every tensor field on M which is holomorphic is
parallel.

Now if M is Kähler and has c1(M) = 0, by Yau’s theorem there exists on M a
Kähler metric with zero Ricci curvature. Hence one can apply the above result of
Bochner and classify the holomorphic section of Ωp

X for every p exclusively in terms
of the holonomy group.

With some work one then translates the Berger list in a classification of the
possible Kähler manifold with c1(M) = 0. Before stating the result, we give a
couple of definitions.

Definition 1.2. Let X be a compact Kähler variety of complex dimension n. We
say that X is a Calabi-Yau variety if KX = Ωn

X is trivial and

H0(X,Ωp) = 0 for p < n.

Definition 1.3. Let X be a compact Kähler variety of complex dimension 2n. We
say that X is an irreducible symplectic variety if π1(X) = 0 and

H0(X,Ω2
X) = Cσ,

where σ is a holomorphic symplectic 2-form.
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Remark. According to the above list, the Calabi-Yau case corresponds to the
holonomy group SU(m), while the irreducible symplectic case corresponds to the
holonomy groups Sp(r).

Remark. It is not difficult to see that an irreducible symplectic variety has

H0(X,Ωp
X) =

{
0 if p is odd

Cσq if p = 2q is even.

Remark. When the dimension of X is 2, the definitions of Calabi-Yau variety and
irreducible symplectic variety agree, and characterize he so-called K3 surfaces.

We can finally enounce the main result of this section.

Theorem (Beauville). Let X be a compact Kähler variety such that c1(X) = 0.
Then X admits a finite unramified covering X ′ � X such that X ′ splits (uniquely)
as a product

X ′ = X1 × · · · ×Xn,

where each factor Xi is either

i) a complex torus, or

ii) a Calabi-Yau variety, or

iii) an irreducible symplectic variety.

Of course if one wants uniqueness, all the factor which are complex tori have to
be merged into a single factor, since a product of complex tori is again a torus.

The story now splits into three directions with rather different flavours. While
the study of complex tori and Abelian varieties is quite old, the subject of Calabi-Yau
varieties is younger, and the third type of varieties, the irreducible symplectic, only
began to be studied thoroughly after the appearance of this classification theorem.
In the rest of this chapter we shall be concerned with irreducible symplectic varieties,
and in later chapters we will specialize to a rather peculiar family of examples.

1.3 Irreducible symplectic manifolds

Recall that we have defined in the previous section an irreducible symplectic variety
to be a compact complex, simply connected, manifold X endowed with a symplectic
holomorphic form σ which spans H0(Ω2

X). Here we want to recall some general facts
about this class of varieties, and underline their similitude with the K3 surfaces.

The main tool we will use in studying irreducible symplectic manifolds is the
local period map. Let X be any irreducible symplectic manifolds, and let

π : X � U

be a semiuniversal deformation of X; this always exist by a general result of Ku-
ranishi, but the base U of the deformation is a priori not smooth. It is a result
of Bogomolov ([Bog79]) that for an irreducible symplectic manifold we can always
take U to be smooth.
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Remark. It is not difficult to prove ([Bea83b, Proposition 9]) that the fibers Xt

of π are still irreducible symplectic varieties, in particular on each Xt we have a
holomorphic 2-form σt, unique up to multiples.

By general deformation theory U has then dimension

dimU = h1(X,TX) = h1(X,Ω1
X),

since the symplectic form induces an isomorphism TX ∼= Ω1
X . Since by hypothesis

h2,0(X) = h0(X,Ω2
X ) = 1,

we find dimU = b2(X)− 2.
The local period map is then constructed as follows. First, we can shrink U and

assume that it is contractible; it follows that the local coefficient system

R2π∗(Z)

is trivial. This allows us to identify the cohomology of X with that of a nearby fiber
Xt. To be precise about notation, it gives isomorphisms

ϕt : H
2(X,Z) � H2(Xt,Z).

For each t ∈ U we have the distinguished line H2,0(Xt) ⊂ H
2(Xt,C), so we define

the period map

−−−�
−−−�PX : U P(H2(X,C)).

t ϕ−1
t (H2,0(Xt))

General results of Griffiths ([Voi02, Sec. 10.2.3]) allow us to compute the differential
of PX at 0, in particular we have the following result (for more details we refer to
[O’G05a]).

Theorem. The differential d(PX)0 is injective. In particular the period map is a
local embedding.

We now want to identify the image of the local period map. Since U has dimen-
sion b2(X)− 2 and P(H2(X,C)) has dimension b2(X)− 1, this image will locally be
a hypersurface. We want to identify what this is; in doing so we will introduce the
fundamental Beauville-Bogomolov form.

We recall that the Theorem above is well-known in the case of K3 surfaces, and
the image of PX in that case is the quadric defined by the equation

(ω, ω) = 0,

where (·, ·) is the intersection form on the surface X.

Theorem (Beauville-Fujiki). Let X be an irreducible symplectic variety of dimen-
sion 2n. There exist unique:

• an integral indivisible quadratic form (·, ·) on H2(x,Z) and
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• a positive number cX ∈ Q

such that for every class α ∈ H2(X,Z) we have

α2n = cX(α,α)n.

In other words the intersection form on H2(X) is, up to a constant, the n-th
power of a quadratic form.

Definition 1.4. The form (·, ·) is called the Beauville-Bogomolov form of X. When
we want to specify X from the context we will write (·, ·)X . The number cX is called
the Fujiki constant of X.

The Beauville-Bogomolov form of X allows us to identify the image of the period
map. Indeed we have

Theorem (Local Torelli). Let X be as above. The period map PX is locally an
isomorphism of U on the quadric

Q = {ω ∈ H2(X,C) | (ω, ω)X = 0}.

More precisely the image of PX is contained in the analytic open set of Q defined
by (ω, ω)X > 0.

The characterization of the image of PX won’t be of much concern to us, but the
Beauville-Bogomolov form is a fundamental tool. Still the two theorems are easier
to prove together, as in [O’G05a, Sec. 3.2]. The idea is that the quadratic form is
just a local equation of the image of PX , which we already know is a hypersurface.

Remark. Since the work of Kodaira it is known that allK3 surfaces are deformation
of each other. In higher dimensions we have various families. Moreover there exist
examples of birational irreducible symplectic varieties which are not isomorphic, as
the next example shows.

We describe a so-called Mukai flop. This is the first instance of a birational map
between irreducible symplectic varieties which is not an isomorphism.

Let X be an irreducible symplectic variety of dimension 2n (n ≥ 2) and assume
that we have a subvariety P ⊂ X isomorphic to Pn. Then we claim that

NP/X ∼= Ω1
P . (1.1)

To see this, start from the exact sequence

−−−� −−−� −−−� −−−�0 TP TX
P

NP/X 0

and dualize it to obtain

−−−� −−−� −−−� −−−�0 N∨P/X Ω1
X P

Ω1
P 0 .

The symplectic form defines an isomorphism

TX
∼=−� Ω1

X ;
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by composition we obtain a morphism

−−−−−−−−−−−−−−�−−−�

−−
−� ∼=

−−−�TP TX
P

Ω1
X P

Ω1
P .

This has to be identically zero, because Pn does not have any nontrivial 1-form. So
the morphism

TP � Ω1
X P

lifts to N∨P/X ; since it is injective and the two vector bundles have the same rank n,

it is an isomorphism. Finally its dual gives rise to the desired isomorphism (1.1).
More precisely it fits into an isomorphism of short exact sequences

−−−−� −−
−
−� ∼=−−−−� −−
−� ∼= −−−� −−
−� ∼= −−−�

−−−� −−−� −−−−� −−−−�0 TP TX
P

NP/X 0

0 N∨P/X Ω1
X P

Ω1
P 0.

Now let X̃ be the blowup of X along P , with exceptional divisor E. The
projection E � P is the projective fiber bundle PNP/X , but thanks to (1.1) this is
identified with the projective fiber bundle

PΩ1
P � P.

In particular the fiber bundle structure is independent of X and the embedding
P �֒ X. We can recognize it as the fiber bundle structure of the incidence divisor

−−
−
−�H=

{
(x, ℓ) | x ∈ ℓ

}
⊂ P × P∨.

P

In particular E ∼= H has an obvious fiber bundle structure over P∨ too.

Thanks to a criterion of Nakano (see [Nak70]) we can contract E the other
way round to obtain a smooth complex variety X̂. By construction X and X̂ are
isomorphic outside the image of E, in particular they are birational. The subvariety
P ⊂ X has been replaced by P∨.

If X̂ is again Kähler, it is itself an irreducible symplectic variety. Indeed the
birational isomorphism with X shows that X̂ is simply connected, and one obtains
an isomorphism

H0(X,Ω2
X ) ∼= H0(X̂,Ω2

X̂
).

Indeed the two varieties are isomorphic outside a set of codimension n ≥ 2, and a
holomorphic 2-form on the complementary extends over this set by Hartog’s theo-
rem.
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There exist many cases where such a projective space can be found inside an
irreducible symplectic variety, and one can also exhibit examples where both X and
X̂ are algebraic.

In view of the preceding construction, the following result from Huybrechts
([Huy03]) comes unexpected. For instance for Calabi-Yau varieties the analog state-
ment is false.

Theorem (Huybrechts). Let X and Y be irreducible symplectic manifold, and as-
sume that they are birational. Then they are deformation equivalent, that is, there
exists a family over a smooth connected base such that X and Y appear as fibers of
the family. In particular X and Y are diffeomorphic.

1.4 Hilbert schemes of points

In this section we introduce the main example of higher-dimensional holomorphic
symplectic varieties. The idea is simple: we just take a symmetric product of a given
K3 surface S. This turns out to be the wrong candidate, since it is singular, but
a suitable desingularization will do the trick. Indeed a simple computation proves
the following

Theorem. Let X be a smooth variety and let Y = X(n) be the n-th symmetric
product of X, for some n ≥ 2. Then Y is smooth if and only if dimX = 1.

In the case where X is a surface, we are lucky enough to find a standard res-
olution of the singularities of X(n). Indeed we can consider the Hilbert scheme of
n points of X. This is built as follows: let IZ ⊂ OX be the ideal sheaf of a finite
subscheme Z ⊂ X, and let n be its length. If the support of Z is

SuppZ = {x1, . . . , xk}

we just define the length of Z to be

l(Z) =
k∑

i=1

l (OX,xi/IZ,xi) ,

where on the right hand side l denotes the length as a OX,xi-module.

Then the Hilbert polynomial of the quotient OZ of OX is just n, so there is
a Quot scheme which parametrizes such quotients (for the construction of Hilbert
and Quot schemes see [Ser06]).

Definition 1.5. The Quot schemes of such quotients is denoted by X [n]; we will
refer to it as the Hilbert schemes of n points on X

In case X is not algebraic we can replace the above construction with the so-
called Douady space of n points on X (see [CP94]).

We have the following result (see [Fog73]):

Theorem (Fogarty). If X is a smooth surface, then X [n] is smooth for all n.
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Remark. Of course X [n] is always birational to X(n): they are isomorphic on the
open set which parametrizes distinct points. They are different in the way they treat
non-reduced schemes. On X [n] we have a point for each scheme Z, while on X(n)

we are only able to parametrize the support of Z, together with the multiplicity at
each point. In particular we have a natural forgetful map (the cycle map)

−−−−−�
−−−�c : X [n] X(n).

Z
k∑

i=1

l(OZ,xi)xi

The simplest example where they differ is when Z is not reduced of length 2.
Then Z is equivalent to the datum of a point and a tangent direction at that point,
while c(Z) is just a point counted with multiplicity 2.

We do not prove Fogarty’s result here. We just remark that smoothness of S[n]

is clear away from the diagonal, so we only need to check smoothness locally around
a point in the diagonal. So it is not restrictive to assume that S = C2, and then
one can rely on an explicit description of (C2)[n], as in [Nak99, Sec. 1.3].

After this preliminaries we can introduce Beauville’s examples. Let S be a K3
surface, and let ω be its symplectic form. On the product Sn we consider the 2-form

σ =
n∑

i=1

π∗i (ω),

where
πi : S

n � S

is the projection on the i-th factor. Then σ is invariant under the action of the
symmetric group Sn, hence it descends to a 2-form on S(n), at least on the open
set S(n) \∆ where S(n) is smooth. Here we have denoted

∆ = {(x1, . . . , xn) | xi = xj for at least one choice of i 6= j}

the big diagonal. We can pullback this form via the cycle map c to obtain a holo-
morphic 2-form σ on the open set of reduced schemes on S[n].

We remark that the set of non-reduced subschemes is a divisor on S[n], hence we
cannot just appeal to Hartog’s theorem to extend σ on the whole Hilbert scheme
S[n]. Nevertheless we have the following

Theorem (Beauville, [Bea83b]). The form σ extends to a holomorphic 2-form on
the whole S[n], and the form thus obtained is symplectic. Moreover this gives S[n]

the structure of an irreducible symplectic variety.

Remark. The construction of Beauville works fine even if one starts with an abelian
surface T . The only difference is that T [n], endowed with the symplectic form defined
above, is not irreducible.

In order to obtain an irreducible symplectic variety, Beauville considers the
kernel Kn(T ) of the summation map

T [n] � T (n)

∑
−−� T.
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In the same paper [Bea83b] Beauville shows that Kn(T ) is indeed an irreducible
symplectic variety, called a generalized Kummer variety.

We will not be concerned with generalized Kummer varieties in this work.

To get some feeling about this varieties, we can start by proving the following
very simple proposition, which gives an alternative picture of S[2].

Proposition 1.2. Let S be a smooth surface (or more generally a smooth variety)
and let ∆ ⊂ S(2) be the diagonal. Then S[2] is the blowup of S(2) along ∆.

Proof. We just have to identify the map

c : S[2] � S(2)

with the blowup map. Since S(2) is singular, it will be easier to do things the other
way round: first we blow up the diagonal of S2, then we quotient by the action of
S2.

Let

ǫ : X � S2

be the blowup of the diagonal ∆ ⊂ S2. Over a point (x, x) ∈ ∆ the fiber of ǫ is

ǫ−1(x, x) = P(N∆/S[2]).

Moreover over ∆ ∼= S we have the isomorphism of vector bundles

TS ∼= N∆/S2,

hence we can identify the fiber

ǫ−1(x, x) ∼= P(TxS) = {(x, ℓ) | ℓ is a tangent direction at x}.

The involution of S2 gives rise to an involution of X which fixes pointwise the
exceptional divisor. It is easy to identify the quotient of X by this involution with
S[2]. Hence we obtain a commutative diagram

−−−−�−−�ǫ −−� c
−−−�X S[2]

S2 S(2).

It follows easily that c is the blowup map too.

We end this section with a study of the cohomology of the symplectic variety
S[n]. We begin by building some natural classes in H2(S[n],Z). The first one is the
fundamental class of the diagonal.

Let ∆ ⊂ S[n] be the big diagonal. We have already remarked that this is a
divisor on S[n], hence we have a class

[∆] ∈ H2(S[n],Z)
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Using the action of the alternating group on Sn, one can exhibit a double cover of
S[n] ramified exactly over ∆. A little bit of care is needed to resolve the singularities
of the obvious quotient.

The existence of such a double cover implies that [∆] is divisible by 2 inside
H2(S[n],Z). So we let

δ ∈ H2(S[n],Z)

be a class such that 2δ = [∆].
Other cohomology classes can be obtained from those of S. Indeed let α ∈

H2(S), then the class

µ(α) =
n∑

i=1

π∗(α)

is a class on Sn invariant under the action of Sn. This descends to a cohomology
class on S(n) (this requires a little care), and we let

µ̃(α) ∈ H2(S[n])

be its pullback. This construction yields a homomorphism

µ̃ : H2(S,Z) � H2(S[n],Z).

This two examples are enough, as is shown by the following

Theorem.

i) The homomorphism µ̃ is injective, and we have the isomorphism

H2(S[n],Z) ∼= H2(S,Z)⊕ Zδ, (1.2)

where the first factor is embedded in H2(S[n],Z) via µ̃.

ii) If δ is given type (1, 1), the decomposition (1.2) is actually an isomorphism of
Hodge structures.

iii) Moreover if (·, ·) denotes the Beauville-Bogomolov form, we have

(δ, δ) = −2(n− 1),

and the decomposition (1.2) is an isomorphism of lattices, where the two factors
on the right are considered orthogonal.

The above theorem gives a complete description of H2(S[n],Z) as a polarized
Hodge structure, where the lattice structure is given by the Beauville-Bogomolov
form. In many occasions it is useful to know the Fujiki constant of S[n], and this is
given by the following:

Theorem. The Fujiki constant of S[n] is (2n)!
n!2n .

The above results are probably due to Beauville, anyway they are now common
folklore.

We can use the above description to compute the Euler characteristic of S[2].
There are more general results by Göttsche describing the Betti numbers of S[n] for
all n (see [Göt90]) but the following will be enough for our needs.
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Proposition 1.3. The Euler characteristic of S[2] is 324.

Sketch of proof. Let bi denote the i-th Betti number of S[2]. Of course b0 = 1, and
since S[2] is simply connected we have b1 = 0. We have a complete description of
H2(S[2],Z), in particular we find

b2 = 1 + b2(S) = 23.

Moreover it is known that b3 = 0 and that the intersection product

Sym2 H2(S[2],Z) � H4(S[2],Z)

is actually an isomorphism. This implies that

b4 =
b2 · (b2 + 1)

2
= 276.

Finally Poincaré duality implies that for the other Betti numbers we have

b5 = b7 = 0, b6 = 23, b8 = 1,

so the thesis follows.

1.5 Conjectures on symplectic varieties

In this section we briefly recall some conjectures about holomorphic symplectic
varieties which were the motivation for this work. By no means this is a complete
survey about open problems on irreducible symplectic varieties; indeed we just
mention the conjectures related to the present thesis.

Actually we start one step before, from the cycle map

c : CH∗(X) � H∗(X,Z)

for a smooth variety X over C. Although Chow groups were introduces to mimic the
topological construction of cohomology, very little is known about this map in gen-
eral. Of course it is a homomorphism of rings, since cup products and intersection
products agree.

The problem is to characterize the image and the kernel of c. We can extend c
to a homomorphism

cQ : CH∗(X)Q � H∗(X,Q);

then we have the well-known

Conjecture 1 (Hodge). Assume that X is projective. The image of cQ is generated
by the classes in H∗(X,Q) of type (p, p).

We won’t enter in detail about this, for a survey see [Bea08].

The problem of characterizing the kernel, if less rewarded, is no less mysterious.
Rational equivalence is indeed very fine, as shown for example by the following
result (see [Voi03, Thm. 10.15]).
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Definition 1.6. We let

CH∗hom(X) = ker c

be the ideal of CH∗(X) consisting of classes of cycles homologically equivalent to
0.

Theorem (Mumford). Let S be a surface with

H0(S,KS) 6= 0.

Then the map

−−−�
7−−−−�Sm × Sm CH2

hom(S)

(Z1, Z2) Z1 − Z2

has general countable fiber, and is never surjective.

The meaning of the above theorem is that there is that every sensible definition of
dimension for Chow groups would lead us to define CH2

hom(S) infinite-dimensional.

Remark. On any variety X of we have by definition

CH1
hom(X) = Pic0(X),

which is an abelian variety. So the pathological behaviour above can only happen
in codimension at least 2. Indeed Mumford’s theorem shows that the simplest
nontrivial case, that of point on surfaces, can already be quite subtle.

By the way, also Hodge conjecture is known to hold in codimension 1, and is
just Lefschetz theorem on (1, 1) classes.

So we see that CH∗hom can be rather large: only a small part of the information is
retained by homological equivalence. The conjectural characterization of the kernel
of c is much less precise given by the following

Conjecture 2 (Bloch-Beilinson). For every variety X there exists a (decreasing)
functorial filtration of rings

CHp(X) = F 0CHp(X) ⊃ F 1CHp(X) ⊃ · · · ⊃ F p+1CHp(X) = 0

such that F 1CHp(X) is exactly the kernel of the cycle map c.
Here functorial means that it is compatible both with pull-backs f∗ and push-

forwards f∗, when they are defined. Of rings means that it respects the intersection
product on the Chow ring.

Remark. We should emphasize that the requirement

F p+1CHp(X) = 0

is far from trivial; indeed this is the delicate point of many proposed construc-
tions. Moreover the conjecture is somewhat more precise. For a discussion of the
conjecture and some of its consequences see [GP03].
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Beauville and Voisin have proved in [BV04] the following simple but rather
remarkable result:

Theorem (Beauville-Voisin). Let S be a K3 surface, C,D two divisors on it. Then
there exists a 0-cycle θ on S such that

C ·D = deg(C ·D)θ

in CH2(S). Moreover c2(S) = 24θ.

This is in sharp contrast with Mumford’s theorem. Although the group CH2(S)
is infinite-dimensional, the image of the intersection product

Pic(S)× Pic(S) � CH2(S)

is just a line inside it. This has lead Beauville to formulate in [Bea07] the following
addendum to the Bloch-Beilinson conjecture:

Conjecture 3 (Beauville). If X is an irreducible symplectic variety, the Bloch-
Beilinson filtration for X splits, that is, it is the filtration associated to a graduation.

An easy, and more testable, consequence of this (second order) conjecture is
then

Conjecture 4 (Beauville). Let X be an irreducible symplectic variety, and let
DCH(X) ⊂ CH∗(X) be the subring generated by the divisors. Then the cycle
map

c : CH∗(X) � H∗(X,Z)

is injective when restricted to DCH(X).

That conjecture 3 implies Conjecture 4 is easy, and is shown in [Bea07]. Indeed
if X is symplectic we have

F 1CH1(X) = Pic0(X) = 0

since X is simply connected, in particular q(X) = 0. But then Conjecture 3 implies
that no product of divisors can lie in

F 1CH∗(X) = ker c.

Remark. We should mention that Huybrechts in [Huy09] has given an alternative
interpretation of the result of Beauville and Voisin in the framework of derived
categories. Namely let S be a K3 and let

R(S) = CH0(S)⊕ CH1(S)⊕ Zp,

where p is a point on any rational curve on S. Then the first claim of the theorem of
Beauville and Voisin can be restated by saying that R(S) is a subring of the Chow
ring. Huybrechts gives the following equivalent formulation: for any line bundle L
on S one has

v(L) ∈ R(S),
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where v is the Mukai vector; this includes the second half of the statement. In this
form, assuming rk Pic(S) ≥ 2, the result is generalized from line bundles on S to
spherical objects in the derived category of S (these are objects E in the derived
the derived category which satisfy

Ext∗(E,E) ∼= H∗(S2,C),

see [Huy09] for details).

We come back to the more elementary formulation.

Remark. Conjecture 4 explicitly means the following: any polynomial relation

P (D1, . . . ,Dk) = 0

in the fundamental classes of divisors which holds in H∗(X) already holds inside
CH∗(X).

The state of the conjecture is as follows. It has been proved by Beauville himself
in the first cases. Then it has been extended by Voisin in [Voi08] in the following
form:

Conjecture 5 (Voisin). Let X be an irreducible symplectic variety. Any polynomial
relation

P (D1, . . . ,Dk, ci(X)) = 0

in the fundamental classes of divisors and in the Chern classes of X which holds in
H∗(X) already holds in CH∗(X).

In the same paper Voisin proves

Theorem (Voisin). Conjecture 5 holds true when

• X = S[n], for some K3 S, and n ≤ 2b2(S)tr + 4, where b2(S)tr is the rank of
the transcendental part of H2(S), that is, the orthogonal of the Néron-Severi
lattice, or

• X is the Fano variety of lines on a cubic fourfold Y ⊂ P5.

The proof is quite complicated in both cases: one has to produce a number of
relations in CH∗(X). In this thesis we propose to study Conjecture 5 in the case
where X is a double EPW sextic, to be defined in next chapter. Roughly we follow
the ideas of the proof of Voisin for the case of the Fano variety.

The problem is that the definition of EPW sextic is quite involved, hence many
geometric constructions which are easy to produce from the projective geometry of
cubic fourfolds become far less trivial to replicate on EPW sextics. The geometry
of EPW sextics is indeed rather subtle; in particular inside the Fano variety one can
produce a lot of rational surfaces which are sections of a Lagrangian rank 2 vector
bundle, while on EPW sextics we had to replace these with Enriques surfaces, which
do not come as sections of a vector bundle.

In particular we are aiming to the following result
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Theorem. Let X be a double EPW sextic, f : X � Y its associated double covering.
Let

h = f∗OY (1)

be the natural polarization. Then every polynomial relation between h and the Chern
classes of X which holds in H∗(X,Q) already holds in CH∗(X)Q.

In particular if X is very general, Conjecture 5 holds for X.

The second claim follows form the fact that for the very general double EPW
sextic the Picard group is generated by h.

In proving the theorem we are lead to produce a number of results about the
geometry of EPW sextics. In particular in Chapter 2 we define EPW sextics and
make a detailed study of the singularities that can appear. This is needed to study
the degenerate cases of EPW sextics. In Chapter 3 we show that a suitable de-
generation allows us to transfer problems about surfaces inside EPW sextics to the
study of the surface of bitangents to a quartic surface S ⊂ P3. In particular we
want to study the behaviour of such a surface when S acquires many nodes. Finally
Chapter 4 puts everything together to give a proof of the main theorem.





Chapter 2

Double EPW sextics

2.1 The construction of EPW sextics

2.1.1 Some linear algebra constructions

EPW sextics were introduce by Eisenbud, Popescu and Walter in [EPW00]; their
double covering was constructed by O’Grady, who also showed that it gives an
example of an irreducible symplectic variety. Most of the results of this chapter are
due to O’Grady, we have in particular relied on the work in preparation [O’G].

In this section we do some preliminary linear algebra, in order to discuss EPW
sextics and their double coverings. We begin with a 6-dimensional vector space V
over the field C. The space

∧6 V is 1-dimensional, so we choose once and for all an
isomorphism

vol :
∧6 V � C.

This endows
∧3 V with a symplectic form, given by

(α, β) = vol(α ∧ β),

for α, β ∈
∧3 V .

We remark that dim
∧3 V =

(6
3

)
= 20, and as usual we say that a subspace

A ⊂
∧3 V is Lagrangian if

dimA =
1

2
dim

∧3 V = 10

and the form (·, ·) restricts to 0 on A. In particular for each non-zero v ∈ V we can
consider the Lagrangian subspace

Fv = {v ∧ α | α ∈
∧2 V }.

Of course

(v ∧ α) ∧ (v ∧ β) = 0

for every α, β ∈
∧2 V . So to prove that Fv is Lagrangian it is enough to show that

dimFv = 10. But it is clear that

Fv ∼=
∧2(V/〈v〉), (2.1)

19
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so dimFv =
(5

2

)
= 10.

Since the subspace Fv only depends on the class [v] ∈ P(V ), the subspaces Fv fit
together, giving rise to a Lagrangian subbundle F of the trivial symplectic bundle
P(V )× V .

We can compute the Chern classes of F as follows. First we globalize the iso-
morphism in (2.1). It is immediate to see that the isomorphism

−−−�
−−−−−�ϕv :

∧2(V/〈v〉) Fv

[α] v ∧ α

depends on the choice of v, and more precisely ϕkv = kϕv . From this it is immediate
to realize that the maps ϕv fit together and yield an isomorphism

F ∼= S ⊗
∧2Q,

where Q is the tautological quotient bundle on P(V ) and S the tautological sub-
bundle. The exact sequence

−−−� −−−� −−−� −−−�0 S OP(V ) ⊗ V Q 0

implies that
c1(Q) = −c1(S) = h,

the hyperplane class on P(V ). A standard computation using the splitting principle
gives that

c1(Sym2Q) = 6c1(Q) = 6h.

In a similar way we get

c1(Q⊗Q) = 10c1(Q) = 10h.

Since ∧2Q ∼= (Q⊗Q)/Sym2Q

we find
c1(
∧2Q) = 4h,

and a last application of the splitting principle yields

c1(F ) = c1(
∧2Q) + rk(F )c1(S) = −6h. (2.2)

2.1.2 The definition of EPW sextics

We are now ready to define the EPW sextics, as follows. Fix a Lagrangian subspace
A ⊂

∧3 V . Note that the symplectic form gives a canonical identification

∧3 V/A ∼= A∨.

Let
λA : F � OP(V ) ⊗A

∨ (2.3)

be the inclusion F �֒ OP(V )⊗
∧3 V followed by the projection modulo A. The map

λA is a map of vector bundles of equal rank 10.
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Definition 2.1. We set
YA = Z(detλA),

the zero locus of the determinant of λA. This is a subscheme of P(V ); when it is
not the whole P(V ), YA is called a EPW sextic.

Remark. The locus YA is indeed a sextic. To see this, note that λA is a section of

Hom(F,OP(V ) ⊗A
∨) ∼= F∨ ⊗ (OP(V ) ⊗A

∨) ∼= F∨ ⊗A∨

so detλA is a section of
det(F∨) ∼= OP(V )(6)

thanks to Equation (2.2).

Remark. The support of the scheme YA is by definition the locus

{
[v] ∈ P(V ) | dim(Fv ∩A) ≥ 1

}
.

We then set
YA[k] =

{
[v] ∈ P(V ) | dim(Fv ∩A) ≥ k

}
,

so that YA = YA[1], at least set-theoretically.
The loci YA[k] also have a natural scheme structure, given by the vanishing of

the determinants of the (k + 1)× (k + 1) minors of λA.

We can also describe YA locally as follows. Choose a Lagrangian subspace B ⊂∧3 V complementary to A, so that

∧3 V = A⊕B. (2.4)

Since both A and B are Lagrangian, the pairing

(·, ·) : A×B � C

is non-degenerate, allowing us to identify B with A∨. Assume that B is transversal
to some Fv; then Fv is the graph of a linear map

ϕv : A� B ∼= A∨.

Indeed the projection Fv � A is an isomorphism, since its kernel is

Fv ∩B = 0.

Then ϕv is just the composition

A� Fv � B.

Remark. The hypothesis that A, B and Fv are Lagrangian implies that ϕv is
actually a symmetric map, meaning that for each α, β ∈ A we have

〈ϕv(α), β〉 = 〈ϕv(β), α〉 , (2.5)

where 〈·, ·〉 is the natural pairing between A∨ and A.
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Indeed (2.5) is equivalent, by the definition of the isomorphism between B and
A∨ to

(ϕv(α), β) = (ϕv(β), α) , (2.6)

where now ϕv is seen as a map from A to B. To verify that (2.6) holds let us take
γ, δ ∈ B such that

α+ γ ∈ Fv, β + δ ∈ Fv;

such vectors are unique since the projection of Fv to A is an isomorphism (recall
that B and Fv are transverse). By construction we have ϕv(α) = γ and ϕv(β) = δ.
So (2.6) becomes

(α, δ) = (β, γ) ,

and the latter is a consequence of

(α, β) = (γ, δ) = (α + γ, β + δ) = 0.

By definition kerϕv = A ∩ Fv, hence we have the following local description of
YA. Let

UB =
{
[v] | Fv is transverse to B

}
⊂ P(V ).

Then we have constructed a map

−−−�
7−−−−−−�UB Sym2(A∨).

[v] ϕv

We now see that

YA ∩ UB = Z(detϕ).

We will see later a local description similar to the above, but better suited for
computations.

2.2 The double covering

In this section we propose to show that a generic EPW sextics admits a 2 : 1
covering, ramified exactly on the singular locus, which is smooth, and is indeed an
irreducible symplectic variety.

We start with an exact sequence. Assume that YA is not the whole P(V ). The
map of vector bundles λA in (2.3) is an injective homomorphism of sheaves: indeed
it is an isomorphism on [v] for [v] ∈ P(V ) generic (precisely when [v] /∈ YA). Of
course it is not an isomorphism, so it is not surjective; still it is clear that the
cokernel is supported on YA. If we denote

iA : YA � P(V )

the inclusion, then we have an exact sequence

−−−� −−−� −−−� −−−�0 F OP(V ) ⊗A
∨ iA∗(ξA) 0 (2.7)
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for some sheaf ξA on YA. We will see in a moment that for a generic Lagrangian
subspace A the locus

YA[2] = {[v] ∈ P(V ) | dim(Fv ∩A) ≥ 2}

is properly contained in YA; it follows that ξA is generically free of rank 1.

We now dualize the exact sequence in (2.7). Note that

Hom(iA∗(ξA),OP(V )) = 0 and Ext1(OP(V ) ⊗A
∨,OP(V )) = 0 :

the first because iA∗(ξA) is zero outside YA and the second because the two sheaves
are free. So we the dual sequence is just

−−−� −−−� −−−� −−−�0 OP(V ) ⊗A F∨ Ext1(iA∗(ξA),OP(V )) 0 . (2.8)

The exact sequences in (2.7) and (2.8) fit together to form a commutative dia-
gram. To see this we introduce the morphism of vector bundles

µA : F � OP(V ) ⊗A (2.9)

which is analogous to λA, the only difference being that we project on the other
factor in decomposition (2.4). Taking into account the transpose of both λA and
µA we obtain a diagram

−−−−−−� −−−�λA −−−−−� −−−−−−−−�−−
−
−
−
−� µA −−

−
−
−� µtA

−−−� −−−�λtA −−−� −−−�0 F OP(V ) ⊗A
∨ iA∗(ξA) 0

0 OP(V ) ⊗A F∨ Ext1(iA∗(ξA),OP(V )) 0

The left square is commutative: indeed this means that

µtA ◦ λA = λtA ◦ µA;

in other words that the map

µtA ◦ λA : F � F∨

is symmetric. This follows from the fact that A, B and Fv are all Lagrangian
subspaces, as in the remark in the previous section.

Standard diagram chasing shows that we can complete the diagram with a map

iA∗(ξA) � Ext1(OP(V ) ⊗A
∨,OP(V ))

which gives rise to a morphism of short exact sequences.

The next lemma identifies the term Ext1(iA∗(ξA),OP(V )), which is the most
obscure one in the diagram.
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Lemma 2.1. We have an isomorphism

Ext1(iA∗(ξA),OP(V )) ∼= iA∗(ξ
∨
A(6)),

where we have called
ξ∨A = Hom(ξA,OYA)

(pay attention that ξA is not locally free).

Proof. Start from the exact sequence of YA: since it is a sextic we have, after a
twist by 6,

−−−� −−−� −−−� −−−�0 OP(V ) OP(V )(6) OYA(6) 0 .

Apply Hom(ξA, ·) and take into account that

Hom(iA∗(ξA),OP(V )(6)) = 0,

to obtain

−−−� −−−�α −−−�β
−−−�β −−−�0 Hom(iA∗(ξA),OYA(6)) Ext1(iA∗(ξA),OP(V ))

Ext1(iA∗(ξA),OP(V )(6)) · · ·

Since
Hom(iA∗(ξA),OYA(6)) ∼= Hom(iA∗(ξA),OYA)(6) = iA∗(ξ

∨
A)(6),

it is enough to prove that α is an isomorphism, or equivalently that β vanishes.
But the map β is induced by the map

OP(V ) � OP(V )(6),

which is multiplication by the section of OP(V )(6) whose zero locus is YA. Since
iA∗(ξA) is supported on YA, β is then zero, so the conclusion follows.

We have a look at the diagram we have obtained so far:

−−−−−−� −−−�λA −−−� −−−−�−−
−
−
−
−� µA −−

−
−
−� µtA −−

−
−
−
−�

−−−� −−−�λtA −−−−−� −−−�0 F OP(V ) ⊗A
∨ iA∗(ξA) 0

0 OP(V ) ⊗A F∨ iA∗(ξ
∨
A)(6) 0;

in particular we are interested in the map

iA∗(ξA) � iA∗(ξ
∨
A)(6).

Denote
ζA = ξ∨(3).

Then the above becomes a map
ζA � ζ∨A;

composing with the natural pairing between ζA and ζ∨A we obtain a multiplication
map

mA : ζA ⊗ ζA � OYA .
One can prove (see [O’G08a])the following
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Lemma 2.2 (O’Grady). The map mA is symmetric and associative, and gives an
isomorphism between ζA ⊗ ζA and OYA.

Thanks to the lemma we see that the sheaf

OYA ⊕ ζA

has the structure of OYA-algebra, so we have an associated double covering.

Definition 2.2. We denote by

XA = ProjYA(OYA ⊕ ζA)

this double covering. The scheme XA is called a double EPW sextic. We denote by

fA : XA � YA

the covering map.

Remark. We claim that the ramification locus of the map fA is YA[2]. To see
this we just need to observe that by construction the ramification locus is the locus
where the sheaf ζA, or equivalently the sheaf ξA, is not locally free. Since iA∗(ξA)
is the cokernel of the map

λA : F � OP(V ) ⊗A
∨,

we see that the rank of ξA jumps exactly along YA[2], hence our claim.

We will verify in Section 3.1 that every double EPW sextic XA is a deformation
of S[2], where S is a quartic K3 surface. Since the latter is an irreducible symplectic
variety, we deduce

Proposition 2.3 (O’Grady). Let A ∈ LG(
∧3 V )0. Then XA is an irreducible

symplectic variety. The polarized Hodge structure on H2(X,Z) is the same as that
of S[2], where S is a K3 surface, and its Fujiki constant is 3.

2.3 The parameter space for double EPW sextics

In this section we wish to describe the geometry of the Lagrangian Grassmannian
LG(

∧3 V ), which is the natural parameter space for EPW sextic. Inside it we will
be able to find some subvarieties corresponding to degenerate cases of EPW sextics.
We anticipate that the generic behaviour is the following.

If A ∈ LG(
∧3 V ) is generic, A does not contain any decomposable form, and the

locus YA[3] is empty. In this case we will see that YA is singular exactly along YA[2],
and the double covering XA is smooth, actually an irreducible symplectic variety.

We start with the following

Definition 2.3. If E is a symplectic vector space of dimension 2n we let

LG(E) ⊂ Gr(n,E)

be the subset of the Grassmannian parametrizing Lagrangian subspaces of E.
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It is immediate to check that LG(E) is a closed subset of Gr(n,E). Since
the symplectic group acts transitively on LG(E), we see that it is smooth. We
describe its tangent. Recall that for a subspace A ∈ Gr(n,E) we have a canonical
identification

TA Gr(n,E) ∼= Hom(A,E/A).

When A is Lagrangian we can use the symplectic form to identify

E/A = E/A⊥ ∼= A∨.

It is easy to verify that under this identification we have

TALG(E) = Sym2(A∨) ⊂ Hom(A,A∨) = TA Gr(n,E).

In other words the tangent to LG(E) only consists of those maps A � A∨ which
are symmetric.

From this it is immediate to compute that

dim LG(E) = dim Sym2(A∨) =

(
n+ 1

2

)
.

Now we come back to the case where E =
∧3 V . Following [O’G] we give the

following definitions.

Definition 2.4. We let

Σ =
{
A ∈ LG(

∧3 V ) |
∧3(W ) ⊂ A for some W ⊂ V, dimW = 3

}
.

In other words Σ is the set of Lagrangian subspaces of
∧3 V containing a decom-

posable form.
More generally for each k ∈ N we define Σk as the Zariski closure of the locus

of Lagrangian subspaces A ∈ LG(
∧3 V ) that contain exactly k linearly independent

decomposable forms. In this way we have Σ = Σ1 (see Proposition 2.4), and of
course Σk = ∅ when k > 10.

We let
∆ =

{
A ∈ LG(

∧3 V ) | YA[3] 6= ∅
}
⊂ LG(

∧3 V ).

Finally we define

LG(
∧3 V )0 = LG(

∧3 V ) \ (Σ ∪∆).

We shall now see that both Σ and ∆ are divisors on LG(
∧3 V ), so LG(

∧3 V )0

is open, and that LG(
∧3 V )0 is exactly the locus where the double covering XA is

smooth. More generally we study the dimension of Σk, since in this work we are
particularly interested to the locus Σ10.

Proposition 2.4 (O’Grady).

i) The set Σ is closed in LG(
∧3 V ).

ii) The set Σk has codimension k in LG(
∧3 V ) (when it is not empty).



2.3 The parameter space for double EPW sextics 27

iii) Σk is smooth away from Σk+1.

iv) Let
A ∈ Σk \ Σk+1,

so that A contains exactly k decomposable forms α1, . . . , αk, up to multiples.
Then the tangent space to Σk in A is

TAΣk = {q ∈ Sym2(A∨) | q(α1) = · · · = q(αk) = 0}.

Proof. It is enough to prove that Σ is closed and that the description of the tangent
space holds. Indeed once we know this, we see that the dimension of the tangent
space is constant on Σk\Σk+1, since linearly independent points induce independent
conditions on quadrics. Hence, since this is an open subset of Σk, the common
dimension is the dimension of Σk, so these are smooth points. Moreover the same
description of the tangent yields that the codimension of Σk is exactly k.

So we turn to proving that Σ is closed. We consider the incidence variety

Σ̃ =
{
(W,A) |

∧3 W ⊂ A
}
⊂ Gr(3, V )× LG(

∧3 V ).

Since Σ̃ is closed and Σ is its projection, it follows that Σ is closed too.
Finally we look at the description of the tangent space. To simplify notation,

we deal with the case k = 1. Let A(t) be a curve inside Σ with A(0) = A.
We choose a basis {

β1(t), . . . , β9(t), α(t)
}

of A(t), such that α(t) is decomposable. Choose a subspace C ⊂
∧3 V complemen-

tary to A. Then the element of Sym2(A)∨ associated to the tangent vector Ȧ(0) is
constructed as follows.

Since ∧3 V = A⊕ C,

the subspace A(t), for t small, is the graph of a map f(t) : A� C. The vector

Ȧ(0) ∈ TALG(
∧3 V )

corresponds to the symmetric homomorphism f ′(0) : A� C. Here the subspace C
is identified, by the symplectic form, with A∨.

Let now α = α(0) be the decomposable form in A. By definition of graph,
α+ f(t)α ∈ A(t) for all t. So we can choose functions

λ1(t), . . . , λ10(t)

such that
f(t)α+ α = λ1(t)β1(t) + · · ·+ λ9(t)β9(t) + λ10(t)α(t).

We observe that α = α(0) implies that

λ1(0) = · · · = λ9(0) = 0.

Moreover since A is Lagrangian

(α, β1(0)) = · · · = (α, β9(0)) = (α,α(0)) = 0.
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So, when we take derivatives, we are left with

(α, f ′(0)α) = (α,α′(0)).

Now we use the fact that α(t) is decomposable, say

α(t) = v1(t) ∧ v2(t) ∧ v3(t),

and let vi = vi(0), so that α = v1 ∧ v2 ∧ v3. Then we have

α ∧ α(t) = v1 ∧ v2 ∧ v3 ∧ v1(t) ∧ v2(t) ∧ v3(t),

and taking derivatives yields

(α, f ′(0)α) = (α,α′(0)) = vol(α ∧ α′(0)) = 0.

So we see that α lies on the quadric defined by Ȧ(0), that is

TAΣ ⊂ {q ∈ Sym2(A∨) | q(α) = 0}.

The other inclusion is proved in a similar way.

Next we turn the description of ∆. In this work it does not really come into
play, so we limit ourselves to the following

Proposition 2.5 (O’Grady). ∆ is an irreducible divisor of LG(
∧3 V ).

Proof. As before we consider the incidence variety

∆̃ = {([v], A) | dimA ∩ Fv ≥ 3} ⊂ P(V )× LG(
∧3 V ).

We have the first projection
π : ∆̃ � P(V ),

and we claim that the fiber π−1([v]) is irreducible of dimension 49.
Indeed to find a Lagrangian subspace A such that

dimFv ∩A ≥ 3

we have to choose first a subspace U ⊂ Fv of dimension 3, and then a Lagrangian
subspace A with

U ⊂ A ⊂ U⊥.

We remark that the symplectic form on
∧3 V induces a symplectic form on U⊥/U .

So we see that π−1([v]) is itself fibered over Gr(3, Fv), whit fiber a Lagrangian
Grassmannian LG(U⊥/U). It follows that π−1([v]) is irreducible and

dimπ−1([v]) = dim Gr(3, Fv) + dim LG(U⊥/U) = 21 + 28 = 49.

We conclude that ∆̃ is irreducible, with

dim ∆̃ = dim P(V ) + dimπ−1([v]) = 5 + 49 = 54.

Since ∆ is the projection of ∆̃ it follows that ∆ is irreducible, of dimension at
most 54. The reverse inequality

dim ∆ ≥ 54

is a bit trickier to obtain, and we will not prove it here, since we don’t need it in
the sequel.
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Next we see why these loci are relevant.

Proposition 2.6 (O’Grady). Let A ∈ LG(
∧3 V ), and assume that YA is not the

whole P(V ). Let [v] ∈ YA. Then YA is smooth at [v] if and only if [v] /∈ YA[2] and
A does not contain any decomposable form multiple of [v].

In other words the singular locus of YA is the union of YA[2] and the planes
P(W ), where W varies through all 3-planes of V such that

∧3 W ⊂ A.

Corollary 2.7. The double covering XA is smooth if and only if

A ∈ LG(
∧3 V )0.

We postpone the proof of the proposition up to when we have a better grasp of
the local structure of YA; it will appear again as Proposition 2.23. We sketch here
the proof of the corollary.

Proof of Corollary 2.7. In one direction assume that

A ∈ LG(
∧3 V )0.

Since YA is smooth outside YA[2] and the covering

fA : XA � YA

is unramified outside YA[2] we just have to check that XA is smooth in the points
of f−1

A (YA[2]). This follows from the local description of YA[2] in Proposition 2.27.
Viceversa assume that XA is smooth. Since fA is unramified outside YA[2] it

follows that YA is smooth outside YA[2], hence by the above proposition we have

A /∈ Σ.

A local study then shows that if [v] ∈ YA[3], the point f−1
A ([v]) is not a smooth

point of XA, so we must have
A /∈ ∆.

Finally we mention the natural duality for double EPW sextics, introduced in
[O’G08a]. The volume form vol on V induces one, which we shall call vol∨, on V ∨.
Hence we have a symplectic form on

∧3 V ∨, given by

−−−�
7−−−�∧3 V ∨ ×

∧3 V ∨ C

(α, β) vol∨(α ∧ β)

As in the non Lagrangian case, we have a duality isomorphism

−−−�
−−−−−−−−�δ : LG(

∧3 V ) LG(
∧3 V ∨).

A Ann(A)

Hence, given A ∈ LG(
∧3 V ) we have also a dual EPW sextic

Yδ(A) ⊂ P(V ∨).

The connection with YA is given by the following result.
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Theorem (O’Grady). If A ∈ LG(
∧3 V ) is generic, Yδ(A) is the dual variety (in the

sense of projective geometry) of YA.

2.4 The surface ZA

Let A ∈ LG(
∧3 V )0, and let fA : XA � YA be the double covering of the corre-

sponding EPW sextic. Let ZA ⊂ XA be the fixed locus of the covering involution
ϕA. The projection

fA : ZA � YA[2]

is an isomorphism. In this section we want to recall some properties of the surface
ZA. We omit A from the notation, since it will be kept fixed.

Remark. Z is a Lagrangian surface inside X. Indeed let σ be the symplectic form
of X. The covering involution satisfies

ϕ∗(σ) = −σ. (2.10)

This is not completely obvious, since the proof that X is symplectic relies on the
fact that it can be deformed to S[2], where S is a K3; we will show this in Section
3.1. Granting this for a moment, one gets

ϕ
Z

= 0,

because Z is fixed pointwise by ϕ.

Equation 2.10 is a consequence of a more general fact. The polarized variety
(X,OX (1)) is a polarized deformation of (S[2], h), where

h ∈ H2(S[2],Z)

is a certain ample class. Moreover the involution ϕ deforms to an involution ψ on
S[2].

Recall thatH2(X,Z) andH2(S[2],Z) are endowed with the Beauville-Bogomolov
form. O’Grady shows in [O’G05b, Prop. 4.1] that

ψ∗ : H2(S[2],Z) � H2(S[2],Z)

equals the reflection in the span of h. It follows that

ϕ∗ : H2(X,Z) � H2(X,Z)

is the reflection in the span of c1(OX (1)). In particular since σ and c1(OX(1)) are
orthogonal with respect to the Beauville-Bogomolov form, Equation 2.10 follows.

We have the following

Proposition 2.8 (O’Grady). The canonical class of Z satisfies

2KZ = OZ(6).
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Remark. The above proposition determines KZ only up to 2-torsion. Namely we
can rewrite it as

KZ = OZ(3) + κ,

where κ is a 2-torsion class. We will see in Section 3.3 that the class κ is really
non-zero.

Proof. For simplicity let us denote W = f(Z) the singular set of Y . We know that
on W the map λ has constant rank 8, so we get the following exact sequence of
vector bundles on W :

−−−� −−−� −−−−�λ
W

−−−� −−−�0 K F OW ⊗ (
∧3 V/A) ζ

W
0. (2.11)

Here K is defined to be the kernel of λ
W

; it has rank 2. Identifying W with its
preimage Z ⊂ X, we claim that the following isomorphisms hold:

ζ
W
∼= NZ/X . (2.12)

K ∼= N∨Z/X (2.13)

Assuming Equations (2.12) and (2.13) for a moment, the exact sequence in (2.11)
gives

c1(N∨Z/X)− c1(F )− c1(NZ/X) = 0,

hence

2c1(NZ/X) = −c1(F ) = OZ(6).

Since X has trivial canonical class, it follows that

2KZ = 2c1(NZ/X) = OZ(6),

as desired.

So we now turn to the proof of (2.12) and (2.13). Let p ∈ Z; then the covering
involution ϕ fixes p, so ϕ∗ acts on TpX. This gives a decomposition

TpX = (TpX)+ ⊕ (TpX)−

in eigenspaces for ϕ∗, with eigenvalues ±1. Since Z is the fixed locus of ϕ,

(TpX)+ = TpZ.

On the other hand, since

X = Proj(OY ⊕ ζ),

we can identify

(TpX)− ∼= ζf(p).

It follows that

(NZ/X)p ∼= ζf(p)

and the isomorphism in (2.12) holds.
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For the other, we show that K ∼= ζ ∨
W

. Indeed observe that over W we have

Kv = Fv ∩A and

ζv =
∧3 V/(Fv +A).

The symplectic form identifies K∨v with the quotient
∧3 V/(Fv∩A)⊥, and since both

A and Fv are Lagrangian we have

(Fv ∩A)⊥ = F⊥v +A⊥ = Fv +A,

thereby proving isomorphism (2.13).

Corollary 2.9. For A ∈ LG(
∧3 V )0 the surface ZA ∼= YA[2] is of general type.

We end this brief section with the computation of some invariants of Z. We
recall without proof from [O’G08b] that the topological Euler characteristic of Z is
χ(Z) = 192, and that Y [2] has degree 40 in P5. It follows from Proposition 2.8 that

K2
Z = 9 deg Y [2] = 360,

so by Noether formula

χ(Z,OZ) =
1

12
(χ(Z) +K2

Z) =
1

12
(192 + 360) = 46.

By definition this is 1− q(Z) + pg(Z), hence pg(Z) = 45 + q(Z). By Corollary 3.19
we find

q(Z) = 0, pg(Z) = 45.

2.5 EPW sextics containing a plane

We consider in this section the case where the Lagrangian subspace A contains some
nonzero completely decomposable tensor w1 ∧w2 ∧ w3. Let

W = 〈w1, w2, w3〉 ;

then dimW = 3 and
∧3W ⊂ A.

It is clear by definition that P(W ) ⊂ YA, and as we have remarked YA is singular
along P(W ), as well as on YA[2]. In this section we want to show that P(W ) and
YA[2] meet along a sextic curve on P(W ), and that this curve comes endowed with
an unramified double covering.

Proposition 2.10 (O’Grady, [O’G]). Let W ⊂ V be a subspace with dimW = 3,
A ⊂

∧3 V a generic Lagrangian subspace containing
∧3 W . Then

CA,W = P(W ) ∩ YA[2]

is a curve of degree 6 inside P(W ).
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Proof. The proof is almost a repetition of the fact that YA is a sextic. Take any
[w] ∈ P(W ); then [w] ∈ YA[2] if and only if

dim(A ∩ Fw) ≥ 2.

By hypothesis
∧3W ⊂ A, and it is clear that

∧3W ⊂ Fw, so in any case

dim(A ∩ Fw) ≥ 1.

To get rid of this, we quotient out the factor
∧3 W . So let

EW = (
∧3 W )⊥/

∧3W,

where orthogonality is with respect to the symplectic form on
∧3 V ; this is well

defined because
∧3 W is of course isotropic. The symplectic form on

∧3 V induces
an antisymmetric form on EW , which is again non-degenerate, so EW is a symplectic
space itself. Inside EW we find

B = A/
∧3W

(recall that A ⊂ (
∧3 W )⊥, since it is isotropic and contains

∧3 W ).
The trivial symplectic vector bundle EW ⊗OP(W ) has a Lagrangian vector sub-

bundle G defined by
Gw = Fw/

∧3 W.

By the remark at the beginning of the proof,

CA,W = {[w] ∈ P(W ) | dim(B ∩Gw) > 0}.

The inclusion of G inside EW ⊗OP(W ), followed by projection, gives a map of vector
bundles

νA,W : G� EW /B,

and CA,W is the locus where νA,W has not maximal rank. Since

c1(G) = c1(F ) = OP(W )(−6),

and EW/B is trivial, det νA,W is a section of

det(Hom(G,EW /B)) = OP(W )(6),

and CA,W , being the zero locus of det νA,W , is a sextic curve, unless det νA,W van-
ishes identically.

In Section 2.6 we will compute local equations for CA,W . In particular we will
see that for A generic, it is smooth, so certainly it is not the whole P(W ).

We can also mimic the construction of the double covering XA of YA, to obtain
a double covering C̃A,W of CA,W . First we define

CA,W [k] = {[w] ∈ P(W ) | dim(B ∩Gw) ≥ k},

so that CA,W = CA,W [1]. Different from the case of YA, we expect for dimensional
reasons that CA,W [k] is empty for k ≥ 2, and this is actually the case for A generic
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in Σ. Indeed, being a degeneracy locus, CA,W is singular along CA,W [2]. But it
follows from the results of Section 2.6 that CA,W is smooth for A generic in Σ.

Let us choose a complementary Lagrangian subspace in EW to B; as in Section
2.1 the symplectic form allows one to identify this subspace to B∨, so one obtains
the decomposition

EW = B ⊕B∨.

Let
λ : G� B∨ ⊗OP (W )

denote the inclusion of G inside EW followed by the projection on B, and similarly
for

µ : G� B ⊗OP (W ).

These maps and their adjoints fit into a commutative diagram:

−−−−−−� −−−�λ −−−−−� −−−−−−−−−�−−
−
−
−
−� µ −−

−
−
−� µt −−

−
−
−
−�

−−−� −−−�λt −−−� −−−�0 G OP(W ) ⊗B
∨ j∗(ξ) 0

0 OP(W ) ⊗B G∨ Ext1(j∗(ξ),OP(W )) 0.

(2.14)

Here j : CA,W � P(W ) denotes the inclusion, and the lower line is obtained by
dualizing the upper one. Details are completely analogous to Section 2.2.

Lemma 2.11. We have an isomorphism

Ext1(j∗(ξ),OP(W )) ∼= j∗(ξ
∨(6))

Proof. Start from the exact sequence of CA,W : since it is a sextic we have, after a
twist by 6,

−−−� −−−� −−−� −−−�0 OP(W ) OP(W )(6) OCA,W (6) 0 .

Apply Hom(j∗(ξ), ·) and take into account that

Hom(j∗(ξ),OP(V )(6)) = 0,

to obtain

−−−� −−−�α −−−�β
−−−−�β −−−�0 Hom(j∗(ξ),OCA,W (6)) Ext1(j∗(ξ),OP(W ))

Ext1(j∗(ξ),OP(W )(6)) · · · .

Since
Hom(j∗(ξ),OCA,W (6)) ∼= Hom(j∗(ξ),OCA,W )(6) = j∗(ξ

∨)(6)

it enough to prove that α is an isomorphism, or equivalently that β vanishes.
But the map β is induced by the map

OP(W ) � OP(W )(6),

which is multiplication by a section of OP(W )(6) which vanishes on CA,W . Since
j∗(ξ) is supported on CA,W , β is then zero, so the conclusion follows.
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The preceding lemma, together with the commutative diagram 2.14 gives us a
map

j∗(ξ) � j∗(ξ
∨(6))

or equivalently
ξ � ξ∨(6).

Let ζ = ξ(3); then this map can be viewed as a map ζ � ζ∨. Composing it with
the natural pairing between ζ and its dual we get a map

m : ζ ⊗ ζ∨ � OCA,W .
We have the analog

Lemma 2.12 (O’Grady). The map m is symmetric and associative, so it gives the
sheaf

OCA,W ⊕ ζ

the structure of a OCA,W -algebra.

After this lemma we can define C̃A,W as the double covering of CA,W associated
to the algebra OCA,W ⊕ ζ. If CA,W [2] is empty, ζ is locally free, hence the covering
is unramified.

We compute the genera. For A ∈ Σ generic the curve CA,W is a smooth sextic,
so it has genus

g(CA,W ) =

(
5

2

)
= 10.

The genus of C̃A,W can be computed by Riemann-Hurwitz and it turns out that

g(C̃A,W ) = 19.

Remark. Let A ∈ Σ be a Lagrangian subspace, such that A ⊃
∧3W for exactly one

subspace W ⊂ V of dimension 3. Then we can construct an irreducible symplectic
variety in the following way.

Let XA be the double covering of YA ramified over YA[2]; then XA is singular
along the double covering S of P(W ). The surface S is a double covering of P(W )
ramified along the smooth sextic CA,W , hence it is a K3. Let X̃A be the blowup

of XA along S. Then it is not difficult to see that X̃A is an irreducible symplectic
variety, deformation equivalent to a smooth double EPW sextic.

2.6 Local study

We wish to understand the local description of the surface YA[2], in particular when
A contains

∧3 W for some 3-plane W ⊂ V . In particular we will see that YA[2]
is smooth away from P(W ) and we will describe its singularities along the curve
CA,W = YA[2] ∩ P(W ). The most delicate analysis will be needed near point where
two planes P(W ) and P(W ′) meet.

In doing so we will also describe the singularities of the curve CA,W itself; ac-
tually we shall tackle this problem first, since it will be needed to study YA. Our
final goal is to be able to produce an explicit sequence of blow-ups that resolves
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the singularities of YA[2]. This will be needed in the sequel to show that when YA
contains 10 planes and is generic with respect to this condition, the surface YA[2] is
Enriques: we will be able to show this by studying sections of the canonical bundle
of our explicit desingularization.

To start our program let us fix some point [v0] ∈ Y = YA and choose a comple-
ment V0 in V , so

V = 〈v0〉 ⊕ V0. (2.15)

Lemma 2.13. Assume YA⊥ is not the whole P(V ∨). Then we can choose the
complement V0 in such a way that

∧3 V = A⊕
∧3 V0. (2.16)

By construction we have
∧3 V0 ∩ Fv0 = 0; since both subspaces have dimension

10 we then have ∧3 V = Fv0 ⊕
∧3 V0. (2.17)

Let us call
π :

∧3 V � Fv0

the projection relative to this decomposition. Since A ∩
∧3 V0 = 0, the restriction

π
A

: A� Fv0

is an isomorphism; its inverse followed by projection on
∧3 V0 gives a well-defined

map
τA : Fv0 � ∧3 V0

whose graph is A. Moreover, since Fv0 and
∧3 V0 are complementary Lagrangian

subspaces, the symplectic form identifies
∧3 V0 with F∨v0

: namely β ∈
∧3 V0 corre-

sponds to the functional

−−−−−�
7−−−�Fv0 C.

α vol(β ∧ α)

The fact that A is Lagrangian too easily implies that τA is symmetric.
To put it another way, we also have an isomorphism

−−−�
7−−−−�∧2 V0 Fv0 .

α v0 ∧ α

So we can consider τA as a map

τA :
∧2 V0 � ∧3 V0,

and again we see that τA is symmetric, with respect to the obvious duality between∧2 V0 and
∧3 V0 given by

−−−−−�
7−−−�∧2 V0 ×

∧3 V0 C.

(α, β) vol(v0 ∧ α ∧ β)
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The quadratic form on
∧2 V0 associated to the symmetric map τA will be denoted

by qA. Sometimes we will abuse notation and use qA to denote a quadratic form on
Fv0 as well. In particular we see that the kernel of qA (as a form on Fv0) is just

ker τA = A ∩ Fv0 .

This makes the construction above look promising to study the loci YA[k] where the
dimensions of A ∩ Fv jump.

In particular we will describe these loci in a neighbourhood of [v0]. We can use V0

as an affine chart of P(V ) near [v0], identifying v ∈ V0 with the point [v+v0] ∈ P(V ).
If v ∈ V0 the subspace Fv+v0 remains transverse to

∧3 V0. Indeed v + v0 /∈ V0, so
we have a decomposition

V = 〈v + v0〉 ⊕ V0

analogous to 2.15, and as a consequence

∧3 V = Fv+v0 ⊕
∧3 V0. (2.18)

Since the subspace Fv+v0 is again Lagrangian we can perform the same construction
we did for A to obtain a symmetric map

τv :
∧2 V0 � ∧3 V0

and an associated quadratic form qv on
∧2 V0, or on Fv0 . The following lemma

extends our previous remark, allowing us to get a description of YA[k] on the affine
chart V0 of P(V ).

Lemma 2.14 (O’Grady). The kernel of qA−qv on Fv0 is the projection of A∩Fv+v0

on Fv0 , relative to the decomposition (2.17).

Proof. It is immediate by the definitions that this kernel is just ker τA − τv, so
α ∈ Fv0 will lie in the kernel if and only if τAα = τvα. In this case let us call β this
element. Then by construction

β ∈ A ∩ Fv+v0

and

π(β) = α.

Viceversa if β ∈ A ∩ Fv+v0 then α = π(β) satisfies τAα = τvα.

This result suggests to consider the map that associates to every v ∈ V0 the
quadratic form qA − qv. Actually this extends to the whole projective space, so we
define

ψ : P(V ) � P(Sym2(
∧2 V0)∨) (2.19)

by the requirements that

ψ(v + v0) = qA − qv for all v ∈ V0,

in particular ψ(v0) = qA;

ψ(v) = qv for all v ∈ V0.
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Note that ψ is a well defined (linear) projective map. Once we require that ψ(v) = qv
for all v∈V0 and ψ(v0) = qA, ψ is determined up to normalization. Explicitly we
have to choose a vector v ∈ V0 and some λ ∈ C such that ψ(v+ v0) = qA + λqv, our
choice corresponding to λ = −1; once you choose λ for one such v it is the same for
every element of V0.

Inside P(Sym2(
∧2 V0)∨) we consider the loci Uj of quadratic form of rank at

most j. Then we can restate Lemma 2.14 as follows:

Corollary 2.15 (of Lemma 2.14). For each k ≥ 1 we have

Y [k] ∩ V0 = ψ−1(U11−k),

where of course we regard V0 as an affine chart of P(V ) identifying v ∈ V0 with the
point [v + v0] ∈ P(V ) as we did before.

Remark. Since Y [k] is locally defined by the vanishing of some minors, one can
check that the equality above is actually an equality of schemes.

It is useful to describe explicitly the quadratic forms qv: we shall now see that
these are all in Plücker form. Take α ∈

∧2 V0; then this is identified to v0∧α ∈ Fv0 .
Now, for any v ∈ V0 the form v ∧ α ∈

∧3 V0, and

(v + v0) ∧ α = v ∧ α+ v0 ∧ α

is written as a sum of an element in Fv0 and one in
∧3 V0. Since τv is defined as the

map having Fv+v0 as a graph, we see that

τv(v0 ∧ α) = v ∧ α.

It follows that

qv(α) = vol(v0 ∧ α ∧ v ∧ α) = vol(v0 ∧ v ∧ α ∧ α). (2.20)

If we denote by q̃v the bilinear symmetric form associated to qv, then the polarized
form of (2.20) is

q̃v(α, β) = vol(v0 ∧ v ∧ α ∧ β). (2.21)

2.6.1 The curve CA,W

Having set out these preliminaries we assume that A contains
∧3 W for some W ⊂ V

of dimension 3, and we pass to the local study of the curve CA,W . So we consider
the construction above starting from a point [v0] ∈ CA,W . Let

W0 = V0 ∩W

and choose a base v1, v2 of W0, so that A contains the decomposable form v0∧v1∧v2.

We consider the quadrics parametrized (via the map ψ in Equation (2.19)) by
P(W ) ⊂ P(V ). The first remark is that the quadrics in ψ(P(W )) are all singular in
the point

p = [v1 ∧ v2] ∈ P(
∧2 V0).
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Gr(2, V0)

∧
2 V0

p

qA

qv
π(qA)

π(qv)

π

Figure 2.1. The quadrics in ψ(P(W ))

This amounts to proving that v1 ∧ v2 lies in the kernel of qA and in that of qv for
every v ∈W0. By Equation (2.21) is clear that

q̃v(v1 ∧ v2, ·) ≡ 0,

so v1∧ v2 is in the kernel of qv for every v ∈W0. Then the fact that v0∧ v1∧ v2 ∈ A
shows that

τA(v1 ∧ v2) = 0,

so the remark is proved.
Now a singular quadric is just a cone over a quadric of smaller rank, so it is

natural to consider the projection π from p to some P8 ⊂ P(
∧2 V0). In coordinate-

free terms the projection will be on

P(
∧2 V0/〈v1 ∧ v2〉).

Let us call

q0 = π(qA)

q1 = π(qv1)

q2 = π(qv2).

Since [v0] ∈ CA,W ⊂ YA[2] we have

dim(A ∩ Fv0) ≥ 2.

Let K ⊂
∧2 V0 be the subspace corresponding to A ∩ Fv0 under the identification∧2 V0

∼= Fv0 , which is just the kernel of the quadratic form qA. Our first hypothesis
is that dimK = 2, or in other words that

[v0] ∈ YA[2] \ YA[3].

Then it follows that q0 has rank exactly 8.
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Instead the quadrics in the pencil generated by q1 and q2 have all rank 6. Each
such quadric has the form π(qv) for some v ∈ W0. From Equation (2.21) it is
immediate that the kernel of qv is generated by the multiples of v inside

∧2 V0, so it
has dimension 4. The quadric π(qv) has the same rank of qv, so the claim follows.

Lemma 2.16. Let N denote the net of quadrics generated by q0, q1 and q2, and let

ψ̃ : P(W ) � N
be the obvious isomorphism (in other words ψ̃(v) is the projection of ψ(v)). Let
∆ ⊂ N be the set of singular quadrics. Then ∆ is a curve of degree 9, and we have
the decomposition

∆ = ψ̃(CA,W ) + 3ℓ,

where ℓ = ψ̃(P(W0)) is the pencil generated by q1 and q2.

It is useful to recall the following formula for the derivative of a determinant: if
A is a n× n matrix whose entries are functions of t, then

d

dt
detA(t) =

n∑

i=1

det
(
A1(t) | · · · | A′i(t) | · · · | An(t)

)
, (2.22)

where the prime means d/dt and Aj is the j-th column of A. This follows formally
from Leibniz formula, so it is valid both in the analytic and algebraic context, if the
entries of A(t) are polynomials.

Proof. In coordinates ∆ is given by the vanishing of the determinant of a 9 × 9
matrix, so it is a curve of degree 9.

Since CA,W = YA[2]∩P(W ) we see by Corollary 2.15 that ψ̃(CA,W ) is contained
in ∆; more precisely ∆ consists of this curve and at most some components which
don’t meet the affine chart

N \ ψ̃(P(W0)).

But then the only other component that can appear is ℓ; since deg(CA,W ) = 6 and
deg(∆) = 9, it must appear with multiplicity 3.

We can also check this directly. Choose coordinates on P8 so that q0, q1 and q2

are represented by matrices R, S and T respectively. We develop the equation of
∆ near the point q1 ∈ ℓ. Consider the function

f(r, t) = det(rR+ S + tT ).

To prove that ℓ appears with multiplicity 3 in ∆ we must show that

∂i

∂ti
f
r=t=0

= 0

for i = 0, 1, 2. The case i = 0 amounts to saying that q1 is singular. Using (2.22)
we can compute

∂

∂t
det(rR+ S + tT )

r=t=0
=

9∑

i=1

det
(
S1 | · · · | Ti | · · · | S9

)
= 0,
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since all 8× 8 minors of S vanish. Similarly

∂2

∂t2
det(rR+ S + tT )

r=t=0
=

9∑

i,j=1

det
(
S1 | · · · | Ti | · · · | Tj | · · · | S9

)
= 0,

since all 7 × 7 minors of S vanish.

We can now prove that CA,W is smooth at [v0] provided [v0] doesn’t lie on
another plane P(W ′) for some W ′ ⊂ V with dimW ′ = 3 and

∧3W ′ ⊂ A. But
before doing this it will be useful to do a remark.

Inside P(
∧2 V0) there is the Grassmannian Gr(2, V0), composed of decomposable

forms. It has dimension 6 and it is easy to see, by Schubert calculus, that

deg Gr(2, V0) = σ6
1 = (σ1 · (σ2 + σ1,1))2 = (σ3 + 2σ2,1)2 = 5

(the notation is standard, see for example [GH78, sec. 1.5]). It is well-known that
Gr(2, V0) is cut out by the Plücker quadrics qv given by (2.20). It follows that its
projection π(Gr(2, V0)) has dimension 6 and degree 4; since it must be contained in
both q1 and q2, we see that

q1 ∩ q2 = π(Gr(2, V0)).

Proposition 2.17 (O’Grady). Assume that dim(A ∩ Fv0) = 2 and [v0] ∈ P(W ),
where W is as above. Then the following conditions are equivalent:

i) The curve CA,W is smooth at [v0].

ii) A ∩ Fv0 contains only one decomposable form v0 ∧ v1 ∧ v2 up to multiples.

Proof. We use the notation above; in particular we use R, S, T to denote matrices
for q0, q1 and q2 respectively. Under our hypothesis the kernel of q0 is one dimen-
sional, and we choose a base {α1, . . . , α9} of P(

∧2 V0/〈v1∧v2〉) such that this kernel
is spanned by α9.

Using Lemma 2.16 we see that it is enough to prove that ∆ is smooth at q0. So
we consider the local equation of ∆ around q0, given by

f(s, t) = det(R+ sS + tT ) = 0.

With the aid of (2.22) we can compute

∂

∂s
f
s=t=0

=
9∑

i=1

det
(
R1 | · · · | Si | · · · | R9

)
.

By construction the column R9 is identically zero, so

∂

∂s
f
s=t=0

= det
(
R1 | · · · | R8 | S9

)
.

In this matrix the last row is 0 except for the last entry; hence the derivative is just
S9,9 times the determinant of the 8 × 8 top-left minor of R. Since the latter does
not vanish we find that

∂

∂s
f
s=t=0

= 0 if and only if S9,9 = 0.
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Similarly
∂

∂t
f
s=t=0

= 0 if and only if T9,9 = 0,

so [v0] is a singular point of CA,W if and only if both S9,9 and T9,9 vanish.

By the remark before the proof this means that

α9 ∈ q1 ∩ q2 = π(Gr(2, V0)).

So [v0] is a singular point of CA,W if and only if K contains a decomposable form
other than v1 ∧ v2.

In view of this result our next concern is to study what kind of singularity we
find near a point of CA,W which happens to lie on another plane P(W ′). We should
first remark that any two such planes intersect, and any point in the intersection
P(W ) ∩ P(W ′) actually lies on the curve.

Indeed assume we have two subspaces W,W ′ ⊂ V , with

dim(W ) = dim(W ′) = 3

and such that
∧3 W,

∧3W ′ ⊂ A.

Choose bases {a1, a2, a3} for W and {a4, a5, a6} for W ′. Since A is Lagrangian we
must have

a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5 ∧ a6 = 0,

hence

dim(W +W ′) ≤ 5.

It follows that dim(W ∩W ′) ≥ 1, so P(W ) ∩ P(W ′) 6= ∅.

Next let v0 ∈W ∩W
′; then [v0] ∈ YA[2]. Indeed

Fv0 ⊃
∧3W and Fv0 ⊃

∧3 W ′,

so dim(Fv0 ∩A) ≥ 2. Since

CA,W = P(W ) ∩ YA[2]

it follows that [v0] ∈ CA,W , and by Lemma 2.17 it is a singular point.

In order to study the singularities of CA,W at [v0] we need an elementary lemma.

Lemma 2.18. Let V be a complex vector space of finite dimension and let q, q′ be
two non-degenerate quadratic forms on V . Assume that the quadrics

Q = V (q) and Q′ = V (q′)

in P(V ) are transverse. Then q and q′ can be diagonalized simultaneously.
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Proof. Choose a diagonal basis for q and represent q′ with respect to this basis by
the symmetric matrix M . Let v be any eigenvector for M , say Mv = λv. Then the
q-orthogonal of v is

v⊥q = {w ∈ V | (v,w) = 0}

and similarly

v⊥q
′

= {w ∈ V | (Mv,w) = 0},

where (·, ·) denotes standard scalar product in the chosen basis. Hence we have
v⊥q = v⊥q

′

, and we call it simply v⊥.

It follows that v /∈ v⊥. Indeed if v ∈ v⊥ we find

q(v) = q′(v) = 0,

so [v] ∈ Q ∩ Q′. Since the projective tangent space TvQ is just Pv⊥ and similarly
for Q′, we see that [v] is a tangency point between Q and Q′, which is excluded by
hypothesis.

Thus we have the direct sum decomposition

V = 〈v〉 ⊕ v⊥

and we can conclude by induction on the dimension of V .

Let now W,W ′ be as above and assume that

dim(W ∩W ′) = 1.

Let 〈v0〉 = W ∩W ′ and choose bases {v0, v1, v2} of W and {v0, v3, v4} of W ′. Finally
we complete this to a basis {v0, v1, v2, v3, v4, v5} of V , where v5 is chosen such that

vol(v0 ∧ v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5) = 1.

We choose

V0 = 〈v1, v2, v3, v4, v5〉.

Finally we make the following assumption:

Assumption 2.19. Let q be the quadratic form on
∧2 V0 given by standard scalar

product with respect to the monomial basis

v1 ∧ v2, v1 ∧ v3, . . . , v4 ∧ v5.

Then the quadrics on P(
∧2 V0) defined by q and by qA are transverse.

We are now ready to state the

Proposition 2.20. Let A, W , W ′ and v0 be as above, and suppose that

dim(A ∩ Fv0) = 2

and Assumption 2.19 is satisfied. Then CA,W has a node at [v0].



44 2. Double EPW sextics

Proof. We write the local equation of CA,W , or, using the isomorphism ψ̃, the local
equation of ∆ near q0. Under our assumptions the quadratic form q0 has a kernel
of dimension 1, generated by (the class modulo v1 ∧ v2 of) v3 ∧ v4.

Let J be the subspace of
∧2 V0/〈v1 ∧ v2〉 generated by all monomials vi ∧ vj

except for v3 ∧ v4. Then the restriction of q0 to J is non-degenerate.
By Lemma 2.18 we can choose a basis for J under which q0 is the identity matrix,

and we can do so using an orthogonal basis for for the standard scalar product (with
respect to the monomial basis). In other words we can find a basis of

∧2 V0/〈v1∧v2〉
such that

i) The matrix for q0 is just R = diag(1, . . . , 1, 0);

ii) the matrix M of change of basis has the block form

M =

(
A 0
0 1

)
(2.23)

and satisfies MT ·M = I.

We denote by S and T respectively the matrices for q1 and q2 in the chosen basis.
We remark that

q1(v3 ∧ v4) = q2(v3 ∧ v4) = 0,

so S9,9 = T9,9 = 0.
Let

f(s, t) = det(R+ sS + tT ).

We have already seen that f vanishes of order at least 2 at s = t = 0.
Using Equation (2.22) we compute

∂2

∂s2
f
s=t=0

=
9∑

i,j=1

det
(
R1 | · · · | Si · · · | Sj | · · · | R9

)
.

Since R9 = 0 the only non-zero addends are those with i = 9 or j = 9, so

∂2

∂s2
f
s=t=0

= 2
8∑

i=1

det
(
R1 | · · · | Si | · · · | R8 | S9

)
= −2

8∑

i=1

(Si,9)2,

where we have used the symmetry of S and the fact the determinants above can be
expanded (using the fact that the top-left 8×8 minor of R is the identity) to obtain

det
(
R1 | · · · | Si | · · · | R8 | S9

)
= det

(
Si,i Si,9
S9,i 0

)
.

We can perform the same computation for the other second derivatives, so finally
the Hessian of f at (0, 0) is

H = −

(
2
∑8
i=1(Si,9)2 ∑8

i=1 Si,9Ti,9∑8
i=1 Si,9Ti,9 2

∑8
i=1(Ti,9)2

)
.

Our task is thus to show that detH 6= 0.
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To compute detH we note that the entries of H are just the 9, 9 coefficients in
the matrix product S2, S · T and T 2. Let S′, T ′ be the matrices of q1 and q2 in the
monomial basis; S′ and T ′ are readily computed using (2.21). Then

S = MS′MT

T = MT ′MT ,

so we have
(S2)9,9 = (MS′MTMS′MT )9,9 = (S′MTMS′)9,9

where the last equality used the fact that M has the special form (2.23).
By our choice of basis MTM is diagonal, say

MTM = diag(λ1, . . . , λ9),

where the λi 6= 0 since M is a matrix of change of basis, and λ9 = 1. So finally we
get

(S2)9,9 =
9∑

i=1

λi(S
′)2

9,9,

and similarly for T .
Using the monomial basis

{v1 ∧ v3, v1 ∧ v4, . . . , v4 ∧ v5, v3 ∧ v4}

(of course any other ordering keeping v3 ∧ v4 at the end will do) we find

S′i,9 =

{
0 i 6= 5

1 i = 5

T ′i,9 =

{
0 i 6= 3

1 i = 3.

Finally this gives

H =

(
−2λ5 0

0 −2λ3

)
,

hence detH = 4λ3λ5 6= 0.

It will be useful to restate another way the nonvanishing of the Hessian deter-
minant. We make a parenthesis to describe in general the first terms of the Taylor
expansion of the determinant of a quadratic form. Let U be a vector space of
dimension n and fix a quadratic form q0 ∈ Sym2 U∨ of rank n− 1. We let

f(q) = det(q0 + q) = f0(q) + f1(q) + · · ·+ fn(q),

where fi is the homogeneous component of degree i of f .
Under our hypothesis we have f0 = det(q0) = 0. Let e ∈ U be a generator of

the kernel of q0. The term f1 is a linear functional on Sym2 U∨, and it is easy to
prove (see below) that

ker f1 = {q ∈ Sym2 U∨ | q(e) = 0}. (2.24)



46 2. Double EPW sextics

We wish to describe explicitly f2 ker f1
. Let q0 be the induced quadratic form on

U/〈e〉. This is non-degenerate by our hypothesis, so it induces a quadratic form q∨0
on (U/〈e〉)∨. Let

q̃ : U � U∨

be the symmetric map which induces q. If q ∈ ker f1 then q(e) = 0, hence

q̃(e) ∈ Ann(e) ∼= (U/〈e〉)∨.

So it makes sense to compute q∨0 (q̃(e)).

Lemma 2.21 (O’Grady). With the above notation we have

f2(q) = cq∨0 (q̃(e)) (2.25)

for some nonzero constant c.

Proof. Choose a basis B of U such that the matrix representing q0 is just M0 =
diag(1, . . . , 1, 0). Then for any symmetric matrix M we can compute

f(mi,j) = det(M0 +M) =

= det




1 +m1,1 m1,2 · · · m1,n−1 m1,n

m2,1 1 +m2,2 · · ·
...

...
. . .

...
mn−1,1 1 +mn−1,n−1

mn,1 · · · mn,n



.

The linear part of this expression is just mn,n, which proves (2.24).
Assuming mn,n = 0, the quadratic part of f is obtained as follows. Expand

the determinant along the lowest row to write f(mi,j) as a linear combination of
the mn,i, each with coefficient the corresponding cofactor. The linear part of the
cofactor is just mi,n = mn,i, so at the end

f2(mi,j) =
n−1∑

i=1

m2
n,i.

On the other hand the basis B has some multiple of e as the last element. Hence,
in coordinates,

q̃(c · e) = (mn,1, . . . ,mn,n−1, 0)

for some nonzero constant c. This is identified with the element

(mn,1, . . . ,mn,n−1) ∈ (U/〈e〉)∨,

where the coordinates are with respect to the q0-dual basis of the chosen basis.
Since B \ {ce} diagonalizes q0, its dual diagonalizes the dual form, hence

q∨0 (q̃(c · e)) =
n−1∑

i=1

m2
n,i.

By comparison we get the thesis.
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We can apply this in our situation with U = Sym2(V0)/〈v1 ∧ v2〉, taking e =
v3 ∧ v4. In order to apply (2.25) we notice that

q̃1(v3 ∧ v4) = v1 ∧ v3 ∧ v4,

hence
f2(q1) = cq∨0 (v1 ∧ v3 ∧ v4)

and similarly for the other terms. It follows that the Hessian of f can be written

H = c

(
q∨0 (v1 ∧ v3 ∧ v4) q̃∨0 (v1 ∧ v3 ∧ v4, v2 ∧ v3 ∧ v4)

q̃∨0 (v1 ∧ v3 ∧ v4, v2 ∧ v3 ∧ v4) q∨0 (v2 ∧ v3 ∧ v4)

)
.

Let B be the monomial basis for

U/〈e〉 = Sym2(V0)/〈v1 ∧ v2, v3 ∧ v4〉;

then the dual basis of B is also monomial, where of course we are using the natural
identification

(U/〈e〉)∨ = Sym3(V0)/〈v3 ∧ v4 ∧ v5, v1 ∧ v2 ∧ v5〉.

In particular the dual elements of v1∧v5 and v2∧v5 are −v2∧v3∧v4 and v1∧v3∧v4

respectively.
Since we have proved in Proposition 2.20 that H is nonsingular we find

Corollary 2.22. Under the same hypothesis of Proposition 2.20 the form q∨A is
non-degenerate on the subspace generated by the duals of v1 ∧ v5 and v2 ∧ v5.

Remark. By symmetry the form q∨A is non-degenerate on the subspace generated
by the duals of v3 ∧ v5 and v4 ∧ v5 too.

2.6.2 The sextic YA

We don’t give a very detailed description of the local structure of YA around special
points, since we won’t need it. We limit ourselves to following very basic proposition,
as an application of (2.24).

Proposition 2.23 (O’Grady).

i) Let [v0] ∈ YA. Then YA is smooth at [v0] if and only if

dimFv0 ∩A = 1

and A does not contain any decomposable form multiple of v0.

ii) In this case let
Fv0 ∩A = 〈v0 ∧ α〉,

with α indecomposable, and let

Hv0 = {v ∈ V | vol(v0 ∧ v ∧ α ∧ α) = 0}.

Then the projective tangent space of YA at [v0] is

T[v0]YA = P(Hv0).
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Corollary 2.24. The singular locus of YA is the union of YA[2] and the planes
P(W ), where W runs through all 3-planes of V such that

∧3W ⊂ A.

Proof. Consider the map ψ from (2.19). By Corollary 2.15 YA is locally the preimage
of the locus U10 of singular quadrics, hence [v0] will be a smooth point of YA if and
only if U10 is smooth at qA and the map ψ is a submersion at [v0].

The first condition means that qA has rank exactly 10; since the kernel of qA is
identified with Fv0 ∩A, this means that

dimFv0 ∩A = 1.

So assume this and let

Fv0 ∩A = 〈v0 ∧ α〉.

By (2.24) we see that the tangent space TqAU10 consists of the quadratic forms q
such that q(α) = 0.

So [v0] is a singular point of YA if and only if

qv(α) = 0 for every v ∈ V0.

By the explicit description of qv in (2.20) this translates to

vol(v0 ∧ v ∧ α ∧ α) = 0. (2.26)

It follows that in any case (α decomposable or not) we have

T[v0]YA = P(Hv0).

Clearly this is either a hyperplane or the whole P(V ), so we have to check that
(2.26) holds for every v ∈ V0 if and only if α is decomposable. In other words we are
saying that a form satisfies all Plücker quadratic relations if and only if it lies in the
Grassmannian, which is a well-known fact (see for instance [GH78, sec. 1.5]).

2.6.3 The surface YA[2]

Now we turn to the local description of YA[2]. To see why this is more delicate,
recall that we are using Corollary 2.15, so we see that locally YA[2] is the preimage
of the degeneracy locus U8. The problem is that while U9 is defined by the single
equation det(q) = 0, the variety U8 is not a complete intersection.

For the curve CA,W we could overcome this difficulty by the remark that each
quadric on

∧2 V0 parametrized by a point of P(W ) had to be singular in a fixed
point. Hence the trick was to project from that point and consider the equation
det(q) = 0 for quadrics in a space of smaller dimension.

For YA[2] we are not so lucky and we actually have to work in codimension more
than 1. The first step is to perform a reduction of the dimension based on the
following remark.

Remark. Let

[v0] ∈ YA[k] \ YA[k + 1],



2.6 Local study 49

so that dimA ∩ Fv0 = k, and let K ⊂
∧2 V0 be the subspace corresponding to K

under the usual identification Fv0
∼=
∧2 V0. Let J be complementary to K, so

∧2 V0 = J ⊕K (2.27)

and qA is non-degenerate on J . Here the direct sum is qA-orthogonal, just because
K is the kernel of qA.

If v ∈ V0 is sufficiently close to 0, the form qA − qv is still non-degenerate on J .
Let

K(v) = J⊥(qA−qv)

be the orthogonal to J with respect to the form qA − qv. Then K(v) contains the
kernel of qA − qv, so it is easy to see that dimK(v) = k anyway. Moreover K(v)
meets J only in 0 (because qA − qv is non-degenerate on J), so we have the direct
sum decomposition ∧2 V0 = J ⊕K(v),

and this decomposition is orthogonal with respect to qA − qv.
The remark is that in studying YA[k] one can work inside K(v), in the following

sense. By Corollary 2.15

YA[k] =
loc
{[v0 + v] | cork(qA − qv) ≥ k},

where cork denotes the corank of a quadratic form. By construction the corank of
qA − qv is the same of its restriction to K(v). So we get that

YA[k] =
loc

{
[v0 + v] | cork(qA − qv) K(v)

≥ k
}
.

The simplification is apparent if one considers the case of YA[2], where we are led
to study quadratic forms on a space of dimension 2 instead of 10.

Now we translate the above in matrix terms. According to decomposition (2.27)
we find matrices both for qA: (

N 0
0 0

)

and for qv: (
Q(v) R(v)T

R(v) P (v)

)
.

Of course here we have chosen arbitrary bases both for J and for K. We perform the
change of basis in two steps. First choose any matrix S such that S ·ST = (N−Q)−1

(for readability sake we temporarily omit the dependence on v in the computations).
This can be done, for instance, with an analog of the Choleski algorithm, which is
valid for real symmetric positive definite matrices (the algorithm will fail on a Zariski
closed subset of all symmetric complex matrices, but the formula of Equation (2.28)
will still be valid by a limit argument).

Consider the block matrix

S′ =

(
S 0
0 I

)
.
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S′ sends each of the factors J , K to itself, but in the new basis the form qA − qv is
just the standard scalar product. More precisely the matrix for qA − qv will be

(
S 0
0 I

)
·

(
N −Q −RT

−R −P

)
·

(
ST 0
0 I

)
=

(
I −RTST

−SR −P

)
.

In this form it is easy to find the change of basis which will put the matrix in block
form. Indeed
(

I 0
SR I

)
·

(
I −RTST

−SR −P

)
·

(
I RTST

0 I

)
=

(
I 0
0 −P +R(N −Q)−1RT

)
.

We conclude that the restriction of qA − qv to K(v) is given, in a suitable basis, by
the matrix

M(v) = −P (v) +R(v) · (N −Q(v))−1 · R(v)T . (2.28)

The following elementary remark will be useful:

Lemma 2.25. Let V be a finite-dimensional vector space endowed with a non-
degenerate quadratic form q and let q∨ be the form induced on V ∨.

If N is the matrix which represents q with respect to a basis B of V , then the
matrix of q∨ with respect to the dual basis B∨ is N−1.

Proof. A non-degenerate quadratic form q induces an isomorphism

τ : V � V ∨

defined by the condition
q(v,w) = τ(v)w.

By construction the matrix associated to τ , with respect to the bases B and B∨, is
just N .

The dual form q∨ is defined by

q∨(ϕ,ψ) = q(τ−1(ϕ), τ−1(ψ)),

hence it is represented by the matrix

(N−1)T ·N ·N−1 = N−1,

using the fact that N is symmetric.

We can now prove the

Proposition 2.26. Let W,W ′ ⊂ V be two subspaces of dimension 3 such that∧2 W,
∧2W ′ ⊂ A. Let

[v0] = W ∩W ′

(in particular we are assuming that dimW ∩ W ′ = 1) and complete it to bases
{v0, v1, v2} and {v0, v3, v4} of W , W ′ respectively. Assume that

i) v0 ∧ v1 ∧ v2 and v0 ∧ v3 ∧ v4 are, up to multiples, the only decomposable forms
in A (this translates to the fact that [v0] lies on P(W ) and P(W ′), but on no
other planes inside YA);
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ii) dim(A ∩ Fv0) = 2;

iii) assumption 2.19 is satisfied.

Then there exist local analytic coordinates y1, . . . , y5 near [v0] such that YA[2] locally
is given by

YA[2] =
loc
V (y1y2, y3y4, y5).

Moreover the coordinates can be taken so that

CA,W =
loc
V (y1y2, y3, y4, y5)

CA,W ′ =
loc
V (y1, y2, y3y4, y5).

Proof. We follow the notation of the Remark above. We choose

{v1 ∧ v2, v3 ∧ v4}

as a basis for K and

{v1 ∧ v3, v1 ∧ v4, v1 ∧ v5, v2 ∧ v3, v2 ∧ v4, v2 ∧ v5, v3 ∧ v5, v4 ∧ v5}

for J .
Write a vector v ∈ V0 as

v = s1v1 + · · · + s5v5,

so s1, . . . , s5 are affine coordinates around [v0]. With respect to these coordinates
we can easily compute the matrices

P (v) =

(
0 s5

s5 0

)

and

R(v) =

(
0 0 0 0 0 0 −s4 s5

0 0 −s2 0 0 s1 0 0

)
.

Let us write
(N −Q(v))−1 = (ci,j(s)),

so that the matrix M(v) of (2.28) is

− P (v) +R(v) · (N −Q(v))−1 · R(v)T =

=

(
s2

4c7,7 − 2s4s5c7,8 + s2
5c8,8 −s5 + δ(s)

−s5 + δ(s) s2
2c3,3 − 2s2s1c3,6 + s2

1c6,6

)
,

where
δ(s) = s2s4c7,3 − s2s5c8,3 − s1s4c7,6 + s1s5c8,6

is not really relevant since it is of higher order than s5.
Now we claim that the matrices

(
c7,7(0) c7,8(0)
c7,8(0) c8,8(0)

)
and

(
c3,3(0) c3,6(0)
c3,6(0) c6,6(0)

)
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are both nonsingular.

Granting this, by the local inversion theorem we can find analytic coordinates
x1, . . . , x5 near [v0] such that

−P (v) +R(v) · (N −Q(v))−1 · R(v)T =

(
x2

3 + x2
4 x5

x5 x2
1 + x2

2

)
.

Finally, taking y1 = x1 + ix2, y2 = x1− ix2 and similarly for y3 and y4, and y5 = x5

gives

−P (v) +R(v) · (N −Q(v))−1 · R(v)T =

(
y3y4 y5

y5 y1y2

)
,

hence the thesis.
So we turn to the proof of the claim. The form q = qA J

is non-degenerate; we

use Lemma 2.25 to identify N−1 with the matrix of q∨ on J∨.
The nonsingularity of (

c3,3(0) c3,6(0)
c3,6(0) c6,6(0)

)

means that q∨ is non-degenerate when restricted to the subspace J ′ ⊂ J generated
by the dual elements of v1 ∧ v5 and v2 ∧ v5. This is exactly the content of Corollary
2.22.

Similarly the nonsingularity of

(
c7,7(0) c7,8(0)
c7,8(0) c8,8(0)

)

is equivalent to the remark thereafter.

A similar approach, even easier, will then prove the

Proposition 2.27 (O’Grady). Let W ⊂ V be a subspace of dimension 3 such that∧3 W ⊂ A. Let v0 ∈W and assume that

i) v0 ∧ v1 ∧ v2 is, up to multiples, the only decomposable form in A ∩ Fv0 (this
translates to the fact that [v0] lies on P(W ) but on no other planes inside YA);

ii) dim(A ∩ Fv0) = 2;

iii) v0 ∧ v1 ∧ v2 is, up to multiples, the only form in A ∩ Fv0 ∩ SW , where

SW =
∧2 W ∧ V ⊂

∧3 V.

Then there exist local analytic coordinates y1, . . . , y5 near [v0] such that YA[2] locally
is given by

YA[2] =
loc
V (y1y2, y4, y5).

Moreover the coordinates can be taken so that

CA,W =
loc
V (y1, y2, y4, y5).
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This is enough to prove the result we are looking for about the desingularization
of YA[2].

Corollary 2.28. i) Let A ⊂
∧3 V be a Lagrangian subspace, and suppose that

there exist a finite number W1, . . . ,Wn of 3-planes inside V such that
∧3 Wi ⊂

A. Then the intersection P(Wi) ∩ P(Wj) consists of a single point pij.

ii) Corresponding to Wi we have the curve

Ci = CA,Wi ⊂ YA[2].

Suppose that at each point pij Assumption 2.19 is satisfied. Assume moreover
that

dimA ∩ SWi = 1 for each i = 1, . . . , n,

where

SW =
∧2 W ∧ V ⊂

∧3 V.

Finally suppose that

YA[3] = ∅.

Let ỸA[2] be obtained by blowing up all the points pij . Then the strict transform

C̃i of Ci is smooth for every i. Moreover the blowup of ỸA[2] at each of the
(disjoint) curves C̃i is smooth.

Proof. Under the hypothesis A contains a finite number of decomposable forms, up
to multiples. We already know that

dim(Wi ∩Wj) ≥ 1.

Assume that dim(Wi ∩Wj) = 2 and let

Wi ∩Wj = 〈v0, v1〉.

Complete this to bases {v0, v1, v2} and {v0, v1, v3} of Wi, Wj respectively. Then the
form

v0 ∧ v1 ∧ (λv2 + µv3) ∈ A

for each choice of λ, µ, contradiction. So i) is proved.

To prove ii) we just remark that under our hypothesis YA[2] is smooth far from
the curves {Ci} and singular along them. The curve Ci is smooth outside the pij
by Proposition 2.17 and has a node at each point pij by Proposition 2.20. It follows
that it can be desingularized by a single blowup at each pij .

The singularities of YA[2] are described by Propositions 2.26 and 2.27, in the
points pij and in the other points respectively. A local computation shows that the
process above will desingularize YA[2].

To be sure, we show the computation around some point pij , the other case
being easier. By Proposition 2.26 we can assume that YA[2] is locally given in C4

by

y1y2 = y3y4 = 0,
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while the two curves Ci and Cj meeting at pij are given by

y1 = y2 = y3y4 = 0 and

y1y2 = y3 = y4 = 0

respectively. Let C̃4 denote the blowup of C4 at the origin; then explicitly

C̃4 =
{(

(y1, . . . , y4), [Y1, . . . , Y4]
)
| yiYj = yjYi for each i, j

}
⊂ C4 × P3.

This is covered by the four charts

Uj = {Yj 6= 0}, for j = 1, . . . , 4.

We perform the verification on U1. There we can define

zj =
Yj
Y1
, for j = 2, 3, 4,

and use (y1, z2, z3, z4) as local coordinates.
We note that Ci doesn’t meet the chart U1. As for the strict transforms of YA[2]

and Cj , they are as follows. The inverse image of YA[2] is cut out by the equations

y2
1z2 = y2

1z3z4 = 0,

so after factoring out the exceptional divisor E given by y1 = 0 we see that ỸA[2] is
defined by

z2 = z3z4 = 0.

In a similar fashion the inverse image of Cj is defined by

y2
1z2 = y1z3 = y1z4 = 0,

so C̃j has equations
z2 = z3 = z4 = 0.

It follows that ỸA[2] is just the product of C̃j for a node, so blowing up C̃j will
desingularize it.



Chapter 3

Quartic surfaces

3.1 An interesting degeneration of double EPW sextics

In this section we present some degenerate examples of double EPW sextics. We
shall in next section that double EPW sextics can degenerate to a Hilbert scheme
S[2], where S is a quartic surface in P3. In particular, since S is a K3, this will
imply that double EPW sextics are irreducible symplectic varieties, and will allow
us to compute their topological invariants.

Inside a double EPW sextic XA we can find the surface

ZA = f−1
A (YA[2]),

which can also be regarded as the fixed locus of the covering involution. Under this
process, ZA degenerates to the surface Bit(S) of bitangents to S. This allows us
to translate some questions about the geometry of XA and ZA, which are invariant
under deformation, to questions about quartic surfaces and their bitangents, which
are somewhat more concrete. This section and the following are therefore a moti-
vation for the rest of the present chapter, where we study quartic surfaces in some
more detail.

3.1.1 An involution over S [2]

We begin with a classical example of Beauville, from [Bea83a, sec. 6]. Let U be a
vector space of dimension 4 and let

G = Gr(2, U)

be the Grassmannian of lines in P(U) = P3. Under the Plücker embedding

G �֒ P(
∧2 U) = P5

G is defined by the single equation

g(α) = α ∧ α = 0,

hence it is a quadric.
Now let S ⊂ P3 = P(U) be a quartic. Each cycle Z ∈ S[2] determines a line

ℓZ ⊂ P3: either the line joining the two points in Z, if it is reduced, or the line

55
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passing through the unique point in Z with the given tangent direction. This yields
a morphism

−−−�
7−−−−�S[2] G,

Z ℓZ

which is 6 : 1; indeed the generic line ℓ cuts S in 4 distinct points, so it has
(4

2

)

preimages.
Assume that S does not contain any line. There is an involution

i : S[2] � S[2]

which makes the following diagram commute:

−−−−�ϕ −−�i −−−−� ϕS[2] S[2].

G

The involution i is defined as follows. Let subscheme Z determine the line ℓZ ; then

ℓZ · S = Z + Z ′

for some subscheme Z ′ ⊂ S of length 2. We define i(Z) = Z ′.
Now assume that S contains a line ℓ; then S[2] contains P = ℓ(2), which is

isomorphic to P2. In this case one can define the involution i as above, but it
becomes only birational, since it is not defined along P . One can easily check that
in this case i is in fact a biregular involution, followed by the Mukai flop along P .
The construction generalizes to the case where S contains a finite number of lines;
for details we refer to [Bea83a].

The case we are more interested in is when S does not contain lines, but assumes
some singularity. First suppose that S0 is a quartic with an ordinary double point
p, and let S be the blowup of S0 at p, so that S is smooth.

Lemma 3.1. S is a K3 surface.

Proof. First we check that S has trivial canonical. For this let

ǫ : P̃3 � P3

be the blowup at p, so that S ⊂ P̃3. Let E be the exceptional divisor of ǫ, and
denote

O
P̃3

(1) = ǫ∗OP3(1).

The relative canonical divisor K
P̃3/P3

is given by

K
P̃3/P3

= V (det ǫ).

A local computation shows that det ǫ vanishes of order 2 on E, hence

K
P̃3

= ǫ∗(KP3) + 2E = O
P̃3

(−4) + 2E.
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Moreover S0 is a section of OP3(4), and since an equation for S0 vanishes of order
2 at p we obtain

S + 2E = ǫ∗(S0) ∈ |O
P̃3

(4)|.

By adjunction we can compute

KS =
(
K

P̃3
+ S

)
S

=
(
O

P̃3
(−4) + S + 2E

)
S

= 0.

We can apply Lefschetz theorem on hyperplane section to see that S0 is simply
connected. The theorem applies even if S0 is singular, for instance in the form of
[Mil69, Cor. 7.3]. Using, for instance, Mayer-Vietoris relative to a decomposition

S0 = (S0 \ {p}) ∪ U,

where U is a small neighbourhood of p, one easily sees that

ǫ∗ : H1(S) � H1(S0)

is an isomorphism, hence b1(S) = 0 and S is a K3.

We now want to exhibit a map analogous to ϕ, with S[2] in place of S
[2]
0 . Let

ℓ ⊂ S be the exceptional divisor; then ℓ is a conic, hence a smooth rational curve.
We let

P = ℓ(2) ⊂ S[2],

then P is isomorphic to P2. We have a rational map

ϕ′ : S[2]
99K G

defined as above; since all points of ℓ are mapped to p, ϕ′ is undefined exactly on
P . Let X be the Mukai flop of S[2] along P ; we claim that we have a regular map

ϕ : X � G,

such that

−−−−�ϕ′

����� −−−−� ϕS[2] X

G

commutes.
We only have to define ϕ at points of P∨. By definition of the Mukai flop, X is

obtained by S[2] by first blowing up along P and then contracting the exceptional
divisor E along the other fibration. Let us call X̃ the blowup of S[2] along P . Then
we have

E = PNP/S[2],

so a point of E is a couple (Z, [v]), where

Z ∈ ℓ(2) and v ∈ TZS
[2]/TZP.

Assume for simplicity that Z = q1 + q2 is reduced; then

TZS
[2]/TZP ∼= (Tq1S/Tq1ℓ)⊕ (Tq2S/Tq2ℓ).
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The kernel of the differential

dǫqi : TqiS � TpP
3

is exactly Tqiℓ, so the differential identifies each factor Tq1S/Tq1ℓ with its image,
which is exactly the (tangent of the) line trough p corresponding to the direction
qi ∈ ℓ.

The lines corresponding to q1 and q2 span a plane Π ⊂ P3 through p, and the
direction [v] identifies a line ℓZ ⊂ Π. The construction carries over to the case where
Z is not reduced, so finally we get a regular map

ϕ̃ : X̃ � G

sending Z to ℓZ .

Following the definitions, one can see that ϕ̃ is constant along the fibers of the
other blowup X̃ � X, so it descends to the desired regular morphism

ϕ : X � G.

One can finally extend this construction to cover the case where S0 has finitely
many ordinary double points; in this case one has to introduce a Mukai flop for
each singular point. We do not describe the details, as they are only notationally
heavier than in the case of one point.

3.1.2 Triple quadrics as EPW sextics

We now discuss in which way the above examples may be seen as degenerations of
double EPW sextics; this construction is present in [O’G]. Recall that our quartic
surface S lives inside P(U), where U is a vector space of dimension 4. We take the
vector space V =

∧2 U . Then inside P(
∧3 V ) we have the Grassmannian Gr(3, V ),

by the Plücker embedding.

To each [u] ∈ P(U) we can associate the subspace

u ∧ U ∈ Gr(3,
∧2 U);

this gives an embedding

ι+ : P(U) �֒ Gr(3, V ) ⊂ P(
∧3 V ).

Remark. Any two subspaces in the image of ι+ intersect along a line; more precisely
ι+([u0]) and ι+([u1]) intersect along the line generated by u0 ∧ u1. If we see the
Grassmannian Gr(3, V ) as a parameter space for planes in P(V ), this means that
we have a 3-dimensional family of planes, parametrized by P(U), such that any two
planes in the family have non-empty intersection.

Lemma 3.2 (O’Grady). ι+(P(U)) spans a subspace of P(
∧3 V ) which corresponds

to a isotropic subspace

A+(U) ⊂
∧3 V.
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Proof. Let
α, β ∈ A+(U) ⊂

∧3 V ;

we have to check that α ∧ β = 0. Of course it is enough to verify this on a set of
generators; hence we can assume that

[α] = ι+(u0), [β] = ι+(u1)

for some [u0], [u1] ∈ P(U). By the remark above

V ′ = ι+(u0) + ι+(u1) ( V,

so α ∧ β ∈
∧6 V ′ = 0.

We’d like to verify that A+(U) is actually Lagrangian. In order to do this we
need to introduce the symmetric construction. This is easy: since dim V = 6, we
have a canonical isomorphism

Gr(3, V ) ∼= Gr(3, V ∨).

Now we can repeat the construction using U∨ in place of U , and then use the
identification above. In the end we find an embedding

ι− : P(U∨) �֒ Gr(3, V ).

By the same argument, any two planes in the image of ι− are concurrent, and
so we get another isotropic subspace A−(U) ⊂

∧3 V . We wish to prove that

∧3 V = A+(U)⊕A−(U); (3.1)

in particular this says that both A+(U) and A−(U) have dimension 10, hence they
are Lagrangian.

The above decomposition will be more apparent if one regards all involved vector
space as SL(U)-modules. Let L be the line bundle on Gr(3, V ) which induces the
Plücker embedding. One checks directly that

ι∗+(L) ∼= OP(U)(2).

By duality it follows that
ι∗−(L) ∼= OP(U∨)(2).

Now the global sections of the involved line bundles are

H0(P(U),OP(U)(2)) = Sym2 U∨,

H0(P(U∨),OP(U∨)(2)) = Sym2 U,

H0(Gr(3, V ),L) = H0(P(
∧3 V ),OP(∧3V )(1)) =

∧3 V ∨ =
∧3(

∧2 U∨),

and these are all SL(U)-modules. Moreover the embeddings ι+ and ι− are equiv-
ariant under the action of SL(U), hence the induced maps on sections

ι∗+ : H0(Gr(3, V ),L) � H0(P(U),OP(U)(2)) and

ι∗− : H0(Gr(3, V ),L) � H0(P(U∨),OP(U∨)(2))
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are morphisms of SL(U)-modules. Since both Sym2 U∨ and Sym2 U are irreducible,
these maps must be surjective.

Comparing the dimensions, we obtain an isomorphism of SL(U)-modules

∧3(
∧2 U∨) ∼= Sym2 U∨ ⊕ Sym2 U, (3.2)

which must then be the decomposition into irreducible factors of
∧3(

∧2 U∨).

It follows that any section of L on Gr(3, V ) which restricts to 0 both on the
image of ι+ and on the image of ι− is itself 0. In other words the image of ι+ and
the image of ι− span the whole P(

∧3 V ). We deduce that the decomposition given
by (3.1) holds, and in particular A+(U) and A−(U) are both Lagrangian.

Associated to a Lagrangian subspace we have an EPW sextic. This is given by
the following

Proposition 3.3 (O’Grady). Let the notation be as above. Then

YA+(U) = YA−(U) = 3G.

Proof. We omit the check that Y = YA+(U) is not the whole P(V ). By construction

Y is invariant under the action of SL(U) on V =
∧2 U . This group acts transitively

on the Grassmannian G; since Y meets G, it contains the whole G. Actually, since
SL(U) is connected, this holds true for every irreducible component of Y .

It follows that Y = kG for some k, and comparing the degrees we find k = 3.

Since any two smooth quadric in P(V ) are projectively equivalent, we see that
for every smooth quadric Q ⊂ P(V ) the non-reduced sextic 3Q is EPW.

3.2 The deformation argument

Now we want to connect the preceding examples. Namely, with the notation of
the preceding section, we want to prove that as the generic Lagrangian subspace A
degenerates to A+(U), the corresponding double EPW sextic XA deforms to S[2],
and the fixed locus of the involution ZA deforms to Bit(S).

3.2.1 The smooth case

The result is the following.

Proposition 3.4. Let S ⊂ P3 be a smooth quartic. Then there exists a smooth
complex variety U of dimension 20 with a marked point 0 and a family

πX : X � U

such that

i) X0
∼= S[2] and

ii) there exists a divisor D ⊂ U such that Xt = XA(t) is a smooth double EPW
sextic for each t ∈ U \D.
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Corollary 3.5. There exists over U a family

πZ : Z � U

such that Z0
∼= Bit(S) and for t ∈ U \D

Zt ∼= ZA(t)
∼= YA(t)[2].

Corollary 3.6. Every smooth double EPW sextic is an irreducible symplectic vari-
ety.

Proof of Corollary 3.5. By the proof of Proposition 3.4, the total space X admits
an involution. It is enough to take as Z the fixed locus of the involution of X .

Proof of Corollary 3.6. Proposition 3.4 tells us that there exist some smooth double
EPW sextic which is deformation equivalent to S[2]. Since LG(

∧3 V ) is irreducible,
its Zariski open set LG(

∧3 V )0 is connected, hence each double EPW sextic is
deformation equivalent to each other. Actually a global family of double EPW
sextics over LG(

∧3 V )0 does not exist, but such families exist locally.

It follows that every smooth double EPW sextic is a deformation of S[2], in
particular it is an irreducible symplectic variety.

Proof of Proposition 3.4. Let V be a local semiuniversal deformation space of S[2];
by the results of Section 1.3 it is smooth of dimension 21. Let h ∈ Pic(S[2]) be
the divisor class associated to the map f . By the local Torelli theorem the locus
U ⊂ V parametrizing those deformations such that h remains of type (1, 1) (and so
remains the class of a divisor) is a smooth hypersurface. After restricting U we can
assume that we have a family

πX : X � U

of polarized irreducible symplectic varieties (Xt, ht) such that (ht, ht) = 2 for the
Beauville-Bogomolov form.

Let ϕ be the Beauville involution on S[2]. By the remark in section 4.1.3 of
[O’G05b] this extends to an involution ϕt of Xt. Consider for every t ∈ U the
quotient

Yt = Xt/ϕt.

There is a divisor H ′t on Yt such that

ϕ∗t (c1(H ′t)) = ht.

This is because the involution fixes ht; more precisely

ϕ∗t : H2(Xt,Z) � H2(Xt,Z)

is the reflection in the span of ht, see [O’G05b, Sec. 4.1.3].

Since Y ′ has terminal singularities and KY ′ = 0, we can apply a variant of the
Kodaira vanishing theorem for singular varieties, for instance Theorem 1− 2− 5 in
[KMM87], to conclude that

hi(Yt,H
′
t) = 0
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for all i > 0. It follows that h0(Yt,H
′
t) = χ(Yt,H

′
t). Let Ht be the pullback of H ′t;

we claim that

χ(Xt,Ht) = χ(Yt,H
′
t)

for all t ∈ U . Indeed by flatness we can prove it just when t = 0, and in this case it
is clear. Applying Kodaira vanishing on Xt we conclude that

h0(Xt,Ht) = h0(Yt,H
′
t). (3.3)

We claim that there is some t ∈ U such that (Xt, ht) satisfy the conclusions of
Proposition 3.2 of [O’G08b]. Indeed we have (1) by definition, and (5) holds for
every t by Proposition 3.6 of the same paper.

Moreover (2) and (4) are satisfied outside a countable union of proper subvari-
eties of U by the local Torelli theorem. Finally (3) and (6) follow formally from the
other points, as in the proof of Proposition 3.2 of the same paper.

O’Grady then classifies polarized irreducible symplectic varieties numerically
equivalent to S[2] (this means that their H2, endowed with the Beauville-Bogomolov
form, are isomorphic lattices, and that the Fujiki constants are the same) which
satify the conclusion of Proposition 3.2. Namely let (X,H) be such a polarized
variety, and consider the map

f : X 99K |H|∨.

Then |H|∨ ∼= P5, and there are two cases for f . Either it is birational on the image
Y , or it is everywhere defined and the map

f : X � Y ⊂ |H|∨

is the quotient by an anti-symplectic involution on X, and Y ⊂ |H|∨ is a sextic.

Now apply all this with X = Xt. We want to exclude the first case, and we
proceed as follows. Let

π : Xt � Yt = Xt/ϕt

be the projection. We have an injective pull-back map

π∗ : H0(Yt,H
′
t) � H0(Xt,Ht).

By (3.3) the dimensions on the two sides are the same, so π∗ is an isomorphism.

But then the map f factors through the projection

X � Y ′,

so it cannot be birational.

The condition of having a 2 : 1 map on a sextic of P5 is open by [O’G05b, Prop
3.3], so it follows that for t outside a divisor D the same conclusion holds. Finally
O’Grady shows in [O’G06] that the sextics thus obtained are all EPW sextics, so
we are done.
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3.2.2 The singular case

We now want to extend the result to the case where S has finitely many singular
points.

Proposition 3.7. Let S0 ⊂ P3 be a quartic with k nodes and no other singularities.
Then there exists a smooth complex variety U with a marked point 0 and a family

πX : X � U

such that

i) X0 is birational to S
[2]
0 and

ii) for t ∈ U generic, Xt = XA(t) is a singular double EPW sextic; more precisely

A(t) contains
∧3Wi for k distinct choices of Wi ⊂ V of dimension 3.

Moreover one has a family

πZ : Z � U

such that

i) Z0 is birational to Bit(S0) and

ii) Zt is isomorphic to ZA(t)
∼= YA(t)[2] for t ∈ U generic.

Before turning to the proof, we give some reference diagrams, which summarize
the diverse varieties and maps introduced in this section and in Subsection 3.1.1.
To minimize the clutter, there are three different diagrams.

−−−−−�p1

−−−−−−�p2

−֒−� �������� −֒−�
−−−−−−�g0

⊂ �������� ⊂ −−−−−−�f ⊂

X̃

ℓ(2) =P P∨

S[2] X X̂0

D′ D S

(3.4)

−−
−� g0

−−−−−−�ϕH

−−
−−
−−
−�ϕ̂0

6:1

−−−−−−� −−
−�ψ0

X Gr(1,P3) ⊂ |H|

S ⊂X̂0 Ŷ0= X̂0/̂i0

(3.5)

−−� g0

−−−−−−�ϕHt

−−
−−
−−
−�ϕ̂t

2:1

−−−−−−� −−

�ψtXt Yt⊂ |Ht|

St ⊂X̂t Ŷt= X̂t/̂it

(3.6)

We also advise the reader to have a look at Remark 2.5, since the aim of the
present subsection is precisely to invert the construction described there.
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Lemma 3.8. Let S be a smooth connected surface, f : D � S a fibration with
fiber P1, and assume we have a local deformation πD : D � U of D over the base U .
Then, up to restricting U , each fiber Dt has the structure of a fibration ft : Dt � St,
where St is a deformation of S.

Proof. Let P be the Hilbert polynomial of a fiber of f and consider the relative
Hilbert scheme

πH : H = HilbP (D/U) � U

parametrizing subvarieties of the fibers of πD with Hilbert polynomial P . It is
known that H is proper over U .

Let ℓ be a fiber of f , and regard ℓ as a point of π−1
H (0). The fibrations f and

πD respectively show that

Nℓ/D ∼= O
2
ℓ and ND/D ℓ

∼= Oℓ.

Since
Ext1(Oℓ,O

2
ℓ ) = 0,

the exact sequence

−−−� −−−� −−−� −−−�0 Nℓ/D Nℓ/D ND/D ℓ
0

shows that Nℓ/D ∼= O
3
ℓ , in particular

h0(ℓ,Nℓ/D) = 3 and h1(ℓ,Nℓ/D) = 0.

From deformation theory it follows that H is smooth of dimension 3 at ℓ.
Since this holds for all ℓ in the central fiber we see that H is smooth along the

central fiber. By properness of H, the singular locus of H projects to a closed subset
of U not containing 0, so up to restricting U we can assume that H is smooth.

The Hilbert scheme H is endowed with a universal family C with maps

−−−−�α −−−−�βC
H D.

Here C comes with a proper map πC : C � U , and the maps α and β commute with
the projections to U .

By hypothesis S is isomorphic to a component of π−1
H (0); up to replacing H with

one of its connected (hence irreducible) components we can assume that π−1
C (0) ∼=

D = π−1
D (0). In other words β is an isomorphism over 0. As above we can use

properness of C and D over U to assume that β is an isomorphism everywhere.
Then the map α ◦ β−1 : D � H is the required fibration; more precisely letting

St = π−1
H (t) this restricts to a map ft : Dt � St for every t ∈ U .

Assume that S0 has only one node p, and let S be the blowup of S0 at p, so that
S is a K3 surface. We let ℓ be the exceptional divisor of the blowup; since p is a
node it is a smooth conic, in particular isomorphic to P1.
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The symplectic variety S[2] contains P = ℓ(2) ∼= P2; let X be the Mukai flop of
P . We want to show that X contains a divisor D with a fibration f : D � S with
fiber P1.

Let D′ ⊂ S[2] be the divisor given by

D′ = {Z ∈ S[2] | Supp(Z) ∩ ℓ 6= ∅}.

There is a rational fibration
ψ : D′ 99K S

which can be described as follows. The generic point q+r ∈ D′ has q ∈ ℓ and r /∈ ℓ;
we set ψ(q + r) = r. The generic fiber of ψ is ℓ ∼= P1.

In the notation of Section 1.4 we have

[D′] = µ̃(ℓ) ∈ H2(S[2]).

We also let
H ′ = µ̃(OS(1)) ∈ H2(S[2]).

Then, since µ̃ is an isometry, we have

q(D′,D′) = −2, q(D′,H ′) = 0.

We let D,H be the divisors on X corresponding to D′,H ′ respectively.

Lemma 3.9. The rational fibration ψ induces a regular fibration

f : D � S.

Proof. Let X̃ be the blowup of S[2] along P , so we have a diagram

−−−−�p1

−−−−�p2

X̃= BlP S
[2]

S[2] X.

Let D̃ ⊂ X̃ be the strict transform of D.
Let q + q′ ∈ P = ℓ(2) with q 6= q′. Then we have the identification

p−1
1 (q + q′) = P(NP/S[2])q+q′ ∼= P

(
(Nℓ/S)q ⊕ (Nℓ/S)q′

)
.

We have already remarked that, via the differential, (Nℓ/S)q is identified with the
line rq through p corresponding to q itself, and the same remark applies to q′. So a
point x ∈ p−1

1 (q + q′) defines a line l(x) in the plane spanned by rq and r′q.

When x ∈ D̃ the line l(x) is in the tangent cone to S0 in p, hence a point of ℓ.
We let ψ̃(x) be this points. If we let

ψ̃(x) = ψ(p1(x))

when p1(x) /∈ P , we obtain a map

ψ̃ : D̃ � S
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which resolves the indeterminacy of ψ. Actually we did not cover the case of a point
2q ∈ P , but that is easy: we can just let ψ̃(x) = q for any x ∈ π−1

1 (q); this fits well
with our definition when q 6= q′.

It remains to check that ψ̃ descends to a map from D, and in order to do this
we have to identify the fibres of p2. The dual plane P∨ can be identified with the
P2 parametrizing lines through p; in this way the fibration over P∨ is just the map
described above, sending x ∈ p−1

1 (P ) to the line l(x).

Indeed let E ⊂ X̃ be the exceptional divisor, so that E can be identified with
the incidence variety inside P × P∨. The map

l : E � {lines through p}

is a P1 fibration over P2, and the only such fibrations are the projections on P and
P∨.

So we see that by construction ψ̃ descends to D.

Thanks to the two lemmas we conclude the following. Consider the locus U
inside the local semiuniversal deformation space of X parametrizing deformations
which keep D and H of type (1, 1). By the local Torelli theorem U is smooth of
dimension 18. For t ∈ U denote Xt the corresponding deformation of X; we have
deformations Dt of D and Ht of H inside Xt.

More precisely we have a family πX : X � U with two divisors D and H which
restrict to Dt and Ht respectively on each fiber. Moreover we have a fibration
f : D � S with fiber P1, which restricts to fibrations ft : Dt � St on each fiber; for
t = 0 this gives the fibration D � S of Lemma 3.9.

We now analyze in more detail the family X . We will allow ourselves to restrict
U when necessary.

Lemma 3.10. The divisor H is big and nef. In particular

H i(X,H) = 0

for i > 0.

Proof. We have shown in Section 3.1 that sections of H define a regular map

ϕH : X � P5;

in particular H is base-point-free, and so it is nef. Since q(H,H) > 0 it is also big.

The last claim follows from Kawamata-Viehweg vanishing and the fact that KX

is trivial.

Corollary 3.11. For every t ∈ U we have

hi(Xt,Ht) = 0 for i > 0 and h0(Xt,Ht) = 6.

Proof. We know that this holds for t = 0. By semicontinuity we have hi(Xt,Ht) = 0
for all small t. Moreover by flatness we see that χ(Xt,Ht) is constant, and so
h0(Xt,Ht) is constant too.
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Now we consider the (relative) linear system defined by H. We have just shown
that the sheaf (πX)∗(H) has constant rank 6; hence it is a vector bundle on U . We
have a map

ϕH : X 99K P((πX)∗(H)∨),

which restricts to evaluation of sections on each fiber. We know that on the central
fiber

ϕH : X � P(H∨)

does not have base points; since the base locus of ϕH is closed and the projection
πX is proper we see that

ϕHt : Xt � P(H∨t )

does not have base points for all small t; we restrict U accordingly, so that this
holds for all t ∈ U .

Consider now the Stein factorization of ϕHt , given by

−−−�gt−−−−�ϕHt

−−
−�̂

ϕt

Xt |Ht|∼= P5.

X̂t

Lemma 3.12. The variety X̂t is obtained from Xt by contraction of Dt along the
fibers of ft : Dt � St.

Proof. By definition of the Stein factorization, gt has connected fibers and ϕ̂t has
finite fibers. So we just need to prove the fibers of ft are the only curves contracted
by ϕHt . A curve C ⊂ Xt is contracted by ϕHt if and only if Ht · C = 0, and this
happens exactly for the fibers of ft.

Remark. There is another way to obtain this diagram, using the Cone theorem
([KM98, Theorem 3.7]). Since KXt is trivial we work with the pair (Xt,

1
2Dt); this

is Kawamata-log-terminal since Xt and Dt are smooth. By the theorem, the Dt-
negative part of the Mori cone is generated by the classes of rational curves on Xt.
Any such curve C is contained in Dt, so it is either a fiber of ft or it projects to a
rational curve on S. However in the second case the intersection Ht · C > 0.

This shows that the hyperplane Ht = 0 cuts the Mori cone precisely on the
ray containing the class of the fibers of ft. We can then perform the corresponding
extremal contraction to obtain a variety X̂t. Since Ht = 0 on the contracted ray, the
associated line bundle OXt(Ht) descends to X̂t. Moreover every section of OXt(Ht)
is constant along the fibers, since these are rational curves and OXt(Ht) has degree
0 on them. We deduce that every section in H0(Xt,OXt(Ht)) comes from X̂t, so
ϕHt factorizes through X̂t.

Lemma 3.13. For generic t ∈ U the map

ϕ̂t : X̂t � P5

is 2 : 1 on a sextic Yt of P5.
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Proof. We have verified that for t = 0 the map is 6 : 1 on a quadric,namely the
Grassmannian Gr(1,P3) embedded by the Plücker map. In particular

H4
0 = 12,

and since this is constant with t we get H4
t = 12 for all t. So it is enough to show

that ϕ̂t is 2 : 1 for generic t.

Consider the rational involution S[2]
99K S[2] defined in Section 3.1. This induces

a regular involution

i : X � X.

By the remark in section 4.1.3 of [O’G05b] this extends to an involution it of Xt. One
verifies that it sends each fiber of ft to itself, thereby defining a regular involution

ît : X̂t � X̂t.

We let Ŷt be the quotient of X̂t by this involution. The same argument as in the
proof of Proposition 3.4 shows that we have a factorization

−−−�−−−−�ϕ̂t

−−
−�ψtX̂t |Ht|∼= P5.

Ŷt

Now the map

ψ0 : Ŷ0 � P5

is 3 : 1 on a quadric, so for every t the map ψt can either be 3 : 1 or birational. We
only need to show that the former only happens for t in a Zariski closed subset of
U .

If ψt is 3 : 1 there is a ramification divisor Et ⊂ Ŷt; indeed Ŷt is a normal variety
with K

Ŷt
= 0. Let E′t ⊂ Xt be the preimage of Et. This is a divisor which is a

deformation of E′0. But by the local Torelli theorem the subset of U for which E′0
remains of type (1, 1) is a divisor in U .

Corollary 3.14. For generic t ∈ U the variety X̂t is a double covering of an EPW
sextic Yt.

Proof. We have constructed a map

ϕt : X̂t � P5

which is 2 : 1 on a sextic. We need only to show that the sextic thus obtained is an
EPW sextic.

For this we can adapt the arguments of [O’G06, Theorem 5.2].

So we see that from the smooth irreducible symplectic variety Xt one obtains
a singular EPW sextic by first contracting the divisor Dt along the fibers of the
fibration ft and then taking the quotient by the involution.

We need one more
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Lemma 3.15. Assume that the sextic YA contains a plane Π = P(W ). If

i) YA is singular along Π;

ii) Π 1 YA[2];

iii) the singular locus of YA has dimension at most 2

then
A ⊃

∧3W.

Proof. Let [w] ∈ P(W ) \ YA[2]. By the description of the singularities of YA we
know that there exists some W ′ ⊂ V of dimension 3 such that

∧3 W ′ ⊂ A and
[w] ∈ P(W ′).

AssumingW ′ never equals W we find a 1-dimensional locus of subspacesW ′ ⊂ V
such that

∧3 W ′ ⊂ A; but then the singular locus of Yt has dimension at least 3.

Now we can finish the proof of Proposition 3.7, showing that the EPW sextics
Yt obtained above are actually in Σ. First we remark that S is a degree 2 K3, with
natural 2 : 1 map to P2, namely projection from p. This map is induced by the
divisor h− ℓ, where h ∈ OS(1). By construction both h and ℓ remain of type (1, 1)
in St, so each St is a degree 2 K3 surface.

More precisely we can observe that St, being the contraction of Dt, has a natural
embedding in X̂t.

Lemma 3.16. If one considers St ⊂ X̂t, then the degree 2 map above is just the
restriction ϕt St

.

Proof. It is enough to check this for t = 0, so we only need to show that the divisor
Ĥ0 on X̂0 which induces ϕ0 restricts to h − ℓ on S. Recall that Ĥ0 is induced by
the divisor H on X. The map

ϕ0 D
: D � P2

is just the map l appearing in the proof of Lemma 3.9, so it contracts the fibers of
the fibration

f : D � S;

this gives the desired map S � P2. Keeping track of the various constructions one
realizes that this is just projection from p.

Corollary 3.17. Let Yt be one of the EPW sextics described above, say Yt = YA.
Consider the plane Π = ϕt(St), say Π = P(W ) for some W ⊂ V . Then

∧3W ⊂ A.

Proof. We want to apply Lemma 3.15. First, we have to check that Π 1 YA[2]; this
amounts to saying that St is not contained in the ramification locus of the projection
X̂t � Yt. This holds because the map ϕt has degree 2 both on X̂t and on St.

Second, we need to show that Yt is singular along P . Indeed X̂t is singular along
St; this can be checked locally using the fact that X̂t is the contraction of the fibers
of ft. On the generic point x ∈ St the covering ϕt is not ramified, hence the germ
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of X̂t along x is the same as the germ of Yt along ϕt(x), showing that Yt is singular
in ϕt(x). Since the singular locus is closed we deduce that Yt is singular along Π.

Finally, the same argument shows that Yt is singular along the branch locus of
ϕt and the image of St. Since St is a surface, if we show that the branch locus of ϕt
has dimension at most 2, we deduce that the singular locus of Yt has dimension 2.

Consider the involution it of Xt; this is an antisymplectic involution, hence the
fixed locus Zt of it is an isotropic subvariety of Xt. In particular Zt has dimension
at most 2, and the branch locus of ϕt is just the image ϕHt(Zt), so we are done.

We have now shown that Yt is a member of Σ, thereby proving Proposition
3.7.

We want to be more precise in the case k > 1. Given a point p ∈ P3 consider the
set Hp of lines through p. This can be regarded as a plane inside the Grassmannian

Gr(1,P3) ⊂ P6,

so it yields a point Hp ∈ Gr(2,P6). This gives a map

−−−�
7−−−−−−�ρ : P3 Gr(2,P6).

p Hp

By direct computation one sees that ρ is just the composition of the second Veronese
map

v : P3 � P10

and a linear embedding P10 �֒ P19.

One can see this without computations in the following way. Let for a moment
P3 = P(U). Then by the results of the previous Section, the map ρ is just the
composite of the second Veronese map with the inclusion

P(Sym2(U)) �֒ P
(∧2(

∧3(U))
)

induced by the decomposition (3.2).

Corollary 3.18. Assume S0 ⊂ P3 is a quartic with k nodes p1, . . . , pk. Assume
that the images of p1, . . . , pk under the second Veronese map v are projectively in-
dependent.

Let X̂t be one of the singular double EPW sextics constructed above, say X̂t
∼=

XA(t), and let W1, . . . ,Wk ⊂ V be the subspaces of dimension 3 such that

∧3 Wi ⊂ A(t).

Then W1, . . . ,Wk, regarded as points on

Gr(3, V ) ⊂ P(
∧3 V ),

are projectively independent.
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Proof. Let S be the blowup of S0 at p1, . . . , pk and let Hi
∼= P2 be the set of lines

through pi. Consider the projection from pk

πk : S � Hi;

this is 2 : 1 map, and we have shown that it deforms to a 2 : 1 map St � P(Wi);
hence it is enough to verify that H1, . . . ,Hk are projectively independent. But this
is exactly our hypothesis.

3.3 The surface of bitangents to a quartic

In the present section we recall some known results about quartic surfaces in P3,
with a special regard towards the surface of bitangents. The main source here is
[Wel81]. We do not include proofs of the results, and refer to the original thesis
instead.

Let S ⊂ P3 be a quartic surface, having at most ordinary double points as
singularities, and let

Bit(S) ⊂ Gr(2, 4)

be the locus of lines bitangent to S. It is easy to check that Bit(S) is a surface.

Bit(S) is endowed with a natural double covering, ramified over the set of lines
contained in S. To see this consider the double covering

π : X � P3

ramified along S. This is a threefold whose singularities are in bĳective correspon-
dence with those of S. We also let

OX(1) = π∗OP3(1).

Definition 3.1. A curve ℓ ⊂ X is called a line if it is rational and

ℓ · OX(1) = 1.

It easy not difficult to check that if ℓ ⊂ X is a line, then π(ℓ) is a bitangent to
S. Viceversa if r ∈ Bit(S) and r is not contained in S, the inverse image π−1(r)
splits as ℓ1 ∪ ℓ2, where ℓ1, ℓ2 are lines on X. We will check something similar in a
more geometric context in later sections; instead of X we will have a cubic threefold
birational to it. For many purposes the double covering X is a good substitute of
this cubic threefold.

Let F be the Hilbert scheme parametrizing lines on X. Thanks to the above
facts, one has a double covering

ρ : F � Bit(S),

ramified over the set of lines in S. In particular if S does not contain any line, the
covering ρ is unramified.

Now assume that S is smooth. Then Welters computes the Hodge numbers of
Bit(S). The result is as follows:
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Theorem (Welters). Let S be a smooth quartic surface. The Hodge numbers of
Bit(S) are:

h0,0(Bit(S)) = 1, h1,0(Bit(S)) = 0, h2,0(Bit(S)) = 45.

In particular one sees that Bit(S) is connected and regular. Applying Corollary
3.5 we find:

Corollary 3.19. If A ∈ LG(
∧3 V )0, the surface YA[2] is regular.

Welters goes on and computes the Hodge numbers of F too, these are as follows.

Theorem (Welters). Let S be a smooth quartic surface not containing a line, F
the double covering of Bit(S) described above. The Hodge numbers of F are:

h0,0(F ) = 1, h1,0(F ) = 10, h2,0(F ) = 101.

Again we see that F is connected. In particular the double covering ρ is not
trivial; hence it is defined by nontrivial 2-torsion class

κ ∈ H2(Bit(S),Z).

The other information that we need is the canonical class of Bit(S). These is
again computed by Welters:

Theorem (Welters). Let h ∈ H2(Bit(S),Z) be the polarization given by the Plücker
embedding. Then the canonical class of Bit(S) satisfies

c1(KBit(S)) = 3h+ κ.

Remark. The above result is accordance with the result we found about the canon-
ical class of YA[2] in Proposition 2.8. But our result only determined the canonical
class up to a 2-torsion element, and now we see (again, thanks to Corollary 3.5)
that this 2-torsion element does not vanish, as we had anticipated.

There are many other results about the geometry of quartic surfaces and of the
associated double covering X, but for our needs we can stop here, referring the
interested reader to the original thesis of Welters, and to the papers [Cle83] and
[Deb90].

3.4 28 bitangents on a quartic plane curve

In this section we recall the classical computation that a generic plane quartic C
admits exactly 28 bitangent lines, and the correspondence with the 27 lines on a
cubic surface. We do this in order to generalize the construction one dimension up
and study the birational geometry of the surface of bitangents to a quartic surface.

We start with a smooth cubic surface S ⊂ P3; we recall the well-known fact that
S contains exactly 27 lines. Once we choose a generic point p ∈ S not lying on any
of these lines, we can associate to (S, p) a quartic curve as follows. Projection from
p to a plane A ∼= P2 gives a rational map πp : S 99K P2 which is regular outside p.
Let S̃ be the blowup of S in p, with exceptional divisor E. The map πp extends
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to a morphism πp : S̃ � A: to any point x ∈ E corresponding to a line ℓx ⊂ TpS
through p we associate the intersection πp(x) = ℓx ∩A.

It is easy to check that πp is finite (here we use the fact that p does not lie on
any line in S) and that the generic point of P2 has 2 preimages, so it is a 2 : 1
ramified covering. We claim that the ramification locus C ⊂ P2 is a quartic. Indeed
any plane section of S through p is a a cubic curve with a 2 : 1 morphism over a
line in P2. The generic such curve is smooth, hence it has genus 1; by the Riemann-
Hurwitz formula this is ramified over 4 points. This shows that the generic line of
P2 cuts C in 4 points, hence C is a quartic. We will show later on how to invert
this construction to produce from a smooth quartic C a cubic surface S with a
distinguished point on it.

For the moment let us restrict our attention to quartics obtained in this fashion.
We wish to prove that C has exactly 28 bitangents; more precisely that these are
the projections of the 27 lines in S and of the exceptional divisor E. We use the
following notation.

• Given a line r ⊂ A we denote by Pr the plane spanned by r and the point p.

• The intersection Pr ∩ S is a cubic curve in Pr, which we denote by Dr; it has
a 2 : 1 morphism over r.

• In particular we have a singular cubic D = TpS ∩ S.

As r varies in A∨ the curve Dr can acquire various singularities, but since p does
not lie on a line in S it is never a union of lines. The key of the argument is the
following proposition, relating the position of r relative to C to the singularities of
Dr.

Proposition 3.20. Let r ⊂ A be a line and let Dr be the corresponding cubic curve.
Then

i) If Dr is smooth, r cuts C transversely in 4 distinct points.

ii) If Dr is irreducible with one node distinct from p, r is tangent to C and cuts
C transversely in 2 other points.

iii) If Dr is irreducible with one cusp distinct from p, r is tangent to C in a flex
and cuts C transversely in 1 other point.

iv) Assume Dr = Q ∪ ℓ, with Q a conic and ℓ a line. If Q and ℓ are transverse, r
is bitangent to C.

v) Assume Dr = Q ∪ ℓ, with Q a conic and ℓ a line. If Q and ℓ are tangent, r is
quadritangent to C.

vi) If Dr = D = TpS ∩ S and p is a node of D, r is a bitangent to C.

vii) If Dr = D = TpS ∩ S and p is a cusp of D, r is a quadritangent to C.

Moreover for p ∈ S generic, cases v) and vii) do not happen.

The main point is to count how many elements there are in the set-theoretic
intersection r ∩ C. To be get the precise conclusion, though, we use the following
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Dr

p

r
C

Figure 3.1. The case where Dr is a smooth cubic

Lemma 3.21. Let q be a point of Dr such that Dr · pq = p + 2q. Then π(q) ∈ C;
moreover q is singular on Dr if and only if π(q) is a point of tangency between r
and C.

Proof of Proposition 3.20. Assume first that Dr 6= D. Choose q ∈ π(ℓ); the inter-
section pq ∩ S consists of 3 points, counted with multiplicity; to obtain π−1

p (q) we
have to remove p from it.

i) If Dr is smooth, it is has genus 1 and by Riemann-Hurwitz the map πp Dr
is

ramified exactly over 4 points, so r meets C in 4 distinct points. But then the
multiplicity at each of these points must be one, so r and C are not tangent.

ii) Let D̃ be the normalization of Dr; then D̃ is rational. The projection D̃ � r is
then ramified on 2 points by the Riemann-Hurwitz formula. These two point
are not above the node. So we have 3 points of intersection between C and r:
two of them come from the ramification and one by the line through the node.
By Lemma 3.21 the line through the node yields in a tangency point, while the
other two give simple intersections.

iii) This case is like the preceding one. The only difference is that this time the
point of D̃ over the cusp is a point of ramification. So we get only 2 points of
intersection between C and r, and only one is a tangent; so it must be a flex.

iv) In this case π−1
p (q) is one point exactly when the line pq passes through the

singular points of Dr = Q∪ ℓ. There are two singular points, given by Q∩ ℓ so
r meets C twice. By Lemma 3.21 both points are of tangency.

v) This case is the same as the preceding one, but since Q and ℓ meet in just one
point, the same happen for r and C, so r is a quadritangent.
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r

Dr

p

C

Figure 3.2. The case where Dr is reducible

vi) Now consider π(E). First we remark that it is actually a line, since it is given
by TpS ∩ A. As before we count, given a point q ∈ r = TpS ∩ A, how many
points there are in π−1

p (q). First there is a point for the direction pq ∈ E. Then
there is a preimage for each intersection pq ∩D (apart from p itself). So q ∈ C
if and only if pq meets D only in p. If D has a node in p there are two directions
which satisfy this condition. As above, these are projected to tangency points
between πp(E) and C.

vii) This case is the same as the preceding one, but since p is a cusp, there is just
one line through p which meets D thrice. So r and C meet in just one point,
that is, r is a quadritangent.

Corollary 3.22. If p ∈ S is generic, the lines bitangent to C are exactly the
projections of either a line in S or the exceptional divisor E. In particular there
are 28 bitangents.

So far we have counted the bitangents on a curve C obtained as the ramification
locus for the projection πp : S � P2. Next we study the problem of inverting this
construction, that is starting from a generic quartic C ⊂ P2, producing a cubic
surface S with a distinguished point p on it.

We define the surface S̃ as the double covering of P2 branched along C. This
is uniquely defined by C and is smooth if C is ([BHPvdV04, sec. I.17]). We wish
to produce S as the blow-down of a (−1)-curve in S̃. Consider the case where C
actually comes from the preceding construction. Then for each line r bitangent to
C, π−1

p (r) is the union of two rational curves meeting in two points. Indeed it is
the union of a line and quadric when Pr 6= TpS; otherwise Dr = D is a cubic curve
with one node in p, so in the blowup its strict transform is rational and meets in
two points the exceptional divisor.

This always happens. Indeed let r be a bitangent to C (these always exist by
a dimension count), let r ∩ C = {a, b} and consider the ramified covering over r.
By construction this is the inverse image in the total space of Or(2) of the section
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s ∈ H0(r,Or(4)) whose divisor is 2a+ 2b (under the squaring map). Since s admits
a global square root t, this inverse image is just t(r)∪−t(r), so we have two copies
of P1 meeting in two points, which map to r.

In order to produce S we have to choose one such bitangent r and one of the
rational curves ℓ1, ℓ2 ⊂ S̃ mapping to it. This will be the curve contracted to a
point in S; the other one will accordingly acquire a node. For each other bitangent
r′, with preimages ℓ′1, ℓ

′
2, this choice will determine which one among ℓ′1 and ℓ′2 will

become a line and which one a conic.

Let us choose a bitangent r and a rational curve ℓ1 mapping to it. The map
f : S̃ � S ⊂ P3 will be given by a suitable line bundle L on S̃, so we start looking
for a line bundle L ∈ Pic S̃ such that

L2 = 3; L · ℓ1 = 0; L · ℓ2 = 3. (3.7)

The first thing to do is calculate some intersection numbers on S̃. We use the
following notation.

• The projection to P2 is denoted by π : S̃ � P2.

• On S̃ we have the line bundle O
S̃

(1) = π∗OP2(1).

• The branch locus of π is denoted C̃; it is isomorphic to C.

In particular we can express the canonical of S̃ as

K
S̃

= π∗(KS) + C̃ = O
S̃

(−3) + C̃.

Lemma 3.23. The intersection numbers are:

O
S̃

(1)2 = 2; O
S̃

(1) · C̃ = 4; C̃2 = 8.

Proof. The first relation comes from the fact that π is a 2 : 1 covering. For the
second just use push-pull formula:

O
S̃

(1) · C̃ = OP2(1) · π∗(C̃) = OP2(1) · C = 4.

For the last one we remark that C̃ is isomorphic to C, so its genus can be computed
by the genus formula in P2:

g(C̃) = g(C) =
(4− 1) · (4− 2)

2
= 3.

On the other hand, the genus formula on S̃ gives

g(C̃) = 1 +
C̃2 +K

S̃
· C̃

2
= 1 + C̃2 −

3O
S̃

(1) · C̃

2
= C̃2 − 5,

so C̃2 = 8.



3.4 28 bitangents on a quartic plane curve 77

We remark that we can compute, for every h, k ∈ Z

(O
S̃

(k) + hC̃)2 = 2k2 + 8kh + 8h2.

In particular K2
S̃

= 2 as expected. Indeed a smooth cubic surface S is the blowup

of P2 in six points, so K2
S = 3. From the preceding relations we see at once that

π∗(C) = 2C̃ (this is obvious also by a local computation). Indeed it is clear that
π∗(C) = kC̃ for some k > 0. But then

k2C̃2 = π∗(C)2 = π∗(OP2(4))2 = 32,

so k = 2. In particular we see that C̃ is ample on S̃.
Now consider π∗(r) = ℓ1 + ℓ2.

Lemma 3.24. We have
ℓ21 = ℓ22 = −1.

In particular the rational curves ℓi are (−1)-curves.

Proof. We have ℓ1 + ℓ2 ∼ OS̃(1), so

(ℓ1 + ℓ2)2 = 2.

Since ℓ1 and ℓ2 meet transversely in two points, ℓ1 · ℓ2 = 2. Moreover ℓ21 = ℓ22, since
the two curves are swapped by the covering involution, so the thesis follows.

We can now choose the line bundle L = O
S̃

(1) + ℓ1. From the preceding com-
putations we see that L satisfies the relations (3.7).

Proposition 3.25. The line bundle L has no base points and defines a morphism
ϕL : S̃ � P3 which contracts ℓ1 and no other curves. Moreover S = ϕL(S̃) is a
smooth cubic surface.

Proof. We do this in several steps.

Step 1: The line bundle L has no higher cohomology. Let

M = L−K
S̃

= O
S̃

(4) + ℓ1 − C̃ = C̃ + ℓ1. (3.8)

The last expression shows that M is the sum of an ample and an effective divisor
class, so it is big. Moreover M is nef. To see this we have to intersect M with an
irreducible curve D on S̃. If D 6= ℓ1 the intersection is clearly positive; on the other
hand

M · ℓ1 = 1.

Since L = K
S̃

+M , the conclusion follows by Kawamata-Viehweg vanishing.

Step 2: h0(S̃, L) = 4. This can be computed by Riemann-Roch. Indeed by the
preceding step

h0(S̃, L) = χ(S̃, L) = 1 +
L2 −K

S̃
· L

2
= 1 + 3 = 4.



78 3. Quartic surfaces

Step 3: The line bundle L has no base points. Consider the incomplete linear series

L = {S + ℓ1 | S ∈ |OS̃(1)|} ⊂ |L|.

By Riemann-Roch and Kodaira vanishing we can compute as above that

h0(S̃,O
S̃

(1)) = 3,

so L has dimension 2. It follows that any element of L has the form S + ℓ1, where
S is the pullback of a section of OP2(1).

The base locus of L is by construction ℓ1. Take some divisor D ∈ |L| \ L. Then
the base locus of |L| is just ℓ1 ∩D. We remark that D cannot have ℓ1 among its
components, otherwise D ∈ L. Moreover

D · ℓ1 = L · ℓ1 = 0,

so D is disjoint from ℓ1 and the thesis follows.

Step 4: ϕL is birational and ϕL(S̃) is a cubic. Let S = ϕL(S̃) ⊂ P3. Then

degS · degϕL = L2 = 3.

Since S is not degenerate we cannot have degS = 1, so degS = 3 and degϕL = 1,
that is, ϕL is birational onto S.

Step 5: ϕL contracts ℓ1 and no other curves. Indeed L · ℓ1 = 0, so the curve ℓ1 is
contracted by ϕL. Viceversa let D be any irreducible curve on S̃ with L · D = 0.
Since O

S̃
(1) is ample we must have ℓ1 ·D < 0, so D is a multiple of ℓ1.

Step 6: S is smooth. By the preceding steps ϕL : S̃ � S is just the contraction of
ℓ1. Since ℓ1 is a (−1)-curve, the resulting surface is smooth.

We see at once that this construction is the inverse of the former. The map
S̃ � P2 is given by the incomplete linear series L from the proof, so it is not defined
on ℓ1, and it becomes defined outside p in S. But restricting to an incomplete
linear series is the same as projecting, so we see that the map S 99K P2 is given by
projection. The center of the projection is necessarily p, since the map is defined
elsewhere.

Remark. We can explicitly produce the extra section in H0(S̃, L) which does not
come from a section of OP2(1). Indeed L = O

S̃
(2) − ℓ2, so we are looking for a

section of O
S̃

(2) which vanishes over ℓ2. C̃ is a section of O
S̃

(2) which meets ℓ2
in two points {a, b}; let Q be any conic in P2 meeting r in π(a) and π(b). Then
C̃ and π−1(Q) cut the same divisor on ℓ2, so a suitable linear combination of the
corresponding sections of O

S̃
(2) vanishes identically on ℓ2.

We can check again how to get the bitangents.
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Proposition 3.26. Let r′ be any bitangent to C distinct from r, and let ℓ′1 and ℓ′2
be the rational curves over r. Then, up to swapping ℓ′1 and ℓ′2, we have that ℓi meets
ℓ′i transversely in one point for i = 1, 2 and ℓi is disjoint from ℓ′j if i 6= j. Moreover
ϕL(ℓ′1) is a conic and ϕL(ℓ′2) is a line.

Proof. The lines r and r′ meet transversely in a single point, so ℓ1∪ ℓ2 meets ℓ′1∪ ℓ
′
2

transversely in two points. One of this is on ℓ1, and up to swapping we can assume
that it is on ℓ′1. Then the other is on both ℓ2 and ℓ′2. This proves the first claim.

Since

L · ℓ′1 = O
S̃

(1) · ℓ′1 + ℓ1 · ℓ
′
1 = 2,

ϕL(ℓ′1) is a plane conic. Similarly L · ℓ′1 = 1, so the image of ℓ′2 is a line.

Corollary 3.27. Any bitangent line to C is the projection of either ℓ1 or a line in
S.

Remark. Let S denote the universal cubic surface, that is the subvariety of

P3 × P(Sym3(P3)∨) ∼= P3 × P20

of bidegree (3, 1) defined by the equation

∑

I

aIx
I ,

where x0, . . . , x3 are coordinates on P3, I = (i0, . . . , i3) is a multiindex such that
i0 + · · ·+ i3 = 3 and the aI are coordinates on P20.

The variety S is fibered over P20 and the fiber over the point

a =
(
a(3,0,0,0), . . . , a(0,0,0,3)

)

is the cubic S ⊂ P3 with equation

∑

I

aIx
I = 0.

Let C = P(Sym4(P2)∨) ∼= P15 be the parameter space for quartics in P2. Then
the above correspondence can be rephrased as follows.

Proposition 3.28. Let S ′ be the GIT quotient of S by the natural action of PGL(3)
(so S ′ is a moduli space for couples (S, p), where S is a cubic surface and p ∈ S a
point) and C′ be the GIT quotient of C by the natural action of PGL(2). Then we
have constructed a rational map

S ′ 99K C′

of degree 56.
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3.5 The surface of bitangents and the Fano of a cubic

We now wish to generalize the construction of the preceding section one dimension
up. Here the matters are more delicate, since every point on a cubic threefold lies
on some lines, so the branch locus for the corresponding projection acquires some
singularities.

As before we start with the easy direction; that is, given a cubic threefold X ∈ P4

and a generic point p ∈ X, we want to associate to (X, p) a quartic surface. We
begin with a

Lemma 3.29. Let X be a generic cubic threefold and p ∈ X a generic point on it.
Then p lies on 6 lines contained in X. Moreover these lines, regarded as points of

{lines ℓ ⊂ P4 | p ∈ ℓ} ∼= P3,

lie on a conic.

Proof. Let us choose affine coordinates in such a way that p is the origin. Then an
equation for X in this patch is given by

f1(x) + f2(x) + f3(x) = 0,

where each polynomial fi is homogeneous of degree i and

x = (x1, . . . , x4)

are the coordinates. Since p ∈ X,

f1(0) = f2(0) = f3(0) = 0.

Let us choose some non zero vector y = (y1, . . . , y4). Then the line trough p and y

is contained in X if and only if

f1(ty) + f2(ty) + f3(ty) = 0

for each t. Since each fi is homogeneous of degree i, this amounts to

f1(y) = f2(y) = f3(y) = 0.

In other words the locus of lines contained in X and passing through p is defined
in P3 by the equations

f1 = f2 = f3 = 0.

If X and p are generic, the zero loci of the fi are transverse, so their intersection
has 2× 3 = 6 points.

Moreover this intersection in contained in the locus

f1 = f2 = 0,

which is a plane conic.
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We now choose a hyperplaneA ⊂ P4 not containing p and consider the projection
from p

πp : X 99K A.

In this case πp is no longer finite, and there are 6 points on A whose preimage is
a line. Of course πp has degree 2, and considering a generic hyperplane section we
see that the ramification locus is a quartic surface S ⊂ A.

Lemma 3.30. Let p1, . . . , p6 ∈ S be the projection of the 6 lines through p. Then
the pi are nodes of S; moreover they all lie on a conic Q ⊂ S.

Proof. The fact that p1, . . . , p6 all lie on a conic follows directly from the fact that
the corresponding six lines lie on a conic, as proved in the previous lemma.

To prove the other assertion we follow the notation in the proof of Lemma 3.29.
We choose as A the hyperplane x4 = 1.

Let us find the equations of S ⊂ A. Given a point

q = (x1, x2, x3, 1) ∈ A,

a point on pq has the form (tx1, tx2, tx3, t). This lies on X if and only if

tf1(x1, x2, x3, 1) + t2f2(x1, x2, x3, 1) + t3f1(x1, x2, x3, 1) = 0.

Factoring out the t, which corresponds to the point p ∈ X, we are left with a second
degree equation, which has a repeated root if and only if

g(x1, x2, x3) = f2
2 − 4f1f3 = 0.

This is the equation of S in A.
It is immediate to see that the partial derivatives of g vanish when f1 = f2 =

f3 = 0, so the six points p1, . . . , p6 are indeed singularities of S. To see that they are
actually nodes, one has just to compute the Hessian of g are see that its determinant
is nonzero for X and p generic.

The map πp becomes regular on the blowup X̃ of X in p, sending the exceptional
divisor E to the plane

P = TpX ∩A.

Remark. The plane P is in special position with respect to S: actually the quartic
S ·P is a double conic in P . Indeed a point q ∈ P lies in S if and only if it has only
1 preimage in X̃ . The line pq ∈ E is one preimage and the other are the points in
the intersection X ∩ pq distinct from p. So q ∈ S if and only if

X · pq = 3p.

This means that pq is a line in the tangent cone of X at p, which is a conic cone if
p is a node. So S ∩ P , being the projection of this tangent cone, is a conic in P .

Actually S ∩ P = Q, since of course it contains the 6 points p1, . . . , p6.

So far we have attached to (X, p) a quartic with 6 nodes on a conic, which meets
the plane spanned by the nodes in a double conic. We now want to go the other
way round.

We start with an easy
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Proposition 3.31. Let S ⊂ P3 be a quartic having 5 nodes p1, . . . , p5 lying on a
conic Q (but no 3 on a line). Let P be the plane spanned by Q. Then S has another
node p6 on Q and

S · P = 2Q. (3.9)

Proof. First we show that (3.9) holds. Indeed Q̂ = S · P is a quartic in P singular
in p1, . . . , p5. So in P the curves Q and Q̂ meet in 5 points with multiplicity at least
2, so by Bezout Q̂ must contain Q. In other words

Q̂ = Q+Q′

for some conic Q′. The singular points of Q̂ on Q are the intersections Q ∩ Q′, so
by Bezout again we must have Q = Q′, so (3.9) is proved.

Let us show the existence of one more singular point p6. Fix coordinates
x0, . . . , x3 on P3; we can assume

P = {x3 = 0}.

Let F be the polynomial defining S, then

F (x0, . . . , x3) = B(x0, x1, x2)2 + x3C(x0, . . . , x3),

where degB = 2 and degC = 3.
We show that S is singular in P ∩ V (B) ∩ V (C). This is the intersection of Q

and V (C) on P , which gives 6 singular points on S.
To prove this we compute the partial derivatives:





∂F

∂x3
= C + x3

∂C

∂x3

∂F

∂xi
= 2B ·

∂B

∂xi
+ x3

∂C

∂xi
for i = 0, 1, 2

and all these expressions vanish when x3 = B = C = 0.

We now let Y be the double covering of P3 ramified over S. This has 6 nodes
q1, . . . , q6 over the nodes p1, . . . , p6 of S (we assume for a moment that these are the
only singularities). Let

π : Y � P3

be the covering map. Denote S̃ ∼= S the branch locus, and

Q̃ = π−1(Q) ∼= Q.

On Y we have the line bundle

OY (1) = π∗OP(3)(1)

and by construction S̃ ∈ |H0(Y,OY (2))|.
We would like to find, as in the one-dimensional case, a line bundle of self-

intersection 3 on Y , giving the map to the cubic. This we cannot expect, since the
cubic will be smooth in general, so we first have to blow up the 6 points q1, . . . , q6.
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Let

ǫ : X̃ � Y

be the blowup of Y in q1, . . . , q6; then X̃ is smooth and contains six quadrics
Q1, . . . , Q6 given by the exceptional divisors.

Consider the covering over P : this is ramified over a double conic, so π−1(P )
is the union of two copies of P2, P1 and P2, meeting along Q̃. Let P̃i be the strict
transform of Pi in the blowup. A moment of thought shows that

ǫ
P̃i

: P̃i � Pi

is the blowup of Pi at q1, . . . , q6. Let us fix i = 1 and denote by

E1, . . . , E6 ⊂ P̃1

the exceptional divisors.

Lemma 3.32. On X̃ we have the following intersection numbers:

P̃1
2
·Qi = 0 i = 1, . . . , 6 (3.10)

P̃1 ·Q
2
i = −1 i = 1, . . . , 6 (3.11)

Q3
i = 2 i = 1, . . . , 6 (3.12)

Proof. First we note that P̃1 and Qi meet transversely along Ei, so

P̃1
2
·Qi = P̃1 ·Ei

P̃1 ·Q
2
i = Qi · Ei.

By adjunction

O
X̃

(P̃1)
P̃1

= N
P̃1/X̃

O
X̃

(Qi) Qi
= N

Qi/X̃

To compute these normal bundles on Ei we note that we have the following exact
sequence

−−−� −−−� −−−� −−−�0 TEi T
P̃1 Ei

⊕ TQi Ei
T
X̃ Ei

0 ,

so

N
P̃1/X̃ Ei

= NEi/Qi

N
Qi/X̃ Ei

= N
Ei/P̃1

.

By adjunction again

P̃1
2
·Qi = P̃1 · Ei = degN

P̃1/X̃ Ei
= degNEi/Qi = (Ei)

2
Qi = 0

P̃1 ·Q
2
i = Qi · Ei = degN

Qi/X̃ Ei
= degN

Ei/P̃1
= (Ei)

2
P̃1

= −1.
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We can compute (3.12) in a similar way. To do this we have to understand the
normal bundle N

Qi/X̃
. Since

Qi ∼= P1 × P1

we must have
N
Qi/X̃

∼= OQi(a, b)

for some integers a and b. Moreover by symmetry we see that a = b. Let us
explain this in more detail. The normal bundle N

Qi/X̃
is determined by an analytic

neighborhood of qi inside Y , so we may perform this computation on any threefold
having a singularity whose germ is isomorphic to the germ of singularity of Y near
qi. For instance we can take any ball of Y centered around qi; but then in this case
we have an automorphism of the total space of the blowup exchanging the rulings,
so a and b must be equal.

It follows that N
Qi/X̃

is determined by its restriction to a line. We have seen

that
N
Qi/X̃ Ei

∼= OEi(−1)

so a = b = −1. This gives

Q3
i = (N

Qi/X̃
)2
Qi = OQi(−1,−1)2 = 2.

Let us compute some more:

Lemma 3.33. On X̃ we have the following intersection numbers:

P̃1
2
· P̃2 = P̃1 · P̃2

2
= −2 (3.13)

P̃1 · P̃2 ·Qi = 1 i = 1, . . . , 6 (3.14)

P̃i
3

= 1 i = 1, 2 (3.15)

Proof. In order to compute the first two products, we start with the observation
that P̃1 and P̃2 meet transversely along

˜̃
Q = the strict transform of Q̃ inside X̃.

The only thing which is not apparent in this claim is that the intersection is trans-
verse. This is clear outside Q1, . . . , Q6, since the local picture is the same of the
intersection of P1 and P2 along Q̃ inside Y , and the latter are transverse by con-
struction of the double covering.

It follows that

P̃1 · P̃2
2

= (
˜̃
Q ·

˜̃
Q)

P̃1

P̃1 · P̃2 ·Qi = (
˜̃
Q · Ei)P̃1

.

These can be computed using the fact that

ǫ∗(Q̃) =
˜̃
Q+ E1 + · · ·+ E6,
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where

ǫ : P̃1 � P1

is the restriction to P̃1 of the blowup map. So, inside P̃1,

˜̃
Q ·Ei = ǫ∗(Q̃) ·Ei − (E1 + · · ·+ E6) · Ei = 1.

since the exceptional divisors are pairwise disjoint and contract to a point. Then

˜̃
Q

2

= (ǫ∗(Q̃)− E1 − · · · − E6)2 = (Q̃ · Q̃)P1 + E2
1 + · · ·+ E2

6 = 4− 6 = −2.

To compute the last term we use the fact that

P̃1 + P̃2 +Q1 + · · ·+Q6 ∈ |OX̃(1)|

by construction, so

(P̃1 + P̃2 +Q1 + · · ·+Q6)3 = 2.

We can use the fact that Qi · Qj = 0 for i 6= j and the preceding computations to
expand the cube and find

(P̃1 + P̃2)3 + 12 = 2,

that is

(P̃1 + P̃2)3 = −10.

We expand the cube again and use the fact that P 3
1 = P 3

2 by symmetry to find

P̃1
3

= P̃2
3

= 1.

We are now ready to prove the following

Proposition 3.34. Let L = O
X̃

(1)⊗O
X̃

(P̃1). Then the line bundle L has no base
points and defines a morphism

ϕL : X̃ � P4

such that:

i) ϕL is birational;

ii) X = ϕL(X̃) ⊂ P4 is a cubic;

iii) ϕL contracts the whole P̃1 to a point p ∈ X;

iv) each quadric Qi is contracted along a ruling to a line ℓi through p;

v) no other curves are contracted.
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We see that this construction is the exact inverse of the projection construction
at the beginning of the section. This is in complete analogy with the 2-dimensional
case in the preceding section. Actually, using that case, we will be able to show
that the surface of bitangents to the quartic surface S is birational to the the Fano
surface of lines in X.

Before proceeding with the proof of Proposition 3.34 it will be useful to write
out some other intersection numbers, which can be easily derived from our previous
lemmas:

P̃i
2
· O

X̃
(1) = −1 i = 1, 2 (3.16)

P̃i · OX̃(1)2 = 1 i = 1, 2. (3.17)

Proof. As in the lower dimensional case, we break up the proof in several steps.

Step 1: A linear series L ⊂ |L|. Let

ρ = π ◦ ǫ : X̃ � P3

and let
V =

{
D + P̃1 | D ∈ |OX̃(1)|

}
⊂ H0(X̃, L)

be the subspace of section which are the sum of P̃1 and some section pulled back
via ρ from P3.

We can find a section s of L which does not lie in V . Indeed let G ⊂ P3 be a quadric
such that

G · P = Q.

Then ρ∗(G) cuts the divisor
˜̃
Q+ F1 + . . . F6

on P̃2, where F1, . . . , F6 are the exceptional divisors of

ǫ
P̃2

: P̃2 � P2.

On the other hand
ǫ∗(S̃) ∈ |O

X̃
(2)|

cuts on P̃2 the divisor
˜̃
Q, so a suitable linear combination of the two is a section of

s ∈ O
X̃

(2) that cuts on P̃2 the divisor F1 + . . . F6.

Subtracting Q1 + · · ·+Q6 yields a section of

O
X̃

(2)⊗O
X̃

(Q1 + · · ·+Q6)∨ ∼ O
X̃

(1)⊗O
X̃

(P̃1 + P̃2)

which vanishes on P̃2, hence a new section of

O
X̃

(1)⊗O
X̃

(P̃1) = L.

We let L be the linear series generated by |V | and this new section. By construction

dimL = 4.

We also see that L has no base points.
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Step 2: ϕL is birational and ϕL(X̃) is a cubic. Let X = ϕL(X̃) ⊂ P4. Then

degX · degϕL = L3 = (O
X̃

(1)⊗O
X̃

(P̃1))3 = 3.

So either degX = 3 and degϕL = 1, in which case we are done, or else degϕL = 3.
The latter is excluded, since |V | ⊂ L and the map

ϕ|V | = ρ : X̃ � P3

has degree 2.

Step 3: L = |L|. Since ϕL is birational, it is enough to show that the only sections
of OX(1) are the restrictions of section of OP4(1). Bu this is clear from the exact
sequence

−−−� −−−� −−−� −−−�0 OP4(−2) OP4(1) OX(1) 0

and the fact that
H1(P4,OP4(−2)) = 0

by Kodaira vanishing.

Step 4: ϕL contracts P̃1. It is enough to prove that if C ⊂ P̃1 is any curve, then
C is contracted. In other words, if C is any such curve,

L · C = 0. (3.18)

By linearity it is enough to check equation (3.18) when C is a generator of Pic(P̃1).
Since P̃1 is just the blowup of P1

∼= P2 in 6 points, C can be taken either a line or
an exceptional divisor.

In the first case let ℓ ⊂ P1 be a line and C = ǫ∗(ℓ). Then

L · C = O
X̃

(1) · ǫ∗(ℓ) + P̃1 · ǫ
∗(ℓ) = OP1(1) · ℓ+ P̃1 · ǫ

∗(ℓ) = 1 + P̃1 · ǫ
∗(ℓ).

We can compute the missing term by observing that

1 = O
X̃

(1) · ǫ∗(ℓ) = (P̃1 + P̃2 + E1 + · · ·+ E6) · ǫ∗(ℓ) = 2 + P̃1 · ǫ
∗(ℓ).

We have used that
Ei · ǫ

∗(ℓ) = 0,

since we can assume that ℓ doesn’t pass through q1, . . . , q6 and that

P̃2 · ǫ
∗(ℓ) = 2,

since we can assume that ǫ∗(ℓ) meets P̃2 transversely in the 2 points where it meets
˜̃
Q. It follows that

P̃1 · ǫ
∗(ℓ) = −1

and so
L · C = 0.

In the second case let C = Ei. Then

L · C = O
X̃

(1) ·Ei + P̃1 ·Ei = 0,

thanks to the fact that Ei is contracted by ǫ and the proof of Lemma 3.32 respec-
tively.
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Step 5: ϕL contracts Qi along a ruling, sending it to a line. Consider a line ℓ in the
ruling of Qi containing Ei. We want to show that ℓ is contracted, that is

L · ℓ = 0.

It is enough to prove this when ℓ = Ei, and in this case it follows by the preceding
step.

If ℓ′ is a line in the other ruling, then

L · ℓ′ = O
X̃

(1) · ℓ′ + P̃1 · ℓ
′ = 1 + 0 = 1,

since ℓ′ and P̃1 are disjoint, so the image of Qi is a line.

Step 6: ϕL contracts no other curves. Let C be an irreducible curve contracted by
ϕL. If C is contracted already by ǫ, it must lie on a quadric Qi, and the preceding
step shows that C must be a line on it.

Otherwise we must have

O
X̃

(1) · C = OY (1) · ǫ∗(C) > 0,

because OY (1) is ample on Y . Since L · C = 0 we see that C lies on P̃1.

Step 7: X is smooth. Let p = ϕL(P̃1) and ℓi = ϕL(Qi). X is surely smooth outside
the union of the ℓi.

That X is smooth on ℓi, away from p, follows by Nakano criterion ([Nak70]). It
remains to be shown that X is smooth at p. By the above results it is easy to
verify the X contains exactly six lines through p, namely ℓ1, . . . , ℓ6. By the proof
of Lemma 3.29 we see that this implies that X is smooth at p.

So we see that a quartic surface S ⊂ P3 having 6 nodes on a conic and no other
singularities is the ramification locus for the projection of a smooth cubic from a
point on it. Moreover:

Proposition 3.35. In this setting the surfaces Bit(S) and Fano(X) are birational.

The proof is similar to the lower dimensional case of the previous section and
will not be included.

3.6 An example of rational Bit(S)

In this section we give an example of a quartic surface S ⊂ P3 such that the surface
of bitangents Bit(S) is rational. The reason why we are looking to such examples
is the following.

We have seen that double EPW sextic can degenerate to varieties like S[2], where
S is a quartic K3, and in this case the fixed locus of the involution degenerates to
Bit(S). We want to make a similar procedure, using a singular quartic S, to produce
rational surfaces inside an EPW sextic. Unfortunately the number of conditions is
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wrong. Namely, to get a rational surface, S must acquire 11 singular points, and
this will produce a codimension 11 locus of Lagrangian subspaces B ∈ LG(

∧3 V )
such that the surface YB[2] is rational.

But given a generic A ∈ LG(
∧3 V ), the locus of Lagrangian subspaces B such

that

YB [2] ⊂ YA

has dimension only 10, hence the two loci may not meet. Thus this construction
may fail to produce rational surfaces inside a generic EPW sextic.

Luckily there is another construction of quartics S such that Bit(S) is an En-
riques surface, and this time the dimensions match. We present this construction in
the next section. Nevertheless the example of rational surfaces may be interesting
independently.

We recall from the previous section, Proposition 3.31, that if a quartic surface
has 5 singular points on a plane, then there is a sixth one on the same plane.

Remark. Let

Uk ⊂ PH0(P3,OP3(4)
)

be the (Zariski closure of the) locus of quartic surfaces having at least k singular
points. Then the expected dimension of Uk is 19− k.

The locus of surfaces with 6 nodes lying on a plane has dimension 13, by direct
computation, or by the results of the previous section. Hence the locus U6 has at
least 2 components: one where the six points are generic and one where they are
on the same plane. By adding more and more singular points we see that we have
the same reducibility for k ≥ 6.

In our case we are interested to surfaces having 6 nodes on a plane and 5 more
singular point in general position. We shall prove the following

Proposition 3.36. Let S ⊂ P3 be a quartic surface having 11 nodes, 6 of which lie
on the same plane, and generic with respect to these assumptions. Then the surface
of bitangents Bit(S) is rational.

By the results of the previous section, if S has only 6 nodes on a plane, then there
is a smooth cubic threefold X ⊂ P4 such that Bit(S) is birational to F = Fano(X).
It is easy to extend the argument to cover the case where S acquires more singular
points. By the explicit construction of X we see that if S acquires k more nodes
outside the plane, X has k nodes too.

More precisely let P be the plane containing 6 nodes of S, and let Y be the
double covering of P3 ramified along S. We can view S as a subvariety of Y ; then
Y and X are isomorphic outside the intersection S ∩ P , so every node of S outside
P appears as a node of X.

Proposition 3.36 then follows from the following result about the Fano surface
of a cubic threefold.

Proposition 3.37. Let X be a cubic threefold and F = Fano(X). Assume that X
has k nodes and is generic with respect to this condition. Then

i) if k = 3, F is birational to an abelian surface;
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ii) if k = 4, F is rationally ruled with base an elliptic curve;

iii) if k = 5, F is rational.

The trick is to reduce to the case of curves, by the following

Lemma 3.38. Assume that X has a simple double point p and let Cp ⊂ F be the set
parametrizing lines on X passing through p. Then Cp is a curve and F is birational

to the symmetric product C
(2)
p .

Proof. Choose affine coordinates x1, . . . , x4 near the point p such that p = (0, . . . , 0).
Since p is singular, an equation for X has the form

f(x) = f2(x) + f3(x) = 0,

where fi is homogeneous of degree i. Choose v ∈ C4; then the line

{tv | t ∈ C}

is contained in X if and only if

f2(v) = f3(v) = 0,

hence Cp is the intersection of a quadric and a cubic in P3. Moreover f2 and f3 do
not have common factors, since X is irreducible, so Cp is actually a curve.

The birational equivalence between F and Cp is realized as follows. Assume that
we are given two distinct lines ℓ1 and ℓ2 on X through p, and let Λ be the plane
spanned by ℓ1 and ℓ2. Then X ∩ Λ is a plane cubic in Λ, having ℓ1 and ℓ2 as two
components, hence it must have a third component which is again a line on X, that

is, a member of F . So we have obtained a rational map from C
(2)
p to F .

Let us describe its inverse. We start with a line ℓ ⊂ X. If ℓ is generic, then
p /∈ ℓ, so ℓ and p span a plane Λ. We consider again the plane cubic X ∩ Λ: this
has a component ℓ, so it is the union of ℓ and a conic. The conic contains p, hence
it is singular in p: it follows that it is the union of two lines (possibly non distinct)
through p. This gives the rational inverse that we are looking for.

From the first part of the proof of the lemma it follows that Cp is the complete
intersection of a cubic and a quartic in P3. By adjunction we compute its arithmetic
genus pa(Cp) = 4. Assume that X is singular in k points, call them p1, . . . , pk, and
is general enough with respect to this condition. The curve C = Cp1 is singular
exactly on the lines p1pj for j = 2, . . . , k. In our hypothesis the pj are simple double
points of X, and from this it is easy to show that the k − 1 singularities of C are
nodes. Hence C has geometric genus

pg(C) = 4− (k − 1) = 5− k.

From this we easily get what we want.

Proof of Proposition 3.37. We already know that F is birational to the twofold
symmetric product of a curve C of geometric genus 5 − k. By passing to the
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normalization we can assume that C is smooth. Hence the proposition is just a
statement about curves.

If k = 3, then C has genus 2: in this case the Albanese map realizes a birational
equivalence between C(2) and the Jacobian Jac(C). If k = 4, then C is an elliptic
curve: in this case the Albanese map fibers C(2) over C, with rational fibers. Finally
when k = 5, C is just P1, so C(2) is P2.

3.7 An example of Enriques Bit(S)

In the present section we shall prove the following result.

Proposition 3.39. There exists a 9-dimensional family of quartic surfaces with
10 nodes S such that the surface of bitangents Bit(S) is birational to an Enriques
surface.

The first step in the proof will be to give an explicit construction of quartic
surfaces with 10 nodes. This construction is classical, and can be found for instance
in [Cos83]; it was suggested to us by I. Dolgachev.

Let V be a vector space of dimension 4 and identify P(V ) ∼= P3. Choose a
generic 3-dimensional linear system of quadrics

Λ ⊂ |OP3(2)|, Λ ∼= P3.

Inside |OP3(2)| we can consider the degeneracy loci

Dk = { quadrics of rank ≤ k}.

It is well known that D3 has codimension 1, D2 has codimension 3 and D3 is singular
precisely along D2.

We define

S = {singular quadrics of Λ} = Λ ∩D3 and

T = {quadrics of Λ of rank ≤ 2} = Λ ∩D2.

If Λ is generic (transverse to all degeneracy loci), we see that S will be a surface
singular along T , which is a a finite set of points. Moreover we can assume that S
has only nodes at points of T .

Since S is cut out by the single equation detQ = 0 we immediately see that S
is a quartic. Moreover one can compute

degT = degD2 = 10,

hence S is a surface with 10 nodes, as claimed. The degree of a symmetric deter-
minantal variety can be computed using the results of Harris and Tu in [HT84]. In
particular we use the following

Theorem (Proposition 12(b) in [HT84]). Let W be the space of all n×n symmetric
matrices and Sr those of corank at least r. Then in P(W )

deg P(Sr) =
r−1∏

α=0

(n+α
r−α

)
(2α+1

α

) .
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In our application we have n = 4 and r = 2, hence the formula above simplifies
to

degD2 = 6 ·
5

3
= 10.

Remark. The above construction yields a family of quartic surface with 10 nodes
of dimension

dim Gr(3, |OP3(2)|) − dim PGL(3) = 24− 15 = 9.

As expected this family has codimension 10 in the moduli space of quartic surfaces.

Next we show how to associate an Enriques surface to Λ. For each quadratic
form we can consider its associated symmetric bilinear form; this gives an embedding

Λ �֒ |OP(V )(1) ⊠OP(V )(1)| ∼= P(V ∨)× P(V ∨).

Each member of Λ here is seen as a divisor of type (1, 1) on P(V ) × P(V ). We
shall use the following notation: for each quadric Q given by a quadratic form q, we
consider the associated bilinear form q̃, which gives a divisor Q̃ on P(V )× P(V ).

Let Q1, . . . Q4 be four quadrics spanning Λ. Then

S′ =
⋂

Q∈Λ

Q̃ = Q̃1 ∩ · · · ∩ Q̃4

is a K3 surface. Indeed by adjunction we see that KS′ is trivial, and by Lefschetz
theorem on hyperplane sections we see that S′ is simply connected.

By construction
S′ ⊂ P(V )× P(V ),

hence we have an involution ι : S′ � S′ interchanging the factors. We claim that ι
has no fixed points. This is equivalent to saying that S′ doesn’t meet the diagonal.
Each intersection between Q̃i and the diagonal is a point of Qi. For Λ generic we
have

Q1 ∩ · · · ∩Q4 = ∅,

hence the claim follows.
We can then define

F = S′/〈ι〉;

by construction F admits an unramified double covering which is a K3, so F is an
Enriques surface.

The last element that we need in order to prove Proposition 3.39 is the following
explicit description of bitangents to S in terms of the web of quadrics Λ.

Proposition 3.40. Let ℓ be a pencil of quadric on P3, and let Di be the degeneracy
loci as above. Assume that ℓ doesn’t meet D2 (that is, every quadric in ℓ has rank
at least 3) and that ℓ contains smooth quadrics. Let C be the base locus of ℓ. Then
the singularities of C and the position of ℓ relative to U3 are related as follows:

i) If C is smooth, ℓ cuts D3 in 4 distinct points;

ii) if C is irreducible with a node, ℓ is a simple tangent to D3;
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iii) if C is irreducible with a cusp, ℓ meets D3 in a flex and a simple point;

iv) if C is the union of a line and a twisted cubic meeting in 2 distinct points, ℓ is
a bitangent to D3;

v) if C is the union of a line and a twisted cubic tangent in 1 point, ℓ is a quadri-
tangent to D3.

No other cases for C can arise.

Corollary 3.41. The bitangents of S are exactly the pencils of quadrics containing
a line.

Proof. We can choose two smooth quadrics Q1, Q2 ∈ ℓ; then the base locus of ℓ is
just ⋂

Q∈ℓ

Q = Q1 ∩Q2 = C.

i) If Q1 and Q2 are transverse, then C is smooth and KC has degree 0 by adjunc-
tion, hence C is an elliptic curve of degree 4.

For any quadric Q ∈ ℓ the quadratic polynomial q
TpC

vanishes of order 2 at p;

it follows that if Q contains any other point of TpC it must contain the whole
line. Since containing a point is a single linear condition, there is a unique
quadric Qp ∈ ℓ containing the tangent space TpC. This gives a natural map

−−−�
−−−�ϕ : C ℓ.

p Qp

We claim that ϕ is a 8 : 1 covering ramified exactly along the set of singu-
lar quadrics. Indeed let Q ∈ ℓ be a quadric, and choose one of its rulings.
Projection along the ruling yields a map

π : C � P1;

let’s compute its degree. If r is any line of the ruling, then

r ∩ C = r ∩Q′,

where Q′ is any other quadric, hence it can be 2 points if r and C are transverse
or 1 point if they are tangent. We should be more precise here: if Q is singular,
then C does not pass through its vertex, otherwise it would be singular there.
So the above argument applies for every quadric Q.

It follows that π is a double covering branched on the set of tangency points.
By Riemann-Hurwitz we find that there are 4 tangents in the ruling. Since a
smooth quadric has two rulings and a quadric of rank 3 just one, we find that

♯ ϕ−1(Q) =

{
8 if Q is smooth

4 if Q is singular.
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We can apply Riemann-Hurwitz again, this time for ϕ. The total degree of
ramification over a singular quadric is 4, so we find

0 = χ(C) = 8χ(ℓ) + ♯ ({singular quadrics}) · 4,

from which we deduce that ℓ contains 4 singular quadrics.

Since D3 has degree 4, all points of intersection must be simple points. This
can also be seen as follows. Let Q ∈ ℓ be a singular quadric of vertex p. By
(2.24) we see that

TQD3 = {quadrics through p}.

Hence Q is a tangency point between ℓ and D3 if and only if its vertex lies
on the base locus C. We have excluded this case because C is smooth, so ℓ is
transverse to D3.

Of course this argument is enough, and it is shorter than the one we gave above,
but to analyze the next cases we will need both.

ii) Next, assume that C is singular but still irreducible. Then adjunction gives
that C has arithmetic genus 1, hence it has exactly one singular point p0 of
multiplicity 2, and its normalization C̃ is isomorphic to P1. In the first case we
assume that C has a node.

We define

ϕ : C 99K ℓ

by sending p ∈ C to the unique quadric Qp containing TpC if p is a smooth
point. This map becomes a regular map on C̃, which we still denote by ϕ:
indeed any point p ∈ C̃ over p0 corresponds to a well defined tangent line in
p0, and we can define Qp by the same recipe.

We perform the same computation as above. If Q is a quadric not containing
any tangent to C through p0, we apply Riemann-Hurwitz to the map

C̃ � P1,

and find that this ramifies in 2 points. Of these, corresponds to the line of the
ruling through p0 and one to a tangent. Moreover if Q is smooth, it certainly
does not contain a tangent to C through p0. Indeed let r be a line on Q; then

r ∩ C = r ∩Q′,

where Q′ is any other quadric; if r was in the tangent cone to C at p0, the
intersection multiplicity with C would be at least 3, which is not possible.

The argument works also for Q singular and shows, more precisely, that if Q
contains a tangent to C through p0, it must be singular in p0. The pencil
contains at most one quadric singular in p0: indeed the base locus of a pencil
generated by two quadric singular in the same point is a union of lines. So there
is exactly one quadric Q0, singular in p0, which contains both lines tangent to
C in p0.
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C

Q0

p0

Figure 3.3. The curve C has a node

In conclusion we find that if Q 6= Q0

♯ ϕ−1(Q) =

{
2 if Q is smooth

1 if Q is singular.

On Q0 we each line meets C at least in p0, so there cannot be other tangents,
and

♯ ϕ−1(Q0) = 2.

So ϕ has degree 2, and the total degree of ramification over a singular quadric
different from Q0 is 1. Riemann-Hurwitz yields

−2 = χ(C̃) = 2χ(ℓ) + ♯ ({singular quadrics 6= Q0}),

from which we deduce that ℓ contains 2 singular quadrics other than Q0.

The same argument as above shows that Q0 is a point of tangency between ℓ
and D3, since all quadrics of ℓ pass through p0.

iii) If C has a cusp, the argument is exactly as above. The only difference is that
on Q0 we have only 1 tangent, so ϕ ramifies over Q0 too. Riemann-Hurwitz
yields

−2 = χ(C̃) = 2χ(ℓ) + ♯ ({singular quadrics}),

hence ℓ contains 2 singular quadrics. Of these Q0 is a point of tangency between
ℓ and D3 and the other is not, so Q0 must be a flex.

iv) Now assume that the base locus C splits as

Q1 ∩Q2 = r0 ∪ C0,
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C0

r0

Q1

p1

p2

Figure 3.4. The base locus splits as C0 ∪ r0

where r0 is a line and degC0 = 3. We claim that r0 and C0 meet in 2 points,
counted with multiplicity.

Indeed, identifying Q1 with P1 × P1, we know that

r0 ∈ |OQ1(1, 0)|, r0 + C0 ∈ |OQ1(2, 2)|,

so we find the intersection number

(r0 · C0)Q1 = 2.

In particular C0 cannot be a planar cubic, so it must be a rational normal
curve.

Under our hypothesis r0 is not a tangent to C0, so it is well defined the map

−−−�
−−−�ϕ : C0 ℓ.

p Qp

Let
r0 ∩ C0 = {p1, p2};

then the argument of the preceding step shows that if a quadric Q contains the
line TpiC0, it must be singular at pi. If Q is singular with vertex in pi, every
line of Q meets C at least in pi, hence Q contains just one tangent.

Otherwise the usual Riemann-Hurwitz argument shows that on a ruling of Q
containing r0 there are exactly 2 tangents to C0. If Q is smooth, every line of
the other ruling meets r0, so it cannot be tangent to C0. In conclusion

♯ ϕ−1(Q) =

{
2 if Q is smooth at the pi

1 if Q is singular in some pi.
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This time Riemann-Hurwitz for the map ϕ just says that there exist two
quadrics singular in some pi. Since the two quadrics cannot have the same
vertex, we have for each pi a quadric Qi singular at pi.

Since all quadrics Q ∈ ℓ pass through p1 and p2, Q1 and Q2 are points of
tangency between ℓ and D3. It follows that there is no other singular quadric,
and ℓ is a bitangent.

v) In this case it is enough to check that ℓ meets D3 in just one point. Assume
that C splits as in the preceding step, but now r0 and C0 are tangent in p. We
know that there is at least one singular quadric on ℓ, and that there cannot be
more than one quadric singular in p. So it is enough to show that ℓ does not
contain any quadric having a singular point different from p.

Assume that Q is such a quadric, and let p0 be its vertex. Then Q has just one
ruling, which must contain r0, in particular p0 ∈ r0. But C is the intersection
of Q and another quadric, so it has to be singular at p0; this is a contradiction
since p0 is a smooth point of C.

Finally we see that no other cases can arise. If C splits as

C = C1 ∪ C2

where the Ci are irreducible conics, we can consider the map

−−−�
−−−�ϕ : C1 ℓ.

p Qp

If r is a line on Q ∈ ℓ, r must meet both C1 and C2, so it cannot be tangent to C1.
This holds both for Q of rank 3 and 4, so

ϕ−1(Q) = ∅ for all Q ∈ ℓ

and we find a contradiction. This case actually arises for the pencil generated by a
pair of planes and a smooth quadric.

Similarly one excludes the cases where C splits as three or more components.

After this long parenthesis, we can proceed with the proof of Proposition 3.39.

Proof of Proposition 3.39. We can assume that S is given by the above construction.
We explicitly show a map

π : S′ � BitS

which is generically 2 : 1, and whose associated involution is exactly ι. This will
give the birational map between F and Bit(S).

Let
(x, y) ∈ S′ ⊂ P(V )× P(V ).

Then x 6= y, as we have remarked, so we consider the line r = xy. We claim that
for (x, y) ∈ S′ generic, there is a pencil ℓ of quadrics containing r. Granting this
we define π(x, y) = ℓ. Indeed, by Corollary 3.41, we see that a pencil of quadrics
whose base locus contains a line is in fact a bitangent to S.
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To show the claim we observe that for each quadric Q ∈ Λ we have q̃(x, y) = 0, so
if Q contains x and y it contains the whole line xy. So if x and y impose independent
conditions on Λ, the locus of quadrics containing r is a pencil. If this is not the
case, then every quadric of Λ containing x contains y too, so there is a net Λ′ ⊂ Λ
of quadrics containing r. The generic Λ does not contain such a net, by a dimension
count.

Indeed the nets of quadrics containing a fixed line form a Grassmannian Gr(3, 7),
of dimension 12. Letting the line vary, we obtain a family of nets of quadrics
containing a line of dimension 16. For every net of quadrics, the webs containing it
form a P7, so the family

{webs of quadrics ⊃ N | N is a net having a line in its base locus}

has dimension at most 23. Instead the family of all webs of quadrics is a Grassman-
nian Gr(4, 10), so it has dimension 24.

Since by construction π(x, y) = π(y, x), we obtain the desired map

π′ : F � BitS.

It remains to show that π′ is birational.
Again, by the description of bitangents to S given above, we have to prove the

following: on the generic line r contained in a pencil ℓ ⊂ Λ of quadrics there are
exactly two points x, y with the property that

q̃(x, y) = 0 for all Q ∈ Λ. (3.19)

Choose generators Q1, . . . , Q4 for Λ such that Q1 and Q2 generate ℓ. Then it is
enough to verify (3.19) for Q3 and Q4.

If r is generic, then Q3 and Q4 don’t contain r, nor they are tangent, so they
both cut two points on it. Moreover these points are distinct, since

Q1 ∩ · · · ∩Q4 = ∅,

for the generic choice of Λ.
Let W ⊂ V be the subspace of dimension 2 such that P(W ) = r. Then we must

prove that there is a unique (up to rescaling) basis {w1, w2} of W which diagonalizes
both q3 and q4. Indeed choosing

x = [w1] and y = [w2]

yields the thesis.
The bilinear forms q̃3 W

and q̃4 W
are both non-degenerate, and the quadrics

Q3 and Q4 are transverse on P(W ) (actually they don’t meet), so there exists such
a basis by Lemma 2.18. Up to rescaling we can assume that in this basis q̃3 is given
by the identity matrix and q̃4 by the matrix

(
λ1 0
0 λ2

)
.

Then we must have λ1 6= λ2, otherwise Q3 = Q4, so the eigenspaces have dimension
1 and the basis is unique up to multiples.
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For later use we will need a more precise information. Let

v : Λ � |OΛ∨(2)|

be the second Veronese map. Recall that T is the set of singular points of S. We
aim to prove:

Proposition 3.42. For a generic choice of Λ, the 10 points in v(T ) are projectively
independent.

We can then apply Proposition 3.7 to this particular choice of S. Recalling
Corollary 3.18, one obtains:

Corollary 3.43. There exists a component Σ′10 of Σ10, having codimension 10
in LG(

∧3 V ), such that YA[2] is birational to an Enriques surface for the generic
A ∈ Σ′10.

In particular we note:

Corollary 3.44. For the generic A ∈ Σ′10 the 10 decomposable forms in A are
linearly independent.

So we conclude this section with a proof of Proposition 3.44. Another way to
restate it is saying that T is not contained in any quadric. Recall that we have
taken some 3-dimensional subspace Λ ⊂ |OP3(2)| and defined T = D2 ∩ Λ, where

D2 = {Q | rkQ ≤ 2}.

So our first remark is the

Lemma 3.45. D2 is not contained in any quadric.

Proof. Indeed it is well known that the ideal of D2 is generated by the determinants
of the 3× 3 minors of Q, which are cubic equations.

We now try to argue by descending induction on linear sections of D2. We shall
use the following two lemmas.

Lemma 3.46. Let X ⊂ Pn a variety. Assume that X is not contained in any
quadric and that X is linearly normal, that is, h1(Pn,IX(1)) = 0. Then for the
generic hyperplane H, the linear section H ∩X is not contained in any quadric of
H.

Proof. Consider the exact sequences

−−−� −� −−−� −� −−−−� −� −−−−�
−−−� −−−� −−−� −−−�0 OPn(1) OPn(2) OH(2) 0

0 OX(1) OX(2) OX∩H(2) 0

obtained by twisting the defining sequences for H in Pn and for X ∩ H in X by
O(2). These induce a commutative diagram of long exact sequences

−−−� −�
α

−−−� −�
β

−−−−� −�
γ

−−−−−�
−−−� −−−� −−−� −−−�0 H0(OPn(1)) H0(OPn(2)) H0(OH(2)) 0

0 H0(OX(1)) H0(OX(2)) H0(OX∩H(2)) · · ·,
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where we have used that H1(OPn(1)) = 0 by Kodaira vanishing.
Our hypothesis tell that α is surjective and that β is injective, while the thesis

amounts to saying that γ is injective, which is just a matter of diagram chasing.

Lemma 3.47. Let X ⊂ Pn a variety. Assume that X is linearly normal and regular,
that is, h1(X,OX) = 0. Then for the generic hyperplane H, the linear section H∩X
is linearly normal.

Proof. We consider the same exact sequences of the previous lemma, this time
twisted by O(1). Their associated long exact sequences yield the diagram

−−−� −� −−−� −�
α

−−−−� −�
β

−−−−�
−−−� −−−� −−−� −−−�0 H0(OPn) H0(OPn(1)) H0(OH(1)) 0

0 H0(OX) H0(OX(1)) H0(OX∩H(1)) 0,

since both Pn and X are regular.
This time our hypothesis is that α is surjective, and by diagram chasing we get

that β is surjective too.

It is now clear how we want to use the previous lemmas to prove Proposition 3.42
by descending induction. To get from H1(X,OX ) = 0 to H1(X ∩H,OX∩H) = 0 we
would like to use Lefschetz’s theorem on hyperplane sections. The only obstacle is
that the latter works for smooth varieties, while we are starting from the singular
variety D2.

To overcome this difficulty we pass to a smooth double cover of D2. Namely,
since every quadric of rank at most 2 is the union of two planes (maybe coincident)
we can identify D2 with the symmetric product (P3)(2).

In even more explicit terms consider the Segre embedding of P3×P3; this is the
map

s : P3 × P3 � P15 = P(H0(P3,OP3(1))2)

defined by sections of
L = OP3(1) ⊠OP3(1).

If one restricts to symmetric sections, one obtains a map

t : P3 × P3 � P9 = P
(

Sym2 H0(P3,OP3(1))
)

= P
(
H0(P3,OP3(2)

)
,

which is a 2 : 1 covering of D2, ramified over D1.
We can use this to prove the induction basis, as in the following two lemmas.

Lemma 3.48. D2 is linearly normal.

Proof. We must show that every section σ ∈ H0(D2,OD2(1)) lifts to P9. The section

t∗(σ) ∈ H0(P3 × P3,L)

is of course symmetric. Since the map t is given by the linear series of all symmetric
sections of L we see that σ comes from a hyperplane section of P9.

Lemma 3.49. D2 is regular, that is, H1(D2,OD2) = 0.
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Proof. We start from the fact that P3 × P3 is regular: this follows by the Hodge
decomposition, since P3 × P3 is simply connected. We want to apply the Leray
spectral sequence to the morphism

t : P3 × P3 � D2.

We first remark that
Rit∗(OP3×P3) = 0

for all i ≥ 1 by [Har77, Cor. III.11.2], since t is finite.
Let i be the covering involution on P3×P3. We have an action of i on t∗(OP3×P3),

so we can decompose
t∗(OP3×P3) = OD2 ⊕ ξ,

where ξ is the subsheaf of eigensections with eigenvalue −1.
By what we have said the Leray spectral sequence degenerates at E2, and we

have

H1(P3 × P3,OP3×P3) = H1(D2, t∗OP3×P3) = H1(D2,OD2)⊕H1(OD2 , ξ),

so we deduce that H1(D2,OD2) = 0.

Proof of Proposition 3.42. We know that D2 is not contained in any quadric by
Lemma 3.45, and that it is linearly normal by Lemma 3.48.

Take a generic hyperplane section of D2, call it X. By Lemma 3.46 we see that
X is not contained in any quadric.

Let Y = t−1(X); since X is generic, Y is smooth, and we can apply Lefschetz
theorem on hyperplane sections to deduce that Y is regular. We can then argue as
in Lemma 3.49 to prove that X is regular too.

Finally we use Lemmas 3.49 and 3.47 to prove that X is linearly normal.
Then we pass to a hyperplane section of X and so on, as long as we are in the

dimension range where we can use Lefschetz theorem. After four steps we find a
surface S ⊂ D2 which is regular, linearly normal and not contained in any quadric.
In the next step we find a curve C which is only linearly normal and not contained
in any quadric. Finally a last application of Lemma 3.46 yields a finite set of points
T which is not contained in any quadric.





Chapter 4

The Chow ring of double EPW

sextics

4.1 Cohomology computations on XA

Let X = XA be a smooth double EPW sextic. In this section we compute the
cohomological invariants of X, partly following [O’G08b].

Let σ be the symplectic form on X. Since the canonical of X is trivial

H4,0(X) = H0(X,Ω4
X)

is generated by σ2. Moreover it is known that H3(X) = 0, so we can compute the
Euler characteristic

χ(X,OX ) = h0,0(X) + h2,0(X) + h4,0(X) = 3.

The symplectic form on X gives an isomorphism

TX ∼= Ω1
X ,

hence the odd Chern classes vanish. The Hirzebruch-Riemann-Roch theorem for X
simplifies to

3 = χ(X,OX ) =
1

240

(
c2(X)2 −

1

3
c4(X)

)
. (4.1)

We introduce some more notation. Let us call

q ∈ Sym2(H2(X,Q)∨)

the Beauville-Bogomolov form of X. Since it is non-degenerate, it allows us to give
an identification

H2(X,Q) ∼= H2(X,Q)∨

hence we obtain a dual quadratic form

q∨ ∈ Sym2(H2(X,Q)).

Recall that the cup product yields an isomorphism between Sym2(H2(X,Q)) and
H4(X,Q), so we can regard q∨ as an element of H4(X,Q).

103
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O’Grady proves in [O’G08b] that we have the relation

q∨ =
5

6
c2(X), (4.2)

and that for any α, β ∈ H2(X,Q) we have

q∨ · α · β = 25q(α, β). (4.3)

We now work out the relations in the cohomology of X. Let

h = c1(f∗OY (1)) ∈ H2(X).

Proposition 4.1. In the cohomology ring H∗(X,Q) we have

h4 = 12, h2 · c2(X) = 60,

c2(X)2 = 828, c4(X) = 324.

Proof. The first and the last relations are easily handled. Indeed

h4 = 2 deg(Y ) = 12.

As for the last one we have
c4(X) = χ(X),

and since X is a deformation of S[2], where S is a K3, we have

χ(X) = χ(S[2]) = 324

by Proposition 1.3.
By O’Grady’s computations (4.3) and (4.2) we also have

c2(X) · h2 =
6

5
q∨ · h2 =

25 · 6

5
q(h, h) = 60.

Finally we can use Equation (4.1) to obtain c2(X)2 = 828.

In degree 6 the only possible relation is a linear dependency between h3 and
c2(X) · h, and indeed we have:

Proposition 4.2. There is a relation

c2(X) · h = 5h3

H6(X,Q).

Proof. From O’Grady’s relation (4.3) we get

6q∨ · h · α = 6 · 25q(h, α)

for all α ∈ H2(X). On the other hand, by polarization of Fujiki’s relation we obtain

25h3 · α = 25 · 3 · q(h, h)q(h, α) = 6 · 25q(h, α).

So Poincaré duality implies that

25h3 = 6q∨ · h

modulo torsion, and using (4.2) we get the thesis.
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We can instead exclude relations in degree 4:

Lemma 4.3. The classes h2 and c2(X) are linearly independent inside H2(X).

Proof. We can substitute c2(X) with its multiple q∨. Assume that we have a relation

h2 + λq∨ = 0

for some λ ∈ C. Then we get

h2α2 = −25λq(α,α)

for all α ∈ H2(X). By polarization of the Fujiki formula we also obtain

h2α2 = q(α,α)q(h, h) + 2q(h, α)2.

So if q(α,α) = 0 we obtain q(h, α) = 0. This means that q is degenerate (the quadric
defined by q would be contained in a hyperplane of PH2(X)), contradiction.

Finally, it will be useful to write out the explicit form of Hirzebruch-Riemann-
Roch, using the above computations for the characteristic classes of X. We let

OX(1) = f∗OY (1).

Then OX(n) is ample on X, and since KX is trivial, Kodaira vanishing yields

χ(X,OX (n)) = h0(X,OX (n)).

The formula of Hirzebruch-Riemann-Roch then reads

h0(X,OX (n)) =
h4

24
n4 +

c2(X) · h2

24
n2 + χ(OX) =

1

2
n4 +

5

2
n2 + 3. (4.4)

We have also used a similar computation in Section 3.1:

Lemma 4.4. Let X be numerically equivalent to S[2], where S isa K3, and let
e ∈ H2(X) be a class with q(e, e) = −2. Let L be a line bundle on X with c1(L) = e.
Then

χ(X,L) = 1.

Proof. By Fujiki relation we obtain

e4 = 3 · q(e, e)2 = 12.

Moreover Equations (4.2) and (4.3) yield

c2(X) · e2 =
6

5
q∨ · e2 = 30q(e, e) = −60.

So Hirzebruch-Riemann-Roch reads

χ(X,L) =
e4

24
+
c2(X) · e2

24
+ χ(OX) =

1

2
−

5

2
+ 3 = 1.
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4.2 Everywhere tangent EPW sextics

Let X = XA be a double covering of an EPW sextic, endowed with ample line
bundle

OX(1) = f∗OY (1),

where as usual
f : X � Y

is the double covering. In this section we wish to understand from a geometric point
of view the odd sections of OX(3).

Consider the decomposition

H0(X,OX (n)) = H0(X,OX(n))+ ⊕H
0(X,OX (n))−,

where H0(X,OX (n))± are the eigenspaces relative to the eigenvalue ±1 for the
action of the covering involution ϕ. We call the sections in the eigenspaces even or
odd respectively.

Lemma 4.5. The number of odd sections is given by

h0(X,OX (3))− = 10.

Proof. This is actually a simple computation using the theorem of Riemann-Roch-
Hirzebruch. First we remark that even sections of OX(3) descend to sections of
OY (3), so

h0(X,OX (3))+ = h0(Y,OY (3)).

By Lemma 4.6 below we see that

h0(Y,OY (3)) = h0(P5,OP5(3)) =

(
5 + 3

3

)
= 56.

On the other hand we have computed in Equation (4.4) that

h0(X,OX (3)) = 66,

hence the thesis.

Lemma 4.6. The restriction

H0(P5,OP5(3)) � H0(Y,OY (3))

is an isomorphism.

Proof. We just need to show that H0(P5,IY (3)) and H1(P5,IY (3)) vanish. Since
Y is a sextic, IY ∼= OP5(−6), so

H0(P5,IY (3)) = H0(P5,OP5(−3)) = 0.

On the other hand KP5 = OP5(−6), so

H1(P5,IY (n)) = 0

for every n > 0 by Kodaira vanishing.
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Given η ∈ H0(X,OX (3))− we obtain the even section

η ⊗ η ∈ H0(X,OX (6))+
∼= H0(Y,OY (6)),

since even sections descend to Y . The proof of Lemma 4.6 shows that

H1(P5,IY (6)) = 0,

hence this section lifts to a sextic Y ′ of P5. Where Y and Y ′ meet the intersection
is at least double: this is easily seen locally.

Indeed let y ∈ Y be a point where η ⊗ η vanishes. Then for every point x ∈ X
such that f(x) = y we must have

η(x) = 0,

so η ⊗ η has a double zero in x (hence in y).
This construction yields a sextic Y ′ everywhere tangent to Y . We now want

to describe explicitly such special sextics; in particular we will show that they are
again EPW sextics.

Proposition 4.7. Let A,A′ ∈ LG(
∧3 V ) be two Lagrangian subspaces such that

dim(A ∩A′) = 9.

Then YA and YA′ are everywhere tangent.

Proof. Let
[v] ∈ Y sm

A ∩ Y
sm
A′

be a smooth point of both YA and YA′ . Then we claim that

Fv ∩A = Fv ∩A
′. (4.5)

Indeed both Fv ∩A and Fv ∩A
′ are 1-dimensional, because YA and YA′ are smooth

in [v]. By symmetry it is enough to show that

Fv ∩A
′ ⊂ A.

If this does not happen, then

A′ = (Fv ∩A
′)⊕ (A ∩A′).

Let α be a generator for Fv∩A. Then, since Fv and A are isotropic, α is orthogonal
to both Fv ∩A

′ and A ∩A′. It follows that

α ∈ (A′)⊥ = A′.

This is a contradiction, so (4.5) is proved.
By Proposition 2.23 this implies that

T[v]YA = T[v]YA′ .

Since this is true for any smooth point of intersection, the thesis is proved.
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Remark. If A′′ is any other Lagrangian subspace with

A ∩A′ = A ∩A′′

it is easy to see that
YA ∩ YA′ = YA ∩ YA′′ ,

where the latter is an equality of schemes. So this intersection only depends on

U = A ∩A′.

In other words we can associate to every U ∈ P(A∨) a section

τ ∈ H0(YA,OYA(6)) ∼= H0(XA,OXA(6)+).

Remark. In the last remark we have implicitly used the fact that every U ∈ P(A∨)
is contained in some other Lagrangian subspace A′. This is easy: if U is as above,
then

U⊥ ⊃ A⊥ = A,

and every hyperplane of U⊥ containing U is such a Lagrangian subspace. Indeed
let U ( A′ ( U⊥, so that

A′ = U ⊕ 〈v〉

for some v. Then v is orthogonal both to U and to itself, so A′ is isotropic.
In particular we see that there is a pencil of Lagrangian subspaces containing

U .

Proposition 4.8. The above construction yields an isomorphism

g : P(A∨) � PH0(XA,OXA(3)−).

The divisors
D′ ∈ |H0(XA,OXA(3)−)|,

or better their images in YA, are endowed with a natural rational function.
Let U ∈ P(A∨) such that g(U) = D′, and let D = f(D′). We also let ℓD be the

pencil of Lagrangian subspaces containing U . Then there is a rational function

rD : D 99K ℓD

defined as follows.
Let A,A′ be generators of ℓU , and x a generic point of D ⊂ XA. Then

[v] = fA(x) ∈ Y sm
A ∩ Y

sm
A′ ,

and by Equation (4.5) we have

Fv ∩A = Fv ∩A
′,

both of dimension 1. We claim that

dim(Fv ∩ (A+A′)) = 2. (4.6)
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Indeed we start by the simple remark that

(Fv +A)⊥ = (Fv)
⊥ ∩A⊥ = Fv ∩A ⊂ A

′ = (A′)⊥.

We can dualize it to obtain
A′ ⊂ Fv +A,

so we find that
dim(Fv +A+A′) = dimFv +A = 19

by Grassmann. Since

dim(A+A′) = 11, dimFv = 10,

Grassmann’s formula applied to Fv and A+A′ yields Equation (4.6).
By Equation (4.6) we see that there is exactly one member Av ∈ ℓD such that

Fv ∩ (A+A′) ⊂ Av.

Indeed all members of the pencil contain Fv ∩A, so containing Fv ∩ (A+A′) is just
one more linear condition. We can explicitly see that

Av = (A ∩A′) +
(
Fv ∩ (A+A′)

)
.

We then define ����
−−−�rD : D ℓD.

[v] Av

It is easy to describe the divisors in the linear system on D whose associated
rational map is rD. Indeed by construction we see that, given B ∈ ℓD, we have
rD([v]) = B if and only if

dim(Fv ∩B) = 2,

hence the map rD is defined by the pencil of divisors
{
YB [2] | B ∈ ℓD

}
.

Remark. We should note that indeed if B ∈ ℓD, then

dim(B ∩A) = 9,

and this implies that YA contains YB [2]. In fact if dim(Fv ∩B) = 2, then dim(Fv ∩
A) ≥ 1.

4.3 Proof of the main theorem

In this section we shall prove the following theorem, which is the main result of this
work.

Theorem 4.9. Let A ∈ LG(
∧3 V )0 and let XA be the associated double covering of

the EPW sextic YA. Then any polynomial relation

P
(
hA, c2(XA), c4(XA)

)
= 0

in the classes of divisors on XA and in the Chern classes of XA which holds in the
cohomology ring already holds at the level of the Chow ring.
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Remark. The symplectic form on X = XA gives an isomorphism

TX ∼= Ω1
X ,

hence the odd Chern classes vanish. This is why they do not appear in the statement.
Moreover if A is generic in LG(

∧3 V ), the group Pic(XA) is cyclic, generated by
hA, so the theorem above yields exactly Voisin’s conjecture.

Remark. The only relations in cohomology can be in degree 4, 6 or 8. Lemma 4.3
excludes the existence of relations of degree 4, hence we are left with relations in
degree 6 or 8; these are listed in Propositions 4.1 and 4.2.

Proving the theorem will involve some steps, so we briefly outline the plan. First,
we define a special 0-cycle class θ on X; we aim to prove that every 0-cycle which
can be expressed as a polynomial in h, c2(X) and c4(X) is a rational multiple of θ.
It turns out that it is easier to define a class θ on Y as the class of any point on a
suitable Enriques surface inside Y , and to pull back this to X

The first two subsections are devoted to the definition of θ and the proof that it
is actually well-defined. The next section carries out some geometrical construction
on X which yield relations in the Chow ring. Finally the last section uses these
relations to conclude the proof of Theorem 4.9.

4.3.1 Definition of the class θ

Let X = XA as usual. Our first task is to define a class

θ ∈ CH4(X)

of degree 1. Then we will show that the relations

h4 = 12θ, h2c2(X) = 60θ, c2(X)2 = 828θ, c4(X) = 324θ

hold.

It will actually be easier to work on Y , so we’d better find out the relationship
between CH(X) and CH(Y ).

Remark. The map f : X � Y induces a push-forward morphism

f∗ : CH(X) � CH(Y ),

because f is proper (for the construction of Chow rings and morphisms between
them see [Ful84, Chap. 1]). On the other hand f∗ is usually defined for flat maps
with fibers of constant dimension, and f is not flat.

Following Example 1.7.6 on [Ful84] we can define f∗ in our situation. Indeed
Fulton shows that if

Y = X/G

is the quotient of X by the action of a finite group G, we have a canonical isomor-
phism

CH(Y )Q
∼= CH(X)GQ ,



4.3 Proof of the main theorem 111

where as usual CH(Y )Q = CH(Y ) ⊗Q. So if f is the quotient map we can define
f∗ by the composition

CH(Y )Q

∼=−� CH(X)GQ �֒ CH(X)Q.

Fulton also shows that the composition

CH(Y )Q
f∗
−� CH(X)Q

f∗
−� CH(Y )Q

is the multiplication map by ♯G.
In our situation G = 〈ϕ〉, where ϕ is the covering involution, and the composition

above is multiplication by 2.

Recall that we have defined

Σ10 ⊂ LG(
∧3 V )

as the (zariski closure of the) set of Lagrangian subspaces such that there exist 10
independent subspaces

W1, . . . ,W10 ⊂ V

of dimension 3 with
∧3 Wi ⊂ A, and Σ′10 is a particular component defined in

Section 3.7. By Corollary 3.43 we know that for B ∈ Σ′10 generic YB[2] is birational
to an Enriques surface.

We now recall a result about Chow groups of surfaces ([Voi03, Thm. 11.10])

Theorem (Bloch, Kas, Lieberman). Let S be a smooth projective surface with
H2,0(S) = 0, and assume that S is not of general type. Then the Albanese map

albS : CH2
hom(S) � Alb(S)

is an isomorphism. In particular if moreover H1,0(S) = 0, then CH2
hom(S) = 0.

By this result we see that if S is an Enriques surface,

CH2(S) ∼= Z.

In particular this conclusion is true for YB [2], when B ∈ Σ′10 is generic.
To handle the case where B is not generic we use the following result (the proof

is the same of [Voi03, Lemma 10.7]):

Theorem. Consider an algebraic family of cycles (Zt)t∈U on a variety X paramet-
rized by a basis U . Then the set

{u ∈ U | Zt is rationally equivalent to zero}

is a countable union of Zariski closed subsets of U .

By the above result, the fact that CH2(YB [2]) = Z for B generic extends to the
case where B is not generic. In conclusion we have the

Proposition 4.10. Let B ∈ Σ′10; then

CH2(YB [2]) ∼= Z.
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That said, we define a class

θ ∈ CH4(YA)

as follows. Let A ∈ LG(
∧3 V )0. We have the

Proposition 4.11. There exists B ∈ Σ′10 such that

dim(A ∩B) ≥ 9. (4.7)

The proof of the above Proposition is quite involved, and will be given in the
following subsection.

By the remark at the end of the previous section we know that

YB[2] ⊂ YA,

so we define θ as the class of a point of YB [2]. We need to do some checks in order
to show that this is actually well-defined. We also define

θ =
1

2
f∗(θ) ∈ CH4(X).

Lemma 4.12. Let B,B′ ∈ LG(
∧3 V ) such that (4.7) holds. Then

YB[2] ∩ YB′ [2] 6= ∅ (4.8)

Proof. It is enough to show that

YB[2] · YB′ [2] 6= 0

in CH∗(YA). Recall that in Section 4.2 we have exhibited a rational equivalence
between YB [2] and YA, given by the rational function rU on DU , where U = A∩B.
So it will be enough to prove that

YA[2]2 6= 0.

By the definition of the ring structure on CH∗(YA) we need to prove that

Z2
A 6= 0 in CH∗(XA).

But actually Z2
A 6= 0 already in cohomology. Indeed, using the fact that ZA is

Lagrangian, we have

Z2
A = c2(NZA/XA) = c2(Ω1

ZA) = c2(ZA) = χtop(ZA) = 192

by the results cited in Section 2.4.

By the previous Lemma we see that the class of θ ∈ CH4(Y ) is actually inde-
pendent of the chosen B ∈ Σ′10 such that (4.7) holds.
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4.3.2 Proof of Proposition 4.11

We now prove that given any Lagrangian subspace A ⊂
∧3 V there exists B ∈ Σ′10

such that
dimA ∩B ≥ 9.

This will be done in several steps.
We begin with the construction of a suitable incidence variety. For the present

purposes it is irrelevant that the symplectic space is
∧3 V , so we just consider any

symplectic vector space E of dimension 2n. We define the incidence variety

Ω =
{
(A,B) | dim(A ∩B) ≥ n− 1

}
⊂ LG(E) × LG(E).

This has two projections π1 and π2 over the Lagrangian Grassmannian LG(E). We
can find the dimension of Ω by studying the fibers of these morphisms. Let

ΩA = π−1
1 (A)

be a fiber of π1. We consider the Plücker embedding, and let vA ∈
∧nE be a vector

such that [vA] = A.

Lemma 4.13. Under the Plücker embedding, ΩA is a cone of vertex A over P(A∨).
The latter is embedded in

P(
∧nE/〈vA〉)

by the complete linear system OP(A∨)(2).

Proof. It is easier to consider the non Lagrangian case first. So consider the bigger
incidence variety

Ω̃ =
{
(A,B) | dim(A ∩B) ≥ n− 1

}
⊂ Gr(n,E) ×Gr(n,E).

Accordingly we have the fiber

Ω̃A =
{
B ∈ Gr(n,E) | dim(A ∩B) ≥ n− 1

}
.

We claim that this is a cone of vertex A over

P(A∨)× P(E/A).

First, we give the embedding

ϕ : P(A∨)× P(E/A) �֒ P(
∧nE/〈vA〉).

This is done as follows. Let (U,U ′) ∈ P(A∨)× P(E/A), so

U ⊂ A ⊂ U ′

with
dimU = n− 1, dimU ′ = n+ 1

We choose a basis {u1, . . . , un+1} of U ′ such that {u1, . . . , un} is a basis of A and
{u1, . . . , un−1} of U . We the set

ϕ(U,U ′) = [u1 ∧ · · · ∧ un−1 ∧ un+1].
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It is immediate to see that another choice of basis doesn’t change the class of
ϕ(U,U ′) modulo

vA = u1 ∧ · · · ∧ un,

so ϕ is well-defined.

Moreover, for fixed U , ϕ(U, ·) gives a linear embedding of P(E/A) and viceversa.
Hence we get a bilinear embedding of the product.

Now we have the projection of center A

πA : P(
∧nE) 99K P(

∧nE/〈vA〉),

and we can restrict this projection to Ω̃A \ {A}. One checks easily that this is just

−−−�
−−−−−−−�πA : Ω̃A \ {A} P(A∨)× P(E/A),

B (B ∩A,B +A)

thereby proving the claim.

Now assume that A is Lagrangian. The symplectic form on E identifies E/A with
A∨. A given subspace B ∈ Ω̃A is Lagrangian if and only if, under this identification,
B ∩A is identified with B +A. We can consider the diagonal embedding

P(A∨) � P(A∨)× P(E/A) � P(
∧nE/〈vA〉);

this is given by sections of OP(A∨)(2) because ϕ is bilinear.

Moreover ΩA is exactly the cone above the image of this embedding, and this
proves the lemma.

The above lemma allows us to compute the dimension of Ω. Indeed we see that
the fibers of π1 are irreducible of dimension n. Since

dim LG(E) =

(
n+ 1

2

)
,

it follows that Ω is irreducible of dimension

dim Ω = n+

(
n+ 1

2

)
.

Next we study the tangent space to Ω. Recall that the tangent space TALG(E)
is canonically identified with Sym2(A∨). We describe the tangent space to Ω inside
the product

TALG(E)× TBLG(E).

Lemma 4.14. Let (A,B) ∈ Ω with A 6= B, and let U = A ∩B. Then Ω is smooth
at (A,B), with tangent space

T(A,B)Ω =
{

(qA, qB) ∈ Sym2(A∨)× Sym2(B∨) | qA U
= qB U

}
. (4.9)
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Proof. The points of Ω outside the diagonal form an orbit under the action of the
symplectic group. Since this orbit is open, every point (A,B) ∈ Ω with A 6= B has
to be smooth, and this proves the first assertion.

To describe explicitly the tangent space we start by remarking that the two sides
of Equation (4.9) have the same dimension n +

(n+1
2

)
. We have verified that this

is the dimension of Ω, hence the dimension of its tangent space at (A,B) by the
first part of the proof. That this is also the dimension of the right hand side is an
immediate computation.

So we just check that we have one inclusion. Again, it is easier to work out the
non Lagrangian case first. Namely consider the incidence variety

Ω̃ ⊂ Gr(n,E)×Gr(n,E).

The corresponding statement, that we shall now prove, is the following.

Let (A,B) ∈ Ω̃ with A 6= B, and let

U = A ∩B, U ′ = A+B,

so that dimU = n− 1, dimU ′ = n+ 1. Given any

f ∈ TA Gr(n,E) ∼= Hom(A,E/A)

we can consider the composition fA,B ∈ Hom(U,E/U ′) given by

U �֒ A� E/A ։ E/U ′.

Similarly for B: given g ∈ TB Gr(n,E) we consider gA,B ∈ Hom(U,E/U ′). Then
the claim is that

TA,BΩ̃ =
{
(f, g) | fA,B = gA,B

}
⊂ Hom(A,E/A) ×Hom(B,E/B). (4.10)

Let us see how the lemma follows from Equation (4.10). In case E has a symplec-
tic form and A and B are both Lagrangian, it is immediate to check that U ′ = U⊥.
In this case we can identify

E/U ′ = E/U⊥ ∼= U∨.

If f ∈ TALG(E), the homomorphism

f : A� E/A ∼= A∨

is symmetric, so it restricts to a symmetric homomorphism fA,B. The same remark
holds for B, so Equation (4.10) implies Equation (4.9).

Let us now prove Equation (4.10). By the same dimensional count, it is enough
to prove one inclusion. Now it is just a matter of unwinding the identification of
TA Gr(n,E) with Hom(A,E/A).

Let (A(t), B(t)) be a curve on Ω̃ with

A(0) = A, B(0) = B.
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We let U(t) = A(t) ∩B(t); this has dimension n − 1 for all t sufficiently small. So
we can choose vectors

u1(t), . . . , un−1(t), a(t), b(t)

such that

U(t) = 〈u1(t), . . . , un−1(t)〉,

A(t) = 〈u1(t), . . . , un−1(t), a(t)〉,

B(t) = 〈u1(t), . . . , un−1(t), b(t)〉.

Choose a subspace C ⊂ E complementary to both A and B. Then the homomor-
phism associated to the tangent vector Ȧ(0) is constructed as follows.

Since

E = A⊕ C,

the subspace A(t), for t small, is the graph of a map f(t) : A� C. The vector

Ȧ(0) ∈ TA Gr(n,E)

corresponds to f ′(0) : A� C. SimilarlyB(t) is seen as the graph of a map g(t) : B �
C, and we identify Ḃ(0) with g′(0). The subspace C is then identified, by projection,
with E/A in the first case and with E/B in the second.

Now we take a vector v ∈ U . We can choose functions

λ1(t), . . . , λn(t), µ1(t), . . . , µn(t)

such that

f(t)v + v = λ1(t)u1(t) + · · ·+ λn−1(t)un−1(t) + λn(t)a(t)

g(t)v + v = µ1(t)u1(t) + · · ·+ µn−1(t)un−1(t) + µn(t)b(t),

so that

f(t)v − g(t)v =
(
λ1(t)− µ1(t)

)
u1(t) + · · ·+

+
(
λn−1(t)− µn−1(t)

)
un−1(t) + λn(t)a(t)− µn(t)b(t).

Taking derivatives and using the fact that λi(0) = µi(0) = 0 for every i, we find

f ′(0)v − g′(0)v =
(
λ′1(0)− µ′1(0)

)
u1(0) + · · ·+

+
(
λ′n−1(0) − µ′n−1(0)

)
un−1(0) + λ′n(0)a(0) − µ′n(0)b(0).

So f ′(0)v ≡ g′(0)v modulo U ′; in other words the two homomorphisms fA,B and
gA,B agree.

Now we are ready to prove the main lemma of this subsection. Of course we
choose E =

∧3 V . We let Σ′10 be any irreducible component of Σ10 of codimension
10 in LG(

∧3 V ). We consider the restricted incidence variety

Γ = Ω ∩
(
LG(

∧3 V )× Σ′10

)
=
{
(A,B) | B ∈ ΩA

}
.
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As before we have the two projections

−−−−�π −−−−−�ρΓ

LG(
∧3 V ) Σ′10.

Since ρ is a fibration over Σ′10 with fiber ΩB , and since we have proved that

dim ΩB = 10 = codim
LG(
∧3 V )

Σ′10,

we deduce that

dim Γ = dim LG(
∧3 V ).

Our ultimate goal is to prove that π is a generically finite map. The lemma that
we shall use is the following.

Lemma 4.15. Let (A,B) ∈ Γ and assume that

i) B contains exactly 10 decomposable forms α1, . . . , α10, which are linearly inde-
pendent;

ii) for i = 1, . . . 10 the form αi /∈ A.

Then the differential dπ(A,B) is an isomorphism.

Proof. By our hypothesis and Proposition 2.4, we see that the tangent to Σ′10 at B
is the subspace T of Sym2(B∨) consisting of those quadratic forms q such that

q(αi) = 0 for i = 1, . . . , 10.

Let U = A ∩B; we claim that the composition

T �֒ Sym2(B∨) � Sym2(U∨)

is injective. Here the second map is the restriction on quadratic forms.

Indeed assume that a quadratic form q ∈ T vanishes identically on U ; then its
zero locus is the union of two hyperplanes

U ∪ U ′ ⊂ B.

We have assumed that αi /∈ U for every i; it follows that U ′ has to contain all αi.
But this is impossible, since we have assumed that they are linearly independent,
and the contradiction proves the claim.

We then consider the following diagram

−−
−� dπ(A,B)

−−−−−−−�dρ(A,B)

−֒−−−−−� −−−�
−−−−−−−−−�T(A,B)Γ T⊂Sym2(B∨)

Sym2(A∨) Sym2(U∨)
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This is commutative by Equation (4.9), since Γ ⊂ Ω.
Assume that

dπ(A,B)v = 0

for some v ∈ T(A,B)Γ. Then the diagram shows that we have also

dρ(A,B)v = 0.

Since
Γ ⊂ LG(

∧3 V )× Σ′10,

we find that v = 0.

Corollary 4.16. Under the same hypothesis, the map π is generically finite, in
particular it is surjective.

Proof. Since we already know that Γ and LG(
∧3 V ) have the same dimension, it

is enough to show surjectivity. Assuming that π is not surjective, the image has
positive codimension in LG(

∧3 V ).
By the theorem on the dimension of the fibers it follows that every component

of every fiber of π has dimension at least 1. But Lemma 4.15 implies that the fiber
of π above A has an isolate point, contradiction.

Now we see that in order to prove Proposition 4.11 it is enough to show a couple
of Lagrangian subspaces (A,B) which satisfy the hypothesis of Lemma 4.15. For
then the assertion that the fiber of π over any A is not empty is exactly the thesis
of the proposition.

By Corollary 3.44 we know that the generic B ∈ Σ′10 contains exactly 10 inde-
pendent decomposable forms, up to multiples. Let U ⊂ B be any hyperplane which
doesn’t contain any of them. Then we can find a pencil of Lagrangian subspaces A
such that

A ∩B = U ;

then the pair (A,B) satisfies the hypothesis of Lemma 4.15, and we are done.

4.3.3 Some geometric constructions

We now want to show that the expected relations hold in CH(Y )Q.

Remark. In the following we need to perform intersection products on the Chow
ring of Y , and this may seem not well-defined, since Y is singular. But recall that
we have the isomorphism

CH(Y )Q
∼= CH(X)GQ ,

and CH(X)GQ is a subring of CH(X)Q, so we can multiply cycle classes on Y .

Let h = c1(OY (1)) be the hyperplane class on Y . We start to prove relations in
CH(Y ) analogous to those found in Proposition 4.1. In order to do this, we need
another geometric lemma.

Lemma 4.17. There exists a line L0 ⊂ Y which meets YB [2].

Proof. Let V be the union of lines contained in Y .
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Step 1: dimV ≥ 2. Let R ⊂ Gr(2, V ) be the locus of lines ℓ ⊂ YA. We can obtain
R as follows. Let

YA = V (g),

where g is a degree 6 polynomial, and let S be the tautological subbundle on
Gr(2, V ), so that Sym6(S∨) is the fiber bundle whose fiber at ℓ is the vector space
of homogeneous polynomials of degree 6 on ℓ.

Then we can define a section

s ∈ H0(Gr(2, V ),Sym6(S∨)
)

by the condition
s(ℓ) = g

ℓ
.

By definition R is the zero locus of s. It follows that

dimR ≥ dim Gr(2, V )− rk Sym6(S∨) = 8− 7 = 1,

provided R is not empty. But we can show that R 6= ∅ by computing the funda-
mental class

[R] = c7
(

Sym6(S∨)
)

= 432 · 134σ4,3.

Here the notation is that of Schubert calculus, see for instance [GH78, Sec. 1.5].

Since
V =

⋃

ℓ∈R

ℓ

is birational to a P1 bundle over R, it follows that dim V ≥ 2.

Step 2: There exists B′ such that A ∩B = A ∩B′ and YB′ [2] meets V . Let

U = A ∩B

and let DU be its associated divisor on YA, under the isomorphism of Proposition
4.8. Then DU has dimension 3; since two varieties of dimension 2 and 3 in P5 always
meet, it follows that

DU ∩ V 6= ∅.

So there exists a Lagrangian subspace B′ such that B′ ∩A = U and

YB′ [2] ∩ V 6= ∅.

Step 3: B meets V . We lift everything to X, which is smooth, so intersection the-
ory applies. Let

Ṽ1 = f−1(V ) and Ṽ2 = f−1(YB′ [2]).

One easily sees that on X
Ṽ1 · Ṽ2 6= 0.

Since f−1(YB [2]) and Ṽ2 have the same homology class, it follows that

Ṽ1 · f
−1(YB [2]) 6= 0,

in particular Ṽ1 must meet f−1(YB[2]), and so

V ∩ YB [2] 6= ∅.
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The other relations come from the following

Lemma 4.18. Let
Z = ZA = f−1(YA[2])

be the fixed locus of the involution ϕ on X. Then the following relation holds in
CH(X):

3ZA = 15h2 − c2(X).

Proof. We consider f as a map X � P5, so that it induces a morphism of vector
bundles over X

df : TX � f∗TP5.

We notice that df in injective outside Z, so we can see Z as a degeneracy locus for
this morphism. We then apply Thom-Porteous formula in the precise form stated
in [Ful84, sec. 14.4]. In their notation we have e = 4, f = 5 and k = 3.

This yields a cycle class
D3(df) ∈ CH2(Z)

whose support is Z, and such that the image of D3(df) in CH2(X) is

∆
(1)
2 (c(f∗TP5 − TX)) = c2(f∗TP5 − TX).

Here the total Chern class
c(f∗TP5 − TX)

is defined formally in such a way that Whitney’s formula holds, i. e.

c(TX ) · c(f∗TP5 − TX) = c(f∗TP5).

From the last equation and the fact that c1(TX) = 0 (since X is symplectic) we
can obtain

c2(f∗TP5 − TX) = f∗c2(TP5)− c2(TX) = 15h2 − c2(X).

Here
c2(TP5) = 15c1

(
OP5(1)

)2

can easily be derived from the usual Euler sequence

−−−� −−−� −−−� −−−�0 OP5 C6 ⊗OP5(1) TP5 0 .

Since D3(df) has support on Z, which is irreducible, we find that

kZ = 15h2 − c2(X) (4.11)

for some k ∈ Z. To find the right k, we observe that again by [Ful84, Theorem
14.4(c)] we have

D3(df) = [D3(df)],

where D3(df) is the degeneracy locus of df . In other words D3(df) is just Z, with
the scheme structure given by the vanishing of all 4× 4 minors of df .
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By the local study in section 2.2.6 we see that the map

f : X � Y ⊂ P5

has, in suitable analytic coordinates around a point of Z, the local form

f(x, y, z, t) =
loc

(x2, xy, y2, z, t).

The differential of f is then

df =
loc




2x 0 0 0
y x 0 0
0 2y 0 0
0 0 1 0
0 0 0 1




;

equating to 0 the determinants of its 3× 3 minors yields

D3(df) =
loc
V (x2, xy, y2).

So we see that D3(df) has multiplicity 3 at each point of Z, hence k = 3.
Alternatively we could multiply Equation (4.11) by h2 to find

kZ · h2 = 15h4 − c2(X) · h2.

If we look at this relation in cohomology it becomes, thanks to Proposition 4.1,

40k = 15 · 12− 60,

so k = 3.

We have a closer look at the differential of

f : X � P5.

As a map of vector bundles, this is not injective exactly on Z. Hence it is always
injective on stalks; in other words

df : TX � f∗TP5

is an injective map of sheaves. Let R denote its cokernel; this is locally free of rank
1 outside Z. So we have the exact sequence

−−−� −−−� −−−� −−−�0 TX f∗TP5 R 0 . (4.12)

We now dualize it applying Hom(·,OX). We remark that

Hom(R,OX)

is torsion-free, of rank one, and one can check in local coordinates that it is a line
bundle. By (4.12) we get c1(R) = 6h, hence

Hom(R,OX) ∼= OX(−6).
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Then we note that
Ext1(f∗(TP5),OX) = 0,

because both sheaves are locally free. So if we let

Q = Ext1(R,OX ),

the dual of (4.12) becomes

−−−� −−−� −−−�dfT −−−� −−−�0 OX(−6) f∗(Ω1
P5) Ω1

X Q 0. (4.13)

We remark that Q is set-theoretically supported on Z, because both R and OX
are locally free outside Z. Actually the schematic support of Q is 2Z, that is the
subscheme of X defined by the ideal I2

Z . This follows from the

Lemma 4.19. Let Q be as above; then Ann(Q) = I2
Z.

Proof. We only need to prove this locally. As in the proof of Lemma 4.18 we can
choose local coordinates on X such that

f(x, y, z, t) =
loc

(x2, xy, y2, z, t);

then dfT has the matrix

dfT =
loc




2x y 0 0 0
0 x 2y 0 0
0 0 0 1 0
0 0 0 0 1


 ;

hence we have the presentation

Q =
loc

〈dx, dy〉

〈xdx, xdy + ydx, ydy〉
.

A given h(x, y) ∈ C[x, y] then annihilates Q if and only if both hdx and hdy
belong to the k[x, y]-module generated by xdx, xdy + ydx and ydy.

Let us make this more explicit. Assume that

h(x, y)dx = a(x, y)xdx + b(x, y) · (xdy + ydx) + c(x, y)ydy.

This yields

h(x, y) = xa(x, y) + yb(x, y)

0 = xb(x, y) + yc(x, y)

The second equation implies b(x, y) = yb′(x, y), so the first becomes

h(x, y) = xa(x, y) + y2b′(x, y).

If h can be written this way, then we can choose c so that the second condition is
satisfied. In short

h(x, y)dx ∈ 〈xdx, xdy + ydx, ydy〉k[x,y]
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if and only if h ∈ (x, y2).
We have the symmetric condition for h(x, y)dy, so we conclude that h ∈ Ann(Q)

if and only if
h ∈ (x, y2) ∩ (x2, y) = (x2, xy, y2).

The last equality between ideals can be proved for instance by the remark that both
(x, y2) ∩ (x2, y) and (x2, xy, y2) consist of the polynomials h such that

h(0, 0) =
dh

dx
(0, 0) =

dh

dy
(0, 0) = 0.

Finally (x2, xy, y2) is exactly the square of the ideal (x, y) which locally defines
Z.

We now produce another exact sequence involving Q. Let

i : Z �֒ X

denote the inclusion. Recall that we have a canonical identification

IZ/I
2
Z
∼= i∗N

∨
Z/X : (4.14)

locally the function g vanishing on Z corresponds to the normal covector dg. Con-
sider the natural projection

π : Ω1
X Z

� N∨Z/X ;

we see this as a map on X
π : Ω1

X � IZ/I2
Z .

Lemma 4.20. We have π ◦ dfT = 0.

Proof. We keep the notation of the proof of Lemma 4.19. We need only to verify
the thesis on Z. The image of dfT is generated by

xdx, xdy + ydx, ydy, dz, dt.

The first three elements vanish on Z, while the latter two are in the kernel of π.

The above lemma and the exact sequence in (4.13) provide us a surjective map

α : Q� i∗(N
∨
Z/X).

Lemma 4.21. The kernel of α is i∗(detTZ).

Proof. We can see this explicitly in local coordinates. Keeping the notation of
the above proofs, Q is locally generated, on Z, by dx, dy and xdy = −ydx. The
conormal bundle N∨Z/X is generated by dx and dy, and α is the obvious projection.

The kernel of α is then generated by xdy. Under the identification in (4.14) this
corresponds to the generator dx ∧ dy of

∧2N∨Z/X .
So

kerα = i∗(detN∨Z/X) ∼= i∗(detTZ),

since Z is Lagrangian.
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Thanks to the lemma we get the exact sequence we are looking for:

−−−� −−−� −−−� −−−�0 i∗(detTZ) Q i∗TZ 0 . (4.15)

We can now find new relations in the Chow ring of X.

Proposition 4.22. In CH(X)Q we have

c2(X) · h = 5h3

and c4(X) is a linear combination of h4, c2(X) · h2 and c2(X)2.

Proof. This is just a matter of putting together the relations that come from the
exact sequences (4.13) and (4.15).

We start from (4.13), which yields

(1− 6h) · (1 + c2(X) + c4(X)) = (1− h)6 · (1 + c1(Q) + c2(Q) + c3(Q) + c4(Q)).

Comparing the terms in degree up to 2 we get:

c1(Q) = 0

c2(Q) = c2(X)− 15h2 = −3Z,
(4.16)

where the last equality is Lemma 4.18. Then in degree 3 we have

c3(Q) = 6h(c2(Q)− c2(X)) + 20h3 =

= 6h · (−15h2) + 20h3 = −70h3,
(4.17)

using the second of (4.16). Finally in degree 4 we get, using (4.16) and (4.17),

c4(X) = 15h4 + 15h2 · c2(Q)− 6h · c3(Q) + c4(Q) =

= 15h4 − 45h2 · Z + 420h4 + c4(Q),

hence
c4(Q) = c4(X) − 435h4 + 45h2 · Z. (4.18)

Next we look at the relations coming from (4.15). To do this we shall use
Grothendieck-Riemann-Roch, which for the closed embedding

i : Z �֒ X

takes the form
ch(i∗F) = i∗(ch(F) · td(NZ/X)−1),

for any F ∈ Coh(Z). This is because in our situation we have

Rki∗(F) = 0

for all such F , thanks to [Har77, Cor. III.11.2].
Using that Z is Lagrangian we have NZ/X ∼= Ω1

Z , so we can compute

td(NZ/X) = 1−
1

2
c1(Z) +

1

12
(c1(Z)2 + c2(Z));

td(NZ/X)−1 = 1 +
1

2
c1(Z) +

1

6
c1(Z)2 −

1

12
c2(Z).
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Then we have

ch(detTZ) = 1 + c1(Z) +
1

2
c1(Z)2;

ch(TZ) = 2 + c1(Z) +
1

2
(c1(Z)2 − c2(Z)).

So Grothendieck-Riemann-Roch for these sheaves becomes

ch(i∗ detTZ) = i∗

(
1 +

3

2
c1(Z) +

7

6
c1(Z)2 −

1

12
c2(Z)

)
;

ch(i∗TZ) = i∗

(
2 + 2c1(Z) +

4

3
c1(Z)2 −

7

6
c2(Z)

)
.

Next we use the fact that in CH(Z)Q we have

c1(Z) = −KZ = −3i∗(h),

thanks to Proposition 2.8. So we obtain

ch(i∗ detTZ) = Z −
9

2
h · Z +

21

2
h2 · Z −

1

12
Z2;

ch(i∗TZ) = 2Z − 6h · Z + 12h2 · Z −
7

6
Z2.

We can use this to recover the Chern classes of i∗(detTZ) and i∗(TZ). These are:

c1(i∗ detTZ) = 0

c2(i∗ detTZ) = −Z

c3(i∗ detTZ) = −9h · Z

c4(i∗ detTZ) = Z2 − 63h2 · Z

and

c1(i∗TZ) = 0

c2(i∗TZ) = −2Z

c3(i∗TZ) = −12h · Z

c4(i∗TZ) = 9Z2 − 72h2 · Z.

Finally we use the exact sequence (4.15) to get the Chern classes of Q. The first
two are

c1(Q) = 0

c2(Q) = −3Z,

in accordance with (4.16). Then we get

c3(Q) = −21h · Z,

and comparing with (4.17) we obtain

−3h · Z = −10h3.
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Using Lemma 4.18 this is exactly

c2(X) · h = 5h3.

Finally we get

c4(Q) = 12Z2 − 135h2 · Z;

comparing with (4.18) this becomes

12Z2 − 135h2 · Z = c4(X)− 435h4 + 45h2 · Z,

and using again Lemma 4.18 to write Z as a rational combination of c2(X) and h2,
we get the second claim of the thesis.

4.3.4 Conclusion of the proof

First we recall that we have defined the class

θ =
1

2
f∗(θ).

Here θ is the class of any point on YB [2] ⊂ YA.

We also recall from the previous section that on YA we have a divisor D = DU ,
where U = A ∩B, together with a rational map

rD : D 99K ℓD,

which exhibits a linear equivalence on D between YA[2] and YB [2]. In other words

[
YA[2]

]
=
[
YB [2]

]
in CH2(YA).

Using Lemma 4.17 we can start proving that

h4 = 6θ (4.19)

in CH(X).

Indeed let Λ be any plane containing L0. Then h
3

is represented by the inter-
section

Λ · Y = L0 + C,

where C is a quintic on Λ. Multiplying by h we obtain

h
4

= L0 · h+ C · h.

We claim that this is represented by a 0-cycle supported on L0. This is clear for
the first addend; for the second we represent h by a hyperplane containing L0 and
transverse to Λ. It follows that C · h is supported on C ∩ L0.

Since L0 is rational, CH1(L0) ∼= Z, so h
4

is rationally equivalent to a multiple
of a point of L0. Finally Lemma 4.17 assures us that

L0 ∩ YB[2] 6= ∅,
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so we get

h
4

= kθ in CH4(Y )Q

for some k ∈ Q.
Pulling back this relation to X and using f∗(h) = h, f∗(θ) = 2θ we obtain

h4 = 2kθ in CH4(X)Q.

Since in cohomology we have h4 = 12 we must have k = 6, and so (4.19) is proved.
Next we show that

h2 · c2(X) = 60θ. (4.20)

We start from Lemma 4.18; pushing forward that relation we get

3
[
YA[2]

]
= 15 · 4h

2
− f∗c2(X) in CH2(Y ). (4.21)

Multiplying (4.21) by h
2

we get

h
2
· f∗c2(X) = 60h

4
− 3h

2
·
[
YA[2]

]
.

We already proved that h
4

is a multiple of θ, and the cycle class

h
2
·
[
YA[2]

]
= h

2
·
[
YB[2]

]

is supported on YB [2], hence it is a rational multiple of θ too.
We conclude that the relation (4.20) holds up to a multiple, that is

h
2
· f∗c2(X) = kθ.

As before, we pull back this relation to X in order to make computations in coho-
mology. We get

h2 · 2c2(X) = 2kθ.

Since in cohomology we have

h2 · c2(X) = 60,

we must have k = 60, and Equation (4.20) is proved.
In a similar way, we can rewrite Equation (4.21) as

f∗c2(X) = 15h
2
− 3

[
YA[2]

]

and take squares to write (f∗c2(X))2 as a combination of h
4

and a 0-cycle supported
on YB [2]. This shows that (f∗c2(X))2 is a rational multiple of θ.

As usual a cohomology computation yields the precise form

c2(X)2 = 828θ.

Now we can use Proposition 4.22 to conclude that

c4(X) = kθ,

and finally we get k = 324 by comparison with the analogous computation in
cohomology. This takes care of all relations in degree 8.

The only relation in degree 6 comes from Proposition 4.2, and is

c2(X) · h = 5h3.

We already proved that the same holds in CH∗(X) in Proposition 4.22. This ends
the proof of the main theorem.
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