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Introduction

Let A be an arrangement of hyperplanes in ¥V = C", all containing the origin.

For each H € A, let ag be a linear form whose kernel is H. Thendy4 = [[ aa
HecA
is a defining polynomial of A of degree k = |A|. Let Y4 =V \ |J H be the
HeA
open connected submanifold of V' determinated by A. We may ask how various

topological properties of Y4 may be determined from A. This line of investiga-
tion began with work of Arnold [1], Brieskorn [6], and Deligne [10].

In this work we study the cohomology ring H*(Y,4,C) with an approach
of the D-modules theory. We begin given a description of H*(Y4,C). Let
whg = dopg /2miag be a holomorphic 1-form on Y4 associated to H € A. Let
[wr] denote the corresponding De Rham cohomology class. Let R = R(A) be
the graded C-algebra of holomorphic differential forms on Y4 generated by the
[we] and the identity. Brieskorn [6] showed that R ~ H*(Y4,C) as graded
vector space. Orlik and Solomon [20] gave a description of the ring structure of
R. Let £ = £(A) be the exterior algebra of a vector space with basis consisting
of elements ey in one to one correspondence with the hyperplanes H € A. We

say that a subset S of A is independent if (| H has codimension |S|, and is
Hes
dependent otherwise. Thus S is independent when the hyperplanes of S are in

general position. Define a Clinear map 0 : £ — € by 01 =0, deyg = 1 and
8(6H1 .. eHP) = Z(—l)jile[{l .. EIZI\] - EH, .

Let 7 be the ideal of £ generated by all elements d(em, ...en,) where
{H1,...,H,} is dependent. It is proved in [20] that the map eg — [wH] de-
fines an isomorphism between the graded algebras £/Z and H*(Y 4, C). Denote
the poset of intersections of elements of A by L = L(A) ordered by reversed
inclusion, and with a rank function defined by r(X) =codimX, X € L. Orlik-
Solomon [20] constructed £/Z using only L(A).

Let D, = C(z1,...,2,,0/01,...,0/0z,) be the Weyl algebra of rank n

over C and let P = P(A) = Clz1,...,7,,d,'] be the algebra of rational
functions on Y4. In the present work we construct a sequence of P as D,-
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9 Introduction

modules, and obtain the direct sum decomposition of its D,-modules (Chap-
ter 4). Furthermore, using this decomposition, we compute, in the Chapter
5, the cohomology ring H*(Y4). Finally, in Chapter 6, we get the Poincaré
series of P(A). All D,-modules mentioned here are left D,-modules. Let
r =1(A) = 7((geq H) be the rank of the maximal element of L(A), namely,
the cardinality of a maximal linearly independent subset of A* = {ag | H € A}.
Then each element of P can be written as a finite sum of quotients of the
form f/ H?:l ozZ,” where 0 < h < r, {ai,...,;,} is a linearly independent
subset of A*, m; € N, f € C[x] = C[z1,...,2,] and ngl ag” := 1. This
allow us to get the following sequence of holonomic D,-submodules of P :
0=P,Cc(Cx]=FPCP C...CP. =P, where

my...My
Py = { — e | 0 <t <, fT € Clx], my € N} .

mi 81...8
Qg ... Qg

For each X € Ly = {X € L(A) | r(X) = h} consider its dual subspace X* of
(C™)* of dimension h. Let Bx« be the set of all possible bases to X* constituted
with elements of A*. For each X*, and for each basis B = {w,,...,q;, } € Bx~
we define the following holonomic D,,-submodule of Pj,/Py_1

mi...Mp

Ve = {Z (W mod Phl) ‘ it e Clx|, mj € Z+} .

i1 %y

We show in Proposition 4.2.11 that for each basis B € Bx+ the D,-module V)?*
is isomorphic to each other, and after a linear change of coordinates in (C")*
such that X* = (yi1,...,yn), V&, is isomorphic, as D,-module, to Mx: =

CWht1s-- - Un»Oysr---,0y,] where 8,, = 8/dy;. Now let V2 be the C
subspace of Py/Pj_1 generated by all [1/] .5 ], B € Bx-, then the holo-
nomic D,-module Py, /P),_; has the following decomposition

Ph/Ph,1 = @ Z V)?* = @ MX* Xc anOd
XeLy, BEBx+ XeLy
It is possible to determine a basis to yinod applying the notion of not bro-
ken circuit (nbc) to Bx+. Let Vx« be the C-vector space generated by the set
{1/Tl e | B € Bx+}, then {1/]],c5 | B € Bx- and B is anbc} is a ba-
sis to Vx«, cf. Lemma 4.2.16, and
Theorem 4.2.23 For 1 < h <r wehave P, = @ Mx+ Qc Vx+. In partic-

XEL(A)
(X)<h

ular P =@ xer ) Mx» ®c Vx-.

Theorem 4.2.24 The natural map @XeLh Mx+ @c Vx» % Py, /Pr_; is an iso-
morphism of D,-modules.

This allow us to decompose the De Rham complex for Y4 as a direct sum of
complexes with cohomology just in one degree and 1-dimensional: Define the
following cochain complex (L}, dz:) :
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?L:Ei((yl::yh)): { Z fi1...is.y

1<i1<..<is<n 1---Yh

dyi, - .. dy;, }

with §c: : £ — L} the usual differential, and f;,...;, € Clyn+1,--+,Yn, Oy, - - -5 Oy, ]-

Thus, cf. Corollary 5.1.4, the groups of cohomology H*(L},) are C- dy1 ...dyp

1 eee
in dimension h and 0 elsewhere. Then for each X € Ly(A) we associate the

following complex

‘Ch(X)Z @ ‘Ch({aju---aajh})

(ajysemagy y=X*
(G15---5 jp) nbe

where Lp({ej,,...,;,}) is the same complex £} but it is just defined for
{aj,,-..,aj,}. Finally, associated to the D,-module P}, the complex Ly (Py) =
@Dxcr, £r(X) allows us to calculate the h-th cohomology of Y4.

Theorem 5.2.8 For 1 < h < r there exists an isomorphism between H"(Y,)
and Hh(ﬁh('Ph)) :

1
Hﬁ)R(YA) = Hh(‘ch(,Ph)) = @ C- 7@-daj1 A ... Ndaj,

y=X* Qjy - Qg

Let P(A,t) be the Poincaré polynomial of the arrangement A, cf. Defini-
tion 1.6.1, we see in Theorem 6.1.14 that the Poincaré series Poin(P(A),t) of
the graded module P(A) is equal to (1 —t)~"Poin(A,t).
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Chapter 1

Combinatorics of an
arrangement

In this chapter we collect some definitions, notations and results about the
combinatorics of an arrangement of hyperplanes that will be used in the rest of
this work.

1.1 Definition of an arrangement.

We let N = {0,1,2,3,...} the set of natural numbers and for k € N let [k] =
{1,2,...,k} be the set of the k first non-negative integers (where [0] cef @)

Definition 1.1.1 A central arrangement of hyperplanes is a finite collection of
codimension one subspaces of a complex vector space V. Let us denote it by A
and call it simply an arrangement or n-arrangement if dimV = n.

The cardinality of .4 will be usually denoted by k, and very often we will fix an
arbitrary linear order on A4, i.e., put A = {Hy,...,Hg}.

Sometimes, when it is convenient, we fix a linear basis {z1,...,2,} of V*
and identify V with C" using the dual basis in V. Then in order to define a
hyperplane H; of A it suffices to fix a linear form a; € V* such that H; = ker(«;).
This linear form is uniquely defined up to multiplication by a nonzero element
of C. We denote by A* = {a,...,ar} the set of those linear forms and by
dg = Hle a; the homogeneous polynomial of degree k that also defines A.

1.2 The intersection poset L(.A).

In order to define the Orlik-Solomon algebra of A we do not need to know the
hyperplanes, it suffices to know the combinatorics of A, i.e., its intersection
poset L(A). We will explain in details on this fact in Chapter 2.

5



6 Combinatorics of an arrangement

Definition 1.2.1 Let A be an arrangement and let L = L(A) be the set of all
nonempty subspaces of V' that are intersections of some elements of A. Define
a partial order on L by

X<Y<=YCX
Note that
e V as the intersection of the empty set of hyperplanes of A is the unique
minimal element of L.
e T(A) = Nk_, H; is the unique maximal element of L because we consider only
central arrangements.
Since each element of A* is homogeneous, T'(A) contains 0 .

Definition 1.2.2 Define a rank function on L by r(X) = codimX. Thus
r(V) =0 and r(H) = 1 for every H € A. Call such an H an atom of L.
Let X,Y € L. Define their meet by

XAY=n{ZeL|XUYCZ}.
If X NY # @, we define their join (the leats upper bound) by
XvYy=XnY.
The poset L has the following properties:
Lemma 1.2.3 Let A be an arrangement and L = L(A). Then
1. L is atomic, i.e., every element of L\ {V} is a join of some atoms.

2. L is ranked, i.e., for every X € L all mazximal linearly ordered subsets
V=Xe<X1<...<X,, =X

have the same cardinality, namely the codimension of X. Thus L is a
geometric poset.

3. All joins exist, so L is a lattice. For oll X,Y € L the rank function
satisfies

r(XAY)+r(XVY)<r(X)+r{Y) .
Thus for a central arrangement, L is a geometric lattice.

Definition 1.2.4 The rank of A, r(A), is the rank of the maximal element
of L(A): T(A) = nk_ H; . We will call the n-arrangement A essential if
r(A)=n.

Clearly r(A) < n and A is essential if an only if it contains n linearly independent
hyperplanes. For a central arrangement, this is equivalent to the condition

T(A) = {0}.
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Definition 1.2.5 Let L,(A) ={X € L | r(X) = p}. The Hasse diagram of
L has vertices labeled by the elements of L and arranged on levels L, for p > 0.
Suppose X € L, andY € L, 1. An edge in the Hasse diagram connects X with
YifX<Y.

1.3 Examples.

Example 1.3.1 Let By be the Boolean arrangement defined by
dp, = T1%2 ... Ty

this is the arrangement of the coordinate hyperplanes in C"*.

x1=x2=x3=0 x1=x2=x4=0 x1=x3=x4=0 X2=x3=x4=0

Figure 1.1: The Hasse diagram of dg, = x1X2X3X4.

Example 1.3.2 Let Br be the Braid arrangement defined by
dgr = [l (@i—x5)

1<i<j<n
this is the arrangement such that Yz, <« cn \ U ker(z; —z;) define the
1<i<j<n
pure braid space contained in C™.

Example 1.3.3 Let B' be the arrangement defined by

dg+ = ] (zi+z))
1<i<j<n

The arrangements By and BT are essential, Br is only central: T'(Br) is the
line {(z1,...,2,) €C" |1 =22 =...=12p} .



8 Combinatorics of an arrangement

x1=x2=x3=x4

x1=x2= x1=x2= x1=x2 x1=x4 x1=x3 x1=x3= X2=x3=
=x3 =x4 x3=x4 X2=x3 x2=x4 =x4 =x4

XD

Figure 1.2: The Hasse diagram of dg, = [] (% —x;j).

x1=x2= x1=x2= -x1=x2= x1=x2= x1=x3= x1=-x2= x1=x2= x1=-x2= x1=-x2= X2=xX3= x1=x2=
-X3=x4 =x3=0 =X3=x4 =-X3=-x4| =x4=0 =X3=-x4 =x4=0 =-Xx3=x4 =x3=x4 =x4=0 =X3=-x4
x1=-x3 x1=-x3 x1=-x4 x1=-x3 x1=-x2 X2=-Xx3 x1=-x2 x1=-x3 X1=-x4 x1=-x2 x1=-x4 Xx2=-x3 x1=-x2 x1=-x2 Xx2=-x4
Xx2=-x3 x1=-x4 X2=-x3 Xx3=-x4 x1=-x4 x3=-x4 x1=-x3 Xx2=-x4 X2=-x4 X2=-x3 x3=-x4 X2=-x4 x3=-x4 X2=-x4 Xx3=-x4
x1=-x3 X2=-x3 Xx1=-x4 x1=-x2 X3=-x4 X2=-x4
\
. .
Figure 1.3: The Hasse diagram of dg+ = [] (x1 +x;).
1<i<j<4

1.4 Subarrangements.

Definition 1.4.1 Let (A,V) be an arrangement. If M C A is a subset, then
(M, V) is called a subarrangement of A. For X € L(A) define a subarrange-
ment Ax of A by

Ax ={He A| X CH}
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Define an arrangement (A%, X) in X by
A¥={XNH|HeA\ Ax and X N H # @}

Note that Ay = @ and if X # V, then Ax has center X in any arrangement.
We call AX the restriction of A to X. Note that AV = A.

The method of deletion and restriction is a basic construction in [20], [21] to

prove that the Orlik-Solomon algebra is isomorphic to the cohomology algebra

of Y4 ey \UgeaH =V \ d;ll(O), see Section 2.5. This method follows by

induction in the cardinality of A, and for this last one we give the following
definition:

Definition 1.4.2 Let A be a nonempty arrangement and let H € A. Let A' =

A\ {H} and let A" = A™. We call (A, A', A") a triple of arrangements and
H the distinguished hyperplane.

1.5 The Mobius Function.

Definition 1.5.1 Let A be an arrangement. Define the Mobius function
pa=p:LxL—7Z as follows:

(X, X)=1 ifX €L,

Y uw(X,Z2)=0 XY, Z€Land X <Y,
X<Z<Y
uw(X,Y)=0 otherwise

Note that for fixed X € L the values of u(X,Y") may be computed recursively.
There are useful reformulations of p(X,Y).

Lemma 1.5.2 (see [21]) Let A be an arrangement. For X,Y € L with X <Y,
let S(X,Y) the set of central subarrangements M C A such that Ax C M and
T(M)=Y. Then

pXY) = D ()
MeS(X,Y)

Definition 1.5.3 Let A be an arrangement. Let ch(L) be the set of all chains
in L:
ch(L) ={(X1,...,X,) | X1 <... < X,}
Let ch[X,Y] = {(X1,...,X,) €ch(L) | X1 = X, X, =Y}. Denote the cardi-
nality of ¢ € ch(L) by |c|.
Lemma 1.5.4 (see [21]) For all X,Y € L
pXY)= Y (-net
cEch[X,Y]

Theorem 1.5.5 (see [21]) If X <Y, then u(X,Y) # 0 and sign(X,Y) =
(=1)r(X)=r(¥)



10 Combinatorics of an arrangement

1.5.1 The Function pu(X).
Definition 1.5.6 For X € L define pu(X) = p(V, X) .

Clearly u(V) =1, u(H) = —1, for all H € L and if 7(X) = 2, then p(X) =
|[Ax| — 1. In general is not possible to give a formula for p(X).

Example 1.5.7 (see [21]) Consider the Boolean arrangement defined by dp,
T1T2 ... 2T, Then for X € L: p(X) = (—=1)"(X).

1.6 The Poincaré Polynomial.

Definition 1.6.1 Let A be an arrangement with intersection poset L and Mobius
function p. Let t be an indeterminate. Define the Poincaré polynomial of A by

Poin(A,t) = Z w(X)(=t)" X
XeL

The Poincaré polynomial is one of the most important combinatorial invari-
ants of an arrangement. It follows from Theorem 1.5.5 that Poinc(A,t) has
nonnegative coefficients.

Example 1.6.2 Let A be the 3-arrangement defined by d4 = z12223(x1 + 22 —
z3). Then

Poin(A,t) =1+4t +6t> +3t3 = (1 + ¢)(1 + 3t + 3t%) .
Example 1.6.3 The Poincaré polynomial of the Boolean arrangement dgy =

T1...%y 18
n

Poin(Bo,t) = 3 (Z) th=(1+t)" .

k=0
Example 1.6.4 (see [21]) Let Br be the braid n-arrangement. Then
Poin(Br,t) = (1+t)(1+2t)...(1+ (n—1)t) .

Note that the factor (1 + t) divides the Poincaré polynomial of every cen-
tral arrangement (cf. [21, Proposition 2.54]), but more factors of the form
(14 bt) € Z[t] do not exist in general.

We recall the following well known results (see [21]):
Lemma 1.6.5 Let A be an arrangement. Then
Poin(A,t) = > (=1)M(=t)"™)
MCA
where the sum is over all central subarrangements M of A.

Theorem 1.6.6 (Deletion — Restriction) If (A, A', A") is a triple of arrange-
ments, then
Poin(A,t) = Poin(A',t) + tPoin(A",t) .



Chapter 2

The Orlik-Solomon algebra

In this chapter we associate to an arrangement A a graded anticommutative
algebra A(A) over C, which in the literature has become known as the Orlik-
Solomon algebra . The algebra A(A) was first defined in [20], where it was
used to prove that for a complex arrangement A, A(A) is isomorphic as a
graded algebra to the cohomology algebra of the complement Y 4. This algebra
is constructed using only L(A) .

2.1 Construction of the algebra A(A).

Definition 2.1.1 Let A be an arrangement over C . Let By = @ Cem and
HeA
let E = E(A) = A(E1) be the exterior algebra of E;.

Note that E; has a C-basis consisting of elements eg, of degree 1, in one-to-one
correspondence with the hyperplanes H € A. If we write uv = u A v, then
e2, =0, egex = —ekepn for H, K € A. The algebra E is graded via

E:GBEIM

where Ey = C, E; agrees with its earlier definition and E, = APE; as C-module
is free and has the distinguished basis consisting of monomials es = e;, ...e;,
where S = {i1,...,i,} is running through all the subsets of [k] of cardinality p,

i1 <12 <...<1p, and e;; correspond to H;;, € A: e;; def e, - Throughout we
call this monomials standard and identify i; with H;, .

Definition 2.1.2 Define a C-linear map 0 =0g : E — E by 01 =0, Oeg =1
and for every S = {i1,...,ip} C [k] of cardinality p > 2

p
Oes = B(eil . eip) = Z (—I)T_leil .. e/; -84, = Z (—l)r_lesr 5
r=1

11



12 The Orlik-Solomon algebra

where S,. is the complement in S to its r-th element.

Thus the graded algebra E is a differential graded algebra with respect to
the differential 0 of degree -1.

Recall two familiar properties of the exterior algebra.
Lemma 2.1.3 The map 0 : E — E satisfies

1. 62 =0

2. ifu € Ep and v € E, then 0(uv) = (Ou)v + (—1)Pu(ov).

We see from 1) that (E, 9) is a chain complex. Part 2) says that 9 is a derivation
of the exterior algebra.

For every S C [k], we denote NS = ;g H;. Since A is central, NS € L for
all S. If p = 0, we agree that S is the empty set, es = 1 and NS = V. Since the
rank function on L is codimension, it is clear that r(NS) < |S].

Definition 2.1.4 We call S independent if r(NS) = |S| and dependent if
r(NS) < |S].
Let S, denote the set of all orderly p-tuples (H;,,...,H;,) and let S = Up>0Sp.

Then the tuple S is independent if the corresponding linear forms o, , ..., a;,
are linearly independent. Equivalently, the hyperplanes of S are in general
position.

Definition 2.1.5 Let A be an arrangement. The Orlik-Solomon (OS) ideal of
A is the ideal I = I(A) of E generated by Oeg for every dependent S € S.

Clearly I(A) is a graded ideal because it is generated by homogeneous elements.
Let I,(A) = I(A) N E,. Since the elements of S; are independent, Iy = 0. The
only dependent elements of Sy are of the form (H, H), so es = €% = 0 and we
have I; = 0. Then

I(4) = @ (W)

p>2

Definition 2.1.6 Let A be an arrangement. The OS algebra of A is the graded
algebra A = A(A) = E/I. Let ¢ : E — A be the natural homomorphism and
let Ap = p(Ep). If H € A, let ag = p(en) and if S € S, let as = p(es).
Lemma 2.1.7 If S € S and H € S, then es = egleg.

Proof. If H € S, then eges = 0. Thus 0 = d(eges) = es — egles. [ |

In Definition 2.1.5, the set of generators can be made smaller.
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Definition 2.1.8 A p-tuple S = (i1,...,ip) C [k] is a circuit if it is minimally
dependent. Thus (H;,, ..., H;,) is dependent, but for 1 <1 < p the (p—1)-tuple
(Hiy,- - ,fIZ, ..., H;,)) is independent.

Lemma 2.1.9 An OS ideal is generated by Oer for every circuit T € S

Proof. Let S be a dependent set and T' C S a circuit. Then es = *eregs\r.
Using the Leibniz rule, Lemma 2.1.3(2), we have
Oes = t0eres\r £ erdes\r-

The result follows using Lemma 2.1.7 for the last term of the above sum. |

Note that, by Lemma 2.1.7, I contains eg for every dependent set S. This
implies that A is generated as a C-module by the images of the eg such
that S is independent.

Since Iy = 0 we have Ay = C. Moreover the elements ag are linearly in-
dependent over C because I; = 0. Hence 41 = P HeA Capr. According to
Definition 2.1.4, if p > n, then every element of S, is dependent and it follows
from the last observation that A, = 0. Thus

A=Co» @ Can® D A,
HecA p=2

Example 2.1.10 (see [21]) Suppose n = 2 and A = {Hy,..., H}. Write a; =
am;. Then the OS algebra of A is

k k-1
A(A) =Co @ Cap @ P Capay.
p=1 p=1

We have computed Ay, A; and we know that A, = 0 for p > 2. It remains to
compute Ap. Since dimV = 2, (H;, H;, H;) is dependent for all (7, 7,1). Thus I
contains the element
O(eiejer) = eje; — ejer + ejej = e;ej + ejer + ege;.
It follows that A, is spanned by a,a, subject to the relations
a;aj +aja; +aja; =0

for all (4,7,1). This shows that A, is spanned by apay, for 1 < p < k. It remains
to show that the sum is direct. Suppose E’;;i cpapar = 0 with ¢, € C. Then

Z’;;i cpeper € In. Recall that I, is spanned by the elements O(e;eje;). Since
00 = 0, we have 0I, = 0 and hence
k=1 k=1

(X cpeper) = 2 cpler —€p) = 0.
p=1 p=1
Since ey, ..., e are linearly independent over C, we get that ¢, = 0 for all p.

Example 2.1.11 If A is the Boolean arrangement, then S = (Hy,..., Hp) is
independent if and only if Hy,..., H, are distint hyperplanes. Hence if S is
dependent, then es = 0. Thus I =0 and A = E.
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2.2 A(A) is an acyclic complex.
Lemma 2.2.1 9I C I.

Proof. Since I is generated over C by elements of the form erdeg, where T, S €
S and S is dependent, using the Leibniz rule we have

6(67‘865) = Oerleg € I

whence [ is invariant with respect to 0. [ |

Now we can give the following

Definition 2.2.2 Since 0gl C I, we may define 04 : A — A by Oap(u) =
wOg(u) forue E

Thus A receives a piece of structure from E, 04 defines the structure of non-
commutative differential graded algebra on A. We have the following

Lemma 2.2.3 The map 04 : A — A satisfies
1. 943 =0,
2. ifa€ Ay and b € A, then 0a(ab) = (0aa)b + (—1)Pa(04b),
3. if A is not empty, then the chain complex (A,04) is acyclic.

Proof. Parts 1. and 2. follow from the corresponding facts for O .

Since 94 is homogeneous of degree -1, (A4,04) is a chain complex.

It follows from 1. that Im04 C ker 94 . To prove that the complex is acyclic we
must show the reverse inclusion. Since 4 is not empty, we may choose H € A.
Let v = ey, b = p(v) and let a € A. Choose u € E with p(u) = a. Then
Og(vu) = (Opv)u — v(Ogu) = u — v(0pu). Applying the C-algebra homomor-
phism ¢ to the first and last terms gives a = 94(ba) +bd4a for all a € A . Thus
Imdys D kerdy . [ ]

2.3 The Structure of A(A).

We decompose the algebra E into a direct sum indexed by elements of L whence
we have a finest grading on E, the grading by the Boolean poset of all subsets
of [k].

Definition 2.3.1 For X €e Llet Sx ={S€S: NS =X} and let

Ex = Z Ces.
SeESx

Lemma 2.3.2 Since S = Uxecr.Sx is a disjoint union, E = ®xcrEx is a
direct sum.
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Notice that this grading is in general incomparable with the standard grading
by rk(NS) .

The algebra A has an analogous direct sum decomposition:

Definition 2.3.3 If X € L, let Ax = p(Ex).
Theorem 2.3.4 Let A be an arrangement and let A = A(A). Then

A= ®X€L Ax

n
and this grading is finer than the standard grading A = @ A, .
p=0

Proof. Clearly any eg is homogeneous. If T is a circuit in [k] and NT = X
then NT; = X for every ¢ € T. Thus der € Ex. Let Ix = I N Ex. Using
Lemma 2.1.9, this shows that [ = ®xcrlx. Thus A = ©xecrAx-

The second statement follows from the fact that A is generated as C-module
by the images of eg with S independent. For such an S we have rk(NS) = |S|.
This shows that

A, = @ Ax.

X€EL,

2.3.1 Filtration of A(A) by L(A).

The above grading of A by L induces a filtration of A that can also be de-
fined independently. Among subarrangements of an arrangement .4 there are
the ones corresponding to elements of L. Recall that all the subarrangements
Ax are central for every X € L. They can be completely characterized also by
the property of being closed. This means that with several hyperplanes they
contain all hyperplanes dependent of them.

We want to show that the graded algebras A(Ax) form a filtration of A(A).
First, if A is a subarrangement of A, then we view E(A) as a subalgebra of E(A)
generated by all the ey with H € A, and L(A) as a sublattice of L(A). Note

that S(A) C S(A) and an element S € S(A) is dependent viewed in S(A) if
and only if it is dependent in S(A). Notice that the map g 1) is the restriction

of g4y to E(A), and A(A) = E(A)/I(A). Clearly

(2.1) I(A) C I(A) N E(A)

Definition 2.3.5 Let A be a subarrangement of A. Since I(A) C I(A)N E(A),

the inclusion E(A) C E(A) induces a C-algebra homomorphism

t: A(A) — A(A) such that for He A
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vemg + I(A)) =em + I(A).
Note that ¢ is a monomorphism precisely when in (2.1) holds the equality.
Lemma 2.3.6 For every X € L(A) holds I(Ax) = I(A) N E(Ax).
The next result follows from Lemma 2.3.6.

Proposition 2.3.7 The map ¢ is a monomorphism for A= Ax.

Corollary 2.3.8 The correspondence X +— A(Ax), X € L, defines a mono-
tone map of L to the poset of graded subalgebras of A ordered by inclusion, i.e.,
a filtration of A.

Proposition 2.3.9 The filtration {A(Ax)}xer is induced by the grading A =
®verAy (A). More precisely, Ay (Ax) = Ay (A) for every X,Y € L such that
Y < X, whence A(Ax) = ®y<x Ay (A).

Proof. Let + : A(Ax) — A(A) be the monomorphism of Proposition 2.3.7.
The module Ay (A) = ¢(Ey(A)) is spanned over C by all elements eg + I(.A)
with S € Sy(A). Similarly Ay (Ax) is spanned over C by all elements eg +
I(Ax) with S € Sy(Ax). Since Sy(A) = Sy (Ax), we have 1(Ay(Ax)) =
Ay (A). Since ¢ is a monomorphism, this completes the proof. |

2.4 Grobner basis for OS ideals.

Recall that we fixed an arbitrary linear order on an arrangement 4. This order
induces the degree lexicografic order (deg-lex) < on the set of all standard
monomials eg of E :

It S = (i1,-.-,9p) , T = (j1,.--,J4q) € S where i1 < ... <ipand j1 < ... < jq
then

p<gq
ées Rer <—
or p=gq and eg ez €T -

The basis of E consisting of standard monomials is multiplicative up to %, i.e.,
the product of two standard monomials is either 0 or a standard monomial per-
haps with the negative sign; and the deg-lex order is multiplicative, i.e., invariant
under multiplication by monomials in the same sense as above. Thus we can
apply theory of Grobner basis to the ideal T = I(A), and hence show that the
C-algebra A(A) is a free C-module by constructing a standard C-basis for A(A).

Before our principal statement we recall and give some definitions.

Definition 2.4.1 A standard p-tuple S € S is a broken circuit if there exists
H € A such that H < Hj for all j € S and (H,S) is a circuit.
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It is clear that every broken circuit is obtained by deleting the minimal element
in a standard circuit, and every broken circuit is independent.

Definition 2.4.2 A standard p-tuple S is called not broken circuit (nbc) if
it does mot contain any broken circuit. Define

Cp:={S €S, | S is standard and nbc}
Let C = U,,ZOC,,.
Note that if S is a nbc, then S is independent.

Definition 2.4.3 Let C = C(A) be the C-module defined as follows. Let Cy =
C, and for p > 1 let C, be the free C-module with basis {es € E | S € C,}. Let
C=C(A)= @ Cp. Then C(A) is a free graded C-module.

p>0
By definition, C'(A) is a submodule of E(A) but in general C'(A) is not closed
under multiplication in E(A), so C(A) is not a subalgebra.

Definition 2.4.4 Let Cx = Cx(A) = C N Ex. Then each Cx is a free C-
module for every X € L(A).

Notice that since C is spanned by monomials it is naturally graduated by [k]
and L(A). Since if S € Cp, S is independent, the latter grading is finer than the

former, i.e., C, = @ Cx for every 0 < p, and hence C = @ Cx.
XEL, X€eL

Lemma 2.4.5 Let Hy be the minimal element of A and write e1 = epr,. Then
e1C C C, so C is closed under multiplication by e;.

Proof. Since a broken circuit is obtained from a standard circuit by deleting
the minimal element, no broken circuit has the form (Hy,S). [ |

Lemma 2.4.6 Suppose A is not empty. Let Oc denote the restriction of the
map 0 : E — E to C. Then 0c(C) C C and (C,0¢) is an acyclic complez.

Proof. Deleting an element of a nbc p-tuple result a nbe (p — 1)-tuple. This
shows that 0c(C) C C. It is clear that ImOc C ker(d¢) because 82 = (0r|c)?.
Now, suppose ¢ € C and dcc = 0. By the Lemma 2.4.5 e;c € C and ¢ =
¢ — e1(0cc) = Oc(erc) € OcC. This shows that the complex is acyclic and if
Xel,:

oc(Cx)C @ Cy.

Y<X
Y€EL,_1q

Lemma 2.4.7 For every X € L(A) \ {C"} the restriction of 0 to Cx is injec-
tive.
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Proof. Let i be the minimal element of [k] x aef {i€lk]|3S€Sx and i€ S}
It follows from definition of C'x that i € S for every es € Cx whence ¢;Cx = 0.
Thus e;0c = ¢ — d(e;c) = ¢ for every ¢ € Cx. This shows that 9 restrict to Cx
is injective. |

Theorem 2.4.8 Let B = {0eg| S is a circuit}. Then B is a Grobner basis of
I

Proof. Recall that the initial monomials of elements from B are their largest
monomials in the deg-lex order. Thus in(deg) = es, where S1 = (io,...,dp) if
S = (i1,42,...,4p), whence In(B) ef {in4(0es) | Oes € B} correspond to the
broken circuits. Then the statement of our Theorem, by a known fact of the
Grobner basis theory, means that

(2.2) In(I) = (In(B))

Now, the natural linear complement to (In(B)) (In(I)) namenaly the free C-
module spanned by all the monomials of E not divisible by any element of In(B)
(resp. no in In(I)) is C, the module of the Definition 2.4.3, (is denoted by C).
Clearly

E=IC

(as C-modules) whence the restriction of ¢ (see Definition 2.1.6) to C' is a linear
isomorphism C' — A. Since (In(B)) C In(I) it is always true that ¢(C) = A
and (2.2) is equivalent to

ker(p|o) = 0

i.e., nbc-monomials are independent in A.

Since ¢ is homogeneous with respect to the grading by L(A) it is sufficient to
prove that ¢ restrict to Cx is injective for every X € L(A). We use induction
on r(X):

o If (X)) =0, ie, X =V then Cx = C = Ax and ¢ restricted to Cx is
the identity map.
e Suppose r(X) = r > 0. Consider the commutative diagram

6|CX
Cx —— Cr

l‘p\cx l‘ﬁ\cr_l

Oa
AX —X) Ar—l

By the Lemma 2.4.7, 9 is injective on Cx. Also the restriction of ¢ is injective
on C)._1 by the inductive hypothesis. Thus ¢ is injective on C'x, which com-
pletes the proof. [ |
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Corollary 2.4.9 The algebra A(A) is a free graded C-module. The C-modules
Ax(A) for X € L and Ap(A) for p > 0 are also free. Moreover the set

{es +I | S is standard and nbc}
is a basis for A(A) as a graded C-module.

Proof. The Cmodules Cx (A) are free by definition. It follows from the The-
orem 2.4.8 that Cx(A) = Ax(A). Thus Ax(A) is a free C-module. Since

Ap = @ Ax, it is also free. The remaining assertions follow from the facts
X€EL,
that C = @ Cx, A= @ Ax and the Theorem 2.4.8. |
XeL XeL

We closed this section with a Theorem that connect the Orlik-Solomon al-
gebras to a triple (A4, A", A") .

Theorem 2.4.10 (see [21]) Let A be an arrangement. Let Hy € A and let
(A, A", A" be the corresponding triple. Let i : A(A') — A(A) be the natural
homomorphism and let j : A(A) — A(A") be the C-linear map defined by

j(aHi1 ...aHip) = 0 5
j(aHl aHil e a/Hip) = aH1|"1H,'1 e aHlﬂH,'p

for (Hy, ...H;)) € S(A"), where 1 < i1 < ... < ip, < k. Then the following
sequence is exact:

0 — A(A") =5 A(A) L A(4") — 0 .

2.5 Differential Forms.

In this section we study the algebra R(A) of differential forms generated by 1
and the differential forms wg = dag/ag for H € A. This algebra was first
computed by Arnold [1] for the braid arrangement. Brieskorn [6] defined it for
all arrangements and showed that it is isomorphic to the cohomology algebra.
Its isomorphism with A(A) was established by Orlik-Solomon [20] for central

arrangements. Here we show the isomorphism A(A) = R(A) by induction by
means of the deletion and restriction method.

2.5.1 The de Rham Complex.

Let (A, V) be a central arrangement. Let S be the symmetric algebra of V* and
let F' be the quotient field of S. Recall that we have chosen a basis z1,..., 2,
for V* so we get S = C[x] = C[z1,...,z,] and F =2 C(x) = C(z1,...,2,). We
view F ®c V* as a vector space over F' by defining f(g ® @) = fg ® a where
f,9 € F and a € V*. There exists a unique C-linear map d : F — F  V*
such that d(fg) = f(dg) + g(df) for f,g € F and da € C for a € V*. In terms
of the above basis, the differential df is given by the usual formula
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.9 .9
dfzgafi@:ﬂz :Zzzlawfzd.’l}z

Note that FQ V* = Fdx1 & ... ® Fdx,, .
Definition 2.5.1 Let Q(V) be the exterior algebra of the F-vector space FQV™*
graded by Q(V) = EHBO QP (V) where

=

QP(V): @ Fda:z-l/\.../\d;cip

1<i1<...<ip<n

We write wn = w A for w,n € Q(V), and identify Q° with F. The elements
of Q?(V) are called rational differential p-forms on V. We list some well-known
properties of d.

Proposition 2.5.2 The map d: F — F @ V* may be extended in an unique
way to a C-linear map d : Q(V) — QUV') with the following properties :

1. d*> =0,

2. ifweQP(V) and n € QV), then d(wn) = (dw)n + (—1)Pw(dn),

S ifw=73 fi. i, dwi ...dv;, where 1 <iy <...<ip,<nand f;. i, €F,
then

dw = i > (0f..i, [0x;)dzjdx;, . .. dx;, .
=1

J

2.5.2 The Algebra R(A).

Definition 2.5.3 Let A be an arrangement. For H € A, let wy = dag/ag €
OY(V). Let R = R(A) be the C-subalgebra of Q(V) generated by 1 and wy for
He A

Let R, = RN QP(V). Since R is generated by 1 and the 1-forms wg, it is

naturally graded R= @ R, .
p=0

Example 2.5.4 (see Example 2.1.10) Let A = {Hy,..., H} be a central 2-
arrangement. Write w; = wg,. Then

k k—1
=1 =1

We know that Ry = C and that R, = 0 for p > 2. By definition wy, ... ,w; span
Ry over C. These 1-forms are linearly independent over C because the rational
functions 1/az,...,1/ay are linearly independent over C. Since w? = 0 and
wiw; = —w;w;, the space Ry is spanned over C by the w;w; with ¢ < j. In order
to discover the remaining relations among these generators, let x,y be a basis
for V* and write a; = a;z+b;y with a;,b; € C. Then w; = (a;/a;)dz+ (b;/ai)dy
and we have
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daidaj = (az-bj — b,-aj)dmdy
Thus for any 4, j,] we have

a; a; q
oqdaidog + oidadoy + ajdada; =det | by by b | dedy =0
a; a;

because the third row is a linear combination of the first two. If we multiply
this equation by 1/(oaa;) we get

w;iw; + wjwy +wjw; =0

In particular, we have w;jw; = wiwr — wjwy if 1 <1 < j <k, so Ry is spanned
by the elements w;wy for 1 < 4 < k. It remains to show that these elements
are linearly independent over C. Define an F-linear map 0 : Q%(V) — QY(V)

k—1
by d(fdzdy) = fxdy — fydz. Then O(ww;) = wj —w;. If Y ciww = 0 with
=1
k-1
¢; € C, then applying 9 gives > ¢;(w; — wi) = 0. Since wi,...,wy are linearly
i=1
independent over C, we get ¢; = ... = ¢x_1 = 0. This proves the assertion.

Lemma 2.5.5 (see [20], [21]) There exists a surjective homomorphism
v: A(A) — R(A) of graded C-algebras such that y(any) = wu for oll H € A.

2.5.3 Deletion and Restriction.

Let A be a nonempty arrangement, let H; € A, and let (A, A", A") be the
inductive triple with respect to Hy. Note that R(A') and R(A) are both sub-
algebras of (V) and that R(A') C R(A). We shall see that there is a short
exact sequence of C-modules

0 — R(A") -5 R(A) -4 R(A") — 0.

We define the map j with the help of the Leray residue map on differential
forms. Let a; = am, and let S(,,) be the localization of S at the prime ideal
(a1). By definition, S(,,) is the subring of F' consisting of all f/g such that
f,9 € S and ¢ is prime to a;. Let p : V* — H7 be the restriction map and
let y; = p(x;). Let C(Hy) be the subfield of F associated to Hj, then we may
extended p uniquely to a C-algebra homomorphism p : S(,,) — C(H;). Both
existence and uniqueness follow from the formula

p(f19) = Fyr,- - yn)/9(y1s-- - yn) -

Note that g(y1,-..,yn) # 0 because g is prime to «;. Define a C-subalgebra Q4
of Q(V) by

Q= @ @ S(al)dmil ... d.’L','P .

p=01i1<...<ip
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This subalgebra does not depend on the basis for V*.

Lemma 2.5.6 The map p: S(o,) — C(Hi) may be extended in a unique way
to a C-linear map p : 4 — Q(H1) such that for w,n € V1, f € S4,), and
B € V* we have

4. Ifw=73" fi, . s,dzs ... dx;,, then

p(W) =3 firyoiy Wi s Un)dys, - - . dyi, -

Lemma 2.5.7 Suppose § € V*\ {0}. Ifw € Q and (dB)w = 0, then there
exists ¢ € Q1 with w = (dB)Y .

Proof. We can choose a basis z1,...,z, for V* such that 8 = 1. Assume that
wis a pform : w =) fi,..i,dz;, ...dr;, where f; ; € S,, and the sum is
over all 1 <4; < ... <4, <n. Then

0= (d.CL'l)w = Z f,-l__,,-pd;clda:z-l e d.'L'ip
where the sum is over all 2 <4; < ... <i, <n. Thus f;; . ;, =0ifi;, >2. N

Definition 2.5.8 Say that ¢ € Q(V) has at most a simple pole along H; if
a1¢ €.

Lemma 2.5.9 Suppose ¢ € Q(V) has at most a simple pole along Hy and that
dp = 0. Then there exists 1,0 € Q1 such that

¢ = (don/an)p +6 .
The form p(y) € Q(H,) is uniquely determined by ¢ .
Proof. Since d¢ = 0, it follows from Proposition 2.5.2(2) that

d(a1¢) = (dou )¢ — ardg = (dai)¢

Since a;¢ € 1 by hypothesis and d€); C 4, it follows from Lemma 2.5.7 that
there exists 6 € 2 such that d(a1¢) = (day)8. Thus (dai)¢ = (day)f , which
implies (day)a; (¢ —80) = 0. Since a1 (¢p—0) € Q , it follows from Lemma 2.5.7
that there exists ¢ € Q; such that a;(¢ — 6) = (day)y. This proves the exis-
tence of # and 1 .

To prove the uniqueness of p(1), it suffices to show that if ¢,6 € Q; and
(day/a1)y + 8 = 0, then p(yp) = 0. First note that (da;)d = 0. It follows
from Lemma 2.5.7 that there exists ' € € such that § = (dy)d'. Now
(dar) (v + a10') = (da1)¥ + @16 = 0. Since ¥ + A= Q1, we may apply
Lemma 2.5.7 again to conclude that there exists 8" € Oy with Y+ o =
(day)8”. Since p(ayi) = 0, it follows from Lemma 2.5.6 that p(ai8’) = 0 and
p((de)8") = 0. Thus p(s)) =0 . [ ]
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Definition 2.5.10 The uniquely determined form p(1)) is called the residue of
¢ along Hy. We denote it res(¢) .

If H € A, then dwy =0, so d(wm;, --.wm,,) =0 for all H;,,...,H;, € A. Thus
d¢ =0 for all ¢ € R(A). It is clear from the definition that each ¢ € R(A) has
at most a simple pole along Hj. Thus res(¢) is defined for all ¢ € R(A).

Lemma 2.5.11 (see [21]) Suppose H;,,...,H;, € A', where 1 < i3 < ... <
ip < k. Then

1. res(wm;, ---wn, ) =0,

2. res(lewHil .. WH; ) = WHNH;, -+ 'wH1ﬂHip )
3. resR(A) C R(A") .

Proof. Let ¢ = wp; .. -wH,, . We may choose 1) = 0 and § = ¢ in Lemma 2.5.9.
This shows that res(¢) = 0 an proves 1. Now let ¢ = wy,wn;, ... wH, -
We may choose ¢ = WH;, - - - WH;, and § = 0 in Lemma 2.5.9. This shows
that res¢ = p(wm;, -..wm;, ). By Lemma 2.5.6(1), we have p(wm,, ... wn;,) =
p(wh,) ---p(wr,,). It remains to show that p(wn,;) = wainm,,- f H € A,
then it follows from Lemma 2.5.6 that p(wr) = p(dag/am) = dp(am)/p(am).
Since p(ap) is a polynomial function on H; which defines the hyperplane
H,NnH e A", we have p(wg) = wg,ng- This proves 2. To prove 3., note
that since wf = 0, it follows from the definition of R(A) and R(A’) that
R(A) = R(A") + wa, R(A"). Thus 3. follows from 1. and 2. [ ]

2.5.4 The Isomorphism of R and A.

Theorem 2.5.12 Let A be an arrangement. The map v : A(A) — R(A),
apg — ag, induces an isomorphism of graded C-algebras.

Theorem 2.5.13 Let (A, A, A") be a triple of arrangement with respect to
Hy € A. Leti: R(A") — R(A) be the inclusion map and define j : R(A) —
R(A") by j(¢) =res(¢) for ¢ € R(A). Then there is an ezact sequence:

0 — R(A") -5 R(A) -1 R(A") — 0.

Proof. We prove Theorems 2.5.12 and 2.5.13 simultaneously by induction on
|Al :

If A =0, then A(A) = C = R(A) and the first result holds. The second
assumes that A4 is noempty.

TA£0O:

o If |[A] =1, let A = {H}, then A" = A" = 0 and R(A) = C + Cwg,
R(A") = R(A") = C, so both statements are clear.

e If |A| > 1, then we see from Lemma 2.5.11(3) that jR(A) C R(A") and
from Lemma 2.5.11(2) that j is surjective. It follows from Lemma 2.5.11(1)
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that ji = 0, so Im(¢) C ker(j). To prove that ker(j) C Im(i) we consider the
following diagram:

0 — A(A) —4 4(4) —22y AU") —— 0

[ [ 58
0 — R(A") —— R(A) —L— RUA") —— 0

The diagram is commutative. This is clear for the left square by the definition
of iy and i. For the right square it follows from Lemma 2.5.11. The top row
is exact by Theorem 2.4.10. We may assume by the induction hypothesis in
Theorem 2.5.12 that 4’ and 4" are isomorphisms. A diagram chase shows that
ker(j) C Im(4). This proves that second row of the diagram is exact. Thus The-
orem 2.5.13 hold for A. It follows from Five Lemma that v is an isomorphism,
so Theorem 2.5.12 is also established for A. [ |



Chapter 3

Basics of algebraic
D-modules

3.1 Systems of linear partial differential equa-
tions.

Let U be a complex domain in the n-dimensional complex affine space C* and
D(U) the ring of partial differential operators on U with holomorphic coeffi-
cients. Let S denote the system of linear partial differential equations

S: Peu=...=P,eu=0
for P, e D(U) .

Let F be a suitable function space on U stable by the action of D(U), e.g.,

e O(U) the space of holomorphic functions,
e C®(U) the space of C* functions, or
e SD(U) the space of Schwarz distributions.

If $ € F is a solution to the system S, P;e ¢ = 0 (1 < i < m), then the
map

¢ :DU)—F , Qr—Qed

is a left D(U)-linear by definition and Ker(¢) contains the P;’s , 1 < i < m.
Then the D(U)-homomorphism ¢ factorizes to the D(U)-homomorphism

6: DU —F , QmodI+— Qe¢

where Z = )" D(U)P; is the left ideal of the ring D(U) generated by the P;’s .

i=1

25
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Thus if we denote by M the left D(U)-module D(U)/Z, let Sol(S; F) denote
the space of solutions to the system S in F and let Hompy)(M,F) be the
space of left D(U)-module homomorphisms, we have the identification:

Sol(S, F) +— Hompu(M;F) , ¢+ ¢

There are several reasons why one can consider such algebraic objects, D-
modules. First of all, an interpretation of solution spaces as Homp( , ) prolongs
naturally to use of homological algebra, which benefits us much enough. Sec-
ondly, as will be noted later, one of the basic invariants, the characteristic variety
of a system can be correctly defined only when we consider the ideal generated
by the P;’s, i.e., a fixed set of generators is not enough for the definition.

3.2 Algebraic differential operators

Since all D-modules in this thesis are algebraic, we begin with basic notions on
algebraic differential operators.

Simplest but important examples are linear differential operators with poly-
nomial coefficients. The ring of differential operators with polynomial coeffi-
cients on the n-dimensional complex affine space C*, denoted by D(C"), is the
Weyl algebra. The Weyl algebra D(C") is a C-algebra generated by

0

6.212,' ’

with Heisenberg commutator relations
[6%'73:]'] = 5ij -1, [."L',',.Z'j] = [610178%] =0.

Even on general smooth algebraic varieties, the situation does not differ

much from the above. Let X be a smooth affine algebraic variety over C and let

C[X] be the algebra of regular functions on X: f(z) ef z(f) for f € C[X], z €

Homgc—a1y (C[X],C) ¢— X . The family of subsets X; = {z € X | f(z) # 0},
f € C[X], forms a basis of open sets in X, the Zariski topology of X. Note
that C[X ;] = C[X]; = C[X][f~'] is the algebra of regular functions of an open
affine subvariety Xy of X .

The correspondence
Xy — C[Xy]
gives rise to the structure sheaf Ox of X as a local ringed space:
Ox(Xy) =T'(Xy,0x) = C[X;] .

The stalk Ox ; of Ox at z € X is the localization of C[X] at the maximal ideal
m, € SpecmC[X]:
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Oxo = Ox;m, = lim C[X;] .

T€EXy

In general, a smooth algebraic variety is defined to be a local ringed space
(X, Ox) such that every z € X has an open neighborhood U such that (U, Ox |v)
is isomorphic to a smooth affine variety as local ringed spaces as above.

Linear differential operators are defined as follows in algebraic geometry.

Definition 3.2.1 A C-linear sheaf endomorphism P € Endc(Ox) is called a
linear differential operator of order not greater than m if

(adOx)™H1P =0.
More precisely, for every open U C X, P is a collection of C-linear maps
Py € Endc(Ox(U))
compatible with all sheaf restriction data Ox (U) — Ox (V), V C U, satisfying
[fo, [fi,[- -+ [fm: Pu]--]]] =0 for every fos fiyeees fm € Ox(U) .

By definition, if X is affine, a linear differential operator P of order not greater
than m is seen to be a C-linear endomorphism P € Endc(C[X]) such that
(adC[X])™ 1P =0.

Denote by FED(X) the set of all linear differential operators on X of order
not greater than m. Clearly

FPD(X) C FE,,D(X) , m >0
and it is easily seen that F,D(X) FPD(X) C FY ,D(X). Thus the set of all
linear differential operators on X forms a C-algebra

o0

(3.1) D(X) = | FRD(X)
m=0

with filtration FP. Note also that FPD(X) = Ox(X) by the correspondence
P — P(1).

Definition 3.2.2 The sheaf Dx of algebras of linear differential operators on
X is defined by the functor

Dx :U +— D(U) for every open UcX

with obvious restriction maps.

Thus Dx(U) = D(U) = |J EE2D(U). The sheaf Dx also has the increasing
0

m=

filtration FP by orders
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(FPDx)(U) = FPDU), m >0

The following lemma guarantees calculation in the algebraic case similar to the
complex analytic case .

Lemma 3.2.3 (see [3, 7, 14]) In a smooth n-dimensional algebraic variety X,
every point p € X has an affine open neighborhood U with vector fields 0., and
functions x;, 1 <1i <mn, on U such that

[%i,2;] = [02;,0:;] =0, [Op;,m5] = 6i5 - 1

FnDx(U)= @ Ox(U)o*

la|<m

n n
where o = (a1, ...,Q,) is @ multi-indez, |a| =) a; and 0% = [] 03¢.

=1 =1
Remark. Let Xan be the underlying complex manifold of a smooth alge-
braic variety X and i : Xan — X the natural morphism of local ringed
spaces: i 10Ox — Oxyp is the identification of regular functions on X with
holomorphic functions on Xan. Thus the sheaf Dx,;, of linear differential op-
erators with holomorphic coefficients is regarded as Ox,, ®i—1(’)x Dx. For a
small open U in Xyp (in the classical topology) the above choice of coordinates
{zi,05; ;1 <4 <} is a standard one in Dx,, .

3.3 The Weyl algebra and its modules.

Recall C[x] = C[zy, ..., Z,] denote the ring of polynomials in n commuting vari-
ables over C and O¢(C") = C[x]. In this section we consider more close by the
Weyl algebra because it is the D-module that we shall use in the remainder of
this thesis.

3.3.1 The Weyl algebra.

Definition 3.3.1 The Weyl algebra D, (C) of rank n over C is the algebra
of linear differential operators with coefficients in the polynomial algebra C[x]:

D, = Dn((c) = F((Cna DC") = OC((Cn)<8z17--->6xn) -

Thus D,,(C) is the algebra over C with generators z1,...%n,04y,...,0;, and
relations
[:L‘,',.TL'J'] = [Qvnaw;,] =0 , [aw“xj] = 61’]‘ -1

where d;; is the Kronecker delta symbol and 1 is the identity operator. Hence
this algebra is noncommutative.

As a G-vector space the Weyl algebra admits a canonical basis. If a =
(@1, an), B=(B1,...,Bs) € N, then £*0” denotes z{* ...z2"951 ... 90",
Compare with Lemma 3.2.3 and (3.1) the following
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Proposition 3.3.2 The set B = {2°9% : o, € N'} is a basis of D,, as a
vector space over C.

If an element of D,, is written as a linear combination of this basis then we say
that it is in canonical form.

Definition 3.3.3 Let D € D,. The degree of D, denoted deg(D), is the
largest length of the multi-indices (a, 8) € N* x N* for which x*0” appears with
non-zero coefficient in the canonical form of D. We use the convention that the
zero polynomial has degree —oo.

If D,D' € D,, are written in canonical form, then so is D + D', and
(3.2) deg(D + D') < max{deg(D),deg(D")}.

The formula

(3.3) deg(DD') = deg(D) + deg(D'").

also holds. Similarly we have
(3.4) deg([D,D']) < deg(D) + deg(D') — 2.

As in the case of polynomial rings over a field, the formula (3.3), (3.4) above
may be used to prove the following.

Proposition 3.3.4 The algebra D, is a simple domain.

Because the kernel of an endomorphism of D,, is a two-sided ideal we have the
following:

Corollary 3.3.5 FEvery endomorphism of D, is injective.

Although D,, does not have any non-trivial two-sided ideals, it is not a division
ring. In fact, the only elements of D,, that have an inverse are the constants.
Thus every non-constant operator generates a non-trivial left ideal of D,,. How-
ever, every left ideal of D, is generated by two elements. This a very important
result, due to J.T. Stafford (see [23] or [4]).

3.3.2 D,-modules.

Since 1/d 4 is defined as a regular function on the complement Y4 of the zero
set of da in C, we write C[x]q, = C[z1,...,2n,d'] for the algebra generated
by C[x] and 1/d4 and called it the localization of the ring C[x] at d 4. This is
the algebra of rational functions (with denominator some nonnegative power of
d 4) defined in the open (quasi-)affine variety Yj4.

The rings C[x] and C[x,d '] have an obvious structure of left D,-module.
Indeed, z; act by multiplication: z; @ F' = x;F, and 9,, act by differentiation

F
B where 1 <i <n and F € C[x] or C[x,d'].

with respect to x; : 0, ® F =
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In fact Cx,d ;'] is a left D,-submodule of C(x), the field of rational functions
of C[x].

Now we recall some theory about modules over a ring.
Lemma 3.3.6 Let R be a ring and M an irreducible left R-module.
1. If0#u€e M, then M = R/Anng(u).
2. If R is not a division ring, then M is a torsion module.
Let us apply these results to the D,-module C[x].
Proposition 3.3.7 The ring C[x] is an irreducible, torsion D,-module, and
Clx] = Dpn/ Y7 Dp0s; .

Another module that is closely related to C[x] is D,/ Y { Dn - z;. As a C
vector space it is isomorphic to C[0] = C[0,,, - . -, 0z, ], the set of polynomials in
Ozyy---,0z,. Using this isomorphism, we may identify the action of D,, directly
on C[0] : the §'s act by multiplication, whereas x; acts on 0,; giving —d;; - 1.
Apart from the obvious similarities, the modules C[x] and C[J] are related in a
deeper way that will be explained in brief.

Let R be aring and M a left R-module. Suppose that ¢ is an automorphism
of R. We shall define a new left module M, as follows. As an abelian group,
M, = M . The difference lies in the action of R on M,. Let a € R and u € M,
define aeu = o(a)u. A routine calculation shows that M, is a left R-module. It
is called the twisted module of M by o. M, inherits many of the properties
of M.

Proposition 3.3.8 Let R be a ring, M a left R-module and o an automorphism
of R. Then

1. M, is irreducible if and only if M is irreducible.
2. M, is a torsion module if and only if M is a torsion module.
3. If N is a submodule of M then (M/N),6 = My/N,.

4. Let J be a left ideal of R. Set o(J) = {o(j) : j € J}. Then a(J) is a left
ideal of R and (R/J), = R/o*(J).

Let us apply this construction to D,,. An important example is the Fourier
transform.

Definition 3.3.9 Let F be the automorphism of D,, defined by
F(x;) = O0q, , F(0s,) = —x;.

Let M be a left module. The twisted module Mx is called the Fourier trans-
form of M. Clearly, F transform a differential operator with constant coeffi-
cients into a polynomial.
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Proposition 3.3.10 The Fourier transform of C[x] is C[0].

Proof. It follows from Proposition 3.3.7 that C[x] = D,,/J, where J = Y7 D,, -
Oy;. Since F~1(J) = 3.7 Dy, - z; we may apply Proposition 3.3.8(4) to get the
desired result. [ |

It follows from Propositions 3.3.8(1),(2) and 3.3.10 that C[d] is irreducible
and a torsion Dy-module. In fact, in this way, C[x], is irreducible for every
automorphism o of D,,.

Further applications of the Fourier transformations can be found in [7], [§],
[15), [17).

Definition 3.3.11 Let R be a C-algebra. We say that R is graded if there
exists C-vector subspaces R;, © € N, such that

L R=@, R,
2. R;-R; CR;yj .

The R; are called the homogeneous components of R. The elements of R;
are the homogeneous elements of degree i. If R; = 0 when i < 0 then we
say that the grading is positive.

Note that we defined graded rings without assuming commutativity.

Now let S = €, Si be another graded C-algebra.

Definition 3.3.12 A homomorphism of C-algebras ® : R — S is graded of
degree 0 if ®(R;) C S; -

Proposition 3.3.13 Let R and S be graded algebras over C .

1. The kernel of a graded homomorphism of C-algebras ®: R — S is a
graded two-sided ideal of R; i.e., ker(®) = @, (ker(®) N R;) .

2. If I is a graded two-sided ideal of R then R/I is a graded C-algebra.

A graded algebra admits a special kind of module.

Definition 3.3.14 Let R = @, Ri be a graded C-algebra. A left R-module
M is a graded module if there exists C-vector spaces M;, for i > 0, such that

1. M= @izo M;
2. Rz -Mj - M’H—j .
The M; are the homogeneous components of degree i of M.

Note that the definition of graded module depends on the graded structure
chosen for the algebra R.
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Definition 3.3.15 Let R be a graded C-algebra and M, M' be graded left R-
modules. A submodule N of M is a graded submodule if N = @, ,(NNM;).
An R-module homomorphism 6 : M — M' is graded of degree 0 if 6(M;) C M.

It follows that ker(6) is a graded submodule and that the quotient module M /N
is a graded R-module.

Definition 3.3.16 Let R be a C-algebra. A family F = {F;};>o of C-vector
spaces is o filtration of R if

1. R CRCFKRC...CR,
2. R=U;ysoFi
3. F;-F; CFyj .

If an algebra has a filtration it is called o filtered algebra. We use the con-
vention that F; = {0} if <0 .

Note that every graded algebra is filtered. On the other hand there are filtered
algebras which do not have a natural grading. This happens to the Weyl Al-
gebra; which, however, admits many different filtrations: the usual filtration
of Dcr by orders, given in Definition 3.2.2, defines one filtration on D,,. Here
we will discuss the Bernstein filtration of D,, defined using the degree of
operators in D,,. Denote by

B, ={a € D, | degree of a < k} .

These are vector subspaces of D,,. Clearly B = {By}ren is a filtration of D,.
Notice that each By is a vector space of finite dimension. A basis for By is
determined by the monomials z*9” with |a| + |8| < k. In particular, By = C
and {1,z1,...,%n,0s,,---,0z, } is a basis of By .

Suppose now that F' = {F; };cn is a filtration of R. We introduce the symbol
map of order k, which is the canonical projection of vector spaces

of : Fk — Fk/kal .
Consider the C-vector space
QTFR = ®i21 (Fz/szl) .

A homogeneous element of grf' R is of the form oy (a) for some a € Fj. Let
om(b) be another homogeneous element, and define their product by

o (a)om(b) = Optm (ab).

and extend it by linearity. grf R with this multiplication is a graded C-algebra,
with homogeneous components F;/F; ;. This is called the graded algebra
of R associated with the filtration F. Put S, = gr®D,,, because [P,Q] €
B;yj_1 for P € B;, Q € By, it is easy to prove the following theorem:
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Theorem 3.3.17 The graded algebra S,, is isomorphic to the polynomial ring
over C in 2n variables Cly,...,yan], where, for i =1,...,n, y; = o1(z;) and
Yitn = 01(0;).

Like as graded modules, one may define filtered modules. For the sake of sim-

plicity we shall give the definitions only for the Weyl algebra with the Bernstein
filtration.

Definition 3.3.18 Let M be a left Dy-module. A family T' = {T';};>¢ of C-
vector spaces of M is o filtration of M if it satisfies

1. ToCcIhC...CM,

2. Uizo I; =M,

3. B;T'; CTyy;.

4. T'; is a C-vector space of finite dimension.

Note that 3., withi = 0, implies that each I'; is a C-vector space. The convention
that T'; = {0} if 7 < 0 remains in force.

Of course B is a filtration of D,, as an D,-module. A more interesting example
is the D,-module C[x]: the vector spaces I'; of all polynomials of degree < i
form a filtration of C[x] for the Bernstein filtration B.

Following the pattern above, we may define the graded module associated
with a filtered module. Let M be a left D,-module and let I" be a filtration of
M with respect to B. Define the symbol map of order k of the filtration T’
to be the canonical projection

Mk - I'y — Fk/l“k,l.
Now put

gr'M = @5y (Ti/Tiz1).

We will define an action of S,, on this vector space. If a € Fj, and u € I'; let

ok(a) - pi(u) = pyi(aw)

Extending this formula by linearity we get an action of S,, on gr! M. The graded
S,-module gr' M is called the graded module associated to the filtration
I.

Let us return to a previous example. Let ' be the filtration of C[x] with
respect to B defined above. Then I';/T';_; is isomorphic to the vector space of
all homogeneous polynomials of degree i. Hence gr' C[x] is isomorphic to C[x]
as a vector space. Recall, by Theorem 3.3.17, that S,, = Cly1,...,y2n]- We
could determine the action of the y's on a homogeneous polynomial f of degree
r, which is to be thought of as an element of ' /T4 :
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e Fori=1,...,n we have that y; - f = x;f .

e Fori =n+1,...,2n we have y; - f = pr41(0;(f)) - But 9;(f) is homo-
geneous of degree < r — 1, hence y; - f = 0. In particular Anng, (gr' C[x]) is the
ideal generated by yn+1,---,Y2n -

Let M be a left D,-module with a filtration I' with respect to B. Suppose
that N is a submodule of M. We may use I" to construct filtrations induced
for both N and M/N. To get a filtration for N put I'' = {N NT;};>0 . The
inclusion N C M allows us to get an injective homomorphism of S,,-modules:

v:grt' N — gr' M .

We write gr™ N C gr™ M, for short. Also, the surjective homomorphism _
M — M/N induces a surjective homomorphism of S,,-modules:

migr' M — gr'" M/N .
where I'' = {77', (Fi)}iZO .

Lemma 3.3.19 Let M be an D, -module with o filtration T compatible with B.
The sequence of Sy-modules

0— gr'"' N - gr' M 5 e M/N — 0
1$ exact.

Example 3.3.20 Led d be an operator in D,, of degree r and put M =
D,,/D,d. Take B to be the filtration of D,, as a left D,-module. The induced
filtration in D,d is B;, = By_,d. Thus

Bi/B}_, = Bi_rd/Bi_y—1d = (Bi—r/Bi—y—1)or(d).
Since By /Bj_1 is the homogeneous component of degree k of S,,, then
grP (Dpd) = S,0,(d).
By the Lemma 3.3.19, there is an exact sequence,
0= Spor(d) = S, = gr® M = 0.
Therefore, gr® M = S,,/Snor(d) .

Theorem 3.3.21 Let M be a left D, -module with o filtration T with respect
to the Bernstein filtration B. If gr' M is a noetherian S,-module, then M is
noetherian.

It is an easy consequence of Theorems 3.3.17 and 3.3.21 the following

Corollary 3.3.22 D,, is a left noetherian ring. In particular every finitely
generated left D, -module is noetherian.
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Now, let M be a left D,-module and I a filtration of M with respect to the Bern-
stein filtration B. If gr' M is finitely generated, then it is noetherian because
S, = gr8(D,,) is noetherian. Hence M is finitely generated, by Theorem 3.3.21.
However, it is not always true that if M is finitely generated over D,, then gr’ M
is finitely generated over S, .

Definition 3.3.23 Let M be a finitely generated left D,,-module and T' o fil-
tration of M with respect to the Bernstein filtration B. If gr' M is a finitely
generated S,-module we say that T is a good filtration of M.

It is nonetheless true that every finitely generated D,-module admits a good

filtration. Indeed, if M is generated by uq,...,us then the filtration T' of M
S

defined by T'y = Y Byu; is good. The graded module gr'' M is generated over

1
Sy, by the symbols of uq,...,us .

There exists an easy criterion to check whether a filtration is good.

Proposition 3.3.24 Let M be a left Dy,-module. A filtration T' of M with
respect to B is good if and only if there exists ko such that T'; 1, = B;L'y, for all
k>ko .

3.3.3 Invariants for D,-modules.

Using the filtering and grading methods it is possible to define a dimension for
D,,-modules. This is a very useful invariant and it comes naturally associated
with another invariant: the multiplicity. To define this invariants we need a
result in commutative algebra

Theorem 3.3.25 Let M = @, , M; be a finitely generated graded module over
the polynomial ring C[x]. There ezists a numerical polynomial x(t) and a posi-
tive integer N such that

X(s) = édimc(Mi)

for every s > N .

The polynomial x(t) is known as the Hilbert polynomial of M. Recall that
a numerical polynomial is a polynomial p(t) of Q[¢] such that p(n) € Z for all
integers n > 0.

A central merit of the Bernstein filtration is that it admits use of the Hilbert
polynomials. Let M be a finitely generated left D,-module. Suppose that T’
is a good filtration of M with respect to the Bernstein filtration B. Denote by
x(t,T, M) the Hilbert polynomial of the graded module gr' M over the polyno-
mial ring S,,. By Theorem 3.3.25 we have, for ¢ > 0,

(3.5) x(t,T,M) =" dimc (T;/T;_1) = dimc(T) .
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Definition 3.3.26 The dimension d(M) of M is the degree of x(t,T', M).
Let aq(nry be the leading coefficient of x(t,T', M). The multiplicity of M is
m(M) = d(M)lagry - If M # 0, then both numbers are non-negative integers.

The definitions of the dimension and multiplicity are independent of the choice
of the good filtration I' by which the Hilbert polynomial is calculated (see,
e.g., [4,9, 14]).

Example 3.3.27 Consider the following D,,-modules

e D, : The Bernstein filtration B is a good filtration of D,,. The monomials
9P with |a|+|8| < t form a basis of B; as a C-vector space. So we must count
the non-negative solutions of the equation a; +...4+a,+ 81 +. ..+ 8, < t. There
are (*12") such solutions. Hence x(t,B,D,) = (*12"). As a polynomial in ¢ it

has degree 2n and leading coefficient 1/(2n)!. Thus d(D,) = 2n and m(D,) = 1.

o C[x] : We have defined a filtration I of C[x] such that Iy = {f €
C[x] | deg(f) < t}. Since B; contains the polynomials in z1,...,z, of degree
i, we have that B;I"y = [';4;. Hence T is a good filtration and x(¢,T, C[x]) =
dimcIy = ("r’:t) is a polynomial of degree n and leading coefficient 1/n!. Hence
d(C[x]) = n and m(C[x]) = 1.

A large class of examples is obtained by twisting a module by an automor-
phism. But this will lead us to a different definition for the dimension. We
begin with the Fourier transform of a module. In this case the automorphism F
of D,, preserves the Bernstein filtration, thus F(B;) = B; . This is convenient.

Proposition 3.3.28 Let M be a finitely generated left D,-module. Then M
and My have the same dimension and multiplicity.

Things are much more complicated if the automorphism does not preserve
the filtration. To get around the problem we must give a different definition for
the dimension. Start by choosing a finite number of elements which generate
D,, as a C-algebra and let V be the C-vector space generated by these elements
and by 1. Put Uy = C and U, = V. This is a filtration of D,, which satisfies
dimc Uy < oo. Note that if V = By, then Uy = By, is the Bernstein filtration of
D, .

Now let M be a finitely generated left D,-module, with a good filtration
I' with respect to the Bernstein filtration. Without loss of generality we may
assume that T'y, = BTy, for £ > 0. Put Qi = Uiy and

0(M,V) =inf{v € N | dimcQ; < t¥ for ¢t > 0} .

Proposition 3.3.29 (see [9]) Let V be a vector space whose basis is a finite set
of generators for D,,. Then §(M,V) =d(M) .

As a simple corollary of this Proposition we have
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Corollary 3.3.30 Let M be a finitely generated left D, -module and o an au-
tomorphism of D,,, then d(M,) = d(M) .

In ring theory 6(M, V) is called the Gelfand-Kirillov dimension of a module,
see, for example, [18].

The following additivity is easily proved (compare with Lemma 3.3.19).
Theorem 3.3.31 Let
0— My — My — M3 — 0

be an exact sequence of finitely generated left D, -modules. Take a good filtration
T on My and T, = My NT;, T =ImI; respectively filtrations (good) for My and
M;s. Then

0— ng'Ml —s grt My — ng”Mg —0

is exact and
1. x(¢,T, M) = x(¢,T', My) + x(¢,T", Ms) ,
2. d(Ms) =max{d(M,),d(M,)} ,
3. If d(My) = d(M3), then m(Ms) = m(My) + m(Ms) .

This theorem is useful to know the dimension of some modules. For example,
the dimension and multiplicity of a free module of finite rank r are 2n and r,
respectively. This also follows from the following result:

Corollary 3.3.32 Let M,..., My be finitely generated left D, -modules, and
M=M®...® M.

1. d(M) = max{d(M),...,d(My)} .
2. If d(M) = d(M;) for 1 <i <k, then m(M) = ¥ m(M;) .

We may also use the theorem to get an upper bound on the dimension of a
finitely generated D,-module.

Corollary 3.3.33 Let M be a finitely generated D,,-module. Then d(M) < 2n.

Proof. Suppose that M is generated by r elements. Then there exists a sur-
jective homomorphism & : D] — M. It follows from the Theorem 3.3.31 that
d(Dr) = max{d(M), d(ker(®))}. Since d(D!) = 2n by Corollary 3.3.32, we con-
clude that d(M) < 2n. [ |

This upper bound may be sharpened if the module is a quotient of D,, by a
left ideal.

Corollary 3.3.34 Let I be a non-zero left ideal of D,,. Then d(D,,/I) < 2n—1.
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Next we establish a lower bound on the dimension of a finitely generated
D,,-module.

Theorem 3.3.35 If M is a non zero finitely generated left D,-module, then
d(M) > n.

This inequality was first proved by I.N.Bernstein in [2], and is often called
the Bernstein inequality. We have already seen that both bounds for the
dimension are attained, for example d(D,,) = 2n and d(C[X]) = n. In fact
there exists D,,-modules of dimension k for every k in the interval n to 2n.

3.3.4 Holonomic D,-modules.

Definition 3.3.36 A finitely generated left D,,-module is holonomic if it is
zero, or if it has dimension n.

Notice that every holonomic left D,,-module is noetherian. We already know an
example of a holonomic D,,-module, C[X], and that D,, itself is not a holonomic
module. The knowledge of some holonomic D,,-modules enable us to get new
examples with the help of the next proposition

Proposition 3.3.37 Let n be a positive integer.
1. Submodules and quotients of holonomic D,,-modules are holonomic.
2. Finite sums of holonomic D,-modules are holonomic.
Proposition 3.3.38 Holonomic D,-modules are torsion modules.

Proof. Let M be a holonomic left D,-module. Pick 0 # v € M and consider
the map ® : D,, — M defined by ®(a) = au. Since Im® C M, it follows that
d(Im®) = n. Thus by Theorem 3.3.31

2n = d(D,,) = d(ker(®)).

In particular ker(®) # 0, and v is a torsion element of M. |

Many interesting properties of holonomic modules follow from the fact that
they are artinian.

Theorem 3.3.39 Holonomic modules are artinian.

Not all D,,-modules are artinian. For example, D, is not artinian as a
module over itself. It is easy to construct an infinite descending chain; take for
instance

Dpxp D Dy D Dpad D

A ring R that is artinian as a left R-module is called a left artinian ring. The
argument above shows that D,, is not a left artinian ring.
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Theorem 3.3.40 Let R be a simple left noetherian ring and M a finitely gene-
rated left R-module. If M is artinian but R is not artinian (as a left R-module),
then M is a cyclic module.

Corollary 3.3.41 Holonomic modules are cyclic.

To finish this subsection we give a technical lemma which we must use for
show (in Chapter 4) that C[X,d '] is holonomic.

Lemma 3.3.42 (see, for instance, [4], [9], [14]) Let M be a left D, -module with
a filtration T with respect to the Bernstein filtration of D,,. Suppose that there
exists constants cy,co such that for j >0

dimcrj < clj”/n! + Cz(j + 1)"71 .

Then M is a holonomic D, -module whose multiplicity cannot exceed ci. In
particular M is finitely generated.

3.3.5 Characteristic varieties for D,-modules.

Next we give a geometrical interpretation of the dimension of an D,-module.
Let M be a finitely generated left D,,-module with a good filtration I". Then
gr® M is a finitely generated module over the polynomial ring S,,. Let Ann(M,T)
stand for the annihilator of gr' M in S,,. Then Ann(M,T) is an ideal of S,. It
depends not only on M, but also on the choice of the good filtration I'. The
radical of Ann(M,T) however is independent of the filtration.

Lemma 3.3.43 Let Q be another good filtration of M. Then
rad(Ann(M,T")) = rad(Ann(M, Q2)).

Definition 3.3.44 The ideal Z(M) = rad(Ann(M,T")) is called the character-
istic ideal of M. The affine variety

Ch(M) = Z(Z(M)) C C?"
is called the characteristic variety of M.

It follows from Lemma 3.3.43 that Z(M) is independent of the good filtration
I" used to calculate it. In other words, it is an invariant of M, and so is
Ch(M). Actually, Ch(M) is the most important geometric invariant of a Dj,-
module. Since Z(M) is a homogeneous ideal, the variety Ch(M) is conic along
the fibers C. Note that Ch(M) is a subvariety of C>" because S, is a polynomial
ring in 2n variables.

Example 3.3.45 Let d € D,, be an element of degree r and put M = D,,/D,d.
If B' is the filtration of M induced by the Bernstein filtration of D,,, then, by
the Example 3.3.20, gr® M = S,,/S,0,(d). Therefore, Ann(M,B') = S,0,(d)
and so Ch(M) = Z(o,(d)) is a hypersurface.
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The following Proposition is an easy consequence of Lemma 3.3.19.

Proposition 3.3.46 Let M be a finitely generated left D, -module and N a
submodule of M. Then

Ch(M) = Ch(N) U Ch(M/N) .

Let J be an ideal of S, = Cly1,...,y2n] and put V = Z(J). If p is a point
of V then the Zariski tangent space of V at p is the linear subspace of C2"
defined by the equations

2n

;35: )yi =0

for all F € J. This subspace (of C*") is denoted by T},(V). The dimension of
V equals inf{dimcT,(V) | p € V'}. Actually one does not need to look at every
point of V. If p is a non-singular point of V, then dim(V) = dimcT, (V). This
is equivalent to the definition in terms of heights of prime ideals, see [13].

The following theorem is an immediate consequence of the fact that if NV is a
graded module over S,, then the degree of its Hilbert polynomial is dimZ(Anng, N),
see [13].

Theorem 3.3.47 Let M be a finitely generated left module over D,. Then
dimCh(M) = d(M).

It is now very easy to show that if d # 0 is an operator in D,,, then D, /D,d
has dimension 2n — 1, compare with Example 3.3.45.



Chapter 4

The left D,-module P(A)

This chapter is dedicate to get and study some algebraic properties of the left

D,-module P = P(4) € C[x, d'] = Cx,eq !, ..., '], Some of these will

enable us to calculate the De Rham Cohomology of the variety Y4 and get the
fundamental Theorem 5.2.8.

Recall that if A = {H,,...,H} is our arrangement, then we denote by A* =
{ai,...,ar} the set of linear forms that define A. The homogeneous polynomial

k
d4 = ][ o, also defines A. Note that degd4 = k = |AJ.
i=1

4.1 Holonomicity of P(A).

We began enunciating a well-known result about P, which will be useful in the
following section

Proposition 4.1.1 (see [9]) The left D,-module C[x,d '] is holonomic with
multiplicity < (k + 1)".

Proof. Denote d4 by d and set

Ty = {f/d'| deg(f) < (k+ 1)t}
We check that T is a filtration for P. Let f/d' € P and assume that deg(f) = s.
Then f/d' = f-d*/d"**. But deg(fd®) = s(k+1) < (k+1)(s +t). Hence
f/dt € Tyyy. Tt follows that P = Ugsol';.
Next suppose that f/d' € Ty. Equivalently, deg(f) < (k + 1)t. Multiplica-
tion by z; increases the degree of f by 1, thus z;(f/d!) = z;fd/d"*' € Tyy1.
Differentiating f/d’ with respect to z; we get

(do;(f) — tfoi(d))/d!*!

The numerator has degree < (k+1)t+(k—1), so that 9;(f/d") € T'sy1. This may
be summed up as By -Ty C T'yy1. Since B; = B} we also have that B;-Ty C T'; ;4.

41
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Finally, the dimension of I'; cannot exceed the dimension of the vector space
of polynomials of degree < (k + 1)¢t. Hence each I'; is finite dimensional. This
concludes the proof that I is a filtration of P, and shows that

dimcTy < ((k"'lrzt"'n).
Since the two terms of highest degree in ¢ of this binomial number are
(k+1)"t"/n! and (k + 1)™ 1(n + 1)nt™ 1/2(n!)
it follows that
dimcl; < (k4 D)™t /n! + (K + 1)" " Y(n + V)n(t + 1)~ /n!

for every large values of ¢t. By Lemma 3.3.42, P must be a holonomic module
of multiplicity < (k + 1)™, as required. |

More generally we have the following result:

Theorem 4.1.2 (see, for instance, [4], [9], [14]) If M is a holonomic D,,-module
and p a no constant polynomial in C[x], then so is M[p~!] := M @y Clx,p~1],
the localization of M at p.

4.2 Structure of P(A) as D,-module

Recall that r(A) = r, the rank of A, denotes the cardinality of a maximal
linearly independent subset of A*. The following lemma allows us to write in a
very convenient way every element of D,-module P. Next, with this in hand,
we will be able to get a series of decomposition for P, cf. (4.1).

Lemma 4.2.1 It is possible to write every element g of P as a finite sum of

quotients of the form — s where 0 < h <7, {ai,...,q;,} is a linearly
Jj=1""4;
independent subset of A*, my,...,mp €N, f € C[x] and H?=1 am defy.

Proof. Note that if h = 0, then the element s belongs to C[x]. By induction on
the number of the different linear factors on the denominator of each summand,
we need only show the Lemma when ¢ has the form

1
9= mi mp . Mht1
aq ...ah ah—i—l

where {aq,...,ap} is a linearly independent subset of A*, apy1 is a Clinear

h
combination of them: apt1 = > c;a; , ¢; € C, and my,...,mp41 € ZF. Then
i=1
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h
1 Y. Cic
9= _ i=1
- ,m Mp Mh+1 — mqy mp  Mh+1+1
oy ..o ey 0q ..oty
h
)
- mi m;—1 mp  Mht1+1 7
i ey coeap oy

Now for each summand of the last sum above we repeat the initial process
done with g until obtaining a zero exponent for some ¢; in the denominator.
In this way we get a new expression for g as a finite sum of quotients of the form

— - i T €C,i=1,...,h Ifthesets {a1,...,&,...,an, 0pt1}
art...aft ot ot
are all linearly independent, for i = 1, ..., h, then we have obtained the expres-

sion wished for g, otherwise, by induction we get the expression wished for
the quotients that not yet verify the required condition, an thus the expression
wished for g.

|
This Lemma inspires the following definition.
Definition 4.2.2 For h =0,1,...,r, define the left D,,-submodules of P :
mMi1,...,My
P, = Z szis‘m ‘ 0<t<h, flio-sm e Cx], mi,...,my €N
Finite [Ii= a5
where {as,,...,0s,} varies between all the linearly independent subsets of A*

0
of cardinality t and [] of def y
i=1

1=

Hence, by Lemma 4.2.1, we have the following finite ascending chain of left
D,,-submodules of P:

(41) OZP_lgC[X]:PogplgpggP3gQPT:P

By Proposition 3.3.37 those D,,-modules are holonomics since P is.

Now we can consider the left D,-modules Py/Pn_1, h = 0,1,...,7. Again
by Proposition ?? these are holonomic.

Our next aim is to get a decomposition of Py, /P, _1 as a direct sum of isotropy
component left D,-modules associated to each X € Lj,(A). First we give some
notations and definitions to use in which it follows.

For each X € L(A) consider the dual subspace X* of (C*)* of dimension r(X),
namely, the necessary number of hyperplanes in general position to get X.

Definition 4.2.3 For each X in Lp(A), 1 < h < r, let Bx+ be the set of all
possible bases to X* constituted with elements of A*.
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Definition 4.2.4 For each X in Lp(A), 1 < h < r, and for each basis B =
{@iy,-- i, } in Bx+ define the holonomic D,,-submodule of Py/Py_1:

fmla--:amh
VX = Z 7&"“”2% mod P_1 ‘ fom e Cx), my e ZF

finite 3t th

Note that of VX definition follows that it is an irreducible left D,-module.
Then it is also cyclic (this is also a consequence of its holonomicity, cf. Corol-

lary 3.3.41). A generator for Vé‘*, as a D,-module, is the class of o o’
G100 Oy,

cf. Proposition 4.2.6.

Let X € Ly, and let B = {a,,...,a;, } be a basis for X*. Then there exists

a basis {y1 == iy, Yr = Qi Yrt1,--->Yn} Of (C*)*, where {y1,...,yr}
is a maximal linearly independent subset of A4* such that {a;,...,q; } C
{y1,...,yr}. After a linear change of the usual basis {z1,...,2,} to (C*)* by

in V{9 i annihi-

{y1,..-,Yn}, we see clearly that the element [
Yi---Yn
lated by the linear operators yi,...,Yn, Oy, .1,---,0y,, i.e. by the left D,-ideal

I =Dn(yi,.-,Yn, Oysyrs- - -, Oy, ). Actually it is very easy to see that

Lemma 4.2.5 With the previous definitions we have

1
AnnDn< ) ZIB .
Y1---Yn

The ideal Ip plays an important role in which it follows. In the first place it
V)glila---vyh}‘

allows us to get a way simple to write the module

Proposition 4.2.6 Let us denote with Mp the left Dy-module D, /Ig. Then
we have the isomorphism of left D,-modules

1
(42) V)Eziu---,yh} [=5] MB o~ Dn ° |: :| i
Yr---Yn
Proof. The first isomorphism follows from Lemma 4.2.5 and Lemma 3.3.6. To
1
the second one use the exact sequence 0 > Ip - D,, - D, [y ” ] ; |
1..-Yh

Corollary 4.2.7 Consider two different elements X1,Xs in Ly, 1 < h < r.
Then V)?;l N V)g? = {[0]} for each By in Bx: and for each By in Bx;.

Proposition 4.2.8 There exists an isomorphism of D,-modules between the
left Dyp,-module Mp and the ring of polynomials Clyp41,..-,YnyOyss -y 0y, ]
This last one is an irreducible, holonomic D,-module, and its characteristic
variety is the conormal space defined by the system of equations & = ... =&, =
niht1 = ... =&pn =0 wherefori=1,...,h& = o1(y;), and fori =1,...,n—
h, &nthti = 01(0y;) (01 is the symbol map of order 1, c¢f. Theorem 3.3.17) .
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Proof. Let T be the automorphism of D,, defined by

T(yl) = 8yi ’ T(ayz) = —Yi for 1<i<h
Tw) = , T(8y) = 0y for h+1<i<n

Proposition 3.3.7 affirms that Cly] = Cly1,...,yn] 2 D,/J where J =37 D,,
Oy;- It is easy to see that

T_I(J) =EfDny,+EZ+an82 =1Ip.
Then we can apply Proposition 3.3.8(4):
Mp :Dn/Til(J) %(C[yl,...,yn]T%C[yh+1,...,yn,6y1,...,ayh]

Thus, by the Proposition 3.3.8(1) and Corollary 3.3.30, Clyn+1,--.,Yn, Oy,
...,0y,] is an irreducible, holonomic left D,-module and isomorphic to Mp.

Recall that the graded algebra gr®D,, is isomorphic to the polynomial ring in
2n variables C[¢] = C[&1, .. .,&2,]. Let T be a good filtration for Clyp41,-- -, Yn,
Oys, - - -, 0y,] with respect to the Bernstein filtration B, for example the induced
one by B. By Lemma 3.3.19 the exact sequence of D,,-modules 0 — Ig —
D,, — Mp — 0 implies the following exact sequence of C[¢{]-modules

0— ngIIB — grBDn — ngMB — 0

C
where I is the filtration induced by B on Ig. Then gr' Mp = grr[’gl] and
B
Ann((c[yh-i-l s o Yno 8@/17 s 76’yh]7 F) = AnI’l(C[E] (ngMB)
= gl Iy

(c[g](fla .. J£h7§n+h+17 “e 7§2n) .

Since this last ideal is radical we have

Ch(C[yh+17"'7yn7ayl7"'78yh]) = Z(gla"'7§h7§n+h+17"'7€2n) -
|

As a consequence of the isomorphism in (4.2) and Proposition 4.2.8 we have
the following corollary:

Corollary 4.2.9 There exists an isomorphism of irreducible left D,,-modules
(43) V}gl’m’yh} = (C[yh+1 yo-9Yn, 6y1 )ttty ayh]

Next, in Proposition 4.2.12, we give a preliminary and important decomposi-
tion of Py, /Py_1. For this is clearly necessary to consider the D,-module Vf’*
associated to each B € Bx+ when X € Lj(A). First we give the following
lemma:
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Lemma 4.2.10 Let R be a ring on a field K of characteristic 0, let M be a left
R-module and let { M;}5_, be a family of irreducible left R-submodules of M each
isomorphic to each other as left R-modules. Then the isotropy component
> M; is expressible as a direct sum of some of them, namely

s t
> Mi=DM,
i=1 a=1

where {M;, },_, C{M;};_, and t <s.

Proof. Since M; is an irreducible R-module it is cyclic, i.e., there exists an
element u; in M; such that M; = R - u;. Let 2;1 Ku; be the K-vector space
generates by U = {u;}?_,. From U we can extract a K-basis U = {u;, }t_; to
> i_1 Ku;. The corresponding R-modules M;, to this basis are suitable to our
affirmation. In fact, since u; € @221 Ku;, C 22:1 M;, for every I € [s] follows
that Y7 | M; C 2221 M;,. So >0 M; = Zi:l M;, . It remains to show that
2221 M;, is a direct sum. For this, since that 0221 M;, C Mj, for every l € [t],
then either each Mj, is contained in the others or ﬂizl M;j, = 0. The first case
implies that all M;, are equal. Thus the sum 2221 M;, is direct. u

Proposition 4.2.11 For each X in Ly, 1 < h <, and each basis B in Bxx:
(1) The vector spaces VE. are isomorphic to each other as D,-modules.
(2) The ideal Ix~ := Ip is not dependent of B.

Proof. Fixed a basis B = {a;,,...,q;, } of X* there exists a basis {y; :=
Qiyyee s Yr 3= Qi Ypidy - -+, Yn ) Of (C*)*, where {y1,...,y,} is a maximal line-
arly independent subset of A* such that {a;,,...,;, } C {y1,-..,yr}. After
a linear change of the usual basis {z1,...,z,} of (C*)* by {y1,--.,Yn}, ev-
ery other basis B' = {a;,,...,q;, } of X* satisfies B' C Span{y1,...,ys} and
{¥1 =y, Up = Qs Ypyy = Yhtt,- - -5 Yy, 2= Yn} is a basis to (C*)*. Then
associate to each basis B’ in Bx- we have an n x n invertible matrix with entries
in C

D 0 0
C_gl = 0 Ir—h, 0 ’
o o0 I,

where D € GLj(C) and I, is the unit matrix of rank s, such that
(44) t(yi’ s 5y;'uy;z+17 ... 72/;) = Cg’ t(yla ~- s YhyYht1, - - - 7yn)

Thus the partial derivatives change linearly by means of

-1
(4.5) t(ay;,...,ayz,ay, .,a%) = ({CB) " Byrs- 1 0ys Ogpyrs 10y

h+1’..
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Then we get <c[ayfl,...,ayg,y;m,...,y;l] = Cldyss- ) B Ynit - yn]. Tt

follows, by Corollary 4.2.9, that V2. and V)?,: are isomorphic as D,-modules.
Moreover, it follows from (4.4) and (4.5) that Ix~ is not dependent of B. N

Proposition 4.2.12 For1 < h < r the quotient of two consecutive D, -modules
of sequence (4.1) has the following decomposition

(46) Ph/Ph_lz @ Z V)?* = @ @ V)J(B*

XeLy BEBx+ X€ELn \ BBy

where Bx~+ is a convenient subset of Bx-.

Proof. By Lemma 4.2.10 we have that the isotropy component Y V£, asso-
BEBx~
ciated to X* is equal to €@ V&£, for a convenient subset Bx- of Bx~. Thus
BeBxx
the last equality in 4.6 is done.

Now let us consider two different elements X1, X5 of L. It follows by Corol-
lary 4.2.7 that for the corresponding isotropy components we have V,?f N
BEBX;=
> nVE ={[0]}. Then @ . V& C P,/P._1. Moreover, by Lemma 4.2.1,
BEBy; 2 X€EL, BEBx+
every f in Py/Pp_1 can be written as a finite sum of elements of the form

fml,...,mh

1150050 {aiq, iy }
ﬁmodf’h,levx*l’ TR fOrSOmeXeLhande{ail,...7aih}
i Qg

a basis in Bx+. Then P,/P,_1= @ Y. VE. [ |
XELp BEBxs

Proposition 4.2.13 Let X in L, 1 < h <r, and let V2 be the C-subspace
of P,/ Py_1 annihilated by Ix-. Then V2 is generated by

1
L{}??dz m mod Ph—l BEBX*
a€EB
Proof. Consider two different elements X, X» in L. According to the defini-
tion of Ix+, if By € Bx; and Bs =€ Bx;, then the corresponding annihilator
ideal I Xy are such that

1
IXJ* L] W mod Ph_l
a€B;
is equal to {[0]} if ¢ = j and diverse of {[0]} if i # j.
This implies that Annp, # mod P_1 | = Ix~ if and only if B =

Qjy e Oy
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{aj,,...,a;,} is a basis to X*. Then the C-subspace V& of P,/P,_1 anni-
hilated by Ix- is into an unique isotropy component in the decomposition of
Py/Py_1 as in (4.6) and is generated by YR [ ]

By Proposition 4.2.11(2), for each X € L(A)\{C"} we associated a canonical

holonomic left D,,-module Mx« ef D,,/Ix+, and, by Proposition 4.2.8, M x~ &
V8. for each B in Bx~. Then we have the following Proposition:

Proposition 4.2.14 According to the notations previous

(4.7) Pi/Phai® @ Mxe @c VR
XeLy(A)

Proof. By Proposition 4.2.12 we need only show

> VP 2 My @ VEed
BEBX*

This follows from the last remark above and the Proposition 4.2.13. [ |

Now our next aim is to choose a basis for V0. It is possible using the notion
of not broken circuit (nbc), cf. Definition 2.4.2, to the set Bx~, consequently to
Ued.

Definition 4.2.15 For every X € Ly(A), 1 < h <, define the left D, -module

Rx+ = Mx- ®c Vx~ ,

where Vx« is the C-vector space generated by Ux- = ﬁ B € Bx-
For C" in Lo(A), define Vicry« = C and Ricny» = C[x] a:e%[ml yevesn].
Lemma 4.2.16 Let X in Ly(A), h € [r], then the set

B = {{aj,,-.-,aj,} € Bx+ | (ji,---,jn) is a nbc}

is such that the corresponding set USRS is a basis to Vxs.

Proof. The set U generate Vy:: For each basis {aj,,...,a;, } of X* there
exist, two possibilities: If (iy,...,i) is a nbc, then ————— € U, Other-
Qjy -0 Oy,
wise, there exists an m-subtuple (ji,...,Jm) of (i1,...,in), 1 < m < h, such
that (ji,...,Jm) is a broken circuit. Thus there exists 1 < | < k, | < iy,
such that (I, 1,...,jm) is a circuit. Equivalently we have the following relation
aiaj + ... +apq;,, = aqp for some ay,...,a, € C. It implies that
m
a 1
(4.8) —— =

Qi ... QG .. O

u=1
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Note that for each u in [m] the set {a,a;j,,...,@;,,...,q;, } is linearly inde-
pendent and B, = ({ai,,...,as, } \ {ej, }) U {a;} is another basis to X*. From
(4.8) we get

a Am 1
(4.9) — +...4+ — = .
(€71 7 PRRIN 0 7 PERINRN € 7 % (0710 7 PRRIEN & 7 Y 0 77 Qi - - Oy

If the corresponding h-tuple from each basis B, is a nbc we get from (4.9) that

is in (U3P°). Otherwise, there exists at least one h-tuple (I1,...,I;)
Qiy oo Oy
that is not a nbc. Then for each such (l1,...,l5) we can repeat the initial
process, in the similar case, done with (i1,...,4p). This procedure shall finish
after a finite number of steps because the cardinality of Ux+« is finite. Finally

1
we get that ————— € (URR°).
Ay oo Oy

The set Y32 is C-linearly independent: Suppose that

Coin_ _

(il,---,’ih)eu,“(llc Qiy - - Oy

with ¢;, 5, € C. Let [x be the minimal among all the first entry of each h-tuple
in U%5¢. Thus we can divide the last sum as

1 E : Clxig...i Ciq..d
_ X2 h + 1 h — 0
o Qi - - - O Z Q.. .0

X (lx,iz,...,ih)eu}n(bf ‘2 th (i1,--s ih)eug(b*c " th

i1#ly
Tx
Clxis...i Clxig...i
or > —X 2 Loy, -Tx =0. So > Sxizein
(x i i) Ugps O Qi (1 i im g Qi -+ Qi

within ker(ay, ). Note that {a;,, ..., a;, } is linearly independent modulo oy, ,
and (iz,...,ip) € UBRC for some subspace Y* = (a,,...,q;, ) of X* obtained
after remove q;, from every basis {ay,, @i, - - -, s, } in BRC. Thus we have

Z Clxis...ip, -0.
[ 77 ¢ 71
(Ix iz,..rin)EUREE  ° "

By induction on dimX* we shall prove ¢, ,..5, = 0 for all (Ix,i2,...,9,) in
U and Tx = 0. In fact, let

Zxs ={Y* CX* | Y* = (Qiy,--., ) if (Ix,d,...,51) € URLS
and fix one Y* in Zx+. Then we might divide the last sum to get
Z Clxlyig...i Z Clxis...i Z Clxjs...j
Xty 23...1h +aly( X122...1p + XJ2:-Jn ):0
Qg - - O Qi+ - - QG Qjy . O
(Iy,is,...,in) EUBES ' th (i, ip ) EUTBE U (ajysenag, y=2t J2 Jn

ig#ly Z¥eZx \{Y*}

~ >
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Then > Cxlyia-in _ ( within ker(ay, ). By induction on dimX™*,
(ly,’i;;,...,ih)eu;l;c ai3 e aih

since dimY™* < dimX*, ¢1y1y45...4, = O for all (Iy,is,...,ip) in YRS such that

(Ix,ly,...,ip) belongs to ULLS, and Ty = 0. But this is true for every Y*

in Zy.. Thus ¢yi,.. i, = 0 for all (Ix,is,...,ip) in YRS This implies that

Tx = 0. Thus oy, appear in all basis of X* in BS and URRC is linearly inde-

pendent. [ |

The following Corollary follows from the proof of the last Lemma.

Corollary 4.2.17 Let X € Ly, 1 < h <, and let lx be the minimal among all
the first entry of each h-tuple (i1,...,ip) such that {a;,,...,a;, } € Bx+. Then
B € B3 if and only if a;, € B.

Lemma 4.2.18 Let X,Y be two elements in Ly, 1 < h <r. Then X #Y if
and only if Vx- N Vy. = {0}.

Proof. Consider X* # Y*. From Lemma 4.2.16, a basis to Vx- and Vy- is
URES and UZRC respectively. After a linear change of the basis {z1,...,2,} of
(C*)* by {y1,---,yn} such that X* = (y1,...,yn), by Corollary 4.2.17 y; is in
each basis B in B32° but it is not in any basis B’ in Bik°. Suppose that there
exists a non-zero element v in Vx+ N Vy-. Then, by Proposition 4.2.14, [v] = v
mod Pj,—; belongs to Mx: ® VE4 N My. ® V#°d and [v] # [0]. Thus [v] can
be written as

- %

Be Bl;(b*c

_ ¥ [ﬁ] . ambwec

acB BeBys Lgep
Clearly we get y; ® = [0] for each basis B in BES but
g X
a€EB
| ) #[0] It icti
) . It is a contradiction. [ |
Y (B’gé?};c [HﬁeB’B ) # [0]

An immediate consequence of Lemma 4.2.18 is the following:

Corollary 4.2.19 Let X,Y be two elements in Ly, 1 < h <r. Then X #Y if
and only if Rx+ N Ry- = {0}.

The next two lemmas enable us to write the D,,-module P as a direct sum of
the Rx«. We start with the following technical Lemma.

Lemma 4.2.20 Fiz two standard tuple I = (i1,...,ip) and J = (J1,-..,Js)
such that h4+s =mn and IU J = [n]. Consider a polynomial f in Cly;, ..., Y,
Oy;,»--+>0y;,]. Then

(a) If f is such that f e # =0, then f =0.

Yj - Yis
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b) If f-0,, o#:(),forsomelin s], then f = 0.
Yir Yi Y

e+ Yis
More generally, if the subset {a1,...,as} of Span{y;,,...,y;,} s linearly

1
independent, then (a) and (b) hold with ———— instead of
a1 ...04 Yjy ---Yjs

Proof. We start to show (a) by induction on s: If f € Cly1,...,yn] (s = 0),
then it is clear that f = 0. Now let s > 0. If there is not u € [s] such that
degayj f = m >0, then it is also clear that f = 0, otherwise f can be written
as

Qmagzu + mela‘;r;u_l +...+ Qlayju + QO

where Qumy -+, Q0 € ClYiys- -+, Yins By, s+ 3 Opso s+ >0y;.] and Qum # 0. Thus

1
f e ——— =0 is equivalent to
Yji ---Yjs
(-1)™m! (=1)m=1(m —1)! 1 1
Qm + Qm-1+...+ —Qo |o——————=0
( yZ-‘rl m y]mu m Yiu Yji oo Yju -+ Yjs
or
1
(=1)™m!Qm + (=1)" " (m = 1)lyj, Qm-1 + ... + y]: Qo) ¢ ———<——— = 0.

Yjs Yo - Y
1
_ Yju - 'yz;;yjs
Note that f belongs to Clys, ;... Yin>YjusOy;,»-- >0y, »---»0y;,]- By induction
on s we have f =0. Then @,, =0 and f = 0.

Denote by f the operator that acts on in the last equation.

In order to show (b) note that f -8y, = 0y, -f. Again, by induction on s, if
s =0 then f =0. For s > 0, if there is not u € [s] such that degy,. f=m>0,

1
then it is also clear that f - 6%,[ e — = (implies f = 0, otherwise f - 6%
y]l st y]S
can be written as

(Qmayjl )agz?u + (QTTL716:I/J'Z )6;}:1 +...+ (Qlayjl )8yju + (Qoayjl)

where Qun,...,Q0 € ClWirs-- v YinsDysps--v0y; w0y, ] and Qu # 0. I
I # u then again Q, = Qp0y;, € Clyiy,---,Yin, Oy 5,0y, 5---,0y;,] for

p=0,1,...,m, and the result follows from (a). Otherwise f -Byjl oﬁ =0
jl PR js
is equivalent to
1
(=)™ (m + 1)!Qm + (=1)"mly;,Qm-1+ .. — 41 Qo) e ———=—— =0

y,]l"'yju"'yjs

and the result follows from (a) and induction on s.
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The general case follows by induction on s and from relations (4.4) and (4.5).
|

Definition 4.2.21 Let X in Ly, 1 < h < r. Define the natural map of D,,-
modules ¢x : Rx» = Mx» Qc Vxr — P asm®@uv —» mev, m € Mx-,
NS VX*.

Lemma 4.2.22 Let X in Ly, 1 < h <r. The map ¢x is injective.

Proof. After a linear change of basis to (C™)* such that X* = {y1,...,yn), by
Lemma 4.2.16, Rx~ can be written as Clyni1,-- -, Yn,Oys, - - -, Oyp] ®c (URS) =

1
Dpepm: Mx+ B¢ (Hi) Then ¢x injective is equivalent to show that
x* aeB

¢ : Mx. ®c ( —» P is injective for each B € BYS, ie., if Q o

HaEB a
1
(ﬁ) = 0, where Q € Clynt1,---,Yn,Oys---,0y,] and B € BIREC, then
eB
Q =a0. It follows from Lemma, 4.2.20. [ |

An immediate consequence of Lemma, 4.2.22, Corollary 4.2.19 and P, defi-
nition is our first main result:

Theorem 4.2.23 For 0 < h <r, we have the following decomposition

h
Ph:® @ RX*.

7=0 X€L;(A)

In particular, since P = P, we have P= @ Rx- .
X€eL(A)

Now we are ready to give out the following theorem:

Theorem 4.2.24 For 0 < h <r, the natural map induced by ¢x,
v: @ Rx+ — Py/Py_1 is an isomorphism of D,-modules.
XELh(.A)

Proof. According to Proposition 4.2.14 follows that 4 is a D,-morphism sur-
jective.

In order to see that %) is injective it is sufficient to demonstrate that the re-
stricted map ¢x : Rx«~ — Py /P_1 is injective for each X € L. Recall that

Ax ={He€ A| HC X}. Let day, = ][] a be the homogeneous polynomial
ac A%

that defines the subarrangement Ax. Define the D,-submodule PX of P by
Cx, d;&( ]. By Lemma 4.2.1 PX admits a finite ascending chain similar to one of
(4.1) to P. Thus tx injective is equivalent to show that ¢ y : Rx~ — PX /PX |
is injective, i.e., Vxs+ N P,f‘: 1 = {0}. Let us suppose, by contradiction, that there
exists a non-zero element v in Vx« N P,f_ 1- Then after a linear change of the
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basis {z1,...,z,} of (C*)* by {y1,...,yn} such that X* = (y1,...,yn), we can

write v as
§ : § a.h ]s
H )

BeBbe acB® Tt ]s

where the first sum belongs to Vx- and c¢g € C for all basis B in B}}bf, the
second to PX |, 0<s<h—1,aj. j, €Clyr,...,yn), {aj,,...,j,} is a linear
independent subset of Span{y1,...,yn} N A% and mq,...,ms € N. It is clear
that ZBegg(b*c (eB/lpep @) mod PX | # [0], instead Y (ajl...js/a;’fl ...a;'z“)
mod PX | =[0]. It is a contradiction. [ |

From Proposition 4.2.14, Lemma 4.2.16 and Theorem 4.2.24 we obtain
Corollary 4.2.25 If X € L, 1 < h <r, then the set of coset

1
{ﬁ mOdPh 1 | BEBan}
aEB
is a C-basis to Virod,

Hence we have the completely decomposition of Py, /Pj,_1, for every 0 < h <
r, after that one of the isomorphism given in (4.7).

Definition 4.2.26 Let A be an arrangement in C* of rank r. Define the holo-
nomic Dy, -module P = P(A) = @} _, Ph, associated to the arrangement A and
isomorphic to P(A), as follows. Let Py = Py = C[z1,...,zy], and for h in [r]

Ph—Ph/Ph 1 = 69 Rx- = @ Mxs ®(C unbc @ Ma(X)

X€ELy X€ELy X€ELy

where a(X*) :=dimVx- is equal to |URE| (= |BR|), the multiplicity of Mx-.

4.3 Examples.

In the following examples we compute the decomposition of the D,-module
P(A) for some arrangements A. Consider the linear order on an arrangement

A
H; =ker(oy) < Hj =ker(ej) & i<j.

Recall, by Proposition 4.2.11, that the vector spaces V)?*, B € Bx+, that cor-
respond to a given space X* are isomorphic to each other as D,-modules and
isomorphic to Mx+, so we need compute only Mx-«.

Example 4.3.1 Consider a 2-arrangement A* = {a,...,a;}. A basisto (C?)*
with elements of A* is {y1 := ai1,y2 := a2}. Each element of A4* can be
written as a liner combination of y1,y2. It is easy to see that there is not any
t-standard circuit for t = 2 or ¢t > 4. The 3-standard circuit are (i, j, h) for all
1< i< j<h<k,then 2-broken circuit are (j,h), 2 < j < h < k. The C; are
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Co={1}, Ci=A{@) |ie[k]}, C2={(L,5) [2<j <k}
So
Po(A) = Cly1, 2] ,
P1(A) = Cly2,0y,] ®@c (1/y1) & D (C[yla By.] ®c (1/ i)

2<i<

Pay(A) = @ C0y,,0y.] ®c (1/y1, ;)

2<i<k

Example 4.3.2 The homogeneous polynomial dg+ = [],<;;cq(zi + 25) de-
fines a 4-arrangement. Put y; := 21 + Z2, y2 := %2 + T3, Y3 := T3 + T4, Y4 :=
71 + 23, then {y1, y2, y3, ya} is a basis to (C*)*. The remaining linear forms in
(B™)* have the following expression in this new basis: y5 := x1 + %4 = y1 —y2 +
Ys , Y6 := T2 + x4 = y1 — Ys4 + y3. Clearly there is not any t-standard circuit
for t = 3 or t > 5. The 4-standard circuit are (1,2,3,5), (1,3,4,6), (2,4,5,6),
then 3-broken circuit are (2,3,5), (3,4,6), (4,5,6). Then the C; are

€1 ={(1),(2),(3),(4),(5),(6)} ,

C, ={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6), (3,4), (3,5), (3,6)
(4,5),(4,6),(5,6)},

Cs ={(1,2,3),(1,2,4),(1,2,5), (1,2,6), (1,3,4), (1,3,5),(1,3,6), (1,4, 5),
(1,4,6),(1,5,6),(2,3,4), (2,3,6), (2,4,5), (2,4,6), (2,5,6), (3,4, 5),
(3,5,6)}

Ci={(1,2,3,4),(1,2,3,6),(1,2,4,5),(1,2,4,6), (1,2,5,6), (1,3,4,5)
(1,3,5,6)}

PO(B+) = C[ylay27y3ay4] ’

PuBY) = (@ Clynsoosis s, ] @ (1/3) ) @

1<i<4
©Cly1,v3,Ya,0y] ® (1/y1 — y2 + y3)®
@C[y17y27y378y4] ® <1/y1 —Ys+ y3>

For X}, = (y1,y2) : Rxz, = Clys, ys, 0y, ,0y,] ® (1/y132)
For X735 = (y1,y3) : Rx;, = Cly2, Y4, 0y, 0ys] ® (1/y1y3)
For X7y = (y1,ya) : Rx;, = Cly2,y3, 0y, 0y, ] ® (1/y1ya)
For X{5 = (y1,y1 — y2 +y3) : Rx;, = Cly3,y1,0y,,0,] ® (1/y1(y1 — y2 +y3))
For X{g = (y1,y1 — ya + y3) : Rx;, = Cly2, 94, Oy, Oys] @ (1/y1(y1 — ya +y3))
For X33 = (y2,y3) : Rxy, = Cly1,y4,0y,, 0ys] ® (1/y2ys)
For X3, = (y2,ya) : Rxz, = Cly1,ys3,0y,,0y,] ® (1/y2ya)
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For X35 = (y2,y1 — y2 +y3) : Rxz, = Clys,y1, 0y, 0y,] ® (1/y2(y1 — y2 +y3))
For XJg = (y2,y1 — ya +¥y3) : Rxy, = Cly1,Y1, 0y, Oy] ® (1/y2(y1 — ya + y3))
For X3, = (y3,y4) : Rxz, = C[y1,y2,0p;, 0] ® (1/ysya)
For X35 = (ys,y1 — y2 +y3) : Rxyz, = Cly1,44,0p,, 09| @ (L/ys(y1 —y2 +y3
(
(
(
(

[ (1/ys( )
For X35 = (y3,y1 — ya +y3) : Rxz, = Cly1,Y2, Oy, Oys] ® (1/y3(y1 — ya +y3))
For Xj5 = (ys,y1 — Y2 +y3) : Rx;, = Cly1, Y2, 0y, 0y,] @ (1/ya(y1 — y2 +y3))
For X46 Ya,Y1 — Y4 + y3) RX* - C[y17y2a8y378y4] 2y <1/y4(y1 —Yys+ Zl/3)>

For X3 = (y1 —y2 +y3,y1 —Ya + y3) :
Rxz, = Cly1, Y3, 0y, 0y, ] ® (1/(y1 — y2 + y3) (y1 — Y4 + y3))
For X553 = (y1,92,43) = (y1,92,95) = (y1,Y3,Y5) = (Y2, ¥3,¥5) :
Rxy,, = Clya, 0y, Oys, Oys] ® (1/y192y3, 1/y1y2(y1 — y2 + y3),
1/y1ys(yr — y2 + v3))

For Xik24 = <y17y27 y4> RXfM = C[y356y178y276y4] ® <1/y1y2y4)
For X{s = (y1,¥2,y1 — ys +y3)

Rx:, = Clya, 0y1,0ys, 0ys] @ (1/y192(y1 — ya + y3))
For X{s, = (y1,Y3,94) = (¥1,¥3,Y6) = (y1,Y1,Y6) = (Y3, Y4, Ys) :
Rx;,, = Cly2,0y,,0ys,0y,] ® (1/y1y3ys, 1/y1y3(y1 — ya + y3),
1/y1ya(yr — ya +y3))
For X{s5 = (y1,94,y1 —y2 + ¥3)
Rx;,, = Cly2,0y,,0y;,0y,] © (1/y1y4(yr — y2 + y3))
For X{56 = (y1,y1 —¥2 + ¥3,y1 —ya +y3)
Rxy,o = Clys, 0y, 0ys, 0y, ] @ (1/y1(y1 — y2 + y3) (Y1 — ya +y3))

For X;34 = <y2ay3ay4> RX234 - C[y176y278y376y4] ® <1/y2y3y4>
For X336 = (y2,¥3,y1 — ya + y3) :

RXE% = C[y1,8y2,3y3,3y4] &® (1/y2y3 (Y1 —ya +y3))
For X35 = (y2,Y4,Y5) = (Y2, Y4, ¥6) = (Y2, Y5, Y6,) = (Y4,Ys5,Ys) :

RX§45 = Cly1,0y,,0y5,0y,] ® (1/y294(y1 — y2 +y3), 1/y2y4(y1 — ya + y3),
/y2(y1 —y2 +y3)(y1 —y1 +y3))

For X345 = (y3,y4,y1 — Y2 + y3) :
RX§45 = C[y1,8y2,6y3,6y4] ® (1/y3y4(1}1 — Y2 + y3))
For X356 = (y3,y1 — 92 + 3,41 — Ya +y3) :
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Rxy,, = Cly1,0y,,0y,, 0y | @ (1/y3(y1 — y2 + y3) (Y1 — ya + y3))

For X{y34 = (y1,92,93,94) = (Y1,Y2,¥3,Y6) = (Y1,Y2,Y4,y5) = (Y1, Y2, Y4,Ye)
={y1,Y2,Y5,¥6) = (Y1, Y3,Y1,Y5) = (Y1,Y3, Ys,Y6) = (Y1, Y4, Y5,Y6)
= (Y2, 93,41, Y5) = (Y2,Y3,Y4,Y6) = (Y2,Y3,Y5,Y6) = (Y3,Y4,Y5,Y6),

we get U = {1/y192y3y4, 1/y192y3(y1 — ya +93), 1/y1929a(y1 — y2 +y3),

/y1y2ya(yr — ya +y3), 1/yiy2(y1 —y2 +y3) (Y1 — ya +y3),

V/y1ysya(yr — y2 +y3), 1/y1ys(yr —y2 +y3)(y1 — ya +y3)}

and MX* = (C[ayl ) 8@/2; 6@/3 ) 61!4] . SO

1234

P4(B+) = ]\[)(f234 ® <VXn]3C ) .

1234

Example 4.3.3 The 4-braid arrangement is defined by dg, = [[; <i<i< J(Ti —
z;). It is not possible to get a basis to (C*)* only with elements of Br*. If we
put y1 := I — Xa, Y2 := Xy — T3, Y3 i= T3 — T4, Yy := &1 we have a basis
{y1,92,3,y4} to (C*)*. Note that {y1,y2,y3} is a maximal linearly independent
subset of Br*, so r(A) = 3 and the remaining linear forms in Br* have the fol-
lowing expression y4 := 1 —x3 = y1+Y2, Y5 := To—T4 = Y2+Y3, Ys = T1—Tg4 =
y1 +y2 + y3. Thus the 3-standard circuit are (1,2,4), (1,5,6), (2,3,5), (3,4,6),
then 2-broken circuit are (2,4), (3,5), (4,6), (5,6). The 4-standard circuit
are (1,2,3,6), (1,3,4,5), (2,4,5,6), then 3-broken circuit are (2,3,6), (3,4,5),
(4,5,6). There isn’t any t-standard circuit for ¢ > 5. Then the basis for every
C; are

3,4),(3,6),(4,5)}

PO(BT) = C[yl yY2,Y3, yzll] )

Pl(BT)Z( @ (C[yla7:1717y37y41176y1]®;_1>@C[y%y&yiaayl]@m@
1<i<3

Ga(c[ylay&yzlpayz] ® m 53] C[y27y37yzll76y1] ® m )

For X7 = (y1,92) = (y1,94) = (y2,94) :

Rx; = Clys, 4, 0y, 0y,] © (1/y192, 1/y1(y1 + 92))
For X3 = (y1,y5) = (y1,¥6) = (¥5,Y6) :

Rxz = Clys, 4, 0y15 0ya] ® (1/y1(y2 + y3), 1/y1(y1 +y2 +y3))
For X3 = (y3,y4) = (y3,96) = (Y4, ve) :

Rx; = Cly2,y4, 0y, 0y] ® (1/ys(y1 +y2), 1/ys(y1 +y2 + y3))
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For X7 = (y2,y3) = (y2,95) = (y3,95) :
Rx; = Cly1,9Y4, 04y, Oys] ® (1/y2y3, 1/y2(y2 +y3))
1/y1y3)
1/y2(y1 +y2 +ys3))
1/(y1 + y2)(y2 + y3))

For X7 Y1,Y3) Rxg = C[Z/z;yiaayuays]

For X¢

(
® (
y2,96) * Bxz = Clys, Y4, 0y, 0y, ] ® (
®

For X* = (y1,Y2,¥3) = (Y1,¥2,¥s) = (Y1, 92,Y6) = (Y1,Y3,Y4) = (¥1,9Y3,Ys)

=
=
For X7 = (ya,ys5) : Rx: = C[ys,y},0y,,0,]
=
= (y1,94,Y5) = (Y2, Y3,¥6) = (U3,Y4,Y5) = (Y, Y5, Ye) :
Ps3(Br) = Clyi, Oyy, Oys s Oys| @ (L/4192y3, 1/y192y5, 1/y1y2y6, 1/y1y3ya,

1/y1y3ye, 1/y1y4ys)
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Chapter 5

Complexes and cohomology
of Y4

5.1 Some Complexes.

We begin defining some useful cochain complexes £}, G, Hy, 0 < h <n. The
first complex L, , cf. (5.1), is associated to every basis B in Bx+, X € Ly, and
then we get a complex £L(Pr) = Dxcy, EDBEB}b: Ly (B) associated to Pp. The
cohomology of £(Py,) is the h-th De Rham cohomology of Y4, ¢f. Theorem 5.2.8.

Fixed h, 0 < h < n, we define the following cochain complexes (5.1), (5.2)
and (5.3):

0 1 n—1 n
Ci= Ly, o)) 0 L2 5 e %5 2y L pntle e g
(5.1)
where
1
'C?l:(C[yh-‘rla---;yn;ayn---;ayh]' )
Y1 ---Yn

dys, N...Ndy;, p ,s=1,...,n,
1<i1<...<is<n 1---Yn

Ly = { > Jir.i. ® ’

firvis € ClYnt1s---,Yn>Oyyy---,0y,]- If we denote by I = (i1,...,45) and
dyr = dy;; A ... A dy;,, then every element w in £} can be written as w =

S fre dyr. The differential 6 : £, — Ly, is the usual differential defined
1.
as follows:
(i) Hw=fe € L9, then

Yr---Yn

n 1
Cw zé:l Yi f.yl---yh Y
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(i) Hw=> fre

” , dyr € L}, where s = card(I) = deg(w) > 0, then
1.--Yn

1
S = 50( )d .
rw=> 0z fl.yl...yh Y1

It is clear that d; o §; = 0. This is basically a consequence of the facts that
. is an antiderivation, i.e., 62 (T Aw) = (027) Aw + (=1)%971 A 6w, and the
mixed partials are equal.

50 sl sh—1 5k
(52) Gr:0—G) 56 56— ... —GhtEisgh B
where
1
GO =Cl[8y,,..-,0y,]® )
= Cloy, ] —

1
g;: E fi1..-ir. dyil/‘\---/\dyir ,T:].,...,h,
1<i1<...<ip<h Yr..-Yn

fir.iin € C[Dy,,--.,0y,], and the differential dg : G, — G is the usual differen-
tial defined in the same way of L.

Finally, consider the de Rham subcomplex on C"* " :

n—h—1 n—h

0 1 Py S
(53) Hi: 0 HO AL B 92 o . S phth, gkt g
where
Hg =(C[yh+17"'7yn] ’
HZ:{ Z fil...iidyh/\"'/\dyit}7t:1"“’n_h’
h+1<i1<...<iy<n

fir.iis € ClYht1,---,Yn], and the differential d4; : Hp — Hp, is the usual differ-
ential defined in the same way of L.

Lemma 5.1.1 The complex Gy, has cohomology

1
H*(Gr) = Yi---Yn

dyi A ...ANdyp in dimension h ,

0 elsewhere .

Proof. For r = 0 : Let w = f o

€GO If 8% =S (£-8,)e
yl . -yh h g Zz_l (f z)

dy; = 0, then we have that 63wA (dy: . .. dy; ...dyn) = (=1)i"L (f - 8,,)e

Yr---Yn

" ” dyy ...dy, = 0 for all ¢ € [h]. It is possible if and only if (f-0,,) e
1.---Yn
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1
= 0. By Lemma 4.2.20 (b) we have f = 0. Thus we have ker(63) = {0}
Yi---Yn

and Ho(gh) =0.
For0<r<h:Letw=3 ;o <icplfiri®

dy;, - ..dy;, be an

Yi---Yn
. +1 i
element in Gj. If dgw = 21§l1<...<lr<lr+1§h (2221(—1)] lfll,,,g,,,lH_I 'ayj) *
dyi, ---dyi,,, =0, where {l1,...,l;,...,l,41}is equal to some {i1,...,%,},

Yi---Yn

then, in analogue way for the case r = 0, we have (E;g(—l)j*lfll___l;___lTJrl - Oy, ) .
1

Yi---Yn .

if and only if Z;E(—1)3_1fl1___l;mlr+1 -9y, = 0. The last equality above is true

if and only if f;,..;, =0for all 1 <i; < ... <4, <h. Thus we have again that

ker(dg) = {0} and H"(Gp) =0 for 0 <7 < h.

dy ...dyn € Gr, then 62(w) = 0 for

=0foralll1<l; <...<l, <l.41 <h. By Lemma 4.2.20 it is possible

Finally, for r = hlet w = f e

Yi---Yn
all w. Thus ker(6%) = Gf. Since
Im(ég_l) =
{(f1 -6y1 — f2 -6y2 +...+ (—l)h_lfh 6yh) ° -~ ..yhdyl . ..dyh} ,
1
we get that H"(G) = C - dyy ...dyy, . [ ]
Yir---Yn

Lemma 5.1.2 The complex Hp, has cohomology

" [ € in dimension 0,
H*(Hn) = { 0 elsewhere .
Proof. This is a consequence of the fact that H is the subcomplex of the de
Rham complex Qpg(C* ") on C*F. [ |

Proposition 5.1.3 There exists the following relation between the complexes
ﬁh, gh and Hh:

Ly = Gn ®c Hp -
Proof. We will prove, cf. [11], that:
L. L} =@, -, 9 ®c M}, (= (Gn ®c Hn)®), and
2. 0% = 0gg : (Gn @c Hn)® — (Gn ®c Ha)*H .

To prove 1. it is sufficient to see that every standard s-tuple (iy,...,is) is

decomposable in two standard tuples: an r-tuple (i1,...,4,), 1 < i1 < ... <

ir < h, and an (s — r)-tuple (ipy1,...,05), h+1 < dpp1 < ... < iy < m,

for some 0 < r < h. So every monomial of f;, i, (Ynt1,---,Yn,Oyss---,0y,) ®
1

Yr---Yn

dyi, -..dy;, € L}, can be written as
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. Jn §J1 Jh
le...]"yh+1 e Yy ayl .. .3yh L]

T dyzl SN dyirdyir+1 e dyzs

where (j1,...,Jn) € N* and ¢j,.. ;, € C. It is possible to write out as:
(6{,; . 6{;} )
where the first factor belong to G and the second toH;™". So £}, C D, ,—, G5 ®c

! . The second inclusion is obvious.
In order to show 2. we will show that if s = r + ¢ for some 0 < r < h then

Y1---Yn dyil T dyir) ®dc (le---jn yiz}rll s y%” dyir+1 .. dyis)

OGonlgren = 0zlgrene -
By definition of dggy , 0z , dg , 0%, we have
Seulgren: = 05 ®Idye  +  (-1)"ldgr ® ‘%v
0flgr ®Tdglye  +  (=1)Tdglgr ® Of |3
= ‘52|9;®H;

Corollary 5.1.4 The complex L, = Lp({y1,--.,yr)) has cohomology

1
. C- dyi ...d
H* (L (Y1 - yn)) = TR
0 elsewhere .

in dimension h,

Proof. Thanks to Proposition 5.1.3 and by the algebraic Kiinneth formula for
the cohomology of a tensor product of a couple of complexes, we have that

H*(Ly) = ®r+t:s H"(Gr) ®c Ht(Hh) .

Hence the result follows from Lemmas 5.1.1 and 5.1.2 [ |

This preliminary result enables us to calculate the cohomology of Y, .

5.2 Cohomology of Y} .

Definition 5.2.1 Let H = ker(am) and let Yy = C* \ H. The map ag :
C* — C restricts to ag : Yo —> C*. Choose the canonical generator of
H*(C*) as (1/2mi)(dz/z). Define a rational 1-form

1 day

e = 27 (671

on C". Let (ng) be the cohomology class of ng in H'(Yy). Then
1 dz
() = aiy (5% ) € Vi)

21z
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Denote the cohomology class of ni in H*(Y4) by [nu). Let i : Y4 — Yu be
the inclusion map. Then [nu] = i*(nm)

Recall the exact sequence of Theorem 2.5.13
Lemma 5.2.2 There is a commutative diagram of exact sequences whose ver-

tical maps 1 : Rp(A) — H*(Y4) are given by n(wy) = [ww] :

0 —— Ret(A) —— Ripi(A) —2 Ri(4") —— 0

K [ [
L HMUY) —C s BRIV —2 s HF(Var) —— ...
Theorem 5.2.3 (see [21]) Let A be a nonempty complex arrangement.
1. The map 1 : Rp(A) — H*(Yy) is an isomorphism for k >0 .
2. H¥(Y4) are free abelian groups.

3. For k > 0 there exist split short exact sequences

0 — HF (V) 2 HF (V) -2 HF (V) — 0 .

Corollary 5.2.4 The integral cohomology ring H*(A) is generated by 1 and
the classes [nu] for H € A .

Theorem 5.2.5 The surjective map wg — [(1/278)wy] induces an isomor-
phism of graded algebras R(A) = H*(Y,) .

This result shows there are no relations in cohomology other than those imposed
by the algebraic relations. We showed in Theorem 2.5.12 that there is an iso-
morphism of algebras A(A) = R(A) which sends agy to wg. We may apply this
result when the coefficient ring is Z to obtain a structure theorem for H*(Y4;Z)

in terms of generators and the relation ideal.

Theorem 5.2.6 Let A be a complex arrangement and A its OS algebra. The
map ag — [(1/271)wr] induces an isomorphism A — H*(Y4) of graded Z-
algebras.

Definition 5.2.7 For each subspace X in Ly, define the following complez:
Lp(X*) = &b Ln({ajy,--sag,})
{ajl,...,otjh}EBS‘(bf

where Ly({e,,...,0;,}) is the same complex Ly(X) defined in (5.1) for the

~

set of generators {oy,,...,a;,} of X*. Associated to the D,-module Pp =
Dxcr, Bx-, define the complex

LPw) = P La(X) .

X€eLp

Finally define the complex L(P) = L(P(A)) = @},_, L(Pr) associated to P.
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Theorem 5.2.8 Fized1 < h < r, there exists an isomorphism between H" (Y 4)
and H"(L(P)) :

1
HMY4) = HYL(PY) = @ ® C—1 day A Aday,.
XeLy, {aj; ,...,ajh}eBg‘(bf Qjy - - - Ay,
Proof. Fix a subspace X € Ly(A). By Corollary 5.1.4 the associated complex
Ln(X*) has cohomology non-null only in dimension h. It is

1
HMLR(X*)) = D C-————daj, A... Aday, .

{ajy seeerejy, YEBRES Qjy .- Oy,

Therefore the complex L£(Pr) = €D x ¢, L£n(X*) has cohomology non-null only

in dimension h. Since the set {as | S = (j1,--.,Jn) is standard and nbc}

is a basis for the OS algebra Ap(A) defined in Chapter 2, the map as —

daj, A ... A day, induces an isomorphism A,(A) — H*(L(Ph)). It follows,
Qjy .- Qg

from Theorem 5.2.6, that H"(Y4) = H"(L(P4)). [ ]

Corollary 5.2.9 Let b, (Y4) = rankH"(Y4) be the Betti numbers of Y4. Then
bh = E a(X*) -

X€eLy,

Proof. It is a consequence of Theorem 5.2.8 that

rankH" (V) =dimH*(Y4) = Y. U= 3 a(X*),
XeLy XeLy

where the last equality is by Definition 4.2.26. |



Chapter 6

The Poincaré series of P(A)

In this last chapter we compute the Poincaré series of the D,-module P(A).

Definition 6.1.10 If M = @ M; is a graded vector space with dim M; < +oo,
i>0
for all i > 0, we let

Poin(M,t) = > (dim M;)t’
i=0

be its Poincaré series.

By Definition 4.2.15, for each X € L(A) \ {(C”} we have associated a C-

HaE
Lemma 4.2.18, that if X,Y € L\ {C"}, X #Y, then Vx- N Vy- = {0}. Thus

we can give out the following definition.

vector space Vx: generated by Ux:. = { Follows, by

Definition 6.1.11 Let A be an arrangement of hyperplanes. Define the finite
dimensional graded C-vector space

:é P vx-

h=0 X€L}

For X € L(A) let V(A)x+ = Vx=.

1
Recall, by Lemma 4.2.16, that U3¢ = {H | B e B“bc} is a basis to
eBY@
Vx+, when X € L(A)\ {C"}. Then we have the following Lemma:

Lemma 6.1.12 The set

{I}U U U unbc

h=1Xe€Ly
is a basis to V(A).

65
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We must express the dimension of Vx. (= [U%5°]) by using the function u(X)
defined in Chapter 1.

Theorem 6.1.13 For X € L we have dimVx. = (=1)"®)u(X), and the
Poincaré series Poin(V(A),t) of the finite dimensional graded C-vector space
V(A) is equal to Poin(A,t).

Proof. It is clear that there exists an isomorphism of graded vector spaces bet-
ween A(A) and V(A) and A(A)x+ = Vx« for every X € L. Moreover, since
dim A(A)x- = |px-|, see [21]. Then the theorem follows. ]

By Theorem 4.2.23, we have that P(A) is a graded D,-module, infinite
dimensional. Then its Poincareé series is a formal power series. The following
theorem give us a combinatorial formula for it.

Theorem 6.1.14 The Poincaré series Poin(P(A),t) of the graded D,,-module
P(A) is equal to (1 —t)~" Poin(A,t).

Proof. According to Theorem 4.2.23 we have

Poin(Py,t) = ). Poin(Rx+,t) = Y, Poin(Mx-«,t)Poin(Vx+,1)
XeL XeL

Since the C-algebra Mx- is isomorphic to the polynomial algebra with n vari-
ables, we have Poin(Mx-,t) = (1 —t)~". Moreover, by the Theorem 6.1.13, we
have Poin(Vx«,t) = dimVx«t"(X) = (—=1)(X) 4(X)t"(X). Thus
Poin(Pa,t) = Y (1 — ) "(=1)") u( X))
XeL
= (1 —t)""Poin(A,1t)

|
It follows from Theorem 4.2.24 the Corollary

Corollary 6.1.15 The Poincaré series P(P(A),t) of P(A) = é Py/Pp_y is
equal to Poin(Pg,t). =
An interesting type of arrangements are the free arrangements.
Definition 6.1.16 Let Derc(C[x]) be the C[x]-module of derivations:
Derc(Clx]) = {6 | 6 : C[x] = C[x] is a C — linear derivation} .

It is immediately to see that Derc(C[x]) is a free C[x]-module of rank n,
naturally isomorphic to C[x]®c C". The usual derivations 0y, , ..., 0, is a basis
for Derc(Clx]).

Definition 6.1.17 A nonzero element § € Derc(C[x]) is homogeneous of de-
gree d if (f) € C[x]q for all f € (C)*.
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Definition 6.1.18 Let A be an arrangement in C*. Define the module of A-
derivations by

Derc(A) = {0 € Derc(Cx]) | 8(a) € aC[x] for any a € A*}.

The arrangement A is called a free arrangement if Derc(A) is a free C[x]-
module.

Proposition 6.1.19 (see [21]) If A is a free n-arrangement, then D¢ (A) has
a basis consisting of n homogeneous elements.

Definition 6.1.20 Let A be a free arrangement and let {6:,...,60,} be a ho-
mogeneous basis for Dc(A). The n nonnegative integers {degh, ..., degb,} are
called the exponents of A.

Notice that the exponents depend only on A.

Proposition 6.1.21 (see [21]) If A is a free arrangement when exponents
di,...,dy, then

n
Poin(A,t) = [1 (1 + d;t).
i=1
Corollary 6.1.22 Let A be a free arrangement with exponents dy,...,d,, then
Poin(P(A),t) = (1—1t)—"

k3

(1+d;t).

n
=1

Proof. It follows from Theorem 6.1.14 ]
Note that this is the case when A is the set of reflecting hyperplanes of any

(real or complex) reflection group with exponents di, ..., d, because A is a free
arrangement.
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