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Introduction

The L1-lower semicontinuity of the classical functional of the calculus of variations

(1) F (u, Ω) =

∫

Ω

f(x, u,∇u)dx

where Ω is an open bounded subset of RN and u ∈ W 1,1(Ω;RM) with M, N ≥ 1, has been

deeply investigated in the last years, with the aim of providing the minimal assumptions on

the integrand f , that guarantee its L1-lower semicontinuity on W 1,1(Ω;RM), and of finding

an integral representation for its relaxed functional on the space BV (Ω;RM).

The starting point of the studies on this subject, in the scalar case (M = 1), is the

celebrated result due to Serrin. In [45] the author proves that the functional (1) is lower

semicontinuous with respect the L1-topology by assuming that f is continuous in all its

variables, convex in the last variable and by assuming on the integrand one of the following

conditions: f is coercive; f is strictly convex in the gradient variable; the derivatives fx(x, s, ξ),

fξ(x, s, ξ), fxξ(x, s, ξ) exist and are continuous (for further improvements see, among others,

also [18, 20, 23, 33, 36, 37])

A natural extension of the functional F in (1) to the larger space BV (Ω) is given by the
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functional

F(u, Ω) =

∫

Ω

f(x, u,∇u)dx+

∫

Ω

f∞(x, ũ,
Dcu

|Dc(u)|)d|D
cu|+

∫

Ju∩Ω

[ ∫ u+

u−
f∞(x, s, νu)ds

]
dHN−1

(for the precise definition of this functional see Section 1.4). Indeed, in [13] it is proved, by

assuming continuity and coerciveness on the integrand f , that F coincides with the relaxed

functional of F on BV (Ω). Also for this functional there exist several L1-lower semicontinuity

results in the literature. Among others we recall [6, 17, 19, 29, 32] and the reference therein.

In particular, in [19], the authors prove an L1-lower semicontinuity result for the functional

F , by assuming, in the spirit of [36], a W 1,1-dependance of the integrand in the variable

x. Moreover, in that paper no continuity with respect to x is considered and this lack of

regularity is compensated by assuming, on the contrary, the continuity with respect to s.

In the first part of this thesis we are interested in a similar problem. Roughly speaking, in

the same hypothesis of W 1,1 dependance on x as in [19], we prove an L1-lower semicontinuity

result for the functional F , by weakening the regularity assumptions with respect to s, but

assuming continuity with respect to x.

In this direction, after Serrin’s theorem, many authors extended his result by assuming

weaker conditions. We recall, for instance, a classical result due to De Giorgi, Buttazzo and

Dal Maso (see [23]), where they proved that for autonomous functionals the continuity of

s is not necessary in order to obtain the L1-lower semicontinuity of the functional F . A

similar result for the functional F was proven by De Cicco in [17]. In this last paper, the

lower semicontinuity is stated with respect to the weak∗ convergence of BV (Ω), instead of

the L1-convergence. This result was then extended to non autonomous functionals in [16].
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Here, we generalize both the results of De Giorgi, Buttazzo and Dal Maso and of De Cicco,

by proving the lower semicontinuity with respect to the L1-convergence of the functional F

on the space BV (Ω) (see Theorem 3.4). Since we admit also a dependance of the integrand

f on the spatial variable (see hypothesis (3.10)), our result can be compared also with the

lower semicontinuity theorem of Fonseca and Leoni (see [29]), where they assume a lower

semicontinuous dependance of the integrand f in (x, s) together with a strong uniformity

condition with respect to the other variables (see [33] for the consequence of this assumption).

Moreover, we generalize also the lower semicontinuity result of Fusco, Giannetti and Verde

(see [32]), where they assume the continuity of f in all its variables. Finally our result is an

extension of the lower semicontinuity theorem of De Cicco and Leoni (see [20]), since they

deal only with the space W 1,1(Ω).

The main tools for the proof of the lower semicontinuity theorem are a new chain rule

formula (see Theorem 3.1) and an approximation result for convex functions due to De Giorgi.

Moreover, as a consequence of the lower semicontinuity theorem we obtained also a re-

laxation formula; more precisely, if we denote by F the relaxed functional of F in BV (i.e.

the greatest lower semicontinuous functional not greater than F ), we prove that F (u, Ω) =

F(u, Ω) for every u ∈ BV (Ω) (similar result were obtained, among others, in [4, 5, 6, 13, 29]).

This last result has been the key tool in order to prove a Γ-convergence theorem for

a sequence of functionals whose integrals pointwise converge. It generalizes an analogous

theorem proven in [13], since here no continuity with respect to s and no coerciveness condition

are required.
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In the second part of the thesis we focus our attention on the vectorial case (M > 1),

where the situation is much more delicate. In [29], when the integrand f does not depend on

s, Fonseca and Leoni, by assuming the continuity (uniform with respect to ξ) with respect to

x and the quasiconvexity with respect to the variable ξ of the integrand f proved the following

relaxation formula

(2) F (u, Ω) =

∫

Ω

f(x,∇u)dx+

∫

Ω

f∞(x,
Dcu

|Dc(u)|)d|D
cu|+

∫

Ju∩Ω

f∞(x, (u+−u−)⊗νu)dHN−1

(for the precise definition of this functional see Section 1.4). When f depends also on s, the

integral representation formula on the jump set Ju∩Ω is rather complicated. (see Theorem 1.10

of [29]). Therefore we have chosen to restrict ourselves to integrands of the form f = f(x, ξ).

In the same spirit of [4, 5], we assume that, with respect to x, f is an HN−1-a.e. approximately

continuous function, belonging to W 1,1(Ω) and it is convex with respect to the variable ξ.

Under these conditions we state our two L1-lower semicontinuity results: the first one holds

in the space BV (Ω;RM) along sequences equibounded with respect to L∞- norm; the second

one holds along sequences equibounded with respect to L
N

N−1 -norm, but by assuming an extra

summability condition on the weak gradient of f (see hypothesis (4.25) of Theorem 3.2).

We remark that, even if the convexity assumption is not natural in the vectorial setting,

it could be the first step in order to attack the general case of the quasiconvex integrand or

at least the polyconvex case. Moreover the convexity permits to use again the techniques of

the scalar case. Indeed the main tools of the proof of the lower semicontinuity theorem still

are a chain rule formula due to De Cicco, Fusco and Verde (see Theorem 2.1 of [19]) and the

approximation result for convex functions due to De Giorgi.
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The thesis is organized as follows: Chapter 1 is devoted to notations and preliminaries. In

Chapter 2 we present the main problems which will be discussed in the following of the thesis.

In Chapter 3 we consider the scalar case and state the lower semicontinuity theorem, the

relaxation formula and the Γ-convergence result. Finally, in Chapter 4 we address L1-lower

semicontinuity and relaxation results in the vectorial case.

Acknowledgments:

I would like to thank Micol Amar for suggesting me this research work and for her inex-

haustible patience.

I am also deeply grateful to Virginia De Cicco for his precious advices and for many useful

discussions.
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Notation

Throughout the thesis d,M, N ≥ 1 are fixed integers. Ω will be an open bounded set of

RN . If x, y belong to the space Rd we denote by 〈x, y〉Rd or simply 〈x, y〉 the canonical scalar

product between x and y, and by ‖x‖Rd or |x| the norm of Rd. The absolute value of a real

number r is denoted by |r|. If ρ > 0 and x ∈ RN , we set Bρ(x) = {y ∈ RN : ‖y− x‖RN < ρ},

and SN−1 = {y ∈ RN : ‖y‖RN = 1}. For any set F ⊂ RN , we indicate by χ
F

its characteristic

function.

We denote by A(Ω) the family of all open bounded subsets A of Ω and by B(Ω) the σ-

algebra of all Borel subsets of Ω. We denote by M(X;RN) the space of the all RN -valued

finite Radon measures.

Let LN and HN−1 be the Lebesgue and the Hausdorff measure of dimension (N − 1) on

RN , respectively.

If 1 ≤ p ≤ +∞, we denote by Lp(Ω;RM) the vectorial space of all M -tuples f1, ..., fM of

real function in Lp(Ω). The space Lp(Ω;RM) becomes a Banach space if it is endowed with

the norm

‖u‖p :=
( ∫

Ω

|u(x)|pdx
) 1

p , when 1 ≤ p < +∞
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and

‖u‖∞ := esssup|u(x)|, when p = +∞.

Analogously, we say that u ∈ W 1,p(Ω;RM) if u belongs to Lp(Ω;RM) together with its distri-

butional derivatives ∂ui

∂xj
, 1 ≤ i ≤ M , 1 ≤ j ≤ N . The M ×N matrix of these derivatives will

be denoted by ∇u.

We indicate by Ck
0 (Ω), k = 0, ...,∞ the space of all Ck-functions with compact support in

Ω. Finally we denote by D′
(Ω) the space of distributions defined on Ω.
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Chapter 1

Preliminaries

This chapter is devoted to preliminary results which will be useful in the sequel.

1.1 Measure Theory

We start by classical definitions and theorems of measure theory. For a general survey on

measures we refer, among others, to [9].

Definition 1.1 Let (X, Σ) be a measure space and µ : Σ → [0,∞). We say that µ is a positive

measure if µ(∅) = 0 and for any sequence {En} of pairwise disjoints elements of Σ

µ(
∞⋃

n=0

En) =
∞∑

n=0

µ(En).

We say that µ is finite if µ(X) < +∞ and that µ is σ-finite if X is the union of increasing

sequence of sets with finite measures.

Definition 1.2 Let (X, Σ) be a measure space and let N ∈ N, N ≥ 1.

(i) We say that µ : Σ → RN is a measure, if µ(∅) = 0 and for any sequence {En} of pairwise

10



disjoints elements of the σ-algebra Σ

µ(
∞⋃

n=0

En) =
∞∑

n=0

µ(En).

If N = 1 we say that µ is a real measure, if N > 1 we say that µ is a vector measure.

(ii) If µ is a measure, we define its total variation |µ| as follows

∀E ∈ Σ |µ|(E) := sup{
∞∑

n=0

|µ(En)| : En ∈ Σ pairwise disjoints, E =
∞⋃

n=0

En}.

(iii) We say that µ is finite is |µ|(X) < +∞.

It can be proven that the total variation |µ| is a positive measure, more precisely, it is the

smallest positive measure such that |µ|(E) ≥ |µ(E)| for every E ∈ Σ. Clearly, if µ is a

positive measure, then |µ| = µ.

We recall the well known definition of absolute continuous and singular measures.

Definition 1.3 (i) Let µ be a positive measure and ν be a vector measure on the measure

space (X, Σ). We say that ν is absolutely continuous with respect to µ, and write ν << µ,

if for every E ∈ Σ the following implication holds

µ(E) = 0 ⇒ |ν|(E) = 0.

(ii) If µ, ν are positive measures, we say that they are mutually singular measures and write

ν⊥µ, if there exist E, F such that µ(E) = 0, ν(F ) = 0 and µ(G) = µ(G ∩ F ), ν(G) =

ν(G ∩ E) for every G ∈ Σ. If µ and ν are real or vector valued, we say that they are

mutually singular if |µ| and |ν| are so.
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We recall the following classical on a decomposition of a measures.

Theorem 1.1 Let µ be a positive σ-finite measure and ν an RN -valued measure (N ≥ 1).

Then there exists a unique pair of vector measures νa and νs such that νa << µ and ν =

νa + νs. Moreover there exists a unique function f ∈ L1(X;RN) such that νa = fµ, i.e.

νa(E) =
∫

E
fdµ for every E ∈ Σ. The function f will be called the Radon-Nikodym derivative

of ν with respect µ and will be denoted by
ν

µ
.

Remark 1.1 We note that, since each real or vector measure is absolutely continuous with

respect to its total variation, then from Theorem 1.1 it follows that there exists a unique

f ∈ L1(X;RN) such that |f | = 1 and f =
µ

|µ| .

The next result can be found in [38].

Lemma 1.1 Let (X, Σ) be a measurable space. Let µ0, µ1, and µ2 be a σ-finite positive

measures on (X, Σ) such that

µ2 << µ1 and µ1 << µ0.

Then

(i) µ2 << µ0;

(ii)
dµ2

dµ0

=
dµ2

dµ1

dµ1

dµ0

µ0-a.e, where
µi

µj

denotes the Radon-Nikodym derivative of µi with respect

µj

For later use we recall the classical Lusin’s Theorem.
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Lemma 1.2 Let µ be a measure on a locally compact Hausdorff space X and A ⊂ X a µ-

measurable set. Suppose f is a complex measurable function on X, µ(A) < +∞, f(x) = 0 if

x /∈ A, and ε > 0. Then there exists a function g ∈ Cc(X) such that

µ({x : f(x) 6= g(x)}) < ε.

Furthermore, g can be chosen such that

sup
x∈X

|g(x)| ≤ sup
x∈X

|f(x)|.

An important class of measures is the class of Radon measures.

Definition 1.4 Let X be a locally compact and separable metric space and B(X) be the Borel

σ-algebra of X. Consider the measure space (X,B(X)).

(i) A positive measure on (X,B(X)) is a Borel measure.

(ii) A positive measure on each compact subset K of X will be called a positive Radon measure.

If µ is an RN -valued measure defined on all the Borel subset of X s.t. |µ| is a Radon

measure and |µ|(X) < +∞, we say that µ is an RN -valued finite Radon measure. We

denote by M(X;RN) the space of the all RN -valued finite Radon measures.

Finally we recall the notion of weak∗ convergence and strict convergence for Radon mea-

sures. We denote by C0(X) the completion, with respect of the usual norm ‖ϕ‖∞ :=

sup
x∈X

|ϕ(x)|, of the space Cc(X) of real continuous functions with compact support defined

in X.
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Definition 1.5 Let µ and {µn} be RN -valued finite Radon measures.

(i) We say that {µn} weakly∗ converges to µ (and write µn
∗
⇀ µ) if

lim
n→∞

∫

X

ϕdµn =

∫

X

ϕdµ

for every ϕ ∈ C0(X);

(ii) We say that {µn} strictly converges to µ if µn
∗
⇀ µ and

|µn|(X) → |µ|(X).

We conclude this section by recalling the classical lower semicontinuity and continuity theo-

rems due to Reshetnyak (see [9] for a modern proof).

Theorem 1.2 Let f : Ω × RN → [0, +∞) be a lower semicontinuous function, convex and

positively 1-homogenous in the second variable. Then, for every sequence of measures {µn} ⊂

M(Ω;RN) weakly∗ converging to µ ∈M(Ω;RN) we have

lim inf
n→∞

∫

Ω

f(x,
µn

|µn|)d|µn| ≥
∫

Ω

f(x,
µ

|µ|)d|µ|

Theorem 1.3 Let f : Ω × RN → [0, +∞) be a bounded continuous function, positively 1-

homogenous in the second variable. Then, for every sequence of measures {µn} ⊂ M(Ω;RN)

strictly converging to µ ∈M(Ω;RN) we have

lim
n→∞

∫

Ω

f(x,
µn

|µn|)d|µn| =
∫

Ω

f(x,
µ

|µ|)d|µ|.

14



1.2 BV-functions

In this section we recall some basic definitions and well known results on BV (Ω).

Let Ω be an open bounded subset of RN and u ∈ L1(Ω). We say that u ∈ BV (Ω) if its

distributional gradient Du is an RN -valued Radon measure with bounded total variation

|Du| in Ω. Let u ∈ L1(Ω;RM), M ≥ 1; we say that u belongs to the space BV (Ω;RM) if its

components ui ∈ BV (Ω) for every i = 1, ...,M .

The space BV (Ω;RM) endowed with the following norm

‖u‖BV (Ω;RM ) := ‖u‖1 + |Du|(Ω)

is a Banach space.

We recall the notion of weak∗ and strict convergence on BV (Ω)

Definition 1.6 Let u ∈ BV (Ω;RM) and {un} ⊂ BV (Ω;RM). We say that the sequence {un}

weakly∗ converges to u if {un} converges to u in L1(Ω;RM) and the sequence of measures

{Dun} weakly∗ converges to the measure Du.

Definition 1.7 Let u ∈ BV (Ω;RM) and {un} ⊂ BV (Ω;RM). We say that the sequence

{un} strictly converges to u if {un} converges to u in L1(Ω;RM) and the sequence of total

variations {|Dun|(Ω)} converges to |Du|(Ω).

A compactness property holds on the space BV (Ω;RM) as stated by the following theo-

rem.
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Theorem 1.4 Every sequence {un} ⊂ BVloc(Ω;RM) such that ‖un‖BV (A;RM ) ≤ M for every

open A ⊂⊂ Ω admits a subsequence {unk} converging in L1
loc(Ω;RM) to u ∈ BVloc(Ω;RM). If

Ω has a Lipschitz boundary and ‖un‖BV (Ω;RM ) ≤ M , then u ∈ BV (Ω;RM) and the subsequence

{unk} weakly∗ converges to u.

In order to present the canonical decomposition of a BV -function, we give the definition

of approximate continuity, approximate jump points and approximate differentiability.

Let u ∈ L1
loc(Ω;RM). We say that u has an approximate limit in x if there exists ũ(x) ∈ RM

such that

lim
r→0

−
∫

Br(x)

|u(y)− ũ(x)|dy = 0.

The set Cu of all points where u has an approximate limit is a Borel set.

The function ũ : Cu → RM , called precise representative of u, is a Borel function. We say

that u is approximately continuous at x if x ∈ Cu and ũ(x) = u(x).

We say that a point x /∈ Cu is an approximate jump point if there exist u+(x), u−(x) ∈ RM

and νu(x) ∈ SN−1 such that

lim
r→0

−
∫

B+
r (x;νu(x))

|u(y)− u+(x)|dy = 0, lim
r→0

−
∫

B−r (x;νu(x))

|u(y)− u−(x)|dy = 0,

where B+
r (x; νu(x)) = {y ∈ Br(x) : 〈y − x, νu(x)〉 > 0} and B−

r (x; νu(x)) = {y ∈ Br(x) :

〈y − x, νu(x)〉 < 0}. Also the set Ju of all approximate jump points of u is a Borel set and

the function (u+(x), u−(x), νu(x)) : Ju → RM × RM × SN−1 is a Borel function.

Let x ∈ Cu. We say that u is approximately differentiable at x if there exists a matrix
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P ∈ RM×N such that

lim
r→0

−
∫

Br

|u(y)− ũ(x)− P (y − x)|dy = 0.

The matrix P is called the approximate differential at x and it is denoted ∇u(x). The set

Du of all points where u is approximately differentiable is a Borel set and the map ∇u(x) :

Du → RM×N is a Borel map.

We recall that, if u ∈ BV (Ω;RM), we have HN−1(Su) = 0, where Su = Ω \ (Cu ∪ Ju) and we

can split the measure Du in the following way

Du = Dau + Dsu = Dau + Dcu + Dju

where

(1.1) Dau = ∇uLNbDu, Dcu = Dub(Cu \Du), Dju = (u+ − u−)⊗ νuHN−1bJu,

where ∇u ∈ L1(Ω;RM×N), HN−1 denotes the (N − 1)-dimensional Hausdorff measure in RN

and ⊗ denotes the tensor product. (see [9] Proposition 3.92).

We recall that, if S ⊂ RN is countably HN−1-rectificable, then there exist for HN−1 a.e.

x ∈ S the approximate tangent plane to S at x, denoted by πS
x and a unit vector orthogonal to

πS
x , which is called an approximate normal to S νS(x) (see [9], Theorem 2.83). Furthermore

(see [9], Proposition 2.85), if Si ⊂ RN are HN−1-rectificable for every i = 1, ..., M and

S =
M⋂
i=1

Si, then

(1.2) πS
x = πSi

x HN−1 a.e. i = 1, ...M.

Finally we remark that if S = Ju for some function u ∈ BV (Ω;RM), then νJu(x) = ±νu(x).

This, together (1.2), yields the following result:
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Lemma 1.3 Let u ∈ BV (Ω;RM). If x ∈
M⋂
i=1

Jui
, then

νu(x) = ±νui
(x) HN−1 a.e. i = 1, ...M.

In the last part of this section, we restrict our attention to the scalar case; i.e. M = 1.

For every u ∈ BV (Ω) we can define the subgraph of u given by

(1.3) S(u) = {(x, s) ∈ Ω× R : s < u+(x)}.

We recall that S(u) is a set with locally finite perimeter in Ω×R, i.e. χS(u) ∈ BVloc(Ω×R) (see

[41] Theorem 3.2.23). We indicate by α(u) = (α1(u), .., αn+1(u)) the distributional derivative

of χS(u).

For later use we recall the following result.

Proposition 1.1 (see [9], Proposition 3.64) Let u : RN → R and {ϕε} be a mollifying

sequence. Then, if u is approximately continuous at x ∈ RN ,

(ϕε ∗ u)(x) → u(x) for ε → 0.

Moreover, also the following useful result holds true

Proposition 1.2 (see Appendix of [15]) Let u ∈ BV (Ω). Let M ⊂ R such that L1(M) =

0 and let E = Cu ∩ (ũ)−1(M). Then |Du|(E) = 0.

For a general survey on BV -functions see, among others, [9, 26, 27, 34, 46].
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1.3 Preliminary Lemmas

This brief subsection is devoted to state some technical lemmas which will be used often in

the following.

Lemma 1.4 (see [20], Proposition 2.5) Let E be an open subset of RN and G a Borel

subset of Rd. Let g : E ×G → R be a Borel function in L∞loc(E ×G) such that for LN -almost

every x ∈ E the function g(x, ·) is continuous in G. Then there exists a set M ⊂ RN with

LN(M) = 0 such that for every t ∈ G the function g(·, t) is approximately continuous in

E \M .

We recall the following localization lemma due to De Giorgi, Buttazzo and Dal Maso.

Lemma 1.5 (see [23], Lemma 6) Let µ : B(X) → [0,∞] be a Radon measure defined on a

locally compact Haussdorf space X. Consider a sequence {φk} of Borel measurable functions

such that for every k ∈ N φk : X → [0,∞]. Then

∫

X

sup
l

φl dµ = sup
l∈N

{ l∑

k=1

∫

Ak

φk dµ : Ak ⊂ X open and pairwise disjoint
}

.

In the same spirit we recall also this result due to De Cicco.

Lemma 1.6 (see[17], Lemma 7) Let µ be a positive Radon measure on Ω×R and let {fκ}

be a sequence of nonnegative functions of L1(Ω×R; dµ). Set f := sup
κ∈N

fκ ≥ 0. Then for every

open subset A of Ω× R we have

∫

A

fdµ = sup
D

∑
i∈I

∫

A

fκi
(x, s)ϕi(x)ψi(s)dµ,
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where D is the set of all families (κi, ϕi, ψi)i∈I with I finite, κi ∈ N, ϕi ∈ C∞
0 (Ω), ψi ∈ C∞

0 (R),

ϕi ≥ 0, ψi ≥ 0,
∑

i∈I ϕi ⊗ ψi ≤ 1 and supp(ϕi)× supp(ψi) ⊂ A.

1.4 Functionals and their properties

In this section we introduce the functionals, whose properties will be studied in the following.

Let us assume first that f is defined on scalar valued functions. Let f : Ω × R × RN be

a Borel function such that the map ξ → f(x, s, ξ) is convex on RN for every (x, s) ∈ Ω × R.

For every u ∈ BV (Ω) and for every A ∈ A(Ω), we consider the following functionals :

(1.4) F (u,A) =





∫

A

f(x, u,∇u)dx if u ∈ W 1,1(Ω)

+∞ if u ∈ BV (Ω) \W 1,1(Ω);

F(u,A) =

∫

A

f(x, u,∇u)dx +

∫

A

f∞(x, ũ,
Dcu

|Dc(u)|)d|D
cu|

+

∫

Ju∩A

[ ∫ u+

u−
f∞(x, s, νu)ds

]
dHN−1(1.5)

where f∞(x, s, ξ) is the recession function, defined by

f∞(x, s, ξ) = lim
t→+∞

f(x, s, tξ)

t
= sup

t>0

f(x, s, tξ)− f(x, s, 0)

t
.

We note that the previous limit exists for every (x, s, ξ) ∈ Ω×R×RN , since the convexity of

f implies that the map t 7→ f(x,s,tξ)−f(x,s,0)
t

is increasing. We recall that f∞ is Borel function

convex and positively homogenous of degree one with respect to ξ.

We define also

(1.6) f̂(x, s, ξ, t) =

{
f(x, s, ξ

t
)t t > 0,

f∞(x, s, ξ) t = 0.
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It is easy to verify that f̂ is a Borel function and that for each (x, s) ∈ Ω × R the map

(ξ, t) 7→ f̂(x, s, ξ, t) is convex and positively homogeneous of degree one.

We assume, for any Borel function, the following convention:

(1.7) −
∫ b

a

h(t)dt =





1
b−a

∫ b

a

h(t)dt a 6= b,

h(a) a = b.

.

We notice also that, taking into account (1.7), the functional (1.5) can be rewritten as

(1.8) F(u,A) =

∫

A

f(x, u,∇u)dx +

∫

A

[
−
∫ u+

u−
f∞(x, s,

Dsu

|Ds(u)|)ds
]
d|Dsu|.

Finally, let us recall the following lemma, due to Dal Maso, which states that functional F

can be written as an integral over the subgraph of its entry u.

Lemma 1.7 ([13], Lemma 2.2) Let f : Ω×R×RN → [0,∞) be a Borel function such that,

for each (x, s) ∈ Ω× R, the map ξ 7→ f(x, s, ξ) is convex on RN . Then

F(u, Ω) =

∫

Ω×R
f̂(x, s,

α(u)

|α(u)|)d|α(u)|(x, s).

If f is defined on vector valued function, it does not depend on s, i.e. f : Ω×RM×N → [0,∞)

and is quasiconvex with respect to the second variable ξ we consider the following functionals

(1.9) F (u,A) :=





∫

A

f(x,∇u)dx if u ∈ W 1,1(Ω;RM),

+∞ if u ∈ BV (Ω;RM) \W 1,1(Ω;RM),

F(u, A) =

∫

A

f(x,∇u)dx +

∫

A

f∞(x,
Dcu

|Dc(u)|)|D
cu|

+

∫

Ju∩A

f∞(x, (u+ − u−)⊗ νu)dHN−1,(1.10)

for every u ∈ BV (Ω;RM) and for every A ∈ A(Ω).
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If f is quasiconvex f∞, is defined in slightly different way:

f∞(x, ξ) = lim sup
t→+∞

f(x, ξ, t)

t
,

and it turns out to be quasiconvex and positively homogenous of degree one.

Finally the recession function satisfies this useful property.

Proposition 1.3 Let f : Ω× RM×N → [0,∞] be a convex function. Then

f(x, tξ)

t
≤ f∞(x, ξ) +

f(x, 0)

t
.

1.5 Approximation of convex functions

One of the main tool, used in the present thesis, in order to prove the lower semicontinuity

of the functional in (1.5) is an approximation result for convex functions due to De Giorgi.

This result states that any convex function f : Rd → R can be approximated by mean of a

sequence of affine functions aα + 〈bα, ξ〉, where

aα :=

∫

Rd

f(ξ)
(
(d + 1)α(ξ) + 〈∇α(ξ), ξ〉)dξ(1.11)

bα := −
∫

Rd

f(ξ)∇α(ξ)dξ,(1.12)

with α ∈ C1
0(Rd) a nonnegative function such that

∫
Rd α(ξ)dξ = 1. The main feature of this

approximation is that the coefficients aα and bα explicitly depend on f . In particular, when f

depends also on x, s the explicit formulas (1.11) and (1.12) permit to deduce regularity prop-

erties of De Giorgi’s coefficients, from proper hypotheses satisfied by f . We recall therefore

the De Giorgi’s approximation theorem.
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Theorem 1.5 (see [22], Theorem 1) Let f : Rd → R be a convex function and aα, bα be

defined as in (1.11) and (1.12). Then the following properties hold:

(i) f(ξ) ≥ aα + 〈bα, ξ〉 for any ξ ∈ Rd;

(ii) f(ξ) = sup
β∈B

[aβ + 〈bβ, ξ〉] for ξ ∈ Rd,

where B := {β : β(z) := κdα(κ(q − z)), κ ∈ N, q ∈ Qd z ∈ Rd};

(iii) f(ξ) = lim
j→∞

fj(ξ) for any ξ ∈ Rd, where fj(ξ) := sup
i≤j
{aβi

+ 〈bβi
, ξ〉} for any ξ ∈ Rd,

where βi is an ordering of the class B.

1.6 Relaxation and Γ-convergence

Let F be the functional defined in (1.4). For every u ∈ BV (Ω;RM), we can define the relaxed

functional F of F , with respect to the L1-topology, given by

(1.13) F (u, Ω) = inf{lim inf
n→∞

F (un, Ω) : un ∈ W 1,1(Ω;RM), un → u in L1(Ω;RM)}.

We recall that F is the greatest lower semicontinuous functional not greater than F . Moreover

the following characterization holds:

for every u ∈ BV (Ω;RM) and every {un} ∈ W 1,1(Ω;RM), such that un → u strongly in

L1(Ω;RM),

(1.14) F (u, Ω) ≤ lim inf
h→∞

F (un, Ω),
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for every u ∈ BV (Ω;RM) there exists {un} ∈ W 1,1(Ω;RM), such that un → u strongly in

L1(Ω;RM),

(1.15) F (u, Ω) = lim
h→∞

F (un, Ω).

We recall also the definition of Γ−convergence. We say that a sequence {Fn} of the type

(1.4) Γ-converges to a functional F Γ (and we write F Γ := Γ − lim Fn) with respect to the

L1(Ω)-topology, if the following two properties hold:

for every u ∈ BV (Ω;RM) and every {un} ∈ W 1,1(Ω;RM), such that un → u strongly in

L1(Ω;RM),

(1.16) F Γ(u, Ω) ≤ lim inf
n→∞

Fn(un, Ω),

for every u ∈ BV (Ω;RM) there exists {un} ∈ W 1,1(Ω;RM), such that un → u strongly in

L1(Ω;RM),

(1.17) F Γ(u, Ω) = lim
n→∞

Fn(un, Ω).

We recall that F Γ, if it exists, is L1-lower semicontinuous on BV (Ω;RM). Moreover, Γ

convergent is compact, i.e. from every sequence of functionals, it is possible to find a Γ-

convergent subsequence. Finally if Fn ≡ F for every n ∈ N, then F Γ = F .

For further properties of the relaxation and Γ-convergence we refer to [11, 14, 24, 25].
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Chapter 2

Classical and recent theory

This chapter is devoted to a brief history of classical and more recent theory of the L1-lower

semicontinuity and relaxation on BV (Ω;RM). In the following, Ω will be an open bounded

subset of RN , M, N ≥ 1.

2.1 The scalar case

The main problems we will be interested in was inspired by the study of the classical functional

of Calculus of Variations

(2.1) F (u, Ω) =

∫

Ω

f(x, u,∇u)dx. u ∈ W 1,1(Ω).

One of the basic question is to find a suitable extension of this functional which permits

to evaluate it also on singular functions, for instance, those having null gradient almost

everywhere but are being not constant. For example we can consider the functional

H(u, Ω) =

∫

Ω

√
1 + |∇u|2dx,
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that represents the area of the graph of a function u : Ω → R. If we evaluate H on a

piecewise constant function u, we obtain that the area of its graph of u is equals LN(Ω),

which contradicts the fact that u is not constant.

A further difficulty in this kind of problem is the failure of the Direct Methods of the

Calculus of Variations. Indeed, even if the functional (2.1) were lower semicontinuous with

respect to the L1-topology, i.e. the following inequality holds

(2.2) F (u, Ω) ≤ lim inf
n→∞

F (un, Ω) ∀un, u ∈ W 1,1(Ω), un → u in L1(Ω),

the lack of reflexivity of the space W 1,1(Ω) (which does not ensure anymore the compactness

of the minimizing sequence) does not permit to apply the Direct Methods of the Calculus of

Variations in order to find the minima of the functional in (2.1). Therefore it is necessary

to extend the functional F to a proper larger space, in which we may have its meaningful

definition and the compactness of minimizing sequences. In this context the natural candidate

to play this role is the space BV (Ω) of the functions of bounded variation. Indeed, as already

seen in Theorem 1.4, from a bounded sequence in BV (Ω) it is possible to extract a subsequence

which converges, with respect to the L1-topology, to a function still belonging to BV (Ω). This

leads to extend the functional in (2.1) as in (1.4) so that

inf
W 1,1(Ω)

F (u, Ω) = inf
BV (Ω)

F (u, Ω).

Unfortunately, there is no hope that this new functional is L1-lower semicontinuous, since

W 1,1(Ω) is dense in BV (Ω) with respect to the L1-topology.

In order to avoid this obstacle we can introduce the relaxed functional of (1.4), as defined
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in (1.13) with M = 1.

Firstly we would understand if this new functional is a ”good extension” of F , namely if

the following equality:

(2.3) F (u, Ω) = F (u, Ω) ∀u ∈ W 1,1(Ω)

holds.

The validity of (2.3) is equivalent to prove the L1-lower semicontinuity of the functional in

(2.1). Indeed, if it is lower semicontinuous, (2.3) follows immediately since, by recalling (1.15),

we get F ≤ F and the opposite inequality F ≥ F holds for every u ∈ W 1,1(Ω).

The problem of providing sufficient conditions to ensure L1-lower semicontinuity of the

functional in (2.1) is known in the literature as the Serrin’s problem. We present here its

classical formulation.

Let f : Ω× R× RN → [0,∞) be such that

(2.4)

{
(i) f(x, s, ·) is convex for all (x, s) ∈ Ω× R;

(ii) f ∈ C0(Ω× R× RN).

Even if it could seem reasonable that, under hypothesis (2.4), the functional F were lower

semicontinuous with respect to the L1-topology, it is well known that, under hypothesis (2.4),

this is not true, as shown by a celebrated counterexample due to Aronszaj’n ([44]).

Sufficient conditions so that (2.2) holds are provided by the following theorem due to

Serrin.

Theorem 2.1 (see [45], Theorem 12) Let f : Ω×R×RN → [0,∞) be a function satisfying
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(2.4). Assume also at least one of the following conditions holds:





(i) f(x, s, ·) is strictly convex for all (x, s) ∈ Ω× R;

(ii) lim
|ξ|→∞

f(x, s, ξ) = +∞;

(iii) the functions ∇xf,∇ξf,∇x∇ξf exists and are continuous in Ω× R× RN

Then F is lower semicontinuous on W 1,1(Ω) with respect to the L1-topology.

However the problem of understanding if the relaxed functional admits on BV (Ω) an integral

representation is left open by the previous Theorem. The first result in this direction is due

to Goffmann and Serrin .

Theorem 2.2 (see [35],Theorem 5) Let f : RN → [0,∞) be a convex function then

(2.5) F (u, Ω) =

∫

Ω

f(∇u)dx +

∫

Ω

f∞(
Dsu

|Dsu|)d|D
su| ∀u ∈ BV (Ω),

where, as usual, Dsu stands for the singular part of the measure Du, while f∞ is the recession

function of f given by f∞(ξ) := lim
t→∞

f(tξ)

t
.

Previous result states that in order to extend the functional F to the space BV (Ω), it is

necessary to take into account the vertical variations of u, represented by the singular part of

the measure Du. It is, in some sense, not surprising that this process happens by means of

the recession function f∞, which describes the behavior of f at ∞.

Concerning the general case, in which the integrand f depends also on s and ξ, we may

conjecture that, under suitable hypotheses on f , we still have a representation formula of the

type (2.5). Precisely the expected formula is

(2.6) F (u, Ω) = F(u, Ω) ∀u ∈ BV (Ω),
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where the functional F is defined in (1.5).

Clearly, the validity of (2.6) implies that F must be L1-lower semicontinuous on BV (Ω).

On the contrary, if F is L1-lower semicontinuous on BV (Ω), recalling that F is the greatest

L1-lower semicontinuous functional not greater than F , we get the inequality F ≤ F .

A first result in this direction is due to Dal Maso (see [13]), who states the validity of this

formula (2.6) by means of two theorems. In the first one the author provides the inequality

F ≤ F , by proving that the functional (1.5) is L1-lower semicontinuous on BV (Ω). In the

second one, the opposite inequality F ≥ F is obtained.

Theorem 2.3 (see [13], Theorem 3.1) Let f : Ω× R× RN → [0,∞) be a locally bounded

Borel function such that

(2.7)





(i) f(x, s, ·) is convex on RN for every (x, s) ∈ Ω× R;

(ii) there exists a Borel subset B ⊂ Ω× R, with HN((Ω× R) \B) = 0,

such that f is lower semicontinuous on B × RN

(iii) there exists a constant λ > 0 such that

f(x, s, ξ) ≥ λ|ξ| for all (x, s, ξ) ∈ Ω× R× RN .

Then the functional (1.5) is lower semicontinuous on BV (Ω) with respect to the L1-topology,

i.e.

(2.8) F(u, Ω) ≤ lim inf
n→∞

F(un, Ω) ∀u, un ∈ BV (Ω) un → u in L1(Ω).

Proof.

We give a sketch of the proof. For more details we remaind the interested reader to the

original proof of Dal Maso.
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It is possible to show, by (ii) and the local boundeness of f , that f̂ (defined in (1.6)) is lower

semicontinuous on B × Ω× RN . We want to prove (2.8), when

(2.9) lim inf
n→+∞

F(un, Ω) < +∞,

otherwise the conclusion is trivial. Suppose that {un}n∈N ⊂ BV (Ω) and u → u in L1(Ω).

Thanks to (2.9) and (iii) one can show that the sequence {α(un)} of the derivative mea-

sures of the characteristic functions of the graphs of S(un) weakly∗ converges in the sense

measures to the derivative measure of the characteristic function α(u) of S(u). By (1.8) and

Lemma 1.7 we have

F(un, Ω) =

∫

Ω×R
f̂(x, s,

α(un)

|α(un)|)d|α(un)|(x, s),

and

F(u, Ω) =

∫

Ω×R
f̂(x, s,

α(u)

|α(u)|)d|α(u)|(x, s).

Then, since f̂ is lower semicontinuous, convex and positively 1-homogenous in the last vari-

able, the thesis follows by Theorem 1.2. ¥
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Theorem 2.4 (see [13], Theorem 3.2) Let f : Ω × R × RN → [0,∞) be a Borel function

such that

(2.10)





(i) f(x, s, ·) is convex on RN for every (x, s) ∈ Ω× R;

(ii) for HN − a.e. (x0, s0) and for every ε > 0 there exists δ > 0 such that

|f(x, s, ξ)− f(x0, s0, ξ)| ≤ ε(1 + |ξ|)
for all (x, s) ∈ Ω× R with |x− x0|+ |s− s0| < δ and for all ξ ∈ RN ;

(iii) there exists a constant Λ > 0 such that

f(x, s, ξ) ≤ λ(1 + |ξ|) for all (x, s, ξ) ∈ Ω× R× RN .

Then

F(u, Ω) ≥ F (u, Ω) ∀u ∈ BV (Ω).

Proof.

The proof is based on an application of Theorem 1.3. We give a sketch. Firstly, one assume

u ∈ BV (Ω)∩L∞(Ω). By a standard regularization argument one constructs a sequence {un} ⊂

W 1,1(Ω) ∩ L∞(Ω) converging to u such that ‖un‖∞ ≤ ‖u‖∞. Moreover, by standard measure

theory arguments the sequence {α(un)} strictly converges on Ω× R to α(u). The continuity

requirement (ii) implies the continuity on R×RN of the map (x0, s0, ξ, t) 7→ f̂(x0, s0, ξ, t), so

that by using Lemma 1.7 and Theorem 1.3, we get

F (u) ≥ lim inf
n→∞

F (un, Ω) = lim
n→∞

F(un, Ω) =

∫

Ω×R
f̂(x, s,

α(un)

|α(un)|)d|α(un)|(x, s)(2.11)

=

∫

Ω×R
f̂(x, s,

α(u)

|α(u)|)d|α(u)|(x, s) = F(u, Ω),

for every u ∈ BV (Ω) ∩ L∞(Ω). Finally one obtain the inequality F ≥ F on the whole space

BV (Ω) by a standard truncation argument. ¥

31



2.1.1 Lack of coercivity

It is worth while to notice that, in the Serrin’s Theorem, the coercivity assumption seems not

to be a necessary condition in order to obtain lower semicontinuity of the functional (2.1).

Therefore one of the main purpose of recent studies on lower semicontinuity and relaxation on

BV (Ω) is to understand if, without coercivity assumption, the representation formula (2.6)

still holds. In this direction, very recent developments are due to Fonseca and Leoni. In

[29] they prove, by using a blow up method introduced by Fonseca and Muller (see [30, 31]),

that, if one removes the coercivity assumption, formula (2.6) continues to hold under suitable

uniform continuity (with respect to ξ) of the integrand f(·, ·, ξ).

More precisely, in what follows f : Ω×R×RN → [0, +∞) is a Borel nonnegative function,

convex with respect to the last variable satisfying the further following condition: for every

(x0, s0) ∈ Ω× R and ε > 0 there exists δ > 0 such that

(2.12) f(x0, s0, ξ)− f(x, s, ξ) ≤ ε(1 + f(x, s, ξ))

for every (x, s) ∈ Ω× R such that |x− x0|+ |s− s0| ≤ δ and for every ξ ∈ RN .

The goal is to get the lower bound F(u, Ω) ≤ F (u, Ω) for every u ∈ BV (Ω). To this end,

it is enough to show

(2.13) F(u, Ω) ≤ lim inf
n→∞

F (un, Ω) ∀{un} ⊂ W 1,1(Ω), ∀u ∈ BV (Ω) un → u in L1(Ω).

The validity of (2.13) is stated by the next theorem.

Theorem 2.5 (see [29], Theorem 1.1) Let f : Ω × R × RN → [0,∞) be as stated before.

Then (2.13) holds.
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To achieve the relaxation formula the next step is to state the upper bound: F (u, Ω) ≤ F(u, Ω)

for all u ∈ BV (Ω). This is proved in the next theorem still due to Fonseca and Leoni.

Theorem 2.6 (see [29], Theorem 1.3) Let f : Ω × R × RN → [0,∞) be a Borel function

convex with respect to ξ. Let Λ > 0 be such that

(2.14) 0 ≤ f(x, s, ξ) ≤ Λ(1 + |ξ|) ∀(x, s, ξ) ∈ Ω× R× RN .

Then the following properties hold

(i) if f is Carathèodory or f(·, ·, ξ) is upper semicontinuous, then F (u, Ω \ (Cu

⋃
Ju)) ≤

∫

Ω

f(x, u,∇u)dx;

(ii) if f∞(·, ·, ξ) is upper semicontinuous then F (u,Cu) ≤
∫

Ω

f∞(x, u,
Dcu

|Dcu|)d|D
cu|

(iii) if f∞(·, s, ξ) is upper semicontinuous then

F (u, Ju) ≤
∫

Ju∩Ω

( ∫ u+

u−
f∞(x, s, (u+ − u−)νu)ds

)
dHN−1.

2.1.2 Lower semicontinuity and summability conditions

A different approach of the study of L1-lower semicontinuity without coerciveness is intro-

duced in the paper of Gori Maggi and Marcellini (see [36]). Roughly speaking, the authors

show that, in order to prove L1-lower semicontinuity of the functional F in (2.1), it is possible

to replace the classical continuity and coerciveness assumption with the weak differentiability

of f with respect to x (for further improvements see, among others, also [18, 20, 33]). The

result of Gori, Maggi and Marcellini suggests that a similar L1-lower semicontinuity result can
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be obtained also for the functional F in (1.5), which is the BV -counterpart of the functional

F in (2.1). As we have seen before, the L1-lower semicontinuity of F implies the lower bound

F ≤ F , which is a crucial step in order to prove the integral representation of F . A first

result in this spirit is due to Fusco, Giannetti and Verde (see [32]). They prove the L1-lower

semicontinuity of F , by assuming the continuity of the integrand f in all its variables and a

weak differentiability condition of Gori-Maggi-Marcellini’s type, i.e.

(2.15)





(i) f(·, s, ξ) ∈ W 1,1(Ω) ∀(s, ξ) ∈ R× RN and

(ii) for every bounded set B ⊂ R× RN , there exists a constant L(B)

such that

∫

Ω

|∇xf(x, s, ξ)|dx ≤ L(B) ∀(s, ξ) ∈ B.

More precisely, Fusco, Giannetti and Verde state the following result.

Theorem 2.7 (see [32], Theorem 1.1) Let f : Ω × R × RN → [0, +∞) be a continuous

function, convex with respect to the last variable and and satisfying (2.15). Then the functional

F is lower semicontinuous on BV (Ω) with respect to the L1-topology.

A crucial tool in the proof of the previous theorem is a chain rule formula.

Proposition 2.1 (see [19], Lemma 2.4) Let b : Ω×RN → R be a continuous function with

compact support satisfying the following properties:

(i) b(·, s) ∈ W 1,1(Ω) for every s ∈ R,

(ii) there exists a constant L, such that for every s ∈ R,

∫

Ω

|∇xb(x, s)|dx ≤ L.
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Then for every ϕ ∈ C1
0(Ω) and for every u ∈ BV (Ω) ∩ L∞(Ω) we have:

−
∫

Ω

( ∫ u(x)

0

b(x, s)ds
)
∇ϕdx =

∫

Ω

b(x, u)ϕ∇udx

(2.16)

+

∫

Ω

(
−
∫ u+

u−
b(x, s)ds

)
ϕdDsu +

∫

Ω

( ∫ u(x)

0

∇xb(x, s)ds
)
ϕdx.

The use of this chain rule in the proof of Theorem 2.7 suggests that in order to improve

Theorem 2.7 itself, an improvement of the chain rule is needed. This has been done by De

Cicco, Fusco and Verde. In [18, 19] they prove the chain rule formula (2.16) by removing the

continuity assumption with respect to x. This leads to obtain a better lower semicontinuity

result, in which the continuity of the integrand f with respect to x is not required.

Theorem 2.8 (see [19], Theorem 1.1) Let f : Ω× R× RN → [0,∞) be a locally bounded

Borel function. Assume that there exists a set Z ⊂ Ω with LN(Z) = 0 such that

(i) f(x, s, ·) is convex in RN for every (x, s) ∈ (Ω \ Z)× R;

(ii) f(x, ·, ξ) is continuous in R for every (x, ξ) ∈ (Ω \ Z)× RN ;

(iii) f(·, s, ξ) ∈ W 1,1(Ω) for every (s, ξ) ∈ R× RN and the estimate (2.15) holds.

Then the functional F is lower semicontinuous on BV (Ω) with respect to the L1-topology.
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2.2 The vectorial case

We now turn our attention to the vectorial case and consider the integrand f : Ω × RM ×

RM×N → [0,∞) and the corresponding integral functional

(2.17) F (u, Ω) =

∫

Ω

f(x, u,∇u)dx, u ∈ W 1,1(Ω;RM).

One of the main differences of the vectorial case with respect to the scalar one, is that the

convexity assumption is not more the natural assumption in order to study the lower semi-

continuity of the functional F defined in (2.17). It is well known (see [12] on this argument)

that the quasiconvexity introduced by Morrey (see [42, 43]) is the appropriate condition to

deal with functionals defined on vector valued functions. This last fact implies that many of

the techniques available in convex analysis for the scalar case, could not be easily extended

to the vectorial case.

An important contribution in the quasiconvex setting is due to Acerbi and Fusco. In [1]

the authors proved the lower semicontinuity, with respect to the W 1,1-weak topology, of the

functional defined in (2.17), by assuming that the integrand f is Carathéodory, quasiconvex

with respect to ξ and growths at most linearly. Another crucial step in the history of the

vectorial case is due to Ambrosio and Dal Maso ([8]). In that paper it was proven that, if

the integrand f depends only on the variable ξ, is quasiconvex and growths at most linearly,

then the relaxed functional of F with respect to the L1-topology, is given by

F (u, Ω) =

∫

Ω

f(∇u)dx +

∫

Ω

f∞(
Dsu

|Dsu|)d|D
su| ∀u ∈ BV (Ω;RM),

according to the scalar case.
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A generalization of this result was provided by Amar and De Cicco, in [3], where they

have considered functionals depending on higher order derivatives. Another generalization

of the result of Ambrosio and Dal Maso was proved by Fonseca and Muller in [31], where

the authors considered integrands depending on the full set of variables. More precisely their

result, in the special case of integrand independent of s, is the following

Theorem 2.9 (see [31], Theorem 2.16) Let f : Ω×RM×N → [0,∞) be a continuous func-

tion, quasiconvex in the last variable, satisfying the following hypotheses:

(i) there exist a constants λ, Λ > 0 such that

λ|ξ| ≤ f(x, ξ) ≤ Λ|ξ|

for all (x, ξ) ∈ Ω× RM×N ;

(ii) for every compact K ⊂⊂ Ω there exists a continuous function ω with ω(0) = 0 such that

|f(x, ξ)− f(x′, ξ)| ≤ ω(|x− x′|)(1 + |ξ|)

for all (x, ξ), (x′, ξ) ∈ K × RM×N . In addition, for every x0 and for all ε ≥ 0 there

exists δ > 0 such that if |x− x0| ≤ δ, then

f(x, ξ)− f(x0, ξ) ≥ −ε

for every ξ ∈ RM×N ;

(iii) there exist Λ′, 0 ≤ m ≤ 1 such that

|f∞(x, ξ)− f(x, ξ)| ≤ Λ′(1 + |ξ|1−m)
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for every (x, ξ) ∈ Ω× RM×N .

Then

F (u, Ω) =

∫

Ω

f(x,∇u)dx +

∫

Ω

f∞(x,
Dcu

|Dc(u)|)d|D
cu|

+

∫

Ju∩Ω

f∞(x, (u+ − u−)⊗ νu)dHN−1.(2.18)

More recently Fonseca and Leoni proved that formula (2.18) holds without coerciveness.

This is obtained by assuming a uniform (with respect to ξ), continuity condition of the

integrand f(·, ξ), as stated in the following theorem (see [29], Theorem 1.7 and 1.9).

Theorem 2.10 Let f : Ω × RM×N → [0,∞) be Borel function, quasiconvex in the second

variable, such that:

(i) there exists a constant Λ > 0 such that

0 ≤ f(x, ξ) ≤ Λ(1 + ξ);

(ii) for all x0 ∈ Ω and ε > 0 there exists a δ > 0, such that

f(x0, ξ)− f(x, ξ) ≤ ε(1 + f(x, ξ))

for all x ∈ Ω with |x− x0| ≤ δ and for all ξ ∈ RM×N ;

(iii) f(·, ξ), f∞(·, ξ) are upper semicontinuous functions in Ω for all ξ ∈ RM×N .

Then, for all u ∈ BV (Ω;RM),

F (u, Ω) =

∫

Ω

f(x,∇u)dx +

∫

Ω

f∞(x,
Dcu

|Dc(u)|)d|D
cu|+

∫

Ju∩Ω

f∞(x, (u+ − u−)⊗ νu)dHN−1.
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An important tool which widely used in all the these relaxation results is the blow-up method

introduced by Fonseca and Muller (see [30, 31]) and a result by Alberti (see [2]), showing that

the density of the cantor part of BV -vector valued function is a rank one matrix.
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Chapter 3

The scalar case

In this chapter1 we prove a new L1-lower semicontinuity result for the functional F in (1.5),

by weakening the regularity assumptions with respect to s, but assuming the continuity with

respect to x.

As already pointed out in the introduction the main tools of the proof of the lower semi-

continuity theorem are a new chain rule formula (see Theorem 3.1) together with De Giorgi

approximation result (see Theorem 1.5).

As an application of this result, we obtain the relaxation formula (2.6) and a Γ-convergence

theorem for a sequence of functionals whose integrals pointwise converge. In the following Ω

will be an open bounded subset of RN , N ≥ 1.

3.1 Chain rule

In this section we improve both the chain rule of [20] and of [32]. Indeed, with respect to [20]

we replace the Sobolev space W 1,1(Ω) with the space BV (Ω), while with respect to [32] we

1All the results of this chapter are contained in [39]
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do not require any continuity assumption with respect to s.

Theorem 3.1 Let b : Ω×R→ R be a bounded Borel function with compact support in Ω×R,

satisfying the following properties

(i) b(·, s) ∈ W 1,1(Ω) ∩ C(Ω) for almost every s ∈ R,

(ii) ∇xb ∈ L1(Ω× R).

Then for every ϕ ∈ C1
0(Ω) and for every u ∈ BV (Ω) ∩ L∞(Ω) we have:

−
∫

Ω

( ∫ u(x)

0

b(x, s)ds
)
∇ϕdx =

∫

Ω

b(x, u)ϕ∇udx

(3.1)

+

∫

Ω

(
−
∫ u+

u−
b(x, s)ds

)
ϕdDsu +

∫

Ω

( ∫ u(x)

0

∇xb(x, s)ds
)
ϕdx.

Proof.

Let {ψδ}δ>0 be a mollifying sequence in R. Let us define bδ(x, s) =
∫
R ψδ(s − t)b(x, t)dt.

We claim that, for every δ > 0, bδ(x, s) is a continuous function in Ω × R. In order to

prove this, we notice the following properties: for every δ ∈ R, the function ψδ(· − t)b(·, t)

is continuous in Ω for almost every t ∈ R thanks to the hypothesis (i) and to the regularity

properties of mollifiers. Furthermore, since b has compact support, there exist two compact

sets K ⊂ Ω and Λ ⊂ R such that the support of b is contained in K × Λ and the support

of the function b(x, ·) is contained in Λ for every x ∈ K. Hence we have that, for almost

every s ∈ R, |ψδ(s − t)b(x, t)| ≤ ‖b‖∞‖ψδ‖∞χΛ(t) ∈ L1(R). It follows, by the dominated

convergence theorem, that bδ(x, s) is continuous in Ω×R. Let us show that, for every δ > 0,
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bδ(·, s) ∈ W 1,1(Ω) for every s ∈ R. Indeed using Tonelli’s theorem we get:

∫

Ω

|bδ(x, s)|dx ≤
∫

Ω

dx

∫

R
|ψδ(s− t)b(x, t)|dt =

∫

Ω×R
|ψδ(s− t)||b(x, t)|dxdt

=

∫

K×Λ

|ψδ(s− t)||b(x, t)|dxdt ≤ LN(K)‖b‖∞
∫

R
|ψδ(s− t)|dt ≤ C,

so that bδ(·, s) ∈ L1(Ω) for every s ∈ R. Furthermore the following equality holds in the weak

sense for almost every x ∈ Ω and for every s ∈ R,

(3.2) ∇x(

∫

R
ψδ(s− t)b(x, t)dt) =

∫

R
ψδ(s− t)∇xb(x, t)dt.

In fact, let S be the set of t ∈ R such that b(·, t) /∈ W 1,1(Ω). By hypothesis (i), L1(S) = 0.

Multiplying by ϕ ∈ C1
0(Ω;RN) the righthand side of (3.2), integrating over Ω, and applying

Fubini’s theorem (taking into account hypothesis (ii)), we get

∫

Ω

ϕdx

∫

R
ψδ(s− t)∇xb(x, t)dt = −

∫

R\S
ψδ(s− t)dt

∫

Ω

b(x, t)divxϕ

= −
∫

Ω

divxϕdx

∫

R
ψδ(s− t)b(x, t)dt

and (3.2) is proved.

It remains to show that ∇xbδ(·, s) ∈ L1(Ω) uniformly with respect to s ∈ R. From (3.2) and

hypothesis (ii) we have:

∫

Ω

|∇xbδ(x, s)|dx ≤
∫

Ω

dx

∫

R\ S

|ψδ(s− t)||∇xb(x, t)|dt

=

∫

R\S
ψδ(s− t)dt

∫

Ω

|∇xb(x, t)|dx ≤ ‖ψδ‖∞
∫

Ω×R
|∇xb(x, t)|dxdt ≤ C.

42



This implies that bδ(x, s) satisfies all the hypotheses of Lemma 2.4 of [32] and so (3.1) holds

for bδ(x, s), i.e.

−
∫

Ω

( ∫ u(x)

0

bδ(x, s)ds
)
∇ϕdx =

∫

Ω

bδ(x, u)ϕ∇udx

(3.3)

+

∫

Ω

(
−
∫ u+

u−
bδ(x, s)ds

)
ϕdDsu +

∫

Ω

( ∫ u(x)

0

∇xbδ(x, s)ds
)
ϕdx,

for every ϕ ∈ C1
0(Ω). Now we pass to the limit as δ → 0.

Let us consider the first term in (3.3). We remark that bδ(x, s) is continuous in Ω × R

and there exists M ⊂ R with L1(M) = 0, such that by Lemma 1.4, b(x, ·) is approximately

continuous in R \M for every x ∈ Ω. Then, by Proposition 1.1, bδ(x, s) → b(x, s) for every

x ∈ Ω and every s ∈ R \M . It is not difficult to prove that

∣∣∣
∫

Ω

( ∫ u(x)

0

bδ(x, s)ds
)
∇ϕdx−

∫

Ω

( ∫ u(x)

0

b(x, s)ds
)
∇ϕdx

∣∣∣

≤
∫

Ω

( ∫

R\M
χ[0,u(x)]|bδ(x, s)− b(x, s)|ds

)
|∇ϕ|dx → 0,

since

(3.4) χ[0,u]|bδ(x, s)− b(x, s)||∇ϕ| ≤ (‖bδ‖∞ + ‖b‖∞)|∇ϕ|χH ≤ 2‖b‖∞|∇ϕ|χH ∈ L1(Ω× R),

for a proper compact set H ⊂ Ω× R and independent of δ.

Let us consider the second term of (3.3). As we have already remarked bδ(x, s) → b(x, s)

for every x ∈ Ω and every s ∈ R \M . Moreover, reasoning as in (3.4), it follows

(3.5) |bδ(x, s)− b(x, s)||ϕ‖∇u| ≤ 2‖b‖∞|ϕ||∇u| ∈ L1(Ω),
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for every δ > 0.

Hence by Proposition 1.2, we get

∣∣∣
∫

Ω

bδ(x, u)ϕ∇udx−
∫

Ω

b(x, u)ϕ∇udx
∣∣∣ =

∣∣∣
∫

Ω\(ũ)−1(M)

bδ(x, u)ϕ∇udx−
∫

Ω\(ũ)−1(M)

b(x, u)ϕ∇udx
∣∣∣,

and, letting δ → 0,

∣∣∣
∫

Ω\(ũ)−1(M)

bδ(x, u)ϕ∇udx−
∫

Ω\(ũ)−1(M)

b(x, u)ϕ∇udx
∣∣∣ → 0,

as a consequence of (3.5) and the dominated convergence theorem.

Let us consider the third term of (3.3). Thanks to (1.1) and (1.7), we can rewrite this

term as

(3.6)

∫

Ju∩Ω

(
−
∫ u+

u−
bδ(x, s)ds

)
ϕdDj(u) +

∫

CuΩ

bδ(x, ũ(x))ϕdDcu.

Clearly for every x ∈ Ω ∩ Ju we have

−
∫ u+

u−
|bδ(x, s)− b(x, s)|ds → 0, as δ → 0.

Furthermore, the function gδ(x) = |ϕ(x)|−
∫ u+

u−
|bδ(x, s) − b(x, s)|ds satisfies the following esti-

mate

0 ≤ gδ(x) ≤ 2‖b‖∞‖ϕ‖∞ ∈ L1(Ju ∩ Ω, |Dju|)

so that, letting δ → 0, we get

∣∣∣
∫

Ju∩Ω

(
−
∫ u+

u−
bδ(x, s)ds

)
ϕdDj(u)−

∫

Ju∩Ω

(
−
∫ u+

u−
b(x, s)ds

)
ϕdDj(u)

∣∣∣ → 0.
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As far as the second term of (3.6), for every t ∈ R and for every x ∈ Cu ∩ Ω \ (ũ)−1(M), we

have

(3.7) |bδ(x, s)− b(x, s)||ϕ| ≤ 2‖b‖∞|ϕ| ∈ L1(Cu ∩ Ω, |Dcu|),

so that, by the dominated convergence theorem and Lemma 1.2, we obtain

∫

Ω∩Cu

bδ(x, ũ(x))ϕdDcu →
∫

Ω∩Cu

b(x, ũ(x))ϕdDcu,

so that
∫

Ω

(
−
∫ u+

u−
bδ(x, s)ds

)
ϕdDsu →

∫

Ω

(
−
∫ u+

u−
b(x, s)ds

)
ϕdDsu.

Let us consider the last term of (3.3). Thanks to the hypothesis (ii), we have that for

LN -almost every x ∈ Ω the function ∇xb(x, ·) ∈ L1(R). Therefore, from (3.2), it follows that

for LN -almost every x ∈ Ω,

∇xbδ(x, ·) = ψδ ∗ ∇xb(x, ·) → ∇xb(x, ·) in L1(R),

as δ → 0. This implies that, for LN -almost every x ∈ Ω, we obtain

lim
δ→0

∫ u(x)

0

|∇xbδ(x, s)−∇xb(x, s)|ds = 0.

In order to conclude, we note that, thanks to the hypothesis (ii),

|ϕ(x)|
∫ u(x)

0

|∇xbδ(x, s)| ≤ ‖ϕ‖∞
∫

R
ds

∫

R
ψδ(s− t)|∇xb(x, t)|dt

=

∫

R
|∇xb(x, t)|dt

∫

R
ψδ(s− t)ds =

∫

R
|∇xb(x, t)|dt ∈ L1(Ω),

for a.e. x ∈ Ω and hence

∫

Ω

( ∫ u(x)

0

∇xbδ(x, s)ds
)
ϕdx →

∫

Ω

( ∫ u(x)

0

∇xb(x, s)ds
)
ϕdx,
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as δ → 0. The proof is now complete. ¥

We prove a refinement of previous result, which will be useful in the next section.

Theorem 3.2 Let Ω ⊂ RN be a bounded open set. Let b : Ω × R → RN be a Borel function

with a compact support in Ω× R satisfying the following properties

(i) there exists g ∈ L1(R) such that |b(x, s)| ≤ g(s) for every x ∈ Ω and for every s ∈ R;

(ii) b(·, s) ∈ W 1,1(Ω;RN) ∩ C(Ω;RN) for almost every s ∈ R,

(iii) ∇xb ∈ L1(Ω× R).

Then for every u ∈ BV (Ω) ∩ L∞(Ω) such that

∫

Ω

〈b(x, u),∇u〉+dx < +∞;

∫

Ω

(−
∫ u+

u−
〈b(x, s),

Dsu

|Dsu| 〉
+ds

)
d|Dsu| < +∞.

and for every ϕ ∈ C1
0(Ω) we have

∫

Ω

〈b(x, u),∇u〉ϕdx +

∫

Ω

(−
∫ u+

u−
〈b(x, s),

Dsu

|Dsu|〉ds
)
ϕd|Dsu|

(3.8)

= −
∫

Ω

〈
∫ u(x)

0

b(x, s)ds,∇ϕ〉dx−
∫

Ω

( ∫ u(x)

0

divxb(x, s)ds
)
ϕdx.

Proof.

Let us define

bh(x, s) = b(x, s)χAh
(s) where Ah = {s ∈ R : g(s) ≤ h}.
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Clearly bh ∈ L∞(Ω × R) for every h ∈ N and bh(x, s) → b(x, s) for a.e. x ∈ Ω and for a.e

s ∈ R Therefore (3.8) holds for bh, i.e.

∫

Ω

〈bh(x, u),∇u〉ϕdx +

∫

Ω

(−
∫ u+

u−
〈bh(x, s),

Dsu

|Dsu|〉ds
)
ϕd|Dsu|

(3.9)

= −
∫

Ω

〈
∫ u(x)

0

bh(x, s)ds,∇ϕ〉dx−
∫

Ω

( ∫ u(x)

0

divxbh(x, s)ds
)
ϕdx,

for every ϕ ∈ C1
0(Ω) Moreover, divxbh(x, s) = χAh

(s)divxb(x, s) → divxb(x, s) for a.e. (x, s) ∈

Ω × R. Since |divxbh(x, s)| ≤ |∇xb(x, s)| for a.e. (x, s) ∈ Ω × R, and, by (iii), |∇xb(x, ·)| ∈

L1(R) for a.e. x ∈ Ω, we get a.e.

ϕ(x)

∫ u(x)

0

divxbh(x, s)ds → ϕ(x)

∫ u(x)

0

divxb(x, s)ds.

Using again (iii), it follows

∣∣∣ϕ
∫ u(x)

0

divxbh(x, s)ds
∣∣∣ ≤ |ϕ|

∫

R
|∇xb(x, s)|ds ∈ L1(Ω),

and hence
∫

Ω

( ∫ u(x)

0

divxbh(x, s)ds
)
ϕdx →

∫

Ω

( ∫ u(x)

0

divxb(x, s)ds
)
ϕdx.

Let us consider the lefthand side of (3.9) Since 〈bh(x, s), ξ〉+ and 〈bh(x, s), ξ〉− are increasing

sequences which converge to 〈b(x, s), ξ〉+ and 〈b(x, s), ξ〉− respectively, from Beppo Levi’s

theorem and hypothesis (ii), we obtain that

lim
h→+∞

∫

Ω

〈bh(x, u),∇u〉ϕdx =

∫

Ω

〈b(x, u),∇u〉ϕdx.
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Analogously, using again hypothesis (ii), we get

lim
h→+∞

∫

Ω

(−
∫ u+

u−
〈bh(x, s),

Dsu

|Dsu| 〉ds
)
ϕd|Dsu| =

∫

Ω

(−
∫ u+

u−
〈b(x, s),

Dsu

|Dsu| 〉ds
)
ϕd|Dsu|.

Therefore passing to the limit, as h → +∞, in (3.9) we get (3.8). The thesis is achieved. ¥

3.2 Lower semicontinuity

By using Theorem 3.1, in the same spirit of [20] and [32], but on the space BV (Ω) and

without continuity with respect to the variable s, we obtain the lower semicontinuity result

with respect to the L1-topology, of the functional F in (1.5).

Let f : Ω× R× RN → [0,∞) be a Borel function such that:

(3.10)





(i) f(x, s, ·) is convex on RN for every (x, s) ∈ Ω× R;

(ii) f(·, s, ξ) ∈ C(Ω) ∩W 1,1
loc (Ω) for almost every s ∈ R and for every ξ ∈ RN ;

(iii) for every bounded set B ⊂ R× RN , there exists a costant L(B)

such that

∫

Ω

|∇xf(x, s, ξ)|dx ≤ L(B) for every (s, ξ) ∈ B.

Theorem 3.3 Let f : Ω × R × RN → [0,∞) be a locally bounded Borel function, satisfying

(3.10) and that

(3.11) f(x, s, 0) = 0 ∀(x, s) ∈ Ω× R.

Then the functional (1.5) is lower semicontinuous on BV (Ω) with respect to the L1-topology.

Proof.

By Theorem 1.5 there exists a sequence {ακ} ⊂ C∞
0 (Ω) with ακ ≥ 0 and

∫
RN ακdx = 1 such
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that for any (x, s, ξ) ∈ Ω× R× RN we have

f(x, s, ξ) = sup
κ∈N

(aκ(x, s) + 〈bκ(x, s), ξ〉)+

and

f∞(x, s, ξ) = sup
κ∈N

〈bκ(x, s), ξ〉+,

where, recalling (1.11) and (1.12),

aκ(x, s) =

∫

RN

f(x, s, ξ)
(
(N + 1)ακ(ξ) + 〈∇ακ(ξ), ξ〉

)
dξ

(3.12)

bκ(x, s) = −
∫

RN

f(x, s, ξ)∇ακ(ξ)dξ.

Hence, if we set fκ(x, s, ξ) = (aκ(x, s)+〈bκ(x, s), ξ〉)+, we obtain f̂(x, s, ξ, t) = sup
κ

f̂κ(x, s, ξ, t).

Therefore, applying Lemma 1.6 with f , fk and µ replaced by f̂ , f̂k and |α(u)| respectively,

we obtain

F(u, Ω) =

∫

Ω×R
f̂(x, s,

α(u)

|α(u)|)d|α(u)|(x, s)

= sup
D

∑
i∈I

∫

Ω×R
f̂κi

(x, s,
α(u)

|α(u)|)ϕi(x)ψi(u)d|α(u)|(x, s)

= sup
D

∑
i∈I

{ ∫

Ω

ψi(u)
(
aκi

(x, u)(3.13)

+ 〈bκi
(x, u),∇u〉)+

ϕi(x)dx

+

∫

Ω

(
−
∫ u+

u−
ψi(s)〈bκi

(x, s),
Dsu

|Dsu| 〉
+ds

)
ϕi(x)d|Dsu|

}
,

where the first and the last equality are due to Lemma 1.7 and we used the notation in (1.8).
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Let us define

Gi(u) :=

∫

Ω

ψi(u)
(
aκi

(x, u) + 〈bκi
(x, u),∇u〉)+

ϕi(x)dx

(3.14)

+

∫

Ω

(
−
∫ u+

u−
ψi(s)〈bκi

(x, s),
Dsu

|Dsu|〉
+ds

)
ϕi(x)d|Dsu|.

We remark that, by (ii) of (3.10) and (3.12), aκi
(·, s) is continuous for almost every s ∈ R. By

Scorza-Dragoni theorem it is possible to find an increasing sequence Kh of compact subsets of

R such that, if we set E :=
⋃

h∈NKh, L1(R \E) = 0, and for every κi ∈ N aκi
∈ C0(Ω×Kh).

We remark that, by hypothesis (3.11), we have aκi
≤ 0, hence, by Proposition 1.2 it follows

that

Gi(u) =

∫

Ω

χE(u)ψi(u)
(
aκi

(x, u) + 〈bκi
(x, u),∇u〉)+

ϕi(x)dx

+

∫

Ω

(
−
∫ u+

u−
χE(s)ψi(s)〈bκi

(x, s),
Dsu

|Dsu|〉
+ds

)
ϕi(x)d|Dsu|

= sup
h∈N

{ ∫

Ω

χKh
(u)ψi(u)

(
aκi

(x, u) + 〈bκi
(x, u),∇u〉)+

ϕi(x)dx

+

∫

Ω

(
−
∫ u+

u−
χKh

(s)ψi(s)〈bκi
(x, s),

Dsu

|Dsu| 〉
+ds

)
ϕi(x)d|Dsu|

}
.

As LN and |Dsu| are mutually singular measures,

Gi(u) = sup
h∈N

sup
0≤η≤1

{ ∫

Ω

χKh
(u)ψi(u)(aκi

(x, u)η(x)ϕi(x)dx

+

∫

Ω

χKh
(u)〈ψi(u)bκi

(x, u),∇u〉η(x)ϕi(x)dx(3.15)

+

∫

Ω

(
−
∫ u+

u−
χKh

(s)η(x)〈ψi(s)bκi
(x, s),

Dsu

|Dsu| 〉ds
)
ϕi(x)d|Dsu|

}
;

where η ∈ C∞
0 (Ω). Since aκi

∈ C0(Ω×Kh) and aκi
≤ 0, the function χKh

(s)ψi(s)aκi
(x, s) is

lower semicontinuous with respect to s ∈ R. Therefore, as a consequence of Fatou’s lemma,
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the first term in (3.15) is lower semicontinuous with respect to the L1-topology. Now we prove

the lower semicontinuity with respect to the L1-topology of the last two terms of (3.15). Since

un → u strongly in L1(Ω), without loss of generality, we may assume that un → u almost

everywhere in Ω. Let us define

H(un) :=

∫

Ω

χKh
(un)〈ψi(un)bκi

(x, un),∇un〉η(x)ϕi(x)dx

+

∫

Ω

(
−
∫ u+

n

u−n
χKh

(s)η(x)〈ψi(s)bκi
(x, s),

Dsun

|Dsun|〉ds
)
ϕi(x)d|Dsun|.

We claim that the scalar function η(x)ψi(s)b
j
κi

(x, s) satisfies for 1 ≤ j ≤ n all the hypotheses

of Theorem 3.1. Indeed η(x)ψi(s)b
j
κi

(x, s) has compact support in Ω × R and it is bounded

in Ω × R, since f ∈ L∞loc(Ω × R × RN). Moreover, by (ii) of (3.10) and the dominated

convergence theorem, it follows that η(·)ψi(s)b
j
κi

(·, s) is continuous for almost every s ∈ R.

Finally by (ii) and (iii) of (3.10), we have that η(·)ψi(s)b
j
κi

(·, s) belongs to W 1,1(Ω) with

∇x

(
η(x)ψi(s)b

j
κi

(x, s)
) ∈ L1(Ω × R). Furthermore, thanks to the presence of the character-

istic function χKh
in the definition of the functional H(un), we may assume, without loss of

generality, for every n ∈ N un ∈ L∞(Ω).

Therefore, by applying Theorem 3.1, we get

lim inf
n→+∞

H(un) = lim
n→+∞

{
−

∫

Ω

( ∫ un(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds
)
ϕidx

−
∫

Ω

〈
∫ un(x)

0

bκi
(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx
}

.

From (iii) of (3.10) and from the absolute continuity of the integral it follows that as n → +∞

lim
n→+∞

∫ un(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds =

∫ u(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds.
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Moreover,

∣∣∣ϕi(x)

∫ un(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds
∣∣∣

(3.16)

≤ ‖ϕi‖∞
∫

R
|divx(bki

(x, s)χKh
(s)ψi(s)η(x))|ds ∈ L1(Ω),

so that

lim
n→∞

∫

Ω

ϕi(x)

∫ un(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds = ϕi(x)

∫ u(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds.

Analogously we get

lim
n→+∞

∫

Ω

〈
∫ un(x)

0

bκi
(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx =

∫

Ω

〈
∫ u(x)

0

bκi
(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx.

Therefore letting n → +∞ in (3.16) we obtain

lim inf
n→+∞

H(un) = −
∫

Ω

( ∫ u(x)

0

divx(bki
(x, s)χKh

(s)ψi(s)η(x))ds
)
ϕidx

(3.17)

−
∫

Ω

〈
∫ u(x)

0

bκi
(x, s)χKh

(s)η(x)ψi(s)ds,∇ϕi〉dx.

Hence, applying Theorem 3.1 to (3.17), we obtain the lower semicontinuity of the second and

the third term of (3.15). This implies that Gi, being the supremum of lower semicontinuous

functions is lower semicontinuous itself, so that, by (3.13) and (3.14), F is lower semicontin-

uous too.

The thesis is then achieved. ¥
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Remark 3.1 It is not very difficult to verify that Theorem 3.3 continues to hold under a

weaker assumption than (iii) of (3.10), which is the following

(3.18) ∇xf ∈ L1
loc(Ω× R× Rn).

Indeed in the proof of the previous theorem we only need to know that η(·)ψi(s)b
j
κi

(·, s) belongs

to W 1,1(Ω) with ∇x

(
η(x)ψi(s)b

j
κi

(x, s)
) ∈ L1(Ω×R), and it is guaranteed by hypothesis (3.18).

In the same spirit of the papers of De Giorgi Buttazzo and Dal Maso (see [23]) and Ambrosio

(see [7]) we give a further lower semicontinuity result, where assumption (3.11) is replaced by

a weaker one.

Theorem 3.4 Let f : Ω × R × RN → [0,∞) be a locally bounded Borel function satisfying

(3.10) such that:

(a) f(x, ·, 0) is lower semicontinuous on R for LN a.e x ∈ Ω

(b) there exists a Borel function

λ : Ω× R→ RN ,

with λ(x, s) ∈ ∂ξf(x, s, 0) for every (x, s) ∈ Ω× R, such that

(i) g(s) = sup
x∈Ω

|λ(x, s)| ∈ L1
loc(R)

(ii) λ(·, s) ∈ C(Ω;RN) for L1 a.e s ∈ R

(iii) λ(·, s) ∈ W 1,1
loc (Ω;RN) for L1 a.e s ∈ R with ∇xλ ∈ L1

loc(Ω× R).

Then the functional (1.5) is lower semicontinuous in BV (Ω) with respect to the strong L1-

topology.
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Proof.

Without loss of generality, we may suppose that there exists a constant C > 0 such that

f(x, s, ξ) = 0 for every (x, s, ξ) ∈ Ω× R× RN , with |s| ≥ C. Indeed, in the general case, we

can write

f(x, s, ξ) = sup
k∈N

f(x, s, ξ)χ(−k,k)(s).

Moreover since λ(x, s) ∈ ∂pf(x, s, 0) and that f ≥ 0, it follows that f(x, s, ξ) ≥ 〈λ(x, s), ξ〉+

for every (x, s, ξ) ∈ Ω × R × RN . Hence we may assume that λ(x, s) = 0 for every x ∈ Ω

and s ∈ R, with |s| ≥ C. Besides, since f is locally bounded, λ is locally bounded, too. Let

g : Ω× R× RN → [0, +∞] be defined by

g(x, s, ξ) = f(x, s, ξ)− f(x, s, 0)− 〈λ(x, s), ξ〉.

Then for every ϕ ∈ C∞
0 (Ω) and for every open set A ⊂⊂ Ω we have

(3.19) FA(f, u, ϕ) = FA(g, u, ϕ) + GA(f, u, ϕ) + HA(λ, u, ϕ),

where

FA(f, u, ϕ) =

∫

A

f(x, u,∇u)ϕdx +

∫

A

[
−
∫ u+

u−
f∞(x, s,

Dsu

|Ds(u)|)ds
]
ϕd|Dsu|,

GA(f, u, ϕ) =

∫

A

f(x, u, 0)ϕdx

HA(λ, u, ϕ) =

∫

A

〈λ(x, u),∇u〉ϕdx +

∫

A

[
−
∫ u+

u−
〈λ(x, s),

Dsu

|Ds(u)| 〉ds
]
ϕd|Dsu|.

Let un → u ∈ BV (Ω) strongly in L1(Ω). Without loss of generality, we may suppose that

un → u almost everywhere in Ω and that F (un) ≤ M , for every n ∈ N. Since the function gϕ
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satisfies all the hypotheses of Theorem 3.3 we obtain that

(3.20) FA(g, u, ϕ) ≤ lim inf
n→+∞

FA(g, un, ϕ).

Moreover, by hypothesis (a) and Fatou’s lemma it follows that

(3.21) GA(f, u, ϕ) ≤ lim inf
n→+∞

GA(f, un, ϕ).

Since f(x, s, ξ) ≥ 〈λ(x, s), ξ〉+ we have, for every n ∈ N,

(3.22)

∫

A

〈λ(x, un),∇un〉+dx ≤ F (un) ≤ M

and

(3.23)

∫

A

[
−
∫ un

+

un
−
〈λ(x, s),

Dsun

|Dsun| 〉
+ds

]
d|Dsun| ≤ F (un) ≤ M.

We remark that, since λ is locally bounded, we have

(3.24)

∫

A

〈λ(x, u),∇u〉+dx ≤ M

and

(3.25)

∫

A

[
−
∫ u+

u−
〈λ(x, s),

Dsu

|Dsu| 〉
+ds

]
d|Dsu| ≤ M.

Furthermore, if we define

(3.26) λ̃(x, s) =

{
λ(x, s) (x, s) ∈ suppϕ× [−C,C],

0 (x, s) /∈ suppϕ× [−C,C].

The function λ̃ satisfies all the hypotheses of Lemma 3.2. Then using, by (3.22) and (3.23),

Lemma 3.2, we get

lim inf
n→+∞

HA(λ, un, ϕ) = lim
n→+∞

{
−

∫

Ω

〈
∫ un(x)

0

λ(x, s)ds,∇ϕ〉dx−
∫

Ω

( ∫ un(x)

0

divxλ(x, s)ds
)
ϕdx

}
;
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so that, by (3.24) and (3.25), using again Lemma 3.2

lim
n→+∞

HA(λ, un, ϕ) = −
∫

Ω

〈
∫ u(x)

0

λ(x, s)ds,∇ϕ〉dx−
∫

Ω

( ∫ u(x)

0

divxλ(x, s)ds
)
ϕdx

(3.27)

= HA(λ, u, ϕ).

Therefore from (3.19), (3.20), (3.21) and (3.27) we have

FA(f, u, ϕ) ≤ lim inf
n→+∞

FA(f, un, ϕ) ≤ lim inf
n→+∞

FΩ(f, un, ϕ).

Then, since A is arbitrary, the functional u → FΩ(f, u, ϕ) is lower semicontinuous. The

conclusion follows by

F(u, Ω) = sup{FΩ(f, u, ϕ) : ϕ ∈ C∞
0 (Ω), 0 ≤ ϕ ≤ 1}. ¥

3.3 Applications

In this section, as a consequence of our lower semicontinuity results, we firstly give an integral

representation theorem for the relaxation functional of the functional in (1.13), then we prove

a Γ-limit result for a sequence of functionals {Fn} of the same type.

3.3.1 Relaxation

In this subsection, given F as in (1.4), we will show that the following representation holds

(3.28) F(u, Ω) = F (u, Ω) ∀u ∈ BV (Ω)

where F and F are defined in (1.13) and(1.5), respectively. In order to get (3.28), we use a

result due to Fonseca and Leoni. To this aim we assume that f : Ω×R×RN → [0, +∞) is a
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Borel function such that

(3.29) 0 ≤ f(x, s, ξ) ≤ C(1 + |ξ|) for all (x, s, ξ) ∈ Ω× R× RN .

Theorem 3.5 (see [29], Theorem 1.6) Let f : Ω × R × RN → [0,∞) be a Borel function

convex with respect to ξ for every (x, s) ∈ Ω× R, and continuous with respect to x for every

(s, ξ) ∈ R×RN . Assume that f satisfies (3.29), and f∞(·, s, ξ) is upper semicontinuous in Ω

for every (s, ξ) ∈ R× RN . Then

F (u, Ω) ≤ F(u, Ω).

Remark 3.2 Following the proof of Theorem 1.6 in [29], it is not difficult to see that the

Theorem 3.5 holds even if the hypothesis that f is continuous with respect to x for every

(s, ξ) ∈ R× RN , is replaced by

|f(x, s1, 0)− f(x, s2, 0)| ≤ Cρ(s1 − s2),

for every x ∈ Ω and s1, s2 ∈ R, where ρ is a modulus of continuity, i.e. a nonnegative,

increasing and continuous function ρ such that ρ(0) = 0, or by the assumption that for every

s ∈ R exists N ⊂ Ω such that HN−1(N) = 0 and f(·, s, 0) is approximately continuous in

Ω \N (these conditions are in particular implied by f(x, s, 0) = 0).

Theorem 3.6 Let f : Ω × R × RN → [0,∞) be a Borel function, which satisfies hypotheses

(3.10),(3.29) and (a), (b) of Theorem 3.4. Assume that f∞(·, s, ξ) is upper semicontinuous

in Ω for every (s, ξ) ∈ R× RN . Then F(u, Ω) = F (u, Ω).
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Proof.

Since F is the greatest lower semicontinuous functional not greater than F , F ≤ F and, by

Theorem 3.4, F is L1-lower semicontinuous, it follows that

F(u, Ω) ≤ F (u, Ω).

The opposite inequality is stated in Theorem 3.5. ¥

3.3.2 Γ-convergence

In this subsection, in the same spirit of [4, 13], we state a Γ-convergence result for a sequence

of integral functionals of type (1.4), whose integrands fn pointwise converge to an integrand

f , which is not necessarily continuous with respect to s nor coercive.

Theorem 3.7 Let fn : Ω× R× RN → [0, +∞) be a sequence of Borel functions such that

(3.30) 0 ≤ fn(x, s, ξ) ≤ Λ(1 + |ξ|) for every (x, s, ξ) ∈ Ω× R× RN ,

where 0 < Λ < +∞ is a fixed constant. For every u ∈ BV (Ω) we define

(3.31) Fn(u, Ω) =





∫

Ω

fn(x, u,∇u)dx if u ∈ W 1,1(Ω)

+∞ if u ∈ BV (Ω) \W 1,1(Ω).

Assume that {fn} converges pointwise to a locally bounded Borel function f : Ω×R×RN →

[0, +∞) satisfying all the hypotheses of Theorem 3.6.

Finally, let {εn} be an infinitesimal sequence, such that

(3.32) (1 + εn)fn(x, s, ξ) ≥ f(x, s, ξ)− εn for every (x, s, ξ) ∈ Ω× R× RN ,∀n ∈ N.
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Then for every u ∈ BV (Ω), we have

F Γ(u, Ω) := Γ− lim Fn(u, Ω) = F(u, Ω).

Proof.

By the compactness of Γ-convergence, we may assume that, up to a subsequence, there exists

Γ − lim Fn. Firstly, we will prove that Γ − lim Fn ≥ F . Given u ∈ BV (Ω), by (3.32), for

every n ∈ N we obtain that Fn(u, Ω) ≥ F (u, Ω)− εn[LN(Ω)+Fn(u, Ω)], where F is defined in

(1.4). By (1.17), we have that for every u ∈ BV (Ω), there exists un → u strongly in L1(Ω),

such that

(Γ− lim
n→∞

Fn)(u, Ω) = lim
n→∞

Fn(un, Ω).

We may assume that the previous limit is finite (otherwise the conclusion is trivial). Therefore,

taking into account Theorem 3.6, it follows

(Γ− lim
n→∞

, Fn)(u, Ω) = lim
n→∞

Fn(un, Ω) ≥ lim inf
n→∞

F (un, Ω)− lim
n→∞

εn[LN(Ω) + Fn(un, Ω)]

≥ F (u, Ω) = F(u, Ω).

In order to prove the opposite inequality, we note that, by dominated convergence theorem,

we have

lim
n→∞

Fn(u, Ω) = F (u, Ω) for every u ∈ W 1,1(Ω).

Hence, by (1.16)

(Γ− lim
n→∞

Fn)(u, Ω) ≤ F (u, Ω) for every u ∈ BV (Ω).
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So that, by the lower semicontinuity of the Γ− lim and Theorem 3.6, it follows

(Γ− lim
n→∞

Fn)(u, Ω) ≤ F (u, Ω) = F(u, Ω) for every u ∈ BV (Ω).

Since this independent from the subsequence, we obtain that the whole sequence Fn Γ- con-

verges to F . Then the thesis is achieved. ¥

60



Chapter 4

Vectorial case

In this chapter we study L1-lower semicontinuity and relaxation properties of the following

functionals:

(4.1) F (u, Ω) =

∫

Ω

f(x,∇u)dx; u ∈ W 1,1(Ω;RM).

and its natural extension to the larger space BV (Ω;RM) given by

F(u, Ω) =

∫

Ω

f(x,∇u)dx +

∫

Ω

f∞(x,
Dcu

|Dc(u)|)d|D
cu|

+

∫

Ju∩Ω

f∞(x, (u+ − u−)⊗ νu)dHN−1.(4.2)

Here, as in the previous chapter, Ω will be an open bounded subset of RN , N ≥ 1

4.1 Mathematical tools

4.1.1 Euclidean structure of the matrix space RM×N

In the following we denote by RM×N matrices which is isomorphically equivalent to the vec-

torial space RMN (the space RMN of MN -dimensional vectors).
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Indeed, let A ∈ RM×N , M,N ≥ 1. We define the linear operator T : RM×N → RMN by

(4.3) T (A) = a = (a1, ..., aMN) = (A1,j, ..., AM,j)j=1,...,N .

It is not difficult to see that T is an isomorphism and that his inverse is given by

(4.4) T−1(a) = A = (Ai,j)i=1,...,M
j=1,...,N with Ai,j = a(i−1)N+j.

By means the operator T we can define the scalar product and the norm on the space RM×N .

Precisely given A, B ∈ RM×N we have

〈A,B〉RM×N := 〈T (A), T (B)〉RMN = 〈a, b〉RMN =
MN∑

k=1

akbk

=
M∑
i=1

N∑
j=1

Ai,jBi,j =
M∑
i=1

〈Ai, Bi〉RN ;(4.5)

and

‖A‖RM×N := ‖T (A)‖RMN =
( MN∑

k=1

|ak|2
) 1

2
=

( M∑
i=1

N∑
j=1

|Ai,j|2
) 1

2
;

where

Ai = (Ai,1, ..., Ai,N) and Bi = (Bi,1, ..., Bi,N).

We recall the definition of the tensor product. If a ∈ RM , b ∈ RN , then the tensor product

a⊗ b is a M ×N matrix defined by (a⊗ b)i,j = aibj. We remark that if A ∈ RM×N , a ∈ RM

and b ∈ RN then, by (4.5), the following property holds

(4.6) 〈A, a⊗ b〉RM×N = 〈T (A), T (a⊗ b)〉RMN =
M∑
i=1

〈Ai, aib〉RN ,

where 〈·, ·〉X denotes the scalar product into the Euclidean space X.
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4.1.2 Chain rule

In this subsection, we state a generalization of the Leibniz rule for the derivation of a product

of two functions. This result can be obtained as a simplified version of the chain rule due to

De Cicco, Fusco and Verde (see [19]), in which the functions involved depend only the spatial

variable x.

Lemma 4.1 (see [19], Theorem 1.1) Let b : RN → RN be a bounded function with compact

support in RN such that

(i) b ∈ W 1,1(RN ;RN),

(ii) b is approximately continuous HN−1-a.e. in RN .

Then for every u ∈ BV (RN) ∩ L∞(RN) and for every ϕ ∈ C1
0(RN), the following formula

holds

∫

RN

〈b(x),∇ϕ(x)〉RN u(x)dx = −
∫

RN

div(b(x))u(x)ϕ(x)dx−
∫

RN

〈b(x),∇u(x)〉RN ϕ(x)dx

−
∫

RN

〈b(x),
Dcu

|Dcu|(x)〉RN ϕ(x)d|Dc(u)| −
∫

Ju

〈b(x), (u+ − u−)⊗ νu(x)〉RN ϕ(x)dHN−1

Remark 4.1 Note that hypothesis (ii) is needed in order to identify b with its precise repre-

sentative HN−1-a.e. in RN , otherwise the previous formula is false.

4.2 Lower Semicontinuity

The aim of this section is to obtain L1-lower semicontinuity for the functional in (4.2), by

means of the chain rule formula, stated in Lemma 4.1, and De Giorgi’s approximation Theorem
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(see Theorem 1.5). This strategy seems to be new in the vectorial setting. However, for its

application, convexity of the integrand f with respect to ξ is crucial, whereas it is well known

that this request is not optimal in the vectorial case (see, for instance, [12]). Nevertheless this

approach allows us to weaken regularity hypothesis on the integrand f . Thus no continuity

assumption with respect to the variable x is required. Furthermore our approach can be

regarded as a first step in order to attack the polyconvex case.

We prove the following theorem, which states the lower semicontinuity of the functional F

along equibounded sequences of vectorial BV -functions. The proof is based on an argument

introduced in [32].

Let f : Ω × RM×N → [0,∞) be a locally bounded Borel function which satisfies the

following conditions:

(4.7)





(i) f(·, ξ) ∈ W 1,1
loc (Ω;RM) for every ξ ∈ RM×N ;

(ii) for every bounded set B ⊂ RM×N , there exists a constant L(B) such that∫

Ω

|∇xf(x, ξ)|dx ≤ L(B) for every ξ ∈ B;

(iii) ∃G ⊂ Ω with HN−1(G) = 0 such that ∀ξ ∈ RM×N

f(·, ξ) is approximately continuous in Ω \G.

Theorem 4.1 Sia f : Ω × RM×N → [0,∞) be a locally bounded function, convex in the

second variable and satisfying (4.7). Then the functional (4.2) is lower semicontinuous on

BV (Ω;RM) with respect to the L1-topology along sequences {un} ⊂ BV (Ω;RM) such that

‖un‖∞ ≤ C.

Proof.
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Let be Ω
′ ⊂⊂ Ω. There exists two compact sets K1, K2 such that

(4.8) K1 ⊂ Ω
′ ∩ Cu, K2 ⊂ Ω

′ \ Cu.

By Hausdorff property we may find two disjoint open sets Ω1, Ω2 ⊂ Ω
′
such that

(4.9) K1 ⊂ Ω1, K2 ⊂ Ω2.

So that, if {un} ⊂ BV (Ω;RM) is a sequence converging in L1(Ω;RM) to u ∈ BV (Ω;RM),

then

(4.10) lim inf
n→∞

F(un, Ω) ≥ lim inf
n→∞

F(un, Ω1) + lim inf
n→∞

F(un, Ω2).

Therefore we will treat separately the two terms of the righthand side of the last inequality.

Let us consider lim inf
n→∞

F(un, Ω1).

We define g : Ω× RMN → [0,∞) and g∞ : Ω× RMN → [0,∞) given by

g(x, ξ) = f(x, T−1(ξ)),

and

g∞(x, ξ) = f∞(x, T−1(ξ)),

where T−1 is the linear operator defined in (4.4), and f∞ is the recession function of f(x, ·).

Since f is convex with respect to ξ, g is convex with respect to ξ. Therefore by Theorem 1.5

there exists a sequence {ακ} ⊂ C∞
0 (RMN) with ακ ≥ 0 and

∫
RMN ακdx = 1 such that for any

(x, ξ) ∈ Ω× RMN we have

(4.11) g(x, ξ) = sup
κ∈N

(aκ(x) + 〈bκ(x), ξ〉RMN )+,
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and

(4.12) g∞(x, ξ) = sup
κ∈N

(〈bκ(x), ξ〉RMN )+,

where recalling (1.11) and (1.12) with d = MN , aκ, bκ are defined by

(4.13) aκ(x) :=

∫

RMN

g(x, ξ)
(
(MN + 1)ακ(ξ) + 〈∇ακ(ξ), ξ〉RMN

)
dξ,

(4.14) bκ(x) := −
∫

RMN

g(x, ξ)∇ακ(ξ)dξ.

By the definition of g and the assumption made on f we easily get that g is locally bounded

and satisfies the following conditions:

(4.15)





(i) g(·, ξ) ∈ W 1,1
loc (Ω) for every ξ ∈ RMN ;

(ii) for every bounded set B ⊂ RMN , there exists a costant L(B) such that∫

Ω

|∇xg(x, ξ)|dx ≤ L(B) for every ξ ∈ B.

(iii) ∃G ⊂ Ω with HN−1(G) = 0 such that ∀ξ ∈ RMN

g(·, ξ) is approximately continuous in Ω \G.

By the definition of g and T and using (4.11) and (4.12), we obtain the following approximation

for the functions f and f∞:

(4.16) f(x, ξ) = sup
κ∈N

(aκ(x) + 〈bκ(x), T (ξ)〉RMN )+ = sup
κ∈N

(aκ(x) + 〈T−1(bκ(x)), ξ〉RM×N )+,

(4.17) f∞(x, ξ) = sup
κ∈N

(〈bκ(x), T (ξ)〉RMN )+ = sup
κ∈N

(〈T−1(bκ(x)), ξ〉RM×N )+.

Let K be a finite set of index. Let Ak be a finite family of disjoint open sets with the closure

contained in Ω1 and, for any k ∈ K, ηk,l be a sequence in C1
0(Ak), with 0 ≤ ηk,l ≤ 1 for all
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k, l. Finally let {ϕr} be a sequence in C1
0(Ω1) with 0 ≤ ϕr ≤ 1 for all r. By (4.16), and (4.17)

we have

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

lim inf
n→+∞

∫

Ω1

akηk,l(x)ϕr(x)dx

+
∑

k∈K

lim inf
n→+∞

{ ∫

Ω1

〈bk(x)ηk,l(x), T (∇un(x))〉RMN ϕr(x)dx

+

∫

Ω1

〈bk(x)ηk,l(x), T (
Dcun

|Dcun|(x))〉RMN ϕr(x)d|Dcun|

+

∫

Jun

〈bk(x)ηk,l(x), T ((u+
n (x)− u−n (x))⊗ νun(x))〉RMN ϕr(x)dHN−1

}
.

Now let us set Bk := T−1(bk), so that, thanks to (4.5) and (4.6), we obtain

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

lim inf
n→+∞

∫

Ω1

akηk,l(x) ϕr(x)dx

+
M∑
i=1

∑

k∈K

lim inf
n→+∞

{ ∫

Ω1

〈Bi
k(x)ηk,l(x),∇ui

n(x)〉RN ϕr(x)dx

+

∫

Ω1

〈Bi
k(x)ηk,l(x),

Dcui
n

|Dcun|(x)〉RN ϕr(x)d|Dcun|

+

∫

Jun

〈Bi
k(x)ηk,l(x), (ui

n

+ − ui
n

−
)νun(x)〉RN ϕr(x)dHN−1

}
.(4.18)

In order to apply Lemma 4.1 we notice that

Dcui
n =

Dcui
n

|Dcui
n|
|Dcui

n| and |Dcui
n| =

|Dcui
n|

|Dcun| |D
cun|.

Therefore from Lemma 1.1 it follows that

(4.19)
Dcui

n

|Dcun| =
Dcui

n

|Dcui
n|
|Dcui

n|
|Dcun| |Dcun|-a.e. in Ω.

Furthermore, fixed i = 1, ..., M , since Jui
n

is contained, up to the HN−1-negligible set
M⋃
i=1

Sui
n
\

Jui
n
, in the disjoint union of Jui

n
\
⋃

j 6=i

Juj
n

and
⋃

j 6=i

(Jui
n
∩Juj

n
), we can choose νun = ±νui

n
on every
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set Jui
n
\

⋃

j 6=i

Juj
n
, and, thanks to Lemma 1.3, νun = ±νui

n
for HN−1-a.e x ∈

⋃

j 6=i

(Jui
n
∩ Juj

n
). Let

us assume νun = +νui
n

and (u+
n )i = (ui

n)+ for i = 1, ...,M , otherwise it is enough to change

the sign. From this fact and equality (4.19) we can rewrite (4.18) as

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

∫

Ω1

akηk,l(x) ϕr(x)dx

+
M∑
i=1

∑

k∈K

lim inf
n→+∞

{ ∫

Ω1

〈Bi
k(x)ηk,l(x),∇ui

n(x)〉RN ϕr(x)dx

+

∫

Ω1

〈Bi
k(x)ηk,lϕr(x),

Dcui
n

|Dcui
n|

(x)〉RN d|Dcui
n|

+

∫

J
ui

n

〈Bi
k(x)ηk,l(x),

(
(ui

n)+ − (ui
n)−

)
νui

n
(x)〉RN ϕr(x)dHN−1

}
.(4.20)

We claim that the function x 7→ Bi
k(x)ηk,l(x) satisfies, for all k ∈ K and i = 1, ..., M , the

hypotheses of Lemma 4.1. Indeed, since g is locally bounded, it has compact support and

it is bounded in Ω1 . Moreover from (i) and (ii) of hypothesis (4.15), it follows that Bi
kηk,l

belongs to W 1,1(Ω). Finally from (iii) of hypothesis (4.15) and Fubini’s Theorem it follows

that Bi
kηk,l satisfies hypothesis (ii) of Lemma 4.1. Therefore, by applying Lemma 4.1, we get

lim
n→∞

{ ∫

Ω1

〈Bi
k(x)ηk,l(x),∇ui

n(x)〉RN ϕr(x)dx +

∫

Ω1

〈Bi
k(x)ηk,l(x),

Dcui
n

|Dcui
n|

(x)〉RN ϕr(x)d|Dcui
n|

+

∫

J
ui

n

〈Bi
k(x)ηk,l(x),

(
(ui

n)+ − (ui
n)−

)
νui

n
(x)〉RN ϕr(x)dHN−1

}

= lim
n→∞

{
−

∫

Ω1

〈Bi
k(x)ηk,l(x),∇ϕr(x)〉RN ui

n(x)dx

−
∫

Ω1

div(Bi
k(x)ηk,l(x))ui

n(x)ϕr(x)dx
}

.(4.21)

Thus, letting n → +∞, by using the dominated convergence theorem, the equiboundeness of
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sequence {un} and Lemma 4.1 again, we have, summing with respect to i, k,

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

∫

Ω1

[akηk,l(x)dx +
M∑
i=1

〈Bi
k(x)ηk,l(x),∇ui(x)〉RN ] ϕr(x)dx

+
∑

k∈K

M∑
i=1

∫

Ω1

〈Bi
k(x)ηk,l(x),

Dcui

|Dcui|(x)〉RN ϕr(x)d|Dcui|

+
∑

k∈K

M∑
i=1

∫

Jui

〈Bi
k(x)ηk,l(x),

(
(ui)+ − (ui)−

)
νui(x)〉RN ϕr(x)dHN−1

}
.(4.22)

By Lemma 1.2 we may find a sequence ϕr ∈ C1
0(Ω1) with 0 ≤ ϕr ≤ 1 such that ϕr(x) →

χ
Cu∩Ω1

(x) for |Du|-a.e. x ∈ Ω1. Hence, letting r →∞ in (4.22), we get

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

∫

Ω1

[akηk,l(x)dx +
M∑
i=1

〈Bi
k(x)ηk,l(x),∇ui(x)〉RN ]dx

+
∑

k∈K

M∑
i=1

∫

Ω1

〈Bi
k(x)ηk,l(x),

Dcui

|Dcui|(x)〉RN d|Dcui|.

By using again the definition of the operator T , (4.5) and (4.19) we have

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

∫

Ω1

[akηk,l(x) + 〈bk(x)ηk,l(x), T (∇u(x))〉RMN ]dx

+
∑

k∈K

∫

Ω1

〈bk(x)ηk,l(x), T
( Dcu

|Dcu|(x)
)〉RMN d|Dcu|.

Now for, any k ∈ K, we take ηk,l(x) converging to χ
Dk

(x) + χ
Ck

(x) for |Du|-a.e. x ∈ Ak,

where

Dk = {x ∈ Ak ∩ Du : ak(x) + 〈bk(x), T (∇u(x))〉RMN > 0},

Ck = {x ∈ Ak ∩ (Cu \ Du) : 〈bk(x), T (
Dcu

|Dcu|(x))〉RMN > 0}.
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So that, letting l →∞, we get

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

∫

Ak

[ak + 〈bk(x), T (∇u(x))〉RMN ]+dx

+
∑

k∈K

∫

Ak

[〈bk(x), T
( Dcu

|Dcu|(x)
)〉RMN ]+d|Dcu|.

Hence, by applying Lemma 1.5 with µ = |Du| and

φk(x) = [ak + 〈bk(x), T (∇u(x))〉RMN ]+χDu
(x) + [〈bk(x), T

( Dcu

|Dcu|(x)
)〉RMN ]+χ

Cu\Du
(x),

we get from (4.16) and (4.17)

(4.23) lim inf
n→∞

F(un, Ω1) ≥
∫

Ω1

f(x,∇u)dx +

∫

Ω1

f∞(x,
Dcu

|Dc(u)|)|D
cu|.

Now let us consider lim inf
n→+∞

F(un, Ω2).

As above we fix a finite family Ak of disjoint open sets with the closure contained in Ω2. For

any k ∈ K, let ηk,l be a sequence in C1
0(Ak), with 0 ≤ ηk,l ≤ 1 for all k, l. Finally let {ϕr} be

a sequence in C1
0(Ω2) with 0 ≤ ϕr ≤ 1 for all r ∈ R. In this case we let ϕr(x) 7→ χ

Ju∩Ω2
(x)

|Du|-a.e. in Ω2. Thus, by using again (4.5), (4.6) and the choice of the normal νu, we arrive

to

lim inf
n→∞

F(un, Ω2) ≥
∑

k∈K

∫

Ak

〈bk(x)ηk,l(x), T ((u+(x)− u−(x))⊗ νu(x)〉RMN dHN−1.

Let Sm be an increasing sequence of Borel sets such that
+∞⋃
m=1

Sm = RN and HN−1bJu(Sm) <

+∞ for any m. We can use again Lemma 1.2 to find, for any k ∈ K and m ∈ N, a sequence

ηk,l(x) 7→ χ
Uk∩Sm

(x) for HN−1-a.e. x ∈ Ω2, where

Uk = {x ∈ Ak ∩ Ju : 〈bk(x), T ((u+(x)− u−(x))⊗ νu(x))〉RMN > 0}.
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Hence, letting k → +∞, we get

lim inf
n→∞

F(un, Ω2) ≥
∑

k∈K

∫

Ak∩Sm

[〈bk(x), T ((u+(x)− u−(x))⊗ νu(x))〉RMN ]+dHN−1.

Thus, letting m → +∞,

lim inf
n→∞

F(un, Ω2) ≥
∑

k∈K

∫

Ak

[〈bk(x), T ((u+(x)− u−(x))⊗ νu(x))〉RMN ]+dHN−1,

and then, by applying Lemma 1.5 with µ = HN−1bJu, we obtain

(4.24) lim inf
n→∞

F(un, Ω2) ≥
∫

Ju∩Ω2

f∞(x, (u+(x)− u−(x))⊗ νu(x))dHN−1.

Hence, from (4.9), (4.10), (4.23), (4.24) we conclude that

lim inf
n→∞

F(un, Ω) ≥ F(u,K1) + F(u,K2)

=

∫

K1

f(x,∇u)dx +

∫

K1

f∞(x,
Dcu

|Dc(u)|)d|D
cu|

+

∫

Ju∩K2

f∞(x, (u+ − u−)⊗ νu)dHN−1.

Finally, taking into account (4.8), by letting K1 ↑ Ω
′ ∩Cu, K2 ↑ Ω

′ \Cu, and then Ω
′ ↑ Ω, we

get the result. ¥

In the next we prove the lower semicontinuity theorem of F along sequences {un} ⊂

BV (Ω;RM) equibounded in L
N

N−1 (Ω;RM).

Theorem 4.2 Let f : Ω×RM×N → [0,∞) be a locally bounded function, convex in the second

variable and satisfying (i) and (iii) of (4.7). Suppose that, in addition:

(4.25) ∀B ⊂ RM×N bounded ∃ L(B) such that

∫

Ω

|∇xf(x, ξ)|Ndx ≤ L(B) ∀ξ ∈ B.
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Then the functional (4.2) is lower semicontinuous on BV (Ω;RM) with respect to the L1-

topology along sequences {un} ⊂ BV (Ω;RM) such that ‖un‖ N
N−1

≤ C.

Proof.

Firstly we notice that from (4.25) it follows that the function g = f ◦T−1 satisfies the following

property:

(4.26) ∀B ⊂ RMN ∃ L(B) such that

∫

Ω

|∇xg(x, ξ)|Ndx ≤ L(B) ∀ξ ∈ B.

Then we proceed as in the proof of Theorem 4.1 till the equality (4.21); i.e.

lim
n→∞

{ ∫

Ω1

〈Bi
k(x)ηk,l(x),∇ui

n(x)〉RN ϕr(x)dx

+

∫

Ω1

〈Bi
k(x)ηk,l(x),

Dcui
n

|Dcui
n|

(x)〉RN ϕr(x)d|Dcui
n|

+

∫

J
ui

n

〈Bi
k(x)ηk,l(x),

(
(ui

n)+ − (ui
n)−

)
νui

n
〉RN ϕr(x)dHN−1

}

= lim
n→∞

{
−

∫

Ω1

〈Bi
k(x)ηk,l(x),∇ϕr(x)〉RN ui

n(x)dx

−
∫

Ω1

div(Bi
k(x)ηk,l(x))ui

n(x)ϕr(x)dx
}

.(4.27)

We claim that for every i = 1, ..., M the function divBi
k ∈ LN(Ω). Let ϕ ∈ C1

0(Ω):

∫

Ω

divBi
kϕdx = −

∫

Ω

〈∇ϕ,Bi
k〉RN dx = −

∫

Ω

〈∇ϕ,
(
T−1(bk)

)i〉RN dx

= −
∫

Ω

〈∇ϕ,
(
T−1

(−
∫

RMN

g(x, ξ)∇ξαk(ξ)dξ
))i

〉RN dx

= −
∫

Ω

〈∇ϕ,

∫

RMN

g(x, ξ)
(
T−1(∇ξαk(ξ))

)i
dξ〉RN dx

= −
∫

Ω

〈∇ϕ,

∫

RMN

g(x, ξ)∇ξiαk(ξ)dξ〉RN dx

=

∫

Ω

ϕ

∫

RMN

〈∇xg(x, ξ),∇ξiαk(ξ)〉RN dξdx.
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Therefore we have the following representation formula for the distributional divergence of

Bi
k:

(4.28) divBi
k =

∫

RMN

〈∇xg(x, ξ),∇ξiαk(ξ)〉RN dξ in D′
(Ω).

By applying Hölder’s inequality to the equation(4.28), we obtain

|divBi
k|N ≤ (LMN(suppαk))

N−1

∫

suppαk

|∇xg(x, ξ)|Ndξ

and and, by Tonelli’s Theorem, taking into account also (4.26), with B = suppαk, we get

‖divBi
k‖LN ≤ (LMN(suppαk))

N
N−1

( ∫

suppαk

dξ

∫

Ω

|∇xg(x, ξ)|Ndx
) 1

N

≤ (LMN(suppαk))
N−1

N L
1
N (LMN(suppαk))

1
N (LN(Ω))

1
N < +∞.

Therefore, for every i = 1, ...,M the function divBi
k ∈ LN(Ω). Furthermore, by the equi-

boundeness of {un} in L
N

N−1 , it follows that, up to a subsequence, un ⇀ u weakly in L
N

N−1 .

Hence passing to the limit in (4.27) and using again Lemma 4.1, we get

lim inf
n→+∞

F(un, Ω1) ≥
∑

k∈K

∫

Ω1

[akηk,l(x)dx +
M∑
i=1

〈Bi
k(x)ηk,l(x),∇ui(x)〉RN ] ϕr(x)dx

+
∑

k∈K

M∑
i=1

∫

Ω1

〈Bi
k(x)ηk,l(x),

Dcui

|Dcui|(x)〉RN ϕr(x)d|Dcui|

+
∑

k∈K

M∑
i=1

∫

Jui

〈Bi
k(x)ηk,l(x),

(
(ui)+ − (ui)−

)
νui(x)〉RN ϕr(x)dHN−1

}
.

The thesis is achieved, by proceeding exactly as in the proof of Theorem 4.1. ¥

It is possible to remove the constraint ‖un‖ N
N−1

≤ C, by dealing with an open bounded

set Ω with Lipschitz boundary and assuming the coercivity of the integrand f , as stated in

the next result.
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Corollary 4.1 Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Let f : Ω ×

RM×N → [0,∞) be a locally bounded function, convex in the second variable, satisfying (i)

and (iii) of (4.7)and (4.25). Suppose that there exists a constant λ > 0 such that:

(4.29) f(x, ξ) ≥ λ|ξ| for all x ∈ Ω.

Then the functional (4.2) is lower semicontinuous on BV (Ω;RM) with respect to the L1-

topology.

Proof.

Let {un} ⊂ BV (Ω;RM) converging in L1 to u ∈ BV (Ω;RM), with respect to the L1-

topology. Let us suppose that there exists a constant L such that lim inf
n→+∞

F(un, Ω) ≤ L

otherwise the conclusion is trivial.

By the continuous imbedding of BV (Ω;RM) in L
N

N−1 (Ω;RM) and by (4.29) we get:

L ≥ lim inf
n→∞

F(un, Ω) ≥ λ|Dun| ≥ C‖un‖ N
N−1

− λ‖un‖1,

so that, recalling that un → u strongly in L1(Ω;RM), we have

‖un‖ N
N−1

≤ L + λ‖un‖1

C
= C1,

where the constant C1 does not depend on n. Hence the result follows from Theorem 4.2. ¥
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4.3 Relaxation

The aim of this section is to give an integral representation formula for the lower semicontin-

uous envelope of the functional

(4.30) F (u, Ω) :=





∫

Ω

f(x,∇u)dx if u ∈ W 1,1(Ω;RM),

+∞ if u ∈ BV (Ω;RM) \W 1,1(Ω;RM),

defined by

(4.31) F (u, Ω) = inf{lim inf
n→∞

F (un, Ω) : un ∈ W 1,1(Ω;RM), un → u in L1(Ω;RM)}.

More precisely, our purpose is to state the following equality:

(4.32) F (u, Ω) = F(u, Ω) for every u ∈ BV (Ω;RM);

where F is defined in (4.2).

We precise that this result will be obtained on the one hand by using the lower semicon-

tinuity Theorems proven in the previous section, on the other hand by adapting some known

techniques (see [5, 28, 29]).

The first step is the inequality: F ≤ F . A first result in this direction is an immediate

consequence of Corollary 4.1.

Proposition 4.1 Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. Let f : Ω ×

RM×N → [0,∞) be a locally bounded function convex in the second variable satisfying (i) and

(iii) of (4.7),(4.25) and (4.29). Then

F(u, Ω) ≤ F (u, Ω) for every u ∈ BV (Ω;RM).
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Proof.

By Corollary 4.1, F is lower semicontinuous and, by definition, F(u, Ω) ≤ F (u, Ω) for every

u ∈ BV (Ω;RM). Then the thesis follows by recalling that F is the greatest lower semicontin-

uous functional not greater than F . ¥

Actually, the inequality stated in Proposition 4.1 above can be obtained in BV (Ω;RM) ∩

L∞(Ω;RM), also without assuming (4.25). To this purpose, let f be a function satisfying the

following linear growth conditions:

(4.33) f(x, ξ) ≥ λ|ξ| for a.e. x ∈ Ω and for all ξ ∈ RM×N ,

with λ > 0;

(4.34) f(x, ξ) ≤ Λ(1 + |ξ|) for a.e. x ∈ Ω and for all ξ ∈ RM×N ,

with Λ > 0.

To our purpose we define, in the spirit of [28], the following functional:

F∞(u, Ω) :=

= inf{lim inf
n→∞

F (un) : un ∈ W 1,1(Ω;RM), un → u in L1(Ω;RM), ‖un‖∞ ≤ C}.(4.35)

The following lemma holds. We adapt a truncation argument introduced in [28].

Lemma 4.2 Let Ω ⊂ RN an open bounded set with Lipschitz boundary. Let f : Ω×RM×N →

[0,∞) be a Borel function satisfying (4.33). Then

F∞(u, Ω) = F (u, Ω) ∀u ∈ BV (Ω;RM) ∩ L∞(Ω;RM).
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Proof.

It is enough to show F ≥ F∞. for all u ∈ BV (Ω;RM) ∩ L∞(Ω;RM). If F (u, Ω) = +∞ the

result is obvious, thus there is no loss of generality in assuming F (u, Ω) ≤ L < +∞. Then,

by the properties of relaxation (see 1.12), there exists {un} ⊂ W 1,1(Ω;RM) such that

(4.36) F (u, Ω) = lim
n→∞

F (un, Ω) ≤ L < +∞.

Let i ∈ N. Let us define a smooth truncation function ϕi ∈ C1
0(Ω;RM) given by:

(4.37) ϕi(z) :=

{
z if |z| < ei

0 if |z| ≥ ei+1;
|∇ϕi(z)| ≤ 1.

Let us set wi
n := ϕi(un). We have wi

n ⊂ W 1,1(Ω;RM) and

(4.38)

{
‖wi

n‖∞ ≤ ei

∇wi
n(x) = ∇ϕi(un(x))∇un(x).

Since u ∈ L∞(Ω;RM) it is possible to choose i large enough so that u = ϕi(u). Then by (4.37)

we have, for such any i, that

(4.39) ‖wi
n − u‖1 = ‖ϕi(un)− ϕi(u)‖1 ≤ ‖un − u‖1.

By (4.34), (4.37) and (4.38) we have

∫

Ω

f(x,∇wi
n) ≤

∫

{|un|<ei}
f(x,∇un)dx + Λ

∫

{ei≤|un|<ei+1}
(1 + |∇un|)dx + ΛLN{|un| ≥ ei+1}.

By Chebyshev’s inequality we get

∫

Ω

f(x,∇wi
n) ≤

∫

{|un|<ei}
f(x,∇un)dx + Λ

∫

{ei≤|un|<ei+1}

(
1 + |∇un|

)
dx +

Λ

ei
‖un‖1.

77



Now let l ∈ N. By summing for i = 1, 2..., l, we obtain

1

l

l∑
i=1

∫

Ω

f(x,∇wi
n)dx ≤

∫

Ω

f(x,∇un)dx + Λ
‖un‖1

l

l∑
i=1

1

ei
+

Λ

l

l∑
i=1

∫

{ei≤|un|<ei+1}
(1 + |∇un|)dx

Notice that, if we define Ei := {ei ≤ |un| < ei+1}, then Ei are disjoint set; therefore by (4.33)

and (4.36), we get

(4.40)
l∑

i=1

∫

Ei

(1 + |∇un|)dx =

∫
Sl

i Ei

(1 + |∇un|)dx ≤
∫

Ω

(1 + |∇un|)dx ≤ L < +∞.

Then

1

l

l∑
i=1

∫

Ω

f(x,∇wi
n)dx ≤

∫

Ω

f(x,∇un)dx +
K(n, l)

l
;

with K(n, l) := Λ
(
‖un‖1

l∑
i=1

1

ei
+ L

)
and lim

l→∞
lim

n→∞
K(n, l)

l
= 0.

Furthermore we may find some in ∈ {1, ..., l} such that

(4.41)

∫

Ω

f(x,∇win
n )dx ≤

∫

Ω

f(x,∇un)dx +
K(n, l)

l
.

Let us recall that by (4.39) win
n → u in L1(Ω;RM) and by (4.38) ‖win

n ‖∞ ≤ el. Then by (4.36)

and (4.41)

F (u) + lim
n→∞

K(n, l)

l
≥ lim inf

n→∞
F (un, Ω) + lim

n→∞
K(n, l)

l
≥ lim inf

n→∞
F (win

n ) ≥ F∞(u, Ω).

The conclusion follows letting l tend to +∞. ¥

As a consequence of the previous lemma we have the following theorem.

Theorem 4.3 Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Let f : Ω ×

RM×N → [0,∞) be a Borel function, convex in the second variable and satisfying (4.7) and

(4.33). Then

F(u, Ω) ≤ F (u, Ω) for every u ∈ BV (Ω;RM) ∩ L∞(Ω;RM).
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Proof.

Let u ∈ BV (Ω;RM)∩L∞(Ω;RM). By Theorem 4.1 for every sequence {un} ⊂ W 1,1(Ω;RM)

such that un → u in L1(Ω;RM) with ‖un‖∞ ≤ C, we get

F(u, Ω) ≤ lim inf
n→∞

F(un, Ω) = lim inf
n→∞

F (un, Ω),

so that

F(u, Ω) ≤ F∞(u, Ω).

Hence the thesis follows by Lemma 4.2. ¥

The second step is the lim sup inequality: F ≤ F . In what follows A(Ω) denotes the

family of all open subset of Ω and, in the spirit of [5], we will assume the following conditions:

∃G ⊂ Ω with HN−1(G) = 0 such that ∀ξ ∈ RM×N

f∞(·, ξ) is approximately continuous in Ω \G.(4.42)

Theorem 4.4 Let f : Ω×RM×N → [0,∞) be a Borel function convex in the second variable,

satisfying (4.33) and (4.34). Then F (u, ·) is the trace of a finite Radon measure on A(Ω) and

for every u ∈ BV (Ω;RM); we have

(i)

F (u, Ω \ (Cu ∪ Ju)) ≤
∫

Ω

f(x,∇u)dx

(ii) if (4.42) holds, then

F (u, Cu) ≤
∫

Ω

f∞(x,
Dcu

|Dcu|)d|D
cu|;
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(iii) if f∞(·, ξ) is upper semicontinous, then

F (u, Ju) ≤
∫

Ju∩Ω

f∞(x, (u+ − u−)⊗ νu)dHN−1.

Proof.

It is known (see Theorem 4.1.2 of [10]) that F (u, ·) is the restriction to A(Ω) of a Radon

Measure and

0 ≤ F(u,A) ≤ C(LN(A) + |Du|(A)). ∀A ∈ A(Ω).

Therefore, following [29] (Theorem 1.3), it is enough to prove:

(i)
dF (u, ·)

dLN
(x0) ≤ f

(
x0,∇u(x0)

)
for LN − almost every x0 ∈ Ω,

(ii)
dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0,

Dcu

|Dcu|(x0)
)

for |Dcu| − almost every x0 ∈ Ω,

(iii)
dF (u, ·)
dHN−1

(x0) ≤ f∞
(
x0, (u

+(x0)− u−(x0))⊗ νu(x0)
)

for HN−1 − almost every x0 ∈ Ju.

The proof of (i) follows, with minor modifications, the proof of (i) in Theorem 1.3 of [29].

Consider the coercive functional associated to F defined by F 1(u,A) = F (u,A) + |Du|(A).

By Theorem 3.7 of [10] we have that

dF1(u, ·)
dLN

(x0) =
dF (u, ·)

dLN
(x0) + |∇u(x0)| = f1(x0,∇u(x0)) for LN − almost every x0 ∈ Ω,

where

f1(x0, ξ) := lim sup
ε→0

1

εN
inf{F 1(v, Q(x0, ε)) : v ∈ BV (Q(x0, ε);RM), v = ξ(x−x0) on ∂Q(x0, ε)},

where Q(x0, ε) := x0 + εQ with Q = (−1
2
, 1

2
)N . Thus, to complete the proof of (i) it is enough

to show that

f1(x0, ξ) ≤ f(x0, ξ) + |ξ|
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for LN a.e x0 ∈ Ω and for every ξ ∈ RM×N .

Since f is convex, then the function f(x, ·) is continuous for LN a.e. x ∈ Ω. Therefore, by

applying Lemma 1.4 to the function g : Ω×RMN → [0,∞) defined by g(x, ξ) = f(x, T−1(ξ)),

we may find a LN -null set N0 independent of ξ such that g(·, ξ) is approximately continuous

in Ω \ N0. This implies that f(·, ξ) is approximately continuous in Ω \ N0 uniformly with

respect to ξ. Therefore we may assume that f(·, ξ) is approximately continuous in x0. By

choosing as a test function v = ξ(x− x0) we get

f1(x0, ξ)− |ξ| ≤ lim sup
ε→0

1

εN
F (ξ(x− x0), Q(x0, ε)) ≤ lim sup

ε→0

1

εN

∫

Q(x0,ε)

f(x, ξ)dx = f(x0, ξ).

The proof of (ii) follows, with minor modifications, the proof of (ii) in Theorem 1.3 of

[29]. By Lemma 3.9 of [10], for |Dcu|-a.e x0 ∈ Ω there exists a sequence {t(k)
ε } such that

(4.43) t(k)
ε →∞, εt(k)

ε → 0+ as ε → 0+

and

dF1(u, ·)
d|Dcu| (x0) =

dF (u, ·)
d|Dc(u)|(x0) + |a|

= lim
k→∞

lim sup
ε→0+

inf{F 1(v,Q
(k)
ν (x0, ε)), v = t

(k)
ε a⊗ ν(x− x0) on ∂Q

(k)
ν (x0, ε)}

kN−1εt
(k)
ε

,

where
Dcu

|Dcu|(x0) = a⊗ ν, a = au(x0), ν = νu(x0), Q
(k)
ν (x0, ε) := x0 + εQ

(k)
ν with

Q(k)
ν = Rν

(
(−k

2
,
k

2
)N−1 × (−1

2
,
1

2
)
)
,

where Rν denotes a rotation such that RνeN = ν. Take x0 ∈ Ω \G so that all the limit above
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exist and are finite. Choose as a test function v(x) = t
(k)
ε a⊗ ν(x− x0). Then

dF (u, ·)
d|Dc(u)| + |a| ≤ lim

k→∞
lim sup

ε→0+

F 1(t
(k)
ε a⊗ ν(x− x0), Q

(k)
ν (x0, ε))

kN−1εN t
(k)
ε

,

≤ lim
k→∞

lim sup
ε→0+

1

kN−1εN t
(k)
ε

∫

Q
(k)
ν (x0,ε)

f(x, t(k)
ε a⊗ ν)dx + |a|.(4.44)

Then by Proposition 1.3 and the right inequality of (4.33), we get

f(x, t
(k)
ε a⊗ ν)

t
(k)
ε

≤ f∞(x, a⊗ ν) +
Λ

t
(k)
ε

.

Hence, by (4.42), (4.44) and (4.43)

dF (u, ·)
d|Dcu| (x0) ≤ lim

k→∞
lim sup

ε→0+

[ 1

kN−1εN

∫

Q
(k)
ν (x0,ε)

f∞(x, a⊗ ν)dx +
Λ

t
(k)
ε

]
= f∞(x0, a⊗ ν)

= f∞(x0,
Dcu

|Dcu|(x0));

(iii) is proved in part (iii) of the proof of Theorem 1.3 of [29].

By combining the previous theorem with Corollary 4.1 we obtain a relaxation result on

BV (Ω;RM) for discontinuous integrand.

Theorem 4.5 Let Ω ⊂ RN be a bounded set with Lipschitz boundary. Let f : Ω× RM×N →

[0,∞) be a Borel function convex in the second variable satisfying (i) and (iii) of (4.7),(4.25),

(4.33), (4.34), (4.42) and such that f∞(·, ξ) is upper semicontinous. Then

F(u, Ω) = F (u, Ω) for every u ∈ BV (Ω;RM).

While, by dealing with the space BV (Ω;RM) ∩ L∞(Ω;RM), we have, as a consequence of

Theorems 4.3 and 4.4, the following result.

82



Theorem 4.6 Let Ω ⊂ RN be a bounded set with Lipschitz Boundary. Let f : Ω× RM×N →

[0,∞) be a Borel function convex in the second variable satisfying (4.7), (4.33), (4.34),(4.42)

and such that f∞(·, ξ) is upper semicontinous. Then

F(u, Ω) = F (u, Ω) for every u ∈ BV (Ω;RM) ∩ L∞(Ω;RM).

Remark 4.2 Note that, even if only about the regularity in the spatial variable x, Theorems

4.3 and 4.4 improve the relaxation result of [29], since no continuity assumptions with respect

to x are assumed. Furthermore, we emphasize that the convexity assumption, which is not

natural in the case M, N > 1, becomes realistic in the case N = 1, where we deal with

Ω = (a, b) and u ∈ BV
(
(a, b);RM), even if M > 1, since in this special case convexity and

quasiconvexity are equivalent. This is also true if the function f has the following form:

f(x, ξ) = h(x, ‖ξ‖) with h : Ω× (0, +∞) → (0, +∞) convex with respect to ξ.

83



Bibliography

[1] A.Acerbi, N.Fusco. Semicontinuity problems in calculus of variations. Arch. Rational

Mech. Anal. 86 (1984), 125-145.

[2] G.Alberti. Rank one properties for derivatives of functions with bounded variation. Proc.

R. Soc. Edim., Sect. A, Math. 123 A (1993), 239-274.

[3] M.Amar, V.De Cicco. Relaxation of quasi-convex integrand of arbitrary order. Proc. R.

Soc. Edim., Sect. A, Math. 124 (1994), 927-946.

[4] M.Amar, V.De Cicco. A continuity result for integral functionals defined on BV (Ω). To

appear on NoDEA Nonlinear Differential Equations Appl.

[5] M.Amar, V.De Cicco, N.Fusco. A relaxation result in BV for integral functional with

discontinuous integrand. To appear on ESAIM: Control Optimization and Calculus of

Variation.

[6] M.Amar, V.De Cicco, N.Fusco. Lower semicontinuity and relaxation result in BV for

integral functionals with BV integrand. Preprint Me.Mo.Mat. (2006)

84



[7] L.Ambrosio. New lower semicontinuity result for integral functionals Rend. Accad. Naz.

Sci. XL Mem. Mat. (5) 11(1987), no. 1, 1-42.

[8] L.Ambrosio, G.Dal Maso. On the relaxation in BV (Ω;Rm) of quasi-convex integrals. J.

Funct. Anal. 109 (1992), 76-97.

[9] L.Ambrosio, N.Fusco, D.Pallara. Functions of bounded variation and free discontinuity

problems. Oxford University Press (2000).
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