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SummarySope of the present researh is to develop novel mathematial tools in orderto fae the ontinuously growing need of modern theoretial approahes fora proper development of Arti�ial Intelligene.Using Statistial Mehanis and Graph Theory languages and tehniques, wewill start this thesis by introduing the mean �eld Hop�eld model as the har-moni osillator in Neural Networks. This will set the referene frameworkin order to extend its apabilities: in our researh , we sueed in formalizingfor the �rst time neural networks able to spontaneous parallel proessing (astep forward with respet to the original harmoni osillator, where only se-quential proessing was allowed to emerge as a olletive feature shared overthe distributed memories aross the net).Indeed, the Hop�eld model (together with the related Hebb's learning rule)provides a prototypial assoiative memory model that has attrated a greatattention by the ommunities of Theoretial Physiists and Mathematiiansmainly due to its natural formalization within the anonial setting of Statis-tial Mehanis (possibly beyond the adherene of its proessing paths withthose empirially found in biologial information proessing systems).Through well ontrolled learning proedures, in this attrator networks itis possible to store and sequentially retrieve patterns of information. Theretrieval of a stored pattern does oinide, mathematially, with the ther-malization of the system in one of the several minima of the related free en-ergy (eah minimum orresponding to a pattern to be retrieved) suh that,through the analogy between thermodynamial relaxation and seletion of adistributed memory, we an adapt the mathematial tools (i.e. models andmethods) originally developed for statistial mehanial treatments of spinglasses (other omplex systems whose free energy landsape is rugged) to theanalysis of neural networks, and, in this thesis, this is the route that we aimto ontribute to pave, moving from serial to parallel information proessing.Indeed, properly modifying the struture of the memories -pattern's de�nitions-(in the pertinent phase spae where the system dynamis takes plae) orarefully diluting the network arhiteture (in the topologial spae wherespins dialogue) we will build models of neural networks able to reall si-multaneously multiple patterns of information. We will therefore analyze indetails the mathematial struture of these networks and disuss the resultingproperties.The thesis is strutured as follows:In the �rst Chapter we brie�y revise the Hop�eld model: after an histori-al digression on the role of the so-alledmean-�eld approximation in Physis1



(and in partiular in Statistial Mehanis), we will onstrut its relatedHamiltonian in two novel ways (with respet to the original Hop�eld pro-posal). More preisely, starting from the paradigmati models for ferromag-nets and for spin-glasses (i.e., the Curie-Weiss model and the Sherrington-Kirkpatrik model, respetively) we will show how to reover the Hop�eldmodel and the underlying deep onnetions among these models.The seond Chapter is entirely dediated to parallel proessing networksand it is split into two main Setions, the former dealing with multitaskingnetwork, the latter dealing with hierarhial network.We will start with purely mean �eld models, the so-alled multitasking asso-iative networks and we will perform an extended treatment of its apabilitiesand properties, mixing tehniques stemming from Statistial Mehanis andGraph Theory (whose usage is more typial for Theoretial Phyisists andMathematiians) with those of ommon usage in Robotis and Automation asSignal-to-Noise, stability analysis and other related operational approahes.After disussing as toy-examples the simultaneous retrieval of two or threepatterns, we will explore the whole low-storage behavior of the network, thatan be de�ned in a simple way as follows: onsider a network built of by Nbinary spins (i.e. Ising spins), that we want to use to store and retrieve Ppatterns (i.e., N-length vetors of binary entries ±1). Now, as we are inter-ested in the network performanes in the thermodynami limit (i.e. sending
N → ∞ in order to deal with averages, rather than full probability distribu-tions), we need to speify how P sales with N . If suh a saling is extensive,namely if P ∝ N , we talk of high storage regime, while if the amount of pat-ters sales sub-linearly in the number of spins (suh that limN→∞(P/N) → 0),we talk of low storage.At a �rst glane, the low storage regime looks as a pathologial regime or asimplifying analysis avoiding the high storage, but, atually, this is not thease. The origin of this idea lies in the properties of the Hop�eld networkand, in partiular, in the theory of Amit, Gutfreund and Sompolinsky whoshowed how to load that original network in order to let it work in the highstorage regime. However, to understand that most modern variants of theHop�eld network an not handle extensive storage (i.e. P ∼ N) it is enougha simple and heuristial onsideration of Graph Theory: the Hop�eld modelis a fully onneted mean-�eld network. This implies that, as the memory isdistributed -namely it is shared over the synapses (i.e. the links onnetingthe spins and whose values an be both positive and negative taitly loat-ing neural networks in the larger bulk of spin glasses)- we an feed O(N2)synapses (i.e. links) with the information ontained in the patterns to store.However let us now onsider a minimal modi�ation of the Hop�eld modelthat makes it more biologially plausible: let us ollapse the Hop�eld network2



on an Erdös-Rényi graph (instead of the original fully onneted network).This has the advantage of avoiding the assumption that eah neuron inter-ats with all the other neurons in the network, that is learly biologiallyfalse, despite mathematially onvenient. However, from an Arti�ial Intelli-gene perspetive, the major di�erene between a random graph and a fullyonneted network resides in the number of links: N1 for the former, N2 forthe latter. It is then evident that, as the amount of synapsis does no longersale quadratially with the amount of neurons, the overall network perfor-mane an not remain unaltered. This is a general result when embeddingassoiative networks on strutured or biologial interesting topologies (andit is a partiularly severe limitation for Hebb learning rules, as those we willinvestigate in this work).One understood this theoretial bound to the maximal storage apaity ofthe variations on the Hop�eld theme, we analyze in all details our multi-tasking extension: a key (and novel) assumption is the introdution of blankentries in pattern's de�nition, that is, pattern entries may assume values ±1(arrying information) or simply be blank (denoting lak of information). Itis remarkable that this novel approah to dilution, that is seen as a must byBiologists, will play as the real ore of parallel proessing suh that, mak-ing the network topology more adherent to biologial demands, we will alsoobtain -as a result- that network's performanes also math better those ofbiologial neural networks.One explored exhaustively the multitasking network, we will try to fae an-other fundamental and intrinsi limitation of the original Hop�eld senario:its mean-�eld nature. To overome this obstale -at least partially- we tryto adapt the hierarhial ferromagnet, introdued by Dyson in the Litera-ture almost four deades ago, implementing on its struture the Hebb rulefor learning and inferring the resulting properties the network spontaneouslyshows.Conretely, we introdue and investigate the statistial mehanis of hier-arhial neural networks: in these systems, spins interat with a strengththat is a (dereasing) funtion of a suitably introdued onept of distane,suh that di�erent levels (i.e. hierarhies) of degenerate-strength ouplingsimmediately emerge.First, we approah these systems à la Mattis, that is, by thinking at theDyson model as a single-pattern hierarhial neural network, and, throughthis perspetive, we disuss the stability of di�erent retrievable states aspredited by the related ( approximate) self-onsistenies equation. Themathematial key argument here is properly reabsorbing �utuations of themagnetization related to higher levels of the hierarhy into e�etive �eldsfor the lower levels: remarkably, mixing Amit's ansatz tehnique (to selet3



andidate retrievable states) with the interpolation proedure (to solve forthe free energy of these states) we show that (due to gauge symmetry) theDyson model aomplishes both serial and parallel proessing.One step forward, we extend this senario toward multiple stored patterns byimplementing the Hebb presription for learning within the ouplings. Thisresults in an Hop�eld-like networks onstrained on a hierarhial topology,for whih, restriting to the low storage regime (where the number of patternsgrows at most logarithmial with the amount of spins), we give an expliitexpression of its mean �eld bound and of the related improved bound.As a result of the present investigation, the hierarhial neural network (bothfor its underling topology, as well as for its emerging properties) is atuallymuh loser to real biology with respet to neural network models previouslydeveloped.Finally, our general onsiderations on the whole strategy exploited in thisPh.D. training period will be olleted in the Conlusions of the thesis.
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Chapter 1IntrodutionNeural networks are suh a fasinating �eld of siene that its developmentis the result of ontributions and e�orts from an inredibly large varietyof sientists, ranging from engineers (mainly involved in eletronis androbotis) [60, 70℄, physiists (mainly involved in statistial mehanis andstohasti proesses) [6, 17℄, and mathematiians (mainly working in logisand graph theory) [5, 22℄ to (neuro) biologists [34, 63℄ and (ognitive) psy-hologists [13, 44℄.Traing the genesis and evolution of neural networks is very di�ult,probably due to the broad meaning they have aquired along the years1; si-entists loser to the robotis branh often refer to the W. MCulloh andW. Pitts model of pereptron [68℄ 2, or the F. Rosenblatt version [40℄, whileresearhers loser to the neurobiology branh adopt D. Hebb's work as astarting point [21℄. On the other hand, sientists involved in statistial me-hanis, that joined the ommunity in relatively reent times, usually referto the seminal paper by Hop�eld [49℄ or to the elebrated work by AmitGutfreund Sompolinky [18℄, where the statistial mehanis analysis of theHop�eld model is e�etively arried out.Whatever the referene framework, at least 30 years elapsed sine neu-ral networks entered in the theoretial physis researh and muh of theformer results an now be re-obtained or re-framed in modern approahes,as we want to highlight in the present work. In partiular, we show thattoy models for paramagneti-ferromagneti transition [65℄ are natural proto-1Seminal ideas regarding automation are already in the works of Lee during the XIIXentury, if not even bak to Desartes, while more modern ideas regarding spontaneousognition, an be attributed to A. Turing [7℄ and J. Von Neumann [50℄ or to the join e�ortsof M. Minsky and S. Papert [58℄, just to ite a few.2Note that the �rst �transistor�, ruial to swith from analogial to digital proessing,was developed only in 1948 [68℄. 10



types for the autonomous storage/retrieval of information patterns and playas operational ampli�ers in eletronis. Then, we move further analyzing theapabilities of glassy systems (ensembles of ferromagnets and antiferromag-nets) in storing/retrieving extensive numbers of patterns so to reover theHebb rule for learning [21℄ in two di�erent ways (the former guided by fer-romagneti intuition, the latter guided by glassy ounterpart), both far fromthe original route ontained in his milestone The Organization of Behavior.1.1 Statistial MehanisHereafter we summarize the fundamental steps that led theoretial physiiststowards arti�ial intelligene; despite this parenthesis may look rather dis-tant from neural network senarios, it atually allows us to outline and tohistorially justify the physiists perspetive.Statistial mehanis aroused in the last deades of the XIX enturythanks to its founding fathers Ludwig Boltzmann, James Clarke Maxwelland Josiah Willard Gibbs [12℄. Its �solely� sope (at that time) was to atas a theoretial ground of the already existing empirial thermodynamis,so to reonile its noisy and irreversible behavior with a deterministi andtime reversal mirosopi dynamis. While trying to get rid of statistialmehanis in just a few words is almost meaningless, roughly speaking itsfuntioning may be summarized via toy-examples as follows. Let us onsidera very simple system, e.g. a perfet gas: its moleules obey a Newton-likemirosopi dynamis (without frition -as we are at the moleular level- thustime-reversal as dissipative terms in di�erential equations apturing system'sevolution are oupled to odd derivatives) and, instead of fousing on eahpartiular trajetory for haraterizing the state of the system, we de�neorder parameters (e.g. the density) in terms of mirosopi variables (thepartiles belonging to the gas). By averaging their evolution over suitablyprobability measures, and imposing on these averages energy minimizationand entropy maximization, it is possible to infer the marosopi behaviorin agreement with thermodynamis, hene bringing together the mirosopideterministi and time reversal mehanis with the marosopi strong di-tates stemmed by the seond priniple (i.e. arrow of time oded in the entropygrowth). Despite famous attaks to Boltzmann theorem (e.g. by Zermelo orPoinaré) [61℄, statistial mehanis was immediately reognized as a deepand powerful bridge linking mirosopi dynamis of a system's onstituentswith (emergent) marosopi properties shown by the system itself, as ex-empli�ed by the equation of state for perfet gases obtained by onsideringan Hamiltonian for a single partile aounting for the kineti ontribution11



only [12℄.One step forward beyond the perfet gas, Van der Waals and Maxwell intheir pioneering works foused on real gases [52℄, where partile interationswere �nally onsidered by introduing a non-zero potential in the miro-sopi Hamiltonian desribing the system. This extension implied �fty-yearsof deep hanges in the theoretial-physis perspetive in order to be ableto fae new lasses of questions. The remarkable reward lies in a theoryof phase transitions where the fous is no longer on details regarding thesystem onstituents, but rather on the harateristis of their interations.Indeed, phase transitions, namely abrupt hanges in the marosopi stateof the whole system, are not due to the partiular system onsidered, but areprimarily due to the ability of its onstituents to pereive interations overthe thermal noise. For instane, when onsidering a system made of by alarge number of water moleules, whatever the level of resolution to desribethe single moleule (ranging from lassial to quantum), by properly varyingthe external tunable parameters (e.g. the temperature3), this system eventu-ally hanges its state from liquid to vapor (or solid, depending on parametervalues); of ourse, the same applies generally to liquids.The fat that the marosopi behavior of a system may spontaneouslyshow ooperative, emergent properties, atually hidden in its mirosopi de-sription and not diretly deduible when looking at its omponents alone,was de�nitely appealing in neurosiene. In fat, in the 70s neuronal dynam-is along axons, from dendrites to synapses, was already rather lear (seee.g. the elebrated book by Tukwell [45℄) and not too muh intriate thaniruits that may arise from basi human reativity: remarkably simpler thanexpeted and ertainly trivial with respet to overall erebral funtionalitieslike learning or omputation, thus the aptness of a thermodynami formu-lation of neural interations -to reveal possible emergent apabilities- wasimmediately pointed out, despite the route was not lear yet.Interestingly, a big step forward to this goal was prompted by problemsstemmed from ondensed matter. In fat, theoretial physiists quikly re-alized that the purely kineti Hamiltonian, introdued for perfet gases (or3We hose the temperature here (as an example of tunable parameter) beause in neuralnetworks we will deal with white noise a�eting the system. Analogously, in ondensedmatter, disorder is introdued by thermal noise, namely temperature. There is a deepsimilarity between them. In stohasti proesses, prototype for white noise generatorsare random walkers, whose ontinuous limits are Gaussians, namely just the solutionsof the Fourier equation for di�usion. However, the same elebrated equation holds fortemperature spread too, indeed the latter is related to the amount of exhanged heat bythe system under onsideration, neessary for entropy's growth [52, 57℄. Hene we havethe �rst equivalene: white noise in neural networks mirrors thermal noise in struture ofmatter. 12



Hamiltonian with mild potentials allowing for real gases), is no longer suitablefor solids, where atoms do not move freely and the main energy ontributionsare from potentials. An ensemble of harmoni osillators (mimiking atomiosillations of the nulei around their rest positions) was the �rst senariofor understanding ondensed matter: however, as experimentally revealed byrystallography, nulei are arranged aording to regular latties hene mo-tivating mathematiians in study periodial strutures to help physiists inthis modeling, but merging statistial mehanis with lattie theories resultedsoon in pratially intratable models4.As a paradigmati example, let us onsider the one-dimensional Isingmodel, originally introdued to investigate magneti properties of matter:the generi, out of N , nuleus labeled as i is shematially represented by aspin σi, whih an assume only two values (σi = −1, spin down and σi = +1,spin up); nearest neighbor spins interat reiproally through positive (i.e.ferromagneti) interations Ji,i+1 > 0, hene the Hamiltonian of this systeman be written as HN(σ) ∝ −∑N
1=1 Ji,i+1σiσi+1 − h

∑N
1=1 σi, where h tunesthe external magneti �eld and the minus sign in front of eah term of theHamiltonian ensures that spins try to align with the external �eld and to getparallel eah other in order to ful�ll the minimum energy priniple.Clearly, this model an trivially be extended to higher dimensions, how-ever, due to prohibitive di�ulties in faing the topologial onstraint ofonsidering nearest neighbor interations only, soon shortuts were properlyimplemented to turn around this path. It is just due to an e�etive shortut,namely the so alled �mean �eld approximation�, that statistial mehanisapproahed omplex systems and, in partiular, arti�ial intelligene.1.2 The Role of Mean Field LimitationsAs antiipated, the �mean �eld approximation� allows overoming prohibitivetehnial di�ulties owing to the underlying lattie struture. This onsistsin extending the sum on nearest neighbor ouples (whih are O(N)) to in-lude all possible ouples in the system (whih are O(N2)), properly resal-ing the oupling (J → J/N) in order to keep thermodynamial observablelinearly extensive. If we onsider a ferromagnet built of by N Ising spins4For instane the famous Ising model [62℄, dated 1920 (and uriously invented by Lenz)whose properties are known in dimensions one and two, is still waiting for a solution inthree dimensions.
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Figure 1.1: Example of regular lattie (left) and omplete graph (right) with
N = 20 nodes. In the former only nearest-neighbors are onneted in suha way that the number of links sales linearly with N , while in the lattereah node is onneted with all the remaining N − 1 in suh a way that thenumber of links sales quadratially with N .
σi = ±1 with i ∈ (1, ..., N), we an then write

HN (σ|J) = − 1

N

N,N∑

i<j

Jijσiσj ∼ − 1

2N

N,N∑

i,j=1

σiσj , (1.1)where in the last term we negleted the diagonal term (i = j) as it isirrelevant for large N . From a topologial perspetive the mean-�eld ap-proximation equals to abandon the lattie struture in favor to a ompletegraph (see Fig.(1.2)). When the oupling matrix has only positive entries,e.g. P (Jij) = δ(Jij − J), this model is named Curie-Weiss model and atsas the simplest mirosopi Hamiltonian able to desribe the paramagneti-ferromagneti transitions experiened by materials when temperature is prop-erly lowered. An external (magneti) �eld h an be aounted for by addingin the Hamiltonian an extra term ∝ −h∑N
i=1 σi.Aording to the priniple of minimum energy, the two-body interationappearing in the Hamiltonian in Eq.(1.1) tends to make spins parallel witheah other and aligned with the external �eld if present. However, in thepresene of noise (i.e. if temperature T is stritly positive), maximizationof entropy must also be taken into aount. When the noise level is muh14



higher than the average energy (roughly, if T ≫ J), noise and entropy-drivendisorder prevail and spins are not able to �feel� reiproally; as a result, they�ip randomly and the system behaves as a paramagnet. Conversely, if noise isnot too loud, spins start to interat possibly giving rise to a phase transition;as a result the system globally rearranges its struture orientating all thespins in the same diretion, whih is the one seleted by the external �eld ifpresent, thus we have a ferromagnet.In the early '70 a sission ourred in the statistial mehanis ommu-nity: on the one side �pure physiists" saw mean-�eld approximation as amerely bound to bypass in order to have satisfatory pitures of the stru-ture of matter and they sueeded in working out iterative proedures toembed statistial mehanis in (quasi)-three-dimensional retiula, yielding tothe renormalization group developed by Kadano� and Wilson in Ameria [51℄and Di-Castro and Jona-Lasinio in Europe [11℄; this proliferative branh gavethen rise to superondutivity, super�uidity [16℄ and many-body problems inondensed matter [48℄.Conversely, from the other side, the mean-�eld approximation ated as abreah in the wall of omplex systems: a thermodynamial investigation ofphenomena ourring on general strutures laking Eulidean metris (e.g.Erdös-Rényi graphs [8, 31℄, small-world graphs [19, 25℄, diluted, weightedgraphs [33℄) was then possible.In general, as long as the summations run over all the indees (henemean-�eld is retained), rather omplex oupling patterns an be solved (seee.g., the striking Parisi piture of mean-�eld glassy systems [59℄) and thispaved the strand to omplex system analysis by statistial mehanis, whoseinvestigation largely overs neural networks too.1.3 Serial ProessingHereafter we disuss how to approah neural networks frommodels mimikingferromagneti transition. In partiular, we study the Curie-Weiss model andwe show how it an store one pattern of information. Then, we notie thatsuh a stored pattern has a very peuliar struture whih is hardly natural,but we will overome this (fake) �aw by introduing a gauge variant known asMattis model. This senario an be looked at as a primordial neural network.The suessive step onsists in extending, through elementary thoughts, thispiture in order to inlude and store several patterns. In this way, we reover,via the �rst alternative route (w.r.t. the original one by Hebb), both the Hebbrule for synapti plastiity and, as a orollary, the Hop�eld model for neuralnetworks too. 15



1.3.1 The Curie-Weiss Paradigm.The statistial mehanial analysis of the Curie-Weiss model (CW) an besummarized as follows: Starting from a mirosopi formulation of the sys-tem, i.e. N spins labeled as i, j, ..., their pairwise ouplings Jij ≡ J , andpossibly an external �eld h, we derive an expliit expression for its (maro-sopi) free energy α(β). The latter is the e�etive energy, namely the dif-ferene between the internal energy U , divided by the temperature T = 1/β,and the entropy S, namely α(β) = S − βU , in fat, S is the �penalty� to bepaid to the Seond Priniple for using U at noise level β. We an thereforelink marosopi free energy with mirosopi dynamis via the fundamentalrelation
α(β) = lim

N→∞

1

N
ln

2N∑

{σ}
exp [−βHN(σ|J, h)] , (1.2)where the sum is performed over the set {σ} of all 2N possible spin on�gura-tions, eah weighted by the Boltzmann fator exp[−βHN (σ|J, h)] that teststhe likelihood of the related on�guration. From expression (1.2), we anderive the whole thermodynamis and in partiular phase-diagrams, thatis, we are able to disern regions in the spae of tunable parameters (e.g.temperature/noise level) where the system behaves as a paramagnet or as aferromagnet.Thermodynamial averages, denoted with the symbol 〈.〉, provide for a givenobservable the expeted value, namely the value to be ompared with mea-sures in an experiment. For instane, for the magnetizationm(σ) ≡∑N

i=1 σi/Nwe have
〈m(β)〉 =

∑
{σ}m(σ)e−βHN (σ|J)
∑

{σ} e
−βHN (σ|J) . (1.3)When β → ∞ the system is noiseless (zero temperature) hene spins feel re-iproally without errors and the system behaves ferromagnetially (|〈m〉| →

1), while when β → 0 the system behaves ompletely random (in�nite tem-perature), thus interations an not be felt and the system is a paramagnet(〈m〉 → 0). In between a phase transition happens.In the Curie-Weiss model the magnetization works as order parameter:its thermodynamial average is zero when the system is in a paramagneti(disordered) state (→ 〈m〉 = 0), while it is di�erent from zero in a ferro-magneti state (where it an be either positive or negative, depending on thesign of the external �eld). Dealing with order parameters allows us to avoidmanaging an extensive number of variables σi, whih is pratially impossibleand, even more important, it is not stritly neessary.16



Now, an expliit expression for the free energy in terms of 〈m〉 an beobtained arrying out summations in Eq.(1.2) and taking the thermodynamilimit N → ∞ as
α(β) = ln 2 + ln cosh[β(J〈m〉+ h)]− βJ

2
〈m〉2. (1.4)In order to impose thermodynamial priniples, i.e. energy minimization andentropy maximization, we need to �nd the extrema of this expression withrespet to 〈m〉 requesting ∂〈m(β)〉α(β) = 0. The resulting expression is alledthe self-onsisteny and it reads as

∂〈m〉α(β) = 0 ⇒ 〈m〉 = tanh[β(J〈m〉+ h)]. (1.5)This expression returns the average behavior of a spin in a magneti �eld. Inorder to see that a phase transition between paramagneti and ferromagnetistates atually exists, we an �x h = 0 (and pose J = 1 for simpliity) andexpand the r.h.s. of Eq.(1.5) to get
〈m〉 ∝ ±

√
βJ − 1. (1.6)Thus, while the noise level is higher than one (β < βc ≡ 1 or T > Tc ≡ 1)the only solution is 〈m〉 = 0, while, as far as the noise is lowered belowits ritial threshold βc, two di�erent-from-zero branhes of solutions appearfor the magnetization and the system beomes a ferromagnet (see Fig.(1.2)).The branh e�etively hosen by the system usually depends on the sign ofthe external �eld or boundary �utuations: 〈m〉 > 0 for h > 0 and vie versafor h < 0.Clearly, the lowest energy minima orrespond to the two on�gurationswith all spins aligned, either upwards (σi = +1, ∀i) or downwards (σi =

−1, ∀i), these on�gurations being symmetri under spin-�ip σi → −σi.Therefore, the thermodynamis of the Curie-Weiss model is solved: energyminimization tends to align the spins (as the lowest energy states are the twoordered ones), however entropy maximization tends to randomize the spins(as the higher the entropy, the most disordered the states, with half spins upand half spins down): the interplay between the two priniples is driven bythe level of noise introdued in the system and this is in turn ruled by thetunable parameter β ≡ 1/T as oded in the de�nition of free energy.A ruial bridge between ondensed matter and neural network ouldnow be sighted: One ould think at eah spin as a basi neuron, retainingonly its ability to spike suh that σi = +1 and σi = −1 represent �ring andquiesene, respetively, and assoiate to eah equilibrium on�guration ofthis spin system a stored pattern of information. The reward is that, in this17



Figure 1.2: Average magnetization 〈m〉 versus temperature T for a Curie-Weiss model in the absene of �eld (h = 0). The ritial temperature Tc = 1separates a magnetized region (|〈m〉| > 0, only one branh shown) from anon-magnetized region (〈m〉 = 0). The box zooms over the ritial region(notie the logarithmi sale) and highlights the power-law behavior m ∼
(T − Tc)

β, where β = 1/2 is also referred to as ritial exponent (see alsoEq.(1.6)). Data shown here (•) are obtained via Monte Carlo simulations fora system of N = 105 spins and ompared with the theoretial urve (solidline).way, the spontaneous (i.e. thermodynamial) tendeny of the network torelax on free-energy minima an be related to the spontaneous retrieval ofthe stored pattern, suh that the ognitive apability emerges as a naturalonsequene of physial priniples.1.3.2 From Curie-Weiss to Hop�eldAtually, the Hamiltonian (1.1) would enode for a rather poor model of neu-ral network as it would aount for only two stored patterns, orresponding tothe two possible minima (that in turn would represent pathologial network'sbehavior with all the neurons ontemporarily ompletely �ring of ompletelysilened), moreover, these ordered patterns, seen as information hains, havethe lowest possible entropy and, for the Shannon-MMillan Theorem, in the
18



large N limit5 they will never be observed.This ritiism an be easily overome thanks to the Mattis-gauge, namelya re-de�nition of the spins via σi → ξ1i σi, where ξ1i = ±1 are random entriesextrated with equal probability:
P (ξµi ) =

1

2
δξµi −1 +

1

2
δξµi +1, (1.7)and kept �xed in the network (in statistial mehanis these are alled quenhedvariables to stress that they do not ontribute to thermalization, a terminol-ogy reminisent of metallurgy [59℄). Fixing J ≡ 1 for simpliity, the MattisHamiltonian reads as

HMattis
N (σ|ξ) = − 1

2N

N,N∑

i,j=1

ξ1i ξ
1
jσiσj − h

N∑

i=1

ξ1i σi. (1.8)The Mattis magnetization is de�ned as m1 = 1
N

∑N
i=1 ξ

1
i σi. To inspetits lowest energy minima, we perform a omparison with the CW model:in terms of the (standard) magnetization, the Curie-Weiss model reads as

HCW
N ∼ −(N/2)m2 − Nhm and, analogously we an write HMattis

N (σ|ξ) interms of Mattis magnetization as HMattis
N ∼ −(N/2)m2

1 − Nhm1. It is thenevident that, in the low noise limit (namely where olletive properties mayemerge), as the minimum of free energy is ahieved in the Curie-Weiss modelfor 〈m〉 → ±1, the same holds in the Mattis model for 〈m1〉 → ±1. How-ever, this implies that now spins tend to align parallel (or antiparallel) tothe vetor ξ1, hene if the latter is, say, ξ1 = (+1,−1,−1,−1,+1,+1) ina model with N = 6, the equilibrium on�gurations of the network will be
σ = (+1,−1,−1,−1,+1,+1) and σ = (−1,+1,+1,+1,−1,−1), the latterdue to the gauge symmetry σi → −σi enjoyed by the Hamiltonian. Thus, thenetwork relaxes autonomously to a state where some of its neurons are �ringwhile others are quiesent, aording to the stored pattern ξ1. Note that, asthe entries of the vetors ξ are hosen randomly ±1 with equal probability,the retrieval of free energy minimum now orresponds to a spin on�gura-tion whih is also the most entropi for the Shannon-MMillan argument,thus both the most likely and the most di�ult to handle (as its informationompression is no longer possible).Two remarks are in order now. On the one side, aording to the self-onsisteny equation (1.5) 〈m〉 versus h displays the typial graded/sigmoidal5The thermodynami limit N → ∞ is required for both mathematial onveniene,e.g. it allows saddle-point/stationary-phase tehniques, and in order to neglet observable�utuations by a entral limit theorem argument.19



response of a harging neuron [45℄, and one would be tempted to all thespins σ neurons. On the other side, it is de�nitely inonvenient to build anetwork via N spins/neurons, whih are further meant to be diverging (i.e.
N → ∞) in order to handle one stored pattern of information only. Alongthe theoretial physis route overoming this limitation is quite natural (andprovides the �rst derivation of the Hebbian presription in this work): Ifwe want a network able to ope with P patterns, the starting Hamiltonianshould have simply the sum over these P previously stored6 patterns, namely

HN(σ|ξ) = − 1

2N

N,N∑

i,j=1

(
P∑

µ=1

ξµi ξ
µ
j

)
σiσj , (1.9)where we neglet the external �eld (h = 0) for simpliity. As we will see in thenext setion, this Hamiltonian onstitutes indeed the Hop�eld model, namelythe harmoni osillator of neural networks, whose oupling matrix is alledHebb matrix as enodes the Hebb presription for neural organization [17℄.1.3.3 From Sherrington-Kirkpatrik to Hop�eldDespite the extension to the ase P > 1 is formally straightforward, theinvestigation of the system as P grows beomes by far more triky. In-deed, neural networks belong to the so-alled �omplex systems� realm. Wepropose that omplex behaviors an be distinguished by simple behaviorsas for the latter the number of free-energy minima of the system does notsale with the volume N , while for omplex systems the number of free-energy minima does sale with the volume aording to a proper funtionof N . For instane, the Curie-Weiss/Mattis model has two minima only,whatever N (even if N → ∞), and it onstitutes the paradigmati examplefor a simple system. As a ounterpart, the prototype of omplex system isthe Sherrington-Kirkpatrik model (SK), originally introdued in ondensedmatter to desribe the peuliar behaviors exhibited by real glasses [6, 59℄.This model has an amount of minima that sales ∝ exp(cN) with c 6= f(N),and its Hamiltonian reads as

HSK
N (σ|J) = 1√

N

N,N∑

i<j

Jijσiσj , (1.10)6The part of neural network's theory we are analyzing is meant for spontaneous retrievalof already stored information -grouped into patterns (pragmatially vetors)-. Clearly itis assumed that the network has already overpass the learning stage.20



where, ruially, oupling are Gaussian distributed7 as P (Jij) ≡ N [0, 1]. Thisimplies that links an be either positive (hene favoring parallel spin on�g-uration) as well as negative (hene favoring anti-parallel spin on�guration),thus, in the large N limit, with large probability, spins will reeive on�it-ing signals and we speak about �frustrated networks�. Indeed frustration, thehallmark of omplexity, is fundamental in order to split the phase spae inseveral disonneted zones, i.e. in order to have several minima, or severalstored patterns in neural network language. This mirrors a lear request alsoin eletronis, namely the need for inverters (that one mixed with op-amps)result in �ip-�ops (ruial for information storage as we will see).The mean-�eld statistial mehanis for the low-noise behavior of spin-glasses has been �rst desribed by Giorgio Parisi and it predits a hierar-hial organization of states and a relaxational dynamis spread over manytimesales (for whih we refer to spei� textbooks [59℄). Here we just needto know that their natural order parameter is no longer the magnetization (asthese systems do not magnetize), but the overlap qab, as we are explaining.Spin glasses are balaned ensembles of ferromagnets and antiferromagnets(this an also be seen mathematially as P (J) is symmetri around zero)and, as a result, 〈m〉 is always equal to zero, on the other hand, a ompari-son between two realizations of the system (pertaining to the same ouplingset) is meaningful beause at large temperatures it is expeted to be zero, aseverything is unorrelated, but at low temperature their overlap is stritlynon-zero as spins freeze in disordered but orrelated states. More preisely,given two �replias� of the system, labeled as a and b, their overlap qab anbe de�ned as the salar produt between the related spin on�gurations,namely as qab = (1/N)
∑N

i σ
a
i σ

b
i
8, thus the mean-�eld spin glass has a om-pletely random paramagneti phase, with 〈q〉 ≡ 0 and a �glassy phase� with

〈q〉 > 0 split by a phase transition at βc = Tc = 1.The Sherrington-Kirkpatrik model displays a large number of minima asexpeted for a ognitive system, yet it is not suitable to at as a ognitivesystem beause its states are too �disordered�. We look for an Hamiltonianwhose minima are not purely random like those in SK, as they must representordered stored patterns (hene like the CW ones), but the amount of theseminima must be possibly extensive in the number of spins N (as in the SKand at ontrary with CW), hene we need to retain a �ferromagneti �avor�within a �glassy panorama�: we need something in between.7Couplings in spin-glasses are drawn one for all at the beginning and do not evolvewith system's thermalization, namely they are quenhed variables too.8Note that, while in the Curie-Weiss model, where P (J) = δ(J−1), the order parameterwas the �rst momentum of P (m), in the Sherrington-Kirkpatrik model, where P (J) =
N [0, 1], the variane of P (m) (whih is roughly qab) is the good order parameter.21



Figure 1.3: Phase diagram for the Hop�eld model [17℄. Aording to theparameter setting, the system behaves as a paramagnet (PM), as a spin-glass (SG), or as an assoiative neural network able to perform informationretrieval (R). The region labeled (SG+R) is a oexistene region where thesystem is glassy but still able to retrieve.Remarkably, the Hop�eld model de�ned by the Hamiltonian (1.9) lies ex-atly in between a Curie-Weiss model and a Sherrington-Kirkpatrik model.Let us see why: When P = 1 the Hop�eld model reovers the Mattis model,whih is nothing but a gauge-transformed Curie-Weiss model. Conversely,when P → ∞, (1/√N)
∑P

µ ξ
µ
i ξ

µ
j → N [0, 1], by the standard entral limittheorem, and the Hop�eld model reovers the Sherrington-Kirkpatrik one.In between these two limits the system behaves as an assoiative network [4℄.Suh a rossover between CW (or Mattis) and SK models, requires for itsinvestigation both the P Mattis magnetization 〈mµ〉, µ = (1, ..., P ) (forquantifying retrieval of the whole stored patterns, that is the voabulary),and the two-replia overlaps 〈qab〉 (to ontrol the glassyness growth if thevoabulary gets enlarged), as well as a tunable parameter measuring the ra-tio between the stored patterns and the amount of available spins, namely

α = limN→∞ P/N , also referred to as network apaity.As far as P sales sub-linearly with N , i.e. in the low storage regime22



de�ned by α = 0, the phase diagram is ruled by the noise level β only: for
β < βc the system is a paramagnet, with 〈mµ〉 = 0 and 〈qab〉 = 0, whilefor β > βc the system performs as an attrator network, with 〈mµ〉 6= 0 fora given µ (seleted by the external �eld) and 〈qab〉 = 0. In this regime nodangerous glassy phase is lurking, yet the model is able to store only a tinyamount of patterns as the apaity is sub-linear with the network volume N .Conversely, when P sales linearly with N , i.e. in the high-storage regimede�ned by α > 0, the phase diagram lives in the α, β plane (see Fig.(1.3)).When α is small enough the system is expeted to behave similarly to α = 0hene as an assoiative network (with a partiular Mattis magnetization posi-tive but with also the two-replia overlap slightly positive as the glassy natureis intrinsi for α > 0). For α large enough (α > αc(β), αc(β → ∞) ∼ 0.14)however, the Hop�eld model ollapses on the Sherrington-Kirkpatrik modelas expeted, hene with the Mattis magnetizations brutally redued to zeroand the two-replia overlap lose to one. The transition to the spin-glassphase is often alled �blakout senario� in neural network ommunity. Mak-ing these preditions quantitative is a non-trivial task in statistial mehanisand, nowadays several tehniques are available, among whih we quote thereplia-trik (originally used by the pioneers Amit-Gutfreund-Sompolinsky[18℄), the martingale method (originally developed by Pastur, Sherbina andTirozzi [53℄) and the avity �eld tehnique (reently developed by Guerraand some of us in [2℄).

23



Chapter 2Dilution in the Hebb RulesThe paradigm, introdued almost three deades ago by Amit, Gutfreundand Sompolinsky [17, 18℄, of analyzing neural networks through tehniquesstemmed from statistial mehanis of disordered systems (in partiular theReplia Trik [59℄ for the Hop�eld model [49℄) has been so proli� that itsappliations have gone far beyond Arti�ial Intelligene and Robotis, over-lapping Statistial Inferene [9℄, System Biology [66℄, Finanial Market plan-ning [64℄, Theoretial Immunology [32℄ and muh more.As a result, researh in this �eld is under ontinuous development, rangingfrom the diverse appliations outlined above, to a deeper and deeper under-standing of the ore-theory behind. For the sake of reahing results loser toexperimental neurosiene outomes, sientists involved in the �eld tried tobypass the rather rude mean �eld desription of a fully onneted networkof interating spins, embedding them in diluted topologies as Erdös-Rényigraphs [46℄, small-worlds [67℄ or even �nitely onneted graphs [10℄. Themain point was showing robustness of the mean-�eld paradigm even in thesediluted, and in some sense �loser to biology", versions and this was indeedsuessfully ahieved (with the exeption of too extreme degrees of dilution,where the assoiative apaities of the network trivially break down).Reently, a mapping between Hop�eld networks and Boltzmann ma-hines [1℄ allowed the introdution of dilution into assoiative networks froma di�erent perspetive with respet to standard link removal à la Sompolin-sky [46℄ or à la Coolen [10, 67℄. In fat, while in their papers these authorsperform dilution diretly on the Hop�eld network, through the equivalenewith Boltzmann mahine, one may perform link dilution on the Boltzmannmahine and then map bak the latter into the assoiative Hop�eld-like net-work [30℄. Remarkably, the resulting model still works as an assoiative per-former, as the Hebbian struture is preserved, but its apabilities are quitedi�erent from the standard senario. In partiular, the resulting assoiative24



network may still be fully-onneted but the stored patterns of informationdisplay entries whih, beyond oding information through digital values ±1,an also be blank [27, 30℄. In fat, any missing link in the bipartite Boltz-mann mahine orresponds to a blank entry in the related pattern of theassoiative network.Now, while standard (i.e., performed diretly on the Hop�eld network) dilu-tion does not hange qualitatively the system performanes, the behavior ofthe system resulting from hidden (i.e., performed on the underlying Boltz-mann mahine) dilution beomes �multitasking" beause retrieval of a singlepattern, say ξ1, does not exhaust the whole spins, and the ones oupled withthe blank entries of ξ1 are free to align with ξ2, whose entries will partiallybe blank as well, hene eliiting, in turn, the retrieval of ξ3 and so on up toa parallel logarithmi (with respet to the volume of the network N) load ofall the stored patterns.As a onsequene, by tuning the degree of dilution in the hidden Boltzmannnetwork and the level of noise in the direted network, the system exhibitsa very rih phase diagram, whose investigation is the subjet of the presenthapter.Let us now move on and generalize the system desribed above in order toaount for the existene of blank entries in the patterns ξ's. More preisely,we replae Eq.(1.7) by
P (ξµi ) =

1− d

2
δξµi −1 +

1− d

2
δξµi +1 + dδξµi , (2.1)where d enodes the degree of �dilution� in pattern entries. Patterns are stillassumed as quenhed and, of ourse, the de�nitions of the Hamiltonian (1.9)and of the overlaps (1.3), with the Glauber dynamis provided by:

σi(t + δt) = sign[tanh[βhi(t)] + ηi(t)],(where η ∈ [−1,+1] is a random number and represent the stohastiity and
hi is the �eld ating on the i-th spin) still hold.As disussed in [27, 30℄, this kind of extension has strong biologial mo-tivations and also yields highly non-trivial thermodynami outomes. Infat, the distribution in Eq.(1.7) neessarily implies that the retrieval of aunique pattern does employ all the available spins, so that no resoures areleft for further tasks. Conversely, with Eq.(2.1) the retrieval of one patternstill allows available spins (i.e., those orresponding to the blank entries ofthe retrieved pattern), whih an be used to reall other patterns up to theexhaustion of all spins. The resulting network is therefore able to proessseveral patterns simultaneously. 25



In partiular, in the low-storage regime, it was shown both analytially(via density of states analysis) and numerially (via Monte Carlo simula-tions) [30℄, that the system evolves toward an equilibrium state where severalpatterns are simultaneously retrieved. In the noiseless limit T = 0 and for dnot too large, the equilibrium state is haraterized by a hierarhial overlap
mmm = (1− d)(1, d, d2, ..., 0), (2.2)hereafter referred to as �parallel ansatz�. On the other hand, in the presene ofnoise or for large degrees of dilution in pattern entries, this state eases to be astable solution for the system and di�erent states, possibly spurious, emerge.In the following highlight the equilibrium states of this system as a funtionof the parameters d and T , and �nally build a phase diagram; to this taskwe �rst develop a rigorous mathematial treatment for alulating the freeenergy of the model and then we obtain the self-onsistenies onstraining thephase-diagram; �nally, we solve these equations both numerially and with astability analysis. In this way we are able to draw the phase diagram, whosepeuliarities lie in the stability of both even and odd mixture of spuriousstates (in proper regions of the parameters) and the formation of parallelspurious state. Both these results generalize the standard ounterpart oflassial Hop�eld networks.Findings are double-heked through Monte Carlo runs that are in agreementwith the piture we obtained.2.1 Notes About the Coupling DistributionAs it is immediate to hek, eah ξµi = 0 in the ith entry of the bit-string ξµ inthe assoiative network, whih ultimately a�ets the interation matrix J =

Jij . Of ourse, the larger the degree of dilution, the stronger the di�erenebetween suh (random) oupling matrix and its Hop�eld ounterpart. Thissetion is devoted to the investigation of the properties of the matrix J.Let us onsider a set of N nodes labeled as i = 1, ..., N and let us assoiateto eah node a string of length P and built from the alphabet {−1, 0, 1},meaning that the generi element ξµi , with i ∈ [1, N ] and µ ∈ [1, P ], an equaleither ±1 or 0. For the network desribed by the Hamiltonian in Eq.(1.9),the interation strength between two arbitrary nodes i and j is given by
Jij =

P∑

µ=1

ξµi ξ
µ
j . (2.3)For the following treatment it is more onvenient not to normalize the ou-pling Jij, di�erently from the de�nition used in Eq.(1.9). Of ourse Jij ∈26



[−P, P ]. Equation (2.3) gives rise to a network of mutually and symmetriallyinterating nodes, where a link between nodes i and j is drawn whenever theydo interat diretly (Jij 6= 0), either imitatively (Jij > 0) or anti-imitatively(Jij < 0).First, one an alulate the probability that two nodes (sine they arearbitrary we will drop the indexes) in the network are linked together, namely
Plink(d, P ) = P (J 6= 0; d, P ) = 1− P (J = 0; d, P ) = 1−

P∑

k=0

Psum−0(k; d, P ),(2.4)where Psum−0(k; d, P ) is the probability that two strings display (an evennumber) k of non-null mathings summing up to zero; otherwise stated, thereexist exatly k values of µ suh that ξµi ξµj 6= 0 and they are half positive andhalf negative. In partiular, Psum−0(0; d, P ) = [d(2− d)]P , beause this is theprobability that, for any µ ∈ [1, P ], at least one entry (either ξµi or ξµj orboth) is equal to zero. More generally,
Psum−0(k; d, P ) =

(
1− d

2

)2k

[d(2− d)]P−k

(
P

k

)[
2k
(
k

k/2

)]
, (2.5)where the �rst and the seond fators in the r.h.s. require that k entries arenon-zero and the remaining P − k entries are zero; the third fator aountsfor permutation between zero and non-zero entries, while the last term is thenumber of on�gurations leading to a null sum for non-null entries. Therefore,we have

P (J = 0; d, P ) = [d(2− d)]P
P∑

k=0

[
(1− d)2

2d(2− d)

]k (
P

k

)(
k

k/2

)
, (2.6)whose plot is shown in Fig.(2.1). As for its asymptoti behavior, we distin-guish the following ases (for simpliity we assume P �nite and even):

P (J = 0; d, P ) = 1− P (1− d)2 +
3

4
P (P − 1)(1− d)4 +O(1− d)6 (2.7)

P (J = 0; d, P ) =
(−1)P/2

√
π

Γ(1/2− P )Γ(1 + P/2)
(1− 2P d) +O(d2)

≈ 1− 2P d

4P/2

(
P

P/2

)
+O(d2). (2.8)The average number of nearest neighbors per node 〈z〉d,P,H follows immedi-ately as 〈z〉d,P,N = NPlink(d, P ). 27



Figure 2.1: The probability P (J = 0; d;P ) is plotted as a funtion of thedilution d and for di�erent values of P , as shown by the legend. Notie thesemilogarithmi sale and that dilution is resaled by √
p so to highlight theommon saling of the distributions.More generally, we an derive the oupling distribution P (J ; d, P ), onehaving de�ned P+1(k), P−1(k) and P0(k), as the probability that, given twostrings, they display k mathes eah equal to +1, −1 and 0, respetively,namely

P+1(k; d) = P−1(k; d) =

[
(1− d)2

2

]k
, P0(k; d) = [d(2− d)]k . (2.9)Hene, we an write

P (J ; d, P ) =

(P−J)/2∑

l=0

P+1(l + J ; d)P−1(l; d)P0(P − 2l − J ; d)P !

l!(l + J)!(P − 2l − J)!
(2.10)

∼ N (0, σJ(d, P )).The last asymptoti holds for large P ; the null mean value 〈J〉d,P = 0 isdue to the symmetry haraterizing P (ξµi ) , while the standard deviation is
σJ =

√
〈J2〉d,P =

√
P (1− d).An expliit, exat expression for this probability an be written for apartiular value of d, by exploiting Gauss's Hypergeometri Theorem [69℄, sothat when 4x2 = 1, orresponding to d = 1−

√
2/2 ≈ 0.293, we have

P (J ; 1−
√
2/2, P ) = 4−P

(
2P

P + J

)
∼ e−J2/P

√
πP

. (2.11)In the last passage we used the Stirling approximation assuming P ±J large,namely that the distribution is peaked on non-extreme values of J .It is worth underlining that P (J ; d, P ) does not depend on the size N .Indeed, patterns are drawn independently and randomly so that the oupling28



Jij may be regarded as the distane overed by a random walk of length
B and endowed with a waiting probability d(2 − d). Hene, the end-to-end distane is distributed normally around zero and with variane (meansquared distane) whih is given by the di�usion law, namely ∼ P . Thepossibility of the walker to stop simply redues the e�etive walk length to
[(1− d)(2− d)]P = (1− d)2P in agreement with results above.2.1.1 Pattern dilution versus Topologial dilutionDilution on pattern entries does not neessarily yield to a topologial dilu-tion for the assoiative network, but, as we will see, an indue non-trivialooperative e�ets. On the other hand, a topologial dilution an be realizedby diretly utting the edges on a standard Hop�eld network. In this setionwe highlight the deep di�erene between these two kinds of dilution.First, we reall that, aording to a mean-�eld approah, the network isexpeted to display a giant omponent when the average link probability islarger than 1/N . In the thermodynami limit and assuming a large enoughsize P (stemming from either low, i.e. P ∼ logN , or high, i.e. P ∼ N ,storage regimes) to ensure the result in Eq.(2.10) to hold, for any �nite valueof d the emergent graph turns out to be always over-perolated. In fat,
Plink(d, P ) = 1 − P (J = 0; d, P ) ∼ 1 − 1/

√
2πσ2

J , so that it su�es that
σJ > N/[

√
2π(N − 1)] → 1/

√
2π and this leads to d < 1− (2πP )−1/2 → 1.On the other hand, when P is �nite we an hek the possible dison-netion of the network by studying P (J = 0; d, P ) from Eq.(2.7) and we getthat Plink(d, P ) < 1/N for d > 1 − 1/

√
PN . Thus, in the thermodynamilimit, for any �nite d, the graph is still overperolated. Replaing 1/N with

(logN)/N , one also �nds that the graph is even always onneted.Di�erent senarios may emerge if we take d properly approahing to 1 as
N is inreased [25℄.Another kind of dilution an be realized by diretly utting edges in theresulting assoiative network, as for instane early investigated in the neuralsenario by Sompolinsky on the Erdös-Rényi graph [17, 46℄ or more reentlyby Coolen and oworkers on small worlds and sale-free strutures [10, 47℄.Suh di�erent ways of performing dilution - either on links of the as-soiative network (see [10, 17, 46, 47℄) or on pattern entries (see Eq.(1.7))- yield deeply di�erent thermodynami behaviors. To see this, let us on-sider the �eld insisting on eah spin, namely for the generi ith spin hi =
1
N

∑N
i 6=j=1 Jijσj , and analyze its distribution P (h|d) at zero noise level. Whendilution is realized on links (d is the fration of links ut), only an averagefration d of the H available spins partiipates to h, in suh a way that boththe peak and the span of the distribution derease with d (Fig.(2.2), left).29



Figure 2.2: Left panel: Distribution of the �eld h ating on the spins with(Sompolinsky) dilution. Right panel: Distribution of the �eld h ating onthe spins with (our) dilution.Conversely, when dilution is realized on the single bit ξµi (d is the frationof null entries in a pattern), as d > 0, P (h|d) gets broader and peaked atsmaller values of �elds.The latter e�et is due to the fat that ouplings are, on average, ofsmaller magnitude. As for the former e�et, we notie that, at β, N and
P �xed, when dilution is introdued in bit-strings, ouplings are made uni-formly weaker (this e�et is analogous to a rise in the fast noise) so thatthe distribution of spin on�gurations, and onsequently also P (h|d), getsbroader. At small values of dilution this e�et dominates, while at largervalues the overall redution of oupling strengths prevails and �elds get notonly smaller but also more peaked (Fig.(2.2), right).2.2 Statistial Mehanis AnalysisWe now solve the general model desribed by the Hamiltonian (1.9), withpatterns diluted aording to (2.1), in the low storage regime P ∼ logN ,suh that the limit α = limN→∞ P/N = 0 holds1As standard in disordered statistial mehanis, we introdue three typesof average for an observable o(σ, ξ):1Results outlined within this saling an be extended with little e�ort to the wholeregion P ∼ Nγ , with γ < 1, suh that the onstraint α = 0 is preserved, as realized in theWillshaw model [20℄ onerning neural sparse oding.Note further that there is a deep similarity with the Potts model with pairwise interation[41℄. 30



i. the Boltzmann average ω(o) =
∑

{σ} o(σ, ξ) exp[−βH(σ; ξ)]/ZN,P (β, d),where
ZN,P (β, d) =

∑

{σ}
exp [−βHN(σ, ξ)]is alled �partition funtion",

ii. the average E performed over the quenhed disordered ouplings ξ,
iii. the global expetation Eω(o) de�ned by the brakets 〈o〉ξ.Given these de�nitions, for the average energy of the system E we an write
E ≡ limN→∞(〈HN(σ, ξ)〉/N).Also, we are interested in �nding an expliit expression for the order param-eters of the model, namely the averaged P Mattis magnetizations

〈mµ〉 = lim
N→∞

Eω

(
1

N

N∑

j=1

ξµj σj

)
. (2.12)To this task we need to introdue the statistial pressure

α(β, d) = lim
N→∞

1

N
ln(ZN,P (β, d)),whih is immediately related to the free energy per site f(β, d) by the relation

f(β, d) = −α(β, d)/β beause, by maximizing α(β, d) with respet to the Pmagnetizations 〈mµ〉, we get exatly the self onsistene equations for theseorder parameters, whose solutions will give us a piture of the phase diagram.In the past deades, sientists involved in disordered statistial mehan-is investigations, even beyond Arti�ial Intelligene, paved several strandsfor solving this kind of problems, and nowadays a plethora of tehniques isavailable. We extend early ideas of Guerra, on the line developed in [43℄,onsisting in modeling disordered statistial mehanis through dynamialsystem theory and in partiular, here, we are going to proeed as follows:Our statistial-mehanis problem is mapped into a di�usive problem embed-ded in a P -dimensional spae and with given, known, boundaries. We solvethe di�usive problem via standard Green-propagator tehnique, and then wewill map bak the obtained solutions in terms of their original statistial me-hanis meaning.To this task, let us introdue and onsider a generalized Boltzmann fator
BN (x, t) depending on P+1 parameters x, t (whih we think of as generalizedP-dimensional Eulidean spae and time)

BN (x, t; ξ, σ) = exp

(
t

2N

N∑

i 6=j

σiσj

P∑

µ=1

ξµi ξ
µ
j +

P∑

µ=1

xµ

N∑

j=1

ξµj σj

)
, (2.13)31



and the generalized statistial pressure
αN(x, t) = 1

N
ln



∑

{σ}
BN(x, t; ξ, σ)


 . (2.14)Notie that, for proper values of x, t, namely x = 0 and t = β, lassialstatistial mehanis is reovered as

α(β, d) = lim
N→∞

αN(x = 0, t = β) = lim
N→∞

1

N
ln




∑

{σ}
BN(x = 0, t = β; ξ, σ)



 .In the same way, the average 〈·〉(x,t) will be denoted by 〈·〉, wherever evaluatedin the sense of statistial mehanis, namely
〈o〉(x,t) =

∑
{σ} o(σ, ξ)BN(x, t; ξ, σ)∑

{σ}BN(x, t; ξ, σ)
, (2.15)

〈o〉 =
∑

{σ} o(σ, ξ) exp[−βH(σ, ξ)]
∑

{σ} exp[−βH(σ, ξ)]
= 〈o〉(x=0,t=β). (2.16)It is immediate to see that the following equations hold:

∂tαN(x, t) =
1
2

∑
µ〈m2

µ〉(x,t),
∂xµ

αN(x, t) = 〈mµ〉(x,t),
(2.17)and, de�ning a vetor ΓN(x, t) of elements Γµ

N (x, t) ≡ −∂xµ
αN(x, t), by on-strution Γµ

N(x, t) obeys the following equation:
∂tΓ

µ
N (x, t) +

P∑

ν=1

Γν
N(x, t)[∂xν

Γµ
N(x, t)] =

1

2N

P∑

ν=1

∂2x2
ν
Γµ
N(x, t), (2.18)whih happens to be in the form of a Burgers' equation for the vetor ΓN(x, t)with a kinemati visosity (2N)−1. As it is well-known, the Burger equationan be mapped into a P -dimensional di�usive problem using the Cole-Hopftransformation [43℄ as follow:

ψN (x, t) = exp

[
−N

∫
dxµΓ

µ
N (x, t)

]
= exp[NαN (x, t)], (2.19)and its t and x streaming read o� as

∂tψN(x, t) = N(∂tαN (x, t))ψ(x, t),
∂xµ

ψN(x, t) = N(∂xµ
αN(x, t))ψ(x, t), (2.20)32



in suh a way that
∂2xµxν

ψN (x, t) = NψN (x, t)
{
∂2xµxν

αN(x, t) +N [∂xµ
αN (x, t)][∂xν

αN(x, t)]
}
.(2.21)Now, from equations (2.20), (2.21) we get

∂tψN (x, t)−
1

2N

∑

µ

[
∂2x2

µ
ψN(x, t)

]
= 0. (2.22)Therefore, we established a reformulation of the problem of alulating thethermodynami potential α(β, d) over the equilibrium on�guration of theorder parameters for an attrators network model in terms of a di�usionequation for the funtion ψN (x, t), namely the Cole-Hopf transform of theMattis magnetizations, with a di�usion oe�ient D = (2N)−1, that is

∂tψN(x, t)−D∇2ψN (x, t) = 0,

ψN(x, 0) =
∑

{σ}
exp

(∑

µ

xµ
∑

j

ξµj σj

)
. (2.23)We solve this Cauhy problem (2.23) through standard tehniques: �rst, wemap the di�usive equation in the Fourier spae, then we alulate the Greenpropagator for the homogenous on�guration, and �nally we will inverse-transform the solution.Let us onsider the Fourier transform:

ψ̃N (k, t) =
∫
RP d

Px exp
(
− i
∑

µ xµkµ
)
ψN (x, t),

ψN (x, t) =
1

(2π)P

∫
RP d

Pk exp
(
i
∑

µ xµkµ
)
ψ̃N (k, t),

(2.24)and the related Green problem:
∂tG̃(k, t) +Dk2G̃(k, t) = δ(t), (2.25)where G̃(k, t) is the Green propagator in the k-spae, whih an be deom-posed as
G̃(k, t) = G̃R(k, t) + G̃S(k, t), (2.26)being G̃R(k, t) the general solution of the homogeneous problem and G̃S(k, t)a partiular solution of the non-homogeneous problem. Hene, the full solu-tion will be

ψN (x, t) =

∫

RP

dPx′GR(x− x
′, t)ψN (x

′, 0), (2.27)33



where the funtion G̃R(k, t) ful�lls
∂tG̃R(k, t)−Dk2G̃R(k, t) = 0,

G̃R(k, 0) = 1,
(2.28)hene

G̃(k, t) = exp(−Dk2t),
G(x, t) = 1

(2
√
πDt)P

exp(−x
2

4Dt
).

(2.29)Therefore, we get
ψN (x, t) =

(
N

2πt

)P
2
∫ ( P∏

µ=1

dx′µ

)
exp [−NΦ(x′,x, t)] , (2.30)

Φ(x′,x, t) =

∑P
µ (xµ − x′µ)

2

2t
− ln 2− 1

N

N∑

j=1

ln

[
cosh

(
P∑

µ=1

x′µξ
µ
j

)] (2.31)and
αN (x, t) =

1

N
ln [ψN(x, t)] . (2.32)We an solve now the saddle-point equation

α(x, t) = lim
N→∞

αN(x, t) = Extr{Φ}, (2.33)where we negleted O(N−1) terms, as we performed the thermodynamilimit. Finally, by replaing t = β and x = 0 and x′ν = β〈mν〉 (hene theoriginal statistial mehanis framework), we obtain the following expressionsfor the statistial pressure
α(β, d) =

β

2

∑

µ

〈mµ〉2 − ln(2)−
〈
ln

[
cosh

(
β
∑

µ=1

〈mµ〉ξµ
)]〉

ξ

, (2.34)whose extremization o�ers immediately the P desired self-onsisteny equa-tions for all the 〈mν〉,
〈mν〉 =

〈
ξν tanh

(
β
∑

µ=1

ξµ〈mµ〉
)〉

ξ

∀µ ∈ [1, P ], (2.35)where with the index ξ we emphasized one more that the disorder averageover the quenhed patterns is performed as well.34



Of ourse, the self-onsistene equations (2.35) reover those obtainedin [30℄ via di�erent analytial tehniques, where they were also shown toyield to the parallel ansatz (2.2), whih, in turn, an be formally written as
σi = ξ1i +

P∑

ν=2

ξνi

ν−1∏

µ=1

δ(ξµi ), (2.36)and it will be referred to as σ(P ).The parallel ansatz (2.2) an be understood rather intuitively. To �xideas let us assume zero noise level and that one pattern, say µ = 1, isperfetly retrieved. This means that the related average magnetization is
m1 = (1 − d), while a fration d of spins is still available and they anarrange to retrieve a further pattern, say µ = 2. Again, not all of them anmath non-null entries in pattern ξ2 and the related average magnetization is
m2 = d(1− d). Proeeding in the same way, for all spins, we get the parallelstate. Notie that, the number K of patterns whih are, at least partially,retrieved does not neessarily equal P . In fat, due to disreteness, it mustbe dK−1(1 − d) ≤ 1/N , namely at least one spin must be aligned with ξK ,and this implies K . logN .Suh a hierarhial, parallel, fashion for alignment, providing an overallenergy (see Eq.(1.9))

E(P) = −N
P∑

k=1

[(1− d)dk−1]2 + P = −N (1− d2P )(1− d)

1 + d
+ P, (2.37)is more optimal than a uniform alignment of spins amongst the availablepatterns, as this ase would yield mk = (1 − d)/P for any k and an overallenergy

E(U) = −N
P∑

k=1

(
1− d

P

)2

+ P = −(1 − d)2N

P
+ P, (2.38)being (1− d2+2P ) > (1− d2)/P .On the other hand, as we will see in Se. 2.3, when d > dc ≈ 1/2, the state(2.2) is no longer stable and spurious states do emerge.Before proeeding, it is worth stressing that, although the parallel state(2.2) displays non-zero overlap with several patterns, it is deeply di�erent,and must not be onfused with, a spurious state in standard Hop�eld net-works. In fat, in the former ase, at least one pattern is ompletely retrieved,while in spurious states, the overlap with eah memory pattern involved isonly partial. 35
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Figure 2.3: Behavior of the two Mattis magnetizations m1 and m2 versus dat two (small) noise levels, namely β−1 = 10−4 (left panel) and β−1 = 0.05(right panel).Moreover, in standard Hop�eld networks, spurious states are somehow unde-sirable beause they provide orrupted information with respet to the bestretrieval ahievable where one, and only one, pattern is exatly retrieved.Conversely, in our model, the retrieval of more-than-one pattern is unavoid-able (for �nite d and β → ∞) and the quality of retrieval may be exellent(perfet) in the ase of patterns poorly (not) overlapping.Finally, and most importantly, for β → ∞ and in a wide region of dilution,the parallel state σ(P ) orresponds to a global minimum for the energy. Thisis not the ase for an arbitrary mixture of states.2.2.1 The ase P = 2The self-onsistenies enoded into Eq.(2.35) for the simplest ase P = 2 are
m1(β, d) = d(1−d) tanh(βm1)+

(1− d)2

2

[
tanh[β(m1+m2)]+ tanh[β(m1−m2)]

]
,(2.39)

m2(β, d) = d(1−d) tanh(βm2)+
(1− d)2

2

[
tanh[β(m1+m2)]− tanh[β(m1−m2)]

]
.(2.40)The solution of these equations (m Vs d) for di�erent values of β is reportedin Fig.(2.3). In the low (fast) noise limit (β → ∞), when no dilution ispresent (d = 0) the seond magnetization m2 disappears and the �rst mag-netizationm1 approahes the value 1 as expeted beause the Hop�eld modelis reovered. As dilution is inreased, m1 dereases linearly, whilem2 displaysa paraboli pro�le with peak at d = 0.5. In the presene of (fast) noise, m2starts growing for higher values of dilution beause (as will be leared by the36



signal-to-noise analysis of the next setion) the signal2 insisting on the latter,whih is proportional to d(1−d), must be higher than the noise level in orderto be e�etive. Also notie that, from intermediate dilution onwards, m1 and
m2 ollapse and the related urves onverge at a �bifuration� point.Let us now deepen these results, �rst from a more intuitive point of view,and later from a more rigorous one.In the zero (fast) noise limit, let us �x ξ1 as the pattern orresponding tothe maximum overlap with the magneti on�guration, so that the expetedMattis magnetization is 〈m1〉 = (1 − d). The remaining N d �free� spinswill seek for patterns to align with, namely displaying non-null entries inorrespondene with the null entries of ξ1. Atually, due to dilution, oneexpets that the seond best-mathing pattern only engages N d(1−d) spins,while the remainingN d2 will math other patterns; in general, the k-th best-mathing pattern is expeted to engage N dk−1(1− d).Suh a hierarhial fashion for alignment is more optimal than a uni-form alignment of spins amongst the available patterns whih would yield
mk = d/B for any k and an overall energy −N/2∑k(d/P )

2 = −(d2N)/(2P ).Indeed, the hierarhial solution is the one that minimizes the energy (reallthat the magnetization are summed quadratially) as well as the most likelyfrom a ombinatoris point of view, providing an overall energy−N/2∑k[(1−
d)dk]2 = −N(1 − d2+2P )(1− d)/[2(1 + d)].Therefore, the system is able to perform the �parallel retrieval� of Kpatterns, whose magnetizations are mµ = (1/N)

∑
1=1 ξ

µ
i hi, that is 〈m1〉 =

(1− d), 〈m2〉 = d(1− d), ..., 〈mK〉 = dK(1− d). It is easy to see that it mustbe dK+1 = 0. Hene, for any �nite value of d, an in�nite number of patternsan in priniple be retrieved, i.e. dK → 0, for K → ∞. More aurately,taking into aount the disreteness of the system, we have that the last pat-tern to be retrieved will math only one spin, whih yields N dK(1− d) = 1,from whih K = [logN + log(1 − d)]/ log(1/d) ∼ logN . In the low storageregime, with P �nite or saling logarithmially with N , the retrieval of allpatterns an, in priniple, always be aomplished.When noise is also introdued, we have that for the i-th pattern to be re-trieved the �eld felt by spins has to be larger than the noise level, that is
[d(1 − d)i] > β−1, if this ondition is not ful�lled the �eld is onfused withthe noise and the pattern an not be retrieved.In the ase of large degree of dilution, i.e. d lose to 1, patterns are sosparse that not all the N spins an be mathed; assuming that patterns getorthogonal, only a fration P (1 − d)/N (= α(1 − d) or = α logN(1 − d)/Nin low and high storage regime, respetively) of spins is aligned with a given2We use the term "�elds" for the fores ating on hi and "hannels" for those on mµ.37



pattern, the remaining are free and their mean value is zero. In this onditionthe emergent graph is also disonneted.Beyond onstraints on d, probably the most striking feature displayed by
m1, m2 is the bifuration ourring at intermediate values of dilution (seeFig.(2.3)). In order to understand this phenomenon we an divide spinsinto four sets: S1, whih ontains spins i orresponding to zero entries inboth patterns (ξ1i = ξ2i = 0), therefore behaving paramagnetially; S2, whihinludes spins seeing only one pattern (|ξ1i | 6= |ξ2i |);

S3, whih ontains spins orresponding to two parallel, non-null entries(ξ1i = ξ2i 6= 0), thus being the most stable; S4, whih inludes spins i orre-sponding to two parallel, non-null entries (ξ1i = −ξ2i 6= 0), hene intrinsiallyfrustrated.The ardinality of these sets are: |S1| = d2, |S2| = 2d(1−d), |S3| = (1−d)2/2,and |S4| = (1 − d)2/2. Now, the most prone spin to align with the relatedpatterns are those in S3 and in S2, and this requires (1 − d) < β−1 for the�eld to get e�etive. As d is further redued, m1 and m2 grow paired, dueto the symmetry of the sets S2 and S3. The growth proeeds paired untilthe magnetizations get the value m1 = m2 = (1 − d)2/2 + d(1 − d), wherethe two ontributes ome from spins aligned with both patterns and with theunique pattern they see, respetively. From this dilution onwards frustratedspins also start to align so that one magnetization neessarily prevails overthe other. This explanation an be extended to any �nite B and, in general,the number of sets turns out to be P + 1 +
∑P

k=0⌊P−k
2

⌋.Now we want to quantify these bifuration points, and to this task let usall
x = 〈m1〉 − 〈m2〉. (2.41)We use Eqs. (2.39) and (2.40) and expand for small values of x

x = d(1− d)[tanh(β〈m1〉)− tanh(β〈m2〉)] + (1− d)2 tanh (β〈m1〉 − 〈m2〉)(2.42)where
d(1− d) [tanh (β〈m1〉)− tanh (β〈m2〉)] ∼

d(1− d)

[
tanh(β〈m1〉)− tanh(β〈m2〉) +

βx

cosh2(β〈m1〉)

]
,

(2.43)and
(1− d)2 tanh(β〈m1〉 − 〈m2〉) ∼ (1− d)2βx+O(x3). (2.44)Thus, the leading term is

x ∼
[

d(1− d)β

cosh2(β〈m1〉)
+ β(1− d)2

]
x. (2.45)38
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Figure 2.4: Parallel retrieval of three (left panel) and of six (right panel)patterns. Behavior of the two Mattis magnetization versus d at noise level
β−1 = 0.05.The ritial value of β orresponding to the bifuration point is de�ned as

βbif
c =

1

(1− d)2
[
1 + (1−d)

d
1

cosh2(βbif
c m1)

] . (2.46)This mehanism an be easily generalized to the ase of multiple patterns.We move now to analyze the ritial noise level at whih the magneti-zations disappear and the network dynamis beomes ergodi, still in thistest-ase of two patterns: Expanding expressions (2.40) we �nd
〈m2〉 ∼ d(1− d)[β〈m2〉] +

(1− d)2

2
[β〈m1〉+ β〈m2〉+

+
β3

3
(〈m1〉3 + 〈m2〉3 + 3〈m1〉2〈m2〉+ 3〈m1〉〈m2〉2)]+

+ d(1− d)
β3

3
〈m2〉3 −

(1− d)2

2
[β〈m1〉 − β〈m2〉+

β3

3
(〈m1〉3+

− 〈m2〉3 − 3〈m1〉2〈m2〉+ 3〈m1〉〈m2〉2)],

(2.47)
suh that we an write

〈m2〉 ∼ (1− d)β〈m2〉+O(〈m2〉3). (2.48)Therefore the ritial noise level turns out to be
βc =

1

1− d
. (2.49)This alulation an easily be generalized to several patterns, too.39
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Figure 2.5: Parallel retrieval of three strategies. Behavior of three Mattismagnetization versus d in the slow (fast) noise limit (i.e. β−1 = 10−4).Continuous lines orrespond to numerial solution of Eqs. (2.50)-(2.52), whiledashed lines orrespond to Monte Carlo simulations.2.2.2 The ase P = 3When three patterns are onsidered, the related self-onsistent equations thatonstraint the system to parallel proessing are the following (we skip thebrakets 〈.〉 for the sake of learness):
m1 = d2(1− d) tanh[βm1]− (1/4)d(1 − d)2 tanh[β(−m1−m2)]+

+ (1/4)d(1 − d)2 tanh[β(m1−m2)]− (1/4)d(1 − d)2 tanh[(−m1 +m2)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m2)]− (1/4)d(1 − d)2 tanh[β(−m1−m3)]+

− (1/4)d(1 − d)2 tanh[β(m1−m3)]− (1/8)(1 − d)3 tanh[β(−m1−m2−m3)]+

+ (1/8)(1 − d)3 tanh[β(m1−m2−m3)]− (1/8)(1 − d)3 tanh[β(−m1 +m2 −m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2−m3)]− (1/4)d(1 − d)2 tanh[β(−m1 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m3)]− (1/8)(1 − d)3 tanh[β(−m1−m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1−m2 +m3)]− (1/8)(1 − d)3 tanh[β(−m1 +m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2 +m3)]]

(2.50)
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m2 = −(1/4)d(1 − d)2 tanh[β(−m1 −m2)] − (1/4)d(1 − d)2 tanh[β(m1 −m2)]+

+ d2(1 − d) tanh[βm2] + (1/4)d(1 − d)2 tanh[β(−m1 +m2)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m2)]− (1/4)d(1 − d)2 tanh[β(−m2−m3)]+

− (1/8)(1 − d)3 tanh[β(−m1−m2 −m3)] − (1/8)(1 − d)3 tanh[β(m1 −m2 −m3)]+

+ (1/4)d(1 − d)2 tanh[β(m2−m3)] + (1/8)(1 − d)3 tanh[β(−m1 +m2−m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2−m3)]− (1/4)d(1 − d)2 tanh[β(−m2 +m3)]+

− (1/8)(1 − d)3 tanh[β(−m1−m2 +m3)] − (1/8)(1 − d)3 tanh[β(m1 −m2 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m2 +m3)] + (1/8)(1 − d)3 tanh[β(−m1 +m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2 +m3)]]

(2.51)
m3 = −(1/4)d(1 − d)2 tanh[β(−m1 −m3)] − (1/4)d(1 − d)2 tanh[β(m1 −m3)]+

− (1/4)d(1 − d)2 tanh[β(−m2−m3)]− (1/8)(1 − d)3 tanh[β(−m1−m2−m3)]−
− (1/8)(1 − d)3 tanh[β(m1−m2−m3)]− (1/4)d(1 − d)2 tanh[β(m2−m3)]−
− (1/8)(1 − d)3 tanh[β(−m1 +m2 −m3)] − (1/8)(1 − d)3 tanh[β(m1 +m2 −m3)]+

+ d2(1 − d) tanh[βm3] + (1/4)d(1 − d)2 tanh[β(−m1 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m1 +m3)] + (1/4)d(1 − d)2 tanh[β(−m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(−m1−m2 +m3)] + (1/8)(1 − d)3 tanh[β(m1 −m2 +m3)]+

+ (1/4)d(1 − d)2 tanh[β(m2 +m3)] + (1/8)(1 − d)3 tanh[β(−m1 +m2 +m3)]+

+ (1/8)(1 − d)3 tanh[β(m1 +m2 +m3)]].

(2.52)
Realling the piture explained in the previous subsetion, the magnetiza-tions m1, m2 and m3 again grow together until all spins orresponding toequal non-null entries and to single non-null entries are aligned. Then spinswhih are aligned only with two patterns out of three start to feel the �eldand get aligned hene breaking the symmetry. At this point, say m1 and m2,still grow while m3 dereases. The next symmetry-breaking ours when allspins orresponding to equal non-null entries ξ1 = ξ2 get aligned. From thispoint onward one magnetization prevails against the other. The same proessapplies, mutatis mutandis, for larger number of patterns (see Fig.2.4).The last subtlety to be investigated is given by the small disontinuitiesin the behavior of the magnetizations (see for instane Fig.2.5). To explainthis feature, let us onsider the set of patterns ξ1, ξ2, ..., ξP and assume thezero fast noise limit (β → ∞) for the sake of simpliity, so that we an take
|mk| = (1−d)dk−1, for k = 1, ..., P as (absolute) Mattis magnetizations. The�eld insisting on the arbitrary spin σi an be written as

hi =
1

N

N∑

j 6=i

Jijσj =

P∑

µ=1

ξµi m
µ − 1

N

P∑

µ=1

ξµi ξ
µ
j σi ≈

P∑

µ=1

ξµi m
µ, (2.53)where in the last passage we dropped the seond sum as it is vanishing inthe thermodynami limit. Now, let us onsider the spin h1, whih, againwithout loss of generality an be thought of as aligned with the �rst patternand equal to +1. The �eld insisting on this lymphoyte is h1 = (1 − d)[1 +41



∑B
µ=2 ǫ(1, µ)d

µ−1], where ǫ(1, µ) = sign(ξµ1 , mµ). We notie that, in general,
h1 is not positive de�nite so that the ourrene of the ondition h1 < 0 wouldlead to the spin �ip h1 = 1 → h1 = −1 and, onsequently, tom1 < (1−d). Inorder to understand this e�et we fous on ǫ(1, µ). By assumption,m1 = (1−
d) and h1 = ξ11 , so that the �rst entry of pattern µ = 1 e�etively ontributesto the related magnetization m1. As for the following magnetizations mµ>2,e�etive ontributes an arise only from entries ξµ>2

j orresponding to nullentries in ξ1j . Otherwise stated, there is no orrelation between ξµ1 and mµfor µ > 1 (in fat, ǫ(1, µ) is zero on average), and one an ount the patternon�gurations leading to h1 < 0 applying ombinatoris.Seeking for larity, we onsider the following expliit ases:- The probability that the �rst entries of all patterns µ > 1 are misalignedwith respet to the related magnetizations is [(1 − d)/2]P−1, hene giving a�eld h1 = (1− d)[1−∑µ>2 d
µ−1] = 1− 2d+ dP+1. Suh a �eld turns out tobe negative in the interval a1 < d < 1, where a1 → 1/2 for P → ∞.- The probability that the �rst entries of all patterns µ > 1 but one, say ξl,are misaligned and that ξl1 = 0 is d[(1 − d)/2]P−2, and this would lead to

h1(l) = (1 − d)− d(1 − dP ) + (1 − d)dl−1, whih is negative for a2 < d < 1,where a2 → 1/2 for P → ∞; of ourse h1(l) is growing with l.- The probability that the �rst entries of all patterns µ > 1 but one, say
ξl, are misaligned and that ξl1 = 1, is d[(1− d)/2]P−1 and this on�gurationyields h1(l) = (1−d)−d(1−dP )+2(1−d)dl−1. For instane, when l = 2 and
P ≫ 1, the �eld is negative for d > 1/

√
2; when l = 3 the �eld is negativefor d > a3, where a3 ≈ 0.648.Summarizing, in the zero noise limit β → ∞ for any given dilution d, theprobability that m1 < (1− d) an be written as a sum over pattern on�gu-rations leading to h1 < 0. For instane, for P = 3, only one out of the 3B−1possible on�gurations, i.e. sign(ξµ2 , mµ) = sgn(ξµ3 , mµ) = −1, an yield aspin-�ip: the orresponding �eld is h1 = (1−d)(1−d−d2), whih is negativefor d > (

√
5 − 1)/2 ≈ 0.62 (see Fig.(2.5)). Therefore, for that value of dilu-tion onwards, m1 is redued with respet to the optimal value (1 − d). Theextent of the loss is a fration 1/9 of the total, namely ≈ 0.34 (see Fig.(2.5)).Notie that while the hange reduesm1, other magnetizations are favoredby the spin-�ip and undergo a proportional inrement. Also, the ourreneof a magnetization redution with respet to the optimal value is more likelyfor the highest magnetization m1, beause �elds insisting on spins ontribut-ing to m1 are the most omplex, being the sum of P − 1 terms. The samedisussion an be applied in turns tom2: now the number of terms whih sumup to give the �eld insisting on the (1−d)d spins whih ontribute e�etivelyto m2 is P − 2, so that there are far less on�gurations able to yield a nega-tive �eld. Consequently, a loss in m2 is less likely. Therefore, as long as the42



number of patterns allows readjustments in the value of magnetizations withrespet to those expeted, the arbitrary mk may display omplex orretions(possibly ourring at slightly di�erent values of d) due to the ombination ofseveral simple orretions, eah orresponding to the readjustment a�etingthe previous magnetizations mµ<k (see Fig.(2.5)).2.2.3 Signal to noise ratioAs usually done in the neural network ontext [17℄, we ouple the statisti-al mehanis inspetion to signal-to-noise analysis. Aim of this proedureis trying to on�rm the �parallel ansatz" we impliitly made by studyingthe stability of the basins of attrations (whose �xed points are the learnedstrategies) reated in the hierarhial fashion we presribed. We reall thatthe model we are investigating desribes a low storage of information in theassoiative network so that no slow noise is indued by the underlying spinglass, i.e. α = 0. Nonetheless, we study the signal to noise ratio in the zerofast noise limit (β → ∞) as a problem formulated in general terms of α, d;then, we take the limit α → 0 to get estimate about the stability of thebasins of attrations (where the presene of fast noise an possibly produe�utuations).Without loss of generality, we assume that the network is retrieving the�rst pattern. This means that spins are aligned with the non-null entries inthe �rst bit-string ξ1, while the remaining spins explore the other patterns.Thus, for the generi spin σi we an write
σi = ξ1i +

P∑

ν=2

ξνi

ν−1∏

µ=1

δ(ξµi ). (2.54)Aordingly, the loal �eld ating on the ith lymphoyte an be written as
hi =

1

N

N∑

j 6=i

P∑

µ

ξµi ξ
µ
j

[
ξ1j +

P∑

ν=2

ξνj

ν−1∏

µ=1

δ(ξµj )

]
. (2.55)

• In the referene ase P = 1, like for the pure states of the Hop�eldnetwork, we set
σi = ξ1i + δ(ξ1i )ki, (2.56)where ki is a random variable uniformly distributed on the values ±1added to ensure that there are no nulls entries in the state of the net-work. Hene we �nd

〈hiσi〉ξ = 〈signal + noise〉ξ = 〈signal〉ξ (2.57)43



being 〈noises〉ξ = 0, and so for large N we have
〈signal〉ξ =

N − 1

N
(1− d) = (1− d), (2.58)while

〈(noises)2〉ξ =
P − 1

N
(1− d)2 = α(1− d)2. (2.59)

• In the test ase of two patterns retrieved, P = 2, we set:
σi = ξ1i + δ(ξ1i )[ξ

2
i + δ(ξ2i )ki]. (2.60)Now, we need to distinguish between the various possible on�gura-tions:� ∀i suh that ξ1i 6= 0, ξ2i = 0 and so that σi = ξ1i 6= 0 for large valueof N

〈signal〉ξ = (1− d), 〈noises〉ξ = 0, (2.61)
〈(noises)2〉ξ =

(N − 1)(P − 2)

N2
(1− d)2 = α(1− d)2. (2.62)� ∀i suh that ξ1i 6= 0, ξ2i 6= 0 and so that σi = ξ1i 6= 0if ξ1i = ξ2i

〈signal〉ξ = 2(1− d)− (1− d)2, 〈noises〉ξ = 0, (2.63)if ξ1i = −ξ2i
〈signal〉ξ = (1− d)2, 〈noises〉ξ = 0. (2.64)and in both ases

〈(noises)2〉ξ =
(N − 1)(P − 1)

N2
(1− d)3 +

(N − 1)(P − 2)

N2
d(1− d)2 = α(1− d)2.(2.65)� ∀i suh that ξ1i = 0, ξ2i 6= 0 and so that σi = ξ2i 6= 0

〈signal〉ξ = d(d− 1), 〈noises〉ξ = 0, (2.66)
〈(noises)2〉ξ =
(N − 1)(P − 1)

N2
(1− d)3 +

(N − 1)(P − 2)

N2
(1− d)2d = α(1− d)2.(2.67)44



Therefore, in the regime of low storage of strategies we are exploring (α = 0),the retrieval is stable, states are well de�ned and the amplitude of the signalon the �rst hannel is order (1− d) while on the seond is of order d(1− d),in perfet agreement with both the statistial mehanis analysis and MonteCarlo simulations.One proved that these parallel states exist, it would be interesting tryingto understand deeper their struture in the on�gurational spae. To thistask let us �x a pattern ξ1i , with i = 1, ..., N , and a dilution d, in suh a waythat N d of ξ1 entries are expeted to be null and the remaining N(1 − d)are expeted to be half equal to +1 and half equal to −1. The numberof spins on�gurations displaying maximum overlap with ξ1 orresponds tothe degeneray indued by null entries, namely 2Nd; all these on�gurationslay in an energy minimum beause their Mattis magnetization is maximum(atually the same holds for the symmetrial on�gurations due to the gaugesymmetry of the model).Let us now generalize this disussion by introduing the number of on-�gurations n(m, d) whose overlap with the given pattern displays m mis-alignments in suh a way that n(m, d) is given not only by the degenerayindued by null entries, but also by the degeneray indued by the hoie of
m entries out of N(1−d) whih have to be mismathed. It is easy to see that
n(m, d) = 2Nd

(
N(1−d)

m

). Interestingly, for suh on�gurations the signal feltby a spin i an be written as hi = ξ1i [N((1 − d))− 2m] and the e�et of theorretion due to the m misalignments might be vanishing in the preseneof a su�iently large level of noise, so that the system is not restrited tothe 2Nd on�gurations orresponding to the minimum energy, but it an alsoexplore all the on�gurations n(m, d).Therefore, we an ount the number of on�gurations ñ(x, d) exhibiting anumber of misalignments, with respet to ξ1, up to a given threshold x; in thepresene of noise suh on�gurations are all aessible, namely they all layin the same �deep� minimum. Indeed, we an write ñ(x, d) =∑x
m=0 n(m, d);of ourse, for x = N(1 − d) we reover ñ(x, d) = 2N . Moreover, when

x = N(1 − d)/2, we an exploit the identity ∑i
k=0

(
2i
k

)
= 1/2[4i +

(
2i
i

)
], andassuming without loss of generality N(1 − d) to be even we get

ñ(N(1− d)/2, d) =

x∑

m=0

n(m, d) =
2Nd

2

[
2N(1−d) +

(
N(1− d)

N(1− d)/2

)]
≈

2N

2

[
1 +

√
2

πN(1− d)

]
, (2.68)where in the last passage we used the Stirling approximation given that45
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Figure 2.6: Normalized number of aessible on�gurations ñ(x, d) as a fun-tion of x and d for a system made up of N spins. The ritial line xc = (1−d),orresponds to the emergene of a giant omponent.
N((1− d)) ≫ 1. Then, we have ñ(N(1− d)/2, d) & 1/2, and similar alula-tions an be drawn for smaller thresholds, e.g., ñ(N(1− d)/2− 1, d) . 1/2.As shown in Fig.(2.6), one d is �xed, when x is small only a mirosopifration ñ(x, d)/2N of on�guration is aessible (in the thermodynami limitthis fration is vanishing), while by inreasing the tolerane x, more and moreon�guration get aessible and orrespondently their fration gets maro-sopi. From a di�erent perspetive, eah on�guration an be looked at as anode of a graph and those aessible are onneted together. The link prob-ability is then related to x and when x is large enough a �giant omponent�made up of all aessible on�gurations emerges. This is a perolation proessin the spae of on�gurations. Indeed, similarly to what happens in anonialperolation proesses, the urves representing the giant omponent relevantto di�erent sizes N interset at around 1/2, whih distinguishes the perola-tion threshold xc. Aording to Eq.(2.68) we an write xc ≈ N(1− d)/2.Interestingly, when a giant omponent emerges retrieval is no longermeaningful beause the system may retrieve essentially anything and thisorresponds to the ritial line (in the d, β plane) where all the magnetiza-tions simultaneously disappear.
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2.3 The Emergene of Spurious StatesIn Se. 2.2, we explained why we expet the parallel state (2.36) to our,exploiting the fat that eah pattern tends to align as many spins among thosestill available. Atually, this intuitive approah yields the orret piture for
T = 0 (no fast noise) and not-too-large d, while when either T or the degreeof dilution are large enough, the system an relax to a state where only onepattern is retrieved or fall into a spurious state where several patterns arepartially retrieved, but none exatly. For instane, when patterns are sparse,none of them an generate an attration basin strong enough to align allavailable spins, in suh a way that stationary, mixture states an emerge.Let us start from the noiseless ase and onsider the state (2.36) orre-sponding to the parallel ansatz (2.2): we notie that, on average, there existsa fration 2[(1− d)/2]P of spins σi orresponding to the entries ξ1i = 1, ξki =
−1, ∀k ∈ [1, P ] (and analogously for the �gauged� ase ξ1i = −1, ξki = +1) andexpeted to be aligned with the �rst entry ξ1i , in suh a way that the overall�eld insisting on eah of them is hi = m1 −m2 −m3 − ....−mP . Of ourse,suh spins are the most unstable, and, at zero noise level, they �ip whenever
hi happens to be negative, that is, when m1 <

∑P
k=2mk. Exploiting theansatz mk = dk−1(1− d), this an be written as

hi = (1− d)

[
1− d− dP

1− d

]
= 1− 2d+ dP , (2.69)whih beomes negative for a value of dilution dc(P ), whih onverges ex-ponentially from above to 1/2 as P gets large. From this point onwards,the �rst pattern is no longer ompletely retrieved and the system fails toparallel retrieve (aording to the de�nition in Eq.(2.36)). Therefore, when

d ≥ dc(P ), genuine spurious states emerge and the system relaxes to stateswhih orrespond to mixture of p ≤ P patterns, but none of them is om-pletely retrieved (at least up to extreme values of dilution). As we will seein Se. 2.4.4, the transition at dc(P ) is �rst order.Moreover, from Eq.(2.69) we �nd that the ase P = 2 has no solutionin the range d ∈ [0, 1], meaning that the parallel-retrieval state is alwaysa stable solution in the zero noise limit; on the other hand, dc(3) ≈ 0.62,
dc(4) ≈ 0.54 and so on.Suh phenomenology onerns relatively large degrees of dilution, yet,the presene of noise an also destabilize the true parallel-retrieval state(2.2) in the regime of small degrees of dilution. In fat, we expet that thespins aligned aording to the k-th pattern assoiated to a magnetization
mk = dk−1(1 − d) will loose stability at noise levels T > dk−1(1 − d). Inpartiular, at T > d(1 − d), only one pattern will be retrieved and the pure47



state is somehow reovered. As we will see in Se. 2.4.4, suh estimates areorret for small d.Typial spurious states emerging in standard assoiative networks are theso-alled symmetri mixtures of p ≤ P states, whih an be desribed as
σi = sign( p∑

µ=1

ξµi

)
, (2.70)and it will be referred to as σ(S). We antiipate that the symmetri mixtureturns out to emerge also in the diluted model under investigation.Now, in the standard Hop�eld model, odd mixtures of p patterns, are metastable,i.e. their energies are higher than those of the pure patterns, and, moreover,the smaller p and the more energetially favorable the mixture. On the otherhand, even mixtures of p patterns are unstable (they are saddle-points of theenergy).More preisely, at the ritial temperature of the standard Hop�eld model,namely at Tc = 1, all the symmetri spurious states beome extrema in thefree-energy landsape. They are either minima, maxima, or saddle-points. As

T < 0.461 spurious states beome suessively stable. First, the symmetrithree mixtures beome stable and begin to attrat. As the temperatureis lowered further, more and more of the symmetri odd mixtures beomeattrators. Lower mixtures beome stable at higher temperature. The purepattern attrators remain the absolute minima in the landsape all the waydown to T = 0. They always have the largest basins of attration.The instability of even mixtures is often assoiated to the fat that, fora marosopi fration of spins, σ(S) is not de�ned due to the ambiguity ofthe sign. For instane, when p = 2, ∑p
µ=1 ξ

µ
i ours to be null for half ofthe spins and the related values are de�ned stohastially aording to thedistribution

P (σi) =
1

2
(δσi+1 + δσi+1). (2.71)However, as we will show in Se. 2.4.3, this is not the ase for this dilutedmodel as it displays wide regions in the parameter spae (d, T ) where evenand/or odd symmetri mixtures are stable.As we will see in Se. 2.4.3, the symmetri mixture σ(S) an beomeunstable and relax to a di�erent spurious state whih is a �hybrid� statebetween the symmetri mixture σ(S) and the parallel state σ(P ).To begin and �x ideas, let us set P = 3 and start from the state σi =sign(ξ1i + ξ2i + ξ3i ). In the presene of dilution the argument ξ1i + ξ2i + ξ3i anbe zero and in that situation one an adopt the following hierarhial rule:take σi = ξ1i provided that ξ1i 6= 0; otherwise, if ξ1i = 0, then take σi = ξ2i48



provided that ξ2i 6= 0; otherwise, if also ξ2i = 0, then take σi = ξ3i providedthat ξ3i 6= 0; otherwise, if also ξ3i 6= 0, then put σi = ±1 with probability
1/2. In this way we an built a state, generally de�ned for any P , and, being
Ξ =

∑
µ ξ

µ
i , it an written as

σi = (1− δΞ,0)sign(Ξ) + δΞ,0[ξ
1
i + δξ1

i
,0ξ

2
i + δξ1

i
,0δξ2

i
,0ξ

3
i + ...], (2.72)whih will be referred to as σ(H).The related average Mattis magnetizations an be alulated as the sum ofone ontributionm0 (the same for any µ) deriving from the spins orrespond-ing to non ambiguous sign funtion (i.e., Ξ 6= 0), and another ontributionaounting for hierarhial orretions (i.e., Ξ = 0). Let us fous on the �rstterm:

m0 = 〈ξµsign(Ξ)〉ξ (2.73)
=

1− d

2

〈sign(1 + P∑

ν 6=µ

ξµ)− sign(−1 +
P∑

ν 6=µ

ξµ)

〉

ξ

(2.74)
= (1− d)

[
P(

P∑

ν 6=µ

ξν < 1)− P(

P∑

ν 6=µ

ξν > 1)

]
, (2.75)where, in the last step, we exploited the impliit symmetry in pattern entriesand P(

∑P
ν 6=µ ξ

ν ≷ 1) represents the probability that the spei�ed inequalityis veri�ed over the distribution (2.1). The latter quantity an also be lookedat as the probability for a symmetri random walk with holding probability
d to be at distane ≷ 1 from its origin after a time span P − 1. Hene, weget

m0 = (1− d)[P(0 → 0, P − 1) + P(0 → 1, P − 1)], (2.76)where P(x0 → x, t) is the probability for a symmetri random walk withstopping probability d to move from site x0 to site x in t steps, namely
P(x0 → x, t) =

t−(x−x0)∑

s=0

t!

s!
(

t−s−(x−x0)
2

)
!
(

t−s+(x−x0)
2

)
!
ds
(
1− d

2

)t−s

. (2.77)The seond ontribution to the magnetization is (1 − d)
∑P−1

k=1 P(0 →
1, P − k)dk−1.Finally, by summing the two ontributions we �nd the following expres-
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sions for P = 3

m1 =
1

2
(1 + d− 3d2 + d3), (2.78)

m2 =
1

2
(1− d)(1 + d2), (2.79)

m3 =
1

2
(1− 3d+ 5d2 − 3d3), (2.80)and for P = 5

m1 =
1

8
(3 + 9d− 42d2 + 74d3 − 65d4 + 21d5), (2.81)

m2 =
1

8
(1− d)(3 + 6d2 − d4), (2.82)

m3 =
1

8
(1− d)(3− 4d+ 18d2 − 20d3 + 11d4), (2.83)

m4 =
1

8
(1− d)(3− 4d+ 18d2 − 28d3 + 19d4), (2.84)

m5 =
1

8
(1− d)(3− 4d+ 18d2 − 36d3 + 27d4). (2.85)The expressions for arbitrary P an be analogously alulated exatly andsome examples are shown in Fig.(2.7).

Figure 2.7: Mattis magnetizations m versus dilution d, aording to theanalytial expression derived in Se. 2.3. Eah panel refers to a di�erentvalue of P , as spei�ed.We expet σH to beome globally stable in the region of very large dilu-tions (d > dH(P )); intuitively, dilution must be large enough to make mag-netizations rather lose to eah other in suh a way that the least signalled50



spins orresponding to (−,−, ...,−,+,+, ...,+) (overall (P − 1)/2 negativeentries and (P + 1)/2 positive entries) are stable. This means ∑N
1=1(1 −

δΞ,0)sign(Ξ)ξµi /N >
∑(P−1)/2

k=1 hk(P + 1)/(P − k), where hk = 2
∑

l[(1 −
d)/2]2ldP−2l(P − k)!/[l!(l − 1)!(P − k − 2l + 1)!] and P is odd. This on-dition is ful�lled for values of dilution larger than dH(P ), whih onverges to
1 as P gets larger, hene, in order to takle this limit, dilution must beomea funtion of the system size d → d(N). In this ase the network itself be-omes diluted as well and di�erent tehniques are required; this will not bedisussed in this manusript.2.4 Stability AnalysisThe set of solutions for self-onsistent equations (2.35) desribes states whosestability may vary strongly. In fat, provided the network has reahed them,in the noiseless limit (of whatever kind) it would persist in those states.However, the equations do not ontain any information about whether thesolutions will be stable against small perturbations, that is to say if thesystem will indeed really thermalize on these states or will fall apart more orless quikly. In order to evaluate their stability we need to hek the seondderivative of the free-energy [17℄. More preisely, we further need to buildup the so alled �stability matrix� A with elements

Aµν =
∂2fβ(m)

∂mµ∂mν
. (2.86)Then, we evaluate and diagonalize A at a point m̃, representing a parti-ular solution of the self-onsistene equations (2.35), in order to determinewhether m̃ is stable or not. Being {Eµ}µ=1,...,P , the set of related eigenvalues,

m̃ is stable whenever all of them are positive.Now, from Eq.(2.34) and (2.86), remembering that α(β, d) = −βf(β, d),we �nd straightforwardly
Aµν = [1− β(1− d)]δµν + βQµν , (2.87)where
Qµν = 〈ξµξν tanh2(β

∑

µ

mµξµ)〉ξ. (2.88)Of ourse when d = 0 we reover Aµν = (1−β)δµν+〈ξµξν tanh2(β
∑

µm
µξµ)〉ξ,namely the result known for the standard Hop�eld model.We now onsider several states, known to be solutions of self-onsisteneequations (2.35) and hek their stability. In this way we will �nd onstraintsin the region (T, d) where those states are stable and then we will build upthe phase diagram. 51



2.4.1 Paramagneti StateLet us start with the paramagneti state, whih is desribed by
mµ = 0 ∀µ (2.89)this state trivially ful�lls Eq.(2.35).By replaing this expression in Eq.(2.87) and in Eq.(2.88) we �nd

Aµν = δµν [1− β(1− d)]. (2.90)Therefore, in this ase, A is diagonal and its eigenvalues are diretly Eµ =
Aµµ = 1 − β(1 − d), ∀ν ∈ [1, P ]. We an onlude the paramagneti stateexists and is stable in the region 1−β(1− d) > 0, that is (remembering that
T = β−1) PM stability ⇒ T > 1− d. (2.91)This region is highlighted in Fig.(2.8).

Figure 2.8: (Color on line) In the parameter spae (T, d) we highlightedthe region where the paramagneti state exists and is stable. As proved inSe. 2.4.1, this region inludes points ful�lling T < 1 − d; notie that thisresult is independent of P .
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2.4.2 Pure StateLet us now onsider the pure state, that is any of the P on�gurations
mµ = δµν , (2.92)

m being the extent of the overlap, whih, in general, depends on d and on
T . The related self-onsistene equations are

mµ = (1− d) tanh(βmµ), (2.93)
mν 6=µ = 0. (2.94)The �rst equation has solution in the whole half-plane T > 1 − d, and thisensures that, in the same region, the pure-state exists. In order to hek itsstability, we alulate the stability matrix �nding

Aµν = 0 ∨ µ 6= ν (2.95)
Aµµ = 1− β(1− d)[1− tanh2(βmµ)] (2.96)
Aνν = 1− β(1− d)[1− (1− d) tanh2(βmµ)]. (2.97)Therefore A is diagonal and the eigenvalues are Eµ = Aµµ and Eν = Aνν .Notie that these eigenvalues do not depend on P and that Eµ ≥ Eν , so thatthe analysis an be restrited on Eν . Requiring the positivity for Eν , we getthe region in the plane (T, d), where the pure state is stable; suh a region isshown in Fig.(2.9). We stress that this result is universal with respet to P(in the low-storage regime).
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Figure 2.9: In the parameter spae (T, d) we highlighted the region where thepure state exists and is stable. This result was found by numerially solvingthe self-onsistene equation Eq.(2.35) and the inequality Eν > 0, where Eνis the smallest eigenvalues of the stability matrix A (see Eq.(2.97)); notiethat this result is independent of P .2.4.3 Symmetri StateA symmetri mixture of states orresponds to on�gurations leading to
mµ = m(d, T ) ∀µ ∈ [1, p]mµ = 0 ∀µ ∈ [p+ 1, P ] (2.98)where p ≤ P order parameters are equivalent and non null, while the remain-ing P − p are vanishing.Let us start with the ase p = P = 3, yielding m = m(d, T )(1, 1, 1). Inthis speial ase the three self-onsistene equations ollapse on

m(d, T ) = 2

(
1− d

2

)3 [
tanh2(3βm) + tanh2(βm)

]
+

+ d

(
1− d

2

)2

tanh2(2βm) + 2

(
1− d

2

)
d2 tanh2(βm) (2.99)
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Figure 2.10: In the parameter spae (T, d) we highlighted the region wherethe symmetri state σ(S), for the speial ase p = P = 3, exists and isstable. Notie that two disonneted regions emerge: the one orrespondingto lower values of dilution derives from the fat that p is odd, while the oneorresponding to larger values of dilution from the fat that p = P .and the matrix A reads as



a b b
b a b
b b a


 (2.100)

a and b being parameters related to m, d and β. More preisely, theeigenvalues of A are (a+ 2b, a− b, a− b), whih an be written as
a− b = 1− β(1− d)+2β

{
tanh2(2βm)d

(
1− d

2

)2

+

+ tanh2(βm)

[
d2(1− d)

2
+ (2.101)

+ 4

(
1− d

2

)3 ]}
, (2.102)55



a+ 2b = 1− β(1− d) + 2β

{
tanh2(3βm)3

(
1− d

2

)3

+

+ tanh2(βm)

[
d2(1− d)

2
+

(
1− d

2

)3 ]}
+ (2.103)

+8dβ tanh2(2βm)

(
1− d

2

)2

. (2.104)The onditions for the existene and the stability of the symmetri, oddmixture with p = P = 3, yield a system of equations whih was solvednumerially and the region were suh onditions are all ful�lled is shown inFig.(2.4.3). Notie that the region is atually made up of two disonnetedparts, eah displaying peuliar features, as explained later.This result is robust with respet to P , being P odd and p = P .

Figure 2.11: In this plot we foused on the region of the parameter spae
(T, d), where odd symmetri spurious state exist and are stable. In partiular,we hose P = 7 and we onsidered any possible odd mixture, i.e. p = 3, p = 5and p = 7; eah value of p is represented by a di�erent urve. Notie thatthe smaller p and the wider the region, analogously to the standard Hop�eldmodel.We an further generalize the analysis by onsidering P > p, still being56



p odd. In this ase we get the following stability matrix



a b b 0
b a b 0
b b a 0
0 0 0 c


 (2.105)with eigenvalues (a− b, a− b, a + 2b, c), where

c = 1− β(1− d)

×
{
1− 2

[(1− d

2

)3

[tanh2(3m) + 3 tanh2(m)] + d

(
1− d

2

)2

× 3 tanh2(2m) + 3
1− d

2
d2 tanh2(m)

]

×
[
1− 2

(
1− d

2

)3

[tanh2(3βm) + 3 tanh2(βm)]

+ 3d

(
1− d

2

)2

tanh2(2βm) + 3
1− d

2
d2 tanh2(βm)

]} (2.106)has degeneray P − p.Suh states (p < P , p odd) are stable only at small d. This is due to thefat that the eigenvalue c ours only when p < P and it reads as (µ > p):
Aµµ = [1− β(1− d)] + β〈(ξµ)2〉ξ〈tanh2[βm

p∑

ν

ξν]〉ξ

= [1− β(1− d)] + β(1− d)〈tanh2[βm

p∑

ν

ξν ]〉ξ. (2.107)Thus, one an see that the r.h.s term ontains fators (1 − d) at least ofseond order in suh a way that when d is lose to 1, i.e. for high dilution,and T < 1− d, suh term beomes negative. On the other hand, in the ase
µ ≤ p, we get

Aµµ = [1− β(1− d)] + β〈(ξµ)2 tanh2[βm

p∑

ν=1

ξν ]〉ξand therefore the r.h.s term ontains even �rst order term (1− d), whih areomparable with β(1− d).Moreover, we �nd that the p-omponent, odd symmetri state exists andis stable in a region of the spae (T, d), whih gets smaller and smaller as p57



Figure 2.12: In this plot we foused on the region of the parameter spae
(T, d), where symmetri spurious state with p = P exist and are stable. Inpartiular, we hose P = 7 and we onsidered any possible mixture, i.e.
p = 3, p = 4, p = 5, p = 6 and p = 7; eah value of p is represented by adi�erent urve. Notie that the smaller p and the wider the region, yet theregion tends to an �asymptoti shape�.grows (see Fig.(2.11)). The emergene of suh states an be seen as a featureof robustness of the standard Hop�eld model with respet to dilution.Finally, the ase P = p always admits a region of existene and stabilityin the regime of high dilution. The latter region is independent of the parityand depends slightly on P (see Fig.(2.12)). The emergene of suh states isdue to the failure of hierarhial retrieval, namely uniformity prevails.2.4.4 Parallel StateThe parallel-retrieval state an be looked at as the extension to arbitraryvalues of d of the pure state holding for the speial ase d = 0. We reallthat in the noiseless limit the parallel-retrieval state an be desribed as

mµ = (1− d)dµ−1. (2.108)58



In this ase the stability matrix is diagonal with terms:
Aµµ = 1−β(1−d)+β〈(ξµ)2 tanh2[β(1−d)(ξ1+ dξ2+ ...+ dP ξP )]〉, (2.109)and, onsistently, taking the limit β → ∞, we get the simpli�ed form
Aµµ = lim

β→∞
= 1−β(1−d)+β〈(ξµ)2(1− δ[(ξ1+ dξ2+ ...+ dP ξP )])〉. (2.110)Now, the third term in the r.h.s. is either β〈(ξµ)2〉 = β(1 − d) (when thepolynomial of order P is zero) or 0; the latter ase would trivially yield

Aµµ < 0. Therefore, in the limit β → ∞ the stability of the parallel-retrievalstate is onstrained by the smallest real root ∈ [0, 1] of the polynomial ξ1 +
dξ2 + ... + dP ξP with ξi = 1, 0,−1. This orresponds to ξ1 = 1 and ξi =
−1, ∀i > 1, under gauge symmetry and returns the same result found, from amore empirial point of view, in Se. 2.3. More preisely, the ritial dilutiononverges exponentially to 1/2 as P grows.In partiular, for P = 3 we �nd that the parallel-retrieval state exists andis stable in the interval d ∈ (0,

√
5−1
2

) ≃ (0, 0.618). The point dc(3) = √
5−1
2orresponds to the unique real root in (0, 1).When noise is introdued, the ritial dilution dc, separating the parallel-retrieval state from spurious states, is shifted towards larger values, as sug-gested by Eq.(2.109). On the opposite side, namely in the regime of smalldilution, the parallel state is progressively depleted and, as the temperatureis inreased, magnetizations vanish, starting from mP , and proeeding upto m2. One an distinguish a set of temperatures TP (d) < TP−1(d) < ... <

T2(d) < T1(d), suh that when T > Tk(d), all magnetizations mi, ∀i ≤ k arenull on average. Hene, above T2(d) the pure state retrieval is reovered,while above T1(d) = 1− d the paramagneti state emerges.In Fig.(2.13) we highlight the region of the parameter spae (T, d) wheresuh parallel states exist and are stable. This was obtained numerially forthe ase P = 5; for larger values of P the region is slightly restrited toaount for the shift in dc.2.5 Monte Carlo SimulationsIn this Setion we disuss details on Monte Carlo simulations.All the simulations were performed on a system Ubuntu Linux with Intel CoreI7, 3.2Ghz, 12 CPU, Nvidia-Fermi tehnology, 12 Gb RAM and OpenMPlibraries. The simulations were arried out sequentially aording to thefollowing algorithm: 59



Figure 2.13: In this plot we foused on the region of the parameter spae
(T, d), where parallel retrieval states exist and are stable. In partiular, wehose P = 5 and we onsidered any possible state with k = 2, k = 3, k = 4and k = 5 non-null magnetization.1. Building and storing of the oupling matrix.First, we generate P patterns aording to the distribution (d = 0):

P (ξµi ) =
1− d

2
δ(ξµ

i
−1) +

1− d

2
δ(ξµ

i
+1) + dδ(ξµ

i
), (2.111)then, we build a har-matrix Jij =

∑
µ ξ

µ
i ξ

µ
j with entries ranging ∈

[0, 2P +1] and ating as key pointing to another hash-matrix J̃ij wherethe N(N − 1)/2 real numbers aounting for the Hebb interationsare stored. If the amount of patterns do not exeed P = 256, i.e.one byte, it is then possible to aount for 105 spins with no need ofswapping on hard disk (whih would sensibly a�et the performane ofthe simulation). This ondition is ful�lled for the low storage regimewe are interested in.2. Initialize the network status.We heked the two standard approahes: The �rst is to initialize the60



network in a (assumed) �xed point of the dynamis, namely
σi = ξ1i ∀i ∈ [1, ..., N ], (2.112)and hek its evolution: This gives information on the struture of thebasins of attration of the minima as we vary the dilution (see Point 5).The seond approah is to initialize the network randomly: We set

σi = 1 with probability 0.5 and σi = −1 otherwise. This is a stan-dard proedure to follow the relaxation to a �xed point with no initialassumption and gives information on the struture of the basins ofattration of the minima at �xed dilution.3. Evolution dynamisThe spin status evolves aording to a standard (random and sequen-tial) Glauber dynamis for Ising-like systems [17℄: At eah time inter-val, the spins state is updated aording to its input signals, where theprobability of the unit's ativity is equal to a reti�ed value of the input(logit transfer funtion), i.e.
Pr[σi(t) = ±1] =

1

1 + exp[∓2β
∑

j Jijσj ]
. (2.113)The �eld-updating proess is managed by a linked list whose parsingis parallelized through OpenMP.4. Convergene of the simulation.Due to the peuliar struture of the �elds indued by pattern dilution,the �eld insisting on a given spin may be zero and the related spinwould �ip inde�nitely. To avoid this pathologial situation we skipthe updating of these �paramagneti" spins and fous on the remainingones: In the zero noise limit onvergene is almost immediate, suh thatwhen the whole ensemble of spins remains unhanged for the whole N -length of the update yle, dynamis is stopped and the resulting Ppattern overlaps are printed on a �le.Relaxation at non-zero noise is heked through the linked list (seenext step): The pointer of eah spin that is aligned with its own �eld isstored, the ones of spins with no net �elds are removed from the linkedlist, while all the other spins, mismathed to their own �elds, are addedinto the linked list. 61



5. Making the P patterns sparser.There an be two deeply di�erent ways of inreasing dilution. Theformer is a Bernoullian approah and essentially if one starts from a di-lution d = 0.45 toward a dilution d = 0.5 (just as a onrete example)may forget the starting information and generate a random patternwith on average one half of zero entries; the latter is a Markovian di-lution by whih one needs to start from the previous oupling matrix(and patterns) diluted at d = 0.45 and inreases dilution on that stru-ture.Dilution is tuned at steps of 0.01, ranging from d = 0 to d = 1.We take as the state of the network the last equilibrium state, then goto point (3).

Figure 2.14: Data from Monte Carlo simulations (symbols) and analytialpreditions (solid lines) obtained for a system with P = 3 patterns and setat a temperature T = 0.06 are ompared. Simulations are performed on aset of 105 spins. The dashed line at d ≈ 0.06 marks the boundary of the purestate regime; the dotted line at d ≈ 0.78 marks the onset of the symmetriphase; the semi-dashed line at d ≈ 0.94 marks the onset of the paramgnetiphase.Through Markovian dilution, we an follow the evolution of the pure Hop-�eld attrators while tuning d. In general, the results obtained via numerialsimulations are in perfet agreement with the theory: This point is not sur-prising, as, due to the load storage regime, limN→∞ P/N = 0, hene repliasymmetry is never broken and our solution is the real solution of the model(no approximations have been made).62



Chapter 3Hierarhial StruturesIn the last deade some steps forward towardmore realisti systems have beenahieved merging statistial mehanis [42,59,65℄ and graph theory [17,19℄. Inpartiular, mathematial methodologies were developed to deal with spin sys-tems embedded in random graphs, where the ideal, full homogeneity amongspins is lost [23, 24℄. Thus, networks of spins arranged aording to Erdös-Rényi [26℄, small-world [25℄, or sale-free [47℄ topologies were addressed, yet�nite-dimensional networks were still out of debate.Fousing on neural networks, it should be noted that, beyond the di�ultyof treating non-trivial topologies for spin arhitetures, one has also to opewith the omplexity of their oupling pattern, meant to enode the Hebbianlearning rule. The emerging statistial mehanis is muh trikier than thatfor ferromagnets; indeed neural networks an behave either as ferromagnetsor as spin-glasses, aording to the parameter settings: their phase spae issplit into several disonneted pure states, eah oding for a partiular storedpattern, so to interpret the thermalization of the system within a partiularenergy valley as the spontaneous retrieval of the stored pattern assoiated tothat valley. However in the high-storage limit, where the amount of patternssales linearly with the number of spins, neural networks approah pure spin-glasses (loosing retrieval apabilities at the blakout atastrophe [17℄) and,as a simple Central Limit argument shows [4℄, when the amount of patternsdiverge faster that the amount of spins they beome purely spin glasses. Forthe sake of exhaustiveness we also stress that, even in the retrieval region,neural networks are exatly linear ombinations of two-party spin glasses[2,3℄: due to the ombination of suh di�ulties, neural networks on a �nitedimensional topology have not been extensively investigated so far.However, very reently, a non-mean-�eld model, where a topologial dis-tane among spins an be de�ned and ouplings an be aordingly resaled,turned out to be, to some extent, treatable also for omplex systems suh63



Figure 3.1: Shemati representation of the hierarhial topology, that un-derlies the system under study: green spots represent nodes where spins live,while di�erent olors and thikness for the links mimi di�erent intensities intheir mutual interations: the brighter and thinner the link, the smaller therelated oupling.as spin-glasses [15, 56℄. More preisely, spins are arranged aording to ahierarhial arhiteture as shown in Fig.(3.1): eah pair of nearest-neighborspins form a �dimer� onneted with the strongest oupling, then spins be-longing to nearest �dimers� interat eah other with a weaker oupling andso on reursively. In partiular, the Sherrington-Kirkpatrik model for spin-glasses de�ned on the hierarhial topology has been investigated in [55℄:despite a full analyti formulation of its solution still laks, renormalizationtehniques, [14, 56℄, rigorous bounds on its free-energies [54℄ and extensivenumeris [38, 39℄ an be ahieved nowadays and they give extremely sharpshints on the thermodynami behavior of systems de�ned on these peuliartopologies.Remarkably, as we are going to show, when implementing the Hebb pre-sription for learning on these hierarhial networks, an impressive phasediagram, muh riher than the mean-�eld ounterpart, emerges. More pre-isely, spins turn out to be able to orhestrate both serial proessing (namelysharp and extensive retrieval of a pattern of information), as well as parallelproessing (namely retrieval of di�erent patterns simultaneously).The remaining of the hapter is strutured as follows: in the next subse-tions we provide a streamlined desription of mean-�eld serial and parallelproessors, and we introdue the hierarhial senario. Then, we split inthree setions our �ndings aording to the methods exploited for investiga-tion: statistial mehanis, signal-to-noise tehnique and extensive numerialsimulations. All these approahes onsistently onverge to the senario out-lined above. Seeking for larity and ompleteness, eah tehnique is �rstapplied to a ferromagneti hierarhial mode (whih an be thought of as64



a trivial one-pattern neural network and ats as a test-ase) and then for alow-storage hierarhial Hop�eld model.3.1 The Network on a Hierarhial Topology.We now start our investigation of a neural network embedded in the hier-arhial topology depited in Fig.(3.1). As mentioned, two main di�ultiesare interplaying: the omplexity of the emergent energy landsape (essen-tially due to frustration in the oupling pattern) and the non-mean-�eldnature of the model (essentially due to the inhomogeneity of the networkarhiteture). It is therefore safer to proeed by steps disussing �rst thehierarhial ferromagnet (hene retaining only the seond di�ulty), knownas Dyson hierarhial model (DHM). Then, via the Mattis gauge we reaha Mattis hierarhial model (MHN) and �nally we extend to the Hop�eldhierarhial model (HHM).The Dyson hierarhial model [37℄ is a system made of N binary (Ising)spins Si = ±1, i = 1, ..., N in mutual interation and built reursively in suha way that the system at the (k + 1)-th iteration ontains N = 2k+1 spinsand is obtained by taking two replias of the system at the k-th iteration(eah made of 2k spins) and onneting all possible ouples with overall (N
2

)ouplings equal to −J/2σ(k+1), J and σ being real salars tuning the intera-tion strength: the former ats uniformly over the network, the latter triggersthe deay with the �distane� among spins. The resulting Hamiltonian anbe written reursively as
HDyson

k+1 (S|J, σ) = HDyson
k (S1|J, σ)+HDyson

k (S2|J, σ)−
J

22σ(k+1)

2k+1∑

i<j

SiSj , (3.1)where S1 = {Si}2ki=1 and S2 = {Sj}2k+1

i=2k+1, while HDyson
0 ≡ 0.Before proeeding it is worth stressing that the parameters J and σ arebounded as J > 0 and σ ∈ (1

2
, 1): the former trivially arises from theferromagneti nature of the model whih makes neighboring spin to �imitate�eah other, while the latter an be understood by notiing that for σ > 1 theinteration energy goes to zero in the thermodynami limit1, while for σ < 1

2the interation energy is no longer linearly-additive implying thermodynami1The sum ∑2k+1

i<j brings a ontribution saling like 22(k+1) ∼ N2, while the pre-fatorsales as 2−2σ(k+1) ∼ N−2σ, thus, when σ > 1 the internal energy (the thermodynamialexpetation of the Hamiltonian normalized over the system size) is overall vanishing inthe thermodynami limit k → ∞. 65



instability2. Moreover, this model is intrinsially non-mean-�eld beause anotion of metris, or distane, has been impliitly introdued: two nodes aresaid to be at distane d if they get �rst onneted at the d-th iteration. Ingeneral, alling dij the distane between the spins i, j, (thus dij = 1, ..., k+1),we an assoiate to eah ouple a distant-dependent oupling Jij and rewriteEq.(3.1) in a more familiar form as
HDyson

k+1 (S|J, σ) = −
∑

i<j

JijSiSj, (3.2)where
Jij =

k+1∑

l=dij

J

22σl
= J

4σ−dijσ − 4−kσ−σ

4σ − 1
. (3.3)The next step is to gauge the spins à la Mattis, namely, one extratedquenhed values for the pattern entries (ξµi )µ=1 from the distribution

P (ξµi ) =
1

2
δ(ξµi − 1) +

1

2
δ(ξµi + 1), (3.4)we replae Si with ξ1Si. This results in the following hierarhial Mattismodel

HMattis
k+1 (S|J, σ) = −

∑

i<j

Jijξ
1
i ξ

1
jSiSj . (3.5)Finally, summing over p patterns, we obtain the Hop�eld hierarhial model(HHM) that reads as (for J = 1)

HHop�eld
k+1 (S|ξ, σ) = HHop�eld

k (S1|ξ, σ) +HHop�eld
k (S2|ξ, σ)

− 1

2

1

22σ(k+1)

p∑

µ=1

2k+1∑

i,j=1

ξµi ξ
µ
j SiSj , (3.6)with HHop�eld

0 ≡ 0 and σ still within the previous bounds, i.e. σ ∈ (1
2
, 1). Asantiipated, here we restrit the analysis to low storage limit only: realling

N = 2k+1, we an �x p �nite at �rst so to move straightforwardly from theDHM to the HHM (as the notion of distane is preserved) and, posing
Jij =

4σ−dijσ − 4−kσ−σ

4σ − 1

p∑

µ=1

ξµi ξ
µ
j , (3.7)2The sum ∑2k+1

i<j brings a ontribution saling like 22(k+1) ∼ N2, while the pre-fatorsales as 2−2σ(k+1) ∼ N−2σ, thus, when σ < 1
2 the intensive energy is overall divergent inthe thermodynami limit k → ∞. 66



we an write equivalently the Hamiltonian 3.6 in the more ompat form
HHop�eld

k+1 (S|ξ, σ) = −
2k+1∑

i<j

JijSiSj . (3.8)Thus in the HHM the Hebbian presription is oupled with a funtion of thespin's distane.3.2 Insights From Statistial MehanisHere we summarize �ndings that an be ahieved by suitably extending inter-polation tehniques [35,36℄ beyond the mean-�eld paradigm: it is importantto stress one more that, as this strand gives only (not-mean-�eld) bounds onthe free energy (and not the full solution), the self-onsistenies that resultare not the true self-onsistenies of the model.3.2.1 Free Energies in the Dyson ModelAs the Hamiltonian Hk+1(S|J, σ) is given (see Eq.(3.1)) and the noise level
β−1 = T (where T stands for noise for historial reasons) introdued, it ispossible to de�ne the partition funtion Zk+1(β, J, σ) at �nite volume k + 1as

Zk+1(β, J, σ) =
∑

{S}
exp [−βHk+1(S|J, σ)] , (3.9)and the related free energy αk+1(β, J, σ), namely the intensive logarithm ofthe partition funtion, as

αk+1(β, J, σ) =
1

2k+1
log
∑

{S}
exp



−βHk+1(~S) + h

2k+1∑

i=1

Si



 , (3.10)where the sum runs over all possible 22k+1 spin on�gurations. Note that theusual free energy f is related to α by f(β) = −βα(β), hene we will �ndthermodynami equilibria heking the maxima of α(β) and not the minima.We are interested in an expliit expression of the in�nite volume limit of theintensive free energy, de�ned as
α(β, J, σ) = lim

k→∞
αk+1(β, J, σ), (3.11)in terms of suitably introdued magnetizations m, that at as order param-eters for the theory. In fat, as the free energy is just the di�erene between67



the internal energy E of the system (i.e. the mean-value of the Hamilto-nian) weighted by β, and the entropy S, namely α(β, J, σ) = −βE(β, J, σ)+
S(β, J, σ), extremization of the free-energy over the order parameters equalsto imposing thermodynami presriptions (i.e. minimum energy and maxi-mum entropy priniples) and therefore allows us to get a desription of thethermodynami equilibria of the system in terms of the self-onsistenies forthese m's.To this task we introdue the global magnetization m, de�ned as the limit
m = limk→∞mk+1 where

mk+1 =
1

2k+1

2k+1∑

i=1

Si, (3.12)and, reursively and with a little abuse of notation, level by level (over klevels) the k magnetizations ~ma, ..., ~mk, as the same k → ∞ limit of thefollowing quantities (we write expliitly only the two upper magnetizationsrelated to the two main lusters left and right -see Fig.(3.1):
m1

k =
1

2k

2k∑

i=1

Si, m2
k =

1

2k

2k+1∑

i=2k+1

Si, (3.13)and so on. The thermodynamial averages are denoted by the brakets 〈·〉suh that, e.g. for the observable mk+1(β, J, σ), we an write
〈mk+1(β, J, σ)〉 =

∑
{σ}mk+1e

−βHk+1(~S|J,σ)

Zk+1(β, J, σ)
, (3.14)and learly 〈m(β, J, σ)〉 = limk→∞〈mk+1(β, J, σ)〉.Starting with the pure ferromagneti ase, whih mirrors here the serial re-trieval of a single pattern in the Hop�eld ounterpart, its free energy an bebounded as (see also [54℄)

α(h, β, J, σ) ≥ sup
m

{log 2 + log cosh
[
h+ βmJ(C2σ−1+ (3.15)

− C2σ)
]
− βJ

2
(C2σ−1 − C2σ)m

2}, (3.16)where
C2σ =

1

22σ − 1
, (3.17)

C2σ−1 =
1

22σ+1 − 1
. (3.18)68



Now let us suppose that, instead of a global ordering, the system an bee�etively split in two parts (the two largest ommunities alled left and rightin Fig.(3.1)), with two di�erent magnetizations mleft = m1 and mright =
m2; we also assume mleft = −mright. Through the interpolative route weapproah a bound for the free energy related to suh a mixed state. Westress the fat that the upper link, onneting the two ommunities withopposite magnetization, remains and it gives a ontribute m in the systemas (see also [28℄)
αk+1 ≥
1

2
log cosh

{
h + βJ

[
m(2(k+1)(1−2σ)) +m1

(
k∑

l=1

2l(1−2σ) −
k+1∑

l=1

2−2lσ

)]}

+
1

2
log cosh

{
h + βJ

[
m(2(k+1)(1−2σ)) +m2

(
k∑

l=1

2l(1−2σ) −
k+1∑

l=1

2−2lσ

)]}

− βJ

2

[(
k∑

l=1

2l(1−2σ) −
k+1∑

l=1

2−2lσ

)(
m2

1 +m2
2

2

)
− 2(k+1)(1−2σ)m2

]

+ log 2. (3.19)Notie that, thanks to the gauge simmetry Si → −Si, the state onsideredmirrors the parallel retrieval of two patterns in the Hop�eld ounterpart.Identifying m1 = m2 = m we reover the previous bound as expeted,and, quite remarkably, in the thermodynami limit the two free energiesassume the same values, thus serial and parallel retrieval are both equallyaomplished by the network. Imposing thermodynami stability we obtainthe following self-onsistenies
m1,2 = tanh(h+ βJm1,2(C2σ−1 − C2σ)), (3.20)whose behavior is depited in Fig.(3.2).3.2.2 Serial/Parallel Retrieval in Hop�eld HierarhialModelGuided by the ferromagneti model just desribed, we now turn to the hi-erarhial Hop�eld model (HHM) and start its analysis from a statistialmehanial perspetive, namely we infer the thermodynami behavior of a

69



system desribed by the following reursive Hamiltonian
HHopfield

k+1 (S|ξ, σ) = HHopfield
k (S1|ξ, σ) +HHopfield

k (S2|ξ, σ) (3.21)
− 1

2

1

22σ(k+1)

p∑

µ=1

2k+1∑

i,j=1

ξµi ξ
µ
j σiσj.To this task, we introdue suitably p Mattis magnetizations (or Mattis over-laps), over the whole system, as

mµ =
1

2k+1

2k+1∑

i=1

ξµi Si, µ ∈ [1, p]. (3.22)Even in this ontext, the de�nition above an aount for the state of innerlusters by the sum over the (pertinent) spins. For instane, fousing on thetwo larger ommunities we have the 2p Mattis magnetizations
mµ

left =
1

2k

2k∑

i=1

ξµi Si, mµ
right =

1

2k

2k+1∑

i=2k+1

ξµi Si, (3.23)with µ ∈ [1, p]. Again, we will not enter in the mathematial details onern-ing non-mean-�eld bounds for the model free energy (as they an be foundin [28℄), while we streamline diretly the physial results.Still mirroring the previous setion, we are interested in obtaining a boundlimiting the free energy of the HHM, the latter being de�ned as the k → ∞limit of αk+1, whose expression reads
αk+1(β, {hµ}, σ) =

1

2k+1
log
∑

{S}
exp


−βHk+1(~S) +

p∑

µ=1

hµ
2k+1∑

i=1

Si


 , (3.24)where we aounted also for p external stimuli hµ.The non-mean �eld bound for serial proessing free energy reads as

α(β, {hµ}, p) ≥ sup
m

[log 2 +
〈
log cosh

( p∑

µ=1

[
hµ + βmµ(C2σ−1 − C2σ)

]
ξµ
)〉

ξ

− β

2

p∑

µ=1

〈(mµ)2〉ξ(C2σ−1 − C2σ)], (3.25)with optimal order parameters ful�lling
〈mµ〉ξ = 〈ξµ tanh[β

p∑

ν=1

[hν + (C2σ−1 − C2σ)m
ν ] ξν]〉ξ,70



and whose ritial noise is βNMF
c = C2σ−1 − C2σ, where the index NMFstresses that the estimate was obtained through a non mean �eld bound ofthe free energy.Of ourse we an assume again that the two di�erent families of Mattismagnetizations ({mµ

1,2}pµ=1) (those playing for the two inner bloks of spinsleft and right lying under the k + 1-th level) behave independently as thehigher links onneting them go to zero quikly for k → ∞ and we anstart the interpolative mahine: following this way we generalize the serialproessing analysis to a two-pattern parallel retrieval analysis, whih resultsin the following bound for the related free energy:
α(β, {hµ}, p) ≥ sup

{mµ
1,2}

[log 2 +
1

2

〈
log cosh

{ p∑

µ=1

[
hµ + βmµ

1

( k∑

l=1

2l(1−2σ)

−
k∑

l=1

2l(−2σ)
)
+ βmµ2(k+1)(1−2σ)

]
ξµ
}〉

ξ
+

1

2

〈
log cosh

{ p∑

µ=1

[
hµ + βmµ

2

×[
k∑

l=1

2l(1−2σ) −
k∑

l=1

2l(−2σ)] + βmµ2(k+1)(1−2σ)
]
ξµ
}〉

ξ
− β

2

[ k∑

l=1

2l(1−2σ)

−
k∑

l=1

2l(−2σ)
]
·

p∑

µ=1

〈(mµ
1 )

2〉ξ + 〈(mµ
2 )

2〉ξ2
2

− β

2
2(k+1)(1−2σ)

p∑

µ=1

〈(mµ)2〉ξ,Here we do not investigate further the parallel retrieval of larger ensemblesof patterns, as the way to proeed is idential to the outlined one, but wesimply notie that, if we want the system to handle M patterns, hene weassume it e�etively splits M times into sub-lusters until the k + 1 −Mlevel, then the proedure keeps on working as long as
lim
k→∞

k+1∑

l=k+1−M

2l(1−2σ)

p∑

µ=1

mµ
l = 0. (3.26)Sine the magnetizations are bounded, in the worst ase we have

k+1∑

l=k+1−M

2l(1−2σ)

p∑

µ=1

mµ
l ≤ p

k+1∑

l=k+1−M

2l(1−2σ)

≤ p
∞∑

l=k+1−M

2l(1−2σ) ∝ 2(1−2σ)(k+1−M)p.(3.27)If we want the system to handle up to p patterns, we need p di�erent bloksof spins and then M = log(p). 71



Figure 3.2: Main plots: numerial solutions of the non-mean-�eld self-onsistent equations for the parallel state (left panel) and for the pure state(right panel) of the Dyson model (see Eq.(3.20)) obtained for di�erent val-ues of σ (as explained by the legend) and plotted versus a resaled noise.Note that by resaling the noise the dependene on σ is lost and all urvesare ollapsed. Insets: omparison between the numerial solutions of thenon-mean-�eld self-onsistent equations (dashed line) and of the mean-�eldself-onsistent equations (solid line) as a funtion of the noise and for �xed
σ = 1 (see Eq.(3.20)). Notie that for the Hop�eld hierarhial model, nu-merial solutions for the Mattis magnetizations pertaining to the pure andto the mixed states are the same.3.3 Insights From Signal-to-Noise TehniquesResults from statistial mehanis gave stringent hints on the network's be-havior, however they at as bounds only.This requires further inspetion via other tehniques: the �rst route we ex-ploit is signal-to-noise. Through the latter, beyond generally on�rming thepreditions obtained via the �rst path, we obtain sharper statements regard-ing the evolution of the Mattis order parameters. These two approahesare omplementary: while statistial mehanis desribes the system with
N → ∞ and β < ∞, with the signal-to-noise tehnique we inspet theregime N <∞ and β → ∞.3.3.1 A Glane at the Fields in the Dyson NetworkPlan of this Setion is to look at the dynamially stable on�gurations ofthe spins, that is to say, we investigate the on�gurations (global and lo-72



al minima) that imply eah spin Si to be aligned with its orresponding�eld hi(S), i.e. Si hi(S) > 0, ∀i. This approah basially orresponds to anegligible-noise statistial mehanial analysis but it is mathematially muhmore tratable.We an rearrange the Dyson Hamiltonian in a useful form for suh an inves-tigation as follows
HDyson

k+1 ({S1...S2k+1}) = −J
2

k+1∑

µ=1

2k+1∑

i=1

Si

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj, (3.28)thus, highlighting the �eld hi insisting on the spin Si we an write
HDyson

k+1 ({S1...S2k+1}) = −
2k+1∑

i=1

Sihi(S), (3.29)
hi(S) = J

k+1∑

µ=1

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj . (3.30)While Glauber dynamis will be disussed in Se. 4 (dediated to numer-is), we just notie here that the mirosopi law governing the evolution ofthe system an be de�ned as a stohasti alignment to loal �eld hi(S).
Si(t+ δt) = sign {tanh [βhi (S (t))] + ηi(t)} ,where the stohastiity lies in the independent random numbers ηi(t), uni-formly distributed over the interval [−1, 1] and tuned by β. The latter on-tinues to rule the noise level even dynamially as it ampli�es, or suppresses,the smoothness of the hyperboli tangent; in partiular, in the noiseless limit

β → ∞ we get
Si(t+ δt) = sign [hi (S(t))] . (3.31)This is ruial for heking the stability of a state as, if Sihi(S) > 0 ∀ i ∈

[1, N ], the on�guration {S} is dynamially stable (at least for β → ∞, as inthe presene of noise there is a β-dependent probability to �utuate away).We keep the previous ensemble of non-independent order parameters mn
ide�ned in detail as

mn
i (S) =

1

2n

2n×i∑

j=2n×i−(2n−1)

Sj with i = 1, 2, ..., 2k+1−n and n = 0, 1, 2, ...k+1,(3.32)73



namely




m0
i = Si with i = 1, 2, .., 2k+1,

m1
i =

1
2

∑2i
j=2i−1 Sj with i = 1, 2, .., 2k → m1

1 =
1
2

∑2
j=1 Sj,

m2
i =

1
22

∑22i
j=22i−(22−1) Sj with i = 1, 2, .., 2k−1 → m2

1 =
1
4

∑4
j=1 Sj,

.....

mk+1
1 = 1

2k+1

∑2k+1

j=1 Sj .From Eq.(3.29), we get the following fundamental expression for the �elds
hi(S) =



J
k+1∑

µ=1

(
k+1∑

l=µ

1

22σ

)l


 2µ−1mµ−1
f(µ,i), (3.33)where we used the relationmµ−1

f(µ,i) =
∑

{j}:dij=µ
Sj. Thus the order parameters

mµ−1
f(µ,i) represent the magnetizations assumed by spins that lie at distane µfrom Si. Note that the funtion f(µ, i) an be estimated through the �oorfuntion ⌊·⌋ (e.g., ⌊3.14⌋ = 3) as

f(µ, i) =
⌊ i+ (2µ−1 − 1)

2µ−1

⌋
+ (−1)(⌊

i+(2µ−1
−1)

2µ−1 ⌋+1).Finally, we notie that the largest value allowed for a �eld -away from theboundary value σ = 1/2- for large k approahes a plateau (whose boundaries-in the (k, σ) plane- are important for �nite-size-saling during numerialanalysis), hene we an easily hek the right �eld normalization
Q(σ, k + 1) =

k+1∑

µ=1

J(µ, k + 1, σ)2µ−1 =

= J
2−2(k+1)σ

(
22(k+2)σ − 2k+2σ+2 + 2k+2 + 4σ − 2

)

−3 × 4σ + 16σ + 2
, (3.34)as Q(σ, k) represents the largest value allowed by a �eld.Note that in the thermodynami limit

lim
k→∞

Q(σ, k) = Q(σ) = J
22σ

−3 × 4σ + 42σ + 2
, (3.35)that is Q is always bounded whenever σ > 1

2
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3.3.2 Metastabilities in the Dyson Network: NoiselessCase.We an now proeed to the stability analysis explaining in details a few testases that show how to proeed for any other ase of further interest:
[a] the global ferromagneti state, i.e. Si = +1, i ∈ (1, ..., 2k+1).
[b] the parallel/mixed state, i.e. the �rst half of spins up and the seond halfdown, thus Si = +1, i ∈ (1, ..., 2k) and Si = −1, i ∈ (2k + 1, ..., 2k+1).
[c] the dimer, i.e. S1 = S2 = +1 while Si = −1 for all i 6= (1, 2).
[d] the square, i.e. S1 = S2 = S3 = S4 = +1 while Si = −1 for all i > 4.Let us go through eah ase analysis separately:

• [a] The global ferromagneti state Si = +1 ∀i ∈ [1, 2k+1] ⇒ mn
i (S) =

1 ∀i, n has �elds
hi(S) = J

4−(k+1)σ
[
22(k+2)σ − 2k+2+2σ + 2k+2 + 4σ − 2

]

−3× 4σ + 16σ + 2
,(3.36)

hi(S) > 0 ∀k, σ ∈ (1/2, 1). (3.37)Thus, the on�guration Si = +1 ∀i ∈ [1, 2k+1] is stable in the noiselesslimit ∀σ ∈ [1
2
, 1]. In the thermodynami limit k → ∞ we have

hi(S) = J
4σ

−3 × 4σ + 16σ + 2
.To address network's behaviour in the presene of noise, �xing J = 1without loss of generality, we an look at the solution of the followingequation

tanh(βhi(S)) ≃ 1 ⇒ tanh

(
β

4σ

−3 × 4σ + 16σ + 2

)
≃ 1. (3.38)This allows to �nd the urve βno errors

c (σ) versus σ (shown in Fig.(3.3)).In fat, we know that, at the time t+δt, the system obeys the dynamis
Si(t + δt) = sign(tanh(βhi(S)) + ηi),where ηi is a random variable, whose value is uniformly distributed in

[−1, 1]. Imposing tanh(βhi) ≃ 1 we ask that |hi| ≫ 1, so the sign ofthe right hand side member of the equation is positive, thus the signof Si at the time t+ δt is the same of the �eld hi at the time t. Then,�xed σ, for every β > βno errors
c (σ) the state Si = +1 ∀i ∈ [1, 2k+1] isstable without errors. 75



• [b] The parallel/mixed state Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈
[2k + 1, 2k+1] has �elds

⇒ hj(S) = J
4−(k+1)σ

(
22(k+2)σ + 2k+1+2σ − 2k+1+4σ + 4σ − 2

)

−3× 4σ + 16σ + 2
= −hi(S) > 0 ∀ k + 1 ≥ 2, (3.39)
⇒ lim

k→∞
hj(S) = J

1

21−2σ + 4σ − 3
, (3.40)thus the on�guration Sj = +1 Si = −1 ∀j ∈ [1, 2k] ∀i ∈ [2k+1, 2k+1]is stable in the noiseless limit ∀ k+1 > 2, σ ∈ (1/2, 1). Using the samearguments of the previous ase, �xing J = 1 without loss of generality,to infer network's behaviour in the presene of the noise we an lookat the solution of the following equation

tanh(βhi(S)) ≃ 1 ⇒ tanh

(
β

1

21−2σ + 4σ − 3

)
≃ 1. (3.41)This allows to �nd the urve βno-errors

c (σ) versus σ (see Fig.(3.3)). Then,�xed σ, for every β > βno-errors
c (σ) the state Sj = 1 Si = −1 ∀j ∈

[1, 2k] ∀i ∈ [1 + 2k, 2k+1] is stable without errors. So we an seehow, in the thermodynami limit, the state with all spins aligned Sj =
+1 ∀j ∈ [1, 2k+1] and the state with half spins pointing upwards andhalf pointing downwards Sj = +1 ∀j ∈ [1, 2k] Si = −1 ∀i ∈ [1 +
2k, 2k+1] are both robust. For an arbitrary �nite value of k it is possibleto solve numerially Eq.(3.41) to get an estimate for βno-errors

c (σ) versus
σ: in Figure 3.3 βno-errors

c (σ) is plotted for the state Sj = +1 Si =
−1 ∀j ∈ [1, 2k] ∀i ∈ [1+2k, 2k+1] and the state Si = +1 ∀i ∈ [1, 2k+1].

• [c] The dimer Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈ [3, 2k+1] has �elds
h1(S) = h2(S) =

2−2σ(k+1)(22σ(k+2) + 2k+2+2σ − 41+(k+1)σ − 2k+2 − 3× 4σ + 6)

(−3 × 4σ + 16σ + 2)
,

lim
k→∞

h1(S) = lim
k→∞

h2(S) = 2 · 4σ − 4

−3× 4σ + 16σ + 2
< 0 ∀σ ∈ (1/2, 1).Therefore, the on�guration Sj = +1 Si = −1 ∀j ∈ [1, 2] ∀i ∈

[3, 2k+1], in the thermodynami limit, is unstable ∀ σ ∈ (1/2, 1).76



• [d] The square Sj = 1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1] has �elds
hj(S, k) = −21−2(k+1)σ

(
−2k+1+2σ + 22kσ+1 + 2k+1 + 22σ+1 − 4

)

−3× 4σ + 16σ + 2

− −3 × 4−(k+1)σ + 21−2σ + 1

1− 4σ
, (3.42)

hj(S, k + 1) =

(
22(k+3)σ − 2k+2+2σ + 2k+2+4σ − 22(k+1)σ+3

)

(−3 × 4σ + 16σ + 2)/(2−2(k+2)σ)

+
(+7× 22σ+1 − 7× 16σ)

(−3× 4σ + 16σ + 2)/(2−2(k+2)σ)
(3.43)thus

lim
k→∞

hj(S) =
4−σ (16σ − 8)

−3 × 4σ + 16σ + 2
=

{
> 0, if σ > 3

4

< 0, if σ < 3
4

.Therefore, the on�guration Sj = +1 Si = −1 ∀j ∈ [1, 4] ∀i ∈ [5, 2k+1]in the limit (k → ∞) for T = 0 is stable ∀ σ ∈ (3
4
, 1)It is worth notiing that beyond the extensive meta-stable states (e.g. theparallel/mixed one) already suggested by the statistial mehanial route,stability analysis predits that tighley onneted modules (e.g. otangon,esadeagon, ...) with spins anti-aligned with respet to the bulk get dy-namially stable in the thermodynami limit: these motifs in turn are ableto proess small amount of information and an analysis of their apabilitiesan be found in [23, 24℄, and their robusting is due to their intrinsi loopystruture.3.3.3 Signal Analysis for the Hop�eld Hierarhial ModelLet us now onsider the Hop�eld hierarhial model (see Eq.(3.21)). As weare interested in obtaining an expliit presription for the �elds experienedby the spins, we an rewrite its Hamiltonian in terms of neural distane dijas

Hk+1(S|ξ, σ) =
∑

i<j

SiSj

[
k+1∑

l=dij

( −1

22σl

)] p∑

µ=1

ξµi ξ
µ
j (3.44)or inverting the order of the sums

Hk+1(S|ξ, σ) = −
p∑

µ=1

2k+1∑

i=1

Si

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj

p∑

ν=1

ξνi ξ
ν
j ,77



Figure 3.3: Phase diagram for the perfet retrieval aomplished by a purestate (Si = +1 ∀i = 1, ..., 2k+1) and parallel state (Si = +1 ∀i = 1, ..., 2k and
Si = −1 ∀i = 2k + 1, ..., 2k+1). The line separating di�erent regions orre-sponds to numerial solution of βno errors

c [σ] versus σ, obtained from (3.38)and (3.41) for di�erent values of k (10, 15, 20, 100 respetively). In yellow,the area where both the pure and parallel states are perfetly retrieved, whilein blue the area where none of them is retrieved. The red line represents thearea where only the pure state is stable: this region vanishes as k gets larger(namely in the thermodynami limit), hene on�rming that the pure andthe mixed state are both global minima.suh that, paying attention to the �elds we an write
Hk+1(S|ξ, σ) = −

2k+1∑

i=1

Sihi(S), (3.45)
hi(S) =

p∑

µ=1

[
k+1∑

l=µ

(
1

22σ

)l
]

∑

{j}:dij=µ

Sj

p∑

ν=1

ξνi ξ
ν
j . (3.46)Mirroring the analysis arried on for the Dyson model, we introdue an en-semble of non-independent Mattis-like order parameters as

mµ,n
i (S) =

1

2n

i×2n∑

j=i×2n−(2n−1)

Sjξ
µ
j with i = 1, 2, ..., 2k+1−n, n = 0, 1, 2, ..., k+1(3.47)78



Figure 3.4: Stability and instability zones for various on�gurations in theplane (σ,k) when β → 0, obtained by solving the inequality Sihi(σ, k, [S]) >
0. In partiular in the �gure, the square represents the on�guration Si = +1
∀i ∈ [1, 4] and Si = −1 ∀i ∈ [5, 2k+1], the otagon the on�guration Si = +1
∀i ∈ [1, 8] and Si = −1 ∀i ∈ [9, 2k+1], and the esadeagon the on�gurations
Si = +1 ∀i ∈ [1, 16] and Si = −1 ∀i ∈ [17, 2k+1]. In red we an see the regionwhere all of them are stable, in yellow the region where only the otagon andthe esadeagon are stable, in green the region where only the esadeagon isstable, while in blue none of these retiular animals is stable.so that





mµ,0
i = Siξ

µ
i with i = 1, 2, .., 2k+1

mµ,1
i = 1

2

∑2i
j=2i−1 Sjξ

µ
j with i = 1, 2, .., 2k → mµ,1

1 = 1
2

∑2
j=1 Sjξ

µ
j

mµ2n
i = 1

22

∑22i
j=22i−(22−1) Sjξ

µ
j with i = 1, 2, .., 2k−1 → mµ,2

1 = 1
4

∑4
j=1 Sjξ

µ
j

.....

mµ,k+1
1 = 1

2k+1

∑2k+1

j=1 Sjξ
µ
j .As we saw for the Dyson ase, this allows writing the �elds as

hi(S) =

p∑

ν=1

ξνi

k+1∑

d=1

[ k+1∑

l=d

(
1

22σ
)l
]
2d−1mν,d−1

f(d,i) =

p∑

ν=1

ξνi

k+1∑

d=1

J(d, k+1, σ)2d−1mν,d−1
f(d,i) ,where

J(d, k + 1, σ)2µ−1 =
4σ−dσ − 4−kσ−σ

4σ − 1
2d−1. (3.48)The mirosopi evolution of the system is de�ned as a stohasti alignmentto loal �eld hi(S):

Si(t + δt) = sign{tanh[βhi(S(t))] + ηi(t)}, (3.49)79



where the stohastiity lies in the independent random numbers ηi(t) uni-formly drawn over the interval [−1, 1]. In the noiseless limit β → ∞ wehave
Si(t+ δt) = sign[hi(S(t))] (3.50)and so if Sihi(S) > 0 ∀ i ∈ [1, N ], the on�guration [S] is dynamiallystable (see Fig.(3.4)).3.3.4 Signal to Noise Analysis for Serial RetrievalUsing equations (3.45) and (3.47) and posing Si = ξµi in order to hek therobustness of the serial pure-state retrieval (of the test pattern µ), we anwrite

ξµi hi(S) = ξµi

p∑

ν=1

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (3.51)

=

k+1∑

d=1

J(d, k + 1, σ)2d−1 + ξµi

p∑

ν 6=µ

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j .We an deompose the previous equation into two ontributions, a stohastinoisy term R(ξ) and a deterministi signal I as

ξµi hi(S) = I +R(ξ) (3.52)The signal term I is positive beause
I =

k+1∑

d=1

J(d, k + 1, σ)2d−1 ≥ 0, (3.53)while the noise R(ξ) has null average (the latter being denoted by standardbrakets), namely
R(ξ) = ξµi

p∑

ν 6=µ

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (3.54)

〈R(ξ)〉ξ = 0. (3.55)Thus, in order to see the regions of the tunable parameters σ, k+1 where thesignal prevails over the noise and the network aomplishes retrieval, we needto alulate the seond moment of the noise over the distribution of quenhedvariables ξ so to ompare the signal amplitudes of I and |
√

〈R2(ξ)〉ξ|:80



〈R2(ξ)〉ξ =
〈[ p∑

ν 6=µ

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

]
×

×
[ p∑

η 6=µ

ξηi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξηj ξ
µ
j

]〉

ξ
. (3.56)Negleting o�-diagonal terms (as they have null average), we get thefollowing expressions for 〈R2(ξ)〉ξ:

〈R2(ξ)〉ξ =
〈 p∑

ν 6=µ

(ξνi )
2

( k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

)2〉
ξ
= (3.57)

=

〈
p∑

ν 6=µ

( k+1∑

d=1

(
4σ−dσ − 4−(k+1)σ

4σ − 1
)
∑

j:dij=d

ξνj ξ
µ
j

)2
〉

ξ

,where we used (ξνi )
2 = 1 ∀i, ν. One again, as the ξ's are symmetriallydistributed, only even order terms give ontributions, thus we an safelyneglet o�-diagonal terms and write again

〈R2(ξ)〉ξ = (p− 1)
k+1∑

d=1

〈

(
4σ−dσ − 4−kσ−σ

4σ − 1

) ∑

j:dij=d

ξνj ξ
µ
j



2〉

ξ

, (3.58)
= (p− 1)

k+1∑

d=1

(
4σ−dσ − 4−kσ−σ

4σ − 1

)2

〈
∑

j:dij=d,

∑

k:dik=d

ξνj ξ
µ
j ξ

ν
kξ

µ
k 〉ξ.Therefore

〈R2(ξ)〉ξ = (p− 1)

k+1∑

d=1

J(d, σ, k + 1)22d−1. (3.59)Exploiting the approximation 〈|x|〉 ∼ |
√
〈x2〉|, we an simplify the previousexpression into

〈|R(ξ)|〉 ∼
√

〈R2(ξ)〉ξ =

√√√√(p− 1)
k+1∑

d=1

J(d, σ, k + 1)22d−1, (3.60)where we onsider the positive branh of the serial retrievl only. We are nowready to hek the stability of the pure retrieval: as long as
I >

√
〈R2(ξ)〉ξ ⇒ ξµi hi(S) = I +R(ξ) > 0, (3.61)81



the pure state is stable. Hene we need to alulate expliitly
√

〈R2(ξ)〉ξ =
√

(p− 1)16−kσ

(4σ − 2) (4σ − 1)2 (16σ − 2)
·
√

Ψ1 +Ψ2,where
Ψ1 = (4σ − 2)42(k+1)σ − 3× 2k+2σ+1,

Ψ2 = 2k+6σ+1 − (16σ − 2)22(k+1)σ+1 + 2k+2 − 64σ + 22σ+1 + 24σ+1 − 4.The expression for the signal is muh simpler, resulting in
I =

4−(k+1)σ
(
−2k+2σ+2 + 4(k+2)σ + 2k+2 + 4σ − 2

)

−3 × 4σ + 16σ + 2
. (3.62)Imposing I =

√
〈R2(ξ)〉ξ and solving for the variable p, we �nd the ritialload allowed by the network, namely the funtion Pc(σ, k), whose behavioris shown in Fig.3.5:

I =
√
〈R2(ξ)〉ξ ⇒ Pc(σ, k). (3.63)Now, imposing the relation
Pc(σ, k) = kand solving numerially with respet to σ, we an plot the maximum value

σmax(k) that the variable σ an reah suh that the storage P = k produesretrievable patterns, as shown in Figure 3.5.In the thermodynami limit we get
I −

√
〈R2(ξ)〉 =

22σ

−3 × 4σ + 16σ + 2
−

√
(p− 1)22σ√

(4σ − 1) (16σ − 2)
, (3.64)

Pc(σ) =
(4σ − 1) (16σ − 2)

(−3 × 4σ + 16σ + 2)2
+ 1. (3.65)3.3.5 Signal to Noise Analysis for Parallel RetrievalFixing Si = ξµi ∀i ∈ [1, 2k] and Si = ξγi ∀i ∈ [1 + 2k, 2k+1] for µ 6= γ, namelyseleting µ and γ as test patterns to retrieve, we set the system in onditionto handle ontemporarily two patterns, the former managed by the �rst halfof the spins, the latter by the seond half. The robustness of this state isaddressed hereafter following the same presription outlined so far. Namely,being

Sihi(S) = Si

p∑

ν=1

ξνi

k+1∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj Sj , (3.66)82



if i ∈ [1, 2k] we have
Sihi(S) = ξµi

p∑

ν=1

ξνi

( k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

+ J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j

)
, (3.67)while if i ∈ [2k + 1, 2k+1], the same equation still holds provided we replae

µ with γ and γ with µ, hene hereafter we shall onsider only one of the twoases as they are symmetrial.Again, we an deompose the above expression in the sum of a onstant,positive term -that plays as the signal- I > 0, and a stohasti term for thenoise R(ξ), namely we an write
Sihi(S) = I +R(ξ), (3.68)
I =

k∑

d=1

(
J(d, k + 1, σ)2d−1

)
,

R(ξ) = J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξµj ξ
γ
j

+ ξµi

p∑

ν 6=µ

ξνi
( k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j + J(k + 1, k + 1, σ)

∑

j:dij=k+1

ξνj ξ
γ
j

)
.In order to get a manageable expression for the noise, it is onvenient toreshu�e R(ξ) distinguishing four terms suh that

R(ξ) = a+ b+ c+ d, (3.69)where
a = J(k + 1, k + 1, σ)

∑

j:dij=k+1

ξµj ξ
γ
j , (3.70)

b = ξµi

p∑

ν 6=µ

ξνi

k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j , (3.71)

c = ξµi

p∑

ν 6=µ
ν 6=γ

ξνi J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j , (3.72)

d = ξµi ξ
γ
i J(k + 1, k + 1, σ)2k. (3.73)83



As µ 6= γ, we have that 〈R(ξ)〉ξ = 0, while 〈R2(ξ)〉ξ turns out to be
〈R2(ξ)〉ξ = 〈a2 + b2 + c2 + d2 + 2(ab+ ac+ ad+ bc + bd+ cd)〉ξ. (3.74)Let us onsider these terms separately: skipping lenghty, yet straightforwardalulations, we obtain the following expressions

〈a2〉ξ =
〈
J2(k + 1, k + 1, σ)

∑

j:dij=k+1

∑

n:din=k+1

ξµj ξ
γ
j ξ

µ
nξ

γ
n

〉

ξ

= J2(k + 1, k + 1, σ)× 2k. (3.75)
〈b2〉ξ =

〈(
ξµi

p∑

ν 6=µ

ξνi

k∑

d=1

J(d, k + 1, σ)
∑

j:dij=d

ξνj ξ
µ
j

)2
〉

ξ

= (p− 1)

k∑

d=1

J2(d, k + 1, σ)2d−1. (3.76)
〈c2〉ξ =

〈(
ξµi

p∑

ν 6=µ&ν 6=γ

ξνi J(k + 1, k + 1, σ)
∑

j:dij=k+1

ξνj ξ
γ
j

)2
〉

ξ

= (p− 2)J2(k + 1, k + 1, σ)2k. (3.77)
〈d2〉ξ =

〈(
ξµi ξ

γ
i J(k + 1, k + 1, σ)2k

)2
〉

ξ

= J2(k + 1, k + 1, σ)22k, (3.78)and, sine a and b and, analogously, b and c, are de�ned over di�erentbloks of spins, learly
〈2ab〉ξ = 0, (3.79)
〈2bc〉ξ = 0, (3.80)
〈2bd〉ξ = 0. (3.81)As a result, rearranging terms opportunely we �nally obtain

〈R2(ξ)〉ξ = 4−2kσ
([4k (4σ − 1)2 + 2k (4σ − 1)2 + 2k(p− 2) (4σ − 1)2

]

(4σ − 1)2

+ (2((−3× 2k+2σ+1 + 2k+6σ+1 + 2k+2 + 22σ+1 + 24σ+1 −
+ (4σ − 2)42(k+1)σ − (16σ − 2)22(k+1)σ+1) +

− 64σ)(p− 1))((4σ − 2)(16σ − 2))−1
)
,84



while the signal term reads as
I =

2−2kσ−1
(
−2k+2σ − 2k+4σ + 22(k+1)σ+1 + 2k+1 + 22σ+1 − 4

)

−3× 4σ + 16σ + 2
. (3.82)Imposing I =

√
〈R2(ξ)〉ξ, and solving with respet to the variable p we anoutline the funtion Pc(σ, k+1) that returns the maximum allowed load thenetwork may a�ord aomplishing parallel retrieval and whose behavior isshown in Fig.(3.5):

I =
√

〈R2(ξ)〉ξ ⇒ Pc(σ, k + 1). (3.83)

Figure 3.5: Upper panel (serial retrieval): On the left we show the maximumvalue of storable patterns Pc as a funtion of k and of σ (as results fromEq.(3.64)) for the pure state in order to have signal's amplitude greater thanthe noise (i.e. retrieval). Note the logarithmi sale for Pc highlighting itswide range of variability. On the right we show the maximum value of theneural interation deay rate σ′(k) versus k allowed to the ouplings underthe storage onstraint k = p and the pure state perfet retrieval onstraint,in the β → ∞ limit.Lower panel (parallel retrieval): On the left there is the maximum value ofstorable patterns Pc as a funtion of k and of σ (as results from Eq.(3.85))for th parallel state in order to have signal's amplitude greater than thenoise (i.e. retrieval). Note the logarithmi sale for Pc highlighting its widerange of variability. On the right there is the maximum value of the neuralinteration deay rate σ′(k) versus k allowed to the ouplings under thestorage onstraint k = p and the parallel state perfet retrieval onstraint,in the β → ∞ limit. 85



Figure 3.6: Starting from the state Si = +1 ∀i ∈ [1, 2k+1] results of thesimulations for DHM for σ = 0.99 and N = 2k+1, k+1 = 8, 10, 12 are plotted.In the left panel, the resaled magneti suseptibility 2k+1(〈m2〉 − 〈m〉2) isplotted vs β (one over the noise). In the right panel the magnetization
〈m〉 = 〈 1

N

∑N
i=1 Si〉 is plotted vs β (one over the noise).3.4 Insights from Numerial SimulationsUsing the same mahines desribed in the previous setion 2.5. Aim of thisSetion is to present results from extensive numerial simulations to hek thestability of parallel proessing over the �nite-size e�ets that is not apturedby statistial mehanis or that an be hidden in the signal-to-noise analysis. Further this allows heking that the asymptoti behavior (in the volume)of the network is in agreement with previous �ndings.All the simulations were arried out using the same mahines desribed inthe previous setion 2.5 and aording to the following algorithm.1. Building the matrix oupling, pattern storage.One extrated randomly from a uniform prior over ±1 p patterns oflength k+1, and de�ned the distane between two spins i and j as dijwe build the matrix J, for the HHM, as

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1

p∑

µ=1

ξµi ξ
µ
j , for i = 1, · · · 2k+1, j = 1, · · · , 2k+1,(3.84)86



Figure 3.7: Starting from the state Si = +1, Sj = −1 ∀i ∈ [1, 2k] and
∀j ∈ [2k + 1, 2k+1] results of the simulations for DHM for σ = 0.99 and
N = 2k+1 are plotted. In the left panel, the resaled magneti suseptibility
2k+1[(〈m2

1〉−〈m1〉2)+(〈m2
1〉−〈m1〉2] is plotted vs β (i.e. one over the noise) for

k+1 = 8, 10, 12. In the right panel, the magnetizations 〈m1〉 = 〈 1
2k

∑2k

i=1 Si〉and 〈m2〉 = 〈 1
2k

∑2k+1

i=1+2k Si〉 are plotted vs β (i.e. one over the noise) for
k + 1 = 8, 10, 12.while for the DHM we use the form:

Jij =
4σ−dijσ − 4−(k+1)σ

4σ − 1
, for i = 1, · · ·2k+1 and j = 1, · · · , 2k+1,(3.85)where k + 1 is the number of levels of the hierarhial onstrution ofthe network, and σ ∈ (1

2
, 1].2. Initialize the network.We used di�erent initializations to test the stability of the resultingstationary on�guration:-Pure retrieval: We initialize the network in an assumed �xed point ofthe dynamis, namely Si = ξµi with i = 1, ...2k+1 and µ = 1 for theHHM, while Si = +1 with i = 1, ...2k+1 in the DHM ase, and we hekthe equilibrium as reported in Fig[ 3.6℄.-Parallel retrieval: Sine we study the multitasking features shown bythis hierarhial network, we an also assign di�erent types of initialonditions with respet to the pure state, e.g.87



i) For the DHM, starting from the lowest energy level ( after thestandard one Si = 1 ∀i) we hose Si = +1 for i = 1, ..., 2k and
Si = −1 for i = 2k + 1, ..., 2k+1 (vieversa is the same, and wehek the equilibrium as reported in Fig[ 3.7℄);ii) For the HHM, looking for multitasking features, we set in thease p = 2, we set Si = ξ1i for i = 1, ..., 2k and Si = ξ2i i =
2k + 1, ..., 2k+1(Fig[ 3.10℄); In the ase p = 4 we set Si = ξµi
∀i ∈

[
1 + (µ−1)N

4
, µN

4

] and µ ∈ [1, 4](Fig[ 3.9℄)In this way, we have two or four ommunities (sharing the same size)building the network with a di�erent order parameter.

Figure 3.8: Starting from the state Si = +1 ∀i ∈ [1, 2k+1] with σ = 0.99 forthe DHM and k+1 = 8, 10, 12. Binder umulant 1− 〈m4〉
3〈m2〉2 versus noise 1

β
for

k + 1 = 8, 10, 12. Plotting the binder umulant for di�erent values of k + 1permits to �nd the ritial noise of this state.3. Evolution: Glauber dynamis.The evolution of the spins follows a standard random asynhronousdynamis [5℄ and the state of the network is updated aording to the�eld ating on the spins at every step of iteration, that is,
Si(t + 1) = sign{tanh[βhi(S(t)] + η(t)}, for β = T−1where η(t) is the noise introdued as a random uniform ontributionover the real interval [−1, 1] in every step.For eah noise the stationary mean values of the order parameters88



have been measured mediating over O(103) di�erent realizations. Forthe HHM the average of the order parameters is performed over thequenhed variables. For DHM, to better highlight the stability ofthe parallel on�guration, Si = +1 for i = 1, ..., 2k, Si = −1 for
i = 2k + 1, ..., 2k+1 and to break the Gauge invariane, during halfof the relaxation period to equilibrium a small positive �eld is appliedto the system.

Figure 3.9: . Starting from the state Si = ξ1i , Sj = ξ2j , Sn = ξ3n, Sl = ξ4l
∀i ∈ [1, 2k−1], ∀j ∈ [2k−1+1, 2k], ∀n ∈ [2k+1, 3

2
2k], ∀l ∈ [3

2
2k+1, 2k+1] resultsof the simulations for HHM for σ = 0.99 and N = 2k+1 are plotted. TheMattis order parameters 〈mµ

i 〉 = 〈 1
2k−2

∑i2k−2

j=1+(i−1)2k−2 Sjξ
µ
j 〉 for i, µ ∈ [1, 4] areplotted vs noise,from left we have k + 1 = 8, 10, 12. Same olors orrespondto the same pattern µ, while same symbols orrespond to the same index i.4. Results.It is worth noting that -at di�erene with paradigmati prototypesfor phase transitions (i.e. the elebrated Curie-Weiss model), as wean see from �gures [ 3.6, 3.7, 3.8℄, in these models we studied herethe ritial noise level approahes its asymptoti value (obtained byanalytial arguments in the thermodynami limit) from above (i.e. fromhigher values of βs). This happens beause the intensities of ouplingsare inreasing funtions (learly upper limited) of the size of the system.As an be inferred from �g[ 3.7℄ (where we present results regardingsimulations for the DHM at σ = 0.99, k + 1 = 8, 10, 12 [Si = +1, Sj =

−1 ∀i ∈ [1, 2k] and ∀j ∈ [2k + 1, 2k+1]℄), the stability of the parallelon�guration (in the low noise region) is on�rmed and, as expeted89



from theoretial arguments, the noise region in whih this on�gurationis stable inreases with the size of the system up to oinide with that ofthe pure state. Also in the HHM ase (�gures [ 3.9, 3.10℄) the stabilityof parallel on�gurations is veri�ed (in the low noise region) for system'son�gurations shared by the two and four ommunities.

Figure 3.10: . Starting from the state Si = ξ1i , Sj = ξ2j ∀i ∈ [1, 2k], ∀j ∈
[2k + 1, 2k+1] results of the simulations for HHM for σ = 0.99 and N = 2k+1are plotted. The Mattis order parameters 〈mµ

i 〉 = 〈 1
2k−2

∑i2k−2

j=1+(i−1)2k−2 Sjξ
µ
j 〉for i, µ ∈ [1, 2] are plotted vs noise,from left we have k + 1 = 8, 10, 12.
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Chapter 4DisussionThe omprehension of biologial omplexity is one of the main goals of thisentury researh: the route to pave is long and sattered over ountlessbranhes. Fousing to neural networks, we notie that the deep di�ul-ties in the statistial mehanis treatment prohibitive onstraints beyondthe mean �eld approximation (where eah notion of distane or metris for aspae where to embed spins is lost),implied that their theory has been largelydeveloped without investigating the ruial degree of freedom of neural dis-tane. However, researh is nowadays apable of investigations towards morerealisti and/or better performing models: indeed, while the mean-�eld se-nario, mainly represented by the Hop�eld network as for retrieval and bythe Boltzmann mahines as for learning, has been so far understood (notompletely at the rigorous level but at least largely), investigation of thenon-mean-�eld ounterpart is only at the beginning.In this thesis we explored the retrieval apabilities of the multitasking as-soiative network introdued the �rst time in [30℄ at the low storage level, andwe takled the problem of studying information proessing (retrieval only) onhierarhial topologies introdued in [29℄, where spins interat with an Heb-bian strength (or simply ferromagnetially in their simplest implementation,namely the Dyson model) that deays with their reiproal distane.In Chapter 2, we introdued a system haraterized by (quenhed) pat-terns whih display a fration d of null entries: interestingly, by paying theprie of reduing the amount of information stored within eah pattern (bya fration d), we get a system able to retrieve several patterns at the sametime. At zero noise level (T = 0), and for a relatively low degrees of dilu-tion, the system onverges to an equilibrium state haraterized by overlap
m = ((1− d), (1− d)d, ..., (1− d)dk, (1− d)dP−1), where P is the number ofstored patterns. Although this state displays non-null overlap with severalpatterns, it does not represent a spurious state, as an be seen by notiing, for91



instane, that this state allows the omplete retrieval of at least one pattern.However, through a areful inspetion, we proved that there are regions inthe (T, d) plane where genuine spurious states our, hene the lear pitureof the phase diagram that we o�ered beomes a fundamental issue in orderto make the model ready for pratial implementations.A remarkable di�erene with respet to standard (serial proessing) neuralnetworks lies in the stability of mixture states: both even and odd mix-tures are stable, whih -within the world of spurious states - was a somewhatdesired, and expeted, result as there is neither a biologial reason, nor a pre-sription from robotis, to weight di�erently odd and even mixtures (whosedi�erene in terms of physial symmetries translates in the gauge invarianeof the standard Hop�eld model, that is expliitly broken within our frame-work due to the partial blankness of the pattern entries). Another expetedfeature, whih we on�rmed, is the emergene of parallel spurious states be-yond standard ones. From lassial neural network theory this is the naturalgeneralization when moving from serial to parallel proessing.Beyond these somehow attended results, the phase diagram of the modelis still very rih and omposed by several not-overlapping regions where theretrieval states are deeply di�erently strutured: beyond the paramagnetistate and the pure state, the system is able to ahieve both a hierarhialorganization of pattern retrievals (for intermediate values of dilution) anda ompletely symmetri parallel state (for high values of dilution), whihat as the basis for the outlined mixtures when raising the noise level abovethresholds whose value depends on the load P of the network.These �ndings have been obtained developing a new strategy for omputingthe free energy of the model from whih, imposing thermodynami prini-ples (i.e. extremizing the latter over the order parameters of the model),self-onsisteny has been obtained: the whole proedure has been based ontehniques stemmed from partial di�erential equation theory. In partiular,the key idea is showing that the noise-derivatives of the statistial pressureobey Burgers' equations, whih an be solved through the Cole-Hopf trans-formation. The latter maps the evolution of the free energy over the noiseinto a di�usion problem whih an be addressed through standard Greenintegration in momenta spae and then mapped bak in the original frame-work.In hapter 3, we studied a Hebbian neural network, where spins are ar-ranged aording to a hierarhial arhiteture suh that their ouplings salewith their reiproal distane. While a full statistial mehanial treatmentis not yet ahievable, stringent bounds for its free energy -intrinsially ofnon-mean-�eld nature- are still available and allows getting a piture of thenetwork apabilities by far riher than the orresponding mean-�eld oun-92



terpart (the Hop�eld model within the low storage regime). Indeed, thesenetworks are able to retrieve one pattern at a time aomplishing an exten-sive reorganization of the whole network state -mirroring serial proessingas in standard Hop�eld networks- but they are also able to swith to mul-titasking behavior handling multiple patterns at one -without falling intospurious states-, hene performing as parallel proessors.Remarkably, as far as the low storage regime is onerned, the underlying(weighted) topology -ruial for parallel proessing- returns a phase spaethat shares similarities with the multitasking assoiative networks [30℄.However, as theorems that de�nitively on�rm this senario are not fullyavailable yet, to give robustness to the statistial mehanis preditions, weperformed a signal-to-noise analysis heking whether those states -andidateby the �rst approah to mimi parallel retrieval- are indeed stable beyondthe pure state related to serial proessing and, remarkably, we found wideregions of the tunable parameters (strength of the interation deay σ andnoise level β) where indeed those states are extremely robust.Clearly, as standard in thermodynamis, nothing is for free and even for thisrihness of behaviors there is a prie to pay: as antiipated in the Summaryof this thesis, emergent multitasking features in not-mean-�eld models re-quire a substantial drop in network's apaity thus implying a new balanerequired by assoiative networks beyond the mean-�eld senario.While a satisfatory piture beyond suh a mean-�eld paradigm is still far,we do hope that this work may at as one of the �rst steps in this diretion.
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