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Introduction

This PhD thesis contains some applications of optimization and optimal control the-
ories in two di�erent economic model cases, the �rst one is a model of resource curse
phenomenon and the second concerns the production of oil from a large number of
producers.

The term resource curse brie�y refers to countries with an abundance of natural
resources that tend to have less economic growth than countries with fewer resources.
There are many studies that try to explain this phenomenon, and one thinks that
it happens for several reasons, among other for example decline in the competitive-
ness of other economic sectors, volatility of revenues from the natural resource sector,
particular forms of government, geographical position of nations, government mis-
management of resources, or weak, ine�ectual, unstable or corrupt institutions.

We start our work from a model, which is halfway between economy and politics,
developed by Robinson, Torvik and Verdier [49, 50] in 2006 and in a simpli�ed version
in 2008, in which there is an incumbent politician who wants to be reelected, and a
competitor. There are two periods with an election in the middle. The incumbent
has to choice an economic policy, namely how many resources to extract and how
many workers to employ in the public sector, in order to maximize a pro�t criterion,
and the peculiarity of this model is that the politician can in�uence his reelection
probability by hiring workers in the public sector.

We �rst formalize rigorously the results achieved by the authors, concerning the
variations of the optimal resource extraction rate and the rate of people having public
jobs with respect to the prices, using optimization tools like the Karush-Kuhn-Tucker
conditions and the generalized implicit function theorem.

Subsequently we introduce some improvements to the model and at the same time
some generalizations. We consider the case when one constraint is saturated, that is
the point representing the optimal strategy belongs to the boundary of the considered
domain, and we study also this problem in presence of multiple resources.

Then we introduce a completely new discrete time optimal control version of the
model to describe the same framework by considering several time steps before the
election. In this case the incumbent has to decide which policy to choose at every
time.

To study this model we de�ne a value function for this problem. Then we prove
a Dynamical Programming Principle and derive the Bellman equation for the value
function, proving also some properties of the solution. We numerically solve the
equation and we present some graphs that show the situation with di�erent choices
of parameters. Lastly a table summarizes the di�erent results in presence or absence
of the ability of the incumbent to in�uence his reelection.

The last part of the thesis is devoted to an application of optimal control and
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mean �eld games theories in a model case of oil production in presence of a lot of
producers. Mean �eld games theory was developed starting from 2006 by Lasry and
Lions as a set of tools to model games with in�nitely many players which can be
thought as a continuum of agents.

Typically the model is described by a two di�erential equations mutually coupled,
a backward Hamilton-Jacobi-Bellman equation which involves the determination of an
optimal strategy, and a forward Kolmogorov-Fokker-Planck equation which describes
the evolution of the population.

The model under consideration was proposed by Guéant, Lasry and Lions in 2011.
They consider a large number (a continuum) of oil producers which an initial amount
of reserves distributed among them according to a density function. The reserve of
a single agent evolves according to a stochastic di�erential equation and productive
choices are made to optimize a pro�t criterion, the same for all agents.

Our goal is to rigorously derive the two di�erential equations that model the situ-
ation. We prove a Dynamic Programming Principle and derive the Hamilton-Jacobi-
Bellman equation that the value function satis�es in the viscosity sense. For the
second equation, satis�ed by the density function of the reserves, we use a procedure
to correctly derive it.

At the very end of the work we formulate two veri�cation theorems, for classic
and viscosity solutions, that illustrate under which assumptions a solution of the
Hamilton-Jacobi-Bellman equation is also a solution of the underlying optimization
problem. Nevertheless there are still open problems, especially about uniqueness of
equilibria in this model.

The thesis is organized as follows.
Chapter 1 is devoted to the theoretical background regarding optimization prob-

lems and optimal control theory. We recall the Karush-Kuhn-Tucker conditions for
constrained optimization and we state the general implicit function theorem. Then,
starting from a model problem, we introduce the tools of optimal control theory, such
as Dynamic Programming Principle, Hamilton-Jacobi-Bellman equation and the syn-
thesis of optimal controls. We consider also the case of discrete time dynamics and
we give an introduction on viscosity approximation and stochastic control.

In Chapter 2 we consider the nonevolutive model on resource curse phenomenon.
Recalling the original results we consider some improvements and particular cases.
We give also several graphics which support the achieved results and show counter-
intuitive situations.

Chapter 3 is devoted to the discrete time optimal control version of a similar
problem. We solve it using the techniques of optimal control theory stated in Chapter
1, proving some regularity results and studying a numerical method based on Dynamic
Programming Principle. We also give error estimates.

Finally in Chapter 4 we consider the mean �eld game model of oil production by
a continuum of producers. We rigorously derive partial di�erential equations that de-
scribe the model. We give two veri�cation theorems and some possible improvements
to the considered model.



Chapter 1

Preliminaries

1.1 Mathematical optimization

In an optimization problem, one tries to minimize or maximize a quantity associated
with a decision process, such as elapsed time or cost, by exploiting available degrees
of freedom under a set of restrictions or constraints. Optimization problems arise,
for example, in almost all branches of industry or in �nancial problems like strategic
planning.

There are several methods and algorithms to deal with optimization problems (for
further information see for example [52, 42]). In this section we present some very
famous conditions that will be applied later in the elaborate. Moreover we recall a
well known theorem, which is also used in the following.

1.1.1 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions1 [34, 37] are �rst order necessary conditions for
a solution in nonlinear programming to be optimal, provided that some regularity
conditions are satis�ed. Allowing inequality constraints, the KKT approach to non-
linear programming generalizes the method of Lagrange multipliers, which allows only
equality constraints.

Theorem 1.1 (Karush-Kuhn-Tucker conditions for inequality constraints only). Sup-
pose that x ∈ RN is a maximum (or minimum) point of f(x) in the region

E = {x ∈ RN |ϕj(x) ≤ 0, j = 1, . . . ,m}

where f, ϕ1, . . . , ϕm : RN → R are continuously di�erentiable functions. If the con-
straints ϕj satisfy some regularity conditions in x then there exists λ ∈ Rm such that

1For historical information (in Italian) see http://www.unibg.it/static_content/

presentazioneateneo/lhkuhn.htm.

http://www.unibg.it/static_content/presentazioneateneo/lhkuhn.htm
http://www.unibg.it/static_content/presentazioneateneo/lhkuhn.htm
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(x, λ) is a solution of the system

∇f(x)−
m∑
j=1

λj∇ϕj(x) = 0

ϕj(x) ≤ 0, j = 1, . . . ,m

λj ≥ 0, j = 1, . . . ,m

λjϕj(x) = 0, j = 1, . . . ,m

There are several regularity conditions, also called constraints quali�cations, that
the constraints must alternatively satisfy. The constraints are quali�ed if, for example,
they are a�ne functions (and no other conditions are required) or, in the general case,
the gradients of the active inequality constraints and the gradients of the equality
constraints are linearly independent at x (for a detailed discussione see for instance
[1]).

Remark 1.2. The well known �rst order condition, that says that in an internal
maximum (or minimum) point x it results ∇f(x) = 0, are a particular case of KKT
conditions when we consider a solution (x, λ) of the system such that ϕj(x) < 0, i.e.
x is an internal point of E, and consequently λ = 0.

We want to point out that if some of the functions are nondi�erentiable, subdif-
ferential versions of KKT conditions are available (see for example [51]).

1.1.2 General implicit function theorem

The well known implicit function theorem is one of the most important, and one of
the oldest, paradigms in modern mathematics.

The form of the implicit theorem has evolved. The theorem �rst was formulated
in terms of complex analysis, then was formulated for functions of two real variables,
and the assumption corresponding to the Jacobian matrix being nonsingular was
simply the one partial derivative is nonzero. Finally Dini generalized the real variable
version to the context of vector valued functions of any number of variables, and the
statement is the following.

Theorem 1.3 (General implicit function theorem). Suppose that we are given a set
of equations

fi(x1, . . . , xl, y1, . . . , yn) = 0, i = 1, . . . , n

in which all the functions fi are continuously di�erentiable. Assume that (p, q) =
(p1, . . . , pl, q1, . . . , qn) is a point such that all the equations hold and at which we have

det

(
∂(f1, . . . , fn)

∂(y1, . . . , yn)

)
= det


∂f1
∂y1

· · · ∂f1
∂yn

...
. . .

...
∂fn
∂y1

· · · ∂fn
∂yn

 6= 0

Then there exists a neighborhood U ⊂ Rl of p and a continuously di�erentiable func-
tion φ : U → Rn such that φ(p) = q and

fi(x, φ(x)) = 0, i = 1, . . . , n
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holds for x ∈ U and we have

(1.1)
∂(φ1, . . . , φn)

∂(x1, . . . , xl)
(x) = −

(
∂(f1, . . . , fn)

∂(y1, . . . , yn)
(x, φ(x))

)−1
∂(f1, . . . , fn)

∂(x1, . . . , xl)
(x, φ(x))

A proof of this result, along with further generalizations and examples, can be
found for example in [36] and for the last part in [31].

Remark 1.4. The case n = 1 is of course the classic implicit function theorem for
one dependent variable and one equation.

1.2 Optimal control theory

Optimal control deals with the problem of �nding a control law for a given system
such that a certain optimality criterion is achieved. A control problem includes a cost
functional that is a function of state and control variables. An optimal control is a set
of di�erential equations describing the paths of the control variables that minimize
the cost functional.

In this chapter we will present a model problem to focus on the main concept
of the optimal control theory. Most of the contents can be founded for example in
[47, 4, 23].

1.2.1 A model problem: the in�nite horizon discounted regu-

lator

Consider for example a control system governed by the state equation

(1.2)

{
y′(t) = f(y(t), α(t)) t > 0

y(0) = x

Here the control α is any measurable function α : [0,+∞) → A where A is the
control space, typically a closed and bounded subset of RM .

Assume that the dynamics f : RN ×A→ RN is such that, for every choice of the
control α and of the initial position x ∈ RN the state equation (1.2) has a unique
solution denoted by yx(t, α).

The model also includes a running cost, associated with this controlled evolution,
described by a given function ` : RN ×A→ R.

The cost functional to be minimized is, by de�nition,

(1.3) J(x, α) =

∫ +∞

0

`(yx(t, α), α(t))e−λtdt

where λ > 0 represents a �xed discount factor.

1.2.2 Dynamic Programming Principle

A very powerful approach to this optimal control problem is to use the dynamic
programming, which was �rst introduced in 1954 by Bellman with his principle of
optimality [5] (see also [6]) which says that
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�an optimal policy has the property that whatever the initial state and

initial decisions are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the �rst decisions�.

and which decomposes the problem into a sequence of simpler minimization (or max-
imization) problems. The Bellman equation was �rst applied in engineering, then it
became an important tool in economic theory (see for example [44] for a �rst and
celebrated economic application of a Bellman equation, other examples can be found
for instance in [7, 41]).

To apply the dynamic programming approach to this model problem we introduce
one of the most important concept of the theory. We de�ne the value function

(1.4) v(x) = inf
α∈A

J(x, α)

where A denotes the set of control functions.
The fundamental idea of dynamic programming is that the value function v satis-

�es a functional equations, often called the Dynamic Programming Principle, and a
partial di�erential equation, the so called Hamilton-Jacobi-Bellman equation.

To illustrate the Dynamic Programming Principle, let us assume that an optimal
control α∗x exists for every starting point x so that, by de�nition of v,

v(x) = J(x, α∗x) =

∫ +∞

0

`(yx(t, α∗x), α∗x)e−λtdt

Observe now the obvious fact that, for every T > 0, we have

J(x, α∗x) =

∫ T

0

`(yx(t, α∗x), α∗x)e−λtdt+

∫ +∞

T

`(yx(t, α∗x), α∗x)e−λtdt

Exploiting the semigroup property of the optimal trajectory yx(t, α∗x), that is2

yx(t+ s, α∗x) = yyx(t,α∗
x)

(s, α∗x)

and performing a suitable change of variable we get

(1.5) v(x) =

∫ T

0

`(yx(t, α∗x), α∗x)e−λtdt+ v(yx(T, α∗x))e−λT

which holds for all T > 0 and x ∈ RN .
If we consider now the general case in which the optimal control is unknown, the

previous identity is replaced by

(1.6) v(x) = inf
α∈A

{∫ T

0

`(yx(t, α), α)e−λtdt+ v(yx(T, α))e−λT

}

which is the statement of the Dynamic Programming Principle for this model problem.

Remark 1.5. When ` and, consequently, v is bounded (1.6) characterizes the value
function v in the sense that if u is a bounded function satisfying (1.6) for all x ∈ RN
and T > 0 then u ≡ v.

2With the control on the right-hand side shifted in time by t.
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1.2.3 Viscosity solutions

In this section we want to show the procedure to derive the Hamilton-Jacobi-Bellman
equation associated with this control problem exploiting the Dynamic Programming
Principle stated before.

The standard derivation of the equation requires, of course, some smoothness of
v. To perform this calculation in the general case it is useful to introduce the notion
of viscosity solution of a general Hamilton-Jacobi equation

(1.7) F (x, u(x), Du(x)) = 0 x ∈ R

where Ω is an open domain of RN and the Hamiltonian F : R×R×RN → R is
continuous. The term viscosity solutions �rst appear in a work of Crandall and Lions
(see [18, 19] and, for further details, [17, 33]) in 1981, but the de�nition of solution
had actually been given earlier by Evans [21] in 1980.

De�nition 1.6. A function u ∈ C is a viscosity subsolution of (1.7) if, for any
ϕ ∈ C1, one has

(1.8) F (x0, u(x0), Dϕ(x0)) ≤ 0

at any local maximum point x0 ∈ R of u− ϕ.
Similarly, u ∈ C is a viscosity supersolution of (1.7) if, for any ϕ ∈ C1, one has

F (x0, u(x0), Dϕ(x0)) ≥ 0

at any local minimum point x0 ∈ R of u− ϕ.
Finally, u is a viscosity solution of (1.7) if it is simultaneously a viscosity sub-

and supersolution.

Remark 1.7. In the de�nition of subsolution we can always assume that x0 is a local
strict maximum point for u − ϕ. Moreover, since (1.8) depends only on the value of
Dϕ at x0, it is not restrictive to assume that u(x0) = ϕ(x0). Similar remarks apply
of course to the de�nition of supersolution. Geometrically this means that the validity
of the subsolution condition (1.8) for u is tested on smooth function touching from
above the graph of u at x0.

To give an equivalent de�nition of viscosity solution let us introduce the concept
of superdi�erential and subdi�erential of a function at a point x.

De�nition 1.8. The superdi�erential of v at x is the set

D+v(x) =

{
p ∈ RN | lim sup

y→x

v(y)− v(x)− p(y − x)

|y − x|
≤ 0

}
The subdi�erential of v at x is the set

D−v(x) =

{
p ∈ RN | lim inf

y→x

v(y)− v(x)− p(y − x)

|y − x|
≥ 0

}
Remark 1.9. Observe that if both D+v(x) and D−v(x) are nonempty at some x then
D+v(x) = D−v(x) = {Dv(x)} and v is di�erentiable at x.
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De�nition 1.10 (Alternative de�nition of viscosity solution). A function u ∈ C is a
viscosity subsolution of (1.7) if

F (x, u(x), p) ≤ 0

for all x ∈ R and p ∈ D+u(x).
Similarly, u ∈ C is a viscosity supersolution of (1.7) if

F (x, u(x), p) ≥ 0

for all x ∈ R and p ∈ D−u(x).
Finally, u is a viscosity solution of (1.7) if it is simultaneously a viscosity sub-

and supersolution.

1.2.4 Hamilton-Jacobi-Bellman equation

In this section we want to show how to derive the Hamilton-Jacobi-Bellman equation

(1.9) λv(x) + sup
a∈A
{−f(x, a)Dv(x)− `(x, a)} = 0 x ∈ RN

satis�ed in the viscosity sense by the value function v. For brevity we only show that
v is a subsolution since the other part requires some technicalities.

Let ϕ ∈ C and x be a local maximum point of v − ϕ that is, for some r > 0,

v(x)− v(z) ≥ ϕ(x)− ϕ(z) ∀z ∈ Br(x)

Fix an arbitrary a ∈ A and let yx(t, a) be the solution corresponding to the constant
control α(t) ≡ a. For t small enough one can prove that yx(t, a) ∈ Br(x) and then

ϕ(x)− ϕ(yx(t, a)) ≤ v(x)− v(yx(t, a)) ∀t ∈ [0, t0]

Now by using the inequality ≤ in the Dynamic Programming Principle (1.6) we get

ϕ(x)− ϕ(yx(t, a)) ≤
∫ t

0

`(yx(s, a), a)e−λsds+ v(yx(t, a))(e−λt − 1)

Dividing by t > 0 and letting t goes to 0 we obtain, under suitable assumptions,

−Dϕ(x)y′x(0) = −Dϕ(x)f(x, a) ≤ `(x, a)− λv(x)

Since a ∈ A is arbitrary we have proved that

λv(x) + sup
a∈A
{−f(x, a)Dϕ(x)− `(x, a)} ≤ 0

that is v is a viscosity subsolution of (1.9).
Moreover, we want to point out that the value function v is characterized by the

Hamilton-Jacobi-Bellman equation (1.9) under general assumptions on the data. The
next proposition, of which we omit the rather technical proof, contains an uniqueness
result.

Proposition 1.11. If u is any bounded continuous function in RN satisfying (1.9)
in the viscosity sense then, under suitable assumptions,

u ≡ v
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The proof of the preceding proposition show that the following comparison prin-
ciple holds.

Proposition 1.12. If u1 and u2 are, respectively, viscosity sub- and supersolution of
(1.9), then

u1 ≤ u2

1.2.5 Synthesis of optimal controls

This section is devoted to the recall of the classical synthesis procedure, that allows to
design an optimal feedback map for the model problem exploiting again the Dynamic
Programming Principle, when the value function v is smooth.

In the derivation of (1.6) we observed from identity (1.5) that the function

h(t) := v(y∗x(t))e−λt +

∫ t

0

`(y∗x(s), α∗x)e−λsds

is constant for all t > 0 if and only if (α∗x, y
∗
x) is a pair of optimal control and trajectory

for a �xed initial position x. Therefore if v is smooth the optimality condition is
h′(t) ≡ 0, that is

e−λt[λv(y∗x(t))− f(y∗x(t), α∗x)Dv(y∗x(t))− `(y∗x(t), α∗x)] ≡ 0

Since is this case v is a classical solution of (1.9) we conclude that the control α∗x is
optimal for the initial state x if and only if

α∗x(t) = S(y∗x(t))

for any choice of S(z) such that

(1.10) S(z) ∈ arg max
a∈A

{−f(z, a)Dv(z)− `(z, a)}

This characterization of optimal open loop control provides a method for construction
a pair of optimal control and trajectory for every initial condition x.

The �rst step is to �nd a map S : RN → A with the property (1.10), but if v is
known it is a static, �nite dimensional, mathematical programming problem. Such
a map S is called an optimal feedback map. The second step is solving (1.2) with
α(t) = S(y∗x(t)) and a solution y∗x(t) generates a control α∗x(t) := S(y∗x(t)) which is
optimal for the initial state x.

1.2.6 Discrete time dynamic programming

In this section we show brie�y how to apply the Dynamic Programming Principle
when we deal with a discrete time optimal control problem.

In order to illustrate the approach assume that the evolution in given by the
control system {

yn+1 = yn + f(yn, an)

y0 = x ∈ RN

for n ∈ N and an ∈ A. The in�nite horizon cost functional to be minimized is, in this
case, the series

J(x, α) =

+∞∑
n=0

`(yn, an)βn
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with β ∈ (0, 1). Consider now the value function

v(x) = inf
α∈A

J(x, α)

and, under suitable assumptions, it can be proved that the value function satis�es the
discrete time Dynamic Programming Principle

(1.11) v(x) = inf
a∈A
{βv(x+ f(x, a)) + `(x, a)} x ∈ RN

This procedure still allows the computing of the optimal control via the synthesis
method stated before.

We want to conclude this section observing that the discrete equation (1.11) is
deeply related with the continuous one (1.9). We can in fact lead to a discrete problem
considering a discretization of the control system (1.2) assuming that it is observed
only at a sequence of times tj = jh for j ∈ N and where h, the discretization step, is
a �xed positive real number and that the dynamics f and the running cost ` remain
constant between two subsequent observation. One can prove that the discrete value
function converges, as h → 0+ and under suitable assumptions, to a function which
is the (unique) value function of the continuous problem.

1.2.7 Numerical approximation

Let us recall that the value function v de�ned in (1.4) is the unique viscosity solution
of the Hamilton-Jacobi-Bellman equation (1.9) that we restate for convenience

λu(x) + sup
a∈A
{−f(x, a)Du(x)− `(x, a)} = 0 x ∈ RN

Starting from the continuous time problem, we can lead us to a discrete time
problem, as described in the previous subsection, by making a discretization in time
of the original control problem. It consists in replacing the dynamics (1.2) by a one-
step scheme (for example by the Euler method) and the cost functional (1.3) by its
discretization by a quadrature formula (for example the rectangle rule), one can get
a new control problem in discrete time.

The value function vh for this problem satis�es a more general (namely with a
generic time step h) discrete Dynamic Programming Principle which gives the follow-
ing approximation scheme

uh(x) = min
a∈A
{(1− λh)uh(x+ hf(x, a)) + h`(x, a)} x ∈ RN

Remark 1.13. If λ < 1, choosing h = 1 the previous equation becomes equation
(1.11) with β = 1− λ.

In order to compute an approximate value function we have to make also a dis-
cretization in space. To do this we build a grid in the state space and, to simplify our
presentation, we will assume that there exists a bounded polyhedron Ω ⊂ RN such
that, for h su�ciently small, we have

x+ hf(x, a) ∈ Ω ∀(x, a) ∈ Ω×A
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so that the discrete controlled trajectory never leaves the domain Ω. We construct
a regular triangulation of Ω made by a family of simplices3 Sj such that Ω =

⋃
j Sj ,

denoting by xi, i = 1, . . . , L, the nodes of the triangulation and by

k = max
j

diam(Sj)

the size of the mesh. Finally, the discretized in space-time Hamilton-Jacobi-Bellman
equation becomes

uh(xi) = min
a∈A
{(1− λh)uh(xi + hf(xi, a)) + h`(xi, a)} i = 1, . . . , L

and we look for a solution in the space of piecewise linear functions on Ω

(1.12) W k := {w : Ω→ R s.t. w ∈ C(Ω) and Dw(x) ≡ cj ∀x ∈ Sj ,∀j}

Proposition 1.14. Under suitable hypotheses there exists a unique solution vkh of
(1.12) in W k and the following estimate holds

‖v − vkh‖∞ ≤ C1h
1/2 + C2

k

h

where C2 = C2(λ, f, `) and v is the unique solution of (1.9).

1.2.8 Viscosity approximation and stochastic control

A di�erent insight to viscosity solutions is provided by the so-called viscosity approx-
imation of equation (1.9), namely

(1.13) − ε∆uε + λuε + sup
a∈A
{−f(x, a)Duε − `(x, a)} = 0 x ∈ RN

where ε is a positive parameter. This equation can be interpreted in terms of stochas-
tic optimal control theory. Consider the stochastic di�erential equation

(1.14)

{
dy(t) = f(y(t), α(t))dt+

√
2εdω(t)

y(0) = x

where ω is a N -dimensional standard Brownian motion. Also in this case we can
de�ne the value function for this stochastic version of the in�nite horizon problem
where one tries to control in an optimal way the trajectories of (1.14), a random
perturbation of system (1.2), which takes the form

vε(x) = inf
α∈A

E
[∫ +∞

0

`(yεx(t), α)e−λtdt

]
Under suitable conditions of the data, vε happens to be a C2 solution of (1.13) and
this follows from the Dynamic Programming Principle and It	o's stochastic calculus
(see [27, 45] for more details).

Moreover it can be proved, as was natural to expect, that when the randomness
parameter ε goes to 0 the value function vε converges to the value function v, viscosity
solution of (1.9). This limiting procedure to deal with the singular perturbation
problem can be thought as a way to de�ne weak (viscosity) solutions of (1.9) and this
is actually the motivation for the terminology viscosity solutions in the original paper
of Crandall and Lions [18].

3Or, for simplicity, we can think of building a lattice.



Chapter 2

Resource curse: a nonevolutive

model

2.1 An overview on resource curse

Scholars and economic historians traditionally emphasized the great bene�ts that
natural resources give to a country (see for example [56] on the British case). However
it seems that in many cases an abundance of natural resources leads to a poor economic
development. In this regard in 1993 Auty [3] coined the term resource curse thesis to
characterize the phenomenon whereby some countries rich in natural resources had
lower economic growth than nation without this huge availability4.

A crucial point is to understand the linking between natural resource availability
and their prices, form and quality of institutions and development of countries. Em-
pirical literature on the resource curse emphasizes that resource dependent economies
and resource booms seem to lead to highly dysfunctional state behavior, particularly
large public sectors and unsustainable budgetary policies. Such a literature suggests
that many di�erent reasons, for example government mismanagement of resources or
weak, ine�ectual, unstable or corrupt institutions can lead to an incorrect exploitation
of abundant natural resources.

In this context there is an ample literature about this topic, for example it was
studied in [2] if the resource curse phenomenon is due to presidentialism or parliamen-
tarism or in [43] if it is caused by grabber friendly or producer friendly institutions,
or more in [16] it was analyzed the causal relationship between economic growth,
human development and sustainability. Moreover (see for example [20] for a very
brief introduction) it has been suggested that the poor development of countries has
geographical origins also, such as location or climate, as well as political ones.

2.2 The considered framework

In 2006 Robinson, Torvik and Verdier [49] published the �rst explicitly political model
of resource extraction and public employment. Within the framework of a nation
with natural resources that are publicly owned such as oil, gas, diamond and other

4For a general framework about the resource curse phenomenon see [54].
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minerals5 and whose revenue from sales goes to the government, this model features
an incumbent politician wishing to be reelected.

There are two periods with the election occurring at the end of the �rst one and
an amount of natural resources than can be extracted and sold in the two periods at
di�erent prices. The income from natural resources accrues directly to the government
and the incumbent must decide how much of the resources to extract in the �rst period
and consequently how much will left for the future.

Finally, there are a population of voters/workers which gives to the incumbent a
certain �probability� of reelection and an equilibrium policy to choose that maximizes
a given income.

We consider an incumbent that distribute its rent as patronage to in�uence the
outcome of the election. Patronage is to be understood in the de�nition given by
Weingrod in [55] that is the way in which party politicians distribute public jobs
or special favors in exchange for electoral support. It is widely believed that public
employing is, politically speaking, a very pro�table way to distribute rents (see for
example [15], about the phenomenon of political recommendation in Palermo).

So we choose to model patronage as o�ering job in the public sector to take the
favors of voters. An alterative form of patronage can be the investment in white ele-
phants, as in [48], namely valuable but burdensome possessions or investment projects
whose costs are out of proportion to its usefulness or worths6.

In this framework the model under consideration concerns basically an optimiza-
tion problem, that will be tackled with the mathematical tools described in Section
1.1.

2.3 Model description

Following and generalizing the simpli�ed version [50] of the original work we deal
with a model where there are two politicians, an incumbent politician wishing to be
reelected and a competitor. The mass of voters is normalized to 1. There are two
periods with an election occurring at the end of the �rst one in which the incumbent
is challenged by the alternative politician.

There are also d stocks of di�erent nonrenewable natural resources E = (E1, . . . , Ed)
and all the income from selling E accrues directly to the government. The selling
prices of the natural resources in the two periods are p1 = (p11, . . . , p

d
1) in the �rst

period and p2 = (p12, . . . , p
d
2) in the second one and we assume they are determined

on world market7 and taken as given by the country under consideration.
The incumbent must decide how much of the resource to extract in the �rst period,

denoted e = (e1, . . . , ed), and consequently how much to left for the second one. We
denote R(e) = (R1(e1), . . . , Rd(ed)) the remaining resources available in the second
period. We assume that every Ri for i = 1, . . . , d is continuous and R′i, R

′′
i < 0.

These assumptions on the derivatives mean that every Ri is a strictly decreasing and
concave function of ei respectively.

5See [8] for a discussion on the e�ects of the interaction between the type of resources that a
country has and the quality of its institutions on the economic development.

6An example of white elephant comes from the activities of the Industrial Development Corpora-
tion of Zambia, that was subject to a series of political and most importantly uneconomic directives
on speci�c operational issues, including type and location of investments (see [53] for further details).
Other examples can be founded in [35].

7We consider an open market, in which all economic actors have an equal opportunity of entry in
that market.
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This models the fact that, obviously, more resources are extracted less remain
and that the total amount of resources that can be extracted depends in turn on the
extraction rate in a way such that if too much is taken in the �rst period the total
stock over the two periods falls down. Moreover, the sign of the second derivative
implies that for every i there exists a value ei < Ei such that Ri(ei) = 0.

We make the further technical assumption thatR′i(0) ≤ −1, and thereforeR′i(ei) <
−1 for ei > 0 since R′′i < 0, to ensure that Ri(ei) ≤ Ei−ei, that is ei+Ri(ei) ≤ Ei and
the equality holds if and only if ei = 0. In conclusion for every di�erent resource i the
incumbent can extract a quantity ei ∈ [0, ei] and we have Ri(0) = Ei and Ri(ei) = 0.

To in�uence the outcome of the election the incumbent politician engages in clien-
telism and o�ers to employ voters in the public sector. We denote the function relating
the number of workers employed to the reelection �probability� Π = Π(G) ∈ (0, 1)
where G ∈ [0, 1] is the number of voters employed in the public sector in the �rst
period8.

We assume Π continuous, Π′ > 0 and Π′′ < 0. These assumptions imply that Π is
strictly increasing and concave function and models a situation in which the reelection
probability increases with respect to the number of voters employed but in a way such
that if the number of workers employed is too high the reelection probability increases
less if the incumbent hires other workers. We also assume Π(0) = 1

2 so that if the
incumbent does not employ any worker he has a �fty-�fty chance to be reelected.

We make the assumption that for a worker is better if he is o�ered a job in the
public sector. On the other hand employing people in the public sector will be socially
and economically ine�cient because their productivity is lower than productivity of
private sector workers.

Resource income can be spent by the incumbent politician or can be redistributed
as patronage to increase reelection probability and to in�uence the outcome of voting.
So the incumbent chooses its economic policy, namely e ∈ [0, e1] × . . . × [0, ed] and
G ∈ [0, 1], in order to maximize his own expected income9

(2.1) I(e,G; p1, p2) := p1 · e−WG+ Π(G)(p2 ·R(e)−WG)

The �rst term p1e −WG in the expression above is the di�erence between the
income from the resource extraction and the outcome to employ workers while the
second term Π(G)(p2R(e)−WG) is the same for the second period yet discounted by
a factor that is the reelection probability.

2.4 Case d = 1: a single natural resource

The case d = 1 models the simplest situation in which there is only one natural
resource to extract, so we can omit the index associated with the variable e. The
results presented in the �rst part of this section are the same of the original work,
but here they are obtained in a rigorous way. In the second part there are some new
results and considerations on several particular cases.

8We use the term �probability� only by analogy with probability density function of a continuous
random variable since Π ∈ (0, 1), but we do not make any assumption on its integral over the
considered interval and in the rest of the work we will omit the quotes for ease of reading.

9In the rest of the work we will omit the scalar product symbol for simplicity of notation.



2.4 Case d = 1: a single natural resource 17

We recall that the goal of the incumbent is to maximize his expected income, in
this case in the set

Ω = {(e,G) ∈ R2 |ϕj(e,G) ≤ 0, j = 1, . . . , 4}

where

ϕ1(e,G) = −e ∇ϕ1 = (−1, 0)

ϕ2(e,G) = e− e ∇ϕ2 = (1, 0)

ϕ3(e,G) = −G ∇ϕ3 = (0,−1)

ϕ4(e,G) = G− 1 ∇ϕ4 = (0, 1)

Theorem 1.1 says that if (e,G) is a maximum point for (2.1) in the set Ω and if
the constraints are quali�ed in this point10 then there exists λ = (λ1, . . . , λ4) ∈ R4

such that (e,G, λ) is a solution of

(2.2a)

(2.2b)



p1 + Π(G)p2R
′(e) + λ1 − λ2 = 0

− (1 + Π(G))W + Π′(G)(p2R(e)−WG) + λ3 − λ4 = 0

0 ≤ e ≤ e, 0 ≤ G ≤ 1

λj ≥ 0, j = 1, . . . , 4

− λ1e = λ2(e− e) = −λ3G = λ4(G− 1) = 0

To solve this system we can distinguish several cases by studying more deeply the
last line and this is the goal of the next two subsections.

2.4.1 Maximum point in the interior

If we suppose that the maximum point is internal, this means that inequalities (2.2a)
become 0 < e < e and 0 < G < 1, then equations (2.2b) become λj = 0 for all j. By
virtue of Remark 1.2 the �rst two equations of system (2.2) are simply the two �rst
order necessary conditions for this maximization problem

(2.3a)

(2.3b)

{
F 1(e,G; p1, p2) := Ie = p1 + Π(G)p2R

′(e) = 0

F 2(e,G; p1, p2) := IG = −(1 + Π(G))W + Π′(G)(p2R(e)−WG) = 0

For simplicity of notation we de�ne

D1 := F 1
e F

2
G − F 1

GF
2
e = p2(−2WΠΠ′R′′ + ΠΠ′′R′′(p2R−WG)− p2(Π′)2(R′)2)

and we suppose that it is strictly positive11.
Starting from the two �rst order conditions (2.3) we can prove immediately an

important result whose proof is identical to that in [50].

Proposition 2.1. Let e0 be the socially optimal extraction rate in the �rst period,
namely

e0 := arg max
e∈[0,e]

{p1e+ p2R(e)}

Then e > e0, that is the resources are ine�ciently over-extracted.

10This is the case.
11This hypothesis is related to the second order su�cient condition for this maximization problem.
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Proof. We recall that e is an internal point, and suppose that e0 is internal too. We
observe that e0 is simply the value that maximizes the total income from selling the
resource over the two periods and that satis�es

p1 + p2R
′(e0) = 0

Now comparing (2.3a) with the last equality one has, since Π < 1 and R′ < 0,

R′(e0) = Π(G)R′(e) > R′(e)

which implies e > e0 because R′ is decreasing since R′′ < 0.

The main tool to see how prices of the resource in�uence extraction and public sec-
tor employment, in other words how the maximum point (e,G) changes with respect
to the parameters of the model p1 and p2, is the general implicit functions theorem
applied to equations (2.3a) and (2.3b). We state the �rst result on this.

Proposition 2.2. The resource extraction rate is an increasing function with respect
to p1, decreasing with respect to p2 and decreasing with respect to both p1 and p2 also
if they vary simultaneously but proportionally.

Proof. We apply the result in Theorem 1.3 but in a constructive way. To do this we
consider

∂F 2

∂G
= −2Π′W + Π′′(p2R−WG)

which is negative, and in particular nonzero, if we require in addition the quite natural
hypothesis that D2 := p2R −WG > 0 if R 6= 0. Equation (2.3b) implicitly de�nes a
function G = G(e; p1, p2). We substitute in (2.3a) and de�ne

H(e; p1, p2) := F 1(e,G(e; p1, p2); p1, p2) = 0

We consider now

∂H

∂e
=
∂F 1

∂e
+
∂F 1

∂G

∂G

∂e
= F 1

e +F 1
G

(
−F

2
e

F 2
G

)
= Πp2R

′′+ Π′p2R
′
(
− Π′p2R

′

−2Π′W + Π′′D2

)
We suppose He 6= 0 and then H = 0 implicitly de�nes a function e = e(p1, p2).
Denoting h(p1, p2) := G(e(p1, p2); p1, p2), the starting system is now{

F 1(e(p1, p2), h(p1, p2); p1, p2) = 0

F 2(e(p1, p2), h(p1, p2); p1, p2) = 0

Di�erentiating both equations by p1 one has
F 1
e

∂e

∂p1
+ F 1

G

∂h

∂p1
= −F 1

p1

F 2
e

∂e

∂p1
+ F 2

G

∂h

∂p1
= −F 2

p1

and by Cramer's rule we get

∂e

∂p1
=

∣∣∣∣−F 1
p1 F 1

G

−F 2
p1 F 2

G

∣∣∣∣∣∣∣∣F 1
e F 1

G

F 2
e F 2

G

∣∣∣∣ =
−F 1

p1F
2
G

D1
=

2Π′W −Π′′D2

D1
> 0
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Di�erentiating now both equations by p2 one has
F 1
e

∂e

∂p2
+ F 1

G

∂h

∂p2
= −F 1

p2

F 2
e

∂e

∂p2
+ F 2

G

∂h

∂p2
= −F 2

p2

and again by Cramer's rule we get

∂e

∂p2
=

∣∣∣∣−F 1
p2 F 1

G

−F 2
p2 F 2

G

∣∣∣∣
D1

=
2WΠΠ′R′ −ΠΠ′′R′D2 + (Π′)2RR′p2

D1
< 0

To consider a simultaneous but proportional variation of p1 and p2 we compute the
directional derivative of function e(p1, p2) along the direction −→u = c(p1, p2) with c a
normalizing constant12. After some calculation and using (2.3a) twice one has

(2.4)
de

d−→u
= 〈∇e,−→u 〉 = c

(
∂e

∂p1
p1 +

∂e

∂p2
p2

)
= c

(Π′)2RR′

D1
p22 < 0

and this concludes the proof.

This result leads us to draw some re�ections. The extraction rate is an increasing
function of p1 because if, for example, price in the �rst period increases the resources
become more valuable in the present than in the future, so the optimal response is to
increase the extraction.

Vice versa the extraction rate is decreasing with respect to p2. In fact if p2 increases
resources become more valuable in the future than now, so the optimal response is to
decrease the extraction to leave more resources available for the second period.

In the last case the situation is a little bit di�erent. If both p1 and p2, for example,
increase the optimal response is not to leave the extraction rate unaltered (as in
Propositions 2.5 and 2.6) but to decrease the extraction (and at the same time to
increase the number of voters employed in the public sector, see Proposition 2.3)
because this situation in any case makes more valuable to be in power in the future.

In order to present some graphical results which best show the correct behavior
of optimal extraction and employment, even if the constraints are not observed due
to the parameters chosen, we can choose for example the quadratic function R(e) =
− 5

16e
2 − e+ 1 that satis�es all the hypothesis and models a situation in which E = 1

and e = 4
5 , so the incumbent can extract only 80% of the total in the �rst period, in

this case leaving nothing for the second one.
Similarly we can choose for example the function Π(G) = − 3

10G
2 + 3

4G + 1
2 that

satis�es all the hypothesis and at point G = 1 it is close to 1.
Now Figure 2.3 on the following page shows an example of function e(p1, p2) in

the region 1 ≤ p1 ≤ 4 and 6 ≤ p2 ≤ 9 when we choose W = 1 and functions R and Π
as in Figures 2.1 and 2.2.

12In this case c = 1√
p21+p22

> 0.
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Figure 2.1: The function R(e) = − 5
16e

2 − e+ 1.

Figure 2.2: The function Π(G) = − 3
10G

2 + 3
4G+ 1
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Figure 2.3: The function e(p1, p2) when we choose W = 1 and functions R(e) and
Π(G) as in Figures 2.1 and 2.2.
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The second result concerns how the public sector employment is a�ected by a
variation of prices of resource.

Proposition 2.3. The rate of voters employed in the public sector is a decreasing
function with respect to p1, increasing with respect to p2 and increasing with respect
to both p1 and p2 also if they vary simultaneously but proportionally.

Proof. We apply again the result in Theorem 1.3 in the same way. To do this we
consider

∂F 1

∂e
= Πp2R

′′

which is negative, and in particular nonzero. Equation (2.3a) implicitly de�nes a
function e = e(G; p1, p2). We substitute in (2.3b) and de�ne

H(G; p1, p2) := F 2(e(G; p1, p2), G; p1, p2) = 0

We now consider
∂H

∂G
=
∂F 2

∂e

∂e

∂G
+
∂F 2

∂G

We suppose HG 6= 0 and then H = 0 implicitly de�nes a function G = G(p1, p2).
Denoting h(p1, p2) := e(G(p1, p2); p1, p2), the starting system is now{

F 1(h(p1, p2), G(p1, p2); p1, p2) = 0

F 2(h(p1, p2), G(p1, p2); p1, p2) = 0

Di�erentiating both equations by p1 one has
F 1
e

∂h

∂p1
+ F 1

G

∂G

∂p1
= −F 1

p1

F 2
e

∂h

∂p1
+ F 2

G

∂G

∂p1
= −F 2

p1

and by Cramer's rule we get

∂G

∂p1
=

∣∣∣∣F 1
e −F 1

p1

F 2
e −F 2

p1

∣∣∣∣
D1

=
Π′p2R

′

D1
< 0

Di�erentiating now both equations by p2 one has
F 1
e

∂h

∂p2
+ F 1

G

∂G

∂p2
= −F 1

p2

F 2
e

∂h

∂p2
+ F 2

G

∂G

∂p2
= −F 2

p2

and again by Cramer's rule we get

∂G

∂p2
=

∣∣∣∣F 1
e −F 1

p2

F 2
e −F 2

p2

∣∣∣∣
D1

=
−ΠΠ′p2RR

′′ + ΠΠ′p2(R′)2

D1
=

ΠΠ′p2((R′)2 −RR′′)
D1

> 0
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Considering a simultaneous but proportional variation of p1 and p2, after some cal-
culation and using (2.3a) again we have

(2.5)
dG

d−→u
= 〈∇G,−→u 〉 = c

(
∂G

∂p1
p1 +

∂G

∂p2
p2

)
= c

ΠΠ′RR′′

D1
p22 > 0

and the proof is complete.

Regarding this case, the situation is exactly the opposite. The rate of voters
employed in the public sector in a decreasing function of p1. In fact if, for example,
p1 increases more resources are extracted in the �rst period. Since there are less
resources remaining to exploit the incumbent has less incentive to be in power in the
second period.

Vice versa the rate of voters is increasing with respect to p2 because if, for example,
the price in the second period increases then it is more valuable to be in power in
this period so the incumbent is forced to increase the number of voters employed to
increase his reelection probability.

Even in the latter case the optimal response is, if for example both p1 and p2
increase, to increase the number of voters employed in the public sector to increase
the reelection probability because it is more valuable (as in Proposition 2.2) to be in
power in the period after the elections.

In Figure 2.4 there is an example of function G(p1, p2) in the same region and
under the same choices made for the function e(p1, p2).

9
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8

p2

7,5
7

6,5
6

1

0,85

0,9

1,5

0,95

2

1

2,5p1
3

3,5
4

Figure 2.4: The function G(p1, p2) when we choose W = 1 and functions R(e) and
Π(G) as in Figures 2.1 and 2.2.
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Lastly we present the most important result of this subsection that shows how
prices, strength of institutions and total income in the economy of a nation are mu-
tually related.

Proposition 2.4. The behavior of the total income as a function of resource prices is
strongly linked to the quality of institutions. In particular it is increasing if the latter
are su�ciently strong, conversely it is decreasing if they are not.

Proof. We consider for simplicity only the dependence with respect to both prices
simultaneously, namely we compute the directional derivative with respect to −→u , but
the reasoning and the conclusions are the same even if we consider the dependence
with respect to a single price. To quantify the total income Y we can use the well
known Gross Domestic Product, that measures the market value of all �nal goods
and services produced within a country in a given period of time, that is in this case

Y := p1e+ p2R(e) + 2(1−G)H

We recall that we can see e and G as functions of p1 and p2, therefore one can prove
that the derivative along the direction −→u in given by

dY

d−→u
= c(p1e+ p2R) +

∂e

∂−→u
(p1 + p2R

′)− 2H
∂G

∂−→u

Now replacing expressions (2.4) and (2.5) in the previous formula, recalling the de�-
nition of D1 and making a lot of computation one can show that it results

sgn
dY

d−→u
= sgn

[
2R′′

(
−eW − p2

p1
(W −H)R

)
+R′′

Π′′

Π′
(p2R−WG)

(
e+

p2
p1
R

)
−

− Π′

Π
(ep2(R′)2 − p2RR′)

]
Here the �rst and the last addendum, which are respectively positive and negative, are
the same contained in the original paper while the second, which is positive, comes
from considering a nonzero second derivative of the reelection probability. It is in
general not possible to say that this derivative is monotone but if we look at as a
function of Π′, the argument of sign function is of the form

a+ b
1

Π′
− cΠ′

with a, b, c > 0. The largest zero of this function is

Π̃′ =
−a−

√
a2 + 4bc

−2c

which is positive13. Moreover it is easy to check that this function is decreasing and
continuous in the semiaxis Π′ > 0 (remember that it is an hypothesis of the model).

So Π̃′ is a sort of critical value for the derivative of Y because we have dY
d−→u > 0 if

Π′ < Π̃′, that means that if prices increase then the economy of the nation increases
and, on the contrary, dY

d−→u < 0 if Π′ > Π̃′, so to an increase in prices follows a decrease
of the total income.

13The other zero is negative.
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The function Π′ is in some sense related to the robustness of institutions. A small
value means that the incumbent, for di�erent reasons, has less chance to in�uence
his reelection probability by employing people in the public sector, consequently the
institutions are less sensitive to the phenomenon of clientelism. Exactly the contrary
happens if Π′ is su�ciently big so the statement is proved.

2.4.2 Maximum point on the boundary

In this completely new subsection we want to analyze the case in which the maximum
point is on the boundary of the set Ω. This set is a rectangle of R2 and so its boundary
Γ is composed by four subsets which are14

Γ1 := [0, e]× {0}
Γ2 := {e} × [0, 1]

Γ3 := [0, e]× {1}
Γ4 := {0} × [0, 1]

In the next propositions we show how the maximum point on the boundary changes
with respect to the parameters and also the di�erences between every piece of the
boundary Γ. In this case we exhibit some graphics that show the evolution of the
maximum point in the region 1 ≤ p1, p2 ≤ 2. We start assuming the maximum point
is in the interior of Γ1.

Proposition 2.5. If we assume that the maximum point is in the interior of Γ1 so
G = 0 and 0 < e < e, then the resource extraction rate is an increasing function with
respect to p1, decreasing with respect to p2 and constant with respect to both p1 and
p2 if they vary simultaneously but proportionally.

Proof. By looking at system (2.2), since G = 0 and 0 < e < e, equations (2.2b)
become λ1 = λ2 = λ4 = 0 so the system reduces to

(2.6)
{
F 1(e, λ3; p1, p2) := p1 + Π(0)p2R

′(e) = 0

F 2(e, λ3; p1, p2) := −(1−Π(0))W + Π′(0)p2R(e) + λ3 = 0

We apply again Theorem 1.3 and consider

∂F 2

∂λ3

which is identically 1, and in particular nonzero. The second equation implicitly
de�nes a function λ3 = λ3(e; p1, p2). We substitute in the �rst one and de�ne

H(e; p1, p2) := F 1(e, λ3(e; p1, p2); p1, p2) = 0

We consider now
∂H

∂e
=
∂F 1

∂e
+
∂F 1

∂λ3

∂λ3
∂e

14We chose to enumerate the subsets anticlockwise starting from the bottom rather then in analogy
with the ϕ's functions.



2.4 Case d = 1: a single natural resource 25

and we suppose He 6= 0. So H = 0 implicitly de�nes a function e = e(p1, p2).
Denoting h(p1, p2) := λ3(e(p1, p2); p1, p2) the starting system is now{

F 1(e(p1, p2), h(p1, p2); p1, p2) = 0

F 2(e(p1, p2), h(p1, p2); p1, p2) = 0

Di�erentiating both equations by p1 one has
F 1
e

∂e

∂p1
+ F 1

λ3

∂h

∂p1
= −F 1

p1

F 2
e

∂e

∂p1
+ F 2

λ3

∂h

∂p1
= −F 2

p1

and by Cramer's rule we get

∂e

∂p1
=

∣∣∣∣−F 1
p1 F 1

λ3

−F 2
p1 F 2

λ3

∣∣∣∣∣∣∣∣F 1
e F 1

λ3

F 2
e F 2

λ3

∣∣∣∣ =

∣∣∣∣−1 0
0 1

∣∣∣∣∣∣∣∣Π(0)p2R
′′ 0

F 2
e 1

∣∣∣∣ = − 1

Π(0)p2R′′
> 0

Di�erentiating now both equations by p2 one has
F 1
e

∂e

∂p2
+ F 1

λ3

∂h

∂p2
= −F 1

p2

F 2
e

∂e

∂p2
+ F 2

λ3

∂h

∂p2
= −F 2

p2

and again by Cramer's rule we get

∂e

∂p2
=

∣∣∣∣−F 1
p2 F 1

λ3

−F 2
p2 F 2

λ3

∣∣∣∣∣∣∣∣F 1
e F 1

λ3

F 2
e F 2

λ3

∣∣∣∣ =

∣∣∣∣−Π(0)R′ 0
−F 2

p2 1

∣∣∣∣∣∣∣∣Π(0)p2R
′′ 0

F 2
e 1

∣∣∣∣ = − R′

p2R′′
< 0

Lastly considering a simultaneous but proportional variation of p1 and p2 we have

de

d−→u
= 〈∇e,−→u 〉 = −cp1 + Π(0)p2R

′

Π(0)p2R′′
≡ 0

where the last equality turns out from (2.6).

Observing that since Ω is a rectangle its boundary is easily parameterizable we
can provide a more direct proof of this and the next results by reducing to the case
of maximization of function of only one variable.

Alternative proof of Proposition 2.5. The boundary Γ1 = [0, e] × {0} is parameteriz-
able by e(s) = s with s ∈ [0, e] and G(s) ≡ 0 so the income to maximize is, with an
abuse of notation,

I1(e; p1, p2) := I(e, 0; p1, p2) = p1e+ Π(0)p2R(e)
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If we look for an internal maximum point the �rst order condition says that

(2.7)
∂I1

∂e
= p1 + Π(0)p2R

′(e) = 0

We have
I1ee = Π(0)p2R

′′(e) < 0

which is in particular nonzero15 then by the implicit function theorem equation (2.7)
implicitly de�nes a function e = e(p1, p2) which derivatives are

∂e

∂p1
= −

I1ep1
I1ee

= − 1

Π(0)p2R′′
> 0

∂e

∂p2
= −

I1ep2
I1ee

= − R′

p2R′′
< 0

de

d−→u
= 〈∇e,−→u 〉 = −cp1 + Π(0)p2R

′

Π(0)p2R′′
≡ 0

where the last equality turns out again from (2.6).

The next case deals with the maximum point in the interior of Γ3.

Proposition 2.6. If we assume that the maximum point is in the interior of Γ3 so
G = 1 and 0 < e < e, then the resource extraction rate is an increasing function with
respect to p1, decreasing with respect to p2 and constant with respect to both p1 and
p2 if they vary simultaneously but proportionally.

Proof. The proof in essentially the same of the last proposition. The boundary Γ3 =
[0, e]× {1} is parameterizable by e(s) = s with s ∈ [0, e] and G(s) ≡ 1 so the income
to maximize is

I3(e; p1, p2) := I(e, 1; p1, p2) = p1e−W + Π(1)(p2R(e)−W )

If we look for an internal maximum point the �rst order condition says that

(2.8)
∂I3

∂e
= p1 + Π(1)p2R

′(e) = 0

We have
I3ee = Π(1)p2R

′′(e) < 0

which is in particular nonzero then by the implicit function theorem equation (2.8)
implicitly de�nes a function e = e(p1, p2) which derivatives are

∂e

∂p1
= −

I3ep1
I3ee

= − 1

Π(1)p2R′′
> 0

∂e

∂p2
= −

I3ep2
I3ee

= − R′

p2R′′
< 0

de

d−→u
= 〈∇e,−→u 〉 = −cp1 + Π(1)p2R

′

Π(1)p2R′′
≡ 0

where the last equality turns out from (2.8).

15It is negative so the second order condition for functions of only one variable is ful�lled. The
same for all the next two cases.
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The previous two propositions show the same results. If the employment rate is
�xed the incumbent can not in�uence his reelection probability by employing voters
in the public sector.

This fact is crucial to explain in particular the third result. In fact while the �rst
two results, and related consideration, are identical to those of Proposition 2.2, the
latter is di�erent and says that the optimal response to a simultaneous changing of
prices is to leave unaltered the extraction rate. This because since the incumbent can
not in�uence his reelection probability the policy is, in some sense, cut o�. Conse-
quently, since a proportional increase in both prices keeps unchanged the ratio p1

p2
,

the optimal response is what one would obtain by reasoning from a merely economic
perspective.

The di�erence with respect to the case in which the incumbent maximizes also
over G variable is that an increase in p2 makes more valuable to be in power after the
elections so the politician is forced to employ voters to increase his chances of success.

Figures 2.5 and 2.6 on the next page show the function e(p1, p2) when G is �xed
and takes value on the boundaries.

2 2
1,8 1,8

1,6 1,6
p2 1,4 1,4 p1

1,2 1,2
01 1
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Figure 2.5: The function e(p1, p2) in the case G = 0 when we choose W = 1 and
functions R(e) and Π(G) as in Figures 2.1 and 2.2.

Now in the next two propositions we consider a maximum point on the sets in
which e is �xed and G is variable, starting from the interior of Γ4.

Proposition 2.7. If we assume that the maximum point is in the interior of Γ4 so
e = 0, and consequently R(e) = E, and 0 < G < 1, then the rate of voters employed
in the public sector is a constant function with respect to p1, increasing with respect
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Figure 2.6: The function e(p1, p2) in the case G = 1 when we choose W = 1 and
functions R(e) and Π(G) as in Figures 2.1 and 2.2.

to p2 and increasing with respect to both p1 and p2 also if they vary simultaneously
but proportionally.

Proof. In this case the boundary Γ4 = {0}× [0, 1] is parameterizable by e(s) ≡ 0 and
G(s) = s with s ∈ [0, 1] so the income to maximize is

I4(G; p1, p2) := I(0, G; p1, p2) = −WG+ Π(G)(p2E −WG)

If we look for an internal maximum point the �rst order condition says that

(2.9)
∂I4

∂G
= −(1 + Π)W + Π′(p2E −WG) = 0

We have
I4GG = −2Π′W + Π′′(p2E −WG) < 0

which is in particular nonzero then by the implicit function theorem equation (2.9)
implicitly de�nes a function G = G(p1, p2) which derivatives are

∂G

∂p1
= −

I4Gp1
I4GG

≡ 0

∂G

∂p2
= −

I4Gp2
I4GG

= − Π′E

−2Π′W + Π′′(p2E −WG)
> 0

dG

d−→u
= 〈∇G,−→u 〉 = c

∂G

∂p2
p2 > 0
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If we prescribe that in the �rst period we have no resource extraction, a variation
in price p1 is obviously meaningless. Conversely the number of voters employed by
the incumbent is increasing in p2 and in p1 and p2 simultaneously because if, for
example, p2 increases the politician is forced to employ voters in the public sector to
guaranteed his victory.

Figure 2.7 shows function G(p1, p2) when there is no extraction in the �rst period.
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Figure 2.7: The function G(p1, p2) in the case e = 0 when we choose W = 1 and
functions R(e) and Π(G) as in Figures 2.1 and 2.2.

The last case deals with the maximum point in the interior of Γ2.

Proposition 2.8. If we assume that the maximum point is the interior of Γ2 so
e = e and consequently R(e) = 0, and 0 < G < 1, then the rate of voters employed
in the public sector is a constant function with respect to p1, constant with respect to
p2 and constant with respect to both p1 and p2 also if they vary simultaneously but
proportionally.

Proof. In this case the boundary Γ2 = {e}× [0, 1] is parameterizable by e(s) ≡ e and
G(s) = s with s ∈ [0, 1] so the income to maximize is

I2(G; p1, p2) := I(e,G; p1, p2) = p1e− (1 + Π(G))WG

It is easy to see that the maximum with respect to G of I2 is obtained at G = 0
independently of p1 and p2, then the optimal rate of voters employed in the public
sector does not change.

We can explain the last result considering that if all the resources are extracted in
the �rst period the incumbent has obviously no interest to be reelected. Therefore the
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optimal response is to employ nobody in order to cancel hiring costs and this choice
does not change if prices p1 and p2 vary.

Figure 2.8 shows the function G(p1, p2) when the incumbent exploits all the ex-
tractable resource.

2
1,8

p2

1,6
1,4

1,2
1

01

1

1,2

2

3

1,4

4

p1 1,6

1,8

2

Figure 2.8: The function G(p1, p2) in the case e = 4
5 when we choose W = 1 and

functions R(e) and Π(G) as in Figures 2.1 and 2.2.

Remark 2.9. In the proof of the last result we can not follow the previous strategy
because the term

I2GG = −2Π′W −Π′′WG

is not surely di�erent from 0. Nevertheless if we suppose I2GG 6= 0 we can calculate
explicitly that all the derivatives are identically 0.

2.5 Case d = 2: two di�erent natural resources

In this section we generalize the model by considering the case inn which the incum-
bent has two di�erent resources to exploit and the maximum point is located in the
interior of the region under consideration. We will just present the situation from a
merely graphical point of view because the explicit expression of the derivatives of
functions e1, e2 and G with respect to prices can be obtained directly from (1.1).

We decided to take the same choices made for the case of one single resource, so
we set W = 1 and for the �rst resource we choose the same function, obviously now
indexed with index 1, R1(e1) = − 5

16e
2
1 − e1 + 1 which describes the remaining. For

the second resource we choose the very similar function R2(e2) = − 10
9 e

2
2− e2 + 1 that
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models a situation in which again E = 1 but e = 3
5 , so the incumbent can extract only

60% of the total in the �rst period leaving nothing for the second one (see Figure 2.9).

Figure 2.9: The function R2(e2) = − 10
9 e

2
2 − e2 + 1.

In this situation, with two di�erent natural resources, there are two rates of ex-
traction and four selling prices, two for each period. We are going now to show six
graphics that illustrate the trend of the rates of extraction as a function of selling
prices. Obviously every rate will be plot as a function of only two prices, ranging
from 20 to 24 except in a case that will be indicated, so we set the other two prices
to an arbitrary value, in this case 28.
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Figure 2.10: The function e1(p11, p
1
2) when we choose W = 1 and functions R1(e1),

R2(e2) and Π(G) as in Figures 2.1, 2.9 and 2.2.
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Figure 2.11: The function e2(p21, p
2
2) when we choose W = 1 and functions R1(e1),

R2(e2) and Π(G) as in Figures 2.1, 2.9 and 2.2. In this case we have 20 ≤ p21 ≤ 28.

Figure 2.10 on the previous page shows that the rate of extraction of the �rst
resource e1 is increasing with respect to its selling price in the �rst period and de-
creasing with respect to its price in the second one. The same occurs to the rate of
extraction of the second resource e2 with respect to its selling prices, as shown in
Figure 2.11. The explanation of this behavior is the same provided for Proposition
2.2. We show now the trend of extraction of a resource with respect to the prices of
the other one.

Figure 2.12 on the next page shows that the rate of extraction of the �rst resource
as a function of prices of the other has the opposite behavior compared to Figure 2.11.
A possible explanation is that if, for example, the price p21 of the second resource in
the �rst period increases then the incumbent can a�ord to extract less resource of the
�rst type without compromising the overall gain. Vice versa if price p22 increases then
the incumbent has to increase the extraction of the �rst resource to balance the lower
extraction of the second one. The extraction rate of the second resource with respect
to the selling prices of the �rst one has the same behavior, as shown in Figure 2.13
on the following page.

We focus at last on the rate of voters employed in the public sector as a function
of the selling prices. In this case there is an unexpected phenomenon.

Figure 2.14 on page 34 shows that the rate of voters G is increasing with respect to
p11 and decreasing with respect to p12, and the same happens if we consider the prices
of the second resource, as shown in Figure 2.15 on page 34. A possible explanation
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Figure 2.12: The function e1(p21, p
2
2) when we choose W = 1 and functions R1(e1),

R2(e2) and Π(G) as in Figures 2.1, 2.9 and 2.2.
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Figure 2.13: The function e2(p11, p
1
2) when we choose W = 1 and functions R1(e1),

R2(e2) and Π(G) as in Figures 2.1, 2.9 and 2.2.
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Figure 2.14: The function G(p11, p
1
2) when we choose W = 1 and functions R1(e1),

R2(e2) and Π(G) as in Figures 2.1, 2.9 and 2.2.
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Figure 2.15: The function G(p21, p
2
2) when we choose W = 1 and functions R1(e1),

R2(e2) and Π(G) as in Figures 2.1, 2.9 and 2.2.
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is that since in any case there is a resource whose extraction rate decreases, the
incumbent has interest to be reelected to extract the remaining in the second period,
so the optimal response is always to increase the rate of voters employed to guarantee
his success.



Chapter 3

Resource curse: a discrete time

model

In this chapter we present a further generalization of the previous model, considering a
politician in charge up to a �nite time which choices at every time step the extraction
(for simplicity of only one resource) and recruitment rates to maximize his own income
at the end of his mandate, while the rest of the framework remains the same.

In this case the way chosen to approaching this model is using the dynamic pro-
gramming described extensively in Section 1.2. We de�ned a value function for this
model, namely the maximum income that the incumbent can obtain starting with a
certain amount of resources available and workers employed and remaining in power
for a speci�ed period, which satis�es a Dynamic Programming Principle which leads
to a Bellman equation. We provided a regular result and we determined an optimal
policy that the incumbent must follow to maximize his income.

Lastly, we also studied the problem from a numerical point of view. Bellman
equation can in fact be solved by induction numerically on a computer. There is a
large literature about numerical approximations of the equation, in particular in [11]
Capuzzo Dolcetta proposed an uniformly convergent approximation of the Hamilton-
Jacobi-Bellman equation related to an in�nite horizon optimal control problem while
in [25] Falcone and Giorgi deal with a �nite horizon deterministic problem (for further
works on this topic see also [13, 22, 12, 24]).

3.1 Model description

We state brie�y the new context of study and the new assumptions we make. Anything
not explicitly mentioned are subject to the assumptions made in the previous chapter.

In this case we deal with a model where there is a politician in charge up to time
t ∈ T := {1, . . . , T}, with T ∈ N, which represents for example the duration of his
term in months or years, wishing to be reelected for a second mandate, and of course a
competitor. There is a normalized amount of a single nonrenewable natural resource
and for simplicity of notation we denote r ∈ [0, 1] instead of E the extractable part.
This quantity declines at the percentage rate the incumbent extracts it en ∈ [0, 1],
where 0 means no extraction and 1 means that the incumbent extracts all the available
resource, and all the income from its sale accrues again directly to the government.



3.1 Model description 37

We denote also with Gn ∈ [0, 1] the numbers of employed at time n, that evolves
according to an employing rate hn ∈ [0, 1], G ∈ [0, 1] the starting number of workers
and Πn := Π(Gn) the reelection probability as function of the latter. To give �nally a
justi�cation to the choice hn ≥ 0 we can think to a situation in which the incumbent
can not �re his employees during his mandate, for example due a particular form of
contract.

Considering the whole system resource/workers, it is governed by the discrete-time
state equation

(3.1)

{
yn+1 = yn + f(yn, an) n = 0, . . . , t− 1

y0 = x

where yn = (rn, Gn), an = (en, hn) ∈ A = [0, 1]× [0, 1], x = (r,G) ∈ Q = [0, 1]× [0, 1]
and f : R2×A→ R2 is a given mapping such that for every x ∈ Q and a ∈ A one has

(3.2) x+ f(x, a) ∈ Q

A possible choice for f is for example

f(x, a) = f((x1, x2), (a1, a2)) := (−a1x1, a2(1− x2)) = (f1(x, a), f2(x, a))

so the dynamics is forced to go to point (0, 1) regardless of the starting point x ∈ Q
(see Figure 3.1).

Figure 3.1: The vector �eld f((x1, x2), (0.1, 0.05)).

We denote by A the set of all the sequences α = {an} = {(en, hn)} ⊆ A and by
yn = yn(x, α) the corresponding trajectory of (3.1).

Resource income can again be spent by the incumbent politician or can be redis-
tributed as patronage to increase reelection probability and to in�uence the outcome
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of voting. So the incumbent choose its economic policy α ∈ A in order to maximize
his own income

(3.3) I(x, t, α) :=

t−1∑
n=0

(
p1enrnGn −

e2n
rn + η

−WGn

)
βn + βtΠ(Gt)(p2rt −WGt)

in which β ∈ (0, 1) represents a discount rate and η � 1 is a technical parameter
which ensures that the denominator is never zero. The generic term of the sum in the
expression above is the di�erence between the income from the resource extraction,
where the presence of Gn means that only a part of the resource extracted can be
sold, in particular the incumbent can sell all the resource extracted if and only if he
employs the whole population, and the outcome resulting from extraction cost and
from employing workers while the last term represents in some sense a scrap value,
in this case the value of being in power for a second mandate. Note that this value is
again discounted by a factor that is the reelection probability.

For sake of simplicity we de�ne

`(x, a) = `((x1, x2), (a1, a2)) := −
(
p1a1x1x2 −

a21
x1 + η

−Wx2

)
g(x) = g((x1, x2)) := −Π(x2)(p2x1 −Wx2)

so the income (3.3) becomes

I(x, t, α) =

t−1∑
n=0

−`(yn, an)βn − βtg(yt)

3.2 Dynamic Programming Principle and correspond-

ing Bellman equation

We start by de�ning what will be for us the value function of this optimization problem

(3.4) u(x, t) := inf
α∈A
−I(x, t, α) = inf

{an}⊆A

{
t−1∑
n=0

`(yn, an)βn + βtg(yt)

}
Remark 3.1. To de�ne this value function, in order to develop a theory analogue to
the classical one, we considered the problem of minimizing the opposite of the total
income instead of maximizing the latter. Obviously the "actual" value function is
simply −u(x, t).

Again for simplicity of notation we de�ne

J(x, t, α) := −I(x, t, α)

so the value function de�ned in (3.4) becomes

u(x, t) = inf
α∈A

J(x, t, α)

The next results we are going to show, with appropriate changes, follows directly
from [4] and are comparable to those contained in [25], to which we refer for fur-
ther details. The �rst result is that the function u satis�es the following Dynamic
Programming optimality Principle.
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Proposition 3.2 (Dynamic Programming Principle). The function u(x, t) veri�es

(3.5) u(x, t) = inf
α∈A

{
τ−1∑
n=0

`(yn, an)βn + βτu(yτ , t− τ)

}
for all x ∈ (0, 1)×(0, 1) and τ = 0, . . . , t. In particular for τ = 1 we have, by swapping
the addends,

(3.6) u(x, t) = inf
a∈A
{βu(y1, t− 1) + `(y0, a)} = inf

a∈A
{βu(x+ f(x, a), t− 1) + `(x, a)}

Proof. Since by de�nition u(x, 0) = g(x) then (3.5) reduces to the de�nition of u
when τ = t. For τ = 0, . . . , t− 1 and α = {an} = {a0, . . . , at−1} ∈ A �xed we de�ne
α̃ = {ãn} := {an+τ} and we denote ỹn the trajectory of (3.1) starting from yτ and
corresponding to α̃. One has

J(x, t, α) =

τ−1∑
n=0

`(yn, an)βn +

t−1∑
n=τ

`(yn, an)βn + βtg(yt) =

=

τ−1∑
n=0

`(yn, an)βn +

t−τ−1∑
n=0

`(yn+τ , ãn)βn+τ + βτβt−τg(ỹt−τ ) =

=

τ−1∑
n=0

`(yn, an)βn + βτJ(yτ , t− τ, α̃) ≥

≥
τ−1∑
n=0

`(yn, an)βn + βτu(yτ , t− τ)

By taking the in�mum over A we get the inequality ≥ in (3.5). To prove the opposite
inequality we �x α = {an} ∈ A and we observe that, by de�nition of u(x, t), for every
δ > 0 there exists αδ = {aδn} such that

u(yτ , t− τ) ≥ J(yτ , t− τ, αδ)− δ

We de�ne now the control α such that its generic term is

ān :=

{
an 0 ≤ n ≤ τ − 1

aδn−τ τ ≤ n ≤ t− 1

that is more compactly {ān} = {a0, . . . , aτ−1, aδ0, . . . , aδt−τ−1}, and let ȳn and yδn be
the trajectories of (3.1) respectively starting from x and yτ and corresponding to ᾱ
and αδ. Then we have

J(x, t, ᾱ) =

τ−1∑
n=0

`(ȳn, ān)βn +

t−1∑
n=τ

`(ȳn, ān)βn + βtg(ȳt) =

=

τ−1∑
n=0

`(yn, an)βn +

t−τ−1∑
n=0

`(yδn+τ , a
δ
n)βn+τ + βτβt−τg(yδt−τ ) =

=

τ−1∑
n=0

`(yn, an)βn + βτJ(yτ , t− τ, αδ) ≤

≤
τ−1∑
n=0

`(yn, an)βn + βτu(yτ , t− τ) + βτδ
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Since δ is arbitrary, by taking the in�mum over A we get the inequality ≤ in (3.5) so
the proof is complete.

We observe that equation (3.6), if written as

(3.7) u(x, t) + sup
a∈A
{−βu(x+ f(x, a), t− 1)− `(x, a)} = 0

it can be seen as the discrete version of the classic Hamilton-Jacobi-Bellman equation

ut(x, t) + λu(x, t) + sup
a∈A
{−f(x, a) ·Du(x, t)− `(x, a)} = 0

for the �nite horizon problem (analogous to (1.9) which comes from considering an
in�nite horizon) with the same dynamics f , cost function ` and the discount rate λ
somehow related to β.

Before continuing with the study of the properties of the function u, we try to
guess for a solution of (3.6). In particular, following an example in [26], we guess that
the value function has the form

(3.8) u(x, t) = u((x1, x2), t) = ϕ(t)

(
Ax1x2 +B

1

x1 + η
+ Cx2

)
For this tentative solution the expression within the brackets of (3.6) is

βϕ(t− 1)

(
A(x1 − a1x1)(x2 + a2(1− x2)) +

B

x1 − a1x1 + η
+

+ C(x2 + a2(1− x2))

)
− p1a1x1x2 +

a21
x1 + η

+Wx2

Taking the gradient with respect to (a1, a2) of this expression and setting it equal to
zero, we have that the minimum is achieved when

a1 =
Ax1 + C

Ax1

while for a2 we have a much more complicated expression. To simplify the exposure
we set now A = B = C = 1, so the value of the minimum is given by

βϕ(t− 1)

η − 1
− p1(x1 + 1)x2 +

(x1 + 1)2

x21(x1 + η)
+Wx2

A su�cient condition for this quantity to be equal to u(x, t) de�ned in (3.8) is that
ϕ(t) satisfy the recurrence equation

ϕ(t+ 1) =

(
x1x2 +

1

x1 + η
+ x2

)−1(
βϕ(t)

η − 1
− p1(x1 + 1)x2 +

(x1 + 1)2

x21(x1 + η)
+Wx2

)
with the initial point (x1, x2) �xed. If for example the initial point is (x1, x2) = (1, 0)
the recurrence equation becomes

ϕ(t+ 1) = β
η + 1

η − 1
ϕ(t) + 4
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We couple now equation (3.6) with a natural initial condition so we have the
discrete initial value problem

(3.9)

{
u(x, t) = inf

a∈A
{βu(x+ f(x, a), t− 1) + `(x, a)} in Q× T

u(x, 0) = g(x) in Q

We want to show now that the value function u is the unique solution of the previous
problem and that a comparison principle between subsolution and supersolution of
(3.9) holds. To do this we notice �rst of all that functions f(x, a), `(x, a) and g(x)
have some relevant properties, which are interesting in a more general theory.

Remark 3.3. Functions f(x, a), `(x, a) and g(x) are bounded respectively in Q× A
by two constants M1 and M2 and in Q by a constant M3 since they are continuous.
Moreover f(x, a) and `(x, a) are Lipschitz continuous in x uniformly in a with con-
stants respectively L1 and L2 since the are also C1. We can �nally observe that the
last property of f implies

(3.10) |yn(x, α)− yn(z, α)| ≤ (1 + L1)n|x− z|

We state now the �rst result concerning the function u.

Proposition 3.4. The value function u(x, t) is bounded in Q × T0, in which T0 :=
{0, . . . , T}, and it is the complete solution, namely the maximal subsolution and the
minimal supersolution, and therefore the unique solution of (3.9) in B(Q×T0). More-
over, if u1, u2 ∈ B(Q×T0) are respectively a subsolution and a supersolution of (3.9)
then

(3.11) sup
Q×T0

(u1 − u2) ≤ sup
Q×{0}

(u1 − u2)

Proof. From the previous remark and the de�nition of u we have

|u(x, t)| ≤
t−1∑
n=0

βn|`(yn, an)|+ βt|g(yt)| ≤M1

t−1∑
n=0

βn + βtM2 ≤M1
1− βT

1− β
+M2

so that u ∈ B(Q×T0). For any subsolution u1 of (3.9) we have by de�nition u1−u ≤ 0
in Q × {0} so by (3.11) one has u1 − u ≤ 0 in Q × T0. Similarly we can show that
u is below any supersolution. Now we prove the comparison principle (3.11). By
de�nition of supersolution, for any ε > 0 and (x, t) ∈ Q× T there exists aε ∈ A such
that

u2(x, t) ≥ βu2(x+ f(x, aε), t− 1) + `(x, aε)− ε

On the other hand we have, by de�nition of subsolution,

u1(x, t) ≤ βu1(x+ f(x, aε), t− 1) + `(x, aε)

Hence, by subtracting u2 from u1 we get

u1(x, t)− u2(x, t) ≤ βu1(x+ f(x, aε), t− 1)− βu2(x+ f(x, aε), t− 1) + ε

By taking the supremum over Q× {1} we have

sup
Q×{1}

(u1 − u2) ≤ β sup
Q×{0}

(u1 − u2) + ε
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Since β ∈ (0, 1) and ε is arbitrary, by repeating the procedure one has

sup
Q×{T}

(u1 − u2) ≤ sup
Q×{T−1}

(u1 − u2) ≤ . . . ≤ sup
Q×{1}

(u1 − u2) ≤ sup
Q×{0}

(u1 − u2)

and �nally we have the comparison principle (3.11) by taking the supremum over the
union of all sets.

Next we show a regularity result for u.

Proposition 3.5. For ever �xed t ∈ T function u is uniformly continuous in x.
Moreover, u is Lipschitz continuous with Lipschitz constant

L2
1− βt(1 + L1)t

1− β(1 + L1)
+ βt(1 + L1)t

Proof. For �xed z ∈ Q and for an arbitrary ε > 0 there exists αε = {aεn} ∈ A such
that

u(z, t) ≥ J(z, t, αε)− ε

Then
u(x, t)− u(z, t) ≤ J(x, t, αε)− J(z, t, αε) + ε

for every x, z ∈ Q and t ∈ T0. Consequently, by Remark 3.3, and in particular by
property (3.10), we have

u(x, t)− u(z, t) ≤
t−1∑
n=0

|`(yn(x, αε), aεn)− `(yn(z, αε), aεn)|βn+

+ βt|yt(x, αε)− yt(z, αε)|+ ε ≤

≤
t−1∑
n=0

L2(1 + L1)nβn|x− z|+ βt(1 + L1)t|x− z|+ ε

It is easy to check that the �rst two summands can be made smaller than ε for |x− z|
small enough, therefore u is uniformly continuous. Moreover, using the formula for
the sum of the �rst t terms of a geometric series, it results

u(x, t)− u(z, t) ≤
(
L2

1− βt(1 + L1)t

1− β(1 + L1)
+ βt(1 + L1)t

)
|x− z|+ ε

and since ε is arbitrary u has the desired regularity.

In the next result we state that there exists an optimal control for this problem
and we show the procedure for its construction from equation (3.9).

Proposition 3.6. The control α∗ = {a∗n} ∈ A, which depends on x and t, de�ned by

a∗n ∈ arg min
a∈A

{βu(y∗n + f(y∗n, a), tn − 1) + `(y∗n, a)}

for n = 0, . . . , t− 1, where y∗0 = x, {y∗n} is the trajectory of (3.1) corresponding to α∗

and tn = t− n, is optimal for (x, t).
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Proof. We recall that by the previous two propositions u is the unique solution of
(3.9) in BUC(Q× T0). By Remark 3.3 the function

a 7−→ βu(x+ f(x, a), t− 1) + `(x, a)

is continuous for every �xed x ∈ Q and t ∈ T . Since A = [0, 1] × [0, 1] is compact
there exist ā = ā(x, t) ∈ A such that

inf
a∈A

βu(x+ f(x, a), t− 1) + `(x, a) = βu(x+ f(x, ā), t− 1) + `(x, ā)

On the account of (3.9) this means that the set

F (x, t) = {a ∈ A | u(x, t) = βu(x+ f(x, a), t− 1) + `(x, a)}

is nonempty for all (x, t) ∈ Q × T . For �xed (x, t) set y∗0 = x and de�ne recursively
the sequences {y∗n} ⊂ Q and α∗ = {a∗n} ⊂ A for n = 0, . . . , t− 1 by setting{

a∗n ∈ F (y∗n, tn)

y∗n+1 = y∗n + f(y∗n, a
∗
n)

By de�nition of F we can show that y∗n+1, y
∗
n and a∗n is related by

βnu(y∗n, tn)− βn+1u(y∗n+1, tn+1) = βn`(y∗n, a
∗
n)

and therefore

t−1∑
n=0

βn(u(y∗n, tn)− βu(y∗n+1, tn+1) =

t−1∑
n=0

βn`(y∗n, a
∗
n)

Since the left-hand side of the previous equality is the partial sum of a telescoping
series, it is easy to check that it results

t−1∑
n=0

βn(u(y∗n, tn)− βu(y∗n+1, tn+1) = u(x, t)− βtg(y∗t )

by using the initial condition of (3.9). Hence

u(x, t) =

t−1∑
n=0

`(y∗n, a
∗
n)βn + βtg(y∗t ) = J(x, t, α∗)

so α∗ achieves the in�mum and the proof of its optimality is complete.

Let the value function u be known, then the procedure to construct the optimal
control α∗ and the optimal trajectory {y∗n} is the following. Fix the �nal time t.
Starting from the initial point x = y∗0 , compute

a∗0 = arg min
a∈A

{βu(y∗0 + f(y∗0 , a), t− 1) + `(y∗0 , a)}

Then the initial point moves, according to the dynamics (3.1), to the next point

y∗1 = y∗0 + f(y∗0 , a
∗
0)



3.3 Numerical approximation 44

Compute now the optimal control at the next time

a∗1 = arg min
a∈A

{βu(y∗1 + f(y∗1 , a), t− 2) + `(y∗1 , a)}

and the next point
y∗2 = y∗1 + f(y∗1 , a

∗
1)

Iterating the procedure, we arrive to the computation of the last optimal control

a∗t−1 = arg min
a∈A

{βu(y∗t−1 + f(y∗t−1, a), 0) + `(y∗t−1, a)}

and the end point is given by

y∗t = y∗t−1 + f(y∗t−1, a
∗
t−1)

3.3 Numerical approximation

In this section we want to present a numerical approximation for the model proposed.
Theoretical results are in analogy to those contained in [23]. First of all we observe
that dynamics (3.1) and Bellman equation (3.6) are already discretized in time, so we
only need a discretization of the spaces of states.

We start building a grid in the state space Q. We choose a discretization step
h > 0 such that 1

h is an integer Nh and build for simplicity a grid of N2
h squares of

side h for a total amount of nodes of L := (Nh + 1)2. Each node is denoted by xi for
i = 1, . . . , L.

For simplicity of notation we set uti = u(xi, t). Then the fully discretized Bellman
equation is

(3.12) uti = inf
a∈A
{βut−1(xi + f(xi, a)) + `(xi, a)}

with initial data u0i = g(xi) for i = 1, . . . , L.
Before tackling some aspects of the numerical calculation we want to give an

estimate of the approximation error in the L∞(Q) norm.

Proposition 3.7. Let ut and uth be respectively solutions of (3.6) and (3.12). Then
one has

(3.13) ‖ut − uth‖∞ ≤ tL3h

where

L3 = L2
1− βt(1 + L1)t

1− β(1 + L1)
+ βt(1 + L1)t

Proof. For any (x, t) ∈ Q× T we can write

|u(x, t)− uh(x, t)| ≤

∣∣∣∣∣
L∑
i=1

λi(u(x, t)− u(xi, t))

∣∣∣∣∣+

∣∣∣∣∣
L∑
i=1

λi(u(xi, t)− uh(xi, t))

∣∣∣∣∣
where the λi's are the coe�cients of a convex combination such that

x =

L∑
i=1

λixi
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Since by Proposition 3.5 u is Lipschitz continuous with Lipschitz constant

L3 := L2
1− βt(1 + L1)t

1− β(1 + L1)
+ βt(1 + L1)t

we obtain

(3.14) |u(x, t)− u(xi, t)| ≤ L3|x− xi| ≤ L3h

By equations (3.6) and (3.12) we have

u(xi, t)− uh(xi, t) ≤ β[u(xi + f(xi, ā), t− 1)− uh(xi + f(xi, ā), t− 1)]

≤ β‖ut−1 − ut−1h ‖∞

where ā is a control giving the minimum in (3.12), and this implies

(3.15) |u(xi, t)− uh(xi, t)| ≤ β‖ut−1 − ut−1h ‖∞

By (3.14) and (3.15) we have, iterating the procedure,

‖ut − uth‖∞ ≤ L3h+ β‖ut−1 − ut−1h ‖∞ ≤ . . . ≤ tL3h+ β‖u0 − u0h‖∞ = tL3h

since β < 1 and ‖u0 − u0h‖∞ = 0 because initial data coincides on the nodes of the
grid.

Following the procedure described at the end of the previous section we can recon-
struct an approximate optimal feedback control α∗h by means of our numerical approx-
imation uh at every time of the value function u obtained using equation (3.12). We
want to compare now the optimal control α∗ with the approximated optimal control
α∗h.

Proposition 3.8. For any (x, t) ∈ Q× T it results

J(x, t, α∗h) −−−−→
h→0+

J(x, t, α∗)

Proof. Let the functions Lh : Q× T ×A→ R be de�ned by

Lh(x, t, a) := βut−1h (x+ f(x, a)) + `(x, a)

and L : Q× T ×A→ R be de�ned by

L(x, t, a) := βu(x+ f(x, a), t− 1) + `(x, a)

For any (x, t) �xed, we consider the control a∗h, which depends on x and t, that by
de�nition realizes

Lh(x, t, a∗h) = inf
a∈A

Lh(x, t, a) = uh

and the control a∗, which also depends on x and t, that by de�nition veri�es

L(x, t, a∗) = inf
a∈A

L(x, t, a) = u

The estimate (3.13) implies that Lh converges uniformly on Q × T × A to L as h
goes to 0. Moreover, since A = [0, 1]× [0, 1] is compact, for any sequence {a∗h}h≥0 of



3.3 Numerical approximation 46

controls giving the minimum for Lh we can extract a subsequence {a∗hk
} converging

to a limit ā. Then we have

Lhk
(x, t, a∗hk

) −−−−−→
hk→0+

L(x, t, ā)

and, by de�nition of ā,
L(x, t, ā) ≤ L(x, t, a∗)

On the other hand, by de�nition of a∗, one has the opposite inequality, so that

L(x, t, ā) = L(x, t, a∗)

which implies ā = a∗. For any subsequence we can repeat the same reasoning so we
can conclude that the whole sequence {a∗h} converges, and it converges to the limit
a∗. By de�nition of Lh we have

(3.16) `(x, a) = Lh(x, t, a)− βut−1h (x+ f(x, a))

We take now x = yn, t = tn and the control16 a = a∗h(yn, tn), so by de�nition of a∗h
we have

Lh(yn, tn, a
∗
h(yn, tn)) = utnh (yn)

Multiplying (3.16) by βn one has

`(yn, a
∗
h(yn, tn))βn = utnh (yn)βn − βn+1utn−1h (yn + f(yn, a

∗
h(yn, tn)))

We sum on n from 0 to t− 1 and we get

t−1∑
n=0

`(yn, a
∗
h(yn, tn))βn =

t−1∑
n=0

utnh (yn)βn −
t−1∑
n=0

βn+1utn−1h (yn + f(yn, a
∗
h(yn, tn)))

Sending h to 0 we have that the left-hand side of the previous equality goes to17

t−1∑
n=0

u(yn, tn)βn −
t−1∑
n=0

βn+1u(yn + f(yn, a
∗(yn, tn)))

which is equal, expanding the sums and recalling that y0 = x and t0 = t, to

u(x, t) + βu(y1, t− 1) + . . .+ βt−1u(yt−1, 1)− βu(y1, t− 1)− . . .− βtu(yt, 0)

Recalling now that u(yt, 0) = g(yt) we have �nally

t−1∑
n=0

`(yn, a
∗
h(yn, tn))βn −−−−→

h→0+
u(x, t)− βtg(yt)

which is the desired result.

16This is in practice the n-th component of α∗
h.

17Similarly a∗(yn, tn) is the n-th component of α∗.
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We show now two aspects related only on the implementation of the algorithm.
The �rst is that since in general the point xi + f(xi, a) is not a node of the grid but,
by hypothesis (3.2), it belongs to one and only one square of the discretization18 we
must use an interpolation operator that involves the values of the function u at nodes
of that square to reconstruct it in the interior.

The second concerns the determination of the minimum. In this case the simplest
solution is to replace the set A by a �nite set. To do this we discretize the set by
choosing a step m > 0 such that 1

m is an integer Nm and build again for simplicity a
grid of N2

m squares of side m for a total amount of discrete controls M := (Nm + 1)2.
Each control is denoted by as for s = 1, . . . ,M and the discrete set of controls by
AM . So Bellman equation (3.12) is implemented in the further discretized form

uti = inf
as∈AM

{βut−1(xi + f(xi, as)) + `(xi, as)}

and since we discretized the control space, the computation of the in�mum for every
i and t �xed is simply a search for the minimum in a set of M real numbers.

3.4 Numerical simulations

We want now to present some numerical tests performed on this model, and to com-
pare them to the situation in which there is no discount, which we recall is the
reelection probability of the incumbent.

Before starting with the numerical tests we �x some parameters of the approxima-
tion and the model also, while the other parameters of the model will wary at every
test. So from now we set h = 1

50 , m = 1
20 , β = .99 and η = 10−5.

Moreover, to describe the reelection probability as function of the number of work-
ers we considered the same function presented in Figure 2.2 on page 20.

We set the initial point (r,G) = (1, 0), unless otherwise indicated, so the incumbent
starts his period of government with all resources available and without any worker
hired.

Lastly, we set u ≡ +∞ on the exit boundary of the domain, namely r = 0 and
G = 1, to ensure that the dynamics will not ever reach it.

We summarize in the next table the parameters used for the di�erent tests.

Test t p1 p2 W

1 6 100 60 1
2 6 300 60 1
3 6 100 100 1
4 6 100 200 10
5 6 100 200 50
6 6 100 95 20
7 24 500 50 20
8 6 2000 200 10

Table 3.1: Summary table of the tests performed.

18After choosing for every square a node representing and only two sides which refer to that node.
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Tests 1 and 2

In Figure 3.2, by looking at the graph of u, we can see that when we have a lot
of resources available the income is almost constant with respect to the number of
workers, and this for the extremely low labor cost. On the contrary, when we have
very few resources the income is decreasing with respect to the workers. In fact,
more workers leads to higher cost which are not compensated by revenue due to the
increasingly high costs of extraction that must be paid as the resources run out and
because of the lack of the available resources themselves. Moreover, since p1 > p2,
we can see that the best strategy is to employ the whole population immediately and
then to extract all the available resource in the �rst period to maximize the income.
Prize p2 is lover than p1 so it is not economically pro�table to leave resources for the
second period. If we consider the parameters of test 2, in which price p1 increase,
we can see (Figure 3.3) that this increasing leads to a higher extraction because the
resource becomes more valuable in the present than in the future.

Figure 3.2: Test 1: The function −u and the graphs of en and Gn.

Figure 3.3: Test 2: The graphs of en and Gn.
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Test 3

A di�erent result is achieved with parameters of test 3, in which prices in the two
periods coincide. In this case, as we can see in Figure 3.4, it is more pro�table to
extract some resource in the �rst period but leaving a part for the second one.

Figure 3.4: Test 3: The graphs of en and Gn.

Tests 4 and 5

In test 4 we note that, unlike the previous two tests, we have p1 < p2. In this case, as
we can see in Figure 3.5, the best strategy is to leave all the resources for the second
period and at the same time to employ all the workers to guarantee the maximum
reelection probability, but at the �nal time to minimize expenditures related to the
wages since the model does not penalize this �opportunistic� strategy.

Figure 3.5: Test 4: The function −u and the graphs of en and Gn.

In test 5 (see Figure 3.6 on the next page) we have the same situation as in test
4, except for the cost of the work W that is higher. In this case the optimal response
is to hire a certain number of workers to guarantee the reelection, but not the whole
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population. Lastly, in both tests we note that the value function u is decreasing with
respect to G, more decreasing in test 5 in which W in higher than in test 4.

Figure 3.6: Test 5: The function −u and the graphs of en and Gn.

Test 6

In this case we are again, as in test 1, in the situation p1 < p2, but now the two prices
are very close and W is higher. So, as we can see in Figure 3.7, the best strategy is
not to extract resources in the �rst period to exploit the slightly higher selling price,
but is to leave them for the second period and hire worker at the end of the �rst one
in order to save salary costs.

Figure 3.7: Test 6: The graphs of en and Gn.

Tests 7 and 8

This case is quite di�erent from the previous. The situation is p1 � p2 and high
labor cost. As we can see in Figure 3.8 on the next page, the value function is
decreasing with respect to the workers G in all the domain except around the region
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0.8 ≤ e,G ≤ 1 in which it is even slightly increasing and the optimal strategy is very
di�erent.

Figure 3.8: Test 7: The function −u.

In fact, as we can see in Figure 3.9, the optimal response when we start from the
default starting point is to employ the whole population and extract all the resources
at the penultimate and last time respectively, to minimize wages expenditures and
to exploit the very higher selling price on the �rst period. But if we start from a
point in that region, for example the point (1, 0.8), the best strategy is, in addition to
maximize the workforce, to extract part of the resource at the beginning of the �rst
period, when the extraction cost is lower and the discount factor is higher and then to
extract the remaining resource at the last time when the increased cost of extraction
is amortized by the devaluation.

Figure 3.9: Test 7: The graphs of en and Gn when we start from (1, 0) on the left
and (1, 0.8) on the right.

Anyway, we want to remark that in the second case, even it seems that in the
period from 3 to 22 there is no extraction, the optimal strategy is instead to extract
a very small amount of resource, as explained in Figure 3.10 on the next page, but
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Figure 3.10: Test 7: The graph of a∗n when we start from (1, 0.8).

we can not see this due to numerical approximation of the calculator.
In test 8 we have the same situation since the parameters are comparable. As we

can see in Figure 3.11, the optimal strategy, even if we start with no workers, is to
hire the whole population then to extract resource during the entire period which, in
this case, is shorter, only 6 time steps.

Figure 3.11: Test 8: The graphs of en and Gn.

3.4.1 Tests without probability factor

We consider, in this last subsection, a situation in which there is no probability factor
in the income of second period, namely by setting Π(G) ≡ 1. This means that the
incumbent makes decisions that maximize the income without taking in account his
own interests, in particular he does not consider his probability to be in power in
the second period. Roughly speaking, we deal with a government in which personal
political interests and common economic interests are completely separated.

If we consider the parameters of test 3, then the optimal strategy is di�erent than
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before. In fact, as we can see in Figure 3.12, the incumbent has no interest to employ
workers to guarantee his reelection, so he prefers to leave all the resource available for
the second period, since the prices are equal, to save salary costs. The same behavior
appears on tests 4, 5 and 6 with the same motivation, while in the other tests there
are no modi�cation on the optimal strategy.

Figure 3.12: Test 3 without reelection probability factor: The graphs of en and Gn.

3.5 Some comments and remarks

To give some conclusion that can be made from the numerical tests, we point out
that in most cases when there is not probability factor we can see an increasing in the
total expected income, intended as the maximum of function −u, as we summarized
in Table 3.2 on the following page. Typically, this maximum increase if there is no
probability factor in the income of second period, while decrease if the incumbent
politician discounts the future stock of resources by the probability he wins power.

In cases 7 and 8, on the contrary, we deal with a combination of prices and
salary cost that leads to a situation in which being in power for a second mandate is
unpro�table. Therefore replace the probability factor with the greater value 1, on an
equal extraction and employment rates as in this case, worsens the situation.

To conclude, we can see that the condition in which there is not probability factor
typically leads to optimal strategies which amount to extract less resources, avoiding
in a certain sense wastes, and to employ less workers for the bene�t of more produc-
tive private sector. Moreover in most cases, except in the �pathological� ones, the
maximum of the value function −u is strictly greater than in the case with a generic
probability factor. This means that, generally, the total income increases with respect
to the strength of institutions, measured by the personal interests of the incumbent
to remain in power.
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Test With probability factor Without probability factor % di�erence

1 89.4021 89.6312 0.2563
2 281.1765 281.2812 0.0372
3 94.7955 96.5512 1.8521
4 167.1259 188.2960 12.6672
5 135.0464 188.2960 39.4306
6 66.7895 89.4406 33.9142
7 326.3555 325.6142 -0.2271
8 1.9271e+03 1.9271e+03 0

Table 3.2: Summary table of maximum of function −u in presence or not of the
probability reelection factor in the tests made.

3.6 Generic dynamics and state constraints imple-

mentation

We recall that assumption (3.2) forces us to choose only maps f that keep the dy-
namics inside the square Q. In this section we want to drop this assumption in order
to consider a more general f and to do this we can use two di�erent approaches.

The �rst approach is a penalty argument. In optimization, two types of penalty
function are commonly used: interior and exterior penalty functions. Considering an
exterior penalty function, as for example in [14], we can take a function ρ̃ ∈ BUC(R2)
such that ρ̃ ≡ 0 in Q and for every ε > 0 there exists δ > 0 such that ρ̃(x) ≥ δ if
dist(x,Q) ≥ ε. Then we can de�ne the running cost

˜̀(x, a) := `(x, a) +
1

ε
ρ̃(x)

and, in analogy with what has been done previously, the cost functional

J̃(x, t, α) :=

t−1∑
n=0

˜̀(yn, an)βn + βtg(yt)

and the value function
ũ(x, t) = inf

α∈A
J̃(x, t, α)

It is quite simple to check that this new value function satis�es the same Dynamic
Programming Principle (3.5) as before, obviously with running cost ˜̀, and the discrete
Bellman equation

ũ(x, t) = inf
a∈A

{
βũ(x+ f(x, a), t− 1) + `(x, a) +

1

ε
ρ̃(x)

}
for x ∈ R2 and t ∈ T or, using the supremum as it is common in the literature,

ũ(x, t) + sup
a∈A
{−βũ(x+ f(x, a), t− 1)− `(x, a)} =

1

ε
ρ̃(x)

which is almost identical to (3.7) except for the term 1
ε ρ̃(x).
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Conversely, using an interior penalty function, we can take a function ρ̄ ∈ BUC(Q)
which is nonnegative and increasing as the constraint boundary ∂Q is approached (see
for example [46] for further details). Then we de�ne the running cost

¯̀(x, a) := `(x, a) + ερ̄(x)

and cost functional J̄ and value function ū in the usual way. It is easy to show that
the value function satis�es the discrete Bellman equation

ū(x, t) = inf
a∈A
{βū(x+ f(x, a), t− 1) + `(x, a) + ερ̄(x)}

for x ∈ Q and t ∈ T .
The second approach is to consider, in order to guarantee that the trajectory never

leaves the domain Q, only the control functions that achieve that requirement. In
particular, as in [23], for every x ∈ Q we de�ne the set

A(x) := {α ∈ A : yn(x, α) ∈ Q ∀n ∈ T0}

and we assume that

(3.17) A(x) 6= ∅

for every x ∈ Q. So the value function for the constrained problem is

u(x, t) := inf
α∈A(x)

J(x, t, α)

One has that the value function u satis�es the Dynamic Programming Principle (3.5)
and it is the unique constrained solution of

u(x, t) = inf
a∈A(x)

{βu(x+ f(x, a), t− 1) + `(x, a)}

for x ∈ Q and t ∈ T in which A(x) := {a ∈ A : x+ f(x, a) ∈ Q}.



Chapter 4

Mean �eld games and oil

production

4.1 An overview on mean �eld games

Mean �eld games theory was developed in 2006 by Lasry and Lions [38, 39, 40], and
independently in the engineering community by Caines, Huang and Malhamé [9, 10],
and it is a branch of game theory. It is therefore a set of concept and mathematical
tools which help to model situations of in�nitely many agents who take decisions in
a context of strategic interactions.

In this framework we consider a huge number of agents, that can be viewed as a
continuum of economic agents, whose are not able to in�uence singularly the strategies
of the other.

Under some assumptions, mean �eld games can be expressed as a coupled system
of two equations, a Kolmogorov-Fokker-Planck equation, evolving forward in time,
that governs the evolution of the density function of the agents, and a Hamilton-
Jacobi-Bellman equation, evolving backward in time, that governs the computation
of the optimal path for each agent. Let us now show how this two equations arise.

In any (quantitative) model there must always be an equation to express the
optimization problem of each agent. Usually this involves one equation for each agent.
If agents are grouped together by similar agent classes, there is one equation for every
class of agents. This equation is generally a Bellman equation, since a large proportion
of optimization problems falls within the framework of dynamic programming. Hence
Hamilton-Jacobi-Bellman equations will be used to compute optimal behaviors.

An equation is also needed to express the group's behavior. When agents are
atomized, the group is represented in the model by a distribution on the state space.
The dynamics of the distribution is governed by a transport equation that can be
called a Kolmogorov-Fokker-Plank equation.

Lastly, this two equations are mutually coupled. In fact in the transport equa-
tion the optimal behaviors of agents occur as data, since it is the in�nite collection
(the continuum) of individual behaviors that it is aggregated and which constitutes
collective behavior. Vice versa in the optimization equation the density of the agents
occur as data, since they choose its own optimal strategy by considering the group's
con�guration.
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4.2 The oil production framework

A fairly typical example of mean �eld game is that of the production of an exhaustible
resource by a continuum of producers. We know from a seminal article by Hotelling
[32], published in 1931, that there is a rent involved in the production of an exhaustible
resource, but it is interesting to examine this in greater depth in a competitive situ-
ation and to understand the dynamics of exhaustion of a scarce resource.

In 2010 Guéant, Larsy and Lions [29] published the �rst model of mean �eld games
applied to this very old and studied question of exploitation of natural resources in
which they consider a large number of oil producers, that can be viewed as companies,
with the only assumption that there is a su�ciently large number of them that one
can think as a continuum.

Each oil producer initially has a reserve, and all the reserves are distributed ac-
cording to an initial density function. The reserve of the generic agent evolves deter-
ministically according to an extraction rate and its target is to maximize an assigned
income functional.

In 2011 the same authors proposed a slightly di�erent model [30] in which the
reserve evolves according to a stochastic di�erential equation. In the following we
present a procedure to rigorously derive the partial di�erential equation that describe
the second model, along with some new results and simple generalizations.

4.3 Model description

We consider a large number of oil producers, which can be viewed as macro stand-
points or oil companies. The only assumptions we make, that characterize the mean
�eld games approach, is that there is a su�ciently large number of agents such that
we can think as a continuum of them, and perfect competition.

Each of these oil producers initially has a certain reserve and we assume that
there reserves are distributed among producers according to an initial distribution
m(0, R) = m0(R). Moreover the reserves will contribute to production q for every
speci�c agent according to the dynamics

(4.1) dR(t) = −q(t)dt+ νR(t)dBt

where the Brownian motion is speci�c to the considered agent and ν is a parameter
representing the uncertainty, due for example to an incorrect measurement of resources
or losses during the extraction process.

Production choices will be made in order to optimize a pro�t criterion (the same
for every agent) of the form

max
q(s)

E
[∫ +∞

0

(p(s)q(s)− C(q(s)))e−rsds

]
such that q(t), R(t) ≥ 0, where che cost function C is quadratic, for example C(q) =
αq + 1

2βq
2 with α, β > 0, and the selling price p(t) is determined according to the

supply/demand equilibrium on the market at each time.
In this regard we model the demand by a function D(t, p) = Weρtp−σ where

Weρt denotes the total wealth, a�ecter by a constant growth rate which models the
economic growth, and σ is a general indicator of the elasticity of substitution between
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oil and any other good. The supply is given instead by the total oil production of all
the agents.

This model can be dealt with in the deterministic case or in the stochastic case,
depending on the value of ν, namely ν = 0 is the deterministic case while ν 6= 0 is
the stochastic one. In the �rst case a solution can be found without the mean �eld
methods, so we focus only on the stochastic case and in the next section we rigorously
derive the mean �eld games equations.

4.4 Mean �eld games equations

The tool to perform a rigorous derivation of equations describing the model is also in
this case the dynamic programming. The �rst step is to de�ne the value function and
to do this we rewrite the problem using the formulation most common in literature.

We consider in fact agents whose aim is to optimize the following pro�t criterion
of the form

min
q(s)

E
[∫ +∞

0

(C(q(s))− p(s)q(s))e−rsds
]

which is simply to minimize the opposite of the quantity considered before.
Indicated with

J(t, R, q) := E
[∫ +∞

t

(C(q(s))− p(s)q(s))e−r(s−t)ds
]

the functional to minimize then we can de�ne the value function

u(t, R) := inf
q(s),s≥t

J(t, R, q)

and illustrate the Dynamic Programming Principle that it satis�es.

Proposition 4.1 (Dynamic Programming Principle). The function u(t, R) veri�es

u(t, R) = inf
q(s),s≥t

E
[∫ τ

t

(C(q(s))− p(s)q(s))e−r(s−t)ds+

+e−r(τ−t)u(τ,R(τ))

](4.2)

for all τ ≥ t.

Proof. We show separately that inequalities ≤ and ≥ hold, starting from the second
one. Consider the equality∫ +∞

t

(C(q(s))− p(s)q(s))e−r(s−t)ds︸ ︷︷ ︸
I

=

∫ τ

t

(C(q(s))− p(s)q(s))e−r(s−t)ds︸ ︷︷ ︸
I1

+

+

∫ +∞

τ

(C(q(s))− p(s)q(s))e−r(s−t)ds

and perform the linear changing of variable z = s − (τ − t) = s − τ + t that is
s = z + τ − t. Then we get

(4.3) I = I1 +

∫ +∞

t

(C(q(z + τ − t))− p(z + τ − t)q(z + τ − t))e−r(z+τ−2t)dz
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By exploiting a well known property of powers we have

e−r(z+τ−2t) = e−r(τ−t)e−r(z−t)

and then (4.3) becomes

I = I1 + e−r(τ−t)
∫ +∞

t

(C(q(z + τ − t))− p(z + τ − t)q(z + τ − t))e−r(z−t)dz

Performing now the inverse change of variable s = z + (τ − t) so z = s− τ + t we get

I = I1 + e−r(τ−t)
∫ +∞

τ

(C(q(s))− p(s)q(s))e−r(s−τ)ds

Taking now the expected value in both sides of last equality and using the linearity
we have

J(t, R, q) = E[I1] + e−r(τ−t)J(τ,R(τ), q) ≥ E[I1] + e−r(τ−t)u(τ,R(τ))

Finally taking the in�mum over q(s) it results

u(t, R) ≥ inf
q(s),s≥t

{
E[I1] + e−r(τ−t)u(τ,R(τ))

}
=

= inf
q(s),s≥t

E

∫ τ

t

(C(q(s))− p(s)q(s))e−r(s−t)ds︸ ︷︷ ︸
I1

+e−r(τ−t)u(τ,R(τ))


Regarding the other inequality we �x ε > 0 and a control q1 such that

(4.4) u(τ,R(τ)) + ε ≥ J(τ,R(τ), q1)

and de�ne the control

q(s) =

{
q(s) t ≤ s ≤ τ
q1(s) s > τ

We have

u(t, R) ≤ J(t, R, q) = E

∫ +∞

t

(C(q(s))− p(s)q(s))e−r(s−t)ds︸ ︷︷ ︸
I2

 =

= E
[∫ τ

t

(C(q(s))− p(s)q(s)))e−r(s−t)ds
]

+

+ E
[∫ +∞

τ

(C(q1(s))− p(s)q1(s))e−r(s−t)ds

]
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We operate the same change of variable used previously z = s− τ + t to obtain

E[I2] = E[I1] + E
[∫ +∞

t

(C(q1(z + τ − t))−

− p(z + τ − t)q1(z + τ − t))e−r(z+τ−2t)dz
]

=

= E[I1] + E
[
e−r(τ−t)

∫ +∞

t

(C(q1(z + τ − t))−

− p(z + τ − t)q1(z + τ − t))e−r(z−t)dz
]

Performing the inverse change of variable s = z + τ − t we get now

E[I2] = E[I1] + E
[
e−r(τ−t)

∫ +∞

τ

(C(q1(s))− p(s)q1(s))e−r(s−τ)ds

]
=

= E[I1] + e−r(τ−t)J(τ,R(τ), q1) ≤
≤ E[I1] + e−r(τ−t)(u(τ,R(τ)) + ε)

where the last inequality was obtained thanks to (4.4). Since q and ε are arbitrary
and the expected value is linear we get the desired inequality by taking the in�mum
in the last one.

By exploiting the dynamic programming approach we can now show in a rigorous
way that the value function satis�es a certain Hamilton-Jacobi-Bellman, noting that
due to the presence of a stochastic term it is a second order equation.

Proposition 4.2. The value function u(t, R) is a viscosity solution of the Hamilton-
Jacobi-Bellman equation

(4.5) − ut −
ν2

2
R2uRR + ru+ sup

q≥0
{pq − C(q) + quR} = 0

Proof. We show that u is simultaneously viscosity subsolution and supersolution,
starting from the �rst one. Let ϕ ∈ C1,2 and (t, R) be a local maximum point of
u− ϕ, namely for some ρ > 0 such that |t− s|, |R− Z| < ρ one has

u(t, R)− ϕ(t, R) ≥ u(s, Z)− ϕ(s, Z)

and so

(4.6) ϕ(t, R)− ϕ(s, Z) ≤ v(t, R)− v(s, Z))

Fix a constant control q(t) ≡ q and let R(t) be the solution of (4.1) with that control,
which has the property that for τ small enough one has |R(τ) − R| < ρ. By taking
(s, Z) = (τ,R(τ)), we have

ϕ(t, R)− ϕ(τ,R(τ)) ≤ v(t, R)− v(τ,R(τ))
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By using the inequality ≤ in the Dynamic Programming Principle (4.2) we have

ϕ(t, R)− ϕ(τ,R(τ)) ≤ E
[∫ τ

t

(C(q)− p(s)q)e−r(s−t)ds+

+(e−r(τ−t) − 1)u(τ,R(τ))

]
We divide both sides by τ − t and pass to the limit as τ → t to obtain

− d

ds
ϕ(s,R(s))

∣∣∣∣
s=t

≤ C(q)− p(t)q − ru(t, R)

Expanding the derivative on the left-hand side by using It	o's formula one has

−ϕt + qϕR −
ν2

2
R2ϕRR − νRϕRdBt ≤ C(q)− pq − ru

We take now the expected value and since dBt has zero mean we get

−ϕt −
ν2

2
R2ϕRR + ru+ pq − C(q) + qϕR ≤ 0

and since q is arbitrary we �nally have

−ϕt −
ν2

2
R2ϕRR + ru+ sup

q≥0
{pq − C(q) + qϕR} ≤ 0

which means that u is a viscosity subsolution. For the second part of the proof let
(t, R) be a local minimum point of u−ϕ then (4.6) holds with the opposite inequality.
For all ε > 0 and τ > t, by the inequality ≥ in the Dynamic Programming Principle
(4.2) there exists a control q̃ depending on ε and τ − t such that

u(t, R) ≥ E
[∫ τ

t

(C(q̃(s))− p(s)q̃(s))e−r(s−t)ds+

+ e−r(τ−t)u(τ, R̃(τ))− (τ − t)ε
]

in which R̃(s) is the solution of the stochastic di�erential equation (4.1) with cor-

responding control q̃(s). Taking (s, Z) = (τ, R̃(τ)) and using the linearity of the
expected value one has

ϕ(t, R)− ϕ(τ, R̃(τ)) ≥ E
[∫ τ

t

(C(q̃(s))− p(s)q̃(s))e−r(s−t)ds
]

+

+ (e−r(τ−t) − 1)u(τ, R̃(τ))− (τ − t)ε
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We now expand the left-hand side of the last inequality. We have

ϕ(t, R)− ϕ(τ, R̃(τ)) = −
∫ τ

t

d

ds
ϕ(s, R̃(s))ds =

=

∫ τ

t

(
− ϕt(s, R̃(s)) + q̃(s)ϕR(s, R̃(s))−

− ν2

2
R̃2(s)ϕRR(s, R̃(s))

)
ds−

∫ τ

t

νR̃(s)ϕR(s, R̃(s))dBs =

=

∫ τ

t

(
− ϕt(s, R̃(s)) + q̃(s)ϕR(s,R)−

− ν2

2
R̃2(s)ϕRR(s, R̃(s))

)
ds−

∫ τ

t

νR̃(s)ϕR(s, R̃(s))dBs+

+ o(τ − t)

where in the last step we used that ϕ ∈ C1,2 and the property that the di�erence
R̃(s)−R(t) with s ∈ [t, τ ] goes to zero as τ − t→ 0. Therefore we have∫ τ

t

(
−ϕt(s, R̃(s)) + q̃(s)ϕR(s,R)− ν2

2
R̃2(s)ϕRR(s, R̃(s))

)
ds−

−
∫ τ

t

νR̃(s)ϕR(s, R̃(s))dBs−

− E
[∫ τ

t

(C(q̃(s))− p(s)q̃(s))e−r(s−t)ds
]

+

+ (1− e−r(τ−t))u(τ, R̃(τ)) ≥
≥ (τ − t)ε+ o(τ − t)

We take now the expected value in both sides and add and subtract the term

E
[∫ τ

t

(p(s)q̃(s)− C(q̃(s)))ds

]
to obtain

E
[∫ τ

t

(p(s)q̃(s)− C(q̃(s)) + q̃(s)ϕR(s,R))ds

]
+

+ E
[∫ τ

t

(
−ϕt(s, R̃(s))− ν2

2
R̃2(s)ϕRR(s, R̃(s))

)
ds

]
−

− E
[∫ τ

t

νR̃(s)ϕR(s, R̃(s))dBs

]
+

+ E
[∫ τ

t

(p(s)q̃(s)− C(q̃(s)))(e−r(s−t) − 1)ds

]
+

+ (1− e−r(τ−t))u(τ, R̃(τ)) ≥
≥ (τ − t)ε+ o(τ − t)

Again we would like to divide by τ − t and let τ to go to t and to do this we note that
the �st integrand is estimated from above by

sup
q≥0
{pq − C(q) + qϕR}
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The second integral becomes a deterministic quantity by taking the expected value,
the third one is zero thanks to a property of It	o's integral since the integrand function
veri�es some suitable hypotheses and the last one is o(τ − t) because pq − C(q) is
bounded if q belongs to a compact interval. Performing the desired operation we get

−ϕt −
ν2

2
R2ϕRR + ru+ sup

q≥0
{pq − C(q) + qϕR} ≥ ε

and since ε is arbitrary the proof that u is a viscosity supersolution is complete.

In the next proposition we show, again in a rigorous way, that the density function
m(t, R) of the reserves is transported by the optimal extraction rate according to a
Kolmogorov-Fokker-Plank equation. The proof basically follows the ideas contained
in [28].

Proposition 4.3. The density function m(t, R) ∈ C1,2 satis�es the Kolmogorov-
Fokker-Planck equation

∂tm+ ∂R(−qm) =
ν2

2
∂2RR(R2m)

Proof. Let f ∈ C2 and R(t) be the solution of the stochastic di�erential equation
(4.1) with a generic control q(t, R) �xed. Using the It	o's formula one has

df(R(t)) =

(
−q(t, R(t))f ′(R(t)) +

ν2

2
R2(t)f ′′(R(t))

)
dt+ νR(t)f ′(R(t))dBt

Taking the expected value with respect to the density m, so the last addend vanishes
because Brownian motion has zero mean, and using the fact that the expected value
of f ′ equals the derivative of the expected value of f we have

∂

∂t

∫
R
f(R)m(t, R)dR =

∫
R
−q(t, R)f ′(R)m(t, R)dR+

ν2

2

∫
R
R2f ′′(R)m(t, R)dR

Performing some integrations by parts at the right-hand side and interchanging the
order of di�erentiation at the left-hand side we obtain∫
R
f(R)mt(t, R)dR =

∫
R
f(R)∂R(q(t, R)m(t, R))dR+

ν2

2

∫
R
f(R)∂RR(R2m(t, R))dR

and since the equality has to be satis�ed for all f we �nally have that

∂tm = ∂R(qm) +
ν2

2
∂2RR(R2m)

which is the thesis.

4.5 Interdependence of equations

Unlike the typical cases in which the interdependence of equations is explicit, namely
in the transport equation the optimal behavior occurs as a data and vice versa, in
this case we deal with a more complicated interdependence.
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First of all m depends on u through the optimal extraction rate. Since the Hamil-
tonian is given by

sup
q≥0
{pq − C(q) + quR}

and since the veri�cation theorems of the next section say that a solution of the
Hamilton-Jacobi-Bellman equation (4.5) is also a solution of the optimization problem,
if we keep considering the quadratic cost introduced before, then the optimal control
is given by

q∗(t, R) =

(
p(t)− α+ ∂Ru(t, R)

β

)+

where q∗(t, R) represents the optimal instantaneous extraction at time t of a producer
with reserve R at this time. So equation (4.5) can be rewritten as

−ut −
ν2

2
R2uRR + ru+

1

2β

(
(p− α+ uR)+

)2
= 0

Moreover there is also a coupling through the price. In fact equation we recall that
price p(t) is determined by a global equilibrium between supply and demand. Since
supply depends on the global production of the agents and then on the distribution of
reserves, it can be seen as the time derivative, with correct sign, of the total reserve,
which is

− d

dt

∫
R
Rm(t, R)dR

So mathematically the equilibrium is achieved when the price is expressed by

p(t) = D(t, ·)−1
(
− d

dt

∫
R
Rm(t, R)dR

)
To conclude this aspect of the model, we can see that the two equations are coupled

thought optimal production and price in a way such that Hamilton-Jacobi-Bellman
equation becomes

−ut −
ν2

2
R2uRR + ru+

1

2β

((
D(t, ·)−1

(
− d

dt

∫
R
Rm(t, R)dR

)
− α+ uR

)+
)2

= 0

while the Kolmogorov-Fokker-Plank equation becomes

∂tm+ ∂R

−(D(t, ·)−1
(
− d
dt

∫
RRm(t, R)dR

)
− α+ ∂Ru(t, R)

β

)+

m

 =

=
ν2

2
∂2RR(R2m)

4.6 Veri�cation theorems

In this section we present two veri�cation theorems for this model, obtained following
the ideas contained in [57]. This theorems say that a solution of the Hamilton-
Jacobi-Bellman equation (4.5) is actually the required value function, and also give a
condition to establish when a control is optimal. The �rst theorem deals with classical
solutions.
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Theorem 4.4 (Veri�cation theorem for classical solutions). Let u ∈ C1,2 be a solution
of the Hamilton-Jacobi-Bellman equation (4.5) Then one has

u(t, R) ≤ J(t, R, q)

Moreover (q∗(·), R∗(·)) is a pair of optimal control and trajectory if and only if

(4.7) − ut(τ,R∗(τ))− ν2

2
(R∗)2(τ)uRR(τ,R∗(τ)) + ru(τ,R∗(τ))+

+ p(τ)q∗(τ)− C(q∗(τ)) + q∗(τ)uR(τ,R∗(τ)) = 0

for all τ ≥ t.

Proof. For all q(·) with corresponding trajectory R(·) one has by It	o's formula

−er(s−t) d
ds

(
e−r(s−t)u(s,R(s))

)
= −er(s−t)

(
− re−r(s−t)u(s,R(s))+

+ e−r(s−t)
(
ut(s,R(s))− q(s)uR(s,R(s)) +

+
ν2

2
R2(s)uRR(s,R(s))+

+ νR(s)uR(s,R(s))dBs

))
=

= ru(s,R(s))− ut(s,R(s)) + q(s)uR(s,R(s))−

− ν2

2
R2(s)uRR(s,R(s))− νR(s)uR(s,R(s))dBs

Since u is a solution the inequality

−ut −
ν2

2
R2uRR+ ru+ pq − C(q) + quR ≤ 0

holds for all q > 0 and therefore, by the previous formula, we have

−er(s−t) d
ds

(
e−r(s−t)u(s,R(s))

)
≤ −p(s)q(s) + C(q(s))− νR(s)uR(s,R(s))dBs

We multiply by −e−r(s−t), take the expectation, integrate in ds from t to +∞ both
sides getting∫ +∞

t

d

ds

(
e−r(s−t)v(s,R(s))

)
ds ≥

∫ +∞

t

(p(s)q(s)− C(q(s)))e−r(s−t)ds

Taking again the expected value and changing sign one has

u(t, R) ≤ J(t, R, q(·)) ∀q(·)
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Now let (q∗(·), R∗(·)) be such that (4.7) holds. One has

u(t, R) = −
∫ +∞

t

d

ds

(
e−r(s−t)u(s,R∗(s))

)
ds =

=

∫ +∞

t

(
−ut(s,R∗(s))−

ν2

2
(R∗)2(s)uRR(s,R∗(s)) +

+ ru(s,R∗(s)) + q∗(s)uR(s,R∗(s))

)
e−r(s−t)ds+

+

∫ +∞

t

−νR∗(s)uR(s,R∗(s))e−r(s−t)dBs

On the right-hand side we add and subtract the quantity∫ +∞

t

(p(s)q∗(s)− C(q∗(s)))e−r(s−t)ds

so the �rst integrand becomes exactly the expression in (4.7) that vanishes for as-
sumption. Then it follows the equality

u(t, R) = −
∫ +∞

t

(p(s)q∗(s)− C(q∗(s)))e−r(s−t)ds+

+

∫ +∞

t

−νR∗(s)uR(s,R∗(s))e−r(s−t)dBs

Taking the expected value we have

u(t, R) = J(t, R, q∗(·))

and therefore the control q∗(·) is the optimal one because it realizes the in�mum.

The second one is instead a veri�cation theorem for viscosity solutions.

Theorem 4.5 (Veri�cation theorem for viscosity solutions). Let u ∈ C be a viscosity
solution of Hamilton-Jacobi-Bellman equation (4.5). Therefore one has

(4.8) u(t, R) ≤ J(t, R, q)

Moreover, �x (t, R) and let (q∗(·), R∗(·)) be a pair of admissible control and trajectory
such that there exists ϕ ∈ C1,2 that veri�es

(4.9) − ϕt(τ,R∗(τ))− ν2

2
(R∗)2(τ)ϕRR(τ,R∗(τ)) + ru(τ,R∗(τ))+

+ p(τ)q∗(τ)− C(q∗(τ)) + q∗(τ)ϕR(τ,R∗(τ)) ≥ 0

and such that (τ,R∗(τ)) is a maximum point of u − ϕ both for every τ ≥ t. Then
(q∗(·), R∗(·)) is a pair of optimal control and trajectory.

Remark 4.6. Since (4.9) does not depend on the value of ϕ at (τ,R∗(τ)) it is not re-
strictive to assume that u and ϕ take the same value at the maximum points (τ,R∗(τ)).
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Proof of Theorem 4.5. The �rst part follows from the uniqueness of solution to equa-
tion (4.5) that holds under standard assumptions. We now prove the second part. By
de�nition of maximum point one has

u(τ + h,R∗(τ + h))− ϕ(τ + h,R∗(τ + h)) ≤ u(τ,R∗(τ))− ϕ(τ,R∗(τ))

that is

u(τ + h,R∗(τ + h))− u(τ,R∗(τ)) ≤ ϕ(τ + h,R∗(τ + h))− ϕ(τ,R∗(τ))

We add both sides the expression(
e−r(τ+h−t) − 1

)
ϕ(τ + h,R∗(τ + h)) +

(
1− e−r(τ−t)

)
ϕ(τ,R∗(τ))

We now perform the calculations separately, starting from the right-hand side. We
have

ϕ(τ + h,R∗(τ + h))− ϕ(τ,R∗(τ))+

+
(
e−r(τ+h−t) − 1

)
ϕ(τ + h,R∗(τ + h)) +

(
1− e−r(τ−t)

)
ϕ(τ,R∗(τ)) =

= e−r(τ+h−t)ϕ(τ + h,R∗(τ + h))− e−r(τ−t)ϕ(τ,R∗(τ)) =

=

∫ τ+h

τ

d

ds

(
e−r(s−t)ϕ(s,R∗(s))

)
ds =

=

∫ τ+h

τ

e−r(s−t)
(
− rϕ(s,R∗(s)) + ϕt(s,R

∗(s))− q∗(s)ϕR(s,R∗(s)) +

+
ν2

2
(R∗)2(s)ϕRR(s,R∗(s))

)
ds+

∫ τ+h

τ

νR∗(s)ϕR(s,R∗(s))e−r(s−t)dBs =

= he−r(τ−t)
(
− rϕ(τ,R∗(τ)) + ϕt(τ,R

∗(τ))− q∗(τ)ϕR(τ,R∗(τ))

+
ν2

2
(R∗)2(τ)ϕRR(τ,R∗(τ))

)
+

∫ τ+h

τ

νR∗(s)ϕR(s,R∗(s))e−r(s−t)dBs + o(h)

where the last equality holds if τ is a Lebesgue point of the integrand. Take the
expected value, divide by h, pass to the limit inferior as h→ 0, add and subtract the
term

(p(τ)q∗(τ)− C(q∗(τ)))e−r(τ−t)

and integrate from t to +∞ in dτ , so the right-hand side is equal to

(4.10)

∫ +∞

t

e−r(τ−t)
(
ϕt(τ,R

∗(τ)) +
ν2

2
(R∗)2(τ)ϕRR(τ,R∗(τ))− rϕ(τ,R∗(τ))−

−p(τ)q∗(τ) + C(q∗(τ))− q∗(τ)ϕR(τ,R∗(τ))

)
dτ+

+

∫ +∞

t

(p(τ)q∗(τ)− C(q∗(τ)))e−r(τ−t)dτ ≤ −J(t, R, q∗)

where the last inequality follows, after taking again the expectation, from Remark
4.6 and inequality (4.9). Consider now the left-hand side and �rst of all note that it
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consists by only deterministic quantities so taking the expected value has no practical
e�ect. One has, again from Remark 4.6,

u(τ + h,R∗(τ + h))− u(τ,R∗(τ))+

+
(
e−r(τ+h−t) − 1

)
ϕ(τ + h,R∗(τ + h)) +

(
1− e−r(τ−t)

)
ϕ(τ,R∗(τ)) =

= e−r(τ+h−t)u(τ + h,R∗(τ + h))− e−r(τ−t)u(τ,R∗(τ))

We divide by h, pass to the superior limit as h→ 0 and integrate from t and +∞ in
dτ obtaining that the right-hand side is equal to

(4.11)

∫ +∞

t

lim sup
h→0

e−r(τ+h−t)u(τ + h,R∗(τ + h))− e−r(τ−t)u(τ,R∗(τ))

h
=

= ert
∫ +∞

t

lim sup
h→0

e−r(τ+h)u(τ + h,R∗(τ + h))− e−rτu(τ,R∗(τ))

h
≥

≥ ert
[
e−rτu(τ,R∗(τ))

]τ=+∞
τ=t

= −u(t, R)

where the inequality follow from Fatou's lemma. Then, combining (4.10) and (4.11)
and changing sign we get

u(t, R) ≥ J(t, R, q∗)

and so, from (4.8), one has
u(t, R) = J(t, R, q∗)

and therefore q∗ is optimal because it realizes the in�mum.

4.7 Possible variations to the model

We conclude the work on this model by presenting some changes that can be made.

4.7.1 Depletion time of resources

In this variation we consider

t0 = t0(t, R, q) := inf {s ≥ t s.t. R(s) = 0}

where R(·) solves the stochastic di�erential equation (4.1). Roughly speaking, t0 is the
�rst time the trajectory R(·; q(·)) hits the given target T = {0}, which corresponds
to the depletion of reserves. The cost to minimize is then

J(t, R, q) := E
∫ t0

t

(C(q(s))− p(s)q(s))e−r(s−t)ds+ e−r(t0−t)g(t0, R(t0))

with some exit cost g if t0 < +∞, or the same as before if t0 = +∞. The value
function is also in this case

u(t, R) = inf
q(s),s≥t

J(t, R, q(s))

We now show the Dynamic Programming Principle and the Hamilton-Jacobi-Bellman
equation satis�ed by this value function.
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Proposition 4.7 (Dynamic Programming Principle). The value function u(t, R) ver-
i�es

u(t, R) = inf
q(s),s≥t

E
[∫ τ∧t0

t

(C(q(s))− p(s)q(s))e−r(s−t)ds +

+ e−r((τ∧t0)−t)u(τ ∧ t0, R(τ ∧ t0))

](4.12)

for all τ ≥ t.

The proof is essentially the same as the proof of Proposition 4.1 and we omit it.

Remark 4.8. Note that (4.12) can be rewritten as

u(t, R) = inf
q(s),s≥t

E
[∫ τ∧t0

t

(C(q(s))− p(s)q(s))e−r(s−t)ds +

+ e−r(τ−t)χ{τ<t0}u(τ,R(τ)) + e−r(t0−t)χ{τ≥t0}g(t0, R(t0))

]
Proposition 4.9. The value function u(t, R) is a viscosity solution of the Hamilton-
Jacobi-Bellman equation

−ut −
ν2

2
R2uRR + ru+ sup

q
{pq − C(q) + quR} = 0 in [0,+∞)× T c

The proof is the same as that of Proposition 4.2 and we omit it.

4.7.2 Introduction of state constraints

The aim of this variation is to force the trajectory to stay in a given set for all time. To
do this we consider two di�erent approaches, in the �rst one we deal with a restriction
over control q(·) while in the second one we introduce a sort of penalization term in
the cost functional.

More precisely, in addition to the obvious restriction 0 ≤ q(·) ≤ q0, i.e. the
quantity of oil extracted is a nonnegative number and it is less or equal to a limit
q0 depending on the extraction technology used, we want to consider the additional
restriction q(s) ≤ R(s), i.e. the quantity extracted can not be greater than the
available reserves.

Following the �rst approach we introduce the set of admissible controls

Qt,R := {q(s) ∈ Q s.t. R(s, q) ≥ 0 ∀s ≥ t}

where R(s, q) is the solution of (4.1). We assume that for every (t, R) we have

Qt,R 6= ∅

The cost functional to minimize is the same but the value function becomes

u(t, R) := inf
q(·)∈Qt,R

E
∫ +∞

t

(C(q(s))− p(s)q(s))e−r(s−t)ds

By standard arguments we can deduce that the value function satis�es the same
Dynamic Programming Principle and Hamilton-Jacobi-Bellman equation as before.
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We derive now a di�erential boundary condition satis�ed by the value function when
a state constraint is imposed. To derive de boundary condition formally assume that
u ∈ C1,2 and q∗ ∈ Qt,R is an optimal control. Then u satis�es

(4.13) − ut −
ν2

2
R2uRR + ru+ sup

q
{pq − C(q) + quR} = 0

in the classical sense and

(4.14) sup
q
{pq − C(q) + quR} = p(t)q∗(t, R)− C(q∗(t, R)) + q∗(t, R)uR(t, R)

We observe now that, for every control, the state constraint imposes

(4.15) − q(t, x) · n(x) ≤ 0

for x = 0, where n(x) is the exterior normal to (0,+∞) at x.

Remark 4.10. In this case, since n(0) = −1 we simply have 0 ≤ q(t, 0) ≤ 0 at x = 0,
which obviously implies q(t, 0) = 0 in according to the fact that we are dealing with a
nonrenewable resource.

For any β ≥ 0 from (4.15) one has

(4.16) p(t)q∗(t, x)− C(q∗(t, x)) + q∗(t, x)vR(t, x) ≤
≤ p(t)q∗(t, x)− C(q∗(t, x)) + q∗(t, x)(vR(t, x) + βn(x))

for x = 0. Note now that for all ϕ ∈ C∞([0,+∞) × [0,+∞)) such that v − ϕ has
a minimum at a boundary point (t, x) ∈ [0,+∞) × {0}, by the Lagrange multiplier
rule we have ϕt(t, x) ≤ vt(t, x), ϕR(t, x) = vR(t, x) + βn(x) for some β ≥ 0 and
ϕRR(t, x) ≤ vRR(t, x). Combining (4.13), (4.14) and (4.16) one has

−ϕt(t, x)− ν2

2
x2ϕRR(t, x) + ru(t, x) + sup

q
{p(t)q − C(q) + qϕR(t, x)} ≥ 0

We can now introduce a new de�nition of viscosity solution in presence of state con-
straints

De�nition 4.11. u ∈ C is a viscosity supersolution of (4.13) in [0,+∞)× [0,+∞) if
the last inequality holds for any ϕ ∈ C1,2(R×R) such that u−ϕ has a local minimum
point at (t, R) ∈ [0,+∞)× [0,+∞)

De�nition 4.12. u ∈ C is a constrained viscosity solution of (4.13) in [0,+∞) ×
[0,+∞) if it is a subsolution in (0,+∞)× (0,+∞) and a supersolution in [0,+∞)×
[0,+∞)

To follow the second approach we consider a penalty term h with the property
that h ≡ 0 on [0,+∞) and

∀ε > 0 ∃δ > 0 such that h(x) ≥ δ if d(x, [0,+∞)) ≥ ε

In other words h is null as soon as the trajectory remains inside [0,+∞) otherwise it
assumes positive values. We now de�ne the cost functional

J(t, R, q) := E
∫ +∞

t

(C(q(s))− p(s)q(s) +
1

ε
h(R(s)))e−r(s−t)ds
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and with few adjustments we can prove that the value function u satis�es the same
dynamic programming principle and the equation

−ut −
ν2

2
R2uRR + ru+ sup

q
{pq − C(q) + quR} =

1

ε
h

in the viscosity sense.
To model the fact that reserves can not be a negative quantity we can use, for

example, the penalization

h(x) := −d2(x, [0,+∞)) =

{
−x2 if x < 0

0 if x ≥ 0

4.7.3 Extraction cost depending on reserves

In this last variation we consider an extraction cost C(q,R) which depends also on
the available reserves. The cost to minimize is then

J(t, R, q) := E
∫ +∞

t

(C(q(t), R(t))− p(t)q(t))e−r(s−t)ds

We have the same value function and Dynamic Programming Principle and also es-
sentially the same equation.

Proposition 4.13. The value function u(t, R) is a viscosity solution of the Hamilton-
Jacobi-Bellman equation

−ut −
ν2

2
R2uRR + ru+ sup

q
{pq − C(q,R) + quR} = 0

The proof is essentially the same as the proof of Proposition 4.5 and we omit it.
A way to model the dependence of the extraction cost from the available reserves is
to consider, for example, a function like

C(q,R) = (αq +
1

2
βq2)

1

Rγ

with γ > 1 which is increasing in R and such that

lim
R→+∞

C(q,R) = 0

for all �xed q > 0 and such that C(0, R) ≡ 0.
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