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Introduction

Let G be a compact Lie group and g its Lie algebra.The main object of
study of this thesis is the Grassmannian

G̃3(g) = {oriented 3-dimenisonal subspaces of g} . (1)

We shall discuss both the theory for general G and special cases such as
g = so(4) (which is not simple) and g = su(3).

We shall study the relationship between G̃3(g) and quaternionic geom-
etry which ultimately derives from the QK moment mapping discussed in
Chapter 5, but we first study G̃3(g) without reference to Quaternion-Kähler
manifolds. Some sort of quaternionic structure is already evident in the de-
scription of the tangent space of G̃3(g), even though the dimension of this is
a multiple of 3, rather than 4. If V ∈ G̃3(g) then we can write g = V ⊕ V ⊥

and (using the metric on V )

TV G3(g) ∼= V ⊗ V ⊥ . (2)

Now V is the standard (and adjoint) representation of SO(3) which also ap-
pears in quaternionic geometry as the space Im H generated by the imaginary
quaternions ı, j, k, or the corresponding almost complex structures I, J, K. It
is this identification of the “tautological” subspace V and Im H that underlies
many of the constructions in this thesis.

It is well known that much of the quaternionic geometry can ultimately
be reduced to the representation theory of Sp(1) = SU(2). In particular, the
complexified tangent space of a QK manifold M4n has the form

TxMC = Σ1 ⊗ C2n (3)

where we denote by Σk the irreducible complex representaion of SU(2) of
dimension k + 1. In appropriate circumstances the second factor C2n will
itself be a representation of SU(2) and we shall be especially interested in
an SU(2) equivariant inclusion

Σ1 ⊗ Σk−1 ⊂ Σ2 ⊗ Σk , (4)

which models inclusions

M
� � Ψ �� G̃3(g) (5)

in Swann’s theory (developed mainly in [79] and [80]). In this last setting
moment mappings µ arising from the action of G are used in order to obtain
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inclusions of type (5), identifying the image with the unstable manifoldsMu of
the gradient flow of an invariant functional f . On the other hand, the quater-
nionic structure of these last is reconstructed starting from the HyperKäler
structure of nilpotent orbits O in the complexified Lie algebra gC, and using
then an appropriate action of H∗: in this way the various O appear to be
the bundles U fibring over the corresponding Mu. In this thesis the point
of view will be different, in the sense that the quaternionic structure will be
described using the map Ψ induced by the moment mappings and exploiting
the quaternionic structure inherent in the tangent space TV G̃3(g) in corre-
spondence of the critical points for grad f , as in (4).

We give now an outline of the thesis chapter by chapter:

-Chapter 1 contains basic material about homogeneous and symmetric
spaces (Section 1),Adjoint orbits (Section 2), together with the discussion of
the consimilarity action (Section 3), which will be relevant for Section 4 in
Chapter 5; then cohomological properties of compact semisimple Lie goups
are discussed (Section 4), included the invariant 3-form which gives rise to
the functional f studied in Chapter 3.

-Chapter 2 describes bundles on Grassmann manifolds (Section 1), and in-
troduces twistor-type differential operators existing on the tautological bun-
dle (Sections 2, 3); these operators resemble the well-known twistor operators
in QK geometry: in Chapter 6 a correspondence between them will be de-
scribed; the deRham cohomology of G̃3(R

6) is calculated in Section 4,where
an explicit expression of an invariant 4-form of G̃3(R

n) for any n is supplied.

-Chapter 3 contains in Section 1 a description of the invariant functional
f on G̃3(g) coming from the standard 3 form of g, and introduces the Wolf
spaces as its absolute maxima; an operator γ which represents an obstruction
to the orthogonality of vector fields to G-orbits is introduced and used to dis-
cuss the invariance of f in an alternative way. In Section 2, a new functional
g on G3(g) is introduced, and an expression for its gradient is given, in terms
of a “generalized Casimir operator”; the invariance is discussed again using
the operator γ. In Section 3 the Hessian of g is described at critical points
corresponding to subalgebras, in therms of SU(2) representations; then we
compare it with the Hessian of f . In section 4 the theory discussed in the
previous sections is applied to some low-dimensional examples, determining
the Hessians of f and g at grad f critical points; it is shown that not all crit-
ical submanifolds for grad, g are critical for grad f , exhibiting examples and
stating in Section 5 a criterion for individuating a family of such submani-
folds.

-Chapter 4 introduces quaternionic geometry, describing firstly the basic
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facts of the classical theory, including the fundamental examples of the Wolf
spaces (Section 1) together with their twistor space (Section 2); then the
first bridge with the “Grassmannian interpretation” is built at an algebraic
level, using SU(2) representation theory (Section 3); the quaternionic 4-form
is introduced, and the previously discussed theory leads to an explicit de-
scription of it in the setting of the 8-dimesnional case; this is related to the
discussion of the example corresponding to su(3) in Section 5 of Chapter 6.

-Chapter 5 introduces the QK moment mapping (Section 1); the rela-
tionship with instantons,Nahm’s equations and nilpoten orbits theory and
Swann’s theory are discussed: this latter contains the background regarding
the use of moment mappings to obtain the realizations of QK manifolds in
G3(g); explicit examples of realizations in the case of some classical Wolf
spaces are provided in Section 5, exploiting the knowledge of a trajectory for
the flow of grad f in the case of so(4) (Section 3); here the prorportionality
of grad f to grad g along this trajectory is proved: this will be used later in
Chaper 6.

-Chapter 6 consisnts of the main conclusions of the thesis: the Coinci-
dence Theorem is stated and proved, providing a way of “translating” the
action of the quaternionic structure on the tangent space TxM of a QK man-
ifold in the G3(g) setting; the operator γ introduced in Chapter 3 is involved
in this description of the quaternionic action.The correspondence between
the sections in the kernels of the two twistor operators (the “QK” and the
“Grassmannian”) is described in Section 2; in Section 3 we consider again
the gradient of the functional g, studied in Chapter 2: it is proportional to
grad f in several cases, and this fact seems significant in order to relate the
quaternionic metric of the unstable manifold with that induced by the am-
bient Grassmannian; finally the example of SU(3), which for some aspects
stands out of the general situation, is discussed in more detail in Section 4.

Notational conventions.

We will adopt the notation [V ] and [[V ]] = [V +V ] from [73] to denote the real
vector space fixed by an invariant real structure in the complex representation
V or V + V ; however we will sometimes omit the brackets for simplicity.

We will denote by exp the exponentiation of matrices and in the Lie alge-
bra context, by Exp the exponentiation in the sense of Riemannian geometry.

Antisymmetric and symmetric product of tensors will be usually denoted
by ∧ and ∨ respectively, but alternative notations will be adopted occasion-
ally (for example in Section 4.3).
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Chapter 1

Homogeneous spaces and Lie
algebras

In this Chapter, we shall cover a selection of topics relevant to the thesis. This
includes the less well-known action of SU(3) on itself induced from “consim-
ilarity”.

1.1 Homogeneous and Symmetric spaces

We introduce here basic facts about G-actions and homogeneous spaces. Ref-
erences are [81], [14], [25].

Let M be a differentiable manifold and G a compact Lie group.A C∞

map m : G×M →M such that

m(gh, x) = m(g,m(h, x)), m(e, x) = x (1.1)

for all g, h in G and x in M is called an action on the left of G on M and is
called a G-space; analogous definitions give rise to actions on the right. For
simplicity we will denote by g x the point m(g, x). Fixed a point x in M , we
call the orbit Gx of x under G the subset of M defined by

Gx := {y ∈M |y = g x} . (1.2)

Suppose that the orbit of a point x is the whole manifold M : then we will say
that G acts transitively on M , which is called a homogeneous G-space.We
define the isotropy subgroup (or stabilizer of p) Gp ⊂ G of an orbit Gp the
subgroup

Gp := {g ∈ G |g , q = q} (1.3)

for any point q ∈ Gp; in the transitive case all isotropy subgroups of are
conjugate subgroups of G. The differential of the action of an element g ∈ Gp
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at the point p determines a representation of Gp in GL(TpM) which is called
the isotropy representation. In the case of transitive actions we can identify
M with the coset space of the group G:

M =
G

Gp

(1.4)

for any point p ∈ G. In fact the space G/Gp can be topologized and equipped
with the correct differentiable strucure, so that a point p ∈ M can be iden-
tified with a class g Gp for some g ∈ G. A map ψ : M → N between two
manifolds with a G-action is cvalled equivariant if it satisfies

ψ(g x) = gψ(x) (1.5)

for any g in G. If the action is not transitive, there exists an orbit with
isotropy subgroup Gp such that gGpg

−1 ⊂ Gq for some g ∈ G and for any
other isotropy subgroup Gq; the corresponding orbit is of maximal dimension
and is called principal ; the union of pricipal orbits is an open dense subset of
M and the codimension of a principal orbit is called the cohomogeneity of the
G action.Non-principal orbits Gq are called singular if dim Gq < dim Gp; if
dim Gq = dim Gp but Gp ⊂ Gq strictly, the orbit Gq is called exceprional
and is a discrete cover of the principal orbit Gp.

Examples.Consider the standard representation of SO(n) on Rn; as it pre-
serves the standard euclidean norm,we have

GSn−1 ⊂ Sn−1 ; (1.6)

it can be shown that this action is transitive, and the subgroup Gp ⊂ SO(n)
which stabilizes a unit vector (for example (0, · · · , 0, 1)) is isomorphic to
SO(n− 1); in conclusion we can identify

Sn−1 ∼= SO(n)

SO(n− 1)
. (1.7)

This type of presentation is not unique:we can in fact analogously consider
SU(n) acting on Cn with its standard hermitian structure; the sphere S2n−1

is again preserved, and the action can be again shown to be transitive on
it; the stabilizer of a point turns out to be SU(n− 1) ⊂ SU(n), hence

S2n−1 ∼= SU(n)

SU(n− 1)
. (1.8)

Other important examples are projective spaces:CPn parametrizes the set of
complex lines C ⊂ Cn (which are real 2-planes preserved by the standard



1.1 Homogeneous and Symmetric spaces 3

complex structure J of Cn+1 = R2n+2); then the group U(n + 1) acts tran-
sitively on such set, and one of the complex lines is fixed by the subgroup
U(1) × U(n), so that

CPn ∼= U(n + 1)

U(1) × U(n)
. (1.9)

analogous considerations lead to the description of real and quaternionic
projective spaces:

RPn ∼= SO(n+ 1)

O(n)
, HPn ∼= Sp(n+ 1)

Sp(1)Sp(n)
. (1.10)

An important class of homogeneous G-spaces is that of symmetric spaces.
References for this topic are [35] and [55].

Let (M, g) Riemannian manifold; consider a normal neighborood Np of a
point p ∈ M , where the Expp map is a local diffeomorphism with a neigh-
bourhood of 0 in TpM ; we can define a map

dσp : TpM �� TpM (1.11)

acting as −I; this induces a local involutive diffeomorphism σp of the normal
neighbourhood Np in itself called Cartan involution, sending a geodesic γ(t)
through p to γ(−t); we have

Definition 1.1. A Riemannian manifold M for which the map σp is an
isometry for every p ∈M is called a locally symmetric space.

Theorem 1.1. Let M be a Riemannian manifold; then the following condi-
tions are equivalent:

i)M is locally symmetric;
ii)∇R = 0 ,

where R is the Riemannian curvature tensor.

The symmetry is defined locally and in general it is not possible to extend
it to a global isometry of the manifold M ; in this case M is defined a globally
symmetric space, or simply symmetric space. The following proposition relates
the two notions:

Proposition 1.2. Let M be a complete locally symmetric space; if π1(M) = 0
then M is globally symmetric.
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Hence we can obtain globally symmetric spaces considering the universal
coverings of complete locally symmetric spaces. Symmetric spaces are homo-
geneous, then if G is the full group of isometries for M we have a presentation

M = G/H (1.12)

where H is the stabilizer of a point p;σp induces an involutive automorphism
of G, called Cartan involution:

sp(g) = σp ◦ g ◦ σ−1
p , (1.13)

such that if Gσ denotes the subgroup fixed by sp and G0
σ the connected

component of the identity, then

G0
σ ⊂ H ⊂ Gσ ; (1.14)

at a Lie algebra level sp induces an automorphism of Lie algenras dsp with
eigenvalues ±1, being involutive; therefore the decomposition

g = h + m (1.15)

corresponds to the identification of the + eigenspace with h and the − eigen-
space with m ∼= TpM . A triple (g, h, ds) where h is a compact Lie subalgebra
of the Lie algebra g and ds is an involutive Lie algebra automorphism such
that h coincides with its + eigenspace is called an orthogonal Lie algebra; if
moreover h ∩ z = 0,where z is the center of g, then the algebra is said effec-
tive. For an orthogonal Lie algebra the following relations hold:

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h ; (1.16)

exists a bijective correspondence between orthogonal Lie algebras and sym-
metric spaces G/H with G simply connected and H connected,where N ∩H
is discrete if N is the maximal normal subgroup of G.

ExamplesAll examples discussed about homogeneous spaces (so Sn, CPn,
RPn, HPn) are actually symmetric spaces.

Another example which will be particularly relevant for us is that of the
real oriented Grassmannians G̃k(R

n): these represent the set of k-dimensional
subspaces in Rn; as symmetric spaces they have a presentation

G̃k(R
n) =

SO(n)

SO(k) × SO(n− k)
; (1.17)

the group SO(n) acts transitively on the set of orthonormal frames of Rn, but
a k-plane V is identified by a k-tuple of orthonormal vectors, which can be
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completed by an (n− k)-tuple in V ⊥; therefore SO(k) and SO(n− k) act on
V ,V ⊥ respectively, and their tensor product coincides with the stabilizer of
the point V .

Observation.The same symmetric space can have different presentations as
a homogeneous space: not all of them give a decomposition (1.15) compatible
with the involution, satisfying therefore (1.16); consider for insatnce the two
presentations of S2n−1 given in (1.7) and (1.8): the former is symmetric, the
latter is not.

A symmetric space M = G/K can be embedded as a totally geodesic
submanifold of the Lie group G with the Riemannian metric induced by the
Killing form by the map

g H �� gsg−1 (1.18)

called Cartan embedding, where gs is the image of g under the Cartan invo-
lution s at a point p. Recall now from [17] that a Cartan subalgebra h whose
intersection with k is a Cartan subalgebra for k is called fundamental for the
symmetric decomposition, and its root system can be decomposed as:

∆ = Ik + Im + II (1.19)

where α belongs to Ik (or in Im) if α|hm = 0 and gα lies in kC (or in mC), while
α ∈ II if α|hm �= 0.

We can use the roots of type Im to obtain minimal immersions of 2-
spheres in any symmetric space G/K: consider α ∈ Im, then in gC the triple
{gα, g−α, [gα, g−α]} spans an sl(2,C) subalgebra, containng an su(2) as the
stable set for the appropriate real structure; the semisimple element [gα, g−α]
intersects k in a 1-dimensional subalgebra u(1); therefore the corresponding
homogeneous space is

S2 =
SU(2)

U(1)
. (1.20)

The immersion iα : SU(2) ⊂ G induces an equivariant immersion of sym-
metric spaces

SU(2) � � iα ��

��

G

��

S2 � �

φα

�� G/K

(1.21)

and the following proposition holds (see always [17]):

Proposition 1.3. Let G/K be a compact simply connected symmetric space;
then if π2(G/K) is non-trivial, it is generated by the class [φα] for some α ∈
Im.
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1.2 Adjoint orbits

We recall here some definitions and lemmas which will be useful in the se-
quel: we recall that given the action of a compact group H of isometries on a
Riemannian manifold M , we define a section Γ a smooth submanifold which
intersects transversally all the H-orbits; an H-action admitting a section is
called polar, and if the section is flat it is called hyperpolar. Sections are al-
ways totally geodesic submanifolds; in this sense the geodesic γ used for HPn

was a section. Fixed a point p ∈ M , we have the H-orbit through p, and the
stabilizer Hp fixing p acts on TpM , preserving the subspace tangent to the
orbit Tp (H · p), the isotropy representation, and its orthogonal complement
νp (G · p), called slice representation; the following useful lemma holds:

Lemma 1.4. The cohomogenity of the H-action on M equals that of the
Hp-action on the slice representation.

Remark.We notice that in this language what we used to call the isotropy
representation of a homogeneous space M = G/K paradoxically coincides
with the slice representation.

References about hyperpolar actions on symmetric spaces are [36], [37], [56],
[68] and [12]. From [68] we quote the following lemma, that gives a sufficient
criterion to individuate sections:

Lemma 1.5. If Γ is a compact, connected, flat, totally geodesic submanifold
of a Riemannian H-manifold M and Γ is orthogonal to some H-orbit at one
point, then Γ meets all H- orbits orthogonally. If in addition the dimension of
Γ is equal to the cohomogeneity of the action on M , then Γ is a section and
the H action on M is hyperpolar.

Examining the proof that TpΓ ⊂ νp (with equality if p belongs to a prin-
cipal orbit) and Γ can be obtained from Exp(TpΓ) for any p ∈ Γ. In con-
sequence of this, if we pick a point p, we choose a vector y ∈ νp such that
γ(t) = Exp(ty) is a closed geodesic, then it is automathically a section, for
cohomogeneity 1 actions.As we shall see, using sections is convenient to de-
termine the behaviour of equivariant maps. In particular recall (see [14,
ChapterIV,Theorem 3.1]) that the set of principal orbits in the orbit space
M/G of a given compact G-manifold M is open, dense and connected, and in
the case of cohomogeneity 1 actions it corresponds to the whole M/G if it is
an S1, or equivalently when the orbits are all principal; otherwise (and this is
the case we are most interested in) to the interior (0, 1) when M/G ∼= [0, 1].
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A well known action of a Lie group on itself is the Adjoint action; this is
defined in the followig way: if g, h ∈ G then

Adg · h := ghg−1 . (1.22)

Clearly the unit e is a fixed point for this action, and the differential induced
on TeG = g gives rise to the Adjoint representation, or in other words an
inclusion G/Z ⊂ GL(g), where Z is the center of G. The principal orbit for
this action have the form

G

T n
, (1.23)

where T n is a maximal torus for G, and they are called flag manifolds ; the
motivation for this name relies on the fact that for SU(n) they represent the
manifold of complete flags in Cn, that is of all sequences of complex vector
subspaces

0 ⊂ V 1 ⊂ · · · ⊂ V n−1 ⊂ Cn (1.24)

where dimV k = k, with jumps of 1 dimension. Principal orbits form an
open dense subset in g; the following Theorem, due to Bott, describes the
rôle played by maximal Abelian subalgenras:

Theorem 1.6. Each orbit for the Adjoint action of a centerless compact
connected Lie group G intersects a Cartan subalgebra t in a finite non-empty
set.

Example 1.1. Consider again the case of SU(n): from an elementary point
of view, Linear Algebra tells us that every skew-Hermitian matrix can be put
in diagonal form ⎛⎜⎜⎜⎝

ıλk1 0 · · · 0

0
. . . 0 0

0 0
. . . 0

0 0 0 ıλkn

⎞⎟⎟⎟⎠ (1.25)

with λki
∈ R and

∑
i ki = 0 by conjugation with matrices in SU(n): in the

language developed above this corresponds to say that a maximal abelian
subalgebra t ⊂ su(n) is a global section for the Adjoint representation of
SU(n) on su(n), which therefore is a polar action and has cohomogeneity
equal to its rank; as t inherits the flat metric from the ambient Euclidean
space g, the Adjoint action is hyperpolar. Exponentiating,we obtain the same
type of principal orbits for the action of SU(n) on itself, and the torus T n =
exp t is again a section thanks to the surjectivity of exp:we shall see in section
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1.3 another type of action of SU(n) on itself with a rather different orbit
structure. Singular orbits are given by symmetric spaces of type

SU(n)

S(U(q1) × · · · × U(qr))
(1.26)

with
∑
qi = n; these represent the manifolds of partial flags in Cn, analogous

to (1.24) but with dimensional jumps given by qi: in fact the principal or-
bits (1.23) correspond to qi = 1 for all i. At the other extreme are complex
Grassmannians, for which r = 2.Analogous situation holds for other classical
compact semisimple Lie groups.

Another description of flag manifolds is obtained passing to the complex-
ified group GC; consider the following type of subalgebras p ⊂ gC: p is called
Borel subalgebra if it is a maximal solvable subalgebra; it is called parabolic
if it contains a Borel subalgebra. If we fix a Cartan decomposition

gC = tC ⊕
∑

α

gα (1.27)

then an example of Borel subalgebra is given by

p = tC +
∑
α>0

gα (1.28)

and it can be shown that any other Borel subalgebra is conjugate to this one.
Parabolic subalgebras are obtained by adding any negative simple root

spaces:

p = tC +
∑
α>0

gα +
∑

β=
�

nαα
α∈I⊂∆+

g−β (1.29)

where I ⊂ ∆+ denotes any subset of the set of simple positive roots and
nα ∈ Z+. Also in this case it can be shown that every parabolic subalgebra is
conjugate to one of this type.Homogeneous spaces obtained by quotient as

GC

P
(1.30)

where P = exp p can be shown to be compact, as they can be realized as
orbits of the compact group:

GC

P
∼= G

C(T k)
, (1.31)

where C(T k) is the centralizer of a k-torus with k ≤ rank G.
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1.3 The consimilarity action

We are going now to consider the following group action c of GL(n,C) on
itself, called consimilarity action:

c(A) · B := ABĀ−1 ; (1.32)

this action can be restricted to SU(n) ⊂ GL(n,C), so that SU(n) acts on
itself, as in this case

ABĀ−1 = ABAt (1.33)

is in SU(n) if A, B are. This action is a special case of a family of actions
of a Lie group G on itself, described in [36]; these are constructed using an
automorphism σ of G and are called σ-actions.

First of all we prove

Lemma 1.7. The consimilarity action of SU(n) on itself is an isometric
action with respect to the Killing metric on SU(n).

Proof.Consider a curve B(t) ⊂ SU(3) such that B(0) = B0 and Ḃ(0) =
w; then

d

dt
(AB(t)At)|t=0 = AWAt ; (1.34)

therefore if w1, w2 ∈ TB0SU(n) then

〈w1, w2〉B0 = 〈B−1
0 w1, B

−1
0 w2〉e = Tr(B−1

0 w1B
−1
0 w2) ; (1.35)

with B−1
0 wi ∈ su(n); analogously

〈Aw1A
t, Aw2A

t〉AB0At = 〈(AB0A
t)−1Aw1A

t, (AB0A
t)−1Aw2A

t〉e (1.36)

= 〈(At)−1B−1
0 A−1Aw1A

t, (At)−1B−1
0 A−1Aw2A

t〉e
= Tr((At)−1B−1

0 w1A
t, (At)−1B−1

0 w2A
t)

= Tr(B−1
0 w1B

−1
0 w2) ;

the assertion follows.�
We can therefore use the machinery of smooth Riemannian actions to

describe the orbit structure of SU(n) as an SU(n)-space under consimilarity
action; from now on we concentrate on the case n = 3. Let us consider the
orbit of the identity e = I under this action:

Proposition 1.8. The SU(3) orbit S of I under the consimilarity action is
the 5-dimensional symmetric space

SU(3)

SO(3)
. (1.37)
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Proof.Consider the map

ξ :
SU(3)

SO(3)
�� S (1.38)

acting as
ASO(3) � �� AAt ; (1.39)

it is well defined, as

AB(AB)t = ABBtAt = AAt (1.40)

if B ∈ SO(3); it is clearly surjective; it is also injective as if AAt = CCt then

C−1A = Ct(At)−1 =
(
(C−1A)t

)−1
(1.41)

so that C−1A ∈ SO(3), or in other words

ASO(3) = C SO(3) .� (1.42)

From now on we shall write

SSU (3 ) :=
SU(3)

SO(3)
(1.43)

as an abbreviation.

Observation.Consider the totally geodesic immersion

ζ : ASO(3) � �� AσA−1 (1.44)

as seen in (1.18), where the involution σ is given by

σ(A) = A ; (1.45)

then we have:
ζ = σ ◦ ξ . (1.46)

We are intersted in calculating the cohomogeneity of this action and the
generic orbit type, and in determining if possible the singular orbits. The
answer to these questions is given in
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Proposition 1.9. The consimilarity action of SU(3) on itself is a cohomo-
geneity one action, with principal orbit

SU(3)/U(1) ; (1.47)

the two singular orbits are given by

SSU(3) and S5 . (1.48)

Proof.Cconsider the point I and its stabilizer SO(3); the tangent space
at I is su(3), which can be decomposed in two orthogonal summands, the
isotropy and the slice representations:

su(3) = τ ⊕ ν ; (1.49)

for what we said before the isotropy representation of the orbit must be 5 di-
mensional, and it must be irreducible; moreover the action c clearly preserves
so(3) ⊂ su(3), as it coincides with the restriction of the Adjoint representa-
tion on SO(3); it is also possible to show directly that the differential of the
action at the identity d c, acts on w ∈ su(3) as

d c(w) = w + wt (1.50)

and the kernel is given precisely by the antisymmetric matrices in su(3), which
give an so(3); the image is the complementary subspace so(3)⊥. Therefore
decomposition (1.49) becomes

su(3) = τ ⊕ ν = so(3)⊥ ⊕ so(3) = [Σ4] ⊕ [Σ2] (1.51)

as SO(3) representations. The cohomogeneity of c is the same as the cohomo-
geneity of ν = Σ2, which is 1;moreover the exponentiation of the Σ2 bundle
over SSU(3) gives a tubular neigborhood of this latter, which turns out to be
a singular orbit; we expect therefore to find a 7-dimensional principal orbit
and another singular one, for what discussed previously; as exponentiation
of ν in a Riemannian G-space is equivariant, the stabilizer of the principal
orbit will be the same as that of the slice represenation,which for example
along the direction corresponding to the matrix

w =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ ∈ so(3) = Σ2 (1.52)

coincides with w itself; therefore the principal orbit is

P =
SU(3)

U(1)
(1.53)
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with U(1) = exp(tu). The generic stabilizer U(1) has to be contained in both
the singular stabilizers, and in fact U(1) ⊂ SO(3); we are now looking for the
second singular orbit, and to do that we exponentiate w in order to get a
closed geodesic, which will intersect orthogonally all the orbits by (1.5):

B(t) = exp(tw) =

⎛⎝ cos t sin t 0
− sin t cos t 0

0 0 1

⎞⎠ . (1.54)

Set

Bs = B(π/4) =

⎛⎝ 0 1 0
−1 0 0
0 0 1

⎞⎠ (1.55)

and let us consider the differential d c when acting at Bs: if w ∈ su(3) then

d c(w) = wBs +Bsw
t ; (1.56)

then the kernel of d c consists of the span of the elements⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ ,

⎛⎝0 ı 0
ı 0 0
0 0 0

⎞⎠ ,

⎛⎝ı 0 0
0 −ı 0
0 0 0

⎞⎠ , (1.57)

which is the subalgebra su(2) ⊂ su(3) corresponding to the maximal root.
Therefore the corrsponding orbit has the form

SU(3)

SU(2)
= S5 (1.58)

in a non-symmetric presentation.�
This can be expressed alternatively by saying that each element A ∈

SU(3) is consimilar to B(t) for some t.We have therefore the following double
fibration associated to this orbit structure, as SU(2) ⊃ U(1) ⊂ SO(3):

SU(3)/U(1)
π2

�������������
π1

�������������

SSU(3) S5

, (1.59)

where the projections π1 and π2 are obtained in the following way: given a
point p in a principal orbit SU(3)/U(1) exists a unique normal vector u, as it
is a hypersurface in SU(3); therefore exists a unique geodesic γ which passes
through p and is tangent to u;moreover γ is a section and can be obtained
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from Bs through the consimilarity action.As γ must inersect the singular
orbits, if we follow it in the two directions, we will define π1(p) as the first
intesection γ ∩ SSU(3) and π2(p) as the first intersection γ ∩ S5 .

Consider again the singular orbit SSU(3): it is a non-inner symmetric
space, and the symmetric decomposition of the Lie algebra su(3) is given by

su(3) = k + m = so(3) ⊕ [Σ4] ; (1.60)

let σ denote the induced group involution; then a σ-stable Cartan subalgebra
t is given by the span of the elements

w =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , w̃ =

⎛⎝ı 0 0
0 ı 0
0 0 −2ı

⎞⎠ ; (1.61)

we notice that if t′ denotes the Cartan subalgebra generated by diagonal
matrices, then

t′ = BstB
−1
s ; (1.62)

with respect to (1.60), we have the decomposition

t = tk + tm (1.63)

which is expressed in terms of matrices by (1.61). Therefore if we consider
the usual roots ∆ � α′ in t′∗

C
, then

α = α′ ◦ AdB−1
s

; (1.64)

moreover we notice that t∩ so(3) is spanned by w, which is obviously a max-
imal abelian subalgebra for so(3). Consider now in particular the maximal
root α′

0 with respect to t′, which is the dual to⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ . (1.65)

It is known that π2(SSU(3)) = Z2 (see [17, Page 38]); we want to find a root
α ∈ Im in order to identifiy the generator S2 of π2; consider the restriction of
the map ξ to the subgroup SU(2) corresponding to the long root α′

0: recall
Proposition 1.3 and diagram (1.21); then we have

Proposition 1.10. The map ξ defined in (1.38) coincides with φα′
0

and its
image is the generator of π2(SSU(3)).
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Proof. In view of (1.65) and (1.61), we have that α|tm = 0 only for α′ =
α′

0, so Ik + Im = α′
0;moreover the corresponding root space is given by

gα′
0

= t

⎛⎝ı 0 0
0 −ı 0
0 0 0

⎞⎠ ∈ m ; (1.66)

therefore Im = α0 and the SU(2)/U(1) corresponding to the highest root
generates π2(SSU(2)). In particular the semisimple element of su(2) corre-
sponds to w, hence the thesis.�

Going back now to the consimilarity action, let us consider the normal
bundles ν1 and ν2 respectively at I and atBs: we are interested in determining
the intersections

exp ν1 ∩ S5 and exp ν2 ∩ SSU(3) , (1.67)

or in other words the “limit points” of the geodesics emanating from a point
in one of the singular orbits when they meet the other the first time.

Proposition 1.11. The intersection exp ν2 ∩ SSU(3) is the S2 generating
π2(SSU(3)).

Proof.The left multiplications on a Lie group are isometries with respect
to the metric induced by the Killing form by definition, therefore they respect
exponentiation:

exp ν2 = BsB
−1
s exp ν2 (1.68)

= Bs exp(B−1
s ν2)

= BsExp (su(2))

= BsSU(2) = SU(2) ;

hence we have to determine SU(2) ∩ SSU(3);moreover as exp is equivari-
ant, then the intersection is also given by exp(S2

π/4), whose image is a ho-

mogeneous manifold of the form SU(2)/K with K ⊃ U(1) where u(1) =
tw, because of equivariance; but clearly we have

S2 = ξ(SU(2)) ⊂ SU(2) ∩ SSU(3) (1.69)

as in fact ξ(SU(2)) ⊂ SU(2); hence it must be K = U(1) and the conclusion
follows.�

This can be interpreted in terms of the double fibration (1.59) by saying
that

π1(π
−1
2 Bs) = S2 . (1.70)

Analogous considerations lead to the following



1.3 The consimilarity action 15

Proposition 1.12. We have

exp ν1 ∩ S5 = S2 = SO(3)/U(1) = {ABsA
t |A ∈ SO(3)} , (1.71)

with u(1) = tw .

Again in terms of (1.59)
π2(π

−1
1 I) = S2 . (1.72)

We want now to discuss a link with the Adjoint action:we can define a
map Φ : SU(3) −→ SU(3) acting as

Π(A) = AĀ ; (1.73)

first of all we observe that the map is equivariant with respect to the con-
similarity action on the left and the AdSU(3) action on the right:

Φ(BABt) = BABt((BABt) = BAB−1 , (1.74)

therefore orbits are sent to orbits; in particular it is immediate to show that

Φ(SSU(3)) = I and Φ(S5) = CP2 (1.75)

and in fact

Φ(B(t)) = B(t)2 =

⎛⎝cos2 t− sin2 t 2 cos t sin t 0
−2 cos t sin t cos2 t− sin2 t 0

0 0 1

⎞⎠ (1.76)

=

⎛⎝ cos 2t sin 2t 0
− sin 2t cos 2t 0

0 0 1

⎞⎠ =: B̃(t) . (1.77)

We introduce now the AdSU(3)-invariant subspace H ⊂ SU(3) defined as

H = {A ∈ SU(3) | Im Tr(A) = 0} ; (1.78)

clearly Φ(SU(3)) ⊂ H as

Tr(AA) = Tr(AA) = Tr(AA) , (1.79)

but moreover we have:

Lemma 1.13. The subset H ⊂ SU(3) is a connected and algebraic set, smooth
everywhere excepted at I;moreover

Φ(SU(3)) = H . (1.80)



1.4 Lie algebra cohomology 16

Proof.We can characterize the elements of H as those which can be di-
agonalized in the form

D(θ) =

⎛⎝eıθ 0 0
0 e−ıθ 0
0 0 1

⎞⎠ (1.81)

proving that it is arc-connected; this fact can be interpreted by saying that
D(θ) is the intersection T 2 ∩ H where T 2 is the diagonal maxima torus;
therefore the AdSU(3) action restricted to H is a cohomogeneity 1 action. the
condition Tr(A) = Tr(A) can be put in an algebraic form considering the
characteristic polynomial of a generic diagonalized element in SU(3):

T (λ) = −λ3 + (eıθ + e−ıφ + eı(φ−θ))λ2 + (e−ıθ + eıφ + eı(−φ+θ))λ+ 1 (1.82)

so that H is the zero locus of the function

P (a11, · · · a33) = a11 + a22 + a33 − a11a22 − a22a33 − a22a33 ; (1.83)

the gradient of this last is given in terms of θ, φ by

gradP (φ, θ) = (cos θ − cos (θ − φ),− cosφ+ cos(θ − φ)) (1.84)

which is zero if and only if θ ∈ {0, 2/3π,−2/3π} and φ ∈ {0,−2/3π, 2/3π}
respectively, or in other words at the center Z(SU(3)) = (1, ζ, ζ2) with ζ3 =
1, and Z(SU(3)) ∩H = I. We finally prove the surjectivity of Φ: for this it
would be sufficient proving that

B̃(t) = C D(θ(t))C−1 (1.85)

for some C ∈ SU(3); but the eigenvalues of B̃(t) are easily seen to be
1, 2t,−2t, therefore we are done putting θ(t) = 2t.�

1.4 Lie algebra cohomology

First recall that the Lie algebra g of G corresponds to vector fields which
are invariant under left translations; in the same way g∗ corresponds to the
space of left invariant differential forms AL(G). Exterior differentiation d
is compatible with any diffeomorphism φ : G → G in the sense that if
α ∈ AL(G)

φ∗(dα) = dφ∗α , (1.86)

and in particular this is true for left translations; so

dAL(G) ⊂ AL(G) , (1.87)



1.4 Lie algebra cohomology 17

or in other words the space AL(G) is stable under d.We will denote by dg

the restriction of d to AL(G) ∼= g∗, so that (
∧

g∗, dg ) is a differential graded

algebra; ifXi, i = 1...k+1 are left invariant vector fields and if α ∈ ∧k
g∗, then

dgα behaves in the following way:

dgα(X1, ..., Xk+1) =
∑
i<j

(−1)i+jα([Xp , Xq], X1, .., X̂i, .., X̂j, .., Xk+1) ;

(1.88)
it is clear that (dg )2 = 0 , so we can form the cohomology groups

Hp(g) = Hp
L(G) . (1.89)

Denoting by θ the representation induced on g∗ by the adjoint repre-
sentation,we can extend it to a representation θ∧ of g on

∧
g∗; the subscript

θ = 0 will denote the subspace killed by θ∧, a.k.a. the space of biinvariant, or
simply invariant, forms; in other words

(
∧

g∗) θ=0 := {α ∈
∧

g∗ | θ∧(α) = 0} . (1.90)

In case that G is connected, thanks to the surjectivity of the exp map ,the
space (

∧
g∗) θ=0 coincides with the space (

∧
g∗)I of forms fixed by the exten-

sion of the Ad representation of G on g. The space (
∧

g∗) θ=0 is again stable
under d, but there is more; in fact

d
(
(
∧

g∗) θ=0

)
= 0 . (1.91)

This can be shown in the following way: if ν denotes the inversion map of
g, so that ν(a) = a−1, then

ν∗α = (−1)pα , (1.92)

for any invariant form α of degree p ; then

(−1)p+1dα = ν∗dα = dν∗α = (−1)pdα , (1.93)

so dα must be 0.Thanks to this fact the inclusion of AI(G) in AL(G) induces
a homomorpism of algebras

(
∧

g∗) θ=0
∼= AI(G) �� HL(G) . (1.94)

The consequence is that under the hypoteses of the compactness and
connectedness of G we can reduce the problem of computing the cohomology
of G to that of computing the cohomology of g and, better, to the knowledge
of (
∧

g∗) θ=0, as the following proposition states:
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Proposition 1.14. If the Lie group G is compact and connected, then all the
maps in the following commutative diagram are isomorphisms of algebras:

AI(G) ��

∼=
��

HL(G) ��

∼=
��

H(G)

(
∧

g∗) θ=0
�� H(g)

. (1.95)

Identifying (
∧

g∗) θ=0 is not in general an obvious task, excepted in some
cases: for example when G is abelian.

Example 1.2. If G is abelian then it must be an n-dimensional torus; in this
case the adjoint representation θ is trivial, so that

(
∧

g∗) θ=0 =
∧

g∗ ; (1.96)

so the Betti numbers are just the dimensions of the various
∧p g∗ for p = 0...n:

bp = dim Hp(G) = dim

p∧
g∗ =

(
n

p

)
=

n!

p!(n− p)!
; (1.97)

the Poincaré polynomial is equal to (1 + t)n.We observe that thanks to the
inclusion (

∧
g∗) θ=0 ⊂

∧
g∗ for any other compact connected Lie group G we

will have PG(t) ≤ (1 + t)n.

In general however it is possible to say something about the low Betti
numbers; we start defining a canonical linear map

ρ : (
∨2 g∗) θ=0

�� (
∧3 g∗) θ=0 (1.98)

in the following way: let Ξ ∈ (
∨2

g∗) θ=0, then ρ(Ξ) = Φ is defined as

Φ(x, y, z) = Ξ([x , y], z) ; (1.99)

the invariance of Ξ implies that Φ is skew-symmetric, and the Jacobi identity
that it is invariant. We denote with f the image of the Killing form 〈 , 〉
through ρ.

Proposition 1.15. Let g be a Lie algebra such that H1(g) = H2(g) = 0; then
ρ is an isomorphism.

Thanks to this we can deduce the following facts:
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Proposition 1.16. Let g = g1⊕· · ·⊕gm be the decomposition of a semisimple
Lie algebra in terms of simple ideals; then:

i)b1 = b2 = 0;

ii)b3 ≥ m;

iii)if the ground field Γ = C or if Γ = R

and the Killing form is negative definite, then b3 = m .

Proof. It is sufficent to consider the case m = 1.For i we just need to
observe that the semisimplicity of the Lie algebra implies the surjectivity of
the bilinear map

[ , ] : (x, y) �� [x , y] ; (1.100)

then the exterior derivative of a left-invariant 1-form α is given by

(dgα)(x, y) = −α([x , y]) , (1.101)

so dgω = 0 implies ω = 0, or in other words there are no nonzero closed
left-invariant 1-forms. Regarding the second equality, we have

(dgβ)(x, y, z) = −β([x , y], z) + β([x , z], y) − β([y , z], x) ; (1.102)

recall that (
∧

g∗) θ=0 is isomorphic to the cohomology algebra, so if b1 > 0
there should be an invariant 2-form β; but invariance implies that

0 = (θ∗(x)β) (y, z) = −β([x , y], z) − β(y, [x , z]) (1.103)

so that
(dgβ)(x, y, z) = −β([y , z], x) . (1.104)

Now the surjectivity of [ , ] implies the result as before.

Regarding iii, we are in the hypotheses of proposition (1.15), so the Killing
form gives origin to the invariant 3 form f . Finally, for iii, if the ground field
is C, the existence of 2 invariant elements φ, ψ in g ⊗ g∗, which must be
both nondegenerate for Schur’s lemma,would imply that a linear combination
φ + λψ is degenerate, which is possible only if ker(φ + λψ) = g, always by
Schur’s lemma; so φ, ψ are proportional. Then the Killing form is the only
invariant element in

∨2
g ⊂ g∗ ⊗ g, up to scalars. The same argument holds

for Γ = R, considering that ψ, φ are self adjoint with respect to the Killing
form, and so they have real eigenvalues. �

The cohomology of a compact semisimple Lie group is the same as that
of a product of spheres

S g1 × · · · × S gr (1.105)

as stated in the following theorem:
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Theorem 1.17. The Poincaré polynomial of (
∧

g∗) θ=0 has the form

f = (1 + tg1) · · · (1 + tgr) , (1.106)

where the exponents gi are odd and satisfy

r∑
i=0

gi = dim g . (1.107)

We list here the Poincaré polynomials for the classical Lie groups (see
[32, Vol. III]).

Examples.The Poincaré polynomial of SU(n) is given by

n∏
p=2

(1 + t2p−1) ; (1.108)

for SO(2n+ 1) and SO(2n) we have

n∏
p=1

(1 + t4p−1) and (1 + t2n−1)

n−1∏
p=2

(1 + t2p−1) ; (1.109)

finally for Sp(n)
n∏

p=1

(1 + t4p−1) . (1.110)



Chapter 2

Geometry of Grassmannians

In this chapter we discuss some basic facts about real oriented Grassman-
nians and then we introduce the twistor-type differential operator on the
tautological bundle and on its normal bundle. Finally we discuss the coho-
mology of Grassmannians of 3-planes, concentrating on the 4th de Rham
class, in general and in the case of G̃3(R

6) and G̃3(R
8).

2.1 Bundles on Grassmannians

Consider an n-dimensional real vector space Rn equipped with an inner prod-
uct 〈 , 〉 and the Grassmannian G̃k(R

n). The dimension of the real Grass-
mannian is

dim G̃k(R
n) =

n(n− 1)

2
− k(k − 1)

2
− (n− k)(n− k − 1)

2
(2.1)

=
2k(n− k)

2
= k(n− k) . (2.2)

As one can deduce from its homogeneous space presentation (see (1.17); a lo-
cal chart around a point V is obtained in the following way: choose an ortho-
normal (ON from now on) basis v1, · · · , vk of V and an ON basis w1, · · · , wn−k

of V ⊥; then the open set of k-planes V ′ in Rn which project isomorphically
onto V , or in other words such that V ′ ∩ V ⊥ = 0, can be identified homeo-
morphically with the space of linear homomorphisms Hom(V, V ⊥), assigning
to V ′ the unique homomorphism T such that

V ′ = span{vi + T (vi), i = 1, ..., k} ; (2.3)

actually this local chart allows to identify in the same way TV G̃k(R
d):
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Proposition 2.1. The tangent space of G̃k(R
n) at V can also be identified

with Hom(V, V ⊥).

Proof.Consider two ON bases of V and V ⊥ as before and an element Tij

such that Tij(vi) = wj; consider the curve

γ(t) = span{v1, · · · , vi + t Tij(vi), · · · vk} (2.4)

= span{v1, · · · , vi + t wi, · · · vk} ; (2.5)

the derivative at V is given by γ′(t)|t=0 = (0, · · · , wj, · · · , 0); clearly each Tij

gives rise to a curve through V with a linearly independent tangent vector
at V , so for dimensional reasons the result follows.�

Therefore the tangent space at V will be identified with V ∗ ⊗ V ⊥; the
presence of a metric on V , induced from the ambient space Rn, will allow
us to write V ⊗ V ⊥, using contraction via the metric for the isomorphism
V ∼= V ⊥.

We will be interested to study some differential operators and sections
of vector bundles on G̃k(R

n), so we start by describing the natural objects
induced by the euclidean structure of Rn. We have the splitting of the
trivial bundle G̃k(R

n) × Rn in two subbundles: the tautological one and its
orthogonal complement:

V ⊕ V⊥ ∼= ��

p1

���
���

��
��

��
��

��
��

� G̃k(R
n) × Rn

p2

��

G̃k(R
n)

. (2.6)

Here the ⊥ is given by the metric on Rn; the presence of this metric allows
to define coonnections on these two subbundles just by composition of the d
with the two projections π and π⊥. For example

∇V s = π d s , (2.7)

where s ∈ Γ(V) and d is the derivation in Rn; to prove that this is a connec-
tion we have to show that ∇Vas = (da)s+ a∇Vs with a a function:

∇Vas = πd(as) = π ((da)s+ a(ds)) (2.8)

= (da)s+ aπ(ds) = (da)s+ a∇Vs (2.9)
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as required.Moreover this connection is compatible with the metric induced
on the fibres of V by their ambient space Rn: in fact if s, t ∈ Γ(V) and
X ∈ TV G̃k(R

n) we have

X〈s , t〉 =〈Xs , t〉 + 〈s , Xt〉 = 〈πXs , t〉 + 〈s , πXt〉
=〈∇Vs , t〉 + 〈s , ∇Vt〉 .

On the other hand we obtain the corresponfing II fundamental forms
projecting in the opposite way:

II : Γ(V) �� Γ(T ∗ ⊗V⊥)

which sends s to π⊥ds; analogously II⊥ sends s ∈ Γ(V⊥) in πds. These last
two are both tensors, in fact if s ∈ Γ(V⊥) for example and a is a function,we
get

πd(as) = π(d(a)s+ ad(s)) = πad(s) = aπds (2.10)

so that we can think to II⊥ as a section of the bundle

V⊥ ⊗
(
T ∗G̃k(R

n) ⊗ V
) ∼= Hom

(
V⊥ , T ∗G̃k(R

n) ⊗ V
)

(2.11)

(identifying V ∼= V∗ via the metric); if it turns out to be injective on every
fibre, it determines the immersion of V⊥ as a subbundle of T ∗G̃k(R

n)⊗V; we
will prove this in the next section,where we shall also introduce a family of
elements in Γ(V) and Γ(V⊥) which will be object of interest.

2.2 Sections obtained by projection

We want to use the standard connections and tensors introduced in the previ-
ous section to construct new differential operators on the tautological bundle
V and on its orthogonal complement V⊥. First of all, given an element
A ∈ Rn we can associate to it two sections of the bundles V and V⊥ just
using the projections: sA = πA and s⊥A = π⊥A with A = sA + s⊥A; now A is
constant,

0 = dA = dsA + ds⊥A (2.12)

so that
dsA = −ds⊥A ; (2.13)

so in the language developed before

∇VsA = πdsA = −πds⊥A = −II⊥s⊥A .
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These equations imply that

d sA = −II⊥s⊥A + II sA . (2.14)

We now prove the injectivity of II⊥:

Proposition 2.2. The section II⊥ is injective on the fibres.

Proof. To prove the assertion we need to show that, fixed a point V ∈
G̃k(R

n), for every w0 ∈ V ⊥ exists at least an element in TV G̃k(R
n) such that

II⊥(w0) applied to it has nonzero V projection. Without loss of generality
we can impose ‖w0‖ = 1; then we choose any v ∈ V with ‖v‖ = 1 and our
candidate for the proof is v ⊗ w0. In fact consider the curve in the Grass-
mannian

V (θ) = 〈sin θ w0 + cos θ v, v2, v3〉
where the two elements v2 and v3 are such that v, v2, v3 is an orthonormal
basis of V (0) = V ; the tangent vector at θ = 0 of this curve is v⊗w0. Now we
need to find a section s ∈ Γ(V⊥) such that s(V ) = w0, and then differentiate
it along the curve V (θ); such a section is provided by s⊥w0

, which restdicted to
V (θ) becomes

s⊥w0
(θ) = sin θ (sin θ w0 + cos θ v)

and
d

dθ
s⊥w0

(θ) |θ=0 =
(
cos2 θ − sin2 θ

)
v + 2 sin θ cos θ w0 |θ=0 = v

so that the V projection coincides with the chosen v and is not zero.�

Observation.We have proved something more: fixed w0, the image

II⊥(w0)

is nonzero on the elements v ⊗ w0 for any v ∈ V nonzero.

For convenience we will put together the homomorphisms II and II⊥ in
the following way:

i : Γ(Rn) �� Γ(T ∗ ⊗ Rn ) (2.15)

acting like:
i(S) = II (πS) − II⊥(π⊥S) . (2.16)

in a way which is consistent with equation (2.14); in this way we have

dsA = i(A) (2.17)
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and
ds⊥A = −i(A) . (2.18)

The image of II⊥ corresponds to elements of the type

3∑
i=1

λ σ ⊗ vi ⊗ vi (2.19)

with σ ∈ V⊥ and λ ∈ C; in fact if we consider the decomposition as SO(k)
modules we get

V⊥ ⊗V ⊗V ∼= V⊥ ⊗ R︸ ︷︷ ︸
α

+V⊥ ⊗ (....)︸ ︷︷ ︸
β

(2.20)

so that precisely one copy of V⊥ appears: once that we find a nontrivial
SO(k) × SO(n − k)-equivariant way of putting V⊥ inside this bundle, it is
injective (by the Schur Lemma) and essentially unique (up automorphisms
of modules); now the expression (2.19) provides the needed copy.

Exactly the same argument using the decomposition as SO(n− k) mod-
ules of the bundles says that we can find exactly one copy of V inside
V ⊗ V⊥ ⊗ V⊥ ∼= T ∗G̃k(R

n) ⊗ V⊥. The reason is essentially that only one
trivial factor exists in the decomposition ot V ⊗ V , where V is the stan-
dard SO(n) representation for any n.We want now to be more precise about
these statements, and calculate explicitly the value of λ, as we see in the next
proposition (the tensor products are omitted).

Proposition 2.3. Let A ∈ Rn so that A = u+ y with u ∈ V and y ∈ V ⊥ at
the point V ; let vj and wi denote the basis elements of V and V ⊥ at V ; then

d sA|V =
∑

i

yvivi +
∑

j

uwjwj (2.21)

and obviously

d s⊥A|V = −
∑

i

yvivi −
∑

j

uwjwj ; (2.22)

so λ = 1.

Proof. As usual we differentiate along a curve passing through V and with
tangent vector X = v1w1; we choose the curve span{v1 + tw1, v2, ...vk};let
u =

∑
aivi and at the point V (t)

A = b1(v1 + tw1) + b2v2 + b3v3 + y′
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with y′ ∈ V (t)⊥, but at V (0)

A =
∑

aivi + y (2.23)

so that doing the inner products of A with the vis we get the equations

a1 = b1 + 〈v1 , y
′〉

a2 = b2

...

ak = bk ;

but on the other hand
〈y′ , v1 + tw1〉 = 0 ; (2.24)

the inner product 〈A , w1〉 and multiplication by t gives the equation

t〈y , w1〉 = t2b1 + t〈y′ , w1〉 (2.25)

where the term in t2 can be omitted as we are interested in the 1 st order
terms;we notice that the left hand term is independent of t; what we get is
(forgetting order higher than 1)

sA(t) = (a1 − t〈y , w1〉)(v1 + tw1) + b2v2 + b3v3 (2.26)

so that

X(sA) =
d

dt
(sA(t))|t=0 = 〈y , w1〉v1 + a1w1 ; (2.27)

so varying the tangent vectors we obtain

d sA =
∑
i,j

viwj ⊗ (〈y , wj〉vi + ajwj)

=
∑

i

yvivi +
∑

j

uwjwj

as claimed.An analogous calculation for s⊥A gives

d s⊥A = −
∑

i

yvivi −
∑

j

uwjwj (2.28)

as expected from equation (2.18).�

Observation.These expressions imply that

II (v) =
∑

j

vwjwj (2.29)
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and
II⊥(w) = −

∑
i

wvivi , (2.30)

with v ∈ Γ(V) and w ∈ Γ(V⊥), in accordance with (2.16); the opposite sign
is consistent with the equation

0 = d〈v , w〉 = 〈II (v) , w〉 + 〈v , II⊥(w)〉

which expresses the fact that II and II⊥ are adjoint linear operators.

2.3 The Twistor equation

Proposition 2.3 shows that ∇VsA is of the form seen in (2.19), or alternatively
that if we call p the projection on the β summand in the decomposition (2.20)
and define D ≡ p ◦ ∇V, the section sA satisfies the twistor-type equation

DsA = 0 . (2.31)

Symmetrically we can define another operator D⊥ such that

D⊥ s⊥A = 0 . (2.32)

Now if we choose an orthonormal basis e1, ..., ed of Rn, every section S of the
flat bundle G̃k(R

n) × Rn is nothing else than a d-tuple of functions

fj : G̃k(R
n) �� Rn (2.33)

so that
S =

∑
fjej ; (2.34)

applying the exterior derivative on Rn (which is a connection on the flat
bundle) we obtain

dS =
∑

dfj ⊗ ej (2.35)

and if 1 ∧ i denotes an element in Hom
(
T ∗ ⊗ Rn, (

⊗2 T ∗) ⊗ Rn
)

(where

Rn = G̃k(R
n) × Rn and T ∗ = T ∗G̃k(R

n) to simplify the notation) acting in
the obvious way,we obtain

1 ∧ i (dS) =
∑

dfj ∧ i (ej) ; (2.36)
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on the other hand

d
∑

fj i(ej) =
∑

dfj ∧ i(ej) + fj di(ej) , (2.37)

so if we can show that
di(ej) = 0 ∀j (2.38)

we obtain the commutativity of the following diagram:

Rn d ��

i
��

T ∗ ⊗ Rn

1∧i ;

��
Rn d �� T ∗ ⊗ Rn d �� Λ2T ∗ ⊗ Rn

(2.39)

but equation (2.17) implies:

di(ej) = ddsej
= 0 , (2.40)

because the ej are constant. Previously we showed that i is an injective map
(because II and II⊥ are, see Proposition 2.2); if we can show that also 1∧ i is
injective (and it happens to be in most part of cases, as we will see) looking at
diagram (2.39) we can deduce the following facts: if s ∈ Γ(V) satisfies Ds = 0
this is equivalent to say that ds = i(s+σ) for some σ ∈ Γ(V⊥); but obviously
dds = 0, so d(s+σ) must be 0 too, so a constant element A ∈ Rn. This implies
the main result of this Section:

Theorem 2.4. A section s ∈ Γ(V) satisfies the twistor equation Ds = 0
if and only if exists another section σ ∈ Γ(V⊥) such that s + σ = A is a
constant section of Rn, provided k > 1 and n− k > 1.

In other words sections of type sA are the only solutions of equation
(2.31), under these hypotheses.

Observation.This means that the two equations (2.31) and (2.32) impose
very strong conditions on the sections of V and V⊥, and one of them is
sufficient, for instance, to reconstruct an element in Rn from its projection on
V. All theese considerations are obtained only using differentiation, therefore
they have an essencially local nature; this implies that the spaces of sections
in ker D are finite-dimensional even locally, a fact that distinguishes this
type of operators from other well-known such as the Laplacian ∆.

The missing piece to prove Theorem 2.4 is injectivity of 1 ∧ i. To prove
that we start defining another map which will be useful in the sequel:

c : Γ(T ∗ ⊗ Rn) �� Γ(Rn) (2.41)
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acting as a contraction in the following way:

c
(∑

ijk

aijk viwjvk +
∑
lmo

blmo wlvmwo

)
=
∑
ij

aiji wj +
∑
lm

blml vm . (2.42)

The same map acts also on τ ∈ (
⊗q T ∗)⊗Rn in the following way: if τ = τ ′⊗S

with τ ′ ∈⊗q−1 T ∗ and S ∈ T ∗ ⊗ Rn then

c(τ) = τ ′ ⊗ c(S) (2.43)

and then extending linearly.
We are now in position to prove the previously stated assertion,which con-
cludes the proof of Theorem 2.4:

Lemma 2.5. The map 1 ∧ i is injective, provided k > 1 and n− k > 1.

Proof. Given two bases vi of V and wj of V ⊥ an element in T ∗ ⊗ Rn is
described by

τ =
∑
ijh

aijh viwjvh +
∑
lmo

blmovlwmwo ; (2.44)

now we will prove that c ◦ 1 ∧ i is injective, so that 1 ∧ i must be.
So we get

1 ∧ i (τ) =
∑
ijhµ

aijh (viwj ∧ vhwµ)wµ +
∑
lmoν

blmo(vlwm ∧ wovν)vν

=
∑
ijhµ

aijh (viwj ⊗ vhwµ − vhwµ ⊗ viwj)wµ

+
∑
lmoν

blmo(vlwm ⊗ wovν − vowν ⊗ wlvm)vν

and applying the contraction

c(1 ∧ i (τ)) =
∑
ijhµ

aijh (viwj ⊗ vh − vhwµ ⊗ viδ
j
µ)

+
∑
lmoν

blmo(vlwm ⊗ wo − vowν ⊗ wlδ
m
ν ) ;

now imposing that it’s zero,we get the following couples of equations:{
(n− k) aijh − ahji = 0

(n− k) ahji − aijh = 0
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and {
k blmo − boml = 0

k boml − blmo = 0

which imply
(n− k)2 aijh = aijh

and
k2 blmo = blmo

which are absurd if k > 1 and n− k > 1. �

2.4 Invariant forms on Grassmannians

Cohomology of a compact symmetric space M can be computed using in-
variant forms: in fact it can be shown in the same way as for compact Lie
groups that

H∗(M) ∼= H∗
I (M) , (2.45)

in other words the complex of invariant forms gives rise to a cohomology ring
H∗

I (M) which is isomorphic to the DeRham one.Moreover:

Proposition 2.6. For a symmetric space M we have

H∗(M) ∼= (
∧

m) θ=0 . (2.46)

Proof.Thanks to the relation

[m , m] ⊂ h (2.47)

the differential d applied to invariant forms is identically zero; then

Hk
I (M) ∼= (

k∧
h⊥) θ=0 ; (2.48)

the result follows from equation (2.45). �

Example 2.1. We can calculate directly the cohomology of some low-di-
mensional symmetric space using equation (2.48): for example G3(R

6) has
the isotropy representation isomorphic to Σ2

+ ⊗ Σ2
−, where Σ2

± are the spin
representations of the factors SU(2)± in SO(4) ∼= SU(2)+SU(2)−; then if
2t, 0,−2t and 2s, 0,−2s are the weights of the corresponding sl(2,C) repre-
sentations, combining them and then grouping the weight spaces properly, we
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can decompose the complexified exterior algebra at a point in irreducible
summands in the following way (thanks to the metric we forget about dis-
tinguishing between tangent and cotangent space):

2∧
Σ2

+ ⊗ Σ2
− ∼= Σ4

+ ⊗ Σ2
− + Σ2

+ ⊗ Σ4
− + Σ2

+ + Σ2
− ; (2.49)

3∧
Σ2

+ ⊗ Σ2
− ∼= Σ6

+ + Σ6
− + Σ4

+ ⊗ Σ4
− + Σ4

+ ⊗ Σ2
−+ (2.50)

Σ2
+ ⊗ Σ4

− + Σ2
+ ⊗ Σ2

− + Σ2
+ + Σ2

− ; (2.51)
4∧

Σ2
+ ⊗ Σ2

− ∼= Σ6
+ ⊗ Σ2

− + Σ2
+ ⊗ Σ6

− + Σ4
+ ⊗ Σ4

− + Σ4
+ ⊗ Σ2

−+ (2.52)

Σ2
+ ⊗ Σ4

− + Σ4
+ + Σ4

− + 2 Σ2
+ ⊗ Σ2

− + C . (2.53)

In conclusion we have b1 = b2 = b3 = b6 = b7 = b8 = 0 and b0 = b4 = b5 =
b9 = 1. With a bit more of work we can obtain an explicit expression for the
invariant 4-form Φ that generates H4(G3(R

6)); in fact consider two bases of
the Σ2

± given by {Y+, H+, X+} and {Y−, H−, X−} satisfying

[Y±, H±] = 2Y± , [Y±, X±] = −H± , [H±, X±] = 2X± ; (2.54)

then we introduce the following notation:

α1 := X+ ⊗X− , α2 := X+ ⊗H− , α3 := X+ ⊗ Y− etc., (2.55)

which are a basis for TxG3(R
6)⊗C; then restricting the representation to the

Cartan subalgebra inside sl(2,C)+ × sl(2,C)− we have the following corre-
spondence of weights:

α1 α2 α3

α4 α5 α6

α7 α8 α9

−→
2t+ 2s 2t 2t− 2s

2s 0 −2s

−2t+ 2s −2t −2t− 2s

;

∧4 Σ2
+ ⊗Σ2

− is 126-dimensional, nevertheless the invariant form must be con-
tained in the 10-dimensional subspace of weight 0, so we restrict our attention
to this last one; a basis is given by

β1 := α1289 , β2 := α2378 , β3 := α1469 , β4 := α3647 , β5 := α2846 , (2.56)

β6 := α1937 , β7 := α1568 , β8 := α3548 , β9 := α7526 , β10 := α9524 ; (2.57)

so the invariant form is a linear combination

Ω =

10∑
i=1

aiβi . (2.58)
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To obtain the coefficients we impose the condition adY Φ = 0, which implies
the following set of equations:⎧⎪⎪⎨⎪⎪⎩

−2a1 + a6 = 0 , −2a2 + a6 = 0 , a3 − 2a5 + 2a10 = 0,

a3 − 2a7 = 0 , a4 + 2a9 = 0 , a4 − 2a8 + 2a5 = 0,

a5 + a9 + a7 = 0 , a8 + a10 = 0

with solutions

a1 = a2 = a6/2 , a3 = a4 = −2a10 , a5 = 0 ,

a7 = a8 = −a10 , a9 = a10 .

Imposing the additional condition adY ′Φ = 0 we have the following system:⎧⎪⎪⎨⎪⎪⎩
a1 − 2a5 − 2a10 = 0 , a1 + 2a7 = 0 , a2 + 2a8 = 0,

a2 + 2a5 − 2a9 = 0 , 2a3 + a6 = 0 , −2a4 − a6 = 0,

a5 − a7 + a8 = 0 , a9 − a10 = 0

and the intersection of the solutions gives, imposing a1 = 1,

a1 = 1, a2 = 1, a3 = −1, a4 = −1, a5 = 0, a6 = 2, (2.59)

a7 = 1/2, a8 = −1/2, a9 = 1/2, a10 = 1/2 . (2.60)

We want now to go back to the real exterior algebra, so we introduce the
real structures of Σ2

±: the real subrepresentations preserved by the real com-
pact groups SU(2)± have as orthonormal bases {e1, e2, e3} and {f1, f2, f3}
satisfying

[e1 , ej ] =
√

2ek [f1 , fj ] =
√

2fk (2.61)

for ijk consequent indices (modulo 3); the relations with the bases in the
complexified representations are expressed by:

X =
1√
2
(e1 − ıe2) , Y = − 1√

2
(e1 + ıe2) , H = −ı

√
2e3 , (2.62)

and analogous equations for X ′, H ′, Y ′; definig a basis of the real tangent
space as

w1 := e1 ⊗ f1 , w2 := e1 ⊗ f2 , w3 := e1 ⊗ f3 etc., (2.63)

and substituting in the expression (2.58) using relations (2.62), we obtain, up
to a constant, the form

Ω =w3652 − w3614 − w5478 + w1278 + w5214 (2.64)

+ w1937 + w5968 + w2938 + w4967 . (2.65)
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In this way we can in theory always obtain the Poincaré polynomial and
an explicit expression for the corresponding invariant forms of any compact
symmetric space, but of course calculations become more messy as dimen-
sion increases. Nevertheless in the case of Grassmannians of 3-planes in
Rn, which are our main object of interest, some more considerations can lead
to determine invariant 4-forms in a more straightforward way: in fact the
complexified isotropy representation in that case is

Σ2 ⊗W = (R3 ⊗ Rn−3) ⊗ C (2.66)

with Σ2 and W = Cn−3 the standard representations of SO(3) and SO(n−
3); then

2∧
(Σ2 ⊗W ) ⊃ ( 2∧

Σ2
)⊗ S2W ⊃ Σ2 ⊗ 〈k〉 ∼= Σ2 , (2.67)

where k denotes the invariant symmetric tensor corresponding to the Killing
form; therefore we have

4∧
(Σ2 ⊗W ) ⊃ Σ0 (2.68)

spanned by

Ω =
3∑

i=1

ωi ∧ ωi , (2.69)

where the ωi are a basis for
(∧2 Σ2

) ⊗ S2W ; we will call this form the Na-
gatomo 4-form ([64]). Thus in this type of Grassmannians we always have
an invariant 4 form, and hence b4 ≥ 1 (see [32] and the observation below).
We can describe the Nagatomo 4-form of G3(R

n) for any n in the following
way:we fix an ON basis e1, e2, e3 of R3 = [Σ2] as before, and an ON basis
f1, · · · fk of Rk, with k = n − 3; therefore the tangent space TxG3(R

k) is
generated by

w1 = e1 ⊗ f1, · · · , w3k = e3 ⊗ fk ; (2.70)

from now on we will adopt the convention of separating indices by a comma,
to avoid confusion due to double digits indices. In these terms we have:

Proposition 2.7. Let w1, · · · , w3k the ON basis of the isotropy representa-
tion of G3(R

n) given in (2.70); then the Nagatomo 4-form Ω in terms of this
basis is

Ω =
2∑

l=0

k+lk∑
i=1+lk

k+lk∑
j=i+1

wi, i+k, j, j+k (2.71)

where indices are cyclic modulo 3k.



2.4 Invariant forms on Grassmannians 34

Proof. In terms of the given basis we have

ω1 = e12 ⊗ (

k∑
i=1

f i ⊗ f i) =

k∑
i=1

wi, i+k (2.72)

ω2 = e23 ⊗ (

k∑
i=1

f i ⊗ f i) =

2k∑
i=k+1

wi, i+k (2.73)

ω3 = e31 ⊗ (

k∑
i=1

f i ⊗ f i) =

3k∑
i=2k+1

wi, i+k (2.74)

and referrng to (2.69) we obtain

ω1 ∧ ω1 =
k∑

i=1

k∑
j=i+1

wi, i+k, j, j+k (2.75)

up to a constant; analogous expressions are obtained for ω2, ω3 and the as-
sertion follows summing together.�
Observation. In [32, vol. III] we can find tables with the Poincaré poly-
nomials of all classical symmetric spaces. In particular for G̃3(R

n) we always
have b4 = 1, excepted for n = 7,where b4 = 2.Therefore then Nagatomo form
is the only invariant 4-form on this type of Grassmannians, for n �= 7.

In the case of G3(R
6) we can obtain again in this way the form Ω as in

(2.64), up to a constant.
In the case of G3(R

8), which will also be of interest for us, we have k = 5
and a basis of Σ2 ⊂ ∧2(R3 ⊗ R5) is given by

ω1 = e12 ⊗ (

15∑
i=1

f i ⊗ f i) = w1,6 + w2,7 + w3,8 + w4,9 + w5,10 (2.76)

ω2 = e23 ⊗ (

15∑
i=1

f i ⊗ f i) = w6,11 + w7,12 + w8,13 + w9,14 + w10,15 (2.77)

ω3 = e31 ⊗ (
15∑
i=1

f i ⊗ f i) = w11,1 + w12,2 + w13,3 + w14,4 + w15,5 (2.78)
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In this case the invariant 4-form Ω is given by

Ω =

3∑
i=1

ωi ∧ ωi = w1,6,2,7 + w1,6,3,8 + w1,6,4,9 + w1,6,5,10 + w2,7,3,8 (2.79)

+ w2,7,4,9 + w2,7,5,10 + w3,8,4,9 + w3,8,5,10 + w4,9,5,10

+ w6,11,7,12 + w6,11,8,13 + w6,11,9,14 + w6,11,10,15 + w7,12,8,13

+ w7,12,9,14 + w7,12,10,15 + w8,13,9,14 + w8,13,10,15 + w9,14,10,15

+ w11,1,12,2 + w11,1,13,3 + w11,1,14,4 + w11,1,15,5 + w12,2,13,3

+ w12,2,14,4 + w12,2,15,5 + w13,3,14,4 + w13,3,15,5 + w14,4,15,5 .



Chapter 3

Functionals on G̃3(g)

In this Chapter we consider Grassmannians of 3-planes of a compact Lie alge-
bra g: the richness of these latter objects allows to introduce more structure
which would not be possible with a simple vector space Rn; in particular the
standard 3-form f induces a well-known Morse-Bott function on G̃3(g), whose
gradient flow identifies submanifolds which carry a Quaternionic-Kähler struc-
ture, even if this aspect will not be considered until Chapter 5. We shall
define here a new functional g which will have significance regarding the
quaternionic structure.We compare the Hessians of f and g at the critical
points for f , finding explicit expressions for the eigenvalues of Hess g. An
early question that presented itself was whether the critical points of g co-
incide with those of f : a negative answer is provided Section 3.4, presenting
explicit examples, and more systematically in Section 3.5.

3.1 The functional f

Consider the Grassmannian of oriented three-planes of a compact semisimple
Lie algebra

G̃3(g)

equipped with the Riemannian metric coming from the Ad-invariant inner
product on the Lie algebra 〈 , 〉 (minus the Killing form); from now on we
will write G3(g) instead of G̃3(g) to simplify the notation, or simply G3. The
closed 3-form

ρ( 〈 , 〉 ) = 〈 [x, y] , z 〉, (3.1)

obtained from the metric through the Cartan map induces a function f on
the Grassmannian (see 1.98): in fact if v1, v2, v3 is an orthonormal basis of
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the 3-plane V with respect to the inner product then we put

f(V ) := 〈[v1 , v2] , v3〉 (3.2)

which is well defined: in fact the space V is isomorphic to [Σ2] as an SO(3)
representation, so that

∧3 V ∼= ∧3[Σ2] ∼= [Σ0], and any element (proportional
to the volume form) is SO(3) invariant.

Let us calculate the gradient vector field obtained as the dual of df via
the metric: we define

w1 = [v2 , v3]
⊥ (3.3)

w2 = [v3 , v1]
⊥ (3.4)

w3 = [v1 , v2]
⊥ (3.5)

so that

[v1, v2] = 〈 [v1, v2] , v3 〉 + w3 (3.6)

[v2, v3] = 〈 [v2, v3] , v1 〉 + w1 (3.7)

[v3, v1] = 〈 [v3, v1] , v2 〉 + w2 (3.8)

Observation. Recall that invariance of 〈 , 〉 implies

〈 [a, b] , c 〉 = 〈 a, [b , c] 〉 . (3.9)

An explicit expression for df is so obtained in the following lemma:

Lemma 3.1. We have

(grad f)V =

3∑
i=1

vi ⊗ wi . (3.10)

Proof. Let us consider a curve V (t) ⊂ G3(g) such that V (0) = V defined
by

(v1 + tp1, v2 + tp2, v3 + tp3)

where pi ∈ V ⊥ then we have

f(V (t)) = 〈 [v1 + tp1, v2 + tp2] , v3 + tp3 〉 = (3.11)

= f(V ) + t(〈 [p1, v2] , v3] 〉 + 〈 [v1, p2] , v3] 〉+ (3.12)

+ 〈 [v1, v2] , p3] 〉) +O(t2) (3.13)

and so, using 3.9

d

dt
f(V (t))|t=0 =

3∑
i=0

〈wi, pi 〉 (3.14)
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and then as

grad f =

3∑
i=1

vi ⊗ qi

for some qi ∈ V ⊥ then from

3∑
i=1

pi ⊗ qi =
3∑

i=1

wi ⊗ pi

we can desume
qi = wi

as required.�

A consequence of this is that critical points for the function f are the sub-
spaces for which

wi = 0 ∀ i ,
that is the 3-dimensional subalgebras of g, isomorphic to su(2). By definition
our f is an AdG invariant functional, so we know that its gradient is orthog-
onal to the orbits of the AdG action; but we can prove this fact by checking
directly the orthogonality condition:

Corollary 3.1. The vector field grad f is orthogonal to the orbits of AdG;
so f is invariant under the AdG action on G3(g).

Proof.We observe that the field Ã in the point p has the form

3∑
i=1

vi ⊗ [A , vi]
⊥

(this comes from the adjoint representation of g) ; so

S〈 [A , v1]
⊥ , [v2 , v2]

⊥ 〉 = (3.15)

= S〈 [A , v1] , [v2 , v3]
⊥ 〉 = (3.16)

= S〈 [A , v1] , [v2 , v3] − fv1 〉 = (3.17)

= S〈 [A , v1] , [v2 , v3] 〉 − S〈 [A , v1] , fv1 〉 = (3.18)

= S〈A , [ v1] , [v2 , v3]] 〉 + S〈 [A , [ v1 , v1] 〉 = (3.19)

= 0 (3.20)

using the Jacobi identity in the last part. (here S means taking the sum after
a cyclic permutation of the three indices).

This is a particular case of a more general situation: given a vector field
P on the Grassmannian we have the following
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Definition 3.1. We define the projection map

γ : TpG3 → g (3.21)

acting as

γ(P ) :=
3∑

i=1

[vi , pi] (3.22)

where the pi are the orthogonal components of the vector field at p.

The map γ(P ) can be interpreted as a projection on the orbit through a
point p, in fact we have the following

Lemma 3.2. Let A ∈ g; let us consider the vector field Ã associated to the
1-parameter group of diffeomorphisms of G3 generated by exp tA through the
adjoint action on g; then a vector field P on G3 is orthogonal to the orbit at
the point p if and only if γ(P ) = 0.

Proof.The condition of orthogonality of P is expressed by

0 = 〈 Ã , P 〉 =

3∑
i=1

〈 [A , vi]
⊥ , Pi 〉 = (3.23)

=
3∑

i=1

〈 [A , vi] , Pi 〉 =
3∑

i=1

〈A , [ vi , Pi] 〉 = (3.24)

= 〈A , γ(P ) 〉 . � (3.25)

Maximal critical submanifolds

The AdG orbit of a 3-dimensional subalgebra is a homogeneous submanifold
of the form

M =
G

N(su(2))
, (3.26)

where N(su(2)) is the normalizer of the subalgebra,i.e. N(su(2)) = {g ∈
g | [g, h] ∈ su(2) ∀h ∈ su(2)} . The critical submanifold obtained choosing the
copy of su(2) ⊂ g corresponding to the maximal root is of particular interest
for us; in fact they are isomorphic to compact Wolf sapces (see [83]), the only
known examples of compact Quaternion-Kähler manifolds. They are sym-
metric spaces of positive scalar curvature, and we will describe them more
in detail in the next chapter.We want however point out here a property of
this type of subalgebras which characterizes their critical submanifolds as the
maxima for the flow of grad f .



3.1 The functional f 40

Observation.The functional f changes sign if we reverse the orientation:
therefore every critical manifold C such that f(C) > 0 has a specular copy
C ′ for whhich f(C ′) < 0; hence for instance Wolf spaces appear both as
absolute maxima and absolute minima.

The property of being a local maximum for f can be deduced by just
looking at the roots diagram of g; to do this, let us recall some facts from
the classical theory of roots: a Lie algebra can be completely reconstructed
from the data encoded in the corresponding Cartan matrix or, equivalently,
in the corresponding Dynkin diagram; these two entities describe the angles
between a couple of simple roots (those such that are a basis of the algebra
and respect to which every other root can be expressed as a linear combina-
tion with integer coefficients of the same sign). These angles are expressed
by coefficients (called Cartan numbers)

nβα := 〈β , α〉 = 2
〈β , α〉
〈α , α〉

for two roots α and β, with ‖β‖ ≥ ‖α‖; these coefficients moreover allow to
reconstruct the α string through β, i.e. the coefficients p, q for which

β − p α, · · · , β + q α

with nβα = p − q is still a root; in Table 3.1 are expressed all the possible
values of 〈α , β〉 for any couple of roots, obtained from the relation

nβα = 2 cos θ
‖β‖
‖α‖ =⇒ nαβnβα = 4 cos2 θ . (3.27)

We have the following proposition, a version of Theorem 4.2 in [83] adap-
ted to our needs:

Proposition 3.3. Let su(2) ⊂ g be a 3-dimensional subalgebra corresponding
to a root, then the decompositions in su(2) modules of g under the restriction
of the adjoint representation has the form

g ∼= su(2) + h[Σ0] + k[Σ1] , (3.28)

with h, k ∈ N if and only if the root is the maximal one.

Proof. Let β be the maximal root and let α �= β be any posotive root; then
α + β is not a root, instead α − β could be a root; finally α − 2β cant’t be
a root, otherwise 2β − α = β + (β − α) > β would be a root, which is
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〈α , β〉 〈β , α〉 θ ‖β‖2/‖α‖2

0 0 π/2 ?

1 1 π/3 1

−1 −1 2π/3 1

1 2 π/4 2

−1 −2 3π/4 2

1 3 π/6 3

−1 −3 5π/6 3

Table 3.1: A list of all the possible values of 〈α , β〉 and the corresponding
angles θ.

impossible. So the Cartan integer nαβ can be 0 or 1, or in other words the
β string through α consists of {α} or {α, α − β}; now if we choose a vector
X in the negative root space V−β, its adjoint action adX applied to elements
Y ∈ Vα kills them after 1 or 2 applications, depending if nα,β is 0 or 1; this
implies that the nilpotent part of gC is completely decomposed in summands
of type Σ0 or Σ1; regarding the Cartan subalgebra h, it can be decomposed
as

h = Hβ ⊕H⊥
β , (3.29)

where H⊥
β consists of trivial su(2) representations, so again of type Σ0. Vice

versa, let β be a root satisfying (3.28), supposing it is not maximal; we can
order the roots so that β belongs to the closure of the positive Weyl cham-
ber, so that 〈α, β〉 ≥ 0 for all α > 0. Then exists a root α > 0 such that
α + β is still a root; now, if 〈α, β〉 = 0 then the β string through α contains
at least two elements, if 〈α, β〉 > 0 at least 3; in both cases α belogs to a
summand of type Σk with k > 1.�
Observation. i)This fact, together with the expression for the Hessian of f
given later (see (3.69)) shows that the Wolf spaces appear as local maxima
(minima) for f ;
ii) another consequence of roots theory is that in the decomposition of g given
by a copy of su(2) associated to a root, we can obtain summands Σk with k
at most 3, because the lenght of any string of roots is at most 4 (see(3.27)).

Actually more can be deduced using the classification of subalgebras due
to Dynkin ([26]): in fact the functional f can be related to the index of a
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representation p : su(2) ↪→ g: this is defined as the number n satisfiyng

〈p(u), p(v)〉g = n〈u, v〉su(2) (3.30)

for u, v ∈ su(2), where 〈·, ·〉(·) denotes the Killing form of the two algebras

normalized in such a way that the highest root has lenght
√

2; therefore the
index is the homotethy factor of the representation p with respect to these
metrics. The relation with f is expressed in the following lemma:

Lemma 3.4. Let su(2) ⊂ g be a subalgebra of index n; then

n =
2

f 2(V )
(3.31)

with V = su(2).

Proof.Consider an orthonormal basis e1, e2, e3 of su(2) satisfying

[e1, e2] =
√

2e3 ; (3.32)

the f is calculated using a basis which is orthonormal with respect to 〈·, ·〉g,
so consider the g-normalized basis

ẽi =
ei

‖ei‖g

=
ei√
n

; (3.33)

then

f(su(2)) = 〈[ p(ẽ1), p(ẽ2)], p(ẽ3)〉g =

√
2

n
√
n
〈p(e3), p(e3)〉g (3.34)

=
√

2
n

n
√
n
〈e3, e3〉su(2) =

√
2√
n
, (3.35)

hence the conclusion.�
Dynkin showed that the index n is a natural number: a consequence is that

a list of the possible values of f in correspondece of the critical submanifolds
is given by:

±
√

2, ±1, ±
√

2√
3
, ± 1√

2
, ....etc. (3.36)

Dynkin also showed the following theorem:

Theorem 3.5. Let g̃ a subalgebra of g of index 1; then the maximal root and
its root vectors coincide with the maximal root and root vectors of g.

A consequence is the following:

Corollary 3.2. The functional f attains its absolute maximum (minimum,
changing orientation) on the Wolf spaces.
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3.2 The functional g

We define now another functional on the grassmannian which will be useful
in the sequel. We define it as

g(V ) =
∑
i<j

‖[vi , vj ]‖2 , (3.37)

and observe that it can be written as

g(V ) = 3 f 2 + ‖grad f‖2 . (3.38)

We can describe the field grad g and then use the previous results to show
that it is orthogonal to the AdG orbits; before this we record

Definition 3.2. Let V be a k-dimenional linear subspace of a Lie algebra g

with an ON basis v1, · · · vk; the generalized Casimir operator is a map

C : V �� g (3.39)

defined as

C(v) =
k∑

i=1

(advi
)2(v) . (3.40)

This concept generalizes that of the Casimir operatr, which is defined as

C(v) =

k∑
i=1

(ρvi
)2(v) . (3.41)

where ρ : V → g′ is a representation of a Lie algebra V = g′ in g, and
not a simple vector space.This operator is related to the laplace-Beltrami
operator; for an application in a representation-theorethic context see [27].

Going back to g, we have

Proposition 3.6. The gradient of g is

grad g = −2
3∑

i=1

vi ⊗ C(vi)
⊥ , (3.42)

where C is the generalized Casimir operator associated to V .
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Proof.We have

g(V (t)) =
3∑

i<j

‖[vi + tPi , vj + tPj]‖2 = (3.43)

= g(V0) + t(2[v1 , P2] , [v1 , v2] + [P1 , v2] , [v1 , v2]+ (3.44)

+ 2[v2 , P3] , [v2 , v3] + [P2 , v3] , [v2 , v3]+ (3.45)

+ 2[v3 , P1] , [v3 , v1] + [P3 , v1] , [v3 , v1])+ (3.46)

+O(t2) (3.47)

and so

d

dt
g(V (t))|t=0 = − 2〈P1 , [v2 , [v2 , v1]] 〉 − 2〈P2 , [v1 , [v1 , v2]] 〉+ (3.48)

− 2〈P3 , [v2 , [v2 , v3]] 〉 − 2〈P2 , [v3 , [v3 , v2]] 〉+ (3.49)

− 2〈P1 , [v3 , [v3 , v1]] 〉 − 2〈P3 , [v1 , [v1 , v3]] 〉 (3.50)

= −2

3∑
i=1

〈Pi , C(vi) 〉 , (3.51)

by definition of the Casimir operator; the conclusion follows as for grad f .�
Observation.A consequence is that the three dimensional subalgebras of g

are critical points for g, as well as for f , but not necessarily all of them.

The next step is proving that g is AdG invariant; this actually follows
directly from the invariance of 〈, 〉 and of [, ], but but we prove it here to
better exemplifying the use of the operator γ.

We need the following lemma:

Lemma 3.7. The following identity holds:

3∑
i,j=1

[vi , [vj , [vj , vi]]] = 0 .

Proof.We apply the Jacobi Identity to one of the terms of the sum (after
noting that for i = j the term is 0):

0 = [vi , [vj , [vj , vi]]] + [[vj , vi] , [vi , vj]] + [vj , [[vj , vi] , vi]] = (3.52)

= [vi , [vj , [vj , vi]]] + [vj , [vi , [vi , vj]]] ; (3.53)

the conclusion follows immediately. �

We are now able to prove the following fact, previously stated.
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Theorem 3.8. We have
γ(grad g) = 0 , (3.54)

so grad g is orthogonal to the AdG orbits and g is AdG invariant.

Proof.We have

γ(grad g) =
3∑

i,j=1

[vi , C(vi)] =
3∑

i,j=1

[vi , [vj , [vj , vi]]
⊥] ; (3.55)

but by definition

[vj , [vj , vi]]
⊥ = [vj , [vj , vi]] −

3∑
k=1

〈 [vj , [vj , vi]], vk 〉vk , (3.56)

and then

γ(grad g) =
3∑

i,j=1

[vi , [vj , [vj , vi]]]−
3∑

i,j,k=1

[vi , 〈 [vj , [vj , vi]], vk 〉vk] ; (3.57)

but the first summand is zero by the previous lemma; so we have to check
the second summand:more explicitly

3∑
i,j,k=1

[vi , 〈 [vj , [vj , vi]], vk 〉vk] = [v1 , 〈 [v2 , [v2 , v1]], v1 〉v1]+

+[v1 , 〈 [v2 , [v2 , v1]], v2 〉v2] + [v1 , 〈 [v2 , [v2 , v1]], v3 〉v3]+

+[v2 , 〈 [v1 , [v1 , v2]], v1 〉v1] + [v1 , 〈 [v1 , [v1 , v2]], v2 〉v2]+

+[v1 , 〈 [v1 , [v1 , v2]], v3 〉v3] + [v1 , 〈 [v3 , [v3 , v1]], v1 〉v1]+

+[v1 , 〈 [v3 , [v3 , v1]], v2 〉v2] + [v1 , 〈 [v3 , [v3 , v1]], v3 〉v3]+

+[v3 , 〈 [v1 , [v1 , v3]], v1 〉v1] + [v3 , 〈 [v1 , [v1 , v3]], v2 〉v2]+

+[v3 , 〈 [v1 , [v1 , v3]], v3 〉v3] + [v3 , 〈 [v2 , [v2 , v3]], v1 〉v1]+

+[v3 , 〈 [v2 , [v2 , v3]], v2 〉v2] + [v3 , 〈 [v2 , [v2 , v3]], v3 〉v3]+

+[v2 , 〈 [v3 , [v3 , v2]], v1 〉v1] + [v2 , 〈 [v3 , [v3 , v2]], v2 〉v2]+

+[v2 , 〈 [v3 , [v3 , v2]], v3 〉v3] =

=〈 [v1 , v2] , [v2 , v3] 〉[v3 , v1] + 〈 [v2 , v1] , [v1 , v3] 〉[v3 , v2]+

+〈 [v1 , v3] , [v3 , v2] 〉[v2 , v1] + 〈 [v3 , v1] , [v1 , v2] 〉[v2 , v3]+

+〈 [v3 , v2] , [v2 , v1] 〉[v1 , v3] + 〈 [v2 , v3] , [v3 , v1] 〉[v1 , v2] =

= 0 . �
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3.3 Hessians

We introduce next some basic language from Morse-Bott theory,which will be
useful in the sequel; then we will study the critical manifolds for the functional
g, in comparison with those of f .

Morse-Bott theory

Morse-Bott theory is a generalization of Morse theory: allowing only the exis-
tence of isolated critical points is somewhat restrictive, as for example costant
functions are not of Morse type; nor it is the height function of a 2-torus lying
horizontally (the critical manifolds are two circles).Morse-Bott theory fur-
nishes a decomposition of the given manifold in terms of cell bundles, relating
its topology to that of critical submanifolds.

A critical submanifold X ⊂ M for a differentiable function f : M −→ R

is said nondegenerate if the 0-eigenspace for the Hessian of f at any point x
of X coincides with TxX. The index of a critical manifold X is the dimension
of the negative eigenspace of the Hessian of f at x ∈ X.

Definition 3.3. Let f be a smooth real valued function on a differentiable
manifold M ; if all its critical manifolds are nondegenerate, then we call it a
Morse-Bott function.

The Morse-Bott inequalities allow us to estimate the Betti numbers of
the manifold M with the number of critical manifolds of a fixed index:

Theorem 3.9. The following equality holds:

MB(t) − P (t) = (1 + t)Q(t) , (3.58)

where Q(t) is a polynomial with nonnegative coefficients.

Definition 3.4. A Morse-Bott function is called perfect if

P (t) = MB(t). (3.59)

Theorem 3.9 implies that if MB(t) contains no odd powers, then the
Morse-Bott function is authomatically perfect.

The Hessian of g

The functional f is known to be a Morse-Bott function (see (3.69)); instead
not much is known about the critical manifolds of the functional g; first of all
we determine an expression for the Hessian of g at the critical submanifolds
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corresponding to subalgebras; in the later sections we will try to find new
critical manifolds for g.

Let us calculate the Hessian of g at a critical point for f , in the same
spirit of Proposition 2.2 in [50]:

Proposition 3.10. The eigenvalues of the Hessian of the function g at a
critical point for the flow of grad f are decribed by the second degree polyno-
mial:

Hg|
Σk

= 2f 2(l2 − l − 2) . (3.60)

where l is an integer depending on the degree of the su(2) representation in
V ⊥ and V ⊗ V ⊥.

Proof.We have

Hg (X, Y ) =2S (〈 [XY v1 , v2] , [v1 , v2] 〉 + 〈 [Xv1 , Y v2] , [v1 , v2] 〉
+ 〈 [v1 , XY v2] , [v1 , v2] 〉 + 〈 [Xv1 , v2] , [Y v1 , v2] 〉
+ 〈 [v1 , Xv2] , [v1 , Y v2] 〉 + 〈 [Y v1 , Xv2] , [v1 , v2] 〉
+ 〈 [Xv1 , v2] , [v1 , Y v2] 〉 + 〈 [Y v1 , v2] , [v1 , Xv2] 〉) ,

for 24 terms in total.Defining the operator

AX = −1

f

∑
j

ad vj ◦X ◦ ad vj (3.61)

and grouping the terms in a suitable way we obtain:

2S (〈 [XY v1 , v2] , [v1 , v2] 〉 + 〈 [v1 , XY v2] , [v1 , v2] 〉) =

2S f(〈 [XY v1 , v2] , v3 〉 + 〈 [v1 , XY v2] , v3 〉) =

−2S f(〈 Y v1 , X[v2 , v3] 〉 + 〈 Y v2 , X[v3 , v1] 〉) =

− 4f 2
∑

i

〈Y vi , Xvi〉

using 6 terms; then

2S (〈 [Xv1 , Y v2] , [v1 , v2] 〉 + 〈 [Y v1 , Xv2] , [v1 , v2] 〉) =

2S f(〈 [Xv1 , Y v2] , v3 〉 + 〈 [Y v1 , Xv2] , v3 〉) =

2S f(〈Xv1 , [Y v2 , v3] 〉 + 〈 Y v1 , [Xv2 , v3] 〉) =

2S f(〈Xv3 , [Y v1 , v2] 〉 + 〈 Y v1 , [Xv2 , v3] 〉) =

2S f(〈 Y v1 , [v2 , Xv3] − [v3 , Xv2] 〉 =

= − 2f
∑

i

〈Y vi , AXvi〉 ,
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using other 6 terms; finally

2S (〈 [Xv1 , v2] , [Y v1 , v2] 〉 + 〈 [v1 , Xv2] , [Y v1 , v2] 〉)+
〈 [Xv1 , v2] , [v1 , Y v2] 〉 + 〈 [v1 , Xv2] , [v1 , Y v2] 〉) =

2S (〈 Y v1 , [v2 , AXv3] 〉 − 〈 Y v2 , [v1 , AXv3] 〉) =

2S f(〈AXv3 , [v2 , Xv1] − [v1 , Xv2] 〉 =

=2
∑

i

〈AY vi , AXvi〉 ,

using the last 12 terms; so in conclusion we can write

Hg (X, Y ) =
∑

i

−4f 2〈Y vi , Xvi〉 − 2f〈Y vi , AXvi〉 + 〈AY vi , AXvi〉 ;

(3.62)
moreover recall that if v1, v2, v3 is an orthonormal basis for te subalgebra
isomorphic to su(2) the representation p is not an isometry with respect to
the standard Killing forms, in fact

Bg(p
∗vi , p

∗vj) = −2 δij f(V )2 ;

so the Casimir operator Cρ associated to the su(2) representation ρ obtained
from the adjoint action of V inside g can be expressed as

Cρ = − 1

2f(V )2

3∑
i=1

ρ(vi)ρ(vi) ; (3.63)

this operator acts on the irreducible su(2) representation Σk by multiplication
for the constant

C(k) =
(k + 1)2 − 1

8
. (3.64)

The definition of Cp implies the equality

CV ∗⊗V ⊥X = CV ⊥X +XCV +
1

f
AX (3.65)

so that we have
AX = f(CV ∗⊗V ⊥ − CV ⊥ − 1)X . (3.66)

Then, if X = Y is an element of an orthonormal basis for TV G3 = V ∗ ⊗ V ⊥

belonging to the subrepresentation Σk, defining a new parameter as

l = CV ∗⊗V ⊥ − CV ⊥ − 1 (3.67)
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Figure 3.1: The graphs of the Hessians of f and g in function of the parameter
l.

depending on the degree of the Σk summand, hence the conclusion.�
The polynomial in (3.60) has −1 and 2 as zeroes; we observe that -1 is a root
also for the corresponding polynomial for f : in fact a similar calculation (see
[50]) gives

Hf (X, Y ) = −
∑

i

f〈Y vi , Xvi〉 + 〈Y vi , AXvi〉 (3.68)

and consequently

Hf|
Σk

= −f(l + 1) . (3.69)

Observation:Equation (3.69) implies that f is a Morse-Bott function, see
[50].

The following lemma describes some relations between the Hessians of
the two functionals:
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Lemma 3.11. Let V = su(2) ⊂ g be a critical point for f ; then: i)the 0-
eigenspace for the Hessian of g contains that of the Hessian of f ; the inclusion
is strict if and only if su(2)⊥ ⊃ Σ4;

ii)if the corresponding critical manifold is a local maximum (minimum)
for f then it is also a local maximum (minimum) for g .

Proof. i)Equation (3.60) implies that a sufficient condition for the Hessian
of g being 0 is that

CV ∗⊗V ⊥ − CV ⊥ = 0 , (3.70)

and this happens exactly in the middle term of the tensor product of su(2)
representations that describe the tangent space at V :

Σ2 ⊗ Σk = Σk+2 + Σk + Σk−2 ; (3.71)

this is consistent with the fact that critical manifolds for f are also critical
for g; but the condition is not necessary, for the presence of the second root
2: for example, as we shall see later, in the so(3) critical manifold for su(3)
other directions have 0 as eigenvalue for the Hessian of g; in fact CΣ6 is the
multiplication for 6, so

CΣ6 − CΣ4 − 1 = 6 − 3 − 1 = 2 . (3.72)

This last condition is satisfied if and only if k = 4: in fact we are asking that

l = CV ∗⊗V ⊥ − CV ⊥ − 1 = 2 (3.73)

which is equivalent to write

l =
(k + 2 + 1)2 − 1

8
− (k + 1)2 − 1)2

8
− 1 = 2 (3.74)

if and only if
k2 + 2k + 8

8
− k2 + 2k

8
− 1 = 2 (3.75)

if and only if
k = 4 ; (3.76)

so we can have another 0 eigenspace for the Hessian of g if and only if

V ⊥ ⊃ Σ4 . (3.77)

ii)We note first that at a local minimum for f with f < 0 the condition

l + 1 ≥ 0 (3.78)
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has to be satisfied, but this means that

CV ∗⊗V ⊥ − CV ⊥ ≥ 0 ; (3.79)

this happens if and only if (see also (3.3))

V ⊥ = aΣ0 + bΣ1 , a, b ∈ N (3.80)

so that in consequence we have

Hg = −4f 2 or Hg = −9

4
f 2 , (3.81)

on the normal bundle, so that V is a local maximum for g. On the other hand
we can’t have local minima for f when f > 0 because for analogous reasons
the decompositon of the tangent space should not contain irreducible su(2)
modules of dimension grater than the ones in V ⊥, but this is impossible.We
can obtain all local maxima for f just reversing the orientation of a min-
imum, so that for what we have just said they are maxima also for g, the
conclusion follows.�

3.4 Low dimensional examples

We are going now to study more in detail the Hessians of the two functionals
f, g on the Grassmannians of 3-planes of some low dimensional classical Lie
algebras.

The Lie algebra u(2)

We know that critical manifolds for f are also critical for g; it’s quite natural
to ask ourselves if these are all of them; the answer is no. In fact for example
let us consider the case of u(2): we have the orthogonal decomposition

u(2) = R ⊕ su(2) ,

where the R factor (generated by an element h) kills everything under ad-
joint action; the known critical manifolds inside the Grassmannian G3(u(2))
(isomorphic to S3) are the ones corresponding to the copy of su(2) with the
two orientations (with normalizer the whole algebra, so isolated points); these
are the absolute maximum and minimum for f , but only local maxima for
g; this consideration implies the existence of other critical points. In fact let
us consider the 3 dimensional subspace V generated by h, a1, a2, where the
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last two elements are two of the standard generators of su(2) properly nor-
malized, it’s immediate to check that the image under ad2 is contained in V
itself, so that the orthogonal projection makes grad g = 0 at this point;more
precisely:

(ad h)2(V ) = 0 ; (ad a1)
2(V ) = λa2 ; (ad a1)

2(V ) = λa2 ;

we can observe that the invariance under the ad2 action of the basis on
itself, differently from the one of the ad action for the f critical points, is
sufficient but not necessary, as each component of grad g has the form

[vi , [vi , vj ]]
⊥ + [vk , [vk , vj]]

⊥ ,

so the two summands can annihilate separately or cancel each other. Going
back to our critical point, the isotropy of the adjoint action is given exactly
by h itself and the missing element a3, and the orbit under the Adjoint action
is the sphere S2 that parametrizes the subspaces

V = 〈 h ,
3∑

i=1

αiai ,

3∑
i=1

βiai 〉 ,

with
∑3

i=1 α
2
i =

∑3
i=1 β

2
i = 1 and

∑3
i=1 αiβi = 0, that is all the 3 dimensional

subspaces containing h. There are no more critical points for g: in fact the
remaining points of the Grassmannian are precisely the 3-dimensional sub-
spaces that do not contain h, excepted su(2) with the two orientations; for
dimensional reasons, the intersection of such a subspace with su(2) is pre-
cisely 2 dimensional, so that it is spanned, choosing a suitable basis, by

〈αh+ βa1 , a2, , a3〉 ,
with the ais orthonormal in su(2), and α2 + β2 = 1, β �= {0, 1}; these are
parametrized by G̃2(su(2)) × (S1 − ({(0, 1)} ∪ {(0,−1)}); now it’s clear that
the first component of grad g cannot be 0, in fact

(ad2a2) + (ad2a3)(αh+ βa1) = λβa1

for some λ �= 0, that does not belong to V evidently. The Adjoijnt orbits of
theese points are 2 dimensional spheres of ray α; the dependence from the
parameter β is expressed by

f(β) = ± 1√
2
β , g(β) =

1

2
+ β2

so that the second derivative of g along the curve

γ(β) = V (β) , β ∈ [0 , 1]

is constantly equal to 2.
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Σ2 Σ4 Σ6

C 1 3 6

Hf −√
2 0 3/

√
2

Hg 10 0 0

Table 3.2: The Hessians at so(3) ⊂ su(3)

Σ1 Σ2 Σ3

C 3/8 1 15/8

Hf 0
√

2 3/
√

2

Hg 0 −8 −9

.

Table 3.3: The Hessians at su(2) ⊂ su(3)

The Lie algebra su(3)

The following tables describe the behaviour of the two Hessians at the critical
points for f : at so(3) (with f = − 1√

2
and g = 3

2
) we have the decomposition

Tso(3)G3 = Σ2 ⊗ Σ4 = Σ2 + Σ4 + Σ6 , (3.82)

and the eigenvalues of the Hessians are reported in Table 3.2; instead at
su(2) ⊂ su(2), with f = −√

2 and g = 6,where the decomposition of the
tangent space is given by

Tsu(2)G3 = Σ2 ⊗ (Σ0 + 2Σ1) = Σ2 + 2Σ1 + 2Σ3 (3.83)

we have the Hessians of the two functions taking the values as in Table 3.3.
The last 0 in the last row of Table 3.2 could be interpreted as a degeneracy

of the Hessian of g, so that it would not be a Morse-Bott function, or it could
mean that the critical manifold for g strictly contains the one of f . We now
recall the decomposition of su(3) under the adjoint action restricted to the
Cartan subalgebra h of the diagonal elements:

su(3) = h ⊕ ĝα ⊕ ĝβ ⊕ ĝα+β , (3.84)

where ĝα denotes the 2 dimensional real space generated by elements of the
form (gα − g−α) and ı(gα + g−α),α being a root; the Adjoint action of the
maximal torus corresponding to h is essentially a u(1) action on each of
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these summands: in fact the kernel of the corresponding root in h, which is
a hyperplane, is tangent in general to a rank(g)− 1 dimensional torus which
is the stabilizer of a point of the maximal torus representation.

It is straightforward to prove that the 3-dimensional torus T3

V = 〈 1√
2

⎛⎝ 0 eıs 0
−e−ıs 0 0

0 0 0

⎞⎠ ,
1√
2

⎛⎝0 0 0
0 0 eıt

0 −e−ıt 0

⎞⎠ ,
1√
2

⎛⎝ 0 0 eıu

0 0 0
−e−ıu 0 0

⎞⎠ 〉

for s, t, u ∈ R identifies 3-dimensional subspaces that are closed under the
squared adjoint action mutually applied between the generators, as usual, so
that grad g = 0 at V ; we observe that these subspaces are not subalgebras
excepted when the parameters satisfy the condition

s+ t− u = kπ (3.85)

for which we get the intersection of T3 with the orbit of so(3) under the
Adjoint action; the restriction of f to this submanifold is expressed by

f(s, t, u) =
1√
2

cos (s+ t− u) (3.86)

so that the intersection with the fibres is given by the 2 dimensional tori
s+ t− u = const; instead we have

g =
3

2
(3.87)

constantly.

Observation.This explains partially the apparent degeneracy of the Hessian
of g (here we have one new degeneracy direction,while the 0-eigenspace for
Hg is S6 which is 7-dimensional as seen in Table 3.2).

The kernel of the adjoint action (that is the “normalizer” of V ) at the
points of the torus is precisely so(3) for the subalgebras, giving the already
known critical manifold

SSU (3 ) = SU(3)/SO(3) ; (3.88)

instead it is trivial at all other points: in fact the Cartan subalgebra h is never
in the kernel, as it acts as a rotation in the spaces ĝα; on the other hand the
three generators of V preserve V itself if and only if V is a subalgebra; in the
end, the elements orthogonal to these last ones, with corresponding parame-
ters

s′ = s + π/2 , t′ = t+ π/2 , u′ = u+ π/2



3.4 Low dimensional examples 55

Σ2

C 1

Hf
√

2

Hg −8

Table 3.4: The Hessians at su(2) ⊂ so(4)

satisfy the condition (ad v1(s
′))(v1(s)) ∈ h for example, so they don’t preserve

the space too. So, in conclusion, if s+t−u �= kπ the Adjoint orbit is the whole
SU(3).

The Lie algebra so(4)

Inside so(4) we can find essentially three copies of su(2) (for a total of 6 con-
sidering the orientation): two corresponding to the standard decomposition

so(4) = su(2) ⊕ su(2) (3.89)

so that we get the decomposition

Σ2 ⊗ (Σ0 + Σ0 + Σ0) = Σ2 + Σ2 + Σ2 (3.90)

and the Hessians at theese points (which are the maxima and the minima for
f), take the values reported in Table 3.4. The two functions assume values
f(su(2)) = −√

2 and g(su(2)) = 6.

The other critical point for f is the diagonal subalgebra su(2)∆; the values
of our functions are respectively f(su(2)∆) = −1 and g(su(2)∆) = 3; the
decomposition of the tangent space is given by:

Σ2 ⊗ Σ2 = Σ4 + Σ2 + Σ0 (3.91)

and the behaviour of the Hessians is described in Table 3.5. This tells us
for example that this cannot be the absolute minimum for g, and suggests
that we can find other critical manifolds for it. In fact for example it is easy
to check that the following subspaces are critical for g; actually this is just a
consequence of the functoriality respect to the immersion of subalgebras, in
particular for the immersion of u(2): if vi denotes an orthonormal basis of
su(2) the space

V = 〈(v1 , 0) , (v2 , 0) , (0 , v3)〉 (3.92)
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Σ0 Σ2 Σ4

C 0 1 3

Hf −1 0 2

Hg 8 0 −4

Table 3.5: The Hessians at su(2)∆ ⊂ so(4)

comes from the immersion

su(2) ⊕ R ↪→ su(2) ⊕ su(2) (3.93)

with values f(V ) = 0 and g(V ) = 2;moreover the kernel of the adjoint action
on V is given by the abelian subalgebra

u(1) × u(1) = 〈(v3 , 0) , (0 , v3)〉 (3.94)

so that the Adjoint orbit is
SO(4)/T 2 ; (3.95)

on the other hand the diagonal immersion

su(2) ⊕ R
∆
↪→ su(2) ⊕ su(2) (3.96)

has associated the space

W = 〈(v1 , v1) , (v2 , v2) , (v3 , −v3)〉
with values f(W ) = 0 and g(W ) = 3; in this case the kernel of the adjoint
action is

su(2) = 〈(v1 , −v1) , (v2 , −v2) , (v3 , v3)〉 (3.97)

and the Adjoint orbit is then

SO(4)/O(3) = RP3 . (3.98)

The Lie algebra so(5)

The decomposition at the maximal critical manifold, corresponding to the
long root, is given by

so(5) = su(2) + 2Σ1 + 3Σ0 (3.99)
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Σ0 Σ2 Σ4 Σ̃2

C 0 1 3 1

Hf −1 0 2
√

2

Hg 8 0 −4 −8

.

Table 3.6: The Hessians at su(2)∆ ⊂ so(5)

and the tangent space is

TC

su(2)∆
G3(so(5)) ∼= Σ2 ⊗ (2Σ1 + 3Σ0) = 2(Σ3 + Σ1) + 3Σ2 (3.100)

where 2Σ1 is tangent to HP1, and the remaining summands are the sta-
ble part: the Hessians in fact behave in the same way described in Table
3.3, because the representations involved are the same (but with different
multuplicities), see (3.83).

The decomposition associated to the next to minimal critical manifold, or
in other words to the copy su(2)∆ corresponding to the short root, is given
by

so(5) = su(2)∆ + Σ0 + 2Σ2 (3.101)

so that

TC

su(2)∆
G3(so(5)) ∼= Σ2 ⊗ (Σ0 + 2Σ2) = 2(Σ4 + Σ0) + 3Σ2 (3.102)

and the eigenvalues of the Hessians are described in Table 3.6.

Observation.The Σ̃2 column comes from the Σ0 summand of the decompo-
sition of V ⊥, so that the values of the Hessians are different with respect to
the Σ2 coming from the Σ4 summand even if they are isomorphic represen-
tations, exemplifying the dependence of the parameter l from both V ⊗ V ⊥

and V ⊥ (see (3.67)).

3.5 New critical manifolds for gradg

Critical points for g provide some kind of “generalized subalgebras”, in the
sense that

grad f = 0 =⇒ grad g = 0 ; (3.103)

we have already shown in the previous sections that the converse is not
true, analyzing in detail examples of compact Lie algebras.
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Another approach for finding g critical points that are not subalgebras
is looking at the root structure, using the same type of arguments used to
prove Proposition 3.3.

Let us consider the case that 〈β , α〉 = −2 for two simple roots; this
happens precisely in so(2n + 1), sp(n) and f(4). This means essentially that
α + β and 2α + β are the only roots belonging to the α string through
β (β − α is never a root if they are both simple).Now we can consider the
3 dimensional space V generated by elemnts of norm 1 taken in the spaces
(gα−g−α), (gβ−g−β) and (g2α+β−g−(2α+β)); if we perform the double adjoint
action of one generator on the other, keeping in mind that

[gα , gβ] ⊂ gα+β (3.104)

we fall in the same subspaces: in fact we have to take in account that the
following are not roots:

2(α+ β) , α + 2β , 3α + 2β ,

the last one because every root of level m can be obtained from one of
level m − 1 by just adding one simple root; but nor 2(α + β) nor 3α + β
are roots in our situation. So taking the orthogonal projection as usual the
gradient of g annihilates; this is not a subalgebra, as α+ β stands in V ⊥. In
particular consider sp(2): a subspace of this kind gives origin, as for su(3), to
a 3 dimesnional torus described in terms of matrices (not normalized) by⎛⎜⎜⎝

0 0 eıs 0
0 0 0 0

−e−ıs 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 0
0 0 0 eıt

0 0 0 0
0 −e−ıt 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 eıu 0 0

−e−ıu 0 0 0
0 0 0 e−ıu

0 0 −eıu 0

⎞⎟⎟⎠
corresponding respectively to β, 2α+ β and α. This torus is contained in the
fibres f−1(0) and g−1(1), and doesn’t contain any subalgebra.

Lie Triple Systems

Another possible approach for trying to understand g critical manifolds is
through the so called Lie Triple Systems (from now on LTS), i.e. those
subspaces V of a Lie Algebra which satisfy the condition

[X , [Y , Z]] ∈ V ∀X, Y, Z ∈ V ; (3.105)

we quote here a result which links LTS to totally geodesic submanifolds of a
symmetric space (see [35]):
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Proposition 3.12. Let M = G/K be a Riemannian gobally symmetric
space; let n ⊂ m be a LTS; put N = Exp n. Then N has a natural differ-
entiable structure in which it is a totally geodesic submanifold of M with n
as tangent space. On the other hand if N is a totally geodesic submanifold
of M and n is the tangent space at some point, then it is a LTS.

We remark that N is a globally symmetric space too, of the form G′/K ′,
where G′ is a closed subgroup of G and K ′ = K ∩G′.We are now in position
to state the following criterion for identifying critical submanifolds for grad g
which are not critical for grad f , or in other words which do not correspond to
subalgebras: recall that grad g = 0 is equivalent to the set of three equations

[vi, [vi, vk]]
⊥ + [vj, [vj , vk]

⊥ = 0 (3.106)

for i, j, k = 1, 2, 3 modulo ciclyc permutations; then we have:

Proposition 3.13. Let G be a compact Lie group with Lie algebra g and
let M = G/K be a symmetric space; then any 3-dimensional totally geodesic
submanifold N corresponds to a critical submanifold in G3(g) for grad g which
is not critical for grad f .

Proof.Proposition (3.12) translates the condition of being a totally geo-
desic submanifold to the algebraic condition of a LTS; this clearly implies
that V satisfies equations (3.106) ; moreover a LTS cannot be a subalge-
bra, as V ⊂ m implies

[u, v] ∈ h ⊂ V ⊥ (3.107)

for property (1.16) of symmetric spaces; the Adjoint orbit of the LTS does
not depend on the base point chosen in N .�

For a classification of totally geodesic submanifolds of symmetric spaces
see [18] and [19].

We go now do describe some examples: we start with the decomposition

so(5) = so(4) ⊕ m (3.108)

which corresponds to the symmetric space

SO(5)/SO(4) = S4 ; (3.109)

the decomposition can be written in terms of the roots structure in the fol-
lowing way (as usual we shall denote ĝα the 2-dimensional subspace generated
by (gα − g−α) and ı(gα + g−α) and with t the Cartan subalgebra):

so(5) = (t + ĝβ + ĝ2α+β) + (ĝα + ĝα+β) (3.110)
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where α and β are simple roots labelled consistently with the previous sec-
tion; so

Tp S
4 = ĝα + ĝα+β (3.111)

and every 3 dimensional totally geodesic subanifolds is a maximal S3; but
being this a rank 1 symmetric space, that means that the isotropy (Adjoint)
representation of SO(4) on Tp S

4 is transitive on the unit vectors, and being
all 3 dimensional subspaces of the tangent space identified by the orthogonal
unit vector, we can essentially obatin all elements in the same Adjoint orbit
in this way.We choose just to fix the ideas the space

V = ĝα + (gα+β − g−(α+β)) , (3.112)

and one can check directly that it satisfies the required condition.The values
of our functions are at this point

f(V ) = 0 , g(V ) = 3 . (3.113)

In this way we can give a different interpretation of the critical point found
in the previous section; in fact we can consider the decomposition

sp(2) = (t + ĝα+β) + (ĝα + ĝβ + ĝ2α+β)

= (R ⊕ su(2)) ⊕ 2Σ2

corresponding to the symmetric space

Sp(2)

SU(2)U(1)
; (3.114)

the 3 dimensional subspace

V = (gα − g−α) + (gβ − g−β) + (g2α+β − g−(2α+β)) (3.115)

satisfies the definition of LTS, so can be thought as the tangent space of a
totally geodesic submanifold of this last one.

Now let us go back to su(3): we can decompose it as a symmetric pair as

su(3) = (t ⊕ ĝα+β) + (ĝα + ĝβ)

= (R ⊕ su(2)) ⊕ 2Σ1 (3.116)

and for example if we choose the 3 dimensional subspace in 2Σ1

V = ĝα + (gβ − g−β) (3.117)
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we see that it is a LTS,with f(V ) = 0 and g(V ) = 3, so this is not contained
in the torus found before.

The kernel of the adjoint action at this point is given by the kernel of β
inside h, in fact it kills (gβ − g−β) and rotates ĝα, so the Adjoint orbit is

SU(3)

U(1)
. (3.118)

Incidentally we can observe that among the examples found until this
moment only some belong to this family; for instance in the 3 dimensional
tori found in su(3) and sp(2) only the 2 dimensional tori corresponding to the
conditions s+ t−u = kπ (the subalgebras so(3) in su(3)) and s− t−2u = kπ
in the latter situation are associated to totally geodesic submanifolds in some
symmetric space (the Lie group SU(3) itself in the first case, for example).
This says that the condition of being a LTS is strictly stronger than asking

[vi, , [vi , vj]] ⊂ V (3.119)

with vi, vj a pair from an orthonormal basis; nevertheless this point of view
suggests the possibility of finding an interpretation of the gradient of g in
terms of the curvature tensor of suitable symmetric spaces.



Chapter 4

Quaterion-Kähler spaces

In this chapter we introduce Quaternion-Kähler geometry, showing the main
examples in the case of positive scalar curvature: compact Wolf spaces. To
give a more rich picture of the background we describe then the twistor and
Swann bundles of Wolf spaces, which are important tools in the study of
quaternionic geometry, but which houwever will not play a crucial rôle in our
exposition. In Section 4.3 we introduce a way of describing the Sp(n)Sp(1)
structure which is compatible with the tangent space of G3 at critical points
for f in a purely algebraic way: this is the first link between quaternionic
and Grassmannian geometry. In this same spirit, in the last section we give a
non-standard description of the Sp(2)Sp(1)-invariant 4-form in R8.

4.1 The Wolf Spaces

We state here the basic definitions and facts about Quaternion-Kaäler man-
ifolds.References for this material are [71], [13], [44].

A Quaternion-Kähler manifold (from now on QK manifold) M of dimes-
nion 4n is a Riemannian manifold characterized by the reduction of the re-
stricted holonomy group Hol0 to the group Sp(1)Sp(n) ⊂ SO(4n); the com-
plexified holonomy representation corrsponds to C2 ⊗ C2n ∼= H ⊗ E, where
H,E are the standard representations of Sp(1) and Sp(n) respectively.

The invariant symplectic 2-forms ωH , ωE can be used to describe the
(symmetric) metric tensor in terms

g = ωH ⊗ ωE . (4.1)

These two representations have both a quaternionic structure, in other words
an invariant antilinear endomorphism ε such that ε2 = −1; this structure
allows to identify C2 with H and C2n with Hn. The tensor product εHE = εH⊗
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εE is instead an involutive invariant antilinear map, defining a real structure
on H ⊗ E, so that the real tangent space at a point TxM is the fixed point
set for εHE :

TxM ∼= [H ⊗E] = {a ∈ H ⊗ E| εHE(a) = a}. (4.2)

We have the embedding sp(1) ∼= S2H ↪→ End(TMC), acting on TMC in
the following way:

S2H ⊗ (H ⊗ E) � � �� (H ⊗H) ⊗ (H ⊗E) �� H ⊗ E (4.3)

contracting the underlined factors using the invariant form ωH . In this sense
S2H , also called the quaternionic bundle, can be also identified with sp(1) as
the Adjoint representation of Sp(1) ⊂ Hol0(M), and thanks to the metric also
as a subbundle of

∧2 TM . A local trivialization is given by a triple of skew-
symmetric endomorphisms I1, I2, I3 satisfying the quaternionic relations:

IiIj = (−1)εIk , (4.4)

with the sign depending on the permutation ijk. QK manifolds are Einstein
(see [71]), therefore have constant scalar curvature s; we will only consider
the case s > 0. Alternative definitions of QK manifolds will be provided in
Section 4.4.

A fundamental example of compact Quaternion-Kähler manifolds are
those described by Wolf in [83]; they are symmetric spaces, and as Alek-
seevsky showed in [2], they are the only complete homogeneous examples
with positive scalar curvature.Moreover LeBrun and Salamon conjectured
that there are no others; this conjecture was proven up to dimension 12 (see
[69], [39], [40]).We have in part described the structure of these spaces in
section 3.1, we will go more in deep now: recall that they are defined as the
quotient

M =
G

N(sp(1))
, (4.5)

where sp(1) is a subalgebra corresponding to the maximal root and K :=
N(su(2)) is its normalizer; there is an exponent of this type for each simple
Lie group, classical

HPn =
Sp(n+ 1)

Sp(n)Sp(1)
; G2(C

n) =
SU(n)

S(U(n− 2) × U(2)
; (4.6)

G̃4(R
n) =

SO(n)

SO(n− 4)SO(4)
(4.7)
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and exceptional:

G2

SO(4)
;

F4

Sp(3)Sp(1)
;

E6

SU(6)Sp(1)
; (4.8)

E7

Spin(12)Sp(1)
;

E8

E7Sp(1)
. (4.9)

These spaces are all symmetric and have positive scalar curvature; their non-
compact duals give examples of QK symmetric spaces of negative scalar
curvature; the theory of negative QK manifolds has rather different devel-
opments with respect to the positive case: for instance Alekseevsky found
examples which are homogeneous but non-symmetric ([3]). However we will
focus our attention exclusively on the positive case.

Going back to our examples, the tangent space at the point at eK can be
identified with m in the Lie algebra decomposition

g = c ⊕ sp(1) ⊕ m (4.10)

where c denotes the centralizer of sp(1) so that K is the adjoint group to
the subalgebra c ⊕ sp(1); so K is the stabilizer of a point and the holonomy
group of M via the Adjont action on m; the structure of a QK manifold is
given by a field of algebras of skew-symmetric endomorphisms of the tangent
spce isomorphic to Im H: in this case these algebras correspond to the sp(1)
of the previous decomposition; in fact sp(1) acts on m by adjoint represen-
tation (restricting the brackets of g) and in this way we have a K-invariant
immersion

sp(1) � � �� m ⊗ m

(where the duality m ∼= m∗ is provided by the Killing metric, which induces
the G invariant Riemannian metric on M); K-invariance allows to extended
the action of sp(1) globally on the whole M as a subbundle of End(TM).

4.2 The Twistor space

We want to discuss now some important homogeneous spaces which are
bundles over the Wolf spaces; they can be generalized to bundles over any
Quaternion-Kähler manifold, as was shown by Salamon ([71]). Consider the
complexification of any compact semisimple Lie algebra gC; let h be a Cartan
subalgebra, and

gC = h ⊕
∑
α∈Ξ

gα (4.11)
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the correspondin Cartan decomposition,with gα the root spaces of the roots
system Ξ; then g is a maximal compact subalgebra of gC, and [h] denotes the
intersection h ∩ g; let ρ denote the highest root and consider the parabolic
subalgebra of gC

p = h ⊕
∑

〈α,ρ〉≥0

gα ; (4.12)

then if P ⊂ GC denotes the corresponding adjoint subgroup,we can define
the complex homogeneous space of complex dimension n

Z =
GC

P
; (4.13)

we observe that p is precisely the subalgebra of the stabilizers of the complex
line Cgρ, so Z can be interpreted as the GC orit under the adjoint action of
the point Cgρ in the projectivised Lie algebra P(gC); instead the orbit of any
nilpotent element Xρ ∈ gρ inside gC is given by

U =
GC

P1
, (4.14)

where P1 is the adjoint group of the Lie algebra p1 defined as

p1 := {a ∈ p|〈a,Hρ〉 = 0}, (4.15)

because the semisimple element Hρ doesn’t stabilize Xρ; in particular we have
the quotient p/p1

∼= C, so the projection

U =
GC

P1

−→ GC

P
= Z (4.16)

gives a bundle with fibre exp C = C∗; this bundle can be considered as the
pricnipal bundle of a complex line bundle over the base space Z. The tangent
space at the identity of U can be identified with

TeP1U = {Hρ} ⊕
∑

〈α,ρ〉<0

gα ; (4.17)

we can define on it an Ad(P1)-invariant cotangent vector

Y −→ 〈Xρ, Y 〉 (4.18)

which thus extends globally to a GC-invariant holomorphic 1-form θ; it can
be shown that θ satisfies

1. (dθ)n+1 �= 0 ;



4.2 The Twistor space 66

2. the restriction of θ to the fibre is identically 0 ;

3. τ ∗z θ = zθ if τz is the action of C∗ on U .

We are going now to define a type of structures which are strictly related
to the homogeneous spaces we are discussing:

Definition 4.1. Let C be a complex manifold of dimension 2n+1; a complex
contact structure is a family {(Ui, θi)} where the Ui is an open covering of
C and the θi are 1-forms defined on each Ui such that (dθi)

n ∧ θi �= 0 in Ui

and θj = fijθi with fij some smooth function defined on Uj ∩ Ui;moreover
it’s required that this family is the maximal enjoying these properties.

The functions f−1
ij can be viewed as transition functions for a comples line

bundle over C, which thus turns out to be naturally associated to the contact
structure; its principal bundle π : B −→ C with fibre C∗ can be equipped
with a global 1-form obtained gluing together the pullbacks π∗θi. On the other
hand, given a principal C∗ bundle B over a complex manifold C, the presence
of a holomorphic 1-form satisfiying conditions 1, 2, 3 above descends on C
to a complex contact structure.Applying these facts to our examples, we can
say that Z is a complex manifold endowed with a complex contact structure
given by the holomorphic 1-form θ defined on the principal bundle U .

Now the compact subgroup G ⊂ GC acts on Z, giving rise to a compact
orbit through eP which can be described as

M ′ =
G

G ∩ P ; (4.19)

the subalgebra of the stabilizer is given by

g ∩ p = g ∩ (h ⊕
∑

〈α,ρ〉=0

(gα + g−α)
)

(4.20)

as g doesn’t intersect a single root space gα; the following lemma shows that
actually the G orbit has the same dimension of the ambient space, so that in
conclusion M ′ = Z and this last is compact:

Lemma 4.1. The following equality holds:

dimR GC − dimR G = dimR P − dimR G ∩ P (4.21)

Proof. The summand on the left side equals 1
2

dimRGC; on the right side
we can subdivide in two parts: the Cartan subalgebra and the root spaces
involved.Clearly dimR h = 2
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dimR h∩g; regarding the root spaces involved in p we can divide them in two
types: those for which 〈α, ρ〉 > 0 and those for which 〈α, ρ〉 = 0;we observe
that all positive roots satisfy one of these conditions (p is parabolic!). In the
first case if gα ⊂ p then g−α �⊂ p, and

dimR

∑
〈α,ρ〉>0

gα =
1

2
dimR

∑
〈α,ρ〉�=0

gα ; (4.22)

in the second case g±α ⊂ p and

dimR

∑
〈α,ρ〉=0

(gα + gα) = 2 dimR

⎛⎝g ∩
∑

〈α,ρ〉=0

(gα + gα)

⎞⎠ . (4.23)

The conclusion follows.�

Hence, denoting l = p∩g and L the corresponding subgroup,we can write
in compact presentation

Z =
GC

P
∼= G

L
. (4.24)

We note now that
l = c ⊕ {iHρ} ⊂ N(sp(1)) , (4.25)

so we have again a fibration
Z −→M , (4.26)

with fibre the quotient
Sp(1)

U(1)
∼= S2 , (4.27)

whose tangent space at the identity in Z is given by

g ∩ (gρ + g−ρ) . (4.28)

The following theorem, due to Wolf ([83],Th.6.1), states more precisely the
relationship between contact and quaternionic structures in the homogeneous
context:

Theorem 4.2. There is a one-to-one correspondence between compact sim-
ply connected homogeneous contact complex manifolds Z and compact QK
symmetric spaces M . This correspondence is given by a bundle π : Z −→M
with fibres 2-spheres.
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The following diagram syntethizes the relationships between the various
spaces involved in the previous description:

GC/P1
�� ∼=

��

��

U � � ��

C∗

��

gC

G/L �� ∼=
��

������������
GC/P �� ∼=

��

��

Z � � ��

S2

��

P(gC)

G/N(su(2)) �� ∼=
�� M

� � �� G3

. (4.29)

Example.The main example to consider is quaternionic projective space:

Hn+1\{0} �� CP2n+1 �� HPn (4.30)

Observation.The twistor bundle Z is non-trivial in general, and for compact
QK manifolds with s > 0 it does not admit any global integrable section (see
[70], [7]), or in other words any global complex structure compatible with
the quaternionic structure; in the case of HPn Massey proved in [63] that
no global almost complex structure exists at all. In the case of the complex
Grassmannians G2(C

n), it is well known that they carry a global complex
structure J ; in the case J belongs to (S2H)⊥ inside End(TM), so that it is
not a section of Z.

4.3 The Sp(1)Sp(n) structure

Let h, ĥ denote a unitary basis of H , in such a way that ωH(h, ĥ) = 1;with
respect to this basis we have

ωH = h ∧ ĥ =
1

2
(hĥ− ĥh) . (4.31)

We can in terms of h, ĥ dtermine a basis of S2H :

I1 = ı(h ∨ ĥ)

I2 = h2 + ĥ2 (4.32)

I3 = ı(h2 − ĥ2)

are orthogonal of norm
√

2 with respect to the metric ωH ⊗ ωH induced on
S2H ; they satisfy the same relations of quaternions:

I2
k = −1 , IiIj = sgn(ijk)Ik (4.33)
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with sgn(ijk) the sign of the permutation; the composition is obtained by
contracting again with ωH just as in (4.3).

Consider now the case where the Sp(1) representation inside Sp(1)Sp(n)
is such that the projection on the Sp(n) factor is nonzero: this means that
the E representation is nontrivial under this Sp(1) action.

In this case it becomes significant analyzing the quaternionic action from
the point of view of these new Sp(1) representations; first of all we adopt the
following notation:we have the symmetrization map S acting on tensors as

S(x1 ⊗ · · · ⊗ xn) =
1

n!

∑
πn

xπn(1) ⊗ · · · ⊗ xπn(n) (4.34)

where π varies in the group of permutations on n elements; the map extends
linearly. We give then the following definition:we denote as

{·, ·} : Σk ⊗ Σh �� Σh+k (4.35)

the symmetrization of the two factors,more explicitly if

α =
∑
πk

απk(1) ⊗ · · · ⊗ απk(k) ∈ Σk , β =
∑
πh

βπh(1) ⊗ · · · ⊗ βπh(h) ∈ Σh

(4.36)
then

{α⊗ β} =
∑
πk,πh

S
(
απk(1) ⊗ · · · ⊗ απk(k) ⊗ βπh(1) ⊗ · · · ⊗ βπh(h)

)
. (4.37)

In particular we denote by σ the map {·, ·} when the first index is 2:

σ := {·, ·} : Σ2 ⊗ Σi �� Σi+2 . (4.38)

Consider now for simplicity the case that E corresponds to an irreducible
Sp(1) representation; then

TxMC
∼= Σ1 ⊗ Σi−1 (4.39)

and using Clebsch-Gordan relation,we obtain

TxMC
∼= Σi + Σi−2 � � �� Σi+2 + Σi + Σi−2 ∼= Σ2 ⊗ Σi ; (4.40)

more precisely TxMC coincides with the kernel of the symmetrization

σ : Σ2 ⊗ Σi → Σi+2 . (4.41)
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Example 4.1. There are essentially three ways (up to conjugation) of send-
ing Sp(1) inside Sp(2): two correspond to the roots, but in these cases the
decomposition of the standard Sp(2) representation C4 is not irreducible; in
fact

E = C4 = Σ0 + Σ0 + Σ1 (4.42)

for the long root, as comparing with the known decomposition of the adjoint
representation one has

sp(2) = S2(C4) = S2(2Σ0 + Σ1) = Σ2 + 2Σ1 + 3Σ0 ; (4.43)

for the short root we have instead

E = C4 = Σ1 + Σ1 (4.44)

as in fact
sp(2) = S2(C4) = S2(2Σ1) = 3Σ2 + Σ0 . (4.45)

There is a third embedding, corresponding to the sl(2,C) triple

X =

⎛⎜⎜⎝
0

√
3 0 0

0 0 0
√

2
0 0 0 0

0 0 −√
3 0

⎞⎟⎟⎠ , Y =

⎛⎜⎜⎝
0 0 0 0√
3 0 0 0

0 0 0 −√
3

0
√

2 0 0

⎞⎟⎟⎠ , (4.46)

H =

⎛⎜⎜⎝
3 0 0 0
0 1 0 0
0 0 −3 0
0 0 0 −1

⎞⎟⎟⎠ , (4.47)

obtained using the recipe in [21], for which

E = C4 = Σ3 . (4.48)

Observation.This last can be interpreted in the following way: recall that
the decomposition of the Lie algebra g2 with respect to so(4) ⊂ g2 is given
by

Σ2
+ + Σ2

− + Σ1
− ⊗ Σ3

+ , (4.49)

where Σk
± denote the representations of the sp(1) corresponding to the long

(+) or to the short(−) root; so considering the diagonal embedding

sp(1)∆
� � �� so(4) = sp(1)+ + sp(1)−

� � �� sp(1)+ + sp(2) , (4.50)

consistently with the Sp(1)Sp(2) structure of the Wolf space

G2

SO(4)
, (4.51)
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we have a description of its tangent space in the EH formalism as H ⊗E ∼=
Σ1 ⊗ Σ3, corresponding to the representation in (4.48).

The action of S2H ∼= Σ2 on TxMC can be therefore expressed suit-
ably exploiting this new formulation, involving the Σ2 factor instead of the
Σ1 = H ; to understand more deeply this Σ2-approach we need to define more
explicitly the invariant immersion (4.40). Let us define the map as

Q : Σ1 ⊗ Σi−1
ωH⊗ �� Σ1 ⊗ Σ1 ⊗ Σ1 ⊗ Σi−1 {·,·} �� Σ2 ⊗ Σi (4.52)

acting in the following way: if

Y = h⊗ β + ĥ⊗ β̂ ∈ Σ1 ⊗ Σi−1, β, β̂ ∈ Σi−1 (4.53)

then

Q(Y ) =
1

2
{hh}{ĥβ} +

1

4
(hĥ + ĥh)

({ĥβ̂} − {hβ})− 1

2
{ĥĥ}{hβ̂} (4.54)

obtained, after tensorizing with the invariant element ωH , by symmetrization
of the tensorial factors respecting the simple or double underlining marks in
(4.52).

Our next aim is to express the quaternionic action in terms of this de-
scription: a first guess in this sense is that for Q(Y ) =

∑
vi ⊗ pi then

Q(I1Y ) = v2 ⊗ p3 + v3 ⊗ p2 , (4.55)

mimicking the adjoint representation of su(2) on itself; but this is not cor-
rct, as at the second step

Q(I2
1Y ) = −v2 ⊗ p2 − v3 ⊗ p3 , (4.56)

which is not −Id. Something more is needed to “reconstruct” the missing
term −v1 ⊗ p1.

The next proposition gives the correct answer in order to express the
quaternionic action from the Σ2 viewpoint:

Proposition 4.3. Let Y ∈ TxM = Σ1 ⊗ Σi; if Q(Y ) =
∑
vi ⊗ pi then

Q(I1Y ) = v1 ⊗ 1
4
σ(Y ) + v2 ⊗ p3 − v3 ⊗ p2 . (4.57)
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Proof.We have the definition of Q(Y ) as in (4.54): then if we identify vi

with the basis Ii defined in (4.32), grouping the terms properly we obtain

p1 = − ı

4

({ĥβ̂} − {hβ}) (4.58)

p2 =
1

4

({ĥβ} − {hβ̂}) (4.59)

p3 = − ı

4

({ĥβ} + {hβ̂}) ; (4.60)

the quaternionic action of I1 on Y is given, in the Σ1 context, by

I1Y = −ıh⊗ β + ıĥ⊗ β̂ ; (4.61)

so we obtain

Q(I1Y ) = − ı

2
{hh}{ĥβ} +

ı

4
(hĥ+ ĥh)

(
hβ + ĥβ̂

)− ı

2
{ĥĥ}{hβ} (4.62)

and in the form Q(I1Y ) =
∑3

i=1 vi ⊗ q1
i we have

q1
1 =

ı

4

({hβ} + {ĥβ̂}) (4.63)

q1
2 = − i

4

({ĥβ} + {hβ̂}) (4.64)

q1
3 = −1

4

({ĥβ} − {hβ̂}) ; (4.65)

the conclusion follows by the definition of σ and comparing the two sets of
equalities.�

In the same way we obtain for the other quaternionic elements

I2Y = −ĥ⊗ β + h⊗ β̂ (4.66)

I3Y = ıĥ⊗ β + ıh⊗ β̂ (4.67)

so that

Q(I2Y ) = 1
2
{hh}{ĥβ̂} − 1

2
{hĥ}(ĥβ + hβ̂

)
+ 1

2
{ĥĥ}{hβ} (4.68)

Q(I3Y ) = ı
2
{hh}{ĥβ̂} + ı

2
{hĥ}(ĥβ − hβ̂

)− ı
2
{ĥĥ}{hβ} (4.69)

which imply the equalities

qi
j = ηijk pk − δj

i

1

4
σ(Y ) , (4.70)

where ηijk = sgnijk if i �= j, otherwise ηiik = 0;moreover

pi = −1

4
σ(IiY ) . (4.71)
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We can therefore state the quaternionic relations in terms of this descrip-
tion: for example

Q(I2
1Y ) = Q(I1I1Y ) = −v1 ⊗ 1

4
σ(I1Y ) − v2 ⊗ p2 − v3 ⊗ p3 (4.72)

= −v1 ⊗ p1 − v2 ⊗ p2 − v3 ⊗ p3 (4.73)

= −Q(Y ) (4.74)

and also

Q(I1I2Y ) = −v1 ⊗ 1

4
σ(I

2
Y ) − v2 ⊗ q2

3 − v3 ⊗ q2
2 (4.75)

= −v1 ⊗ p2 + v2 ⊗ p1 − v3 ⊗ 1

4
σ(Y ) (4.76)

= Q(I3Y ) (4.77)

as expected.

4.4 The quaternionic 4-form in 8 dimensions

The local triple of almost complex structures Ii generate together with the
metric a local triple of symplectic forms

ωi ∈
2∧
TxM , (4.78)

spanning a subbundle of the bundle of 2-forms isomorphic to S2H . The con-
dition Hol0(M) ⊂ Sp(1)Sp(n) can be expressed by the condition that the
subbundle S2H is preserved by covariant differentiation,more precisely

∇Y ω1 = α3(Y )ω2 + α2(Y )ω3

∇Y ω2 = −α3(Y )ω1 + α1(Y )ω3 (4.79)

∇Y ω3 = α2(Y )ω1 − α1(Y )ω2 ;

where αi are local 1-forms and Y is any tangent vector.We can define a global
4-form using these local 2-forms:

1

2
Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3 (4.80)

and the following conditions are equivalent:

∇Y S
2H ⊂ S2H ⇐⇒ ∇Y Ω = 0 (4.81)
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for any Y ∈ TxM . Swann proved in [78] that if dim M ≥ 12 then the condi-
tion ∇Y Ω = 0 is equivalent to

dΩ = 0 ; (4.82)

Salamon showed an example of an 8-demensional compact nilmanifold en-
dowed with 4-form Ω with stabilizer Sp(2)Sp(1), which is closed but non-
parallel ([74]).

We want now to give a description of the quaternionic 4-form Ω using the
point of view of the previous section: suppose for example that we have as in
(4.48)

TxMC
∼= Σ1 ⊗ Σ3 ∼= Σ2 ⊕ Σ4 ; (4.83)

then the bundle S2H can be detected finding the Σ2 summands in
∧2 TxM :

2∧
TMx

∼=
2∧

Σ2 ⊕ Σ2 ⊗ Σ4 ⊕
2∧

Σ4 (4.84)

∼= Σ2

v
⊕ (Σ6 ⊕ Σ4 ⊕ Σ2)

m

⊕ (Σ6 ⊕ Σ2)
h

; (4.85)

the elements of the three groups of summands will be called vertical,mixed
and horizontal.We fix a basis of the vertical space to be e23, e31, e12, with
respect to a basis e1, e2, e3 of the Σ2 summand in (4.83); a basis of the Σ4

component of the tangent space is given by

e8 =
1√
3
(2 · 11 − 22 − 33) (4.86)

e7 = (22 − 33) (4.87)

e4 = (12 + 21) (4.88)

e6 = (23 + 32) (4.89)

e5 = (31 + 13) , (4.90)

where the notation “11” stands for e1⊗e1, underlining in this way the identity

Σ4 ∼= S2
0 Σ2 . (4.91)

We want now to identify a basis for the horizontal part; the copy of Σ2 con-
tained in

∧2 Σ3 is also a submodule of End(Σ4) and its elements can be
described in terms of invariant operations, as the following example shows:

β1(e4) = β1(12+21) = (1∗1)∨2+(1∗2)∨1 = 0+3∨1 = (31+13) = e5 , (4.92)
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where ∗ is the isomorphism
∧2 Σ2 ∼= Σ2 and ∨ is symmetrization; this de-

scription is unique up to a constant, thanks to Schur’s lemma an the presence
of a unique copy of Σ2 in End(Σ4). Going on in the same way we obtain:

β1(e6) = β1(23 + 32) = (1 ∗ 2) ∨ 3 + (1 ∗ 3) ∨ 2 = 2(33 − 22) = −2e7 ;

(4.93)

β1(e5) = β1(31 + 13) = (1 ∗ 3) ∨ 1 + 0 = −(21 + 12) = −e4 ; (4.94)

β1(e7) = β1(22 − 33) = (1 ∗ 2) ∨ 2 − (1 ∗ 3) ∨ 3 = 2(32 + 23) = 2e6 ; (4.95)

β1(e8) = β1(
1√
3
(2 · 11 − 22 − 33)) =

1√
3
(0 − (1 ∗ 2) ∨ 2 − (1 ∗ 3) ∨ 3)

(4.96)

= −(32 + 23) + (23 + 32) = 0 . (4.97)

Analogous calculations determine the following basis of the horizontal 2-
forms

β1 = − 2e76 − e45 (4.98)

β2 =
√

3e85 + e75 + e46 (4.99)

β3 = e74 −
√

3e84 + e65 . (4.100)

Now the elements of the basis of the quaternionic bundle S2H ⊂ ∧2(S2 +
S4) are decomposed as

ωi = ωh
i + ωm

i + ωv
i (4.101)

with

ωh
i = βi (4.102)

ωm
i =

8∑
j=4

〈ei , ej〉 (4.103)

ωv
i = ejk , (4.104)

where 〈 , 〉 denotes the contraction of tensors.We are going now to determine
the mixed term in the same spirit of what we did to find the βi, in other words
findig an invariant submodule in Σ2 ⊗Σ4 isomorphic to Σ2; subsequently we
will find constants a, b, c such that 〈ωi, ωi >= −I, if ωi = aωh

i + b ωm
i + c ωv

i .
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Proposition 4.4. In this setting the quaternionic 4-form Ω is

1

2
Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3

= −
√

3e7653 − 2e7623 − e7681 −
√

3e7642

− e4523 − 2e4581 +
√

3e8142 +
√

3e8153

+ e3175 − e8275 − e8246 + e7241

+ e6341 + e6385 − e7483 + e6512 .

Proof.We subdivide the proof in 3 parts:

1)The 2-form ω1.
Starting with ωm

1 we have

ωm
1 = 〈1 , 1√

3
(2 · 11 − 22 − 33) + (22 − 33) (4.105)

+ (12 + 21) + (23 + 32) + (31 + 13)〉 (4.106)

=
2√
3
e81 + 0 + e42 + 0 + e53 (4.107)

so that in total

ω1 = a(−2e76 − e45)
h

+ b(
2√
3
e81 + e42 + e53)

m

+ c(e23)
v

, (4.108)

for some constants a, b, c; now we calculate 〈ω1 , ω1〉:

〈ω1 , ω1〉 = 〈a(−2e76 − e45) + b(
2√
3
e81 + e42 + e53) + c(e23)

, a(−2e76 − e45) + b(
2√
3
e81 + e42 + e53) + c(e23)〉

that more explicitely becomes

(−2a(76 − 67) − a(45 − 54)+

2√
3
b(81 − 18) + b(42 − 24) + b(53 − 35) + c(23 − 32))2

and contracting we obtain

− 4a2(77 + 66) − a2(55 + 44) − 4

3
b2(11 + 88) − b2(44 + 22) − b2(55 + 33)

− c2(22 + 33) + ab(52 + 25) − bc(25 + 52) − ab(43 + 34) + bc(43 + 34)
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where the last four summands cancel each other if a = c.Moreover if we
impose the conditions

4a2 =
4

3
b2 = a2 + b2

the remaining terms have equal norms; in particular if we choose a = 1
2

and

b =
√

3
2

) we obtain
(ω1)

2 = −I .
2)The 2-form ω2.
We can do the same calculation for ω2: first of all we have

ωm
2 = − 1√

3
e82 + e72 + e63 + e41

so that

ω2 = a(
√

3e85 + e75 + e46) + b(− 1√
3
e82 + e72 + e63 + e41) + c(e31)

or more explicitly

ω2 =c(31 − 13) − b√
3
(82 − 28) + b(72 − 27) + b(63 − 36)

+b(41 − 14) + a
√

3(85 − 58) + a(75 − 57) + a(46 − 64) ,

so that squaring and contracting we obtain

〈ω2 , ω2〉 = − c2(33 + 11) − b2

3
(88 + 22) − b2(77 + 22) − b2(66 + 33)

− b2(44 + 11) − 3a2(88 + 55) − a2(77 + 55) − a2(44 + 66)

− bc(34 + 43) + bc(16 + 61) +
b2√
3
(87 + 78) + ab(25 + 52)

− ab(25 + 52) + ba(34 + 43) − ab(16 + 61) − a2
√

3(87 + 78) ,

and if we impose the conditions seen for ω1, i.e. a = c = 1
2

and b =
√

3
2

we
have

〈ω2 , ω2〉 = −I.

3)The 2-form ω3

In the same manner we obtain for ω3

ωm
3 = − 1√

3
e83 − e73 + e62 + e51
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so that

ω3 = a(e74 −
√

3e84 + e65) + b(− 1√
3
e83 − e73 + e62 + e51) + c(e12)

= a(74 − 47) − a
√

3(84 − 48) + a(65 − 56) − b√
3
(83 − 38)

− b(73 − 37) + b(62 − 26) + b(51 − 15) + c(12 − 21) ;

again contracting:

〈ω3 , ω3〉 = −a2(77 + 44) − 3a2(88 + 44) − a2(66 + 55) − b2

3
(88 + 33)

− b2(77 + 33) − b2(66 + 22) − b2(55 + 11) − c2(11 + 22)

+ a2
√

3(78 + 87) + ab(43 + 34) − ab(43 + 34) − ab(52 + 25)

+ ab(61 + 16) − b2√
3
(87 + 78) − bc(61 + 16) + bc(52 + 25)

and as usual for a = c = 1
2

and b =
√

3
2

we obtain

〈ω3 , ω3〉 = −I .

Collecting together what we have found we obtain the 4-form Ω in terms of
the chosen basis.�



Chapter 5

Moment mappings and
realizations

In this Chapter we recall basic facts about QK moment maps, showing in
the simple case of a compact simple Lie group G acting transitively on a
Wolf space G/K how µ can be used to relate QK geometry to Grassman-
nians. Then we discuss some well-known theory coming from Nilpotent or-
bits, with results due to Kronheimer about the existence of HyperKäler met-
rics on them; then an account of results is given from Swann’s theory,which is
for many aspects the most natural background for our approach.After that
we present the description of an explicit trajectory for the flow of grad f
in the case of so(4), together with the proportionality of grad f and grad g
along it. This is used in the last two sections in order to describe explicitly
the realizations of some classical Wolf spaces in G3(g), for g the Lie algebra
of a non-transitive group of isometries (in particular of cohomogeneity 1).

5.1 The moment mapping

Let G be a compact group acting on a differentiable manifold M preserving
some structure present on it, as for example a symplectic structure; then it is
possible to define a moment map

µ : M �� g∗ (5.1)

which under suitable hypotheses turns out to be G-equivariant, with respect
to the Adjoint action of G on g. The main use of moment maps is that
of operating reductions, which means considering a fibre of µ, which is G-
invariant, and then considering the quotient space under the G action: this
new manifold M ′ inherits the structure of the first manifold M , offering a
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systemathic way of obtaining new examples of symplectic manifolds (see
[33]).

This procedure has been generalized to other contexts: the Hyperkähler
case ([42]) and the QK case ([29] and [30]) for instance; the latter is the case
of our interest. The main difference in the QK case is that µ turns out to be
a section

µ ∈ Γ(g ⊗ S2H) (5.2)

instead of a function; therefore only the zero-locus is well defined.

Observation.We point out that the moment map in the QK setting is au-
tomathically equivariant.

In [29] Galicki and Lawson proved that µ is the only section of g ⊗ S2H
satisfying

∇〈µ, A〉 =
∑

(IiÃ)� ⊗ Ii, (5.3)

where A ∈ g, Ã is the corresponding Killing vector field, Ii is the local basis
of the bundle S2H and � is the duality isomorphism of TM and T ∗M induced
by the metric.Moerover µ satisfies

µA := 〈µ, A〉 = c πS2H(∇(Ã)�) (5.4)

where πS2H is the projection on the quaternionic bundle, seen as a subbundle
of
∧2 T ∗M , and c is a constant depending on the scalar curvature.As QK

manifolds are Einstein, then the scalar curveture s is constant, therefore we
will consider c = 1 for simplicity; we observe that the 2-tensor ∇Ã is skew-
symmetric (see [55]).

In this context, Battaglia studied in [10], [11] the case where G = S1 using
Morse-theorethic methods, obtaining ([11])

Theorem 5.1. The complex Grassmannian G2(C
n) is the only positive QK

manifoldthat can be obtained as a QK quotient by a circle action.

We will make a rather different use of the QK moment map µ: in fact
we will consider Lie groups G of arbitrary dimension, but with the aim of
obtaining immersions of a QK manifold in the Grassmannian G3(g); this is
possible because in local coordinates we have

µ =

3∑
i=1

ωi ⊗Ai (5.5)

where ωi are a local orthonormal basis for S2H and Ai belong to g; if the
Ai are linearly independent, they span a 3-dimensional subdpace V ⊂ g
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which is independent from the trivialization, as the structure group for S2H
is SO(3). This determines a map

Ψ : M �� G3(g) (5.6)

which is defined only at the points x ∈ M for which Ai(x) are indepen-
dent; therefore our hope is that the zero locus of µ is as small as possible.As
we shall see in the examples discussed in Sections 5.4 and 5.5, the zero lo-
cus will be empty, so no reduction would be possible at all in the cases we
discuss. In this sense we have (see [80, Proposition 3.5]).

Proposition 5.2. The set M0 is an open dense subset of the union
⋃
S of

G orbits on M such that dimS ≥ 3.

In this section we will exemplify our viewpoint obtaining the realization
of the classical Wolf spaces G/K in G3(g), using the moment map induced
by the action of the transitive group G. Let us denote by g the lie algebra of
G and let us consider the symmetric decomposition

g = k ⊕ m (5.7)

with k the Lie algebra of K = N(Sp(1)). The quaternionic subalgebra sp(1)
corresponds to a 3 dimensional space of Killing vector fields on M which
vanish at the point eK; let us choose an orthonormal basis A1, A2, A3 which
correspond to Killing vector fields Ĩi; a well known result from the theory of
symmetric spaces (see [13]) states that the covariant derivative of a Kvf X̃
can be expressed at a point in the following way:

∇Y X̃|eK = [X, Y ]m , (5.8)

where Y ∈ m: from what we said before, the projection πS2H applied to the
2-form 〈[X , ·] , ·〉 ∈ ∧2 m acts as the identity. In the case of the action of the
isometry group G on the Wolf space M , we can ask ourselves what are the
three vis at a given point; in other words we are trying to solve the equation

πS2H(∇X̃) =
3∑

i=1

〈vi , X〉ωi (5.9)

in the vis for any X ∈ g; now we observe that ωi = 〈[Ai , ·] , ·〉, and thanks to
equation (5.8), putting X = Ai the (5.9) becomes

〈[Ai , ·] , ·〉 =

3∑
i=1

〈vi , Ai〉〈[Ai , ·] , ·〉 ; (5.10)
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on the other hand choosing X ∈ m the covariant derivative ∇X̃ vanishes at
eK, so equation (5.9) becomes

0 =
3∑

i=1

〈vi , X〉〈[Ai , ·] , ·〉 (5.11)

and analogously if we choose X ∈ c the left hand side vanishes when we
project on S2H . In conclusion it must be

vi = Ai i = 1...3 . (5.12)

In conclusion we can deduce the following result:

Proposition 5.3. Let M be a Wolf space of the form G/K, with G a simple
Lie group; let µ be the corresponding moment map and Ψ the induced map
with values in G3(g); then Ψ embeds M in G3(g) and Ψ(M) is precisely the
critical manifold for the flow of grad f corresponding to the absolute maxi-
mum.

5.2 Nilpotent orbits and Swann’s theory

Let g∗
C

denote a complex simple Lie coalgebra; the orbit OX of any element
X under the coadjoint action of GC is naturally endowed with the Kirillov-
Kostant-Soriau complex nondegenerate holomorphic 2-form ω, acting at the
point X in the following way:

ωX(AY , AZ) = 〈X, [Y, Z]〉 (5.13)

on tangent vectors AY , AZ obtained by infinitesimal action of Y, Z ∈ gC ;
because of the duality induced by the Killing form we can refer to the Lie
algebra g in place of the coalgebra.The presence of such complex symplectic
structure is typical of HyperKähler manifolds, where ω = ωJ + ıωK is holo-
morphic with respect to the first complex structure I. It is therfore natural to
ask if exists any metric on O making it a HK manifold in such a way that the
induced complex symplectic structure is just the one in (5.13).Kronheimer
showed in [58] the existence of such metrics on orbits of nilpotent elements
identifying them whit the moduli spaces of the solutions of a system of ODE
called Nahm equations (see also [24]); the proof is based on Hitchin’s work
about HyperKäler metrics on moduli spaces ([41]).

Let us now describe briefly how Nahm equations arise: in the space of
connections on a vector bundle V over a manifold M , those which are critical
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points of the Yang-Mills functional

YM(∇) =
1

2

∫
M

Tr(F ∧ ∗F ) (5.14)

are called instantons, and have importance in particle physics (∗ is the Hodge
operator of the metric on M and F is the curvature 2-form of the connection
∇). Equivalently, the curvature form F of such critical points satisfies the
(anti)-self-dual equations

F = ± ∗ F . (5.15)

Consider now the 4-dimensional Euclidean space R4 = S3 ×R; the Lie group
SU(2) is topologically S3 and its Lie algebra su(2) can be identified with a
family of left invariant vector fields globally trivializing the tangent bundle
TS3, with a basis given by e1, e2, e3; consider now the trivial principal G bun-
dle P = (S3 × R) × G for some compact Lie group G; then any linear map
L(t) : su(2) → g, depending on time t ∈ R, determines a global g-valued
1-form, that is a connection form on a trivial G-bundle over S3 × R,SU(2)-
invariant under its left multiplication. It is always possible to find a gauge
transform for which the connection takes the form

dt+ α1A1 + α2A2 + α3A3 , (5.16)

with αi ∈ su(2)∗ satisfying dαi = 2εijα1 ∧ αj and Ai ∈ g.
Consider now the Chern-Simons functional φ : g × g × g → R defined as

φ(A1, A2, A3) =
3∑

i=1

〈Ai, Ai〉 + 〈A1, [A2, A3]〉 (5.17)

whose gradient flow equations Ȧ = −gradφ are just the Nahm equations
quoted above:

Ȧ1 = −2A1 − [A2, A3]

Ȧ2 = −2A2 − [A3, A1] (5.18)

Ȧ3 = −2A3 − [A1, A2] ;

these equations are equivalent to the anti-self-duality condition (5.15) for the
connection identified by a map L defined as

L(e1) = Ai , i = 1, · · · , 3 ; (5.19)

in other words each trajectory for the gradient field gradφ in g × g × g
represents an instanton for the trivial bundle discussed above.
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Critical points for gradφ turn out to be Lie algebra homomorphisms
L : su(2) → g: the functional φ is strictly related to the functional f on
G3(g); compare in fact (5.18) with the gradient of f (3.1).

The link with the nilpotent orbits is obtained complexifying equations
(5.18) and passing from su(2) subalgebras in g to sl(2,C) subalgebras in gC.

Nilpotent orbits

Nilpotent orbits in a complex semisimple Lie algebra have been completely
classified (see [21]). The nilpotent variety N ⊂ gC consisting of all the nilpo-
tent elements in the algebra is an algebraic variety; the orbits O have a partial
ordering described by the relation

O1 < O2 ⇔ O2 ⊃ O1 ; (5.20)

the element 0 gives the only 0-dimensional orbit, contained in the closure of
all other ones. Just above of this in the ordering we have the minimal nilpo-
tent orbit Omin, the one generated by a nilpotent element Xρ in a highest
root space gρ; going one step more up we find the next-to-minimal orbits. At
the other extreme of the diagram we find the principal orbit Oprinc, the one of
maximal dimension,which is an open subset of N . Nilpotent orbits are in cor-
respondence with three dimensional Lie subalgebras, isomorphic to sl(2,C)
and presented in standard form as a triple {Y,H,X}, withX, Y nilpotent and
H semisimple; Jacobson-Morozov theorem states partly this correspondence:

Theorem 5.4. Let gC be a complex semisimple Lie algebra. if X is a nonzero
nilpotent element of g, then there exists a standard triple for g whose nilpos-
itive element is X.

Actually the correspondence is bijective, as two standard triple having in
common a nilpotent element X are in the same AdGC

orbit, and analogously
if they share the same semisimple element H (see [21] and [57]).Moreover,
semisimple elements have the special property of satisfying

〈H,α〉 ∈ {0, 1, 2} (5.21)

for any α simple root; thus we can identify the triple, up to conjugacy, by just
labelling every node of the Dynkyn diagram with 0, 1 or 2, obtaining a so
called weighted Dynkin diagram (wDd).

Observation.In this way we obtain at most 3rank g possible choices, proving
that nilpotent orbits are finite in number;we note that for semisimple orbits
the situation is much different: fo example semisimple orbits in sl(2,C) are
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0 Omin Oprinc

Figure 5.1: Hasse diagram for sl(3)

AdGC
{φ : sl(2,C) → g}

����������������

OX
��		

1:1



��������������
��

1:1
������������������� wDd

OH

����������������

(5.22)

Figure 5.2: Nilpotent orbits,3-dimensional Lie subalgebras and weighted
Dynkin diagrams.

parametrized by C/Z2. However this upper bound is rather rough, not all
3rank g are attached to any standard triples: for example in Table 5.1 is shown
the Hasse diagram for sl(3), with 3 orbits, whereas 3rank sl(3) = 32 = 9.

We have thus a correspondence between nilpotent orbits, conjugacy clas-
ses of 3-dimensional subalgebras and weighted Dinkyn diagrams (see Figure
5.2). In the case of classical Lie algebras, nilpotent orbits can be identified
by a partition: for example for sl(n) nilpotent orbits are in bijective corre-
spondence with the partitions of n; in this way the minimal nilpotent orbit
has associate partition: 2, 1, · · · , 1︸ ︷︷ ︸

n−2

, also denoted by [2, 1n−2]. For the other

classical algebras, sp(n) and so(n), which are subalgebras of sl(N) for N big
enough, nilpotent orbits are in bijective correspondence with appropriate sub-
sets of all the partitions of N .

Unstable manifolds in G3

Wolf spaces can be identified with maximal critical submanifolds of the Grass-
mannian G3(g) for the flow of grad f , as we have seen in Chapter 3; on the
other hand their Swann bundle U appears as the minimal nilpotent orbit
Omin in the complexified algebra gC;U has a HyperKäler structure ([79])
and Kronheimer’s results extend this property to any nilpotent orbit. It is
therefore natural to ask if any of them fibres over a QK manifold,with fibre
H∗/Z2. Swann prooved that this is in fact the case: nilpotent orbits always
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admit an action of H∗, so that O/H∗ is a QK manifold.
The quotient manifold can be identified again with a submanifold of the

Grassmannian G3(g) using the functional f , but in general, for orbits which
are not minimal, it is not merely a critical submanifold for grad f (which
often has the wrong dimension), but an unstable submanifold connecting two
critical sets, one of which contains the copy of su(2) corresponding to any
nilpotent element X ∈ O (see the Jacobson-Morosov theorem above). Let us
recall the main results in this sense: consider the Chern-Simons functional
φ, together with a map L as seen in (5.19) which defines a critical point (and
hence an su(2) representation in g); let OL be the nilpotent orbit associated
to L(su(2)) (the orbit of a nilpotent element in L(su(2))C); then we have ([80,
Theorem 4.1 b), c) ]):

Theorem 5.5. Let L : su(2) → g be a critical point for the functional φ
and let ML denote the set of φ trajectories A(t) such that limt→∞A(t) = 0
and limt→−∞A(t) is in the same Adjoint orbit of L(su(2)); then ML admits
a free action of H∗/Z2 and the quotient ML is a QK manifold;moreover for
any standard C∗ ⊂ H∗, the quotient ML/C∗ is isomorphic both to P(OL) and
to the twistor space ZL of ML.

The link between the Chern-Simons functional φ and the functional f
discussed in Chapter 3 is contained in the next result ([80, Theorem 5.2]:

Theorem 5.6. Let OL be a nilpotent orbit, and let ML be its H∗ quotient; then
ML is isomorphic to the f unstable submanifold M ′

L of G3(g) associated to
the critical set containing L(su(2)).

Let us denote by Z ′
L the twistor space of M ′

L; then the isomorphisms just
discussed are expressed by

ZL
��

∼= �� Z ′
L��

∼=

����
��

��
��

��
��

��

P(OL)
��

∼=

��														

. (5.23)

What QK manifolds can be obtained starting from a nilpotent orbit? The
next result provides, using a moment map construction in the complex con-
tact setting, an answer to this question:

Theorem 5.7. Let M be a QK manifold whose isometry group is com-
pact; suppose that its twistor space Z is homogeneous with respect to a sub-
group C of the complexified group GC. Then M is locally isometric to ML,
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where OL is the nilpotent orbit in gC obtained in Theorem 5.5; in particu-
lar M has positive scalar curvature. Conversely, every nilpotent orbit in gC

gives rise to a QK manifold of positive scalar curvature, with twistor space
homogeneous under GC.

Observation.The QK structure is reconstructed using the Inverse Twistor
Construction ([59]).

Consider now the complexification VC of a 3-dimensional space V ∈
G3, then the isotropic cone C is defined by equation

x2 + y2 + z2 = 0 (5.24)

with respect to an orthonormal basis e1, e2, e3 of V ; let us denote by F ⊂ G3

the subset of 3-planes such that C consists of nilpotent elements; then we
have (see [80, Section 3])

Proposition 5.8. If Z has an open GC orbit then Ψ(M) ⊂ F .

Here the map Ψ : M → G3(g) is that induced by the QK moment map as
discussed in Section 5.1; this property will be significant in Chapter 6,where
the existence of an open GC orbit on Z will be considered a basic hypothesis.

5.3 A trajectory for so(4)

In this section we study in more detail the example of g = so(4).We wish to
thank A.F. Swann for taking to our attention the importance of this example
([77]).

We introduce for so(4) = su(2)+⊕su(2)− the following way of representing
3 dimensional subspaces: let e1, e2, e3 and f1, f2, f3 be orthonormal bases
of the subalgebras su(2)+ and su(2)− respectively; then a subspace V not
intersecting the su(2)− subalgebra can be described through an element X ∈
Hom(su(2)+, su(2)−) so that a basis is given by ei + Xei; with this notation
the space V can be identified in Λ3so(4) by

γ =(e1 + Xe1) ∧ (e2 + Xe2) ∧ (e3 + Xe3) (5.25)

= e1 ∧ e2 ∧ e3 + S(e1 ∧Xe2 ∧Xe3)

+S(Xe1 ∧ e2 ∧ e3) + Xe1 ∧ Xe2 ∧ Xe3 ,

whose norm is given by

‖γ‖2 = 1 + S|Xe1 ∧ Xe2|2 + S|Xe1|2 + |Xe1 ∧ Xe2 ∧ Xe3|2
= det(I + XXT ) = cXXT

(−1)
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(with the last expression we mean the “total Chern class” of the matrix XXT

in a formal sense); in this way, as f is linear on Λ3so(4) and as it is nonzero
only in the e123 and f123 directions, it can be expressed in function of X as

f(X) = f(e123)〈 γ

‖γ‖ , e123〉 + f(f123)〈 γ

‖γ‖ , f123〉 (5.26)

=

√
2(1 + det(X))

(det(I + XXT ))
1
2

. (5.27)

Now if we suppose that X is an invertible matrix, defining X̌ = det(X)X−1,
we can differentiate and calculate grad f using this alternative description:

d

dt
f(X + tY ) =

d

dt

√
2(1 + det(X + tY ))

(det(I + (X + tY )(X + tY )T ))
1
2

(5.28)

and considering the case where A = I + XXT is invertible one has

d

dt
(det(I + (X + tY )(X + tY )T )) =

d

dt
det(I + XXT

+t(XY T + YXT ) + t2(Y Y T ))

= Tr(Ǎ (XY T + YXT )) ,

and on the other hand

d

dt
det(X + tY ) = Tr(X̃Y ) ; (5.29)

so putting everything together we obtain

grad f |X(Y ) =

√
2

cXXT (−1)

(
Tr(X̌Y ) (cXXT

(−1))
1
2 +

− (1 + detX)
Tr(Ǎ (XY T + YXT ))

2(cXXT (−1))
1
2

)
;

moreover as Tr(BC) = Tr(CB) for any matrices B and C and as A is sym-
metric, we can write

grad f |X =

√
2

cXXT (−1)

(
(cXXT

(−1))
1
2 X̌− 1 + detX

(cXXT (−1))
1
2

ǍXT

)
(5.30)

acting on tangent vectors by the inner product defined by Tr(grad f · Y ); in
particular for X = I we obtain the diagonal subalgebra su(2)∆, where it’s
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immediate to check that grad f = 0 as we well know.Now we can differentiate
again around this point to obtain an analogous expression for the hessian. In
fact using the same arguments we obtain the following expression of Hess f
as a quadratic form:

Hess f |X=I(Y ) =
cY2 (−1) − c

(Y T +Y
2

)

2 (−1) − Tr(Y Y T

2
) + 1

2
(Tr(Y ))2

2
; (5.31)

now it’s immediate to check that the decomposition of the 9 dimensional
tangent space in su(2) modules corresponds to the following type of matrices:

Σ0 = span{I} (5.32)

Σ2 = Λ3R3 (5.33)

Σ4 = S2
0(R

3) . (5.34)

Observation.If we consider X belonging to SO(3) we see that f is con-
stant; as the critical set M at X = I is isomorphic to RP3 we can in this way
identify it with SO(3), and the tangent space is just so(3) = Λ3R3.

We start now to move in the Σ0 direction, along the curve

X(t) = t I , t ≥ 0 ; (5.35)

we notice that V (X(0)) = su(2)+,V (x(1)) = su(2)∆ and limt→∞ V (X(t)) =
su(2)−; so we obtain

f(X(t)) =

√
2 (1 + t3)

(1 + t2)
3
2

(5.36)

and

grad f(X(t)) =

√
2 (−1 + t) t

(1 + t2)
5
2

I ; (5.37)

so this is an integral curve of the flow of grad f but with the wrong parame-
trization.Orthonormal bases of V (X(t)) and of V ⊥(X(t)) are given by{

ei + tfi√
1 + t2

}
i=1...3

and

{
fi − tei√

1 + t2

}
i=1...3

; (5.38)

moreover Ẋ(t) = I, which represents the homomorphism snding ei + tfi to
fi, whose projection on V ⊥ is given by〈

fi ,
fi − tei√

1 + t2

〉
fi − tei√

1 + t2
=

(
1√

1 + t2

)
fi − tei√

1 + t2
(5.39)
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Figure 5.3: The graph of g(X(t))

so that as an element of V ⊗V ⊥, with respect to the given orthonormal basis,

Ẋ(t) =
1

1 + t2
I ; (5.40)

so with respect to this basis we obtain

grad f(X(t)) =

√
2 (−1 + t) t

(1 + t2)
3
2

I . (5.41)

Now recall that
g = 3f 2 + ‖grad f‖2 (5.42)

we get

g(X(t)) =
6 (1 + t4)

(1 + t2)2 (5.43)

and one can check that the only critical points are just at t = 0 and t = 1
(see Figure 5.3); this proves that grad g cannot be 0 on the other orbits met by
X(t); but as the SO(4) action on the unstable manifold is of cohomogeneity
one, this means that the behaviour of both f and g and essentially of every
Ad invariant function h on the Grassmannian (in the sense of their values
and gradients) on this submanifold can be completely reconstructed from
just one trajectory, just because

dAdg(gradh|x) = gradh|gx ∀g ∈ SO(4) .

In other words g cannot have any other critical point on the whole unstable
manifold M∆ of f ,moreover grad g cannot be orthogonal to grad f on it, as
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the AdSO(4) action preserves the scalar product.All this mechanism holds
in general for any G simple group, so if we know 〈grad f , grad g〉 on one
trajectory emanting from this kind of critical manifold, that means that it lies
on the f unstable Quaternionic-Kähler submanifold M(O) corresponding to
a next-to-minimal nilpotent orbit O (see [22]), then we know it on the whole
submanifold. In particular we have the following

Proposition 5.9. The unstable manifolds emanating from the critical set
C∆ ⊂ G3(so(4)) for the flows of grad f and grad g are the same:

Mf
∆ = Mg

∆ . (5.44)

Proof.Recall the usual way of representing the gradients of f and g and
compare them on the trajectory X(t): we have[

ei + tfi√
1 + t2

,
ej + tfj√

1 + t2

]
=

[ei, ej] + t2[fi, fj]

1 + t2

and recalling that

[ei, ej] = ±
√

2ek and [fi, fj] = ±
√

2fk

(the sign depending on the parity of the permutation ijk), we can go on
calculating the j-th components of the gradients; so

−grad gj

2
=

[
ei + tfi√

1 + t2
,
[ei, ej] + t2[fi, fj]

1 + t2

]⊥
+

[
ek + tfk√

1 + t2
,
[ek, ej] + t2[fk, fj]

1 + t2

]⊥
=

(
[ei, [ei, ej ]] + t3[fi, [fi, fj]]

(1 + t2)
3
2

)⊥

+

(
[ek, [ek, ej]] + t3[fk, [fk, fj]]

(1 + t2)
3
2

)⊥

= −4

(
ej + t3fj

(1 + t2)
3
2

)⊥

= −4

〈
ej + t3fj

(1 + t2)
3
2

,
fj − tej√

1 + t2

〉
fj − tej√

1 + t2

= 4

(
t− t3

(1 + t2)2

)
fj − tej√

1 + t2

and as we have seen

grad fj =
√

2

(
t2 − t

(1 + t2)
3
2

)
fj − tej√

1 + t2
. (5.45)

Then we have

grad g = 4
√

2

(
1 + t√
1 + t2

)
grad f (5.46)
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M G M G

HPn Sp(n) G̃4(R
n) SO(n− 1)

HPn SU(n + 1) G̃4(R
7) G2

HPn
∏

i Sp(ki) G2/SO(4) SU(3)

G2(C
n) SU(n− 1) F4/Sp(3)Sp(1) Spin(9)

G2(C
2n) Sp(n) E6/SU(6)Sp(1) F4

Table 5.1: Cohomogeneity 1 actions of semisimple Lie Goups on compact
QK manifolds

on X(t) and in consequence on all M∆; hence the conclusion.�
Observation.This example is fundamental for us in the sense that so(4) can
be found as a subalgebra in many other Lie algebras g, so that equivariance
arguments can help to generalize what is known in this case to the ambient
algebras. This will be exploited in the next Sections in order to identify the
image of the map Ψ in G3(g).Kobak and Swann used the abundance of copies
of so(4) to find Hyperkhäler potential on cohomogeneity 2 nilpotent orbits
(see [52, Theorem 4.2]).

5.4 Realizations in cohomogeneity 1: HPn

We reprise the theme of Section 5.1 asking what happens if we apply the same
ideas when a subgroup H of G acts on M : what is ΨH(M) for the induced
ΨH? First we observe that in this case h ⊂ g and there is an inclusion

G3(h) � � �� G3(g) ; (5.47)

moreover because of the equivariance of ΨH theH orbit through eK is sent to
the intersection Ψ(M)∩G3(h). Before starting,we display in Table 5.1 a list
of all cohomogeneity 1 actions on compact QK manifolds, see [22, Theorem
7.4], for a detailed proof, and also [56] for a classification of cohomogeneity 1
and hyperpolar actions.

In this section we will make use of some properties of rank one symmetric
spaces; we collect the main results, taken from [35, Chap.VII,Prop.10.2 and
Theor.10.3], in the following proposition.

Proposition 5.10. Let M be a compact Riemannian globally symmetric
space. Then M has a simply closed geodesic.If M is rank one, then all geo-
desics are simply closed and have the same lenght.Moreover in this case, let
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2L denote the common lenght of the geodesics: if p is any point in M then
Exp : TpM → M is a diffeomorphism of the open ball ‖X‖ < L in TpM
onto the complement M − Ap, where Ap = Exp({‖X‖ = L}) is called the
antipodal set for p. This last, with the Riemannian structure induced by that
of M , is a Riemannian globally symmetric space of rank one, and a totally
geodesic submanifold of M .

We pass to a fundamental example.

SO(4) acting on HP(1)

The group SO(4) ⊂ Sp(2) is the stabilizer of a point in the standard presen-
tation of the quaternionic projective space:

HP1 =
Sp(2)

Sp(1)Sp(1)
;

we can fix a point (the class of e) and decompose the Lie algebra of Sp(2) as
usual:

sp(2) = so(4) ⊕ m

where m = [E⊗H ] quaternionically; this means that if we decompose so(4) as
su(2)+⊕su(2)− then E andH represent the standard complex representations
of the two summands (that extend globally to the Spin bundles).Now if
we act on HP(1) by the action of elements g ∈ Sp(2) we get analogous
decompositions, so that at the point corresponding to the class of g we get

sp(2) = Adgso(4) ⊕ Adgm . (5.48)

We can now decompose elements of so(4) projecting them on the summands
of the new decomposition: so if X ∈ so(4) then

X = π1,gX + π2,gX (5.49)

where πi,g is the projection on the i-th summand in (5.48); we observe that
the quaternionic structure at the point corresponding to g is provided by
Adgsu(2)− by adjoint action on Adgm.We have a representation of so(4) on
the module TgSO(4)HP1 ∼= Adgm via the adjoint action, but the π2 compo-
nent has no effect in consequence of the symmetric space structure; so the
projection on Adgso(4) is the significant part, and in particular the subspace

π−1
1,g (Adgsu(2)−) ∩ so(4) (5.50)

acts as ImH on Adgm; so it becomes interesting understanding (5.50) in or-
der to explain the interaction between the action of the fixed SO(4) and
quaternionic bundle.We have the following proposition:
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Proposition 5.11. Let Ψ be the map induced by te moment map µ of the
action of SO(4) on HP1 with values in G3(so(4)); then Ψ(HP1) = M∆ ∪
su(2)+ ∪ su(2)−, where M∆ is the unstable manifold associated to the critical
manifold containing su(2)∆; in particular:

Ψ(N) = su(2)− (5.51)

Ψ(S) = su(2)+ (5.52)

Ψ(γ(π/4)) = su(2)∆ . (5.53)

Proof:We choose now the following copy of U(1) ⊂ Sp(2):

g(t) =

⎛⎜⎜⎝
cos t sin t 0 0
− sin t cos t 0 0

0 0 cos t sin t
0 0 − sin t cos t

⎞⎟⎟⎠ = exp

⎛⎜⎜⎝
0 t 0 0
−t 0 0 0
0 0 0 t
0 0 −t 0

⎞⎟⎟⎠ , (5.54)

where the matrix on the right is denoted by t u. If we identify the north
pole N of S4 ∼= HP1 with the class of e, this subgroup (we observe that
U(1) �⊂ SO(4)) moves along a geodesic γ(t) connecting N (t = 0) with the
south pole S (t = π/2) passing through the equator (t = π/4), and then
backwards to N (t = π). The curve obtained is a section with respect to the
action of SO(4), in fact it is obtained by exponentiation of a straight line
passing through the origin in the tangent space at the point N , which is the
standard representation of SO(4) on R4; the SO(4) equivariance of the map
Exp implies that γ(t) is transverse to each orbit (the principal ones are copies
of S3 and the singular ones are N and S) and intersects all of them.Moreover
the stabilizer of the SO(4) action is constant along the curve on points that
are different from N and S, and coincides with SO(3)∆, both along γ(t) in
HP1 and along u(1) for the isotropy representation. So restricting to the
interval t ∈ (0, π/2), the nonvanishing Kvf are given by π2,gso(4) and some
calculations shows in fact that

π2,g(su(2)∆) ≡ 0 ;

on the contrary the only Kvf whose covariant derivative is nonzero at the
points γ(t) are precisely π−1

1,g(Adgso(4)); in particular if X ∈ so(4) then

∇(·)X̃ = [π1,g(t)X , · ] (5.55)

at the given point; but the only vectors whose induced antisymmetric en-
domorphism is contained in the quaternionic algebra are those given by
(5.50), as we already observed.
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Now we recall the notation used in section 5.3 to study the flow of grad f
in so(4): ei and fi denote orthonormal bases of su(2)+ and su(2)− respec-
tively; as so(4) is a subalgebra of sp(2) corresponding to the longest root, the
elements of the two copies of su(2) correspond to the following matrices:

e1 =
1√
2

⎛⎜⎜⎝
ı 0 0 0
0 0 0 0
0 0 −ı 0
0 0 0 0

⎞⎟⎟⎠ , f1 =
1√
2

⎛⎜⎜⎝
0 0 0 0
0 ı 0 0
0 0 0 0
0 0 0 −ı

⎞⎟⎟⎠ , (5.56)

e2 =
1√
2

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , f2 =
1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞⎟⎟⎠ (5.57)

and

e3 =
1√
2

⎛⎜⎜⎝
0 0 ı 0
0 0 0 0
ı 0 0 0
0 0 0 0

⎞⎟⎟⎠ , f3 =
1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 0 ı
0 0 0 0
0 ı 0 0

⎞⎟⎟⎠ ; (5.58)

so if ei(t) and fi(t) denote an orthonormal basis of Adg(t)so(4), we get via the
Killing metric:

〈ei , fj(t)〉 = δi
j sin2 t (5.59)

〈ei , ej(t)〉 = δi
j cos2 t (5.60)

〈fi , ej(t)〉 = δi
j sin2 t (5.61)

〈fi , fj(t)〉 = δi
j cos2 t ; (5.62)

the conclusion is that at the point γ(t)

πg(t)su(2)− (ei) = sin2 t fi(t) , πg(t)su(2)− (fi) = cos2 t fi(t) , (5.63)

or in terms of Kvf

πS2H(∇ẽi) = sin2 t fi(t) , πS2H(∇f̃i) = cos2 t fi(t) (5.64)

and the moment map for the action of SO(4) on HP1 along γ(t) is given by

µ(γ(t)) =
∑

i ωi ⊗ (cos2 t fi + sin2 t ei) , (5.65)
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up to a constant. This is the only information that we need to reconstruct
the moment map on the whole HP1, as γ intersects all the orbits and the
moment map is equivariant.

We can now interpret these facts in terms of the induced map Ψ: if we look
for a moment to equation (5.65) and we go back to (5.35), we can see that
the span of vi(t) consists exactly of the 3-planes V (t) along the trajectory
that generates the unstable manifold for grad f in G3(so(4)): the conclusion
follows.�

Observation.The map Ψ is not injective. The points corresponding to t and
π − t are sent to the same 3-plane; so the principal orbits of type S3 in HP1

are sent to the orbits of type RP3 in M∆. The map Ψ becomes injective on
the orbifold HP1/Z2.

Generalizing to HPn

We go now to consider HPn under the action of Sp(n)Sp(1), the subgroup of
Sp(n+ 1) which stabilizes a point, obtaining the following proposition which
extends 5.11:

Proposition 5.12. Let G = Sp(n)Sp(1) ⊂ Sp(n + 1) be the stabilizer of
a point N of HPn; then the map Ψ induced by the action of G with values
in the Grassmannian G3(sp(n) ⊕ sp(1)−) sends HPn in M ′

∆ ∪ HP(n − 1) ∪
su(2)−; the map Ψ is compatible with the standard inclusion of HP1 in HPn

as the following commutative diagram shows:

HPn Ψ1

2:1
�� G3(n, 1)

HP1
Ψ2

2:1 ����

��

G3(so(4)) ;
��

��
(5.66)

moreover we have the same equations as in Proposition 5.11, where S belongs
to AN .

Proof. At a Lie algebra level we have the following decompositions:

sp(n + 1) = sp(n) ⊕ sp(1)− ⊕ n (5.67)

where n is as usual the quaternionic isotropy representation [E ⊗H ], of co-
homogeneity one; then,also:

sp(n+ 1) = sp(n− 1) ⊕ sp(1)+ ⊕ n′ ⊕ sp(1)− ⊕ n ; (5.68)
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we added the subscripts +,− to distinguish the copies of sp(1), and also to
be consistent with the previous paragraph: in fact we can find a copy of
sp(2) ⊂ sp(n+ 1) such that

sp(2) ∩ (sp(n) ⊕ sp(1)−) = sp(1)+ ⊕ sp(1)− (5.69)

[sp(2) , sp(n− 1)] = 0 (5.70)

〈sp(2) , n′〉 = 0 , (5.71)

so that we can exploit the results for HP1: in fact the Lie algebra of the
principal stabilizer of the isotropy representation is precisely sp(n − 1) ⊕
su(2)∆, where su(2)∆ ⊂ sp(1)+⊕ sp(1)−, and if we take the element in (5.54)
we obtain a geodesic as for HP1, with antipodal point for t = π/2; evolving
sp(n + 1) under adjoint action,we obtain the usual effect on the copy of
sp(2) obviously, and moreover sp(n − 1) is left fixed, because of condition
(5.70); regarding n′, in view of (5.71) and as sp(2) is preserved by Adg(t), we
can conclude that it remains orthogonal to the latter under this action, so
that in particular 〈Adg(t)n

′ , sp(1)−〉 ≡ 0. So reasoning exactly as for HP1 we
see that the only Kvf along γ(t) with nonzero covariant derivative are those
given by sp(n− 1) ⊕ su(2)∆, but the projection on sp(1)− kills the elements
in sp(n− 1).

The conclusion is that the image in the Grassmannian G3(sp(n)⊕ sp(1))
(from now on in this section denoted as G3(n, 1) for brevity) under the Ψ
induced by the moment map of this action is given by the 3 planes obtained
in so(4) = sp(1)+ ⊕ sp(1)− under the inclusion

so(4) ⊂ sp(n) ⊕ sp(1)− ⊂ sp(n + 1) . (5.72)

Now consider the critical manifolds in G3(n, 1): as the algebra is not sim-
ple, we get 2 absolute maxima, a point corresponding to sp(1)− and a copy of
HP(n − 1) corresponding to sp(n); another critical point is given by su(2)∆,
included in so(4) as in (5.72); we describe the decomposition of the tangent
space of the Grassmannian at su(2)∆, in terms of the representations of the
whole stabilizer Sp(n− 1)SO(3)∆:

sp(n) ⊕ sp(1)− = sp(n− 1) ⊕ sp(1)+ ⊕ n′ ⊕ sp(1)−
= [S2E ⊗ C] + [Σ2

∆] + [E ⊗H+] + [Σ2]

with E,H+ are the standard sp(n− 1) and sp(1)+ representations as usual,
and the Σ2 is the antidiagonal representation in so(4); so, in terms of complex
representations,
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Tsu(2)∆G3(n, 1) = Σ2
∆ ⊗ (E ⊗ Σ1 + S2E ⊗ Σ0 + Σ2

∆ + Σ2) (5.73)

= E ⊗ (Σ3 + Σ1) + S2E ⊗ Σ2 + (Σ4 + Σ2 + Σ0) (5.74)

so that the tangent space to the 4n− 1 dimensional critical manifold C∆ is
given by

Tsu(2)∆C∆ = E ⊗ Σ1 + Σ2 (5.75)

and the unstable bundle by

W = Σ0 ; (5.76)

this implies that C∆ is a principal orbit too, in particular the Z2 quotient of
S4n−1, and moreover that the cohomogeneity of the unstable manifold M ′

∆ is
one, as usual when the corresponding nilpotent orbit is next-to-minimal.

Remark. In fact if g1 and g2 are two simple Lie algebras,O1 and O2 the
minimal nilpotent orbits of gi ⊗ C (of cohomogeneity 1 with respect to the
G action), then

cohomG1G2O1 ×O2 = cohomG1O1 + cohomG2O2 = 2 (5.77)

and O1 ×O2 is next-to-minimal in the partial order for both minimal orbits
(in fact contains them).

We have in conclusion the following commutative diagram of inclusions,
thanks to the compatibility of grad f with the inclusion of subalgebras:

M ′
∆

� � i �� G3(n, 1)

M∆
� �

i
��

��

��

G3(so(4)) .
��

��

which implies the result.�

Observations. 1)The antipodal set AN = Exp(S4n−1(π/2)) of the point N
is sent Sp(n)Sp(1)-equivariantly to HP(n− 1), and if we leave SO(4) acting
on the tangent space we get an S3 ⊂ S4n−1 which is sent in the same point
by the exponential map; so we have the following composition of equivariant
maps:
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Ψ ◦ Exp : S4n−1 �� HP(n− 1) , (5.78)

whose fibre contains S3; then we have the following sequence of fibrations:

S4n−1 = Sp(n)Sp(1)
Sp(n−1)SU(2)∆

Exp �� AN
Ψ �� Sp(n)Sp(1)

Sp(n−1)SO(4) ; (5.79)

for dimensional reasons we conclude that the antipodal set is precisely HP(n−
1), a well known fact (see [19]).

2)It is tempting to restrict to the subgroup Sp(n) ⊂ Sp(n + 1); its action
is still of cohomogeneity 1 on HPn, so it a good candidate for an immersion
compatible with the next-to-minimal unstable manifolds.However looking
more carefully we can see that in this case the moment map becomes

µ(γ(t)) =
1

λ

∑
i

ωi ⊗ sin2 t ei , (5.80)

so it degenerates at the point N ,moreover Ψ(γ(t)) for t �= 0 is constantly
su(2)+, and the whole manifold is squashed onto the maximal critical HP(n−
1) in G3(sp(n)); then there is no intersection of Ψ(HPn) with M∆, and in con-
sequence no hope of using the dynamics of grad f to describe the quaternionic
structure.We will see in the next section that in this sense the action of Sp(n)
will be more efficient on the complex Grassmannians.

3)The Z2 action on HPn is the one induced by the symmetry at the point
N . In this case M∆ is isomorphic to (see [80]):

HPn\(N ∪ HP(n− 1))

Z2
. (5.81)

Remark. In Chapter 6 the conformality of Φ̂ will be considered as a general
hypothesis; in the examples here in discussion the conformal factor is given
by the function

λ2(t) = sin4 t+ cos4 t , (5.82)

shown in figure 5.4.

5.5 Realizations in cohomogeneity 1: G2(C
2n)

and G̃4(R
n)

We go now to discuss analogous immersions for complex Grassmannians,
which are rank two symmetric spaces; this implies that we have no hope of
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Figure 5.4: The graph of λ2(t)

getting a local immersion as unstable next-to-minimal manifolds using the
stabilizer of a point as we did for HPn; instead we have to choose amongst
the actions available from Table 5.1. We can apply now what we know
about sections in the case of Sp(2) acting on the 8-dimensional Grassmannian
G2(C

4); as usual we obtain:

Proposition 5.13. Let Ψ be the map induced by te moment map µ of the
action of Sp(2) on G2(C

4) with values in G3(sp(2)); then Ψ(G2(C
4)) =

M∆ ∪HP1, where M∆ is the unstable manifold associated to the critical man-
ifold containing su(2)∆ ⊂ so(4) ⊂ sp(2);HP1 is mapped to the maximal
critical manifold and the other singular orbit QF is mapped to C∆; in partic-
ular equations (5.51), (5.52) and (5.53) hold.Moreover we have the following
commutative diagram:

G2(C
4)

Ψ1

2:1
�� G3(sp(2))

HP1
ν Ψ2

2:1 ��
��

��

G3(so(4)) .
��

��
(5.83)

Proof. First of all we notice that sp(2) can be naturally embedded in
su(4), in such a way that if so(4) ⊂ sp(2) then sp(2) ∩ (su(2)+ ⊕ su(2)− ⊕
u(1)) = so(4); we choose the basis defined in (5.56), (5.57) and (5.58) for
so(4), so if

G2(C
4) =

SU(4)

S(U(2) × U(2))
(5.84)

then the orbit passing through N = eK (with K = S(U(2) × U(2))) is

Sp(2)

Sp(1)Sp(1)
= HP1 . (5.85)

Remark.The subalgebras su(2)+ and su(2)− spanned by (5.56), (5.57) and
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(5.58) are SU(4)-conjugate to copies of su(2) embedded respectively as(
A 0
0 0

)
,

(
0 0
0 B

)
(5.86)

for A,B ∈ su(2), via the element⎛⎜⎜⎝
−1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞⎟⎟⎠ ; (5.87)

thus both su(2)± correspond to the minimal nilpotent orbit also if we see
them inside su(4).

The slice representation νN is R4 with the standard SO(4) action, and is
spanned by

k1 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ , k2 =

⎛⎜⎜⎝
0 0 0 ı
0 0 −ı 0
0 −ı 0 0
ı 0 0 0

⎞⎟⎟⎠ (5.88)

and

k3 =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ , k4 =

⎛⎜⎜⎝
0 ı 0 0
ı 0 0 0
0 0 0 ı
0 0 ı 0

⎞⎟⎟⎠ ; (5.89)

we choose the geodesic β(t) identified by k4, that is

g(t) = exp(t k4) =

⎛⎜⎜⎝
cos t ı sin t 0 0
ı sin t cos t 0 0

0 0 cos t ı sin t
0 0 ı sin t cos t

⎞⎟⎟⎠ ; (5.90)

clearly it is closed and orthogonal to HP1 at β(0),so it is a section. Following
the evolution of the quaternionic structure and projecting on it the antysim-
metric endomorphisms generated by sp(2) as we did before, we get an expres-
sion for the moment map µ(β(t)) which is identical to (5.65).Recall that the
maximal critical manifold for the flow of grad f in G3(sp(2)) is HP1;moreover
the next-to-minimal critical manifold C∆ corresponds to the diagonal subal-
gebra su(2)∆ ⊂ so(4), and at the level of nilpotent elements to the Jordan-
type partition {22} (see [21] and [52]); the critical submanifold C∆ is the
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6-dimensional homogeneous manifold

Sp(2)

U(2)∆
; (5.91)

this su(2)∆ is the one associated to the short root, and its centralizer is the
u(1) corresponding to the matrix called u in (5.54).Now sp(2) decomposes
in terms of SU(2) × U(1) representations as:

sp(2,C) = S2(Σ1 ⊗ (Am + A−m)) (5.92)

= Σ2 ⊗ (A2m + A−2m + Am ⊗ A−m) (5.93)

+ Σ0 ⊗ (Am ⊗ A−m) (5.94)

= Σ2 + Σ0 + Σ2 ⊗ (A2m + A−2m), (5.95)

where Am is some U(1) representation; the decomposition of the Grass-
mannian’s tangent space at C∆ in terms of the whole isotropy group is:

Tsu(2)∆G3(sp(2)) = Σ2 ⊗ (Σ0 + Σ2 ⊗ (A2m + A−2m)) (5.96)

= Σ2 ⊕ (Σ4 + Σ2 + Σ0) ⊗ (A2m + A−2m) (5.97)

as we have seen in (3.102) in terms of SU(2) representations; the unstable
bundle is

W = [Σ0 ⊗ (A2m + A−2m)] ∼= R2 (5.98)

which is of cohomogeneity 1 under the U(1) action.
Looking more carefully, we can notice that

so(4) ⊕ νN
∼= sp(2)ν , (5.99)

so we have two copies of sp(2) in su(4), satisfying

sp(2) ∩ sp(2)ν = so(4) ; (5.100)

geometrically this corresponds to the existence of another projective line,
transversal to the first one and denoted by HP1

ν ; it is clear from the definitions
that HP1

ν ⊃ β(t); the action of Sp(2) on it reduces to the well known action
of SO(4).
As we saw previously, the spheres of ray 0 < r < π/2 in νN are mapped
diffeomorphically onto HP1

ν\{N, S}, while the sphere of ray π/2 is sent to
the single point S: so the differential of the exponential degenerates on it, and
S belongs to a singular orbit. In G2(C

4) the first singular orbit corresponding
to the points {0} is HP1 and su(2)∆ is the centralizer of k4 in the slice
representation, and as we pointed out before the differential dExp is regular
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for t < π/2; so the Kvf corresponfing to the antidiagonal representation in
so(4) are preserved under it; in conclusion the 7-dimensional principal orbits
have type

Sp(2)

SU(2)∆
; (5.101)

we notice that the evolution of the generator of the u(1)

k9 =

⎛⎜⎜⎝
ı 0 0 0
0 −ı 0 0
0 0 ı 0
0 0 0 −ı

⎞⎟⎟⎠ , (5.102)

belonging to the algebra so(4)⊕ u(1) of the stabilizer on N , along β is given
by:

Adg(t)k9 =

⎛⎜⎜⎝
ı cos 2t sin 2t 0 0
− sin 2t −ı cos 2t 0 0

0 0 ı cos 2t sin 2t
0 0 − sin 2t −ı cos 2t

⎞⎟⎟⎠ ; (5.103)

this belongs to sp(2) if and only if t = π/4 + k π/2 ; indeed for these values
we get Adg(π/4)k9 = u and the orbit takes the form

QF =
Sp(2)

U(2)∆

; (5.104)

where F stands for focal: in fact u ∈ sp(2) represents a Jacobi field which
vanishes at these values of the parameter; if N denotes the normal bundle of
HP1 and B ⊂ N is the sphere bundle of ray π/4 inside it, then QF is nothing
else than Exp(B), and u is the kernel of dExp there.
Going on with the evolution we see that

Adg(π/2)(so(4) ⊕ u(1)) ∩ so(4) = so(4) ; (5.105)

so the second singular orbit (5.104) corresponds to {1} in the quotient space
[0, 1], and at t = π/2 the geodesic β meets again HP1, but at a different point
(su(2)+ and su(2)− are swapped); then it goes back to QF , and hence again
to HP1, closing at t = π.
In fact the points Ψ(β(π/4 + t)) and Ψ(β(π/4− t)) are on the same AdSp(2)-
orbit in G3(sp(2)), more precisely

Ψ(β(π/4 + t)) = Adβ(π/2)Ψ(β(π/4 − t)) ; (5.106)
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the restriction of f to the trajectory Ψ(β(t)) is given by

f(Ψ(β(t))) =

√
2
(
cos6 t+ sin6 t

)(
cos4 t+ sin4 t

) 3
2

, (5.107)

with nonzero derivative in the interval (0, π/4), hence injective: so must be Ψ
when restricted to the union of orbits intersecting β in this interval.

Remark.HP1 and HP1
ν are embedded isometrically, quaternionically and

(hence) totally geodesically in G2(C
4).

Observations.1)This time we have a Z2 action corresponding to the isom-
etry sending v in −v on the fibre of the normal bundle N of HP1; then we
have the following identification:

M∆
∼= G2(C

4)\HP1

Z2
. (5.108)

2)In [6] geodesics that are sections (called normal) are used to study coho-
mogeneity 1 actions; there it is introduced the concept of the twist of such
geodesics (which actually is independent of the chosen one), defined as:

tw(β) := |{β ∩ P0}| , (5.109)

where P0 is one of the singular orbits; in the case of G2(C
4) with Sp(2) action

we have tw(β) = 2;moreover

tw(β) =
1

2
|W| (5.110)

(Theorem 6.1 in the cited paper), where W is the generalized Weyl Group,
equal to N(β)/K, where N(β) is the subgroup preserving β globally and K
is the principal stabilizer, which preserves β pointwisely; in this case W is the
dihedral group generated by reflections at the points β(0) and β(π/4), so it
is isomorphic to Z2 ×Z2. Instead in the case of HP1 under the SO(4) action
we had tw(γ) = 1 and W = Z2.

Generalizing to G2(C
2n)

The inclusion sp(2) ⊂ sp(n) ⊂ su(2n) suggests how to generalize the previous
results to complex Grassmannians of dimension multiple of 8: in the same
spirit of what we did with projective spaces, we have a decomposition

su(2n) = sp(n) ⊕ n (5.111)
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and both sp(2) and sp(2)ν can be immersed in sp(n) preserving the same
relations seen for G2(C

4); in particular if we evolve along exp(tk4), the de-
composition

su(2n) = sp(2)ν ⊕ n′ (5.112)

is preserved, and as su(2)− ⊂ so(4) ⊂ sp(2)ν then the only elements which
have nonzero projection on su(2)− are the same as for G2(C

4): in other words
we obtain again the same expression for µ(β(t)) as in (5.65). The sp(n) orbit
through exp(π/4 · k4) is again Exp(B) in the notation used before; this is the
other singular orbit, which in this case is of type

QF =
Sp(n)

Sp(n− 2) × U(2)∆

, (5.113)

so that again QF
∼= C∆ up to a covering (see [22, Theorem 6.8]). Thus we

can extend Proposition 5.13:

Proposition 5.14. We have the exactly the same results as for Propostion
(5.13), with the substitution of G2(C

4) with G2(C
2n), sp(2) with sp(n),HP1

with HP(n− 1).

The Real Grassmannians G̃4(R
n)

We see from Table 5.1 that SO(n − 1) is the only group acting with co-
homogeneity 1 on G̃4(R

n).We note the following low-dimensional isomor-
phisms,which relate this case with the previous ones:

HP1 =
Sp(2)

Sp(1)Sp(1)
=
SO(5)

SO(4)
= S4 (5.114)

G2(C
4) =

SU(4)

S(U(2) × U(2))
=

SO(6)

SO(4) × SO(2)
= G̃4(R

6) ; (5.115)

the second one suggest to translate what discussed in the previous subsection
for G2(C

4) in terms of antisymmetric matrices; we obtain more in general:

Proposition 5.15. Let Ψ be the map induced by te moment map µ of the ac-
tion of SO(n−1) on G̃4(R

n) with values in G3(so(n−1)); then Ψ(G̃4(R
n)) =

M∆ ∪ G̃4(R
n−1), where M∆ is the unstable manifold associated to the critical

manifold containing su(2)∆ ⊂ so(4) ⊂ so(n− 1); G̃4(R
n−1) is mapped to the

maximal critical manifold; in particular equations (5.51), (5.52) and (5.53)
hold.Moreover we have the following commutative diagram:

G̃4(R
n)

Ψ1

2:1
�� G3(so(n− 1))

HP1
ν Ψ2

2:1 ��
��

��

G3(so(4)) .
��

��
(5.116)
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Proof.The following matrix explains pictorically the inclusions of su(3) ⊂
so(4) and νN in so(6) ∼= su(4):⎛⎜⎜⎜⎜⎜⎜⎝

• • • ◦ 0 �
• • • ◦ 0 �
• • • ◦ 0 �
◦ ◦ ◦ ◦ 0 �
0 0 0 0 0 0
� � � � 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (5.117)

where • represent elements in so(3), ◦ elements in so(4)\so(3), or in other
words the antidiagonal elements, and finally the � the slice representation
νN . As observed before, so(4) ⊕ νN = sp(2)ν . Now the pattern is clear also
in higher dimension: in fact so(4) and νN (which is always 4 dimensional)
are embedded in the same way as in (5.117), just adding more columns and
rows of zeroes to the ones existing in this case. To exemplify the situa-
tion,mantaining the notation used in the previous sections, we point out that:

k4 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 2
. . . . . . . . . . . . . . . . . .
0 0 0 −2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ , e1 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
−1 0 0 0 . . . 0
0 0 0 1 . . . 0
0 0 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We choose to evolve again along the geodsic β with β ′(0) = k4, the most
natural thing to do to extend the 8 dimensional case; the form of the moment
map obatined is the usual one, exactly for the same arguments used before.
In so(n) exist several next-to-minimal nilpotent orbits, and correspondingly
several next-to-minimal unstable manifolds, but the image of our Ψ results
to be the one with related partition {3, 1n}. Now the principal stabilizer is
given by SO(3)∆ × SO(n− 5), and the 4n − 17 dimensional principal orbit
(for n ≥ 6) is of type

SO(n− 1)

SO(n− 5) × SO(3)∆
; (5.118)

this time all elements in so(n − 1) with nonzero entries at (4, 4 + h) for
h = 1...n−5, represent a family of Jacobi fields which intersect the stabilizing
subalgebra so(4) × so(n − 4) along β with the same periodicity as u did in
the complex Grassmannians (see (5.103) and (5.104)), at t = π/4 + k π/2; in
consequence these values correspond again to the second singular orbit, which
has form

Exp(B) = G3(R
n−1)F =

SO(n− 1)

SO(n− 4) × SO(3)∆
, (5.119)
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which again coincides with C∆ up to a covering (see [22]); the conclusion is
the usual one.�

Observations.1)Again we have a Z2 action sending v in −v in N , inducing
the equivariant diffeomorphism

M∆
∼= G̃4(R

n)\G̃4(R
n−1)

Z2
. (5.120)

2)Again we have tw(β) = 2 and W = Z2 × Z2.

Brylinski and Kostant classification

Something is missing in the previous sections. In fact Complex Grassman-
nians of dimension 8n + 4 are not treated together with the other classical
Wolf Spaces; we see from Table 5.1 that SU(n) is the only group acting with
cohomogeneity 1 on these spaces, and if we try to perform the same type
of calculations as for other spaces on some low-dimensional example, we do
not get the same type of answer: the image of Ψ seems not to be contained
in the next-to-minimal unstable manifold as usual. This is not by chance: an
explanation for this phenomenon comes from Brylinski-Kostant classification
of shared nilpotent orbits: in fact in Table 5.2, taken from [49], but see also
[15], we see that in the third column the algebra su(n) is missing (for n �= 3); if
we had a finite covering map from an open subset of G2(C

2n+1) to a next-to
-minimal unstable manifold, then this would lift to a similar map at the level
of the Swann bundles, which are respectively minimal and next-to-minimal
nilpotent orbits; then su(n) should appear in the table.
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Wolf Space(g′) g′ g k dim O
G̃4(R

7) so(7) g2 1 8

G̃4(R
2n+2) so(2n+ 2) so(2n+ 1) 2 4n− 2

G2(C
2n) sl(2n) sp(2n) 2 4n− 2

E6/SU(6)Sp(1) e6 f4 2 22

G2/SO(4) g2 su(3) 3 6

G̃4(R
2n+1) so(2n+ 1) so(2n) 2 4n− 4

F4/Sp(3)Sp(1) f4 so(9) 2 16

F4/Sp(3)Sp(1) f4 so(8) 4 16

G̃4(R
8) so(8) g2 6 10

HPn−1 sp(n) ⊕k
1sp(ni) 2k−1 2n

Table 5.2: Shared nilpotent orbits. The number k is the degree of the covering
O′ → O.



Chapter 6

Latent quaternionic geometry

In this final Chapter we describe in detail the quaternionic structure as it
appears through the “Grassmannian filter”: the word “latent” expresses the
idea that this strucure is in some sense already present in G3(g), but manifest
itself only on the appropriate submanifolds.

6.1 The Coincidence Theorem

Suppose that the moment map µ induced by the action of a compact semi-
simple Lie group G on M has the form

µ(x) =
∑

i

Ii ⊗ Bi , (6.1)

where Bi = λ(x)vi, for vi an orthonormal basis of V = span{B1, B2, B3}; in
other words,µ induces a conformal map between the S2H bundle and the
restriction of the tautological bundle V to Ψ(M); this hypothesis is not ex-
cessively restrictive: in fact it was shown by Swann that if the twistor space Z
has an open GC orbit, then the image of µ is contained in the set F ⊂ G3 of
thoes 3-planes V such that the null cone of the complexification VC consists
of nilpotent elements (see Proposition 5.8); in this case

µC(I2 + ıI3) = B2 + ıB3 ∈ N ; (6.2)

but nilpotent elements in gC are isotropic with respect to the Killing form: in
fact thanks to Engel’s theorem their adjoint representation can be given in
terms of strictly upper triangular matrices, with respect to a suitable ba-
sis, and the product of such matrices is still strictly upper triangular and
hence traceless; in other words

0 = 〈B2 + ıB3 , B2 + ıB3〉 = ‖B1‖2 − ‖B2‖2 + 2ı〈B2 , B3〉 , (6.3)
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which implies B2 ⊥ B3 and ‖B2‖ = ‖B3‖, conditions that are equivalent to
conformality.We assume along the whole section that this condition holds
for the moment map µ.

Recall that µ satisfies the twistor equation

M

∇µA = s

3∑
i=1

IiÃ
� ⊗ Ii , (6.4)

where Ã is the Killing vector field generated by A in g, � means passing to
the corresponding 1-form via the metric and s is the scalar curvature, which
is constant as the metric is Einstein: for simplicity we can put s = 1.On the
other hand on V we have defined the sections sA and the natural connection
G

∇ so that, as seen in Chapter 2,more precisely (2.19) and Proposition 2.3

G

∇sA =
3∑

i=1

s⊥A ⊗ vi ⊗ vi . (6.5)

In general, given a differentiable embedding Ψ : M → N of manifolds, and
an isomorphism Φ̂ between vector bundles E → F on the manifold M and

N respectively, the second one equipped with a connection
F

∇ , we can define

the pullback connection Ψ̂∗ F

∇ acting in the following way on elements σ of
Γ(E):

(Ψ∗ F

∇)Y (σ) := Ψ̂−1(
F

∇(Ψ∗Y )(Ψ̂σ)) (6.6)

where Y ∈ TxM . In fact

Lemma 6.1. The operator Ψ̂∗ F

∇ defined on Γ(F ) is a connection.

Proof.We check that it satisfies the definition of a connection: it is clearly
linear in the Y , and as Φ̂ is a homomorphism, for λ(x) a differentiable function
on M , we have

(Ψ∗ F

∇)Y (λσ) = Ψ̂−1(
F

∇(Ψ∗Y )

(
Ψ̂λσ)

)
(6.7)

= Ψ̂−1
(
(Ψ∗Y )(λ)Ψ̂σ + λ(

F

∇(Ψ∗Y )σ)
)

(6.8)

= Y (λ)σ + λΨ̂−1
(F

∇(Ψ∗Y )σ
)

(6.9)

= Y (λ)σ + λ
(
Ψ∗ F

∇)σ .� (6.10)
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We want to apply this construction in our case, with the map Ψ : M →
G3 induced by µ, N = G3, E = S2H, F = V, to prove the Coincidence
Theorem, which relates, at a fixed point x ∈M , the action of the quaternionic
structure on 1-forms induced by G (the duals of the Killing vector fields) with
special cotangent vectors on the Grassmannian G3.

Before starting,we say in advance that the map Ψ : M → G3 can be lifted
to an isomorphis between the quaternionic bundle S2H and the tautological
bundle V; this question will be discussed in more detail in Section 6.2, but
we need it in the next proof in order to use the pullback connection.

Theorem 6.2. Let M, g,G3, µ be defined as usual, with

µ =

3∑
i=1

Ii ⊗ Bi (6.11)

where Bi = λvi, λ a differentaiable G-invariant function on M and vi an
orthonormal basis of a point V ∈ G3; let us choose A ∈ V ⊥ ⊂ g; then at the
point x such that Ψ(x) = V , for Ψ induced by µ as usual, we have

1
λ
IiÃ

� = Ψ∗(A⊗ vi) , (6.12)

where A⊗ vi ∈ T ∗
x G3.Moreover we have ‖µ‖2 = 3λ2.

Proof. Let Φ̂ denote the conformal lift of the map µ so that

Φ̂(Ii) = Bi ; (6.13)

then

Φ̂(µA) = Φ̂

(
3∑

i=1

Ii〈Bi , A〉
)

= Φ̂

(
λ

3∑
i=1

Ii〈vi , A〉
)

(6.14)

= λ
3∑

i=1

Φ̂(Ii)〈vi , A〉 = λ2
3∑

i=1

vi〈vi , A〉 (6.15)

= λ2sA ; (6.16)
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then applying the Φ̂∗ G

∇ connection of S2H to µA we obtain

(Φ̂∗ G

∇)µA = Φ̂−1

(
G

∇(Φ̂(µA))

)
= Φ̂−1

(
G

∇(λ2sA)

)
(6.17)

=
d(λ2)

λ2 µA + λ2Φ̂−1

(
G

∇sA

)
(6.18)

=
d(λ2)

λ2 µA + λ2Φ̂−1

(
3∑

i=1

s⊥A ⊗ vi ⊗ vi

)
(6.19)

=
d(λ2)

λ2 µA + λ

3∑
i=1

Ψ∗(s⊥A ⊗ vi) ⊗ Ii ; (6.20)

on the other hand the difference of two connections on the same vector bundle
is a tensor, so given any section σ ∈ S2H which vanishes at a point x ∈M

(
M

∇− Ψ∗ G

∇)σ(x) = 0 ; (6.21)

but this is precisely the case for the section µA at the point x such that
Φ̂(S2Hx) = V , because A ∈ V ⊥ by hypothesis; in other words

M

∇µA |x = (Ψ∗ G

∇)µA |x ; (6.22)

thanks to the calculations in (6.17) and using the twistor equation (6.4), we
can deduce

3∑
i=1

IiÃ
� ⊗ Ii = λ

3∑
i=1

Ψ∗(s⊥A ⊗ vi) ⊗ Ii ; (6.23)

the result follows considering that s⊥A = A at V . �

The Coincidence Theorem leads to various ways of relating elements in
TxM ,TV G3 and the quaternionic elements Ii. In fact

Corollary 6.1. Let Y ∈ TxM such that

Ψ∗Y =
∑

vi ⊗ Pi ; (6.24)

for Pi ∈ V ⊥ with V = Ψ(x); let us consider a tangent vector of the form
X = (1/λ)

∑
i IiP̃i in TxM ; then

X� = Ψ∗((Ψ∗Y )�
)
. (6.25)
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Proof.Using the definitions and (6.12) we obtain

(Ψ∗Y )�
(
Ψ∗Z

)
= 〈
∑

vi ⊗ Pi , Ψ∗Z〉G3 (6.26)

=
1

λ
〈
∑

IiP̃i , Z〉M (6.27)

= X� , (6.28)

for any Z ∈ TxM , hence the conclusion.�
Observation.We are using the � homomorphism in two different mean-
ings, depending on what metric we are considering: in one case that on TV G3

and in the other in TxM .

Another consequence of the Coincidence Theorem 6.2 is

Corollary 6.2. Under the hypotheses of Theorem 6.2 we have

Ψ∗I1X =
1

λ

∑
j

〈X , Ãj〉M v1 ⊗ Aj (6.29)

− 1

λ

∑
j

〈X , I3Ãj〉M v2 ⊗ Aj

+
1

λ

∑
j

〈X , I2Ãj〉M v3 ⊗Aj .

with 〈, 〉M the metric on M ; analogous statements are valid for I2, I3.

Proof.We have

Ψ∗X =
∑
i,j

〈Ψ∗X , vi ⊗Aj〉G3 vi ⊗ Aj (6.30)

=
1

λ

∑
i,j

〈X , IiÃj〉M vi ⊗ Aj (6.31)

and applying one of the quaternionic endomorphisms we obtain immediately
(6.29).�
Observation.We notice that the first summand in (6.29) does not depend
on I1.

The equivariance of the moment map µ implies that Kvf on M are sent
to Kvf on G3: in other words if Ã is induced by A ∈ g on M , then

Ψ∗Ã =

3∑
i=1

vi ⊗ [A , vi]
⊥ . (6.32)



6.1 The Coincidence Theorem 114

Let now α =
∑3

i=1 vi ⊗ pi ∈ T ∗
x G3 and let Ar be an orthonormal basis of

V ⊥; then

d−3∑
r=1

〈Ψ∗α, Ãr〉Ar =

d−3∑
r=1

〈α, Ψ∗Ãr〉Ar =
∑
i,r

〈pi, [vi , Ar]
⊥〉Ar (6.33)

=
∑
i,r

〈 pi, [vi , Ar] 〉Ar =
∑
i,r

〈[pi, vi] , Ar〉Ar (6.34)

=
∑

i

[pi, vi]
⊥ . (6.35)

We can therefore define a mapping

ρ : T ∗
xM �� V ⊥ (6.36)

by ρ(σ) =
∑

r〈σ , Ãr〉Ar; so if α ∈ TxG3, then Ψ∗α ∈ TxM , and the composi-
tion γ = ρ ◦ Ψ∗ is a map

γ̃ : T ∗
x G3

�� V ⊥ . (6.37)

defined by γ(α) =
∑

i[vi , pi]
⊥, obtained from the projection map γ defined

in Chapter 3, definition 3.1, by

γ̃ = π⊥ ◦ γ ; (6.38)

recall that γ(α) = 0 if 〈α , Ã〉 = 0 for al A ∈ g, or in other words γ detects if α
is ortogonal to the G-orbit; in consequence if α is orthogonal, then γ̃(α) = 0.

Proposition 6.3. Let Y ∈ TxM so that

Ψ∗Y = v1 ⊗ p1 + v2 ⊗ p2 + v3 ⊗ p3 ; (6.39)

then we have

Ψ∗I1Y = 1
λ
v1 ⊗ ρ(Y �) − v2 ⊗ p3 + v3 ⊗ p2 . (6.40)

Proof.Consider any A ∈ V ⊥, then

〈p1 , A〉G = 〈Ψ∗Y , A⊗ v1〉G =
1

λ
〈I1Ã� , Y 〉 (6.41)

=
1

λ
〈I1Ã , Y 〉M = − 1

λ
〈Ã , I1Y 〉M (6.42)

= − 1

λ
〈I1Y � , Ã〉 , (6.43)
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where 〈 , 〉M,G denote the respective metrics, while 〈 , 〉 without subscript is
merely the contraction of a cotangent and tangent vector; then considering
(6.41) and (6.36)

p1 =
∑

r

〈p1 , Ar〉G = − 1

λ

∑
r

〈I1Y � , Ãr〉 (6.44)

= − 1

λ
ρ(I1Y

�) (6.45)

and analogously

pi = − 1

λ
ρ(IiY

�) , i = 2, 3 ; (6.46)

in consequence

Ψ∗I1Y =
1

λ
v1 ⊗ ρ(Y �) − 1

λ
v2 ⊗ ρ(I3Y

�) +
1

λ
v3 ⊗ ρ(I2Y

�) (6.47)

=
1

λ
v1 ⊗ ρ(Y �) − v2 ⊗ p3 + v3 ⊗ p2 .� (6.48)

Clearly analogous assertions are valid for I2 and I3.

Remarks. i) Proposition 6.3 predicts that if Y is perpendicular to the G-
orbit on M , then

ρ(Y �) = 0 , (6.49)

thanks to the definition of ρ.We can therefore expect this situation when
we go to analyze the action of the quaternionic structure on the unstable
manifolds of G3; this was be shown in a purely algebraic way on the tangent
space of G3 at the f -critical submanifolds in Section 4.3;

ii) a striking feature of (6.40) is that in the expression obtained the first
summand is independent from I1; the operators ρ, γ appear to be the essen-
tial ingredient to reconstruct the quaternionic action; the other summands
−v2 ⊗ p3 + v3 ⊗ p2 are obtained by just mimicking the adjoint representation
of su(2), as already observed in Section 4.3; this is not sufficient however to
obtain

I2
i = −Id . (6.50)

iii) the nature of the operator γ is strictly related to the Lie algebra
g; this is relevant to the general philosophy of the thesis: in fact γ is one of
the key links between the Grassmannians, Lie algebras and the quaternionic
structures;

iv) compare 6.40 with 4.57.
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6.2 The two Twistor equations

Let us consider as usual a group of isometries G preserving the quaternionic
structure; in this case a Klling vector field X satisfies the condition

LXΩ = 0 ; (6.51)

as discussed in Section 5.1 we define µA a section of S2H , with µ the moment
map for the G action, which satisfies the equation

dµA = i(Ã) Ω , (6.52)

where Ã is the Killing vector field generate by A. Another way of describing
the sections coming from the moment map is expressed by

µA = πS2H(∇Ã) (6.53)

up to a costant; this was exploited in Sections 5.4 and 5.5 to obtain examples
of realizations of QK manifolds in G3(g).

This latter point of view can be related to the following differential op-
erators (the symbol denoting the spaces of sections is omitted): the Dirac
operator

δ : S2H
∇ �� E ⊗H ⊗ S2H

� � �� (E ⊗H) ⊗ (H ⊗H∗) �� T ∗ (6.54)

where the underlined terms are contracted and T ∗ = E ⊗H as discussed in
Section 4.1; the QK twistor operator, defined as follows:

D : S2H
∇ �� E ⊗H ⊗ S2H

sym �� E ⊗ S3H , (6.55)

where we symmetrize after covariant differentiation. In [71][Lemma 6.5] Sala-
mon proved that sections of S2H belonging to ker D are in bijection with
Killing vector fields preserving the QK structure; this means that if σ is in
ker D then δ(σ) is dual to a Killing vector field Ã, and on the other hand
σ = µA, or in other words

D µA = 0 (6.56)

and all elements in ker D are of this form.
Recall now what discussed for Grassmannians in Chapter 2: there we in-

troduced another differential operator D on the tautological bundle V over
G3(g) (see Section 2.3); elements in its kernel were proved to be precisely the
sections sA obtained by projection from the trivial bundle with fibre g.We
want to relate the kernels of D and D theough the map Ψ insuced by µ: first
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of all let us restrict to a subset M0 ⊂ M such that Ψ is well defined, in the
sense that µ identifies a 3-dimensional subspace in g; in local coordinates

µ =
3∑

i=1

ωi ⊗ Bi (6.57)

and this is equvalent to say that the Bi are linearly independent; one can ask
if this restriction leads to a too small (and so not so interesting) subset, but
this is not the case as seen in Proposition 5.2 (or see [80, Proposition 3.5]).

We can construct through the map Ψ a pullback bundle onM0 as diagram

Ψ∗(V)
Ψ̂ ��

p∗V
��

V

pV

��
M0 Ψ

�� G3(g)

(6.58)

shows,where Ψ̂ is the lifting of Ψ; the pullback of a bundle is unique up to
isomorphism of bundles (see [82, Cap.I, Prop. 2.15]), so any vector bundle
W −→M0 such that exists a map of bundles

Φ̂ : W �� V (6.59)

which is injective on the fibres and makes commutative diagram (6.58) is iso-
morphic to Ψ∗(V).We want to construct such a map for the bundle S2H , using
th moment map µ.

Lemma 6.4. We have the following isomorphism of bndles on M0:

S2H ∼= Ψ∗(V) , (6.60)

and the digram

S2H
Φ̂ ��

p∗V
��

V

pV

��
M0 Ψ

�� G3(g)

(6.61)

commutes, with Φ̂ = Ψ̂ modulo isomorphism of bundles.

Proof.The morphism of bundles

Φ̂ : S2H �� V (6.62)
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is obtained sending(
x, ωi(x)

) � ��
(
span{B1(x), B2(x), B3(x)}, Bi(x)

)
(6.63)

(see (6.57)) and extending linearly on the fibres; this is essentially the con-
traction of a vector v ∈ S2Hx with the S2H component of µ(x) using the
metric, so it doesn’t depend on the trivialization (the structure group pre-
serves the metric) and is injective on the fibres by the definition of M0. �

We want to point out that Φ̂ is not an isometry of Riemannian bundles
in general; nevertheless we can retain the hypotheses considered in Section
6.1 when discussing Theorem 6.2:we can therefore assume that Ψ̂ is a con-
formal map of Riemannian bundles, considering S2H and V equipped with
the natural metrics coming respectively from M and from G3. In other words
the Bi in (6.57) are orthogonal and ‖B1‖ = ‖B2‖ = ‖B3‖.

In this case we can exploit the freedom composing Φ̂ with a bundle au-
tomorphism of S2H ; we can for instance operate a dilation

ξ(x, w) = (x,
w

‖Bi‖), (6.64)

which is independent of the trivialization; in this way

Ξ̂(ωi) := Φ̂ ◦ ξ(ωi) =
Bi

‖Bi‖ , (6.65)

and so an orthonormal basis is sent to another orthonormal basis: this is
therefore an isometry of the two bundles compatible with the map Ψ induced
by µ.

We can now state the main result of this section.

Proposition 6.5. There exists a lift Ψ̂ of the map Ψ such that

Ψ̂(µA) = sA , (6.66)

determining a map

ker D �� ker D . (6.67)

Proof.We are looking for a lift Ψ̂ such that the diagram

S2H
Ψ̂ �� V

M0 Ψ
��

µA

��

G3(g) .

SA

�� (6.68)
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commutes; recall the usual local description (6.57) of µ, and let us define Ψ̂
so that

Ψ̂(ωi) =
Bi

‖Bi‖2
, (6.69)

obtaind by composing Φ̂ with the dilation ξ2 (see 6.64); this is again a lift of
Ψ; consider as usual µA ∈ Γ(S2H) satisfiying the twistor equation; then

Ψ̂(µA) = Ψ̂
(∑

i

ωi〈Bi , A〉
)

(6.70)

=
∑

i

Bi

‖Bi‖2
〈Bi , A〉 (6.71)

= πVA = sA . (6.72)

The section sA is obtained invariantly by projection, therefore it is indepen-
dent from the chosen basis, so no ambiguity comes in case that Ψ is not
injective: if Ψ(x) = Ψ(x′) = V then

Ψ̂
(
µA(x)

)
= Ψ̂

(
µA(x′)

)
= sA .� (6.73)

The situation can be summarized in diagram (6.74):

A ∈ g

		
		

		
		

		
		

		
		

		
		

		

sA ∈ ker D

����������������������

µA ∈ ker D

(6.74)

.

Observations. i)We can interpret µ as a collection of d = dim g sections of
S2H : if Ai are an orthonormal basis for g the moment map µ is completely
determined by the µAi

. Locally we get

Bi =
∑

j

aj
i Aj (6.75)

so that
µAi

=
∑

j

aj
i ωj ; (6.76)
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So for instance, if locally a section σ ∈ Γ(S2H) is given by

σ =
∑

i

ciωi (6.77)

then
Φ̂(σ) =

∑
i

ciBi ; (6.78)

with respect to the basis Ai of g the local description of the morphism Φ̂ is
encoded in the (3 × (d− 3)) matrix of the coefficients ai

j seen in (6.75);

ii) this construction is similar to that used to prove the so called “clas-
sification Theorem” for vector bundles (see for example [82, Chap III, Prop.
4.2]); in fact µ can be interpreted as a collection of N = dim(g) sections of the
bundle S2H ; nevertheless here the sections used to construct the map to the
appropriate Grassmannian are chosen in order to satisfy the twistor equation
(6.56), coming from the quaternionic structure, and not with the criterion of
ensuring their maximal rank point by point; this lack is cured restricting to
the subset M0;

iii) consider an element A ∈ g and the associated section sA ∈ Γ(V); at
the point V ∈ G3(g) we have

A = πVA+ πV ⊥A (6.79)

to which we can associate pointwise the section µsA
; actually µsA

= µA point
by point, because the summand πV ⊥ does not affect µA:∑

ωi 〈A , Bi〉 =
∑

ωi〈πVA+ πV ⊥A , Bi〉 (6.80)

=
∑

ωi 〈πVA , Bi〉 . (6.81)

6.3 The interpretation of the functional g

As discussed in Section 5.3, in the case of Lie algebras g such that

g ⊃ so(4) (6.82)

the next-to-minimal unstable manifold for grad f is always of cohomogeneity
1 and the relation

grad f = a grad g (6.83)

holds on it, with a a function described in Proposition 5.9. Consider now the
realizations constructed in Sections 5.4 and 5.5, which are essentially based
on the inclusion

HP1 ⊂M (6.84)
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for the various Wolf spaces M ; this inclusion is stricly related to (6.82).

Recall that if so(4) = span{ei, fi, i = 1 · · · 3}, then the moment map is
expressed by

µ =
∑

ωi ⊗ (sin2 tei + cos2 tfi) , (6.85)

(see (5.65) ;therefore the conformality factor coming from the general hy-
potheses of Section 6.1 is given in these cases by

λ2(t) = sin4 t+ cos4 t (6.86)

along the trajectory

V (t) = span{sin2 tei + cos2 tfi, i = 1 · · ·3} , (6.87)

which is another way of describing the trajectory (5.35) discussed in Section
5.3.We have

Lemma 6.6. Consider the unstable next-to-minimal submanifolds in G3(g),
for g = so(n), sp(n) or sp(n)sp(1); there the equality

a = −2
√

2

λ
. (6.88)

holds.

Proof. Let us calculate explicitly the objects of our interest along V (t),
adopting the notation sin2 t = u and cos2 t = w:

(grad f)i =
1

λ3 〈
[
u ej + w fj , u ek + w fk

]
, (6.89)

− w ei + u fi〉 (6.90)

=

√
2

λ3 wu (w − u) , (6.91)

and

(grad g)i = − 2

λ4

([
u ej + w fj,

[
u ej + w fj , u ei + w fi

]]⊥
(6.92)

+
[
u ek + w fk,

[
u ek + w fk , u ei + w fi

]]⊥
(6.93)

= − 4

λ4 wu (w2 − u2) ; (6.94)
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so we have

a = −4wu (w2 − u2)

λ4

λ3

wu (w − u)
√

2
(6.95)

= −2
√

2(w + u)

λ
= −2

√
2

λ
.� (6.96)

We are interested in discussing the interplay between the functions a, λ
and the quaternionic structure on a QK manifold M . Let us denote by Ii a
basis spanning Im H with the usual relations

IiIj = (−1)εIk , (6.97)

with ε depending on the permutation ijk.

A conjecture about the description of the Ii in the Grassmannian language
leads to define

Îi(A) := vi ×A+ c vi ⊗ γ(A)⊥ , (6.98)

where × means the R3 exterior product on the V component of A and c is
some function; this definition is modelled on the basis of (6.40), but it does
not take care of the effect due to Ψ∗ when passing between the tangent spaces.

Nevertheless it is instructive to determine the action of such endomor-
phisms on grad f : in fact asking that

Î2 = −Id , (6.99)

under the hypothesis that grad g = a gradf , for instance we have

Îi(grad f) = −ṽi ; (6.100)

moreover
Î2
i (grad f) = −grad f (6.101)

or more explicitly

Îi
(
Îi(grad f)

)
= vi ⊗ cγ

(
Ii(grad f)

)⊥ − vj ⊗ wj − vk ⊗ wk (6.102)

= −grad f ; (6.103)

in particular this should imply that

−cγ(ṽi)
⊥ = −wi ; (6.104)
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expliciting the action of γ we obtain

γ(ṽi)
⊥ = γ

(
vj ⊗ [vi, vj]

⊥ + vk ⊗ [vi, vk]
⊥)⊥ (6.105)

=
(
([vj, [vi, vj ]] − 〈[vi, vj], vk〉[vj, vk]) (6.106)

+ ([vk, [vi, vk]] − 〈[vi, vk], vj〉[vk, vj ])
)⊥

(6.107)

= −C(vi)
⊥ − 2f(V )wi (6.108)

=
(grad g)i

2
− 2f(V ) (grad f)i , (6.109)

where C(·) is the generalized Casimir operator described in 3.39, and (grad g)i

are the V ⊥ factors of the i-th component of the gradients.Hence, from (6.104)
and (6.109) we have

c
(
grad g − 4f(V ) grad f

)
= 2gradf , (6.110)

so that the function c should satisfy

c =
2

(a − 4f)
. (6.111)

In this way we obtain (6.101): the γ component recovers at the second step
what is lost by the action of × at the first step.

Observation.With this choice of c the quaternionic relations hold for Îi, so
they behave like a quaternionic structure, at least on

span{ṽ1, ṽ2, ṽ3, grad f} ⊂ TV G3 (6.112)

which so should turn out to be to be the quaternionic span of grad f at V .

Proportionality of grad f and grad g is also helpful in determining what
happens to vectors X in TxM when they pass through Ψ∗: recall that

grad f =
∑

i

vi ⊗ wi (6.113)

with wi defined in (6.40); then using the Coincidence Theorem 6.2 (or more
precisely Corollary 6.1) we can define

Z :=
(
Ψ∗(grad f)�

)
�
=

1

λ

∑
Ii w̃i , (6.114)

where � in Hom(TxM, T ∗
xM) and in Hom(TV G3, T

∗
V G3) denotes the duality

isomorphism defined by the respective metrics, and � = �−1; we observe that
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as the two dualities depend on the metrics, the diagram

T ∗
xM

�
��

T ∗
V G3

Ψ∗
��

�
��

TxM Ψ∗
�� TV G3

(6.115)

is not commutative in general. Therefore no relationship exists a priori be-
tween a tangent vector X in TxM and

�(X) := (Ψ∗(Ψ∗X)�)� ∈ TxM ; (6.116)

nevertheless, in case of proportionality between grad f and grad g we have

Proposition 6.7. Let us consider

Z =
1

λ

∑
i

Iiw̃i ; (6.117)

as seen in (6.114); if grad f = a grad g at V then∑
i

Ii�(w̃i) = κZ (6.118)

for an appropriate invariant function κ(V ).

Proof.Writing explicitly∑
i

Ii�
(
w̃i

)
=
∑
i,j

Ii
(
Ψ∗ (vj ⊗ [wi , vj ]

⊥)�
)

�
(6.119)

and then using Theorem 6.2 (or Corollary 6.1)

1

λ

∑
i,j

Ii Ij ˜[wi , vj]⊥ =
1

λ

(
−
∑
i=j

˜[wi , vj ]⊥ + I1

(
˜[w2 , v3]⊥ − ˜[w3 , v2]⊥

)
+ I2

(
˜[w3 , v1]⊥ − ˜[w1 , v3]⊥

)
+ I3

(
˜[w1 , v2]⊥ − ˜[w2 , v1]⊥

))
=

1

λ

(
− S ˜[[v2 , v3]⊥ , v1]⊥ + I1

(
˜[[v3 , v1]⊥ , v3]⊥ − ˜[[v1 , v2]⊥ , v2]⊥

)
+ I2

(
˜[[v1 , v2]⊥ , v1]⊥ − ˜[[v2 , v3]⊥ , v3]⊥

)
+ I3

(
˜[[v2 , v3]⊥ , v2]⊥ − ˜[[v3 , v1]⊥ , v1]⊥

))
,



6.4 The case of su(3) 125

and writing more explicitly the projection on V ⊥ and using the Jacobi iden-
tity we obtain for the first summand

S ˜[[v2 , v3]⊥ , v1]⊥ = S ˜[[v2 , v3] , v1]⊥ = 0 (6.120)

(recall that S means summing over cyclic indices); for the remaining part of
the expression we obtain

1

λ

(
I1

(
˜[[v3 , v1] , v3]⊥ − ˜[[v1 , v2] , v2]⊥ − 2fw̃1

)
+ I2

(
˜[[v2 , v1] , v1]⊥ − ˜[[v2 , v3] , v3]⊥ − 2fw̃2

)
+ I3

(
˜[[v2 , v3] , v2]⊥ − ˜[[v3 , v1] , v1]⊥ − 2fw̃3

))
=

1

λ

∑
Ii(−C̃(vi)⊥ − 2fw̃i) =

a − 4f

2λ

∑
Iiw̃i ,

hence the conclusion.�

6.4 The case of su(3)

The case of su(3) is different in more than a sense from examples discussed
in Sections 5.4 and 5.5: first of all, it is related the inclusion su(3) ⊂ g2, where
g2 is the Lie algebra of the exceptional Lie group G2; the lack of a matricial
description, at least to our knowledge, of this latter does not allow to per-
form the same type of calculations and to obtain an explicit expression for
µ.Moreover we have that so(4) �⊂ su(3), therefore it would not be possible in
this case to use the trajectory studied in Section 5.3, even if as we shall see
ina moment a trajectory is known also in this case.

The unstable manifold in G3(su(3)) has been studied in detail in [50], nev-
ertheless we want to give here an alternative description of the rich geometry
present in this example.

It is known that the unstable manifold M for grad f departing from the
critical set

SSU(3)

Z3
=

SU(3)

SO(3)× Z3
(6.121)

is locally isomorphic to the exceptional Wolf space

G2

SO(4)
; (6.122)

more precisely (see [50]) there exists a 3 : 1 covering

Ψ :
G2

SO(4)
\CP2 �� M . (6.123)
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An explicit trajectory for the grad f flow has been already described in
[50], an expression is given by

Γ(x, y) = 〈
⎛⎝ 0 x3 0
−x3 0 y3

0 −y3 0

⎞⎠ , −
⎛⎝ 0 ıx3 0
ıx3 0 ıy3

0 ıy3 0

⎞⎠ , (6.124)

√
(x2 + y2)

⎛⎝ıx2 0 0
0 ı(y2 − x2) 0
0 0 −ıy2

⎞⎠〉 (6.125)

with the condition that 2(x6 + y6) = 1; the flow goes from the critical man-
ifold Cr = SSU(3)/Z3 to the maximal critical manifold, the classical Wolf
space CP2; the intersection points of the trajectory Γ(x, y) with these two or-
bits, wich turn out to be the singular orbits of the cohomogeneity one action
of SU(3) restricted to M , corrspond to the conditions x = y = 2−1/3 and
y = 0, x = 2−1/6; the intersection points are the 3-dimensional subalgebras
spanned by

w1 =

⎛⎝ 0 1 0
−1 0 1
0 −1 0

⎞⎠ , w2 = −
⎛⎝0 ı 0
ı 0 ı
0 ı 0

⎞⎠ , w3 =

⎛⎝ı 0 0
0 0 0
0 0 −ı

⎞⎠ (6.126)

in Cr and by

h1 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , h2 = −
⎛⎝0 ı 0
ı 0 0
0 0 0

⎞⎠ , h3 =

⎛⎝ı 0 0
0 −ı 0
0 0 0

⎞⎠ ; (6.127)

in CP2. In this last case the subalgebra is conjugate to the standard real so(3)
via the element

AΓ =
1√
2

⎛⎝1 0 0
0 0 1
0 −1 0

⎞⎠⎛⎝−1 0 ı
0 −ı 0
−1 0 −ı

⎞⎠ ; (6.128)

the two subalgebras (6.126) and (6.127) will be denoted by Wr and Wh re-
spectively in the sequel.

We point out that Nagatomo desribed in [65] the same CP2 as the singualr
set of an ASD bundle over G2/SO(4).

The correspondence between points in a principal orbit, which is of type

SU(3)

U(1)
(6.129)
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with U(1) corresponding to⎛⎝ı 0 0
0 0 0
0 0 −ı

⎞⎠ ∈ u(1) , (6.130)

and the limit points along Γ(x, y) in the singular orbits gives rise to a double
fibration of the same type described for the consimilarity action on SU(3) in
(1.59):

SU(3)/U(1)
π̃2

��











π̃1

�������������

SSU(3) CP2

; (6.131)

the only real difference here in the presence of a CP2 substituting S5. If we
consider the Hopf fibration

S1 � � �� S5

πH

��
CP2

(6.132)

we can ask if the equations{
π̃1 ◦ π̃−1

2 (x) = π1 ◦ (πH ◦ π2)
−1(x)

π̃2 ◦ π̃−1
1 (x) = πH ◦ π2 ◦ π−1

1 (x)
(6.133)

hold; recall that π1, π2 are the projections analogous to π̃1, π̃2 in (1.59). This
depends on the intersection U(1) = N(SU(2)) ∩ SO(3) of the singular sta-
bilizers. Ispecting the subalgebras (6.126) and (6.127), we see that this is not
the case; in conclusion if the CP2 in (6.131) and (6.132), then the S5 in (6.132)
is not the S5 in (1.59). We want however to give an interpretation of the
double fibration (6.131) induced by Γ.

We recall here some facts about Lagrangian and Special Lagrangian sub-
spaces; a reference for this material is [34, Section III].

Let R6 = C3 be the standard SU(3) representation endowed with the
standard symplectic 2-form

ω = e12 + e34 + e56 , (6.134)

almost complex structure

Je1 = e2, Je3 = e4, Je5 = e6 (6.135)
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and (3, 0)-form ψ = ψ+ + ıψ−:

ψ+ = e135 − e146 − e236 − e245 (6.136)

ψ− = −e246 + e136 + e235 + e145 ; (6.137)

recall that a subspace V ⊂ R2n such that V = V ⊥ with respect to ω is
called a Lagrangian subspace; this condition implies dimV = n; if in addition
ψ+|V = volV or equivalently ψ−|V = 0, then it is called a Special Lagrangian
subspace (SL from now on); other equivalent conditions carachterizing SL
subspaces are given by

ω ∧ κ = 0 , ψ− ∧ κ = 0 , (6.138)

where κ is the n-form dual to V under the metric (in the sense that if V =
span{v1, · · · , vk} then κ = v1 ∧ · · · ∧ vk). The following lemma holds:

Lemma 6.8. The sets of Lagrangian and SL subspaces in R2n are parame-
trized respectively by the symmetric spaces

U(n)

O(n)
and

SU(n)

SO(n)
. (6.139)

Recall some isomorphisms of representations, introducing together some
notation:

Λ2 :=
∧2

R3 ∼= so(3) (6.140)∧2
R6 ∼= so(6) (6.141)

and also

Λ1,1
0 := [[

∧1,1

0
C6]] ∼= su(3) ⊂ so(6) (6.142)

Λ2,0 := [[
∧2,0

C6]] , (6.143)

where C6 = R6
C
, so that∧2

R6 = Λ1,1 ⊕ Λ2,0 = ω ⊕ Λ1,1
0 ⊕ Λ2,0 ; (6.144)

we denote by π1,1 the projection on the first two summands and by π1,1
0 that

on the second summand, and noting that

J∧2 =

{
+1 on Λ1,1

−1 on Λ2,0
(6.145)
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we obtain the expression
π1,1 = Id+ J∧2 . (6.146)

Consider now the well-known decomposition∧2
R4 =

∧2

+
R4 ⊕

∧2

−
R4 = Λ2

+ ⊕ Λ2
− (6.147)

corresponding to the ±1 eigenvalue of the ∗ operator, where the two sum-
mands are called self-dual and anti-self-dual forms; recalling that

Λ2
− = Λ1,1

0 (6.148)

we can identify the projection on the second summand π− with π1,1
0 ; recall

that F coincides with the twistor bundle of CP2:

S2 � � �� S2(Λ2
−) =: F

p0

��
CP2

(6.149)

where S2 is the unitary sphere bundle contained in the 3-dimensional anti-
self dual bundle over CP2 and p0 is the projection on a complex line L0; the
fibre of this twistor projection consists of the complex planes containing
L0, parametrized by the complex lines in the plane L⊥

0 : this can be seen more
clearly by describing the total space F of the bundle as a homogeneous space
under SU(3): this turns out to be the flag manifold SU(3)/T 2, describing the
complete flags in C3; a projection under a U(1) action relates F to our generic
orbit SU(3)/U(1):

SU(3)

U(1)

πF �� F . (6.150)

The choice of a unit element σ of Λ2
− identifies an additional decomposi-

tion of the L⊥
0 , as one can deduce from the following proposition (see [1]):

Proposition 6.9. The twistor bundle F of CP2 can be identified with
P
(
T (1,0)CP2

)
.

Proof. Let σ be an anti-self-dual 2-form belonging to a fibre over a point
L0; this can be interpreted as an almost-complex structure Jσ via the metric;
consider the self-dual form obtained by restriction of the standard symplectic
2-form

ω′ := ω|R4 ; (6.151)
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then, normalizing the metric so that |σ| = |ω′| = 1, the form

ω′ + σ

2
(6.152)

is always a J-invariant decomposable 2-form (see [76]), so of type

ω′ + σ

2
= η ∧ Jη (6.153)

for some 1-form η; it therfore identifies a complex line L1 ⊂ R4 defined as
the 2-dimensional subspace R4 dual to η ∧ Jη; this 2-plane is invariant at
the same time for the standard J and also for Jσ. At present we have two
complex lines L0 and L1 contained in C3 so that we obtain a decomposition

C3 = L0 + L1 + L2 (6.154)

where also L2 is complex.This decomposition identifies a complete flag in C3

0 ⊂ L0 ⊂ L0 + L1 ⊂ L0 + L1 + L2 = C3 , (6.155)

therefore a point in the flag manifold F; the tangent space TL0CP2 is isomor-
phic to Hom(L0, L

⊥
0 ) ∼= L0⊗L⊥

0 , so identifying L1 is equivalent to identifying

C(L0 ⊗ L1) ⊂ L0 ⊗ L⊥
0 , (6.156)

hence a point in P
(
T

(1,0)
L0

CP2
)
.�

Let us analyze more in detail the situatuion: there are three possible pro-
jections from a point of F to CP2, depending on what complex line we choose
in (6.154):

CP2

F
p0 ��

p1

����������

p2
����

��
��

��
CP2

CP2

(6.157)

at the level of the Lie algebra su(3) we have

su(3) = t ⊕ A0 ⊕A1 ⊕ A2 (6.158)

where Ai are the irreducible T 2 representations which can be identified with
[[LjLk]] for j, k ∈ {0, 1, 2}; these can be oriented in 2 ways each, obtaining in
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total 23 = 8 orientations for F, each of which determines a different almost-
complex structure compatible with the Killing metric; only 6 of these are
integrable: in fact the complexification of the tangent space TxF corresponds
to the 6 standard roots spaces g±α, g±β, g±(α+β) for α, β positive simple
roots, and the 2 choices corresponding to the holomorphic tangent bundle

T (1,0)
x F = ±{α, β,−(α+ β)} (6.159)

are not closed under brackets, a condition equivalent to integrability. The nat-
ural almost complex structure induced by the twistor fibration is such that
p0 is not a holomorphic nor an antiholomorphic projection.A question arises
at this point: is the following diagram commutative

SU(3)/U(1)
πF ��

π̃2 ��









 F

pi

��
CP2

(6.160)

if we choose one of the pi in (6.157)?The following theorem containes the
answer:

Theorem 6.10. Exists an SU(3)-equivariant isomorphism between the spaces

G2

SO(4)
\ CP2 ∼= �� SU(3) \ S5 ; (6.161)

moreover the Wolf space G2/SO(4) can be obtained from SU(3) by substitu-
tion of S5 with CP2 via the projection map

p1 ◦ πF :
SU(3)

U(1)
�� CP2 (6.162)

where p1 is defined in (6.157) and πF in (6.160).

We postpone the proof for the moment;we want first a more explicit
way of associating to a SL subspace a corresponding subalgebra so(3) ⊂
su(3); from now on we will freely pass from V to V ∗ using the metric, so that
for instance V ∗ ⊗ V ∼= V ⊗ V .

Proposition 6.11. Let V ⊂ R6 be a SL subspace with respect to the standard
symplectic structure; then the composition of SU(3) equivariant mappings

V
∗ ��

∧2
V ∗ π1,1

0 �� su(3) (6.163)
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induces an SU(3) equivariant map

Φ :
SU(3)

SO(3)
3:1 �� G3(su(3)) (6.164)

so that the image of Φ is the critical submanifold Cr.

Proof.The space of SL subspaces of Rn is parametrized by the symmetric
space

SU(3)

SO(3)
, (6.165)

as seen in Lemma 6.8, therefore we will prove the assertion for a specific V
and the SU(3)-equivariance of the map ∗ and of π1,1

0 will imply the resut
for any SL subspace V ; it is sufficient therefore that π1,1

0 (V ) is a subalgebra
isomorphic to so(3) which stabilizes V itself.We choose

V = span{e1, e3, e5} (6.166)

and therefore ∧2
V ∗ = span(e13, e35, e51) (6.167)

so that

π1,1(e13) = e13 + e24 (6.168)

π1,1(e35) = e35 + e46 (6.169)

π1,1(e51) = e51 + e62 (6.170)

which generate a subspace W ⊂ u(3) that is already orthogonal to ω, so
that π1,1(V ) = π1,1

0 (V ) and W ⊂ su(3);moreover it is closed under con-
traction, so isomorphic to so(3) because Schur’s Lemma guarantees that the
contraction and the brackets are the same thing up to a constant: in fact

su(3) is irreducible seen as adjoint representation, and the space
∧2

su(3)

contains exactly 1 copy of su(3) itself. The subspace W can be seen as a space
of skew-symmetric endomorphisms of R6 which clearly preserves V ; also we
note that

Φ(ζV ) = Φ(ζ2V ) = W (6.171)

with ζ ∈ Z, the center of SU(3), follows from equivariance of Ψ, but can be
checked directly.�

Therefore we can identify the restriction to Cr of the tautological bundle
V of G3(su(3)) with the bundle of SL subspaces whose fibre is stabilized by
the isotropy subgroup SO(3), thanks to the isomorphism of the standard and
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the Adjoint representation V and so(3); let us choose for example an element
v ∈ V , and extend it to an ON basis v = v1, v2, v3 is an ON basis for V ; this
corresponds to choosing an element both in so(3) and in the SL subspace
stabilized by so(3), and more precisely:

Lemma 6.12. Let v1 ∈ V as before: then σ := π1,1(∗v1) generates the stabi-
lizer U(1) of v1.

Proof. In fact
σ = v23 + (Jv2) ∧ (Jv3) (6.172)

which stabilizes v1 acting by contraction.�
Observation. In this case the decomposable form discussed in Proposition
6.9 is given by

ω′ + σ

2
=

1

2

(
v2 ∧ Jv2 + v3 ∧ Jv3 + v23 + (Jv2) ∧ (Jv3)

)
(6.173)

=
1

2
(v2 − Jv3) ∧ (Jv2 + v3) . (6.174)

We identify therefore with this choice the homogeneous space

SU(3)

U(1)
, (6.175)

corresponding to the principal orbit along the flow line identified by v1; we
observe that elements in so(3) have always det(A) = 0 (as matrices), so they
are not conjugate to the singular elements, which are of type⎛⎝ı 0 0

0 ı 0
0 0 −2ı

⎞⎠ ; (6.176)

hence these elements individuate a unique maximal torus T 2 ⊃ U(1) and a
point of the flag manifold F; the 2-form σ also stabilizes Jv1, for the same
reason seen in Lemma 6.12, hence all the complex line they span L0 :=
span(v1, Jv1) so that we get a decomposition

C3 = L0 ⊕ C2 = C ⊕ R4 . (6.177)

In the specific case of Wr (see (6.126)) it stabilizes the subspace

Vr = span{e1 − e5, e2 + e6, e3} ; (6.178)



6.4 The case of su(3) 134

moreover we can interpret the basis w1, w2, w3 as skew-symmetric endomor-
phisms of C3 = R6 represented by the 2-forms:

w1 = −e13 + e53 − e24 + e64 (6.179)

w2 = −e14 + e23 − e36 + e45 (6.180)

w3 = e12 − e56 (6.181)

using the approach discussed in Proposition 6.11 we have in fact:

Lemma 6.13. Let Vr and Wr as before; then

π1,1
0 (Vr) = Wr . (6.182)

Proof.We have∧2
V ∗

r = span{e12 + e16 − e52 − e56, e23 + e63, e31 − e35} ; (6.183)

we do the projection:

π1,1(e12 + e16 − e52 − e56) = e12 − e56 = w3 (6.184)

π1,1(e23 + e63) = −e14 + e23 − e36 + e45 = w2 (6.185)

π1,1(e31 − e35) = −e13 + e53 − e24 + e64 = w1 (6.186)

hence the result.�

We can finally prove Theorem 6.10:

Proof.The assertion regarding the local SU(3)-invariant isomorphism be-
tween G2/SO(4) and SU(3) follows by just observing that both

G2

SO(4)
\CP2 and SU(3)\S5 (6.187)

are tubular neighbourhoods of the singular orbit SSU (3 ) obtained by expo-
nentiation of the same homogeneous vector bundle given by the standard
3-dimensional representation of SO(3). For the second assertion we have
to prove that diagram (6.160) is commutative if we choose p1 in diagram
(6.157); consider w3 ∈ Vr: this corresponds to

v1 = e3 (6.188)

v2 = e1 − e5 (6.189)

v3 = e2 + e6 (6.190)
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referring to (6.178), therefore

e3 ∧ Je3 = e34 , (6.191)

hence L0 = span{e3, e4};moreover(
(e1 − e5) − J(e2 + e6)

) ∧ J((e1 − e5) − J(e2 + e6)
)} (6.192)(

e1 − e5 + e1 + e5)
) ∧ (e2 − e6) + e2 + e6)

)} (6.193)

= 4e12 (6.194)

so that L1 = span{e1, e2} and finally

L2 = span{e5, e6} ; (6.195)

comparing this last with (6.126) and recalling that both the projections π̃2

and p1 ◦ πF are SU(3) equivariant, if they coincide at a point then they have
to coincide globally, hence the assertion follows.�
Observation.Let us denote by τ the element orthogonal to σ in t :

τ := −2e34 + e12 + e56 . (6.196)

In this case, (6.158) becomes

su(3) = t ⊕A1 ⊕ A2 ⊕ A2⊕ (6.197)

= span{σ, τ} + [[L0L2]] + [[L0L1]] + [[L1L2]] (6.198)

= span{σ, τ} + span{e35 − e64, e36 + e45} (6.199)

+ span{e13 − e42, e14 − e23} (6.200)

+ span{e15 + e62, e16 + e25} . (6.201)

The Coincidence Theorem allows to identify the quaternionic span of
grad f on the unstable manifolds; we want in this case to identify the element
of the Lie algebra which generate the Kvf spanning the imaginary part Im H ·
grad f of this span in this specific example, in terms of the decomposition
previously discussed:we observe that the matrix (6.125) belongs to t, while
the two elements w1, w2 span a 2-dimensional space B1 lying in A1 ⊕A2; the
first two components of Γ(x, y) instead span a subspace C1(x, y) which along
the geodesic varies from B1 to A2.

Lemma 6.14. The quaternionic span Im H · grad f at the point Γ(x, y) is
given by the Killing fields generated by

span{τ} ⊕ C1 . (6.202)



6.5 Still open questions 136

Proof.The proof follows from the definitions just given and by observing
that σ is the stabilizer of the generic orbits along Γ, the Killing field generated
by (6.125) equals that of the orthogonal projection on τ .�
An immediate consequence is

Corollary 6.3. In the previous notation, we have

Ã0 ⊂ (H · grad f)⊥ (6.203)

at any point of M ⊂ G3(su(3)), where Ã0 denotes the Killing vector fileds
generated by A0.

The quaternionic 4-form

Recall what discussed in Section 4.4: there a quaternionic 4-form is described
in purely algebraic terms (Proposition 4.4); recall that the critical submani-
fold SSU (3 ) ⊂ G3(su(3)) corresponds to the subalgebras so(3) which give a
decomposition

su(3) = so(3) ⊕ [Σ4] (6.204)

so that the tangent space TV G3(su(3)) for V = so(3) can be described as

TV G3(su(3))C = Σ2 ⊗ Σ4 ; (6.205)

comparing this with 4.83 we can conclude that Ω corresponds to the quater-
nionic 4-form on G2/SO(4) to the tangent space restricted to SSU (3 ).

6.5 Still open questions

There are questions which have been left open, in the hope of finding more
complete answers in the future.

i) First of all undersanding more precisely diagram 6.115,which expresses
the interplay between µ∗,µ∗, the the metric induced by the ambient Grass-
mannian G3(g) and the QK metric.

ii) It would be also significant in this sense understanding more in deep
the rôle played by the conformal factor λ and the proportionality factor
a, which are clearly related in many cases (see Lemma 6.6).
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iii) Another question is determining completely the quaternionic 4-form
Ω described in 4.4 in this Grassmannian description, as the part we have de-
scribed corresponds to the restriction to the submanifold SSU (3 ) (in fact
dΩ �= 0).More in general: G3(g) has always b4 = 1 for g simple; what is the
relationship between the invariant 4-form generating the cohomology and the
quaternionic 4-form on the unstable submanifolds?

iv) Finally it would be interesting classifying completely the “generalized
subalgebras” V satisfying grad gV = 0.
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