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CHAPTER 1

Large Deviations via Γ-convergence

1.1. Motivations

1.1.1. Interacting particles systems. The focus of this thesis is to pro-
vide an asymptotic analysis for some stochastic and variational models de-
scribing the evolution of “large” physical systems. The analysis of a system
with a large number of degrees of freedom cannot in general be addressed by
Newton-like differential models. Since the seminal works of Boltzmann in the
XIX century, a statistical approach to the problem has been considered. While
a mathematical framework to study systems at equilibrium has been provided
in the last decades [16], a rigorous setting for the analysis of systems out of
equilibrium is still missing. Several different approaches have been purposed,
both stochastic and deterministic.

In the stochastic approach, a much used framework to understand Statis-
tical Mechanics out of equilibrium is the one of stochastic interacting particles
systems [12, 13]. Roughly speaking, a bunch of N particles jumping randomly
on a countable lattice is considered. The dynamics is in general determined
by assigning the jump rates of these particles. One is generally interested
in analyzing the asymptotic behavior of the particles, when their number N
diverges to infinity (hydrodynamical limit). This task is carried out by ap-
propriately scaling the system, then identifying its characteristic quantities for
each finite N , and finally evaluating the limit of these quantities as N diverges.
A widely considered simplification consists in focusing on the density of the
particles. In several models it has been shown that, in the hydrodynamical
limit, the behavior of the density is deterministic, and it satisfies a differential
evolution equation, usually called the hydrodynamical equation. By the way,
the understanding of the properties of the system generally requires a much
finer analysis of the involved quantities. In particular, it is well known that
establishing large deviations principles for these quantities is a main step to
provide a deeper insight into the system. However, while several techniques
and results are available concerning large deviations of systems under the so
called diffusive scaling, there is a little literature about large deviations for
systems under Euler scaling, see [11, 21, 3] where some important partial
results have been established for specific models.
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6 1. LARGE DEVIATIONS VIA Γ-CONVERGENCE

1.1.2. Introducing the model. In this thesis we are concerned with a
slightly different approach. Instead of dealing with discrete models, we focus
on a continuous description of physical systems, and thus consider a “density”
u = u(t, x) as a real valued function, depending on the time variable t and the
space variable x. Hopefully, a continuous model may inherit the key properties
of the physical system, while allowing a more general investigation than a
model-by-model based analysis.

In many situations, that is whenever the number of particles is conserved
by the dynamics, it is natural to assume that the density u satisfies a continuity
equation

∂tu+ div(J) = 0 (1.1.1)

In several models, the current J takes into account the basic phenomena occur-
ring in conservative physical systems: transport, diffusion, fluctuation, which
in general appear as nonlinear terms in (1.1.1). We thus come with the crucial
assumption

J = f(u)− 1

2
D(u)gradu+ σ(u)α (1.1.2)

where f represents the so called flux (related to transport phenomena), D is
an elliptical matrix governing diffusion, and σ is a fluctuation matrix acting
on the stochastic noise α.

Motivated by the stochastic particles systems setting, and in particular
by the limiting behavior of systems under Euler scaling, we are interested in
the asymptotic properties of the solution to (1.1.1) when the diffusion and
fluctuation terms in (1.1.2) vanish simultaneously. Moreover, still motivated
by particle systems and by quite general physical systems heuristics, we assume
a natural hypotheses on the noise α. Namely, we suppose α to be white in
time and to have a small (i.e. vanishing) correlation in space.

In a more precise mathematical framework, we come up the following
Cauchy problem related to a stochastic partial differential equation, which
has to be interpreted in the Itô sense [8]

du =
[
−∇ · f(u) + ε

2
∇ ·
[
D(u)∇u

]]
dt+ εγ∇ ·

[
σ(u) dW ε

]
u(0, x) = u0(x)

(1.1.3)

Here the parameter ε plays the role of the inverse number of particles, so that
we are interested in the limit ε→ 0. For a given sequence of smooth mollifiers
{ε} on T and a cylindrical Brownian motion W , the trace-class Brownian
motion W ε is defined as W ε := ε ∗ W , where ∗ denotes convolution on T.
Moreover u0 is a bounded measurable function on T and γ is a real parameter
γ > 1/2, so that, as ε → 0, the diffusion coefficient, the noise and the space-
correlation of the noise itself vanish. The rate at which these quantities vanish
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depends on the (quite) arbitrary choices of γ and {ε}. See Chapter 3 for a
precise definition of (1.1.3) and the assumptions concerning f , D, σ and ε.

1.1.3. The asymptotic ε → 0. Existence and uniqueness results for
(1.1.3) are established in the Appendix A of Chapter 3. There are quite a
little results for fully nonlinear stochastic partial differential equations in the
literature; in particular a problem similar to (1.1.3) is addressed in [14, 15]
in a Hamilton-Jacobi context, although these papers deal with a finite dimen-
sional noise. Let Pε the law of the process uε satisfying (1.1.3). We will see in
Chapter 3 that the sequence {Pε} converges weakly (in a suitable topology) to
the so called entropic solution (see Section 1.4 below) to the limiting equation
obtained by informally setting ε = 0 in (1.1.3).

We are then left with the key issue of investigating large deviations princi-
ples for {Pε}. Note that uε is a diffusion Itô process in a infinite dimensional
Banach space, with a drift term −∇ · f(u) + ε

2
∇ ·
[
D(u)∇u

]
and a stochastic

diffusion term εγ∇ ·
[
σ(u) dW ε

]
which have a nontrivial behavior in the limit

ε → 0. We recall that, even in the finite dimensional case, large deviations
techniques for Itô diffusions have been widely investigated in the “small noise”
asymptotic. However, at our knowledge, there are no general results address-
ing the problem of large deviations for Itô diffusion processes with drift and
diffusion coefficients depending arbitrarily on a parameter ε. In Section 1.3
we show that, even in the finite dimensional case, large deviations principles
for diffusions processes are closely related to variational problems. Indeed, we
first establish in Section 1.2.3 a general equivalence between large deviations
principles for sequence of probability measures on a Polish space, and a so
called Γ-convergence problem (see Section 1.2.2) for a corresponding sequence
of “relative entropy” functionals. Then in Section 1.2.3, we show that a Γ-
convergence result is also necessary to establish a large deviation principles for
finite dimensional Itô diffusions. While the corresponding Γ-convergence prob-
lem is trivial in the classical “small noise” asymptotic, it can be a challenging
issue in more general cases.

We are then left with the idea that, given a sequence of Itô diffusions, a
Γ-convergence result should be investigated in order to understand the large
deviations asymptotic. Roughly speaking, we may say that the main result of
this thesis is to prove that this heuristic idea holds true not only in the finite
dimensional case, but in the infinite dimensional case as well, at least as far as
the laws of the solutions to (1.1.3) are concerned.

We thus address a Γ-convergence result related to (1.1.3) in Chapter 2. We
study this problem in a slightly different setting than the one introduced in
(1.1.3). This variational problem may have an independent interest by itself
as, for instance, it allows a variational characterization of measure-valued and
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entropic, respectively viscosity, solutions to conservations laws, respectively
Hamilton-Jacobi equations.

In Chapter 3 we then use the results of Chapter 2 to establish large devia-
tions principles for {Pε}. The main difference w.r.t. the finite dimensional case
is that the drift and diffusion coefficients involve derivatives w.r.t. the space
variable x, and thus have no regularity properties in the natural topologies in
which the convergence has to analyzed. Roughly speaking, this difficulty is
solved by using the fact that the higher order part ε

2
∇ ·
[
D(u)∇u

]
of the drift

term has indeed a regularizing effect, which sharply compensates the “bad”
noise effect. Once this is understood, everything cools down to investigate the
stability of (1.1.3) w.r.t. small deterministic perturbations.

Before stating the main results of this thesis, we introduce some prelim-
inary notions. In Section 1.2 we recall the main definitions concerning large
deviations theory and Γ-convergence. We next state and prove two results
connecting the two theories both from a theoretical and “operational” point
of view. In particular we apply these results to investigate large deviations
principles for finite dimensional Itô diffusions. In Section 1.4 we recall some
basic statements concerning inviscous conservation laws; we also introduce a
so called kinetic formulation for entropy-measures solutions to a conservation
law, which is proved in Chapter 2. These results are used to link the main
results stated in Section 1.5, and should help the understanding of the strategy
of their proofs. There are a few minor results that are obtained as byprod-
ucts from the proofs of the Γ-convergence and large deviations principles. We
briefly sketch some of them in Section 1.5.3

1.2. Large deviations theory and its variational counterpart

In this section we recall the basic definitions concerning large deviations
and Γ-convergence theories, see [10] and [4, 6]. We next establish a connec-
tion between the two theories, showing that large deviations principles are
equivalent to the Γ-convergence of relative entropies. Then we introduce some
techniques to prove large deviations principles via Γ-convergence in a Markov
processes framework. In particular, we prove a large deviations upper bound
and lower bound for a wide class of finite-dimensional Itô diffusions.

Hereafter, for X a Polish space (that is a completely metrizable separable
space), P(X) denotes the set of Borel probability measures on X, equipped
with the vague topology. Recall that P(X) is a Polish space itself.

1.2.1. Large deviations. Let {aε} be a sequence of positive reals such
that limε→0 aε = 0; let X be a Polish space and {Pε} ⊂ P(X) a sequence of
Borel probability measures on X; let I : X → [0,+∞] be a lower semicontin-
uous functional on X. The sequence {Pε} is said to satisfy a large deviations
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weak upper bound with speed {a−1
ε } and rate I iff for each compact set K ⊂ X

lim
ε
aε log Pε(K) ≤ − inf

v∈K
I(v) (1.2.1)

{Pε} satisfies a large deviations (full) upper bound with speed {a−1
ε } and rate

I iff for each closed set C ⊂ X

lim
ε
aε log Pε(C) ≤ − inf

v∈C
I(v) (1.2.2)

{Pε} satisfies a large deviations lower bound iff for each open set O ⊂ X

lim
ε
aε log Pε(O) ≥ − inf

v∈O
I(v) (1.2.3)

{Pε} satisfies a large deviation principle iff an upper bound and a lower bound
hold with the same speeds and rates. {Pε} is called exponentially tight iff for
each ` > 0 there exist an ε0 > 0 and compact K ⊂ X such that Pε(Kc

` ) ≤
exp

(
− `/aε

)
for each ε ≤ ε0. Note that an exponentially tight family of

probability measures satisfies a large deviations upper bound iff it satisfies a
large deviations weak upper bound.

1.2.2. Γ-convergence. Let {Iε} be a sequence of functionals Iε : X →
[0,+∞]. We define two functionals Γ–limε Iε, Γ–limε Iε : X → [0,+∞] as(

Γ–limε Iε
)
(x) := inf

{
limε→0 Fε(x

ε), xε → x
}

(
Γ–limε→0 Fε

)
(x) := inf

{
limε→0 Fε(x

ε), xε → x
}

Whenever Γ–limε Iε(x) = Γ–limε Iε(x) = I(x) we say that Iε Γ-converges to
I in x, and that Γ-convergence holds in X iff this equality holds true for all
x ∈ X. The sequence {Iε} is called equicoercive iff for each N there exists an
ε0 > 0 and a compact K ⊂ X such that ∪ε≤ε0{x ∈ X : Iε(x) ≤ N} ⊂ K.

Note that Γ–limε Iε ≥ Γ–limε Iε, and that these functionals are lower-
semicontinuous [6]. We recall that, for I : X → [0,+∞] a lower semicontinuous
functional

–
(

Γ–limε Iε
)
(x) ≥ I(x) iff for any sequence xε → x we have limε Iε(x

ε) ≥
I(x) (Γ-liminf inequality);

–
(

Γ–limε Iε
)
(x) ≥ I(x) iff there exists a sequence xε → x such that

limε Iε(x
ε) ≤ I(x) (Γ-limsup inequality).

Moreover for each compact set K ⊂ X and each open set O ⊂ X

inf
x∈K

(Γ–limε Iε)(x) ≤ lim
ε

inf
x∈K

Iε(x) (1.2.4a)

inf
x∈O

(Γ–limε Iε)(x) ≥ lim
ε

inf
x∈O

Iε(x) (1.2.4b)

inf
x∈O

(Γ–limε Iε)(x) ≥ lim
ε

inf
x∈O

Iε(x) (1.2.4c)
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Note that if {Iε} is equicoercive, then the inequality (1.2.4a) also holds for
closed sets C ⊂ X.

1.2.3. Large deviations as Γ-convergence of relative entropies. We
establish a preliminary lemma that will be used in the following. ForX a Polish
space, and ϕ a map ϕ : X → R̄, we denote by ϕ+, resp. ϕ−, the positive, resp.
negative, part of ϕ.

Lemma 1.2.1. Let {Qε} ⊂ P(X) and Q ∈ P(x). The following are equiv-
alent:

(i) Qε → Q in P(X).
(ii) For each sequence {ϕε} of Borel measurable functions ϕε : X → R̄

such that limM→+∞ limε Qε
(
(ϕε +M)−

)
= 0

lim
ε

Qε(ϕε) ≥ Q(Γ–limε ϕε)

where we understand Q(Γ–limε ϕε) = +∞ whenever Q
(
(Γ–limε ϕε)

+
)

=
+∞.

(iii) For each sequence {ϕε} of Borel measurable functions ϕε : X → R̄
such that limM→+∞ limε Qε

(
(ϕε +M)−

)
= 0

lim
ε

Qε(ϕε) ≥ Q(Γ–limε ϕε)

where we understand Q(Γ–limε ϕε) = +∞ whenever Q
(
(Γ–limε ϕε)

+
)

=
+∞.

Proof. The implication (ii) ⇒ (i) and (iii) ⇒ (i) are trivial. We next
show (i) ⇒ (ii); the implication (i) ⇒ (iii) follows analogously. Let {K`}∞`=1

be an increasing sequence of compacts K` ⊂ X such that lim` Q(K`) = 0. It
is not difficult to see that for each `, n ∈ N, there exists a finite family of

pairwise disjoint Borel measurable sets {Ei
n,`}

Nn,`
i=1 , such that ∪i≥1E

i
n,` ⊃ K`,

and for i = 1, . . . , Nn,`, Q(∂Ei
n,`) = 0, diameter(Ei

n,`) ≤ 1/n. We also set

E0
n,` := X \ ∪i≥1E

i
n,`. By a refinement procedure, we can assume the partition

{Ei
n,`}

Nn,`
i=0 to be finer than {Ei

n′,`′}
Nn′,`′
i=0 for n ≥ n′ and ` ≥ `′.

Let {ϕε} be as in the statement of the lemma. For ε > 0 and n, ` ∈ N,
define ϕε;n,` : X → R̄ by ϕε;n,`(x) = infy∈Ein,` ϕε(y) for x ∈ Ei

n,`, and ϕn,`(x) :=

limε ϕε;n,`(x). Note that ϕn,`(x) increases pointwise to Γ–limε ϕε(x) as n→ +∞
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and `→ +∞, so that for each M > 0

Q
(
(Γ–limε ϕε) ∨ (−M)

)
= Q

(
Γ–limε(ϕε ∨ (−M))

)
= lim

`
lim
n

Q
(
ϕn,` ∨ (−M)

)
= lim

`
lim
n

Nn,`∑
i=0

[
Q(Ei

n,`) lim
ε

inf
x∈Ein,`

(
ϕε;n,`(x) ∨ (−M)

)]

= lim
`

lim
n

lim
ε

Nn,`∑
i=0

Qε(Ei
n,`) inf

x∈Ein,`
ϕε;n,`(x) ∨ (−M) ≤ lim

ε
Qε
(
ϕε ∨ (−M)

)
where in the first equality of the last line we used the required Q-regularity of
the sets Ei

n,`. The statement then follows by taking the limit M → +∞ on
both sides. �

Recall that, given P, Q ∈ P(X), the relative entropy H(Q|P) of Q w.r.t. P
is defined as

H(Q|P) := sup
{
Q(ϕ)− log

(
P
(

exp(ϕ)
)
, ϕ ∈ Cb(X)

}
(1.2.5)

As well known, the relative entropy admits an explicit representation in terms
of the Radon-Nykodim derivative dQ

dP

H(Q|P) =


∫
X

Q(dx) log
(
dQ
dP (x)

)
if Q is absolutely continuous w.r.t. P
and log(dQ

dP ) ∈ L1(dQ)

+∞ otherwise

(1.2.6)
We also recall a basic inequality involving the relative entropy. For each mea-
surable set A ⊂ X

Q(A) ≤ H(Q|P) + log 2

log(1 + P(A)−1)
(1.2.7)

Given {aε} ⊂ R+ and {Pε} ⊂ P(X), let us introduce the sequence {Hε} of
functionals Hε : P(X)→ [0,+∞] by defining

Hε(Q) := aεH(Q|Pε) (1.2.8)

Note that Hε is convex, since H(Q|P) is a supremum of linear functionals in
Q.

It is well known that large deviations principles are deeply connected with
convergence properties of relative entropies, see [9, 11]. The following propo-
sitions show that the Γ-convergence provides a suitable framework to exploit
this connection.

In the remaining of this section, for Q ∈ P(X) and E a Borel set such
that Q(E) > 0, we denote by QE ∈ P(X) the probability measure defined by
QE(E ′) := Q(E ∩ E ′)/Q(E), for each Borel set E ′.
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Proposition 1.2.2. Let {aε} ⊂ R+ be such that limε aε = 0, and let
{Pε} ⊂ P(X). The following are equivalent:

(A1) {Pε} is exponentially tight w.r.t. {aε}.
(A2) {Hε} is equicoercive.

Proposition 1.2.3. Let {aε} ⊂ R+ be such that limε aε = 0, and let
{Pε} ⊂ P(X). Let furthermore I : X → [0,+∞] be a lower semicontinuous
functional. The following are equivalent:

(B1) {Pε} satisfies a large deviations weak upper bound with speed {a−1
ε }

and rate I.
(B2) For each x ∈ X,

(
Γ–limεHε

)
(δx) ≥ I(x), where δx ∈ P(X) is the

Dirac mass concentrated at x.
(B3) For each Q ∈ P(X),

(
Γ–limεHε

)
(Q) ≥ Q(I).

(B4) For each sequence {ϕε} of measurable maps ϕε : X → R, such that
(i) limM→+∞ limε Pε

(
exp[(ϕε +M)−/aε]

)
= 0.

(ii) There exists an increasing sequence {K`} of compact subsets
of X such that lim` limε

∫
K`

Pε(dx) eϕε(x)/aε = 0.
the following inequality holds

lim
ε
aε log Pε

(
exp(−ϕε/aε)

)
≤ sup

x∈X

{
−
(

Γ–limε ϕε
)
(x)− I(x)

}
provided we read −

(
Γ–limε ϕε

)
(x) − I(x) := −∞ whenever I(x) =

+∞.

Assume furthermore that {Pε} satisfies the equivalent conditions (A1)− (A2)
of Proposition 1.2.2. Then (B1)− (B4) are also equivalent to

(B5) {Pε} satisfies a large deviations upper bound with speed {a−1
ε } and rate

I.
(B6) For each sequence {ϕε} of measurable maps ϕε : X → R, such that

condition (i) in (B4) holds:

lim
ε
aε log Pε

(
exp(−ϕε/aε)

)
≤ sup

x∈X

{
−
(

Γ–limε ϕε
)
(x)− I(x)

}
provided we read −

(
Γ–limε ϕε

)
(x) − I(x) := −∞ whenever I(x) =

+∞.

Proposition 1.2.4. Let {aε} ⊂ R+ be such that limε aε = 0, and let
{Pε} ⊂ P(X). Let furthermore I : X → [0,+∞] be a lower semicontinuous
functional. The following are equivalent:

(C1) {Pε} satisfies a large deviations lower bound with speed {a−1
ε } and rate

I.
(C2) For each x ∈ X,

(
Γ–limεHε

)
(δx) ≤ I(x).

(C3) For each Q ∈ P(X),
(

Γ–limεHε

)
(Q) ≤ Q(I).
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(C4) For each sequence {ϕε} of measurable maps ϕε : X → R
lim
ε
aε log Pε

(
exp(ϕε/aε)

)
≥ sup

x∈X

{(
Γ–limε ϕε

)
(x)− I(x)

}
provided we read

(
Γ–limε ϕε

)
(x)− I(x) = −∞ whenever I(x) = +∞.

Proof of Proposition 1.2.2. (A1) ⇒ (A2). For ` > 0, let K` be a
compact subset of X such that Pε(Kc

` ) ≤ e−`/aε . By (1.2.7), for each Q ∈ P(X)

Q(Kc
` ) ≤

aεH(Q|Pε) + aε log 2

aε log
(
1 + Pε(Kc

` )
−1
) ≤ Hε(Q) + aε log 2

`

Let ε0 be such that aε ≤ 1 for ε ≤ ε0. For each N > 0 and ε ≤ ε0 we get

∪ε≤ε0
{
Q ∈ P(X) : Hε(Q) ≤ N

}
⊂
{
Q ∈ P(X) : ∀` > 0, Q(Kc

` ) ≤
N + log 2

`
}

which is a tight set, and thus precompact in P(X).
(A2) ⇒ (A1). By (1.2.6), for Q ∈ P(X) and a Borel set E such that

Q(E) > 0, H(QE|Q) = − log
(
Q(E)

)
. Therefore for each ε0, ` > 0

Qε0,` := ∪ε≤ε0
{
PεKc , K ⊂ X is compact and Pε(Kc) ≥ e−`/aε

}
⊂ ∪ε≤ε0{Q ∈ P(X) : Hε(Q) ≤ `}

By the equicoercivity assumption on Hε, for each ` > 0 there exists ε0(`)
such that Qε0(`),` is precompact in P(X), and thus tight. Therefore for each
` > 0 there exists a compact set K` ⊂ X such that PεKc(K`

c) ≤ 1/2 for each
ε ≤ ε0(`) and each compact K such that Pε(Kc) ≥ e−`/aε . Since PεKc(Kc) = 1
for each K with Pε(Kc) > 0, we necessarily have K` 6= K for each K such that
Pε(Kc) ≥ e−`/aε for some ε ≤ ε0(`). Namely Pε(Kc

` ) ≤ e−`/aε for each ` > 0
and ε ≤ ε0(`). �

Proof of Proposition 1.2.3. (B1) ⇒ (B2). Let x ∈ X and {Qε} ⊂
P(X) be such that limε→0 Qε = δx in P(X). Multiplying (1.2.7) by aε, for
each Borel set E ⊂ X

Hε(Qε) ≥ aεQε(E) log
(

1 +
1

Pε(E)

)
− aε log 2 (1.2.9)

Let δ > 0, and B̄δ(x) be the closed ball of radius δ centered at x. Since
limε Qε(B̄δ(x)) = 1, taking E = B̄δ(x) in (1.2.9) and passing to the liminf

limεHε(Qε) ≥ limε aε log
(
1 + 1

Pε(B̄δ(x))

)
≥ − limε log

(
Pε(B̄δ(x)

)
≥ infy∈B̄δ(x) I(y)

where we used the (B1) hypotheses in the last inequality. Taking the limit
δ → 0, and recalling that I is lower-semicontinuous, we get (B2).

(B2) ⇒ (B3). Let Q ∈ P(X) and let {K`}∞`=1 be an increasing sequence
of compacts K` ⊂ X such that lim` Q(K`) = 0. It is not difficult to see
that for each `, n ∈ N, there exists a finite family of pairwise disjoint Borel
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measurable sets {Ei
n,`}

Nn,`
i=1 , such that ∪i≥1E

i
n,` ⊃ K`, and for i = 1, . . . , Nn,`,

Q(∂Ei
n,`) = 0, diameter(Ei

n,`) ≤ 1/n. We also set E0
n,` := X \ ∪i≥1E

i
n,`. By a

refinement procedure, we can assume the partition {Ei
n,`}

Nn,`
i=0 to be finer than

{Ei
n′,`′}

Nn′,`′
i=0 for n ≥ n′ and ` ≥ `′.

Let {Qε} be a sequence converging to Q in P(X). We want to show
limHε(Qε) ≥

∫
Q(dx)I(x). Let ε > 0, for i = 0, . . . , Nn,` such that Qε(Ei

n,`) >

0 define the probability measures Qε;i
n,` := Qε

Ein,`
∈ P(X). We have Qε =∑Nn,l

i=0 Qε(Ei
n,`)Q

ε;i
n,`, where we understand that the terms in this sum vanish

whenever Qε(Ei
n,`) = 0. By (1.2.5), for each n, ` > 0

H(Qε|Pε) =
∑Nn,`

i=0 Qε(Ei
n,`)H(Qε;i

n,`|Pε) + Qε(Ei
n,`) log Qε(Ei

n,`)

≥ − logNn,` +
∑Nn,`

i=0 Qε(Ei
n,`)H(Qε;i

n,`|Pε)
(1.2.10)

where we meant 0 log 0 ≡ 0. Multiplying by aε and taking the liminf

limεHε(Qε) ≥
∑Nn,`

i=0 limε

[
Qε(Ei

n,`)Hε(Qε;i
n,`)
]

=
∑Nn,`

i=0 Q(Ei
n,`) limεHε(Qε;i

n,`) =
∫

Q(dx) In,`(x)

where we used the Q-regularity of the sets Ei
n,`, and In,`(x) := limε aεH(Qε;i

n,`)

for x ∈ Ei
n,`. Note that In,` is increasing both in n and `, since Hε is convex and

we assumed the partitions {Ei
n,`} to be increasing. Therefore, by monotone

convergence limεHε(Qε) ≥
∫

Q(dx) supn,` In,`(x). On the other hand by (B2)
lim` limn In,`(x) ≥ I(x) pointwise.

(B3) ⇒ (B4). We prove that statement for a sequence {ϕε} of functions
uniformly bounded from below. The general case is then easily obtained by the
requirement (i). Consider the sequence {Qε} ⊂ P(X) of probability measures
defined as

Qε(dx) :=
exp(−ϕε/aε)

Pε
(

exp(−ϕε/aε)
)Pε(dx)

By (1.2.6)

aε log Pε
(

exp(−ϕε/aε)
)

= Qε
(
− ϕε

)
−Hε(Qε)

By requirement (ii), {Qε} is tight and thus precompact in P(X). Let Q be
an arbitrary limit point of {Qε}; taking the limsup, using Lemma 1.2.1 and
(B3)

limε aε log Pε
(

exp(−ϕε/aε)
)
≤ − limε Qε

(
ϕε
)
− limεHε(Qε)

≤ −Q(Γ–limε ϕε)−Q(I) ≤ supx∈X
{
− (Γ–limε ϕε)(x)− I(x)

}
(B4) ⇒ (B1). Let K be a compact in X, and for ε, M > 0 consider the

statement (B4) for ϕε ≡M1IKc . {ϕε} is lower semicontinuous and satisfies (i)
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and (ii) in (B4). Therefore

lim
ε
aε log Pε(K) ≤ lim

ε
aε log Pε

(
exp(−M1IKc/aε)

)
≤ sup

x∈X
{−M1IKc(x)− I(x)}

and we get (B1) letting M → +∞.
The implications (B5) ⇒ (B1), (B6) ⇒ (B5), and {(A1), (B1)} ⇒ (B5)

are trivial. On the other hand, once (A1) is assumed, the implication (B4)⇒
(B6) follows from a standard cut-off argument. �

Proof of Proposition 1.2.4. (C1)⇒ (C2). Let x ∈ X, and for δ > 0
let Bδ(x) the open ball of radius δ centered at x. For ε, δ > 0, define Qε,δ ∈
P(X) as

Qε,δ :=

{
PεBδ(x) if Pε

(
Bδ(x)

)
> 0

δx otherwise

and note H(Q|P) = − log Pε
(
Bδ(x)

)
, where we understand − log(0) = +∞.

By (C1) we thus get for each δ > 0

lim
ε
Hε(Qε,δε) = − lim

ε
log Pε

(
Bδ(x)

)
≤ inf

y∈Bδ(x)
I(y) ≤ I(x)

On the other hand limδ limε Qε,δ = δx in P(X), so that we there exists a
sequence {δε} ⊂ (0, 1) such that limε Qε,δε = δx and limεHε(Qε,δε) ≤ I(x).

(C2) ⇒ (C3). By the convexity of Hε, Γ–limHε is also convex, and by
(C2) we have (Γ–limHε)(δx) ≤

∫
δx(dy) I(y). (C3) follows by convexification.

(C3) ⇒ (C4). Let Y :=
{
x ∈ X : (Γ–limε ϕε)(x) > −∞

}
. By the

definition of the Γ-liminf, for each x ∈ Y there exists ε0(x) and δ(x) > 0 such
that infy∈Bδ(x)(x) ϕε(y) > −∞, for each ε ≤ ε0(x). For x ∈ Y , let {Qε;x} be a

sequence converging to δx in P(X) and such that limHε(Qε,x) ≤ I(x). Such
a sequence exists by (C3). Note that by (1.2.10) the sequence Qε,x

Bδ(x)(x) enjoys

these properties as well, so that we can assume Qε,x to be concentrated on
Bδ(x)(x). By the definition (1.2.5), for each ϕ ∈ Cb(X)

log Pε(eϕ) ≥ −H(Qε,x|P) + Qε,x(ϕ) (1.2.11)

By a limiting argument, this inequality holds true for each measurable ϕ : X →
[−∞,+∞], provided we read the r.h.s. as −∞ whenever H(Qε,x|P) = +∞ or
Qε,x(ϕ−) = +∞. Evaluating (1.2.11) for ϕ = ϕε/aε, taking the liminf and
optimizing on x ∈ Y we thus obtain

lim
ε
aε log Pε

(
exp(ϕε/aε)

)
≥ sup

x∈Y

{
− lim

ε
Hε(Qε,x) + lim

ε
Qε,x(ϕε)

}
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Since we assumed Qε,x concentrated on Bδ(x)(x), and since ϕε is bounded from
below on this ball, we can apply Lemma 1.2.1, so that

limε aε log Pε
(

exp(ϕε/aε)
)
≥ supx∈Y

{
− I(x) + Γ–limε ϕ

ε)(x)
}

= supx∈X
{
− I(x) + (Γ–limε ϕ

ε)(x)
}

(C4)⇒ (C1). For a Borel set O ⊂ X and ε > 0

aε log Pε(O) = aε log
[ Pε(O)

1+(e1/aε−1)Pε(O)

]
+ aε log Pε

(
exp(1IO

aε
)
)

≥ −1 + aε log Pε
(

exp(1IO
aε

)
) (1.2.12)

Take now O an open set, and consider the statement (C4) with ϕε ≡ 1IO. Since
1IO is lower semicontinuous, Γ–limϕε = 1IO, so that taking the liminf (1.2.12)

lim
ε
aε log Pε(O) ≥ −1 + sup

x∈X

(
1IO − I(x)

)
≥ − inf

x∈O
I(x)

�

As a byproduct, we get that, if {Pε} is exponentially tight, there exist two
“optimal” rate functionals for the large deviations upper and lower bounds, and
they are given by (Γ–limεHε)(δ·) and (Γ–limεHε)(δ·) respectively. In particular,
by well known compactness properties of Γ-convergence [6], we also have that,
given a sequence {aε} as above and an exponentially tight family {Pε} ⊂ P(X),
there exists a subsequence {Pεk} satisfying a large deviations principle with
speed {a−1

εk
}.

1.2.4. A large deviations bound for Feller processes. Beyond sug-
gesting a general framework to fit large deviations theory in Γ-convergence
theory, Propositions 1.2.2, 1.2.3, 1.2.4 do not provide any concrete tool to
understand large deviations principles for a given family {Pε} of probability
measures. We next establish a more operative connection between large devia-
tions and Γ-convergence in the setting of Feller processes, by proving a general
large deviations upper bound for an arbitrary sequence of Feller processes. Al-
though a more general treatment in the setting of cadlag Feller processes is
possible, we restrict to the case of continuous processes. We refer to [19] for
basic definitions concerning Markov generators and Feller processes.

Let X be a Polish space, let T > 0, and for L a Markov pregenerator on
C(X), let D(L) ⊂ Cb(X) be the domain of L, DL ⊂ Cb([0, T ] × X) be the
domain of ∂t + L and

DL,2 :=
{
φ ∈ Cb([0, T ]×X) : φ ∈ DL, φ

2(t, ·) ∈ D(L) for each t ∈ [0, T ]
}



1.2. LARGE DEVIATIONS THEORY AND ITS VARIATIONAL COUNTERPART 17

For u0 ∈ X, we introduce the functional IL,u0 : C([0, T ];X)×DL,2 → [−∞,+∞]
as

IL,u0(u;φ) :=


φ(T, u(T ))− φ(0, u0)−

∫
dt
[(

(∂t + L)φ
)
(t, u(t))

−1
2

(
L(φ2)

)
(t, u(t)) + φ(t, u(t)) (Lφ)(t, u(t))

]
if u(0) = u0

+∞ otherwise

The integral in the r.h.s. of this formula is well defined, since for φ ∈ DL,2 and
t ∈ [0, T ],

(
L(φ2)

)
(t, u(t))− 2φ(t, u(t)) (Lφ)(t, u(t)) ≥ 0.

Proposition 1.2.5. Let X be a Polish space, let T > 0, and {Lε} be a
sequence of Markov pregenerators on C(X). For a given u0 ∈ X, and for
each ε > 0 suppose that there exists a solution Pε ∈ P

(
C([0, T ];X)

)
to the

martingale problem for Lε with initial datum u0. For Φ = {φε} ∈ ΠεDLε,2,
namely for a sequence Φ = {φε} such that φε ∈ DLε,2, define the functional
Iε,u0:Φ : C([0, T ];X)→ (−∞,+∞] as

Iε,u0;Φ(u) := ε ILε,u0(u;φε). (1.2.13)

and Iu0 : C([0, T ];X)→ [0,+∞] as

Iu0(u) := sup
Φ∈ΠεDLε,2

(Γ–limε Iε,u0;Φ)(u) (1.2.14)

Then {Pε} satisfies a weak large deviations upper bound with rate Iu0, in the
uniform topology of C([0, T ];X).

Proof. For each ε > 0 and φ ∈ DLε,2, the map

Mφ : [0, T ]× C
(
[0, T ];X

)
→ R

Mφ(t, u) := φ(t, u(t))− φ(0, u(0))−
∫

[0,t]
ds
(
(∂s + L)φ

)
(s, u(s))

is a continuous Pε-martingale with quadratic variation[
Mφ(·, u),Mφ(·, u)

]
t

=

∫
[0,t]

ds
(
L(φ2)

)
(s, u(s))− 2φ(s, u(s)) (Lφ)(s, u(s))

Therefore its stochastic exponential

Eφ : [0, T ]× C
(
[0, T ];X

)
→ (0,+∞)

Eφ(t, u) := exp
{
φ(t, u(t))− φ(0, u(0))−

∫
[0,t]
ds
[(

(∂s + L)φ
)
(s, u(s))

− 1
2

(
L(φ2)

)
(s, u(s)) + φ(s, u(s)) (Lφ)(s, u(s))

]}
is a continuous Pε supermartingale, with Eφ(0, u) = 1.

Recall that Pε is concentrated on the closed set Au0 := {u ∈ C([0, T ];X) :
u(0) = u0}. For each ε > 0, φ ∈ DLε,2 and each Borel set K ⊂ C([0, T ];X) we
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then have

Pε(K) = Pε(K ∩ Au0) = Pε
(
E−1
φ (T, ·)Eφ(T, ·)1IK∩Au0

(·)
)

≤ supv∈K∩Au0
Eφ(T, v)−1Pε

(
Eφ(T, ·)1IK(·)

)
≤ supv∈K∩Au0

Eφ(T, v)−1 = − infv∈K ILε,u0(v, φ)

Taking the logarithm, optimizing over φ ∈ DLε,2

ε log Pε(K) ≤ − sup
φ∈DLε,2

inf
v∈K

εILε,u0(v, φ)

Therefore for each sequence Φ ∈ ΠεDLε,2

lim ε log Pε(K) ≤ − lim
ε

inf
v∈K

Iε,u0;Φ(v)

For K a compact set, by (1.2.4a)

lim ε log Pε(K) ≤ − lim
ε

inf
v∈K

Iε,u0;Φ(v) ≤ − inf
u∈K

(
Γ–limε Iε,u0;Φ

)
(v)

We then conclude by optimizing on Φ and using the minimax lemma [15]. �

1.3. Large deviations for finite dimensional diffusion processes

In this section we prove some results concerning finite dimensional Itô
processes. For sake if simplicity, we develop the one dimensional case, although
it is immediate to extend the results to the the finite dimensional setting.

Let {bε}, {dε} ⊂ C(R). Consider the stochastic differential equation in the
Itô sense

dx = bε(x)dt+ dε(x)dW
x(0) = x0

(1.3.1)

where W is a one dimensional Brownian motion and x0 ∈ R. Suppose that
there exists a sequence {Pε} ⊂ P

(
C([0, T ])

)
such that, for each ε > 0, Pε is

a martingale solution to (1.3.1). We are here interested in establishing large
deviations principles for {Pε}. The classical Freidlin-Wentcell computation
[10] deals with the case in which bε ≡ b does not depend on ε, and dε =

√
εd.

In such a case, under suitable hypotheses on b and d, {Pε} satisfies a large
deviations principle with speed ε and rate

IFW (x) :=

{
1
2

∫
[0,T ]

dt |ẋ(t)−b((x(t))|2
d(x(t))2

if x ∈ H1([0, T ]) and x(0) = x0

+∞ otherwise

Back to the general case (1.3.1), define Iε : C([0, T ])×C∞([0, T ]×R)→ R as

Iε(x;φ) :=


ε
{
φ(T, x(T ))− φ(0, x0)−

∫ T
0
dt
[
∂tφ(t, x(t))

−b(x(t))φ′(t, x(t))− 1
2
d(x(t))φ′(t, x(t))2

]}
if x(0) = x0

+∞ otherwise
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Then by Proposition 1.2.5, {Pε}, satisfies a weak large deviations upper bound
with speed ε−1 and rate

I := sup
{φε}⊂C∞([0,T ]×R)

Γ–limε I
ε(·;φε) (1.3.2)

Note that in the Friedlin-Wentcell case, I(·) = supφ I
ε(·;φ) = IFW (·).

While it is not difficult to give conditions on {bε} and {dε} that guarantee
exponential tightness of {Pε} and thus a full large deviations upper bound,
here we focus on a technique to establish a lower bound.

Proposition 1.3.1. Assume

(a) There exists C > 0 such that |bε(x) − bε(y)| ≤ C|x − y| for each
x, y ∈ R.

(b) Let αε be defined by α2
ε := supx∈R |dε(x)|2. Then limε αε = 0.

(c) Let αε as in (b). Then for each C ′ > 0

lim
ε

sup
|x−y|≤C′αε

dε(y)2 − dε(x)2

dε(x)2
= 0

and define Iε : C([0, T ])→ [0,+∞] as

Iε(x) :=

{
ε
2

∫
[0,T ]

dt |ẋ(t)−bε((x(t))|2
dε(x(t))2

if x ∈ H1([0, T ]) and x(0) = x0

+∞ otherwise

Then {Pε} satisfies a large deviations lower bound with speed ε−1 and rate
I := Γ–lim Iε.

Note that I ≥ I, where I is defined in (1.3.2), and that in the Friedlin-
Wentcell case I = IFW = I.

Proof. Let us fix y ∈ C([0, T ]) such that I(y) < +∞. We will exhibit a
sequence {Qε} ⊂ P

(
C([0, T ])

)
such that Qε → δy and such that limεHε(Qε) ≤

I(y), where Hε is defined as in (1.2.8) with aε = ε. We then conclude by
Proposition 1.2.4.

Recall that there exists a standard filtered probability space
(
Ω,F, {Ft}t∈[0,T ],P

)
on which a Brownian motion W generating the filtration Ft is defined. More-
over there exists an adapted process xε : Ω→ C([0, T ]) such the Pε = P◦(xε)−1,
see [20]. As usual, in this proof, we denote by ω the generic element of Ω, and
for a process ζ : [0, T ]×Ω→ R we use the equivalent notations z(t, ω) ≡ zt(ω),
depending on which aspect of the process we want to emphasize.

By the definition of the Γ-limsup, for each y ∈ C([0, T ]) there exists a
sequence {yε} ⊂ C([0, T ]) such that yε → y in C([0, T ]) and lim Iε(yε) ≤
(Γ–limε I

ε)(y). With no loss of generality we can assume Iε(yε) < +∞ for
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each ε small enough, so that yε ∈ H1([0, T ]). We define the {Ft}-adapted
measurable map ϕε : [0, T ]× Ω→ R as

ϕε(t, ω) := − ẏ
ε(t)− bε(y(t))

dε(xε(t, ω))

For ζ > 0 we also define the {Ft} stopping time

τ ε,ζ(ω) := inf
{
t ≤ T :

ε

2

∫
[0,t]

ds [ϕε(s, ω)]2 ≤ Iε(y
ε) + ζ

}
We also introduce the P-martingale {M ε

t } on Ω as

M ε,ζ
t :=

∫ t∧τε,ζ

0

ϕε(s) dWs

We have that
[
M ε,ζ ,M ε,ζ

]
T
≤ 2ε−1(Iε(y

ε) + ζ) is bounded uniformly on Ω.

Therefore the process Eε,ζ on Ω defined as

Eε,ζ
t := exp

(
M ε

t −
1

2

[
M ε,ζ ,M ε,ζ

]
t

)
is also a P-martingale. We define Q̃ε,ζ on P(Ω) by Q̃ε,ζ(dω) = Eε,ζ

T (ω)P(dω),

and Qε,ζ on P
(
C([0, T ])

)
as Qε,ζ := Q̃ε,ζ◦(xε)−1. By definition (1.2.8), applying

the change of variable Ω 3 ω 7→ xε(ω) ∈ C([0, T ])

Hε(Qε;ζ) = εH(Q̃ε,ζ |P) = ε
∫

Ω
Q̃ε,ζ(dω)

(
M ε

T (ω)− 1
2

[
M ε,M ε

]
T

(ω)
)

≤ ε
∫

Ω
Q̃ε,ζ(dω)

(
M ε

T (ω)−
[
M ε,M ε

]
T

(ω)
)

+ Iε(yε) + ζ
≤ Iε(yε) + ζ

(1.3.3)

where in the last line we used
∫

Ω
Q̃ε(dω)

(
M ε

T (ω)−
[
M ε,M ε

]
T

(ω)
)

= 0 since,

by Girsanov theorem, M ε
t −

[
M ε,M ε

]
t

is a Q̃ε,ζ-martingale.

Still by Girsanov Theorem, there exists a Q̃ε,ζ Brownian motion W̃ ε,ζ such
that

xε(t ∧ τ ε,ζ)− yε(t ∧ τ ε,ζ) =
∫

[0,t∧τε,ζ ]
ds
[
bε(xε(s))− bε(yε(s))

]
+
∫

[0,t∧τε,ζ ]
dε(xε(s))dW̃ ε,ζ

s

Squaring, and using (a), (b) and Doob maximal inequality

Q̃ε,ζ
(

supt≤τε,η |xε(t)− yε(t)|2
)
≤ 2C2 T 2 Q̃ε,ζ

(
supt≤τε,ζ |xε(t)− yε(t)|2

)
+C1α

2
ε

for some constant C1 > 0. With no loss of generality, we can assume T small
enough, namely such that C T ≤ 1/2, by standard iterative disintegration
arguments. We gather

Q̃ε,ζ
(

sup
t≤τε,ζ

|xε(t)− yε(t)|2
)
≤ 2C1α

2
ε (1.3.4)
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Note that

ε

2

∫
[0,τε,ζ ]

[ϕε(s, ω)]2 ≤ Iε(y
ε) + Iε(y

ε) sup
t≤τε,ζ

dε(yε)2 − dε(xε(t, ω))2

dε(xε(t, ω))2

Iε(y
ε) is uniformly bounded, since I(y) < +∞. Therefore, by assumption (c),

for each C ′ > 0 there exists ε0 = ε0(C ′) such that for each ε ≤ ε0

Q̃ε,ζ
(
τ ε,ζ < T

)
≤ Q̃ε,ζ

(
sup
t≤τε,ζ

|xε(t)− yε(t)| ≤ C ′αε
)

Therefore for each ξ, C ′ > 0 and ε small enough

Q̃ε,ζ
(

supt≤T |xε(t)− yε(t)| > ξ
)

≤ Q̃ε,ζ
(

supt≤τε,ζ |xε(t)− yε(t)| > ξ
)

+ Q̃ε,ζ
(
τ ε,ζ < T

)
≤ Q̃ε,ζ

(
supt≤τε,ζ |xε(t)− yε(t)| > ξ

)
+ Q̃ε,ζ

(
supt≤τε,ζ |xε(t)− yε(t)| ≤ C ′αε

)
≤ 2Q̃ε,ζ

(
supt≤τε,ζ |xε(t)− yε(t)| ≤ C ′αε

)
≤ 24C1

C′2

where in the last line we used (1.3.4) and Tchebyshev inequality. Taking the
limit ε→ 0 and then sending C ′ → +∞, we obtain that, for each ζ > 0, xε → y
in Q̃ε,ζ probability, since yε → y in C([0, T ]). Thus Qε,ζ → δy in P

(
C([0, T ])

)
for each ζ > 0. Since (1.3.3) holds, we can extract a subsequence ζε → 0, such
that Qε,ζε → δy and limεHε(Q

ε,ζε) ≤ lim Iε(y
ε)+ζε ≤ (Γ–lim Iε)(y) = I(y). �

1.4. Conservation Laws

In this section we introduce some basics notions concerning the limiting
equation of (1.1.3), obtained by informally setting ε = 0. As we restrict
our analysis to the 1 + 1 dimensional case, we denote space derivatives with a
subscript x. We think of x as a variable on the one-dimensional torus, although
the results in this section can be straightforwardly stated also in the case x ∈ R,
that is also considered in Chapter 2. The time variable t is restricted to a finite
time horizon t ∈ [0, T ] for some T > 0.

We refer to [5, 18] for the precise statements and proofs concerning con-
servation laws. Consider the Cauchy problem

∂tu+ f(u)x = 0
u(0, x) = u0(x)

(1.4.1)

where we assume f to be smooth and u0 bounded. As well known, even if the
initial datum u0 is smooth, the flow (1.4.1) may develop singularities for some
positive time. In general, these singularities appear as discontinuities of u and
are called shocks. It is then natural to interpret (1.4.1) in weak sense. In this
weak formulation an additional condition is needed to guarantee uniqueness of
the solutions to (1.4.1).
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More precisely, a bounded measurable map u : [0, T ] × T → R is a weak
solution to (1.4.1) iff for each smooth ϕ : [0, T ]×T→ R such that ϕ(T, x) = 0

−〈u0, ϕ(0, ·)〉 − 〈〈u, ∂tϕ〉〉 − 〈〈f(u), ϕx〉〉 = 0

Here 〈·, ·〉 denotes duality in L2(T) and 〈〈·, ·〉〉 duality in L2([0, T ]×T). Given
a differentiable function η, called entropy, the conjugated entropy flux q is
defined up to an additive constant by q′ = η′ f ′. A weak solution to (1.4.1) is
called entropic iff for each entropy – entropy flux pair (η, q) with η convex, the
inequality η(u)t + q(u)x ≤ 0 holds in distribution sense. Note that the entropy
condition is always satisfied for smooth solutions to (1.4.1). The classical
theory, see e.g. [18], shows existence and uniqueness in C([0, T ];L1(T)) of the
entropic solution ū to the Cauchy problem associated to (1.4.1). ū is also
called the Kruzkov solution with initial datum u0. While the flow (1.4.1) is
invariant w.r.t. (t, x) 7→ (−t,−x), the entropy condition breaks such invariance
and selects the “physical” direction of time.

In this section we are concerned with various classes of solutions to (1.4.1).
For sake of simplicity, let us assume that u0 takes values in [0, 1], and that
we restrict our attention to [0, 1]-valued solution to (1.4.1). We introduce the
space M of Young measures as follows. Let P([0, 1]) be the set of probability
measures on [0, 1], ı : [0, 1] → [0, 1] the identity map, and U the set of mea-
surable functions v : T → [0, 1]. U is a (metrizable) space if regarded as a
subset of the set of measures on T equipped with the ∗-weak topology. We
define M the set of maps µ : [0, T ]× T→ P([0, 1]), µ : (t, x) 7→ µt,x(dλ), such
that µ·,·(ı) ∈ C([0, T ];U). Hereafter for a Borel measure µ and a continuous
function F on some Polish space X, µ(F ) denotes the integral of F w.r.t. µ.
A µ ∈ M is a measure-valued solution to (1.4.1) iff for each smooth function
ϕ on [0, T ]× T

〈µ(ı)T,·, ϕ(T, ·)〉 − 〈u0, ϕ(0, ·)〉 − 〈〈µ(ı), ∂tϕ〉〉 − 〈〈µ(f), ϕx〉〉 = 0

If u is a weak solution to (1.4.1), then µt,x(dλ) := δu(t,x)(dλ) is a measure-
valued solution; on the other hand there exist measure-valued solutions that
do not have this form.

Let u a [0, 1]-valued weak solution to (1.4.1), η : [0, 1] → R a twice differ-
entiable map, and q its conjugated flux. We introduce the distribution ℘η,u
acting on C∞c

(
(0, T )× T

)
as

℘η,u(ϕ) = −〈〈η(u), ∂tϕ〉〉 − 〈〈q(u), ϕx〉〉

Note that a weak solution u to (1.4.1) is entropic iff ℘η,u ≤ 0 for each convex
η. We say that a [0, 1]-valued weak solution u to (1.4.1) is an entropy-measure
solution iff ℘η,u can be extended to a Radon measure on (0, T )×T. In Chapter 2
we show that entropy-measure solutions have some regularity properties, and
in particular we establish a so called kinetic formulation for these solutions.
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Namely, suppose that u is an entropy-measure solution to (1.4.1), then there
exists a Radon measure Pu on [0, 1]×[0, T ]×T such that for each η ∈ C2([0, 1]),
ϕ ∈ C∞c

(
(0, T )× T

)
℘η,u(ϕ) = Pu(η

′′ ϕ) (1.4.2)

1.5. A sketch of the main results

In this Section we roughly sketch the main results concerning large de-
viations principles for the probability laws of the solution uε to the Cauchy
problem (1.1.3), see also the discussion in Section 1.1.3.

1.5.1. Statements of the results. We recall that U denotes the set
of measurable maps v : T → [0, 1] equipped with the (metrizable) relative
topology it inherits from the weak* topology of measures on T. There are
two metrics that we will consider on C([0, T ];U). The first one is its natural
uniform topology; if C([0, T ];U) is equipped with this metric we denote it by
U and by dU the metric itself. Since C([0, T ];U) can be regarded as a suitable
set of measurable maps u : [0, T ]×T→ [0, 1], it can also be equipped with the
strong L1([0, T ]×T) distance, and we denote by dX the distance given by the
sum of dU and the L1 distance; when endowed with dX , we denote C([0, T ];U)
by X .

We also recall that the set of Young measures M has been defined in
Section 1.4. We endow M with the metric

dM(µ, ν) := d∗w(µ, ν) + dU
(
µ(ı), ν(ı)

)
where d∗w is a distance generating the relative topology on M regarded as a
subset of the finite measures on [0, T ] × T × [0, 1] equipped with the vague
topology. (U , dU), (X , dX ), (M, dM) are Polish spaces. We remark in par-
ticular that X can be regarded as a subset of M endowed with the relative
topology.

In Section 3.5 it is shown, under suitable general hypotheses on f, D, σ
and ε, that for each ε > 0 small enough there exists a unique solution uε ∈
C([0, T ];U) ∩ L2

(
[0, T ];H1(T)

)
to (1.1.3). A first result states that, as ε→ 0,

the process uε converges in probability on X to the unique entropic solution to
(1.4.1). We thus turn our focus to large deviations principles for the probability
law Pε of uε.

We want to regard uε as a process onM. We thus introduce anM-valued
random process µε := δuε , and with a little abuse of notation we denote by
{Pε} the law of µε on M. The following statement is proved in Chapter 3,
under suitable hypotheses on ε

Theorem 1.5.1. {Pε} is exponentially tight on M on the scale ε−2γ, and
satisfies a large deviations principle with speed ε−2γ and rate I :M→ [0,+∞]
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defined by

I(µ) := supϕ∈C∞([0,T ]×T)

{
〈µ(ı)T,·, ϕ(T, ·)〉 − 〈u0, ϕ(0, ·)〉 − 〈〈µ(ı), ∂tϕ〉〉

− 〈〈µ(f), ϕx〉〉 − 1
2
〈〈µ(σ)ϕx, ϕx〉〉

}
As it will be clearer in the following, I(µ) represents a suitable Hilbert

norm of ∂tµ(ı) + µ(f)x, and I(µ) = 0 iff µ is a measure-valued solution to
(1.4.1).

We know that Pε converges in probability to the deterministic entropic
solution to (1.4.1); on the other hand in general there exists infinitely many
measure-valued solutions to (1.4.1), namely infinitely many zeros of I. It
is then natural to study the large deviations of Pε on a finer scale, which
roughly speaking correspond to the analysis of the Γ-development, see [4], of
the functional Hε as defined in (1.2.8). We are thus concerned with a large
deviations principle on the scale ε−2γ+1, for which we can only prove partial
results. We show that the sequence {Pε} is exponentially tight on X w.r.t. the
scale ε−2γ+1. In particular, since the topology of X coincides with the relative
topology induced by the immersion of X inM via the map X 3 u 7→ δi ∈M,
once a large deviations principle is established for {Pε} on X , it is immediate
to get a large deviations principle for {Pε} on M.

Recall that if u is an entropy-measure solution to (1.4.1), then there exists
a Radon measure Pu on [0, 1]× [0, T ]× T such that (1.4.2) holds. We denote
by P+

u its positive part. We define H : X → [0,+∞] by

H(u) :=


∫
P+
u (dv; dt, dx)

D(v)

σ(v)
if is an entropy measure solution to (1.4.1)

+∞ otherwise

In Chapter 3 we also define a suitable set S of “entropy-splittable” solutions,
which are entropy-measure solutions to (1.4.1), such that the supports of the
positive and negative part of Pu have some nice properties. Then we set

H(u) := sup
O3u
O open

inf
v∈O∩S

H(v)

Theorem 1.5.2. {Pε} is exponentially tight on X on the scale ε−2γ+1, and
satisfies a large deviations upper bound with rate H and speed ε−2γ+1, and a
large deviations lower bound with rate H and speed ε−2γ+1.

In order to prove the full large deviations principle, one would need to
show that H = H. While it is easy to see H ≥ H, the converse inequality is
equivalent to the so called H-density of S in X . This issue is briefly discussed
in Section 3.2 below and appears to be linked to much hard open problems.

The physical interpretation ofH and its connections with Einstein diffusion-
fluctuation relation is described in Section 2.2.
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1.5.2. Outline of the proofs. Exponential tightness of {Pε} on M is
easy, due to strong compactness properties of the space itself. Exponential
tightness of Pε on X is obtained via a compensated compactness argument,
once a sharp estimate for the behavior of ∇uε is obtained.

Both the large deviations upper bounds are gathered by building on the
result in Proposition 1.2.5, and the Γ-convergence results proved in Chapter 3.

Both the large deviations lower bounds are obtained following a strategy
similar to the one used to prove Proposition 1.3.1, and the computation of the
Γ-limits in Chapter 2. Additional stability estimate for (1.1.3) are then needed
to conclude.

1.5.3. Other results. The results obtained in this paper have been mo-
tivated by the investigation of large deviations principles for the solution to
(1.1.3). However we believe that some these results may have an independent
interest. Here we list some results that are quite independent from the large
deviations problem; they are discussed in more generality in Chapters 2 and
3.

The Γ-convergence problem investigated in Chapter 2 is largely indepen-
dent of the large deviations issue. It provides a variational characterization of
measure-valued and entropic solutions to (1.4.1). In particular it gives a sharp
stability bound for the viscous approximation to conservation laws under H−1-
like perturbations. In Appendix B of Chapter 2 a similar Γ-convergence results
is also established for Hamilton-Jacobi equations, providing the correspondent
variational characterization of measure-valued and viscosity solutions.

Corollary 2.2.2 can be regarded as a negative-Sobolev version of classical
results, see [6, Chap. 3], for the relaxation of integral functionals in weak Lp
spaces.

In Lemma 3.2.2 a generalization of the classical Bernestein inequality [17]
is provided. We remark that it is possible to generalize this inequality to the
cadlag case.

The correspondence between large deviations and Γ-convergence estab-
lished in Proposition 1.2.2, 1.2.3, 1.2.4 suggests various connections between
the two theories. For instance, in Proposition 2.4.6 we prove the Γ-convergence
analogous statement to the so called contraction principle for large deviations
(indeed, the contraction principle is a straightforward consequence of Propo-
sitions 2.4.6, 1.2.2, 1.2.3, 1.2.4).

1.5.4. Open problems and developments. As mentioned above, the
H-density of S in X is open. As discussed in Chapter 2, this issue is related
to fine structure analysis of entropy-measure solutions to (1.4.1). In partic-
ular it seems that an important step in proving the H-density is to provide
a chain rule formula for divergence-measure field. Chain rule formulas out of
the BV setting are subject of recent research investigation; in particular, as far



26 1. LARGE DEVIATIONS VIA Γ-CONVERGENCE

as divergence-measure fields are concerned, the attempt to understand their
differential properties can be tracked back to De Giorgi and Anzellotti [2], and
more recently to [7].

We believe that the variational techniques introduced in this paper are a
useful tool to provide large deviations principle in other settings. In particular
we mention the possibility to apply this methods to other classes of stochastic
partial differential equations (like degenerate parabolic diffusion equations and
the 2D Navier-Stokes equation).

As better explained in Section 2.2, the functional H comes as a natural
generalization of the large deviations functional introduced in [11, 21]. We
thus hope it is possible to extend the variational techniques here introduced to
establish large deviations principles for various classes of asymmetric particles
systems.

Finally, an enhanced investigation of large deviations principles for the
general finite dimensional diffusion (1.3.1) may be interesting.
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CHAPTER 2

Γ-entropy cost functional for scalar conservation laws

The results in this chapter have been obtained jointly with G. Bellettini,
L. Bertini, and M. Novaga, see also [3].

2.1. Introduction

We are concerned with the scalar one-dimensional conservation law

ut + f(u)x = 0 (2.1.1)

where, given T > 0, u = u(t, x), (t, x) ∈ [0, T ] × R, subscripts denote partial
derivatives, and the flux f is a Lipschitz function. As well known, even if the
initial datum u(0) = u(0, ·) is smooth, the flow (2.1.1) may develop singularities
for some positive time. In general, these singularities appear as discontinuities
of u and are called shocks. It is therefore natural to interpret (2.1.1) weakly; in
the weak formulation uniqueness is however lost, if no further conditions are
imposed. Given a function η, called entropy, the conjugated entropy flux q is
defined up to an additive constant as q(u) =

∫ u
dv η′(v) f ′(v). A weak solution

to (2.1.1) is called entropic iff for each entropy – entropy flux pair (η, q) with
η convex, the inequality η(u)t + q(u)x ≤ 0 holds in the sense of distributions.
Note that the entropy condition is always satisfied for smooth solutions to
(2.1.1). The classical theory, see e.g. [6, 16], shows existence and uniqueness in
C
(
[0, T ];L1,loc(R)

)
of the entropic solution to the Cauchy problem associated

to (2.1.1). While the flow (2.1.1) is invariant w.r.t. (t, x) 7→ (−t,−x), the
entropy condition breaks such invariance and selects the “physical” direction
of time.

In the conservation law (2.1.1) the viscosity effects are neglected. This
approximation is no longer valid if the gradients become large as it happens
when shocks appear. A more accurate description is then given by the para-
bolic equation

ut + f(u)x =
ε

2

(
D(u)ux

)
x

(2.1.2)

in which (t, x) ∈ [0, T ] × R, D, assumed uniformly positive, is the diffusion
coefficient and ε > 0 is the viscosity. In this context of scalar conservation
laws, it is also well known that, as ε → 0, equibounded solutions to (2.1.2)
converge in L1,loc([0, T ] × R) to entropic solutions to (2.1.1), see e.g. [6, 16].
This approximation result shows that the entropy condition is relevant.

29
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Perhaps less well known, at least in the hyperbolic literature, is the fact
that entropic solutions to (2.1.1) can be obtained as scaling limit of discrete
stochastic models of lattice gases, see e.g. [12, Ch. 8]. In a little more detail,
consider particles living on a one-dimensional lattice and randomly jumping
to their neighboring sites. It is then proved that, under hyperbolic scaling, the
empirical density of particles converges in probability to entropic solutions to
(2.1.1). A much studied example is the totally asymmetric simple exclusion
process, where there is at most one particle in each site and only jumps heading
to the right are allowed. In this case, the empirical density takes values in [0, 1]
and its scaling limit is given by (2.1.1) with flux f(u) = u(1− u). In this sto-
chastic framework, it is also worth looking at the large deviations asymptotic
associated to the aforementioned law of large numbers. Basically, this amounts
to estimate the probability that the empirical density lies in a neighborhood of
a given trajectory. In general this probability is exponentially small, and the
corresponding decay rate is called the large deviations rate functional. For the
totally asymmetric simple exclusion process, this issue has been analyzed in
[10, 18]. It is there shown that the large deviations rate functional is infinite
off the set of weak solutions to (2.1.1); on such solutions the rate functional is
given by the total positive mass of the entropy production h(u)t+ g(u)x where
h is the Bernoulli entropy, i.e. h(u) = −u log u− (1− u) log(1− u) and g is its
conjugated entropy flux.

A stochastic framework can also be naturally introduced in a partial differ-
ential equations’ setting by adding to (2.1.2) a random perturbation, namely

ut + f(u)x =
ε

2

(
D(u)ux

)
x

+
√
γ
(√

σ(u)αγ
)
x

(t, x) ∈ (0, T )× R (2.1.3)

where σ(u) ≥ 0 is a conductivity coefficient and αγ is a Gaussian random forc-
ing term white in time and with spatial correlations on a scale much smaller
than γ. Let uε,γ be the corresponding solution; if γ � ε then uε,γ still con-
verges in probability to the entropic solution to (2.1.1) and the large deviations
asymptotic becomes a relevant issue. Referring to [14] for this analysis, here
we formulate the problem from a purely variational point of view quantifying,
in terms of the parabolic problem (2.1.2), the asymptotic cost of non-entropic
solutions to (2.1.1). Introducing in (2.1.2) a control E ≡ E(t, x) we get

ut + f(u)x =
ε

2

(
D(u)ux

)
x
−
(
σ(u)E

)
x

(t, x) ∈ (0, T )× R (2.1.4)

If we think of u as a density of charge, then E can be naturally interpreted as
the ‘controlling’ external electric field and σ(u) ≥ 0 as the conductivity. The
flow (2.1.4) conserves the total charge

∫
dx u(t, x), whenever it is well defined.
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The cost functional Iε associated with (2.1.2) can be now informally defined
as the work done by the optimal controlling field E in (2.1.4), namely

Iε(u) = inf
E

1

2

∫
[0,T ]

dt dx σ(u)E2 = inf
E

1

2

∫
[0,T ]

dt
∥∥E∥∥2

L2(R,σ(u)dx)
(2.1.5)

where the infimum is taken over the controls E such that (2.1.4) holds. For a
suitable choice of the random perturbation αγ, Iε is the large deviations rate
functional of the process uε,γ solution to (2.1.3), when ε is fixed and γ → 0.
To avoid the technical problems connected to the possible unboundedness of
the density u, we assume that the conductivity σ has compact support. In
this case, if u is such that Iε(u) < +∞ then u takes values in the support of σ,
see Proposition 2.3.4 for the precise statement. For the sake of simplicity, we
assume that σ is supported by [0, 1]. The case of strictly positive σ also fits in
the description below, provided however that the analysis is a priori restricted
to equibounded densities u.

In this chapter we analyze the variational convergence of Iε as ε→ 0. Our
first result holds for a Lipschitz flux f , and identifies the so called Γ-limit of
Iε, which is naturally studied in a Young measures setting. The limiting cost
of a Young measure µ ≡ µt,x(dλ) is

I(µ) =
1

2

∫
[0,T ]

dt
∥∥∥[µ(λ)

]
t
+
[
µ(f(λ))

]
x

∥∥∥2

H−1(R,µ(σ(λ))dx)

where, for F ∈ C([0, 1]), [µ(F (λ))](t, x) =
∫
µt,x(dλ)F (λ) and, with a little

abuse of notation, ‖ϕ‖H−1(R,µt,·(σ(λ))dx) is the dual norm to
[ ∫
dxµt,x(σ(λ))ϕ2

x

]1/2
.

Note that I(µ) vanishes iff µ is a measure-valued solution to (2.1.1). Hence
we can obtain such solutions as limits of solutions to (2.1.4) with a suitable
sequence Eε with vanishing cost. On the other hand, if we set in (2.1.4) E = 0
we obtain, in the limit ε → 0, an entropic solution to (2.1.1). If the flux f is
nonlinear, the set of measure-valued solutions to (2.1.1) is larger than the set of
entropic solutions; it is thus natural to study the Γ-convergence of the rescaled
cost functional Hε := ε−1Iε, which formally corresponds to the scaling in
[10, 18]. Our second result concerns the Γ-convergence of Hε which is studied
under the additional hypotheses that the flux f is smooth and such that there
are no intervals in which f is affine. A compensated compactness argument
shows that Hε has enough coercivity properties to force its convergence in a
functions setting and not in a Young measures’ one.

To informally define the candidate Γ-limit of Hε, we first introduce some
preliminary notions. We say that a weak solution u to (2.1.1) is entropy-
measure iff for each smooth entropy η the distribution η(u)t + q(u)x is a
Radon measure on (0, T ) × R. If u is an entropy-measure solution to (2.1.1),
then there exists a measurable map %u from [0, 1] to the set of Radon mea-
sures on (0, T ) × R, such that for each η ∈ C2([0, 1]) and ϕ ∈ C∞c

(
(0, T ) ×
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R
)
, −

∫
dt dx

[
η(u)ϕt + q(u)ϕx

]
=
∫
dv %u(v; dt, dx)η′′(v)ϕ(t, x), see Proposi-

tion 2.2.3. The candidate Γ-limit of Hε is the functional H defined as follows.
If u is not an entropy-measure solution to (2.1.1) then H(u) = +∞. Other-
wise H(u) =

∫
dv %+

u (v; dt, dx)D(v)/σ(v), where %+
u denotes the positive part

of %u. Note that while Iε and I are nonlocal functionals, H is local. On the
other hand, while Iε, resp. I, quantifies in a suitable squared Hilbert norm
the violation of equation (2.1.2), resp. (2.1.1), this quadratic structure is lost
in H. In Proposition 2.2.6 we show that H is a coercive lower semicontin-
uous functional, this matching the necessary properties for being the Γ-limit
of a sequence of equicoercive functionals. Note also that H depends on the
diffusion coefficient D and the conductibility coefficient σ only through their
ratio, which is an expected property of well-behaving driven diffusive systems,
in hydrodynamical-like limits. We discuss this issue in Remark 2.2.11, where
a link between the functional H and the large deviations rate functional in-
troduced in [10, 18] is also investigated. In particular, H comes as a natural
generalization of the functional introduced in [10, 18], whenever the flux f is
neither convex nor concave.

In this chapter we prove that for each sequence uε → u in L1,loc([0, T ]×R)
we have limεHε(u

ε) ≥ H(u), namely Γ–limHε ≥ H. Since the functional H
vanishes only on entropic solutions to (2.1.1), its zero-level set coincides with
the limit points of the minima of Iε. Concerning the Γ-limsup inequality, for
each weak solution u to (2.1.1) in a suitable set Sσ, see Definition 2.2.4, we
construct a sequence uε → u such that Hε(u

ε)→ H(u). The above statements
imply (Γ–limHε)(u) = H(u) for u ∈ Sσ. To complete the proof of the Γ-
convergence of Hε to H on the whole set of entropy-measure solutions, an
additional density argument is needed. This seems to be a difficult problem,
as Varadhan [18] puts it: “. . . one does not see at the moment how to produce
a ‘general’ non-entropic solution, partly because one does not know what it
is.”

The above results show in particular that if uε solves (2.1.4) for some control
Eε such that ε−1

∫
[0,T ]

dt ‖Eε‖2
L2(R,σ(uε)dx) vanishes as ε→ 0, then any limit point

of uε is an entropic solution to (2.1.1). This statement is sharp in the sense
that there are sequences {Eε} with limε ε

−1
∫

[0,T ]
dt ‖Eε‖2

L2(R,σ(uε)dx) > 0 such

that any limit point of the corresponding uε is not an entropic solutions to
(2.1.1). More generally, the variational description of conservation laws here
introduced allows the following point of view. Measure-valued solutions to
(2.1.1) are the points in the zero-level set of the Γ-limit of Iε, while entropic
weak solutions are the points in the zero-level set of the Γ-limit of ε−1Iε. In
Appendix 2.7 we introduce a sequence {Jε} of functionals related to the viscous
approximation of Hamilton-Jacobi equations. In [15] a Γ-limsup inequality
for a related family of functionals has been independently investigated in a
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BV setting. Following closely the proofs of the Γ-convergence of {Iε}, we
establish the corresponding Γ-convergence results, thus obtaining a variational
characterization of measure-valued and viscosity solutions to Hamilton-Jacobi
equations. Although this “variational” point of view is consistent with the
standard concepts of solution in the current setting of scalar conservation laws
and Hamilton-Jacobi equations, it might be helpful for less understood model
equations.

2.2. Notation and results

Hereafter in this chapter, we assume that f is a Lipschitz function on [0, 1],
D and σ are continuous functions on [0, 1], with D uniformly positive and σ
strictly positive on (0, 1). We understand that these assumptions are supposed
to hold in every statement below.

We also let 〈·, ·〉 denote the inner product in L2(R), for T > 0 〈〈·, ·〉〉 stands
for the inner product in L2([0, T ]×R), and for O an open subset of Rn, C∞c (O)
denotes the collection of compactly supported infinitely differentiable functions
on O.

Scalar conservation law
Our analysis will be restricted to equibounded densities u that take values

in [0, 1]. Let U denote the compact separable metric space of measurable
functions u : R → [0, 1], equipped with the following H−1

loc -like metric dU . For
L > 0, set

‖u‖−1,L := sup
{
〈u, ϕ〉, ϕ ∈ C∞c

(
(−L,L)

)
, 〈ϕx, ϕx〉 = 1

}
and define the metric dU in U by

dU(u, v) :=
∞∑
N=1

2−N
‖u− v‖−1,N

1 + ‖u− v‖−1,N

(2.2.1)

Given T > 0, let U be the set C
(
[0, T ];U

)
endowed with the uniform metric

dU(u, v) := sup
t∈[0,T ]

dU
(
u(t), v(t)

)
(2.2.2)

An element u ∈ U is a weak solution to (2.1.1) iff for each ϕ ∈ C∞c
(
(0, T )×R

)
(in particular ϕ(0) = ϕ(T ) = 0) it satisfies

〈〈u, ϕt〉〉+ 〈〈f(u), ϕx〉〉 = 0

We also introduce a suitable space M of Young measures and recall the
notion of measure-valued solution to (2.1.1). Consider the set N of measurable
maps µ from [0, T ] × R to the set P([0, 1]) of Borel probability measures on
[0, 1]. The set N can be identified with the set of positive Radon measures µ
on [0, 1]× [0, T ]×R such that µ([0, 1], dt, dx) = dt dx. Indeed, by existence of
a regular version of conditional probabilities, for such measures µ there exists a
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measurable kernel µt,x(dλ) ∈ P([0, 1]) such that µ(dλ, dt, dx) = dt dx µt,x(dλ).
For ı : [0, 1]→ [0, 1] the identity map, we set

M :=
{
µ ∈ N : the map [0, T ] 3 t 7→ µt,·(ı) is in U

}
(2.2.3)

in which, for a bounded measurable function F : [0, 1] → R, the notation
µt,x(F ) stands for

∫
[0,1]

µt,x(dλ)F (λ). We endow M with the metric

dM(µ, ν) := dvag(µ, ν) + dU
(
µ(ı), ν(ı)

)
(2.2.4)

where dvag is a distance generating the relative topology on N regarded as a
subset of the finite Borel measures on [0, 1] × [0, T ] × R equipped with the
vague topology. (M, dM) is a complete separable metric space.

An element µ ∈ M is a measure-valued solution to (2.1.1) iff for each
ϕ ∈ C∞c ((0, T )× R) it satisfies

〈〈µ(ı), ϕt〉〉+ 〈〈µ(f), ϕx〉〉 = 0

If u ∈ U is a weak solution to (2.1.1), then δu(t,x)(dλ) ∈M is a measure-valued
solution. On the other hand, there exist measure-valued solutions which do
not have this form.

Parabolic cost functional
We next give the definition of the parabolic cost functional informally in-

troduced in (2.1.5). Given u ∈ U we write ux ∈ L2,loc([0, T ] × R) iff u admits
a locally square integrable weak x-derivative. For ε > 0, u ∈ U such that
ux ∈ L2,loc([0, T ]× R), and ϕ ∈ C∞c ((0, T )× R) we set

`uε (ϕ) := −〈〈u, ϕt〉〉 − 〈〈f(u), ϕx〉〉+
ε

2
〈〈D(u)ux, ϕx〉〉 (2.2.5)

and define Iε : U → [0,+∞] by

Iε(u) :=


sup

ϕ∈C∞c ((0,T )×R)

[
`uε (ϕ)− 1

2
〈〈σ(u)ϕx, ϕx〉〉

]
if ux ∈ L2,loc([0, T ]× R)

+∞ otherwise

(2.2.6)
Iε(u) vanishes iff u ∈ U is a weak solution to (2.1.2); more generally, by Riesz
representation theorem, it is not difficult to prove the connection of Iε with
the perturbed parabolic problem (2.1.4), see Lemma 2.3.1 below for the precise
statement.

In order to discuss the behavior of Iε as ε→ 0 we lift it to the space of Young
measures (M, dM), see (2.2.3), (2.2.4). We thus define Iε :M→ [0,+∞] by

Iε(µ) :=

{
Iε(u) if µt,x = δu(t,x) for some u ∈ U
+∞ otherwise

(2.2.7)
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Asymptotic parabolic cost
As well known, a most useful notion of variational convergence is the so

called Γ-convergence which, together with some compactness estimates, implies
convergence of the minima. Let X be a complete separable metrizable space;
recall that a sequence of functionals Fε : X → [−∞,+∞] is equicoercive on X
iff for each M > 0 there exists a compact set KM such that for any ε ∈ (0, 1]
we have {x ∈ X : Fε(x) ≤ M} ⊂ KM . We briefly recall the basic definitions
of the Γ-convergence theory, see e.g. [4, 7]. Given x ∈ X we define(

Γ–limε→0 Fε
)

(x) := inf
{

limε→0 Fε(x
ε), {xε} ⊂ X : xε → x

}(
Γ–limε→0 Fε

)
(x) := inf

{
limε→0 Fε(x

ε), {xε} ⊂ X : xε → x
}

Whenever Γ–limFε = Γ–limFε = F we say that Fε Γ-converges to F in X.
Equivalently, Fε Γ-converges to F iff for each x ∈ X we have:

– for any sequence xε → x we have limε Fε(x
ε) ≥ F (x) (Γ-liminf in-

equality);
– there exists a sequence xε → x such that limε Fε(x

ε) ≤ F (x) (Γ-
limsup inequality).

Equicoercivity and Γ-convergence of a sequence {Fε} imply an upper bound of
infima over open sets, and a lower bound of infima over closed sets, see e.g. [4,
Prop. 1.18], and therefore it is the relevant notion of variational convergence
in the control setting introduced above.

Theorem 2.2.1. The sequence {Iε} defined in (2.2.6), (2.2.7) is equicoer-
cive on M and, as ε→ 0, Γ-converges in M to

I(µ) := sup
ϕ∈C∞c ((0,T )×R)

{
−〈〈µ(ı), ϕt〉〉−〈〈µ(f), ϕx〉〉−

1

2
〈〈µ(σ)ϕx, ϕx〉〉

}
(2.2.8)

I(µ) = 0 iff µ is a measure-valued solution to (2.1.1).
From Theorem 2.2.1 we deduce the Γ-limit of Iε, see (2.2.6), on U by

projection.

Corollary 2.2.2. The sequence of functionals {Iε} is equicoercive on U
and, as ε→ 0, Γ-converges in U to the functional I : U → [0,+∞] defined by

I(u) := inf
{∫

dt dxRf,σ

(
u(t, x),Φ(t, x)

)
,

Φ ∈ L2,loc([0, T ]× R) : Φx = −ut weakly
}

where Rf,σ : [0, 1]× R→ [0,+∞] is defined by

Rf,σ(w, c) := inf{
(
ν(f)− c

)2
/ν(σ), ν ∈ P([0, 1]) : ν(ı) = w}

in which we understand (c− c)2/0 = 0.
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From the proof of Corollary 2.2.2 it follows I(·) ≤ I(δ·), and the equality
holds iff f is linear. If we restrict to stationary u’s, namely to the case ut =
0, Corollary 2.2.2 can be regarded as a negative-Sobolev version of classical
relaxation results for integral functionals in weak topology. More precisely,
from the proofs of Theorem 2.4.1 and Corollary 2.2.2 it follows that if we
define the functional F̃ : U → [0,+∞] by

F̃ (u) := inf
c∈R

∫
dx

[
f(u(x))− c

]2
σ(u(x))

then its lower semicontinuous envelope w.r.t. the dU -distance (2.2.1) is given
by

F (u) := inf
c∈R

∫
dxRf,σ(u(x), c)

Note also that Rf,σ can be explicitly calculated in some cases. Let f, f :
[0, 1] → R be respectively the convex and concave envelope of f . Then, in

the case σ = 1, we have Rf,1(w, c) =
[
distance(c, [f(w), f(w)])

]2
. In the case

f = σ (which include the example mentioned in the introduction f(u) =
σ(u) = u(1− u)) then

Rf,f (w, c) =


2(|c| − c) if |c| ∈ [f(w), f(w)]
(f(w)−c)2
f(w)

if |c| > f(w)
(f(w)−c)2

f(w)
if |c| < f(w)

Entropy-measure solutions
Recalling (2.2.2), we let X be the same set C([0, T ];U) endowed with the

metric

dX (u, v) :=
∞∑
N=1

1

2N
‖u− v‖L1([0,T ]×[−N,N ]) + dU(u, v) (2.2.9)

Convergence in X is equivalent to convergence in U and in Lp,loc([0, T ] × R)
for p ∈ [1,+∞).

Let C2([0, 1]) be the set of twice differentiable functions on (0, 1) whose
derivatives are continuous up to the boundary. A function, resp. a con-
vex function, η ∈ C2([0, 1]) is called an entropy, resp. a convex entropy,
and its conjugated entropy flux q ∈ C([0, 1]) is defined up to a constant by
q(u) :=

∫ u
dv η′(v)f ′(v). For u a weak solution to (2.1.1), for (η, q) an entropy

– entropy flux pair, the η-entropy production is the distribution ℘η,u acting on
C∞c
(
(0, T )× R

)
as

℘η,u(ϕ) := −〈〈η(u), ϕt〉〉 − 〈〈q(u), ϕx〉〉 (2.2.10)

Let C2,∞
c

(
[0, 1] × (0, T ) × R

)
be the set of compactly supported maps ϑ :

[0, 1] × (0, T ) × R 3 (v, t, x) 7→ ϑ(v, t, x) ∈ R, that are twice differentiable
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in the v variable, with derivatives continuous up to the boundary of [0, 1] ×
(0, T ) × R, and that are infinitely differentiable in the (t, x) variables. For
ϑ ∈ C2,∞

c

(
[0, 1] × (0, T ) × R

)
we denote by ϑ′ and ϑ′′ its partial derivatives

w.r.t. the v variable. We say that a function ϑ ∈ C2,∞
c

(
[0, 1]× (0, T )×R

)
is an

entropy sampler, and its conjugated entropy flux sampler Q : [0, 1]×(0, T )×R is
defined up to an additive function of (t, x) by Q(u, t, x) :=

∫ u
dv ϑ′(v, t, x)f ′(v).

Finally, given a weak solution u to (2.1.1), the ϑ-sampled entropy production
Pϑ,u is the real number

Pϑ,u := −
∫
dt dx

[(
∂tϑ)

(
u(t, x), t, x

)
+
(
∂xQ

)(
u(t, x), t, x

)]
(2.2.11)

If ϑ(v, t, x) = η(v)ϕ(t, x) for some entropy η and some ϕ ∈ C∞c
(
(0, T ) × R

)
,

then Pϑ,u = ℘η,u(ϕ).
The next proposition introduces a suitable class of solutions to (2.1.1) which

will be needed in the following. We denote by M
(
(0, T )×R

)
the set of Radon

measures on (0, T )×R that we consider equipped with the vague topology. In
the following, for % ∈M

(
(0, T )×R

)
we denote by %± the positive and negative

part of %. For u a weak solution to (2.1.1) and η an entropy, recalling (2.2.10)
we set

‖℘η,u‖TV,L := sup
{
℘η,u(ϕ), ϕ ∈ C∞c

(
(0, T )× (−L,L)

)
, |ϕ| ≤ 1

}
(2.2.12)

‖℘+
η,u‖TV,L := sup

{
℘η,u(ϕ), ϕ ∈ C∞c

(
(0, T )× (−L,L)

)
, 0 ≤ ϕ ≤ 1

}
Proposition 2.2.3. Let u ∈ X be a weak solution to (2.1.1). The following

statements are equivalent:

(i) There exists c > 0 such that ‖℘+
η,u‖TV,L < +∞ for each L > 0 and

η ∈ C2([0, 1]) with 0 ≤ η′′ ≤ c.
(ii) For each entropy η, the η-entropy production ℘η,u can be extended to

a Radon measure on (0, T ) × R, namely ‖℘η,u‖TV,L < +∞ for each
L > 0.

(iii) There exists a bounded measurable map %u : [0, 1] 3 v → %u(v; dt, dx) ∈
M
(
(0, T )× R

)
such that for any entropy sampler ϑ

Pϑ,u =

∫
dv %u(v; dt, dx)ϑ′′(v, t, x) (2.2.13)

A weak solution u ∈ X that satisfies any of the equivalent conditions in
Proposition 2.2.3 is called an entropy-measure solution to (2.1.1). We denote
by E ⊂ X the set of entropy-measure solutions to (2.1.1). Proposition 2.2.3
establishes a so called kinetic formulation for entropy-measure solutions, see
also [8, Prop. 3.1] for a similar result. If f ∈ C2([0, 1]) is such that there
are no intervals in which f is affine, using the results in [5] we show that
entropy-measure solutions have some regularity properties, see Lemma 2.5.1.
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A weak solution u ∈ X to (2.1.1) is called an entropic solution iff for each
convex entropy η the inequality ℘η,u ≤ 0 holds in distribution sense, namely
‖℘+

η,u‖TV,L = 0 for each L > 0. In particular entropic solutions are entropy-
measure solutions such that %u(v; dt, dx) is a negative Radon measure for each
v ∈ [0, 1]. It is well known, see e.g. [6, 16], that for each u0 ∈ U there exists a
unique entropic solution ū ∈ C([0, T ];L1,loc(R)) to (2.1.1) such that ū(0) = u0.
Such a solution ū is called the Kruzkov solution with initial datum u0.

Γ-entropy cost of non-entropic solutions
We next introduce a rescaled cost functional and prove in particular that

entropic solutions are the only ones with vanishing rescaled asymptotic cost.
Recalling that Iε has been introduced in (2.2.6), the rescaled cost functional
Hε : X → [0,+∞] is defined by

Hε(u) := ε−1Iε(u) (2.2.14)

In the Γ-convergence theory, the asymptotic behavior of the rescaled functional
Hε is usually referred to as the development by Γ-convergence of Iε, see e.g.
[4, §1.10]. In our case, while we lifted Iε to the space of Young measures M,
we can consider the rescaled cost functional Hε on X . In fact, as shown below,
Hε has much better compactness properties than Iε and it is equicoercive on
X . Therefore the Γ-convergence of the lift of Hε to M can be immediately
retrieved from the Γ-convergence of Hε on X . Indeed, since δuε → δu in M
implies uε → u in X , the metric (2.2.9) generates the relative topology of X
regarded as a subset of M.

Recall that E ⊂ X denotes the set of entropy-measure solutions to (2.1.1),
and that for u ∈ E there exists a bounded measurable map %u : [0, 1] →
M
(
(0, T )×R

)
such that (2.2.13) holds. Let %+

u be the positive part of %u, and
define H : X → [0,+∞] by

H(u) :=


∫
dv %+

u (v; dt, dx)
D(v)

σ(v)
if u ∈ E

+∞ otherwise
(2.2.15)

As shown in the proof of Theorem 2.2.5, if u is a weak solution to (2.1.1) and
H(u) < +∞, then H(u) = supϑ Pϑ,u, where the supremum is taken over the
entropy samplers ϑ such that 0 ≤ σ(v)ϑ′′(v, t, x) ≤ D(v), for each (v, t, x) ∈
[0, 1]× [0, T ]× R.

Definition 2.2.4. An entropy-measure solution u ∈ E is entropy-splittable
iff there exist two closed sets E+, E− ⊂ [0, T ]× R such that

(i) For a.e. v ∈ [0, 1], the support of %+
u (v; dt, dx) is contained in E+, and

the support of %−u (v; dt, dx) is contained in E−.
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(ii) For each L > 0, the set
{
t ∈ [0, T ] :

(
{t}× [−L,L]

)
∩E+ ∩E− 6= ∅

}
is nowhere dense in [0, T ].

The set of entropy-splittable solutions to (2.1.1) is denoted by S. An entropy-
splittable solution u ∈ S such that H(u) < +∞ and

(iii) For each L > 0 there exists δL > 0 such that σ(u(t, x)) ≥ δL for a.e.
(t, x) ∈ [0, T ]× [− L,L].

is called nice w.r.t. σ. The set of nice (w.r.t. σ) solutions to (2.1.1) is denoted
by Sσ.

Note that Sσ ⊂ S ⊂ E ⊂ X , and that, if σ is uniformly positive on [0, 1],
then Sσ = S. In Remark 2.2.9 we exhibit a few classes of entropy-splittable
solutions to (2.1.1).

In the next theorem we state our results concerning the Γ-convergence of
the rescaled functional Hε, see (2.2.6) and (2.2.14), to the functional H defined
in (2.2.15).

Theorem 2.2.5. (i) The sequence of functionals {Hε} satisfies the
Γ-liminf inequality Γ-limεHε ≥ H on X .

(ii) Assume that there is no interval where f is affine. Then the sequence
of functionals {Hε} is equicoercive on X .

(iii) Assume furthermore that f ∈ C2([0, 1]), and D, σ ∈ Cα([0, 1]) for
some α > 1/2. Define

H(u) := inf
{

limH(un), {un} ⊂ Sσ : un → u in X
}

Then the sequence of functionals {Hε} satisfies the Γ-limsup inequality
Γ-limεHε ≤ H on X .

From the lower semicontinuity of H on X , see Proposition 2.2.6, it follows
that H ≥ H on X and H = H on Sσ, namely the Γ-convergence of Hε to H
holds on Sσ. To get the full Γ-convergence on X , the inequality H(u) ≥ H(u)
is required also for u 6∈ Sσ. This amounts to show that Sσ is H-dense in
X , namely that for u ∈ X such that H(u) < +∞ there exists a sequence
{un} ⊂ Sσ converging to u in X such that H(un)→ H(u). As mentioned at the
end of the introduction, this appears to be a difficult problem. A preliminary
step in this direction is to obtain a chain rule formula for bounded vector
fields on [0, T ] × R the divergence of which is a Radon measure (divergence-
measure fields). This is a classical result for locally BV fields [2]. However,
while entropic solutions to (2.1.1) are in BVloc([0, T ]×R) [1, Corollary 1.3], as
shown in Example 2.2.8 below, the set {u ∈ X : H(u) < +∞} is not contained
in BVloc([0, T ]× R); see [9] for similar examples including estimates in Besov
norms. Chain rule formulas out of the BV setting have been investigated in
several recent papers; in particular in [8], a chain rule formula for divergence-
measure fields is addressed, providing some partial results. In the remaining
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of this section we discuss some properties of H, and some issues related to the
H-density of Sσ.

In the following proposition we show that H is lower semicontinuous, and
that it is coercive under the same hypotheses used for the equicoercivity of
{Hε}. Moreover, we prove that the minimizers of H are limit points of the
minimizers of Iε as ε → 0, so that no further rescaling of {Iε} has to be
investigated.

Proposition 2.2.6. H is lower semicontinuous on X , and H(u) = 0 iff u
is an entropic solution to (2.1.1).

Assume that there are no intervals where f is affine. Then H is coercive
on X .

Assume furthermore that f ∈ C2([0, 1]) and let u ∈ X . Then H(u) = 0 iff
u is a limit point of a sequence {uε} ⊂ X such that Iε(u

ε) = 0. In particular
the map that associates to a given u0 ∈ U the Kruzkov solution to (2.1.1) with
initial datum u0 is bijective on the zero-level set of H.

If u ∈ X is a weak solution with locally bounded variation, Vol’pert chain
rule, see [2], gives a formula for H(u) in terms of the normal traces of u on its
jump set.

Remark 2.2.7. Let u ∈ X ∩BVloc([0, T ]×R) be a weak solution to (2.1.1).
Denote by Ju ⊂ [0, T ]×R its jump set, by H1 Ju the one-dimensional Haus-
dorff measure restricted to Ju, by n =

(
nt, nx

)
a unit normal to Ju (which is

well defined H1 Ju a.e.), and by u± the normal traces of u on Ju w.r.t. n.
Then the Rankine-Hugoniot condition (u+ − u−)nt +

(
f(u+) − f(u−)

)
nx = 0

holds. In particular we can choose n so that nx is uniformly positive, and thus
u+ is the right trace of u and u− is the left trace of u. Then u ∈ E and

%u(v; dt, dx) =
dH1 Ju{

(u+ − u−)2 + [f(u+)− f(u−)]2
}1/2

ρ(v, u+, u−)

where, denoting by u−∧u+ and u−∨u+ respectively the minimum and maximum
of {u−, u+}, ρ : [0, 1]3 → R is defined by

ρ(v, u+, u−) :=
[
f(u−)(u+−v)+f(u+)(v−u−)−f(v)(u+−u−)

]
1I[u−∧u+,u−∨u+](v)

Hence, denoting by ρ+ the positive part of ρ

H(u) =
∫
Ju

dH1{
(u+−u−)2+[f(u+)−f(u−)]2

}1/2

∫
dv ρ+(v, u+, u−) D(v)

σ(v)

=
∫
Ju
dH1|nx|

∫
dv ρ+(v,u+,u−)

|u+−u−|
D(v)
σ(v)

(2.2.16)

Note ρ(v, u+, u−) ≤ 0 iff f(v)−f(u−)
v−u− ≥ f(u+)−f(v)

u+−v . This corresponds to the
well known geometrical secant condition for entropic solutions, see e.g. [6, 16].
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Figure 1. The values of u in Example 2.2.8 for T = 1.

Therefore H(u) quantifies the violation of the entropy condition along the
non-entropic shocks of u.

In the following Example 2.2.8 we show that neither the domain of H,
neither the H-closure of Sσ are contained in BVloc

(
[0, T ]× R

)
.

Example 2.2.8. Let f(u) = u(1 − u) and pick a decreasing sequence {bi}
of positive reals such that b1 < 1/2,

∑
i bi = +∞ and

∑
i b

3
i < +∞. Let u be

defined by

u(t, x) :=

{
1/2 + bi if T (b1 − bi) < x+ bi t < T

(
b1 − bi+1

)
for some i

1/2 otherwise

Then H(u) = T
2

∑
i

∫
[0,bi]

dv D(1/2+v)
σ(1/2+v)

v(bi − v) < +∞. Note that, even if the

initial datum is in BV (R) and f is concave, u 6∈ BVloc([0, T ] × R). However
H(u) = H(u). Indeed the sequence {un} ⊂ Sσ defined by

un(t, x) :=

{
u(t, x) if x+ bn t < T (b1 − bn+1)

1/2 otherwise

is such that un → u in X and limnH(un) = H(u).

In the following remarks we identify some classes of entropy-splittable so-
lutions to (2.1.1), see Definition 2.2.4.

Remark 2.2.9. Weak solutions to (2.1.1) such that, for each convex en-
tropy η, ℘η,u ≤ 0 (entropic solutions) or ℘η,u ≥ 0 (anti-entropic solutions)
are entropy-splittable. Indeed they are entropy-measure solutions (see Proposi-
tion 2.2.6) and they fit in Definition 2.2.4 with the choice E− = [0, T ]×R and
E+ = ∅ (for entropic solutions), and respectively E+ = [0, T ]×R and E− = ∅
(for anti-entropic solutions).

Let u ∈ BVloc

(
[0, T ]×R

)
be a weak solution to (2.1.1). In the same setting

of Remark 2.2.7, let us define J±u := Closure
(
{(t, x) ∈ Ju : ∃v ∈ [0, 1] :

±%(v;u+, u−) > 0}
)
. Suppose that for each L > 0 the set {t ∈ [0, T ] :

(
{t} ×

[−L,L]
)
∩J+

u ∩J−u } is nowhere dense in [0, T ]. Then u is an entropy-splittable
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solution. If f is convex or concave the sign of ρ(v, u+, u−) does not depend
on v ∈ [u− ∧ u+, u− ∨ u+]. Therefore, under this convexity hypothesis, weak
solutions to (2.1.1) with locally bounded variations and with a jump set Ju
consisting of a locally finite number of Lipschitz curves, intersecting each other
at a locally finite number of points are entropy splittable.

For a general (possibly neither convex nor concave) flux f , even piecewise
constant solutions to (2.1.1) may fail to be entropy-splittable. However, in the
following Example 2.2.10 we introduce a family of weak solutions u to (2.1.1)
that are not entropy-splittable, and show that they are in the H-closure of
Sσ, and thus H(u) = H(u). However, while Example 2.2.10 can be widely
generalized to prove H(u) = H(u) for u in suitable classes of piecewise smooth
solutions, it does not seem that the ideas suggested by this example may work
in the general setting of entropy-measure solutions u ∈ E .

Example 2.2.10. Let γ : [0, T ] → R be a Lipschitz map, let u be a weak
solution of bounded variation to (2.1.1), and suppose that the jump set of u
coincides with γ. Let u− ≡ u−(t) and u+ ≡ u+(t) be the traces of u on γ,
and suppose that there exists u0 ∈ (0, 1) such that u−(t) < u0 < u+(t) for each

t and f(v)−f(u−)
v−u− ≥ f(u+)−f(v)

u+−v for v ∈ [u−, u0] and f(v)−f(u−)
v−u− ≤ f(u+)−f(v)

u+−v for

v ∈ [u−, u0]. Then, if these inequalities are strict at some v and t, u is not
entropy-splittable. However defining un ∈ X by

un(t, x) :=


u(t, x+ n−1) if x ≤ γ(t)− n−1

u0 if γ(t)− n−1 < x < γ(t) + n−1

u(t, x− n−1) if x ≤ γ(t) + n−1

we have that un ∈ S, un → u in X and H(un) = H(u). In particular, if σ(u)
is uniformly positive on compact subsets of [0, T ]×R, then H(u) = H(u). It is
easy to extend this example to the case in which the jump set of u consists of a
locally finite number of Lipschitz curves non-intersecting each other, provided

that on each curve the quantity f(v)−f(u−)
v−u− − f(u+)−f(v)

u+−v changes its sign a finite

number of times for v ∈ [u+ ∧ u−, u+ ∨ u−].

We next discuss the link between this paper and [10, 18]. In the introduc-
tion we informally described the connection between the problem (2.1.4) and
stochastic particles systems under Euler scaling. It is interesting to note that
such a quantitative connection can also be established for the limiting func-
tionals. The key point is that we expect the functional H defined in (2.2.15) to
coincide with the large deviations rate functional introduced in [10, 18], pro-
vided the functions f , D and σ are chosen correspondingly. Unfortunately, we
cannot establish such an identification off the set of weak solutions to (2.1.1)
with locally bounded variation.
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Remark 2.2.11. Let H ′ : X → [0,+∞] be defined by

H ′(u) :=

{
sup

{
‖℘+

η,u‖TV,L, L > 0, η ∈ C2([0, 1]) : 0 ≤ σ η′′ ≤ D
}

if u ∈ E
+∞ otherwise

Then H ≥ H ′ and H(u) = H ′(u) whenever there exists a Borel set E+ ⊂
[0, T ]×R such that the measure dv %+

u (v; dt, dx) is concentrated on [0, 1]×E+

and dv %−u (v; dt, dx) = 0 on [0, 1]×E+. In particular if f is convex or concave
and u ∈ BVloc([0, T ] × R), then H(u) = H ′(u). If f is neither convex nor
concave, then there exists u ∈ X such that H(u) > H ′(u).

A general connection between dynamical transport coefficients and thermo-
dynamic potentials in driven diffusive systems is the so called Einstein relation,
see e.g. [17, II.2.5]. For a physical model described by (2.1.4), this relation
states that the Einstein entropy h ∈ C2((0, 1)) ∩ C([0, 1]; [0,+∞]) defined by

σ(v)h′′(v) = D(v) v ∈ (0, 1)

is a physically relevant entropy in the limit ε→ 0. We let g(u) :=
∫ u

1/2
dv h′(v)f ′(v)

be the conjugated flux of h. Note that h, g may be unbounded if σ vanishes at
the boundary of [0, 1] and that g ≤ C1 + C2 h for some constants C1, C2 ≥ 0.
If u is a weak solution to (2.1.1) such that h(u) ∈ L1,loc([0, T ] × R) and such
that the distribution h(u)t + g(u)x acts as a Radon measure on (0, T )×R, we
let ‖℘+

h,u‖TV be the total variation of the positive part of such a measure. By

monotone convergence H ′(u) ≥ ‖℘+
h,u‖TV for such a u, and if f is convex or

concave and u has locally bounded variation, then indeed H ′(u) = ‖℘+
h,u‖TV. If

f is convex or concave, we do not know whether H(u) = H ′(u) = ‖℘+
h,u‖TV for

all u ∈ X , since a chain rule formula for divergence-measure fields is missing.
The problem investigated in [10, 18] formally corresponds to the case

f(u) = σ(u) = u(1−u) and D(u) = 1, so that the Einstein entropy h coincides
with the Bernoulli entropy h(u) = −u log u−(1−u) log(1−u). The (candidate)
large deviations rate functional HJV introduced in [10, 18] is defined as +∞
off the set of weak solutions to (2.1.1), while HJV (u) = ‖℘+

h,u‖TV for u a weak

solution (this is well defined, since h is bounded). We thus have H ≥ HJV ,
and in view of the Γ-liminf inequality, H comes as a natural generalization of
HJV for diffusive systems with no convexity assumptions on the the flux f .

Outline of the proofs
Standard parabolic a priori estimates on u in terms of Iε(u) imply equicoer-

civity of Iε onM. Equicoercivity of Hε on X is obtained by the same bounds
and a classical compensated compactness argument.

The Γ-liminf inequality in Theorem 2.2.1 follows from the variational defi-
nition (2.2.6) of Iε. The Γ-liminf inequality in Theorem 2.2.5 still follows from
(2.2.6) by choosing test functions of the form εϑ(uε(t, x), t, x), with σϑ′′ ≤ D.
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The Γ-limsup inequality in Theorem 2.2.1 is not difficult if µt,x = δu(t,x) for
some smooth u; the general result is obtained by taking lower semicontinuous
envelope. The Γ-limsup statement in Theorem 2.2.5 is proved by building, for
each u ∈ Sσ, a recovery sequence {uε} such that a priori Hε(u

ε)→ H(u). The
convergence uε → u is then obtained by a stability analysis of the parabolic
equation (2.1.4) w.r.t small variations of the control E.

Eventually, in Appendix 2.7 we apply our results to Hamilton-Jacobi equa-
tions.

2.3. Representation of Iε and a priori bounds

Given a bounded measurable function a ≥ 0 on [0, T ] × R let D1
a be

the Hilbert space obtained by identifying and completing the functions ϕ ∈
C∞c ([0, T ]×R) w.r.t. the seminorm 〈〈ϕx, a ϕx〉〉1/2. Let D−1

a be its dual space.
The corresponding norms are denoted respectively by ‖ · ‖D1

a
and ‖ · ‖D−1

a
.

We first establish the connection between the cost functional Iε and the
perturbed parabolic problem (2.1.4). The following lemma is a standard tool
in large deviations theory, see e.g. [12, Lemma 10.5.3]. We however detail its
proof for sake of completeness.

Lemma 2.3.1. Fix ε > 0 and let u ∈ U . Then Iε(u) < +∞ iff there exists
Ψε,u ∈ D1

σ(u) such that u is a weak solution to (2.1.4) with E = Ψε,u
x , namely

for each ϕ ∈ C∞c ([0, T ]× R)

〈u(T ), ϕ(T )〉−〈u(0), ϕ(0)〉−
[
〈〈u, ϕt〉〉+

〈〈
f(u)−ε

2
D(u)ux+σ(u)Ψε,u

x , ϕx
〉〉]

= 0

(2.3.1)
In such a case Ψε,u is unique and

Iε(u) =
1

2

∥∥∥ut + f(u)x −
ε

2

(
D(u)ux

)
x

∥∥∥2

D−1
σ(u)

=
1

2
‖Ψε,u‖2

D1
σ(u)

(2.3.2)

Proof. Fix ε > 0 and u ∈ U such that Iε(u) < +∞. The functional `εu
defined in (2.2.5) can be extended to a linear functional on C∞c ([0, T ]×R) by
setting

`uε (ϕ) = 〈u(T ), ϕ(T )〉 − 〈u(0), ϕ(0)〉 − 〈〈u, ϕt〉〉 − 〈〈f(u), ϕx〉〉
+ ε

2
〈〈D(u)ux, ϕx〉〉

(2.3.3)
Since for any ϕ ∈ C∞c ([0, T ] × R) the map [0, T ] 3 t 7→ 〈u(t), ϕ(t)〉 ∈ R is
continuous, it is easily seen that

Iε(u) = sup
ϕ∈C∞c ([0,T ]×R)

{
`uε (ϕ)− 1

2
〈〈σ(u)ϕx, ϕx〉〉

}
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We claim that `uε defines a bounded linear functional on D1
σ(u). Indeed, since

Iε(u) < +∞

`uε (ϕ) ≤ Iε(u) +
1

2
‖ϕ‖2

D1
σ(u)

which shows that `uε (ϕ) = 0 whenever ‖ϕ‖D1
σ(u)

= 0, as `uε (·) is 1-homogeneous.

We also get that `uε is bounded in D1
σ(u), and it can therefore be extended

by compatibility and density to a continuous linear functional on D1
σ(u). Still

denoting by `uε such a functional we get

Iε(u) = sup
ϕ∈D1

σ(u)

{
`uε (ϕ)− 1

2
〈〈σ(u)ϕx, ϕx〉〉

}
(2.3.4)

which is equivalent to the first equality in (2.3.2). By Riesz representation
theorem we now get existence and uniqueness of Ψε,u ∈ D1

σ(u) such that `uε (ϕ) =(
Ψε,u, ϕ

)
D1
σ(u)

for any ϕ ∈ D1
σ(u), which implies (2.3.1). Riesz representation

also yields Iε(u) = 1
2
‖Ψε,u‖2

D1
σ(u)

. The converse statements are obvious. �

In the following lemma we give some regularity results for u ∈ U with finite
cost, and we prove some a priori bounds.

Lemma 2.3.2. Let ε > 0 and u ∈ U be such that Iε(u) < +∞. Then
u ∈ C

(
[0, T ];L1,loc(R)

)
. Moreover for each entropy – entropy flux pair (η, q),

each ϕ ∈ C∞c ([0, T ]× R), and each t ∈ [0, T ]

〈η(u(t)), ϕ(t)〉 − 〈η(u(0)), ϕ(0)〉 −
∫

[0,t]
ds
[
〈η(u), ϕs〉+ 〈q(u), ϕx〉

]
= − ε

2

∫
[0,t]
ds
[
〈η′′(u)D(u)ux, ϕ ux〉+ 〈η′(u)D(u)ux, ϕx〉

]
+
∫

[0,t]
ds
[
〈η′′(u)σ(u)ux,Ψ

ε,u
x ϕ〉+ 〈η′(u)σ(u) Ψε,u

x , ϕx〉
]

(2.3.5)
where Ψε,u is as in Lemma 2.3.1. Finally, there exists a constant C > 0
depending only on f , D and σ such that for any ε, L > 0

ε

∫
dt

∫
[−L,L]

dx u2
x ≤ C

[
ε−1Iε(u) + L+ 1

]
(2.3.6)

Proof. Recall that the linear functional `uε on D1
σ(u) is defined as the

extension of (2.3.3). Let θ := −f(u) + ε
2
D(u)ux − σ(u) Ψε,u

x ∈ L2,loc

(
[0, T ] ×

R
)
; by (2.3.1) ut = θx holds weakly. Since Iε(u) < +∞ we also have ux ∈

L2,loc

(
[0, T ] × R

)
, so that u ∈ C

(
[0, T ];L2,loc(R)

)
by standard interpolations

arguments, see e.g. [13]. Since u is bounded, this is equivalent to the statement
u ∈ C

(
[0, T ];L1,loc(R)

)
.

This fact implies that integrations by parts are allowed in the first line
on the r.h.s. of (2.3.3), namely for each measurable compactly supported φ :
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[0, T ]× R→ R with φx ∈ L2

(
[0, T ]× R

)
`uε (φ) = 〈〈ut, φ〉〉+ 〈〈f(u)x, φ〉〉+

ε

2
〈〈D(u)ux, φx〉〉 (2.3.7)

Since ux is locally square integrable, if η ∈ C2([0, 1]) and ϕ ∈ C∞c ([0, T ]× R),
then η′(u)ϕ has compact support and its weak x-derivative is square integrable.
We can thus evaluate (2.3.7) with φ replaced by η′(u)ϕ, and since `uε (η

′(u)ϕ) =(
Ψε,u, η′(u)ϕ

)
D1
σ(u)

and u ∈ C
(
[0, T ];L2,loc(R)

)
we get (2.3.5).

To prove the last statement, consider an entropy – entropy flux pair (η, q).
By (2.3.4) and (2.3.7)

Iε(u) ≥ `uε (ε η
′(u)ϕ)− ε2

2

〈〈(
η′(u)ϕ

)
x
, σ(u)

(
η′(u)ϕ

)
x

〉〉
= ε〈η(u(T )), ϕ(T )〉 − ε〈η(u(0)), ϕ(0)〉
− ε
[
〈〈η(u), ϕt〉〉+ 〈〈q(u), ϕx〉〉

]
+ ε2

2

[
〈〈D(u)η′′(u)u2

x, ϕ〉〉+ 〈〈η′(u)D(u)ux, ϕx〉〉

− 〈〈σ(u)η′′(u)2u2
x, ϕ

2〉〉 − 〈〈σ(u)η′(u)2ϕx, ϕx〉〉

− 2〈〈σ(u)η′′(u)η′(u)ux, ϕ ϕx〉〉
]

We now choose η ≥ 0, uniformly convex and such that ση′′ ≤ D, and for such
a η we let α := maxv

[
D(v)η′(v)2/η′′(v)

]
, so that σ (η′)2 ≤ α. By Cauchy-

Schwarz inequality

2
∣∣〈〈σ(u)η′′(u)η′(u)ux, ϕ ϕx〉〉

∣∣ ≤ 〈〈σ(u)η′′(u)2u2
x, ϕ

2〉〉+ 〈〈σ(u)η′(u)2, ϕxϕx〉〉
≤ 〈〈D(u)η′′(u)u2

x, ϕ
2〉〉+ α〈〈ϕx, ϕx〉〉

Letting ζ : [0, 1] → R be such that ζ ′ = η′D, and integrating by parts we get
〈η′(u)D(u)ux, ϕx〉 = −〈ζ(u), ϕxx〉. Collecting all the bounds

〈η(u(T )), ϕ(T )〉+ ε
2
〈〈D(u)η′′(u)u2

x, ϕ− 2ϕ2〉〉
≤ ε−1Iε(u) + 〈η(u(0)), ϕ(0)〉+ 〈〈η(u), ϕt〉〉+ 〈〈q(u), ϕx〉〉

+ ε
2
〈〈ζ(u), ϕxx〉〉+ ε α 〈〈ϕx, ϕx〉〉

We now choose ϕ independent of t and such that ϕ(x) = 1/4 for |x| ≤ L,
0 ≤ ϕ(x) ≤ 1/4 for L ≤ |x| ≤ L + 1, ϕ(x) = 0 for |x| ≥ L + 1, and
〈ϕx, ϕx〉 + 〈ϕxx, ϕxx〉 ≤ 2. Since q, ζ are bounded and η ≥ 0, estimate (2.3.6)
easily follows. �

Lemma 2.3.3. The sequence of functionals {Iε} is equicoercive on U .

Proof. Let u ∈ U be such that Iε(u) < +∞ and Ψε,u be as in Lemma 2.3.1.
By (2.3.1), (2.3.2) and the bound (2.3.6), for each s, t ∈ [0, T ], each L > 0,
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each ϕ ∈ C∞c (R) supported by [−L,L]

|〈u(t)− u(s), ϕ〉| =
∣∣∣ ∫[s,t]

dr
〈
f(u)− ε

2
D(u)ux + σ(u)Ψε,u

x , ϕx
〉∣∣∣

≤
{

2
∫

[s,t]×[−L,L]
dr dx

[
f(u)2 + ε2

4
D(u)2u2

x

]}1/2[
|t− s|〈ϕx, ϕx〉

]1/2
+
[ ∫

[s,t]
dr〈σ(u)Ψε,u

x ,Ψε,u
x 〉
]1/2[
|t− s|〈σ(u)ϕx, ϕx〉

]1/2
≤ C

[
1 + L+ Iε(u)

]1/2

|t− s|1/2〈ϕx, ϕx〉1/2

for a suitable constant C depending only on f , D, and σ. Since (U, dU) is com-
pact, see (2.2.1), recalling (2.2.2) and the Ascoli-Arzelá theorem, the equico-
ercivity of {Iε} on U follows. �

As mentioned in the introduction, the assumption that σ is supported
by [0, 1] allows us to consider only functions u that take values in [0, 1].

More precisely, consider a cost functional Îε analogous to Iε but defined on
L1,loc([0, T ] × R). We next prove that, if u ∈ L1,loc([0, T ] × R) is such that

Îε(u) < +∞ and satisfies some growth conditions, then u takes values in [0, 1].

Proposition 2.3.4. Let f, D, σ : R → R; assume f Lipschitz, σ and
D continuous and bounded, with σ ≥ 0 and D uniformly positive. Let Îε :
L1,loc([0, T ]×R)→ [0,+∞] be defined as follows. If f(u) ∈ L2,loc([0, T ]×R), we

define Îε(u) as in (2.2.6), and we set Îε(u) = +∞ otherwise. Suppose that u ∈
L1,loc([0, T ]×R) is such that Îε(u) < +∞. Then u ∈ C

(
[0, T ];L1,loc(R)

)
. More-

over, if σ is supported by [0, 1], and u is such that u(0) ∈ U and
∫
dt dx |u(t, x)|e−r|x| <

+∞ for some r > 0, then u takes values in [0, 1], hence u ∈ U .

Proof. Let u ∈ L1,loc([0, T ] × R) be such that Îε(u) < +∞. By the
same arguments of Lemma 2.3.2, since f(u) ∈ L2,loc([0, T ] × R), ut = θx
holds weakly for some θ ∈ L2,loc([0, T ] × R). Hence, as in Lemma 2.3.2, u ∈
C
(
[0, T ];L1,loc(R)

)
. Suppose now that σ is supported by [0, 1]. Pick a sequence

of positive entropies ηn ∈ C2(R) such that:
∣∣η′n(u)

∣∣, η′′n(u) ≤ Cn for some
Cn > 0; for u ∈ (0, 1), ηn(u) does not depend on n and satisfies 0 < c ≤
η′′n(u) ≤ D(u)/σ(u); for u 6∈ [0, 1] the sequence {ηn(u)} increases pointwise to
+∞ as n → ∞. Still following the proof of Lemma 2.3.2, for t ∈ [0, T ] and
ϕ ∈ C∞c (R)

〈ηn(u(t)), ϕ〉+ ε
2

∫
[0,t]
ds 〈D(u)η′′n(u)u2

x, ϕ− 2ϕ2〉 ≤ ε−1Îε(u)

+〈ηn(u(0)), ϕ〉+
∫

[0,t]
ds
[
〈qn(u), ϕx〉+ ε

2
〈ζn(u), ϕxx〉+ ε α 〈ϕx, ϕx〉

]
where qn and ζn are defined (up to a constant) by qn(v) =

∫ v
dw η′n(w) f ′(w)

and ζ ′n = η′nD, and α := maxu∈[0,1]D(u)η′n(u)2/η′′n(u) is a constant independent
of n, since σ is supported by [0, 1]. Since f is Lipschitz and D is bounded, it
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is possible to choose the arbitrary constants in the definition of qn and ζn such
that |qn|, |ζn| ≤ Cηn for some constant C > 0 independent of n. In particular
ζn, qn ∈ L1,loc([0, T ]× R); for each ϕ ∈ C∞c (R) such that 0 ≤ ϕ(x) ≤ 1/2

〈〈ηn(u), ϕ〉〉 ≤ T ε−1Îε(u) + T 〈ηn(u(0)), ϕ〉
+
∫

[0,T ]
dt
∫

[0,t]
ds
[
〈qn(u), ϕx〉+ ε

2
〈ζn(u), ϕxx〉+ ε α 〈ϕx, ϕx〉

]
Let now r be such that

∫
dt dx e−r|x||u(t, x)| < +∞. By a limiting procedure,

the above bound holds for any ϕ ∈ C∞(R) such that 0 ≤ ϕ ≤ 1/2 and
supx∈R er|x|

[
|ϕ(x)| + |ϕx(x)| + |ϕxx(x)|

]
< +∞. For such ϕ, by the choice of

qn, ζn
1
T
〈〈ηn(u), ϕ〉〉 ≤ ε−1Îε(u) + 〈ηn(u(0)), ϕ〉

+εαT
2
〈ϕx, ϕx〉+ C〈〈ηn(u), |ϕx|+ ε

2
|ϕxx|〉〉

It is easy to verify that, given L > 0 large enough, we can choose ϕ such
that ϕ(x) = 1/2 for |x| ≤ L, ϕ(x) = 1

2
e−r|x−L| for |x| > 2L and |ϕxx(x)| ≤

r|ϕx(x)| ≤ r2 ϕ(x) ≤ r2/2 for |x| > L. Moreover, with no loss of generality,
we can assume that 1

T
− C (r + ε

2
r2) > 0, otherwise we can suppose T small

enough and iterate this proof. Therefore[
1
T
− C

(
r + ε

2
r2
)] ∫

[0,T ]×[−L,L]
dt dx ηn(u)

≤ ε−1Îε(u) + 〈ηn(u(0)), ϕ〉+ εαT
2
〈ϕx, ϕx〉

If u(0) ∈ U the r.h.s. of this formula is finite and independent of n, and
therefore the l.h.s. is bounded uniformly in n. Taking the limit n → ∞, by
the choice of ηn necessarily u(t, x) ∈ [0, 1] for a.e. (t, x) ∈ [0, T ]× R. �

The following result is not used in the sequel, but together with Lemma 2.3.1
and Proposition 2.3.4, motivates the choice of Iε as the cost functional related
to (2.1.2).

Proposition 2.3.5. For each ε > 0 the functional Iε : U → [0,+∞] is
lower semicontinuous.

Proof. Let {un} ⊂ U be a sequence converging to u in U , and such
that Iε(u

n) is bounded uniformly in n. By (2.3.6), for each L > 0 we have
that

∫
[0,T ]×[−L,L]

dt dx (unx)2 is also bounded uniformly in n. Therefore, recalling

definition (2.2.6), the lower semicontinuity of Iε is established once we show
that un converges to u strongly in L1,loc([0, T ] × R). Fix L > 0 and pick
χL ∈ C∞c (R) such that 0 ≤ χL ≤ 1 with χL(x) = 1 for x ∈ [−L,L]. We
show that un,L := un χL converges to uL := uχL in L2([0, T ] × R). Choose a
sequence of mollifiers k : R→ R+ with

∫
dx k(x) = 1, then∥∥un,L − uL∥∥

L2([0,T ]×R)
≤
∥∥un,L − k ∗ un,L∥∥L2([0,T ]×R)

+
∥∥k ∗ un,L − k ∗ uL∥∥L2([0,T ]×R)

+
∥∥k ∗ uL − uL∥∥L2([0,T ]×R)
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where the convolution is only in the space variable. For each k the second
term on the r.h.s. above vanishes as n→∞ by the convergence un → u in U .
Since the third term vanishes as k →∞ it remains to show that the first one
vanishes as k →∞ uniformly in n. Integration by parts and Young inequality
for convolutions yield∥∥un,L − k ∗ un,L∥∥L2([0,T ]×R)

≤
∥∥∥1I[0,+∞) −

∫ ·

−∞
dy jk(y)

∥∥∥
L1(R)

∥∥un,Lx ∥∥
L2([0,T ]×R)

The uniform boundedness of
∫

[0,T ]×[−L,L]
dt dx (unx)2, (2.3.6) and the choice of

χL imply that the second term on the r.h.s. is bounded uniformly in n, while
the first term vanishes as k →∞. �

2.4. Γ-convergence of Iε
In this section we prove the Γ-convergence of the parabolic cost functional

Iε as ε → 0, see Theorem 2.2.1. Some technical steps are postponed in Ap-
pendix 2.6.

Proof of Theorem 2.2.1: equicoercivity of Iε. Recall that (M, dM)
has been defined in (2.2.3), (2.2.4) and note that (N , dvag) is compact. By
Lemma 2.3.3, for each C > 0 there exists a compact KC ⊂ U , such that
for any ε small enough {µ ∈ M : Iε(µ) ≤ C} ⊂ {µ ∈ M : µt,x =
δu(t,x)for some u ∈ KC} =: KC . In order to prove that KC is compact in
(M, dM), consider a sequence {µn = δun} ⊂ KC . Then there exists a sub-
sequence {µnj} such that, for some µ ∈ N and u ∈ U , µnj → µ in (N , dvag),
and µnj(ı) = unj → u in U , hence µ(ı) = u. Therefore µ ∈M and µnj → µ in
(M, dM). �

Proof of Theorem 2.2.1: Γ-liminf inequality. Let {µε} ⊂ M be a
sequence converging to µ in M. In order to prove limε→0 Iε(µε) ≥ I(µ), it is
not restrictive to assume Iε(µε) < +∞, and therefore µεt,x = δuε(t,x) for some
uε ∈ U . For each ϕ ∈ C∞c ((0, T )× R), recalling definition (2.2.6)

Iε(µε) ≥ `u
ε

ε (ϕ)− 1
2
‖ϕ‖2

D1
σ(uε)

= −〈〈µε(ı), ϕt〉〉 − 〈〈µε(f), ϕx〉〉 − 1
2
〈〈µε(σ)ϕx, ϕx〉〉+ ε

2
〈〈D(uε)uεx, ϕx〉〉

Let d ∈ C1([0, 1]) be such that d′(u) = D(u). Then D(uε)uεx = d(uε)x, and
an integration by parts shows that the last term on the r.h.s. of the previous
formula vanishes as ε→ 0. Hence

lim
ε→0
Iε(µε) ≥ −〈〈µ(ı), ϕt〉〉 − 〈〈µ(f), ϕx〉〉 −

1

2
〈〈µ(σ)ϕx, ϕx〉〉

By optimizing over ϕ ∈ C∞c ((0, T )× R) the Γ-liminf inequality follows. �
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Proof of Theorem 2.2.1: Γ-limsup inequality. Let

Mg :=
{
µ ∈M : I(µ) < +∞, ∃r, L > 0, ∃µ∞ ∈ P([0, 1]) such that

µ(ı), µ(σ) ≥ r, µt,x = µ∞ for |x| > L
}

(2.4.1)

M0 :=
{
µ ∈Mg : µ = δu for some u ∈ C1

(
[0, T ]× R; [0, 1]

)}
(2.4.2)

and define Ĩ :M→ [0,+∞] by

Ĩ(µ) :=

{
I(µ) if µ ∈M0

+∞ otherwise
(2.4.3)

We claim that for µ ∈ M0, a recovery sequence is simply given by µε = µ.
Indeed, if µ = δu for some u ∈ C1

(
[0, T ]× R; [0, 1]

)
, we have

Iε(µε) = Iε(u) = 1
2

∥∥∥ut + f(u)x − ε
2

(
D(u)ux

)
x

∥∥∥2

D−1
σ(u)

≤ 1+ε
2

∥∥∥ut + f(u)x

∥∥∥2

D−1
σ(u)

+ 1+ε−1

2

∥∥∥ ε2(D(u)ux
)
x

∥∥∥2

D−1
σ(u)

As µ ∈Mg, u is constant for |x| large enough, in particular ux ∈ L2([0, T ]×R).
Since we have also σ(u) ≥ r > 0, the last term in the above formula vanishes
as ε→ 0. Hence Γ-limε Iε ≤ Ĩ. As well known, see e.g. [4, Prop. 1.28], any Γ-
limsup is lower semicontinuous; the proof is then completed by Theorem 2.4.1
below. �

The relaxation of the functional Ĩ on M defined in (2.4.3) might have an
independent interest; in the following result we show it coincides with I, as
defined in (2.2.8).

Theorem 2.4.1. I is the lower semicontinuous envelope of Ĩ.

The following representation of I is proved similarly to Lemma 2.3.1.

Lemma 2.4.2. Let µ ∈ M. Then I(µ) < +∞ iff there exists Ψµ ∈ D1
µ(σ)

such that µ is a measure-valued solution to ut + f(u)x = −
(
σ(u)Ψµ

x

)
x
, namely

µ(ı)t + µ(f)x = −
(
µ(σ)Ψµ

x

)
x

(2.4.4)

holds weakly. In such a case Ψµ is unique and

I(µ) =
1

2

∥∥∥µ(ı)t + µ(f)x

∥∥∥2

D−1
µ(σ)

=
1

2
‖Ψµ‖2

D1
µ(σ)

Furthermore, suppose that µ(σ) ≥ r for some constant r > 0. Then I(µ) <
+∞ iff there exists Gµ ∈ L2([0, T ]× R) such that

µ(ı)t + µ(f)x = −Gµ
x (2.4.5)
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holds weakly. In such a case Ψµ
x can be identified with a function in L2([0, T ]×

R), and

Gµ = µ(σ)Ψµ
x, I(µ) =

1

2

∫
dt dx

(
Gµ(t, x)

)2

µt,x(σ)
(2.4.6)

The following remark is a consequence of Lemma 2.4.2.

Remark 2.4.3. Let {µk} ⊂ M be such that µk → µ in M, I(µk) < +∞
and µk(σ) ≥ r for some r > 0. Let also Gµk be defined as in Lemma 2.4.2. If

µk(σ) → µ(σ) strongly in L1,loc

(
[0, T ] × R

)
and {Gµk} is strongly precompact

in L2

(
[0, T ]× R

)
, then I(µk)→ I(µ).

Throughout the proof of Theorem 2.4.1, approximation of Young measures
by piecewise smooth measures is a much used procedure. In particular we will
refer repeatedly to the following result, which is a simple restatement of the
Rankine-Hugoniot condition for the divergence-free vector field (µ(ı), µ(f) +
Gµ) on (0, T )× R.

Lemma 2.4.4. Let γ : (0, T )→ R be a Lipschitz map with a.e. derivative γ̇,
and let O∓ ⊂ (0, T )×R be a left, resp. a right, open neighborhood of the graph
of γ; namely Graph(γ) ⊂ Closure(O−)∩Closure(O+), and for all (t, x) ∈ O−,
resp. (t, x) ∈ O+, the inequality x < γ(t), resp. x > γ(t), holds. Let also
O := O+ ∪ O− ∪ Graph(γ). Suppose that a Young measure µ ∈ M is such
that, for each continuous function F ∈ C([0, 1]) the map (t, x) 7→ µt,x(F ) is
continuously differentiable in O− ∪ O+, and denote by µ∓(F ) the respective
traces of µ(F ) on the graph of γ. Then there exists a map G : O → R, defined
up to an additive measurable function of the t variable, which is continuous
in O− ∪ O+, and such that (2.4.5) holds weakly in O. Moreover the Rankine-
Hugoniot condition holds for a.e. t ∈ [0, T ], namely

G+ −G− =
[
µ(ı)+ − µ(ı)−

]
γ̇ −

[
µ(f)+ − µ(f)−

]
(2.4.7)

where G∓ are the traces of G on γ evaluated on the neighborhoods O∓ of γ.

Proof of Theorem 2.4.1. Since I is lower semicontinuous, it is enough
to prove thatM0, as defined in (2.4.2), is I-dense inM, namely that for each
µ ∈M with I(µ) < +∞, there exists a sequence {µk} ⊂ M0 such that µk → µ
in M and limk I(µk) ≤ I(µ) (we will also say that µk I-converges to µ). We
split the proof in several steps.

Step 1. Here we show thatM0 is I-dense in the set of Young measures which
are a finite convex combination of Dirac masses for a.e. (t, x). More precisely,
recalling definition (2.4.1), we set

Mn
1 :=

{
µ ∈Mg : µ =

∑n
i=1 α

iδui for some αi ∈ L∞
(
[0, T ]× R; [0, 1]

)
with

∑n
i=1 α

i = 1 and ui ∈ L∞
(
[0, T ]× R; [0, 1]

)}
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and

M1 :=
∞⋃
n=1

Mn
1

In this step, we prove thatM0 is I-dense inM1. We proceed by induction on
n; to this aim, for n ≥ 1, we introduce the auxiliary sets

Mn

1 :=
{
µ ∈Mg : ∃r > 0 : µ =

∑n
i=1 α

iδui , for some

αi ∈ L∞
(
[0, T ]× R; [r, 1]

)
with

∑n
i=1 α

i = 1 and ui ∈ C0
(
[0, T ]× R; [0, 1]

)}
M̃n

1 :=
{
µ ∈Mg : ∃r > 0 : µ =

∑n
i=1 α

iδui for some αi ∈ C1
(
[0, T ]× R; [r, 1]

)
with

∑n
i=1 α

i = 1 and ui ∈ C1
(
[0, T ]× R; [r, 1− r]

)
, such that ui+1 ≥ ui + r

}
Note that M̃n

1 ⊂ M
n

1 ⊂ Mn
1 , and M̃1

1 ⊂ M0. We claim that for each n ≥ 1,

M̃n
1 is I-dense inMn

1 , thatMn

1 is I-dense inMn
1 , and thatMn

1 is I-dense in

M̃n+1
1 . The I-density of M0 in M1 then follows by induction. The previous

claims are proved in Appendix 2.6.

Step 2. In this step we prove that M1 is I-dense in Mg, see (2.4.1). We use
the following elementary extension of the mean value theorem.

Lemma 2.4.5. Let X be a connected compact separable metric space, F1,. . .,
Fd ∈ C(X) be continuous functions on X, and P ∈ P(X) be a Borel probability
measure on X. Then there exist α1, . . . , αd ≥ 0 with

∑
i α

i = 1, x1, . . . , xd ∈ X
such that P(F i) =

∑d
j=1 α

jF i(xj), i = 1, . . . , d. Furthermore there exists a

sequence {Pn} ⊂ P(X) converging weakly* to P, such that each Pn is a finite
convex combination of Dirac masses, Pn(F i) = P(F i) for i = 1, . . . , d, and for
each n the map P(X) 3 P 7→ Pn ∈ P(X) is Borel measurable w.r.t. the weak*
topology.

Proof. It is easy to see that the point P(F ) :=
(
P(F1), . . . , P(Fd)

)
∈ Rd

belongs to the closed convex hull of the set B := {
(
F1(x), . . . , Fd(x)

)
, x ∈

X} ⊂ Rd. Since B is compact and connected, Caratheodory theorem im-
plies that P(F ) is a convex combination of at most d points in B, namely
the first statement of the lemma holds. Since X is compact, for each inte-
ger n ≥ 1, there exist an integer k = k(n) and pairwise disjoint measur-
able sets An1 , . . . , A

n
k ⊂ X, such that P(X \ ∪kl=1A

n
l ) = 0, P(Anl ) > 0, and

diameter(Anl ) ≤ n−1, l = 1, . . . , k. For l = 1, . . . , k, let P(·|Anl ) ∈ P(X) be
defined by P(B|Anl ) := P(Anl ∩ B)/P(Anl ) for any Borel set B ⊂ X. By the
first part of the lemma, there exists a probability measure Pnl ∈ P(X), which
is a convex combination of d Dirac masses, such that Pnl (Fi) = P(Fi|Anl ). The

sequence {Pn} defined as Pn(·) :=
∑k

l=1 P(Anl )Pnl (·) satisfies the requirements
of the lemma. �
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Let µ ∈Mg. By Lemma 2.4.5, there exists a sequence {µn} ⊂ M converg-
ing to µ inM such that µt,x is a convex combination of Dirac masses (t, x) for
a.e. (t, x), and µn(ı) = µ(ı), µn(f) = µ(f), µn(σ) = µ(σ). Hence I(µn) = I(µ)
and µn ∈M1.

Step 3. Recall Lemma 2.4.2 and set

M3 :=
{
µ ∈M : I(µ) < +∞, ∃r > 0 such that µ(ı), µ(σ) ≥ r,

Gµ ∈ C1
(
[0, T ]× R

)
∩ L∞

(
[0, T ]× R

)
,

for each F ∈ C([0, 1]) µ(F ) ∈ C1
(
[0, T ]× R

)}
In this step we prove that Mg is I-dense in M3.

Let µ ∈ M3, and choose a constant u∞ > 0 such that µ(ı) − u∞ > δ for
some δ > 0. Define the maps γk± ∈ C([0, T ]) ∩ C1((0, T )) as the solutions to
the Cauchy problems {

γ̇(t) =
Gµ(t,γ(t))+µt,γ(t)(f)−f(u∞)

µt,γ(t)(ı)−u∞

γ(0) = ±k

γk± are well-defined by the smoothness hypotheses on µ and Gµ. On the other
hand, since we assumed Gµ to be uniformly bounded, |γk±(t)∓k| ≤ C, for some
constant C > 0 not depending on k. We define, for k > C, µk by µkt,x = µt,x if

γk−(t) < x < γk+(t) and µkt,x = δu∞ otherwise. Clearly µk → µ inM as k →∞.

We also let Gµk(t, x) = Gµ(t, x) if γk−(t) < x < γk+(t), and Gµk(t, x) = 0
otherwise. By (2.4.7) and the definition of γk±, the equation µk(ı)t + µk(f)x =

−Gµk

x holds weakly in (0, T )×R. In particular, by Lemma 2.4.2, I(µk) ≤ I(µ).

Step 4. Here we prove that M3 is I-dense in

M4 := {µ ∈M : I(µ) < +∞, ∃r > 0 such that µ(ı), µ(σ) ≥ r}

Let µ ∈ M4 and {k}k≥1 ⊂ C∞c (R × R) be a sequence of smooth mollifiers
supported by [−T/k, T/k] × [−1, 1]. For k ≥ 1, let us define the rescaled
time-space variables bk : [0, T ]× R→ R× R by

bk(t, x) :=
( t+ T/k

1 + 2T/k
,

x

1 + 2T/k

)
(2.4.8)

For k ≥ 1 we also define the Young measure µk by setting for F ∈ C([0, 1])
and (t, x) ∈ [0, T ]× R

µkt,x(F ) :=

∫
dy ds k(t− s, x− y)µbk(s,y)(F )

It is immediate to see that µk ∈M3. Moreover, as k →∞, µk → µ inM and
µk(F )→ µ(F ) strongly in L1,loc([0, T ]× R) for each F ∈ C([0, 1]).
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Let us also define Gµk ∈ L2([0, T ]× R) by

Gµk

t,x :=

∫
dy ds k(t− s, x− y)Gµ

(
bk(s, y)

)
Then µk(ı)t + µk(f)x = −Gµk

x holds weakly, and Gµk → Gµ in L2([0, T ] × R)
as k →∞. The proof is then achieved by Remark 2.4.3.

Step 5. M4 is I-dense in M. For µ ∈ M with I(µ) < +∞, we define
µk := (1 − k−1)µ + k−1δ1/2. Clearly µk → µ in M, and µk(ı) ≥ k−1/2,
µk(σ) ≥ k−1σ(1/2). Therefore µk ∈ M4. From (2.2.8) it follows that I is
convex, and since I(δ1/2) = 0, we have I(µk) ≤ (1− k−1)I(µ). �

The following proposition is easily proved, and will be used in the proof of
Corollary 2.2.2

Proposition 2.4.6. Let X, Y be complete separable metrizable spaces,
and let ω : X → Y be continuous. Let also {Fε} be a family of functionals
Fε : Y → [−∞,+∞]. Let us define Fε : X → [−∞,+∞] by

Fε(x) = inf
y∈ω−1(x)

Fε(y)

Then (
Γ–limε Fε

)
(x) ≤ inf

y∈ω−1(x)

(
Γ–limεFε

)
(y)

Furthermore if {Fε} is equicoercive on Y then {Fε} is equicoercive on X. In
such a case (

Γ–limε Fε
)
(x) ≤ inf

y∈ω−1(x)

(
Γ–limεFε

)
(y)

Proof of Corollary 2.2.2. Since the map M 3 µ 7→ µ(ı) ∈ U is
continuous, by Proposition 2.4.6 we have that Iε is equicoercive on U (which
we already knew from Lemma 2.3.3) and Γ-converges to I : U → [0,+∞]
defined by

I(u) = inf
µ∈M : µ(ı)=u

I(µ)

Recall that, if I(µ) < +∞, Ψµ
x has been defined in Lemma 2.4.2. Equality

(2.4.4) yields

I(u) = inf
{
〈〈µ(σ)Ψµ

x,Ψ
µ
x〉〉, Φ ∈ L2,loc

(
[0, T ]× R

)
, µ ∈M :

I(µ) < +∞, µ(ı) = u, Φx = −µ(ı)t weakly, µ(σ)Ψµ
x = Φ− µ(f)

}
The corollary then follows by direct computation. �
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2.5. Γ-convergence of Hε

Proof of Proposition 2.2.3. (i)⇒ (ii). We first show that ‖℘η,u‖TV,L

is finite for each η such that 0 ≤ η′′ ≤ c. It is easily seen that for each
ϕ ∈ C∞c

(
(0, T ) × (−L,L); [0, 1]

)
there exists ϕ̄ ∈ C∞c

(
(0, T ) × (−L,L); [0, 1]

)
such that ϕ̄ ≥ ϕ and ‖|ϕ̄t|+ |ϕ̄x|‖L1 ≤ 2(2L+ T ). Therefore

℘η,u(−ϕ) = ℘η,u(ϕ̄− ϕ)− ℘η,u(ϕ̄) ≤ ‖℘+
η,u‖TV,L + 〈〈η(u), ϕ̄t〉〉+ 〈〈q(u), ϕ̄x〉〉

≤ ‖℘+
η,u‖TV,L + 2(‖η‖∞ + ‖q‖∞)(2L+ T )

and thus ‖℘η,u‖TV,L ≤ 2‖℘+
η,u‖TV,L + 2(‖η‖∞ + ‖q‖∞)(2L+ T ).

Let now η̃(v) := c v2/2, and for η ∈ C2([0, 1]) arbitrary, let α := c−1 maxv |η′′(v)|.
Then ℘η,u = −α℘η̃−η/α,u+α℘η̃,u. Since both η̃−η/α and η̃ are convex with sec-
ond derivative bounded by c, ℘η,u is a linear combination of Radon measures,
and thus a Radon measure itself.

(ii) ⇒ (iii). Throughout this proof, we say that η1, η2 ∈ C2([0, 1]) are
equivalent, and we write η1 ∼ η2, iff η′′1 = η′′2 . We identify C2([0, 1])/ ∼
with C([0, 1]), which we equip with the topology of uniform convergence. For
u ∈ X a weak solution to (2.1.1), for ϕ ∈ C∞c

(
(0, T )×R

)
, the linear mapping

C2([0, 1]) 3 η 7→ ℘η,u(ϕ) ∈ R is compatible with ∼, and it thus defines a linear
mapping Pϕ,u : C([0, 1]) → R. It is immediate to see that Pϕ,u is continuous,
and by (ii) for each η ∈ C2([0, 1]) and L > 0

sup
{
Pϕ,u(η

′′), ϕ ∈ C∞c
(
(0, T )× (−L,L)

)
, |ϕ| ≤ 1

}
= ‖℘η,u‖TV,L < +∞

By Banach-Steinhaus theorem

sup
{
Pϕ,u(e), ϕ ∈ C∞c

(
(0, T )×(−L,L)

)
, |ϕ| ≤ 1, e ∈ C([0, 1]), |e| ≤ 1

}
< +∞

Therefore the linear mapping PL
u : C([0, 1]) × C∞c

(
(0, T ) × (−L,L)

)
→ R,

PL
u (e, ϕ) := Pϕ,u(e) can be extended to a finite Borel measure on [0, 1] ×

(0, T ) × (−L,L). The collection {PL
u }L defines a unique Radon measure Pu

on [0, 1] × (0, T ) × R, since two elements of this collection coincide on the
intersection of their domains. Recalling (2.2.10), we thus gather for each η ∈
C2([0, 1]), for each ϕ ∈ C∞c

(
(0, T )×R

)
and for some constant C > 0 depending

only on f∣∣∣ ∫ Pu(dv, dt, dx) η′′(v)ϕ(t, x)
∣∣∣ =

∣∣∣℘η,u(ϕ)
∣∣∣ ≤ C‖ϕ‖

C1
(

(0,T )×R
) ∫ dv |η′′(v)|

Pu thus defines a linear continuous functional on L1([0, 1]) × C1
c

(
(0, T ) ×

R
)
. This implies that the Radon measure Pu can be disintegrated as Pu =

dv %u(v; dt, dx), for some bounded measurable map %u : [0, 1]→M
(
(0, T )×R

)
.

From the definition of Pu, we obtain for η ∈ C2([0, 1]), ϕ ∈ C∞c
(
(0, T ) × R

)
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and ϑ(v, t, x) = η(v)ϕ(t, x)

Pϑ,u = ℘η,u(ϕ) =

∫
Pu(dv, dt, dx)η′′(v)ϕ(t, x) =

∫
dv %u(v; dt, dx)ϑ′′(v, t, x)

By linearity and density (2.2.13) holds for each entropy sampler ϑ.
(iii) ⇒ (i). It follows by choosing ϑ(v, t, x) = η(v)ϕ(t, x) in equation

(2.2.13) for ϕ ∈ C∞c
(
(0, T ) × R; [0, 1]

)
and η ∈ C2([0, 1]) with 0 ≤ η′′ ≤ c

for an arbitrary c > 0. �

Proof of Theorem 2.2.5 item (ii): equicoercivity of Hε. The equico-
ercivity of Hε w.r.t. the topology generated by the dU -distance (2.2.2) follows
from Lemma 2.3.3. It remains to show that, if uε is such that Hε(u

ε) is bounded
uniformly in ε, then {uε} is precompact in L1,loc([0, T ] × R). By equicoerciv-
ity of {Iε}, the sequence {µε} defined by µεt,x = δuε(t,x) is precompact in M.
Therefore we have only to show that any limit point µ ∈ M of {µε} has the
form µt,x = δu(t,x) for some u ∈ X , to obtain the existence of limit points for
{uε} in X . This is implied by a compensated compactness argument due to
Tartar, see [16, Ch. 9], provided that there is no interval where f is affine, and
that, for any entropy - entropy flux pair (η, q), the sequence {η(uε)t + q(uε)x}
is precompact in H−1

loc

(
[0, T ] × R

)
. Let us show the latter. By (2.3.5), there

exists C > 0 such that for each ϕ ∈ C∞c
(
(0, T )× (−L,L)

)∣∣〈〈η(uε)t + q(uε)x, ϕ〉〉
∣∣ ≤ ε

2

∣∣〈〈η′′(uε)D(uε)ux, ϕ u
ε
x〉〉
∣∣+ ε

2

∣∣〈〈η′(uε)D(uε)uεx, ϕx〉〉
∣∣

+
∣∣〈〈η′′(uε)σ(uε)uεx,Ψ

ε,uε

x ϕ〉〉
∣∣+
∣∣〈〈η′(uε)σ(uε) Ψε,uε

x , ϕx〉〉
∣∣

≤ C
[
1 +Hε(u

ε)
][
ε
∫

[0,T ]×[−L,L]
dt dx (uεx)

2
]
‖ϕ‖L∞([0,T ]×R)

+C
[
εHε(u

ε) + ε2
∫

[0,T ]×[−L,L]
dt dx (uεx)

2
]1/2

‖ϕx‖L2([0,T ]×R)

By the bound (2.3.6), η(uε)t+q(u
ε)x is the sum of a term bounded in L1,loc([0, T ]×

R) and a term vanishing in H−1
loc ([0, T ] × R) as ε → 0. By Sobolev compact

embedding and boundedness of η, q, the sequence {η(uε)t+q(uε)x} is compact
in H−1

loc ([0, T ]× R). �

Proof of Theorem 2.2.5 item (i): Γ-liminf inequality. Let {uε} be
a sequence converging to u in X . If u is not a weak solution to (2.1.1), by The-
orem 2.2.1 we have limε→0 Iε(u

ε) ≥ I(δu) > 0, and therefore limε→0Hε(u
ε) =

+∞. Let now u be a weak solution to (2.1.1). With no loss of generality we
can suppose Hε(u

ε) ≤ CH . We now consider an entropy sampler – entropy
sampler flux pair (ϑ,Q) such that

0 ≤ σ(v)ϑ′′(v, t, x) ≤ D(v), (v, t, x) ∈ [0, 1]× (0, T )× R (2.5.1)

We also let ϕε(t, x) = εϑ′(uε(t, x), t, x), and introduce the short hand notation(
ϑ′(uε)

)
(t, x) ≡ ϑ′(uε(t, x), t, x),

(
ϑ′′(uε)

)
(t, x) ≡ ϑ′′(uε(t, x), t, x),

(
(∂xϑ

′)(uε)
)
(t, x) ≡(

∂xϑ
′)(uε(t, x), t, x). As we assumed Hε(u

ε) < +∞, uεx is locally square
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integrable, see (2.2.6), and since ϑ is compactly supported we have ϕεx =
εϑ′′(uε)uεx + ε(∂xϑ

′)(uε) ∈ L2([0, T ]×R). The representation (2.3.7) of `u
ε

ε (ϕε)
thus holds, and recalling (2.2.11) we get

Hε(u
ε) ≥ ε−1`u

ε

ε (ϕε)− ε−1

2
‖ϕε‖2

D1
σ(uε)

= 〈〈uεt , ϑ′(uε)〉〉+ 〈〈f(uε)x, ϑ
′(uε)〉〉

+ ε
2
〈〈D(uε)uεx, ϑ

′′(uε)uεx〉〉+ ε
2
〈〈D(uε)uεx,

(
∂xϑ

′)(uε)〉〉 − ε
2
〈〈σ(uε)ϑ′′(uε)uεx, ϑ

′′(uε)uεx〉〉
−ε〈〈σ(uε)ϑ′′(uε)uεx,

(
∂xϑ

′)(uε)〉〉 − ε
2
〈〈σ(uε)

(
∂xϑ

′)(uε), (∂xϑ′)(uε)〉〉
= −

∫
dt dx

[(
∂tϑ)

(
uε(t, x), t, x

)
+
(
∂xQ

)(
uε(t, x), t, x

)]
+ ε

2
〈〈D(uε)− σ(uε)ϑ′′(uε), ϑ′′(uε)(uεx)

2〉〉+ ε
2
〈〈D(uε)uεx,

(
∂xϑ

′)(uε)〉〉
−ε〈〈σ(uε)ϑ′′(uε)uεx,

(
∂xϑ

′)(uε)〉〉 − ε
2
〈〈σ(uε)

(
∂xϑ

′)(uε), (∂xϑ′)(uε)〉〉
By the bound (2.3.6), the last three terms in the above formula vanish as ε→ 0,
while 〈〈[D(uε) − σ(uε)ϑ′′(uε)]uεx, ϑ

′′(uε)uεx〉〉 ≥ 0 for each entropy sampler ϑ
satisfying (2.5.1). Therefore, taking the limit ε→ 0 and optimizing over ϑ

lim
ε→0

Hε(u
ε) ≥ sup

ϑ
lim
ε→0
−
∫
dt dx

[(
∂tϑ)

(
uε(t, x), t, x

)
+
(
∂xQ

)(
uε(t, x), t, x

)]
= sup

ϑ
Pϑ,u

where the supremum is taken on the ϑ ∈ C2,∞
c

(
[0, 1] × (0, T ) × R

)
satisfying

(2.5.1). Recalling that we assumed the l.h.s. of this formula to be finite, we
next show that this inequality implies that u ∈ E , and that the r.h.s. is equal
to H(u). By taking ϑ(v, t, x) = η(v)ϕ(t, x) for some ϕ ∈ C∞c

(
[0, T ]×R; [0, 1]

)
and entropy η such that 0 ≤ σ(v)η′′(v) ≤ D(v), we get ℘η,u(ϕ) ≤ limεHε(u

ε).
Optimizing over ϕ it follows that u fulfills condition (i) in Proposition 2.2.3
with c = minvD(v)/σ(v) > 0, and thus u ∈ E . By (iii) in Proposition 2.2.3
and monotone convergence we then get

limε→0Hε(u
ε) ≥ supϑ Pϑ,u = supϑ

∫
dv %u(v; dt, dx)ϑ′′(v, t, x)

=
∫
dv %+

u (v; dt, dx) D(v)
σ(v)

= H(u)
(2.5.2)

�

Lemma 2.5.1. Let f ∈ C2([0, 1]), and assume that there is no interval where
f is affine. Then entropy-measure solutions to (2.1.1) are in C

(
[0, T ];L1,loc(R)

)
.

Let furthermore

V +
f := max

v∈[0,1]
f ′(v) V −f := min

v∈[0,1]
f ′(v) (2.5.3)

Then for each u ∈ E, x ∈ R, V > V +
f or V < V −f

lim
ζ→0

∫
dt
∣∣u(t, x+ ζ + V t

)
− u
(
t, x+ V t

)∣∣ = 0 (2.5.4)

Proof. With the same hypotheses of this lemma, in [5, Sect. 4] it is shown
that if a weak solution u to (2.1.1) is such that ℘f,u is a Radon measure,
then, for each L > 0 and t ∈ [0, T ), lims↓t

∫
[−L,L]

|u(s, x) − u(t, x)|dx = 0.
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Therefore, by item (ii) in Proposition 2.2.3, entropy-measure solutions enjoy
this property. Since the set E of entropy-measure solutions is invariant under
the symmetry (t, x) 7→ (−t,−x), the same holds true also for s ↑ t, and thus
E ⊂ C

(
[0, T ];L1,loc(R)

)
.

If u is an entropy-measure solution to the conservation law (2.1.1), then
uV,±(t, x) := u(±t, x± V t) is an entropy-measure solution to the conservation
law with flux f±, where f±(w) = f(w) ∓ V w. With no loss of generality, we
can thus prove (2.5.4) only in the case V = 0 with the assumption V −f > 0.

In this case f is invertible on its range [a, b], and we let g ∈ C2([a, b]) be its
inverse. We define v : R × [0, T ] 7→ [a, b] by v(x, t) = f(u(t, x)). Then v
satisfies

vx + g(v)t = 0 (2.5.5)

Furthermore, if l,m ∈ C2([a, b]) satisfy m′ = l′g′, then by chain rule l(v)x +
m(v)t = ℘η,u, where η(w) :=

∫ w
dz l′(f(z)). Therefore v is an entropy-measure

solution to (2.5.5), and by the first part of this lemma

lim
ζ→0

∫
ds
∣∣v(x+ ζ, s)− v(x, s)

∣∣ = 0

The result then follows by recalling u(t, x) = g(v(x, t)). �

Proof of Theorem 2.2.5 item (iii): Γ-limsup inequality. Given an
nice (w.r.t. σ) solution ũ ∈ Sσ, let E± be as in Definition 2.2.4. We want to
construct a recovery sequence {uε} ⊂ X that converges to ũ in X as ε → 0,
and such that limεHε(u

ε) ≤ H(ũ). We split the proof in four steps. In Step
1 we build a suitable family of rectangles contained in [0, T ] × R. In Step 2,
for ε, δ, L ≥ 1, we introduce two collections {vε,δ,L,±} of auxiliary functions on
[0, T ]× R. In Step 3, for N ∈ N we define a collection {uε,δ,N,L} ⊂ X , and we
prove

lim
δ→0

lim
ε→0

Hε(u
ε,δ,N,L) ≤ H(ũ) (2.5.6)

In particular {uε,δ,N,L} is precompact in X . In Step 4 we show that any limit
point of {uε,δ,N,L} coincides with ũ in X , provided we consider the limit in
ε, δ, N, L in a suitable order. More precisely we show

lim
L→∞

lim
N→∞

lim
δ→0

lim
ε→0

uε,δ,N,L = ũ (2.5.7)

By (2.5.6) and (2.5.7) it follows that there exist subsequences {δε}, {Lε} ⊂
(0,+∞) and {N ε} ⊂ N such that uε := uε,δ

ε,Nε,Lε provides the required recov-
ery sequence for ũ.

Throughout this proof, we assume f ′ to be uniformly positive in [0, 1],
namely that V −f , as defined in (2.5.3), is positive. As noted in the proof of
Lemma 2.5.1, this assumption is not restrictive. Note also that the calculations
carried out below make sense also if E+ = ∅ or E− = ∅.
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Step 1. For each t such that
(
{t} × [−L,L]

)
∩ E+ ∩ E− = ∅, the compact

sets
(
{t} × [−L,L]

)
∩ E± are disjoint, hence strictly separated. By (ii) in

Definition 2.2.4, there exists a countable collection of pairwise disjoint time
intervals {(sLi , tLi )}i∈N, with (sLi , t

L
i ) ⊂ (0, T ) such that τL := ∪i(sLi , tLi ) is dense

in [0, T ], and for each i ∈ N the two sets EL,±
i :=

(
(sLi , t

L
i ) × [−L,L]

)
∩ E±

are strictly separated. By splitting each of these intervals in a finite number
of intervals, with no loss of generality we can assume

tLi − sLi <
1

4 + 4V +
f

distance
(
EL,+
i , EL,−

i

)
(2.5.8)

where V +
f is defined in (2.5.3), and it coincides with the Lipschitz constant of

f since we supposed V −f > 0.

For i ∈ N let nLi ∈ N be such that

L

nLi
≤ 1

4
min

{
1, distance

(
EL,+
i , EL,−

i

)}
(2.5.9)

and consider the rectangles RL
i,j := (sLi , t

L
i )× ( j

nLi
L, j+1

nLi
L), for j = −nLi , −nLi +

1, . . . , nLi − 1. By the definition (2.5.9) of nLi and condition (2.5.8), for each
|j| ≤ nLi − 1

diameter(RL
i,j−1 ∪RL

i,j ∪RL
i,j+1) <

1

2
distance

(
EL,+
i , EL,−

i

)
(2.5.10)

In particular each RL
i,j has nonempty intersection with at most one of the sets

E+, E−. We define

RL,±
i :=

⋃
j : |j|≤nLi −1,

(RLi,j−1∪RLi,j∪RLi,j+1)∩E∓=∅

RL
i,j (2.5.11)

and for N ∈ N

RN,L,± := ∪Ni=1R
L,±
i RL,± := ∪NRN,L,± (2.5.12)

Note that by (2.5.8) and (2.5.9)

RL
i,j ⊂

{
(r, x) : sLi < r < tLi ,

j − 1

nLi
L+V +

f r ≤ x ≤ j + 1

nLi
L−V +

f r
}

(2.5.13)

and by (2.5.10)

RL,+ ∪RL,− =
⋃
i

nLi −1⋃
j=−nLi +1

RL
i,j (2.5.14)
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Step 2. For L ≥ 1 and δ ∈ (0, 1/2), let ũδ,L ∈ X be defined by

ũδ,L(t, x) :=


ũ(t, x) if |x| ≤ L and ũ(t, x) ∈ [δ, 1− δ]
δ if |x| ≤ L and ũ(t, x) ≤ δ

1− δ if |x| ≤ L and ũ(t, x) ≥ 1− δ
1/2 if |x| > L

(2.5.15)

For ε > 0, i ∈ N, we define vε,δ,L,−i : (sLi , t
L
i ) × R → R as the solution to the

forward-parabolic Cauchy problem{
vt + f(v)x = ε

2

(
D(v)vx

)
x

v(sLi ) = ũδ,L(sLi )
(2.5.16)

and vε,δ,L,+i : (sLi , t
L
i ) × R → R as the solution to the backward-parabolic

Cauchy problem {
vt + f(v)x = − ε

2

(
D(v)vx

)
x

v(tLi ) = ũδ,L(tLi )
(2.5.17)

We also define vε,δ,L,± : τL × R → R by requiring vε,δ,L,±(r, x) = vε,δ,L,±i (r, x)
for r ∈ (sLi , t

L
i ). Note that vε,δ,L,± ∈ C

(
τL;U

)
and vε,δ,L,±(t, x) ∈ [δ, 1 − δ]

by maximum principle. Furthermore vε,δ,L,±x ∈ L2,loc(τ
L × R), and indeed by

standard parabolic estimates

ε

∫
RN,L,±

dr dx
(
vε,δ,L,±x (r, x)

)2 ≤
N∑
i=1

ε

∫
[sLi ,t

L
i ]×[−L,L]

dr dx
(
vε,δ,L,±x (r, x)

)2 ≤ CN,L

(2.5.18)
for some constant CN,L > 0 independent of ε and δ.

We claim

lim
δ→0

lim
ε→0

∫
RN,L,±

dr dx
∣∣vε,δ,L,±(r, x)− ũ(r, x)

∣∣ = 0 (2.5.19)

We show (2.5.19) for vε,δ,L,−. The analogous statement for vε,δ,L,+ follows by the
fact that the set Sσ is invariant w.r.t. the symmetry (t, x) 7→ (−t,−x), while
the supports of %±u are exchanged under this symmetry. By the well known
results of convergence of the vanishing viscosity approximations to conservation
laws (and as it also follows from the Γ-liminf inequality in Theorem 2.2.5 item
(i))

lim
ε→0

∫
[sLi ,t

L
i ]×[−L,L]

dr dx
∣∣vε,δ,L,−(r, x)− ūδ,Li (r − sLi , x)

∣∣ = 0 (2.5.20)

where ūδ,Li is the Kruzkov solution to (2.1.1) with initial condition ūδ,Li (0, ·) =

ũδ,L(sLi , ·). On the other hand, by the definition (2.5.11) of RL,−
i , if j is such

that RL
i,j ⊂ RL,−

i , then ũ is entropic in the rectangle (sLi , t
L
i ) × ( j−1

nLi
L, j+1

nLi
L),
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namely ℘η,ũ(ϕ) ≤ 0 for each convex entropy η and each positive test function ϕ
compactly supported in (sLi , t

L
i )×( j−1

nLi
L, j+1

nLi
L). Therefore, by Kruzkov theorem

[16]

limδ→0 supsLi ≤r≤tLi

∫ j+1

nL
i

L−V +
f r

j−1

nL
i

L+V +
f r
dx
∣∣ūδ,Li (r − sLi , x)− ũ(r, x)

∣∣
≤ limδ→0

∫ j+1

nL
i

L

j−1

nL
i

L
dx
∣∣ūδ,Li (0, x)− ũ(sLi , x)

∣∣ = limδ→0

∫ j+1

nL
i

L

j−1

nL
i

L
dx
∣∣ũδ,L(sLi , x)− ũ(sLi , x)

∣∣ = 0

and thus, fixed N ∈ N, by (2.5.13) the convergence claimed in (2.5.19) holds

on each RL
i,j for each i ≤ N and each j such that RL

i,j ⊂ RL,−
i , and therefore

on RN,L,− itself.
Next we claim that for each L ≥ 1, N ∈ N and ϕ ∈ C∞c

(
RN,L,+; [0, 1]

)
lim
δ→0

lim
ε→0

ε

2
〈〈D(vε,δ,L,+)vε,δ,L,+x , ϕ

D(vε,δ,L,+)

σ(vε,δ,L,+)
vε,δ,L,+x 〉〉 ≤ H(ũ) (2.5.21)

Note that the l.h.s. of this formula is well defined, since δ ≤ vε,δ,L,+ ≤ 1−δ and
thus σ(vε,δ,L,+) is uniformly positive. For each ϕ ∈ C∞c

(
([0, T ]×R)\E−; [0, 1]

)
and η ∈ C2

(
[0, 1]

)
such that ση′′ ≤ D we have

H(ũ) ≥
∫
dw %ũ(w; dt, dx) η′′(w)ϕ(t, x) = ℘η,ũ(ϕ) (2.5.22)

By (2.5.17) and (2.5.18) for each η ∈ C2([0, 1]), N ∈ N and ϕ ∈ C∞c
(
RN,L,+

)
lim
δ→0

lim
ε→0

ε

2
〈〈D(vε,δ,L,+)vε,δ,L,+x , ϕη′′(vε,δ,L,+)vε,δ,L,+x 〉〉 = ℘η,ũ(ϕ) (2.5.23)

This implies (2.5.21) if σ is uniformly positive on [0, 1], since we can evaluate
(2.5.23) on an entropy η such that η′′ = D/σ and use the trivial bound (2.5.22).
On the other hand, if σ(0) = 0, resp. if σ(1) = 0, then by condition (iii) in
Definition 2.2.4, we have that ũ(t, x) ≥ ζL, resp. ũ(t, x) ≤ 1 − ζL, for a.e.
(t, x) ∈ (0, T ) × (−L,L) and for some ζL > 0. By the definition of ũδ,L

and maximum principle, we have also vε,δ,L,+ ≥ ζL, resp. vε,δ,L,+ ≤ 1 − ζL,
and thus (2.5.19) follows by evaluating (2.5.23) on an entropy η such that
η′′(w) = D(w)/σ(w) for all w ≥ ζL, resp. w ≤ 1− ζL.

Step 3. In this step, with a little abuse of notation, we denote by f and D
two bounded continuous functions on R, such they their restrictions to [0, 1]
coincide with f and D, and f is uniformly Lipschitz and D uniformly positive.
We also let σδ ∈ Cα([0, 1]) be such that σδ(w) = σ(w) for w ∈ [δ, 1 − δ],
σδ(w) ≤ σ(w) for w ∈ [0, 1], and σδ(w) = 0 for w ≤ δ/2 or w ≥ 1− δ/2.
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For L ≥ 1 and N ∈ N, let ΞN,L ∈ C∞c
(
RN,L,+; [0, 1]

)
, and define

PN,L,+ := Interior
({

(t, x) ∈ RN,L,+ : ΞN,L(t, x) = 1
})

PN,L,− := Interior
({

(t, x) ∈ RN,L,− : ΞN,L(t, x) = 0
}) (2.5.24)

For each fixed L ≥ 1, we require the sequence {ΞN,L} to be increasing in N
and such that

∪NPN,L,+ = RL,+ (2.5.25)

For δ, L ≥ 1 and N ∈ N define uε,δ,N,L : [0, T ]× R→ R as the solution to
the Cauchy problemut + f(u)x = ε

2

(
D(u)ux

)
x
− ε
[
ΞN,L

√
σδ(u)√

σ(vε,δ,L,+)
D(vε,δ,L,+)vε,δ,L,+x

]
x

u(0, x) = ũδ,L(0, x) x ∈ R
(2.5.26)

Note that the term in square brackets in (2.5.26) is well-defined since vε,δ,L,+ is
well-defined on the support of ΞN,L, and since δ ≤ vε,δ,L,+ ≤ 1 − δ, σ(vε,δ,L,+)
is uniformly positive.

It is easily seen that the problem (2.5.26) admits at least a solution uε,δ,N,L ∈
L∞
(
[0, T ]× R

)
with uε,δ,N,Lx ∈ L2,loc

(
[0, T ]× R

)
. By (2.5.26) we also gather∥∥uε,δ,N,Lt + f(uε,δ,N,L)x − ε

2

(
D(uε,δ,N,L)uε,δ,N,Lx

)
x

∥∥2

D1
σδ(u)

= ε2〈〈D(vε,δ,L,+)vε,δ,L,+x , (ΞN,L)2D(vε,δ,L,+)
σ(vε,δ,L,+)

vε,δ,L,+x 〉〉 < +∞

Therefore, replacing σ with σδ in the statement of Proposition 2.3.4, we have
δ ≤ uε,δ,N,L ≤ 1 − δ and uε,δ,N,L ∈ X . Since (ΞN,L)2 ∈ C∞c (RN,L,+; [0, 1]), by
the same estimate and (2.5.21)

limδ limεHε(u
ε,δ,N,L)

= limδ limε
ε
2
〈〈D(vε,δ,L,+)vε,δ,L,+x , (ΞN,L)2 σ

δ(uε,δ,N,L)
σ(uε,δ,N,L)

D(vε,δ,L,+)
σ(vε,δ,L,+)

vε,δ,L,+x 〉〉
≤ limδ limε

ε
2
〈〈D(vε,δ,L,+)vε,δ,L,+x , (ΞN,L)2D(vε,δ,L,+)

σ(vε,δ,L,+)
vε,δ,L,+x 〉〉 ≤ H(ũ)

so that (2.5.6) holds.

Step 4. Since {Hε} is equicoercive on X and (2.5.6) holds, there exist δ0, ε0 ≡
ε0(δ0) small enough and a compact set K0 ⊂ X such that uε,δ,N,L ∈ K0 for each
ε < ε0, δ < δ0, N ∈ N and L ≥ 1. In this step we show that any limit point u
of {uε,δ,N,L} coincide with ũ, provided the limits in ε, δ, N and L are taken in
a suitable order, see (2.5.7). This will conclude the proof.

Let zε,δ,N,L,± : τL × R→ [−1, 1], zε,δ,N,L,± := uε,δ,N,L − vε,δ,L,±. By (2.3.6),
(2.5.6) and (2.5.18), for each N ∈ N

ε

∫
RN,L,±

dt dx (zε,δ,N,L,±x )2 ≤ C̃N,L (2.5.27)
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for some constant C̃N,L > 0 independent of ε and δ.
Since we will first perform the limit ε→ 0, we now fix δ, N , L as above, and

we drop for a few lines these indexes, thus writing uε ≡ uε,δ,N,L, vε,± ≡ vε,δ,L,±,
zε,± ≡ zε,δ,N,L,±, Ξ ≡ ΞN,L. Recalling the definition (2.5.24), by (2.5.26) and
(2.5.16), we have weakly on PN,L,−

zε,−t +
(
f(uε)− f(vε,−)

)
x

=
ε

2

(
D(uε)zε,−x

)
x

+
ε

2

([
D(uε)−D(vε,−)

]
vε,−x

)
x

Let now l ∈ C2([−1, 1]) and ϕ ∈ C∞c
(
PN,L,−). It follows

−〈〈l(zε,−), ϕt〉〉 − 〈〈f(uε)− f(vε,−), l′(zε,−)ϕx〉〉
−〈〈f(uε)− f(vε,−), l′′(zε,−)zε,−x ϕ〉〉

= − ε
2
〈〈D(uε)zε,−x , l′′(zε,−)zε,−x ϕ〉〉 − ε

2
〈〈D(uε)zε,−x , l′(zε,−)ϕx〉〉

− ε
2
〈〈
[
D(uε)−D(vε,−)

]
vε,−x , l′′(zε,−)zε,−x ϕ〉〉

− ε
2
〈〈
[
D(uε)−D(vε,−)

]
vε,−x , l′(zε,−)ϕx〉〉

(2.5.28)
In the same fashion, by (2.5.17), weakly on PN,L,+

zε,+t +
(
f(uε)− f(vε,+)

)
x

= ε
2

(
D(uε)zε,+x

)
x

+ ε
2

([
D(uε)−D(vε,+)

]
vε,+x

)
x

+ε
(
[
√
σ(vε,+)−

√
σδ(uε)] D(vε,+)√

σ(vε,+)
vε,+x

)
x

Since vε,+ takes values in [δ, 1− δ], we have σδ(vε,+) = σ(vε,+) and thus, in the
same fashion as above, for each l ∈ C2([−1, 1]) and ϕ ∈ C∞c

(
PN,L,+

)
−〈〈l(zε,+), ϕt〉〉 − 〈〈f(uε)− f(vε,+), l′(zε,+)ϕx〉〉 − 〈〈f(uε)− f(vε,+), l′′(zε,+)zε,+x ϕ〉〉

= − ε
2
〈〈D(uε)zε,+x , l′′(zε,+)zε,+x ϕ〉〉 − ε

2
〈〈D(uε)zε,+x , l′(zε,+)ϕx〉〉

− ε
2
〈〈
[
D(uε)−D(vε,+)

]
vε,+x , l′′(zε,+)zε,+x ϕ〉〉

− ε
2
〈〈
[
D(uε)−D(vε,+)

]
vε,+x , l′(zε,+)ϕx〉〉

− ε〈〈
[√

σδ(vε,+)−
√
σδ(uε)

] D(vε,+)√
σ(vε,+)

vε,+x , ϕl′′(zε,+)zε,+x 〉〉

− ε〈〈[
√
σδ(vε,+)−

√
σδ(uε)] D(vε,+)√

σ(vε,+)
vε,+x , l′(zε,+)ϕx〉〉

(2.5.29)
For l convex and ϕ nonnegative, the first term in the second lines of (2.5.28)
and (2.5.29) is nonpositive. With these assumptions on l and ϕ we thus define

Bl ≡ Bε,δ,N,L,±
l,ϕ :=

[
〈〈D(uε)zε,±x , l′′(zε,±)zε,±x ϕ〉〉

]1/2
, and let for F ∈ C([0, 1])

Cδ
F,l := max{l′′(z)|F (v+ z)−F (v)|2 : v ∈ [δ, 1− δ], z ∈ [−1, 1], v+ z ∈ [0, 1]}

(2.5.30)
Since vε,±x , zε,±x ∈ L2,loc

(
PN,L,±), by Cauchy-Schwarz inequality and the fact

that D is uniformly positive, we have for each nonnegative ϕ± ∈ C∞c
(
PN,L,±),



64 2. Γ-ENTROPY COST FUNCTIONAL FOR SCALAR CONSERVATION LAWS

and for some constant C ≡ Cε,δ,N,L
ϕ± independent of l∣∣〈〈f(uε)− f(vε,±), l′′(zε,±)zε,±x ϕ±〉〉

∣∣+
∣∣ ε

2
〈〈
[
D(uε)−D(vε,±)

]
vε,±x , l′′(zε,±)zε,±x ϕ±〉〉

∣∣
+
∣∣ε〈〈[√σδ(vε,+)−

√
σδ(uε)

] D(vε,+)√
σ(vε,+)

vε,+x , ϕ+l′′(zε,+)zε,+x 〉〉
∣∣

≤ C
[√

Cδ
f,l +

√
Cδ
D,l +

√
Cδ√

σδ,l

]
Bl

We also let Cl := maxz∈[−1,1] |l′(z)| and note that, in view of (2.5.18) and

(2.5.27), for any nonnegative ϕ± ∈ C∞c
(
PN,L,±) and for some constant C̃ =

C̃δ,N,L
ϕ± independent of ε and l∣∣ ε

2
〈〈D(uε)zε,±x , l′(zε,±)ϕ±x 〉〉

∣∣+
∣∣ ε

2
〈〈
[
D(uε)−D(vε,±)

]
vε,±x , l′(zε,±)ϕ±x 〉〉

∣∣
+
∣∣ε〈〈[√σ(vε,+)−

√
σ(uε)] D(vε,+)√

σ(vε,+)
vε,+x , l′(zε,+)ϕ+

x 〉〉
∣∣ ≤ C̃Cl

√
ε

Patching all together, for each nonnegative ϕ± ∈ C∞c
(
PN,L,±) we gather

−〈〈l(zε,±), ϕ±t 〉〉 − 〈〈f(uε)− f(vε,±), l′(zε,±)ϕ±x 〉〉
≤ − ε

2
B2
l + C

[√
Cδ
f,l +

√
Cδ
D,l +

√
Cδ√

σδ,l

]
Bl + C̃Cl

√
ε

≤ 3
2ε
C2
[
Cδ
f,l + Cδ

D,l + Cδ√
σδ,l

]
+ C̃Cl

√
ε

(2.5.31)
It is then easily seen that we can take a sequence of convex smooth functions
{ln} ⊂ C2([−1, 1]) such that |l′n(z)| ≤ 1, ln(z) → |z|, zl′n(z) → |z| uniformly
on [−1, 1], and such that, by the Hölder continuity hypotheses on D and σ

lim
n→∞

(
Cδ
f,ln + Cδ

D,ln + Cδ√
σδ,ln

)
= 0

Evaluating (2.5.31) for l ≡ ln, taking the limit n → ∞, and recalling that
we assumed f ′ to be positive on [0, 1], we gather for each nonnegative ϕ± ∈
C∞c
(
PN,L,±)
−〈〈|uε − vε,±|, ϕ±t 〉〉 − 〈〈

∣∣f(uε)− f(vε,±)
∣∣, ϕ±x 〉〉 ≤ C ′

√
ε (2.5.32)

We now reintroduce the dropped indexes δ,N, L, and recall that for δ ≤ δ0,
ε ≤ ε0(δ0), N ∈ N and L ≥ 1 we have uε,δ,N,L ∈ K0 for some compact
K0 ⊂ X . Let uN,L ∈ K0 be a generic limit point of {uε,δ,N,L} in X as ε → 0
and successively δ → 0. By (2.5.19) and (2.5.32), for each nonnegative ϕ ∈
C∞c
(
PN,L,− ∪ PN,L,+

)
−〈〈|uN,L − ũ|, ϕt〉〉 − 〈〈

∣∣f(uN,L)− f(ũ)
∣∣, ϕx〉〉 ≤ 0 (2.5.33)

Since uN,L ∈ K0, there exist uL ∈ X and a subsequence {Nk} ⊂ N such that
uNk,L → uL in X as k → +∞. By (2.5.25) and (2.5.33), it follows that for
each nonnegative ϕ ∈ C∞c

(
RL,− ∪RL,+

)
−〈〈|uL − ũ|, ϕt〉〉 − 〈〈

∣∣f(uL)− f(ũ)
∣∣, ϕx〉〉 ≤ 0 (2.5.34)
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Since τL is dense in [0, T ], by (2.5.14) and (2.5.9) we have that, for L ≥ 1,
RL,+ ∪RL,− is dense in [0, T ]×

[
−L+ 1

4L
, L− 1

4L

]
. Note also that ũ ∈ Sσ ⊂ E

by hypotheses. Furthermore, since uL is a limit point of a sequence with
uniformly bounded Hε-cost, we also have uL ∈ E by item (ii) in Theorem 2.2.5,
namely ũ and uL are entropy-measure solutions to (2.1.1). By Lemma 2.5.1,
ũ, uL ∈ C

(
[0, T ];L1,loc(R)

)
. By the same Lemma 2.5.1 and the assumption

V −f > 0 we have that the maps x 7→ ũ(t, x) and x 7→ uL(t, x) are continuous

from R to L1

(
[0, T ]

)
. Therefore, since the boundaries of RL,+ and RL,− \RL,+

are countable unions of segments parallel to the x and t axes, we have that
(2.5.34) holds for each nonnegative ϕ ∈ C∞c

(
(0, T )× (−L+ 1

4L
, L− 1

4L
)
)
.

Recalling {uL} ⊂ K0, let u be a limit point of {uL} along a subsequence
Lk →∞. From (2.5.34) we get for each nonnegative ϕ ∈ C∞c

(
(0, T )× R

)
−〈〈|u− ũ|, ϕt〉〉 − 〈〈

∣∣f(u)− f(ũ)
∣∣, ϕx〉〉 ≤ 0 (2.5.35)

Reasoning as above, we also have u ∈ E , and thus setting z := u − ũ, by
Lemma 2.5.1, u, ũ, z ∈ C

(
[0, T ];L1,loc(R)

)
. By (2.5.35), it is then easily seen

that for each bounded nonnegative Lipschitz function ϕ on [0, T ]×R such that∫
dt dx [|ϕ|+ |ϕt|+ |ϕx|] < +∞, and for each t ∈ [0, T ]

〈|z(t)|, ϕ(t)〉 − 〈|z(0)|, ϕ(0)〉 −
∫

[0,t]
dr
[
〈|z|(r), ϕr(r)〉

+〈
∣∣f(ũ(r) + z(r))− f(ũ(r))

∣∣, ϕx(r)〉] ≤ 0
(2.5.36)

Fixed L ≥ 1, we evaluate the inequality (2.5.36) for ϕ(t, x) ≡ ϕL(x) defined as

ϕL(x) :=


e−(L−x) if x < −L
1 if −L ≤ x ≤ L

e−(x−L) if x > L

so that setting ZL(t) := 〈|z(t)|, ϕL〉 we have

ZL(t)− ZL(0) ≤ V +
f

∫
[0,t]

dr 〈|z|(r), |ϕLx |〉 ≤ V +
f

∫
[0,t]

dr ZL(r)

By Gronwall inequality, for each L ge1 and t ∈ [0, T ], ZL(r) ≤ exp[V +
f t]ZL(0).

Note that u(0, x) = ũ(0, x) by (2.5.15) and the definition of convergence in X .
Therefore ZL(0) = 0, and thus ZL(t) = 0 for each t ∈ [0, T ] and L ≥ 1. Hence
u = ũ. �

Proof of Proposition 2.2.6. In order to show that H is lower semi-
continuous, first note that the set of weak solutions is closed in X . Moreover
for each entropy sampler ϑ the map X 3 u 7→ Pϑ,u ∈ R is continuous. On
the other hand, if u is a weak solution to (2.1.1) then the equalities in (2.5.2)
holds, and thus H is a supremum of continuous maps.
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Since D(·)/σ(·) is uniformly positive on [0, 1], H(u) = 0 iff u ∈ E and
%+
u = 0, thus u is entropic. Conversely, entropic solutions u are in E by item

(i) in Proposition 2.2.3, and the entropic condition is thus equivalent to %+
u = 0.

The coercivity of H follows from the Tartar’s method of compensated
compactness, that we already applied in the proof of Theorem 2.2.5 item
(ii). Suppose indeed that we are given a sequence {un} ⊂ X such that
H(un) ≤ CH < +∞ for each n. Then each un is an entropy-measure solu-
tion to (2.1.1) by the definition of H. For each entropy η, each n, L > 0, by
the same bound in the proof of Proposition 2.2.3, ‖℘η,un‖TV,L ≤ 2‖℘+

η,un‖TV,L+
2 (‖η‖∞+‖q‖∞)(2L+T ). On the other hand, for each η ∈ C2([0, 1]) such that
ση′′ ≤ D, ‖℘+

η,un‖TV,L ≤ H(un) and therefore ‖℘η,un‖TV,L is bounded uniformly
in n. Since η and q are bounded, we have that {η(un)t+q(un)x} is precompact
in H−1

loc ([0, T ] × R). As we already noted in the proof of Theorem 2.2.5 item
(ii), see [16, Ch. 9], this yields the compactness of {un} in X .

The last statement follows by the first part of proposition, Lemma 2.5.1
and Kruzkov uniqueness in C

(
[0, T ];L1,loc(R)

)
of entropic solutions to (2.1.1),

see e.g. [6, 16]. �

Proof of Remark 2.2.7. By well known properties of functions of lo-
cally bounded variation, for each entropy η and u ∈ X ∩ BVloc([0, T ]× R) we
have that ℘η,u is a Radon measure on (0, T ) × R. If u is a weak solution to
(2.1.1), by Vol’pert chain rule [2], the absolutely continuous and Cantor parts
of ℘η,u w.r.t. the Lebesgue measure on (0, T )× R vanish, and we get

d℘η,u =
{[
η(u+)− η(u−)

]
nt +

[
q(u+)− q(u−)

]
nx
}
dH1 Ju

On the other hand the Rankine-Hugoniot condition
[
u+ − u−

]
nt +

[
f(u+) −

f(u−)
]
nx = 0 holds. The statement of the remark follows by direct calculation.

�

Proof of Remark 2.2.11. For u ∈ E we have

H ′(u) = sup
{
℘η,u(ϕ), ϕ ∈ C∞c

(
(0, T )×R; [0, 1]

)
, η ∈ C2([0, 1]) : 0 ≤ ση′′ ≤ D

}
so that the inequality H ≥ H ′ follows from the equalities in (2.5.2). The same
inequality yields H(u) = H ′(u) if there exists a set E+ as in the statement of
the remark. If f is convex or concave and u has locally bounded variation, we
can take E+ = {(t, x) ∈ Ju : ∃v ∈ [0, 1] : ρ(v, u+, u−) > 0}, where Ju, u

± and
ρ are defined as in Remark 2.2.7.

If f is neither convex nor concave, then there exist u−, u+, v′, v′′ ∈ (0, 1)
such that ρ(v′, u+, u−) > 0 and ρ(v′′, u+, u−) < 0, where ρ is defined as in
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Remark 2.2.7. Let V := f(u+)−f(u−)
u+−u− , and define u : [0, T ]× R→ [0, 1] by

u(t, x) :=

{
u+ for x < V t

u− for x > V t

Then u ∈ E and by direct computation H(u) > H ′(u). �

2.6. Appendix A: I-approximation of atomic Young measures

Here we prove the claims stated in the proof of Theorem 2.4.1, Step 1,

where the sets M1
n, M̃1

n, M1

n are defined.

Claim 1: M̃n
1 is I-dense in Mn

1 . For n ≥ 1, let µ ∈Mn

1 , let Gµ be defined as
in Lemma 2.4.2. Let also r, αi, ui be as in the definition ofMn

1 and L, µ∞ be
as in the definition (2.4.1) of Mg. With no loss of generality, we can assume
that ui+1 ≥ ui, i = 1, . . . , n − 1, since we can reorder the ui(t, x) for all (t, x)
preserving continuity of the ui and measurability of the αi. Analogously it is
not restrictive to assume, for |x| > L, ui(t, x) = ui∞, αi(t, x) = αi∞ for some
constants ui∞, α

i
∞ ∈ (0, 1]; in particular µ∞ =

∑
i α

i
∞δui∞ .

Let now {k} ⊂ C∞c (R × R) be a sequence of smooth mollifiers supported
by [−T/k, T/k] × [ − 1, 1], and recall the definition (2.4.8) of bk. For i =
1, . . . , n and h, k ≥ 1 define αi;k ∈ C1

(
[0, T ]×R; [r, 1]

)
, and ui;h,k ∈ C1

(
[0, T ]×

R; [h−1, 1− h−1]
)

by

αi;k(t, x) :=
∫
dy ds k(t− s, x− y)αi

(
bk(s, y)

)
ui;h,k(t, x) := h−1

[
1 + i

n
P
i′ i
′αi′;k(t,x)

]
+ 1−3h−1

αi;k(t,x)

∫
dy ds k(t− s, x− y)αi

(
bk(s, y)

)
ui
(
bk(s, y)

)
(2.6.1)

Clearly αi;k and ui;h,k are smooth, with αi;k ≥ r,
∑

i α
i;k = 1, and αi;k, ui;h,k are

constant for |x| > L+1. Furthermore for i = 1, . . . , n−1 and (t, x) ∈ [0, T ]×R

limk→∞
[
ui+1;h,k(t, x)− ui;h,k(t, x)− h−1

n2

]
≥ limk→∞

[
ui+1;h,k(t, x)− ui;h,k(t, x)− 1

n
P
i′ i
′αi′;k(t,x)

]
=
[
1− 3h−1

][
ui+1;h,k(t, x)− ui;h,k(t, x)

]
Since the ui are continuous, it is not difficult to see that convergence in the
last line above is uniform on compact subsets of [0, T ]×R. On the other hand,
since the ui and ui;h,k are constant for |x| > L + 1, we have that convergence
is indeed uniform on [0, T ] × R. It follows that for each h > 1 there exists
Kh ≥ 1 such that ui+1;h,k ≥ ui;h,k + h−1n−2 for each k ≥ Kh. Therefore,
defining µh,k ∈M by

µh,kt,x :=
n∑
i=1

αi;k(t, x)δui;h,k(t,x)
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we get, for k ≥ Kh, µh,k ∈ M̃n
1 provided I(µh,k) < +∞. Recalling Lemma 2.4.2,

this follows by the existence of Gµh,k ∈ L2([0, T ] × R) satisfying weakly on
(0, T )× R:

µh,k(ı)t + µh,k(f)x = −Gµh,k

x

Indeed Gµh,k can be computed explicitly as

Gµh,k(t, x) :=
(
1− 3h−1

) ∫
ds dy k(t− s, x− y)Gµ

(
bk(s, y)

)
+
(
1− 3h−1

) ∫
ds dy k(x− y, t− s)µbk(s,y)(f)

−µh,k(f)− (1− 3h−1)µ∞(f) + µh,k∞ (f)

where

µh,k∞ (f) :=
∑
i

αi∞f
(
h−1 +

i h−1

n+
∑

i′ i
′αi′∞

+
(
1− 3h−1

)
ui∞

)
It immediately follows that limh→∞ limk→∞ ‖Gµh,k −Gµ‖L2([0,T ]×R) = 0, and it
is also straightforward to see that, for each F ∈ C([0, 1])

lim
h→∞

lim
k→∞

µh,k(F ) = µ(F ) strongly in L1,loc([0, T ]× R)

By Remark 2.4.3, we can extract a subsequence {µk} from {µh,k} that I-
converges to µ.

Claim 2: Mn

1 is I-dense in Mn
1 . For n ≥ 1, let µ ∈ Mn

1 . Let also αi, ui and
L be as in the definition of Mn

1 and Mg. With no loss of generality, we can
assume that αi > 0, since we do not require the ui to be distinct. As in Claim
1 above, we can also assume that, for |x| > L, ui(t, x) = ui∞, αi(t, x) = αi∞ for
some constants ui∞, α

i
∞ ∈ [0, 1].

With these assumptions, for h, k ≥ 1 and i = 1, . . . , n, let us define αi;k as
in (2.6.1), and ui;k by

ui;k(t, x) := 1
αi;k

∫
dy ds k(t− s, x− y)αi

(
bk(s, y)

)
ui
(
bk(s, y)

)
Letting

µkt,x :=
n∑
i=1

αi;k(t, x)δui;k(t,x)

we gather µk ∈Mn

1 . A computation similar to the one carried out in Claim 1
shows that µk I-converges to µ as k →∞.

Claim 3: Mn
1 is I-dense in M̃n+1

1 . This is the key step in the proof of Theo-

rem 2.4.1. For n ≥ 1, let µ ∈ M̃n+1
1 , and let Gµ be defined as in Lemma 2.4.2.

Let also r, αi, ui be as in the definition of M̃n+1
1 , and L, µ∞ as in the definition

(2.4.1) ofMg. Note that for |x| > L, αi(t, x) = αi∞ and ui(t, x) = ui∞ for some
constants αi∞ ∈ [r, 1− r], ui∞ ∈ [r, 1− r], with ui+1

∞ ≥ ui∞ + r, i = 1, . . . , n.
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Let us define the Young measures ν1, ν0 ∈ M̃n
1 by

ν1
t,x := δun+1(t,x) ν0

t,x :=
n∑
i=1

αi(t, x)

1− αn+1(t, x)
δui(t,x)

so that, letting β(t, x) := αn+1(t, x) ≤ 1− r
µt,x = β(t, x)ν1

t,x +
(
1− β(t, x)

)
ν0
t,x

The basic idea is to build up a sequence {µk} I-converging to µ, as follows:
we first slice up [0, T ] × R in small strips, alternating a strip of width β k−1

with a strip of width (1 − β)k−1; we then set µkt,x = ν1
t,x for (t, x) in the first

family of strips, and µkt,x = ν0
t,x for (t, x) in the second family of strips. As we

let k →∞, we easily get µk → µ; however, to get also I(µk)→ I(µ), we will
have to carefully define these strips.

For j ∈ Z and k ∈ N, let us consider the maps γkj : [0, T ]→ R solutions to{
γ̇ =

ν1
t,γ(f)−ν0

t,γ(f)

ν1
t,γ(ı)−ν0

t,γ(ı)

γ(0) = j
k

(2.6.2)

These equations are well-posed since ν1(f), ν0(f), ν1(ı), ν0(ı) are Lipschitz

functions in the (t, x) variables, and ν1(ı)−ν0(ı) ≥ r, by the definition of M̃n+1
1 .

Furthermore, by standard theory for (2.6.2), γkj ∈ C0([0, T ]) ∩ C1((0, T ));

|γ̇kj | ≤ 2r−1 maxv∈[0,1] |f(v)|; γkj+1 > γkj ; and γkj+1(t) − γkj (t) ≤ Ck−1 for some
constant C independent of k, j and t.

We next define the maps βkj : [0, T ]→ R by∫ γkj (t)+βkj (t)

γkj (t)

dx
[
ν1
t,x(ı)− ν0

t,x(ı)
]

=

∫ γkj+1(t)

γkj (t)

dx β(t, x)
[
ν1
t,x(ı)− ν0

t,x(ı)
]

(2.6.3)

Since ν1
t,x(ı)− ν0

t,x(ı) ≥ r > 0, for any fixed t ∈ [0, T ] the l.h.s. of this equation

is increasing in βkj (t). Since it vanishes for βkj (t) = 0 and it is larger than

the r.h.s. for βkj (t) = γkj+1(t) − γkj (t) (recall β(t, x) ∈ [r, 1 − r]), there exists

a unique 0 < βkj (t) < γkj+1(t) − γkj (t) satisfying (2.6.3). Furthermore, since β

and the γkj are smooth, we have βkj ∈ C0([0, T ]) ∩C1((0, T )). The mean value
theorem then implies∣∣∣βkj (t)−

∫ γkj+1(t)

γkj (t)

dx β(t, x)
∣∣∣ ≤ C

[
γkj+1(t)− γkj (t)

]2 ≤ C ′k−2 (2.6.4)

for suitable constants C, C ′. For h and k two positive integers, we next define
the Young measure µh,k ∈M by

µh,kt,x :=

{
ν0
t,x if ∃j ∈ Z, |j| ≤ h k such that γkj (t) + βkj (t) < x < γkj+1(t)

ν1
t,x otherwise
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Since ν1
t,x is constant for |x| sufficiently large, we have µh,k ∈ Mg for h

large enough. Furthermore, since convergence in M is local, (2.6.4) yields
limh→∞ limk→∞ µ

h,k = µ in M, and for each F ∈ C([0, 1])

lim
h→∞

lim
k→∞

µh,k(F ) = µ(F ) strongly in L1,loc([0, T ]× R)

We next prove that I(µh,k) < +∞ and limh limkG
µh,k = G in L2([0, T ] × R);

so that, reasoning as in the proof of Claim 1, by Remark 2.4.3 we get the
existence of a subsequence {µk} I-converging to µ. For each F ∈ C([0, 1]),

(t, x) 7→ µh,kt,x (F ) is smooth outside the graph of the curves γkj . Therefore

by Lemma 2.4.4 there exists Gh,k ∈ L2,loc([0, T ] × R), such that µh,k(ı)t +
µh,k(f)x = −Gh,k

x holds weakly. First we show that we can choose Gh,k to be
compactly supported, so that Gh,k ∈ L2([0, T ] × R), and thus I(µh,k) < +∞
with Gh,k = Gµh,k according to the definition given in Lemma 2.4.2.

Since Gh,k is defined up to a measurable function of t, and Gh,k
x (t, x) = 0

for x < γk−hk(t) (we are considering h large enough as above), we can assume
Gh,k(t, x) = Gµ(t, x) = 0 for x < γk−hk(t). Furthermore, by (2.4.7) and (2.6.2),
for each j ∈ Z, Gh,k is continuous in the regions {(t, x) : γkj (t) + βkj (t) < x <

γkj+1(t) + βkj+1(t)}. Let now j ∈ Z with |j| ≤ hk, and t ∈ [0, T ]; by (2.4.7) and
(2.6.2)

−
[
Gh,k

(
t, [γkj (t) + βkj (t)]−

)
−Gh,k

(
t, γkj (t)

)]
= ν1

t,γkj (t)+βkj (t)
(f)− ν1

t,γkj (t)
(f)

+
∫ γkj (t)+βkj (t)

γkj (t)
dx
[
ν1
t,x(ı)

]
t

and

−
[
Gh,k

(
t, γkj+1(t)

)
−Gh,k

(
t, [γkj (t) + βkj (t)]−

)]
= ν0

t,γkj+1(t)
(f)− ν0

t,γkj (t)+βkj (t)
(f)

+
∫ γkj+1(t)

γkj (t)+βkj (t)
dx
[
ν0
t,x(ı)

]
t
+
[
ν0
t,γkj (t)+βkj (t)

(f)− ν1
t,γkj (t)+βkj (t)

(f)
]

−
[
ν0
t,γkj (t)+βkj (t)

(ı)− ν1
t,γkj (t)+βkj (t)

(ı)
][
γ̇kj (t) + β̇kj (t)

]
By (2.6.3) and simple algebraic manipulations

Gh,k
(
t, γkj+1(t)

)
−Gh,k

(
t, γkj (t)

)
= −

[
µt,γkj+1(t)(f)− µt,γkj (t)(f)

]
−
∫ γkj+1(t)

γkj (t)
dx
[
µt,x(ı)

]
t

= Gµ
(
t, γkj+1(t)

)
−Gµ

(
t, γkj (t)

)
SinceGh,k(t, γk−hk(t)) = Gµ(t, γk−hk(t)) = 0, we haveGh,k(t, γkj (t)) = Gµ(t, γkj (t))

for any j ∈ Z. In particular, since Gµ(t, γkhk(t)) = 0 and Gh,k
x (t, x) = Gµ

x(t, x) =
0 for x > γkhk(t), we have Gh,k(t, x) = Gµ(t, x) = 0 for x > γkhk(t) and x <
γk−hk(t). That is, Gh,k and Gµ are compactly supported. Thus I(µh,k) < +∞
and Gh,k = Gµh,k .
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Finally, by the definition ofGµ andGµh,k , recallingGh,k(t, γkj (t)) = Gµ(t, γkj (t))
we have∥∥Gµh,k −Gµ

∥∥2

L2([0,T ]×R)
=
∑hk

j=−hk
∫

[0,T ]
dt
∫ γkj+1(t)

γkj (t)
dx
(
Gµh,k(t, x)−Gµ(t, x)

)2

=
∑hk

j=−hk
∫

[0,T ]
dt

{∫ γkj (t)+βkj (t)

γkj (t)
dx
[ ∫ x

γkj (t)
dy[ν1

t,y(ı)− µt,y(ı)]t + [ν1
t,y(f)− µt,y(f)]y

]2

+
∫ γkj+1(t)

γkj (t)+βkj (t)
dx
[ ∫ x

γkj+1(t)
dy [ν0

t,y(ı)− µt,y(ı)]t + [ν0
t,y(f)− µt,y(f)]y

]2
}

Since all the integrands in the are last two lines of this formula are bounded
uniformly in h and k, each term of the sum is bounded by C k−3 for some
constant C > 0. Therefore the sum itself is bounded by 2C hk−2, and we get
limh→∞ limk→∞ I(µh,k) = I(µ).

2.7. Appendix B: Γ-viscosity cost for scalar Hamilton-Jacobi
equations

In this appendix we establish a Γ-convergence result for a sequence of
functionals associated with the Hamilton-Jacobi equation (2.1.1)

bt + f(bx) = 0 (2.7.1)

which is related to (2.1.1) via the transformation u = bx. In (2.7.1) we un-
derstand (t, x) ∈ [0, T ] × R and b(t, x) ∈ R. As usual, we assume f to be a
Lipschitz function on [0, 1], D and σ continuous functions on [0, 1], with D
uniformly positive and σ strictly positive on (0, 1). We will just sketch most of
the proofs, since they are similar to the proofs of the corresponding statements
for (2.1.1).

We introduce the equivalence ∼ on C
(
[0, T ];L2,loc(R

)
by setting b1 ∼ b2

iff b1 − b2 is constant in [0, T ] × R. We let B be the set of functions b ∈
C
(
[0, T ];L2,loc(R

)
/ ∼ such that bx ∈ U . The requirement bx ∈ U is clearly

compatible with ∼, so that B is well defined. We equip B with the metric

dB(b1, b2) := dU(b1
x, b

2
x) + inf

c∈R
sup
t∈[0,T ]

∞∑
N=1

1

2N
‖b1(t, ·)− b2(t, ·) + c‖

L2

(
[−N,N ]

)
(2.7.2)

Note that the second term in the r.h.s. of (2.7.2) is the projection of the
C
(
[0, T ];L2,loc(R)

)
-distance w.r.t. the ∼ equivalence. (B, dB) is a complete

separable metric space.
For b ∈ B such that bxx ∈ L2,loc([0, T ] × R) and ε > 0 we next define the

linear functional abε on C∞c
(
(0, T )× R

)
by

abε(ϕ) := −〈〈b, ϕt〉〉+ 〈〈f(bx), ϕ〉〉 −
ε

2
〈〈D(bx)bxx, ϕ〉〉 (2.7.3)
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and the functional Jε : B 7→ [0,+∞] by

Jε(b) :=


sup

ϕ∈C∞c ((0,T )×R)

[
abε(ϕ)− 1

2
〈〈σ(bx)ϕ, )ϕ〉〉

]
if bxx ∈ L2,loc([0, T ]× R)

+∞ otherwise

(2.7.4)
We want to study the Γ-convergence of {Jε}. As shown below, this problem
is strictly related to the Γ-convergence of {Iε} defined in (2.2.6).

We introduce the set A :=
{

(b, µ) ∈ B ×M : bx = µ(ı)
}

which we equip
with the metric

dA
(
(b1, µ1), (b2, µ2)

)
:= dB(b1, b2) + dM(µ1, µ2) (2.7.5)

We say that (b, µ) ∈ A is a measure-valued solution to (2.7.1) iff bt +µ(f) = 0
weakly in (0, T )× R. We lift Jε to a functional Jε : A → [0,+∞] by setting

Jε(b, µ) :=

{
Jε(b) if µt,x = δbx(t,x)

+∞ otherwise
(2.7.6)

Theorem 2.7.1. The sequence {Jε} is equicoercive on A and Γ-converges
to

J
(
(b, µ)

)
:= sup

ϕ∈C∞c ((0,T )×R)

{
−〈〈b, ϕt〉〉+〈〈µ(f), ϕ〉〉− 1

2
〈〈µ(σ)ϕ, ϕ〉〉

}
(2.7.7)

Note that J
(
(b, µ)

)
= 0 iff (b, µ) is a measure-valued solution to (2.7.1).

On the set B we next introduce the metric dY

dY(b1, b2) := dX (b1
x, b

2
x) + inf

c∈R
sup
t∈[0,T ]

∞∑
N=1

1

2N
‖b1(t)− b2(t) + c‖

L2

(
[−N,N ]

) (2.7.8)

and denote by (Y , dY) the complete separable metric space consisting of the
same set B equipped with the distance dY . We say that b ∈ Y is a weak solution
to (2.7.1) iff −〈〈b, ϕt〉〉 + 〈〈f(bx), ϕ〉〉 = 0 for each ϕ ∈ C∞c

(
(0, T ) × R

)
. We

denote byW ⊂ Y the set of weak solutions to (2.7.1). We rescale the functional
Jε defining Kε : Y → [0,+∞] as

Kε := ε−1Jε

Theorem 2.7.2. (i) The sequence of functionals {Kε} satisfies the
Γ-liminf inequality(

Γ–limεKε

)
(b) ≥

{
H(bx) if b ∈ W
+∞ otherwise

(ii) Assume there is no interval where f is affine. Then the sequence {Kε}
is equicoercive on Y.
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(iii) Suppose furthermore f ∈ C2([0, 1]) and D, σ ∈ Cα([0, 1]) for some
α > 1/2. Then(

Γ–limεKε

)
(b) ≤

{
H(bx) if b ∈ W
+∞ otherwise

Since b(0, ·) is bounded and Lipschitz, by a well known connection between
entropic solutions to (2.1.1) and viscosity solutions to (2.7.1), see e.g. [11,
Theorem 1.1], we gather (Γ–limεKε)(b) = 0 iff b is a viscosity solutions to
(2.7.1). It follows that if bε satisfies the equation

bt + f(bx) =
ε

2
D(bx)bxx − σ(bx)E

ε (2.7.9)

for some Eε ∈ L2

(
[0, T ]×R, σ(bx)dt dx

)
such that limε ε‖Eε‖2

L2

(
[0,T ]×R,σ(bx)dt dx

) =

0, then limit points of {bε} are viscosity solutions to (2.7.1). On the other
hand if bε solves (2.7.9) for some Eε with ε‖Eε‖2

L2

(
[0,T ]×R,σ(bx)dt dx

) uniformly

bounded, then limit points b of {bε} are such that bx ∈ E .
In order to prove Theorem 2.7.1 and Theorem 2.7.2 we first establish some

preliminary results. Given a measurable map a : [0, T ] × R → [0,+∞], we
let La be the Hilbert space obtained by identifying and completing the set{
ϕ ∈ C∞c

(
(0, T )× R

)
: 〈〈aϕ, ϕ〉〉 < +∞

}
w.r.t. the seminorm 〈〈aϕ, ϕ〉〉.

Lemma 2.7.3. Let ε > 0 and b ∈ B be such that Jε(b) < +∞. Then there
exists Eε,b ∈ Lσ(bx) such that

bt + f(bx) =
ε

2
D(bx) bxx − σ(bx)E

ε,b (2.7.10)

holds weakly on (0, T )×R and Jε(b) = 1
2
‖Eε,b‖2

Lσ(bx)
. Furthermore Iε(bx) < +∞

and there exists γε,b ∈ Lσ(bx)−1 such that γε,bx = 0 and σ(bx)E
ε,b = σ(bx)Ψ

ε,bx +
γε,b, where Ψε,bx is defined as in Lemma 2.3.1. In particular

Jε(b) =
1

2
‖Ψε,bx‖2

D1
σ(bx)

+
1

2
‖γε,b‖2

Lσ(bx)
= Iε(bx)+

1

2
〈〈σ(bx)

−1γε,b, γε,b〉〉 (2.7.11)

Proof. The existence of Eε,b, (2.7.10) and the equality Jε(b) = 1
2
‖Eε,b‖2

Lσ(bx)

are achieved as in Lemma 2.3.1. We also have

Jε(b) = supϕ∈C∞c ((0,T )×R)

{
abε(ϕ)− 1

2
〈〈σ(bx)ϕ, ϕ〉〉

}
≥ supφ∈C∞c ((0,T )×R)

{
aεb(φx)− 1

2
〈〈σ(bx)φx, φx〉〉

}
= supφ∈C∞c ((0,T )×R)

{
`εbx(φ)− 1

2
〈〈σ(bx)φx, φx〉〉

}
= Iε(bx)

By (2.3.1) and (2.7.10) there exists Ψε,bx ∈ D1
σ(bx) such that

(
σ(bx)E

ε,b
)
x

=(
σ(bx)Ψ

ε,bx
x

)
x
, namely σ(bx)E

ε,b = σ(bx)Ψ
ε,bx
x + γε,b(t) for some measurable

map γε,b : [0, T ]→ [−∞,+∞]. It is then easy to check (2.7.11). �
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The following lemma is proved analogously.

Lemma 2.7.4. Let (b, µ) ∈ A be such that J
(
(b, µ)

)
< +∞. Then there

exists E(b,µ) ∈ Lµ(σ) such that

bt + µ(f) = −µ(σ)E(b,µ)

and J
(
(b, µ)

)
= 1

2
‖E(b,µ)‖2

Lµ(σ)
. Furthermore I(µ) < +∞ and there exists

γ(b,µ) ∈ Lµ(σ)−1 such that γ
(b,µ)
x = 0 and

J
(
(b, µ)

)
=

1

2
‖Ψµ‖2

D1
µ(σ)

+
1

2
‖γ(b,µ)‖2

Lµ(σ)
= I(µ) +

1

2
〈〈µ(σ)−1γ(b,µ), γ(b,µ)〉〉

(2.7.12)
where Ψµ is defined as in Lemma 2.4.2.

Lemma 2.7.5. The sequence of functional {Jε} is equicoercive on (B, dB).

Proof. Let {bε} ⊂ B be such that Jε(b
ε) ≤ CJ for some CJ < +∞.

By (2.7.11) Iε(b
ε
x) ≤ CJ , and thus {bεx} is precompact in U by Lemma 2.3.3.

We are left with the proof of the compactness of {bε} w.r.t. the second term
on the r.h.s. of (2.7.2). By (2.7.11) and (2.3.6) we have that for any N >
0, ε2

∫
[0,T ]×[−N,N ]

dt dx (bεxx)
2 ≤ C(CJ + εN + 1) for some constant C > 0

depending only on f and D. It then follows by (2.7.10) that for each N > 0,
‖bεt‖L2([0,T ]×[−N,N ] is bounded uniformly in ε. Since bx ∈ U for each b ∈ B,
we also have 0 ≤ bεx ≤ 1. Recalling that elements in b are defined up to
a constant, the conclusion follows by these bounds on bεt , b

ε
x and compact

Sobolev embedding. �

The following remark follows by Proposition 2.3.3 and Lemma 2.7.3 and
the definition (2.7.2) of dB.

Remark 2.7.6. For each ε > 0, Jε is lower semicontinuous on (B, dB).

Lemma 2.7.7. For each u ∈ U such that Iε(u) < +∞ there exists bε,u ∈ B
such that bε,ux = u and Jε(b

ε,u) = Iε(u). Furthermore if b ∈ B is such that
bx = u and Jε(b) < +∞, then bt = bε,ut + γε,b, where γε,b ∈ Lσ(u)−1 is defined
as in Lemma 2.7.3. Conversely, given γ ∈ Lσ(u)−1 with γx = 0, there exists a
unique b ∈ B such that bx = u and bt = bε,ut + γ.

Proof. From the definitions (2.2.6) and (2.7.4), it is not difficult to gather

Iε(u) = inf
b∈B : bx=u

Jε(b)

Since Jε is coercive and lower semicontinuous on B, and {b ∈ B : bx = u} is a
closed subset of B, there exists a bu on which the infimum is attained.

If b is such that bx = u and Jε(b) < +∞, then by the decomposition of Eε,·

in Lemma 2.7.3 we have (b − bu)t = σ(u)(Eε,b − Eε,bu) = γε,b. The converse
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statement follows by choosing b(t, x) = bu(t, x) +
∫ t
dsγ(s), which identifies a

unique b ∈ B. �

Proof of Theorem 2.7.1. Equicoercivity follows by (2.7.11), the equico-
ercivity statement in Theorem 2.2.1 and Lemma 2.3.3.

In order to prove the Γ-liminf inequality, let {(bε, µε)} ⊂ A converge to
some (b, µ) ∈ A. It is not restrictive to assume Jε(b

ε) < +∞, and thus
bεxx ∈ L2,loc

(
[0, T ]× R

)
and µε = δbεx . Then for each ϕ ∈ C∞c

(
(0, T )× R

)
Jε
(
(bε, µε)

)
= Jε(b

ε) ≥ −〈〈bε, ϕt〉〉+〈〈f(bεx), ϕ〉〉−
ε

2
〈〈D(bεx)b

ε
xx, ϕ〉〉−

1

2
〈〈ϕ, σ(bεx)ϕ〉〉

As in the proof of the Γ-liminf inequality in Theorem 2.2.1, an integration by
parts shows that the third term in the l.h.s. vanishes as ε→ 0. Hence

lim
ε
Jε
(
(bε, µε)

)
≥ −〈〈b, ϕt〉〉+ 〈〈µ(f), ϕ〉〉 − 1

2
〈〈µ(σ)ϕ, ϕ〉〉

and the Γ-liminf inequality is achieved by optimizing over ϕ.
Let (b, µ) ∈ A be such that J

(
(b, µ)

)
< +∞. By Lemma 2.7.4 I(µ) <

+∞ and by the Γ-limsup inequality in Theorem 2.2.1 there exists a sequence
{uε} ⊂ U such that δuε → µ in M and lim Iε(u

ε) = lim Iε(δuε) ≤ I(µ). By
Corollary 2.7.7 there exists bε,u

ε ∈ B such that bε,u
ε

x = uε and Jε(b
ε,uε) = Iε(u

ε).
Letting γ(b,µ) be defined as in Lemma 2.7.4, it is also easily seen that there exists
a sequence γε ∈ Lσ(uε)−1 such that γεx = 0, γε → γ(b,µ) weakly in L2([0, T ]),

and ‖γε‖Lσ(uε)−1 → ‖γ(b,µ)‖Lµ(σ)−1 . Recalling Corollary 2.7.7, we define the

sequence bε by the requirements bεx = uε and bεt = bε,u
ε

t + γε. We have

limε Jε
(
bε, δbεx)

)
= limε Jε(b

ε,uε) + 1
2
〈〈σ(uε)γε, γε〉〉

≤ I(µ) + 1
2
〈〈µ(σ)γ(b,µ), γ(b,µ)〉〉 = J

(
(b, µ)

)
On the other hand δbεx → µ in M, and it is not difficult to check bεt → bt
weakly. Therefore any limit point in A of {(bε, δbεx)} coincides with (b, µ). �

Proof of Theorem 2.7.2. If b ∈ Y is such that (b, δbx) is a measure-
valued solution to (2.7.1), then b ∈ W . By the Γ-liminf inequality in The-
orem 2.7.1 we thus obtain (Γ–limεKε)(b) = +∞ if b 6∈ W . The Γ-liminf
inequality on W follows immediately by (i) in Theorem 2.2.5 and (2.7.11).

Equicoercivity is a consequence of (ii) in Theorem 2.2.5 and Lemma 2.7.5.
In order to prove the Γ-limsup inequality, let b ∈ W be such that H(bx) <

+∞. By (iii) in Theorem 2.2.5 there exists a sequence {uε} ⊂ X converging
to u := bx in X and such that limHε(u

ε) ≤ H(u). Let bε := bε,u
ε
; by Corol-

lary 2.7.7 limKε(b
ε,uε) ≤ K(b). Furthermore, by (i) and (ii) proved above,

{bε} is precompact in Y and its limit points are in W . Let b̃ ∈ W be a limit

point of {bε}. Then b̃x = bx, since bεx = uε → u = bx in X ; on the other hand

bt + f(bx) = 0 = b̃t + f(b̃x), so that we also gather bt = b̃t. It follows b̃ = b. �
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CHAPTER 3

Large Deviations for stochastic conservation laws

In this chapter we are concerned with the asymptotic behaviour of the
solution uε to(1.1.3) as ε→ 0. The analysis is restricted to the 1+1 dimensional
case. Here we work in the same setting of Chapter 1, namely the space variable
x lives on a torus and the initial data is fixed. Moreover, for technical reasons,
we equip the set U (see (2.2.6)) with a sligtly weaker topology than the one
used in 2. However, the results given in Chapter 2 can be transported to
this case with minor modifications. These modifications require some “extra”
technical hypotheses only for Theorem 3.1.3, as explained in its proof.

3.1. Main results

3.1.1. Basic hypotheses. We let T denote one-dimensional torus, 〈·, ·〉
denote the inner product in L2(T), for T > 0 〈〈·, ·〉〉 stands for the inner
product in L2([0, T ] × T), and for E a closed set, C∞(E) denotes the collec-
tion of infinitely differentiable functions on E, that are continuous up to the
boundary. Throughout this paper ∂t denotes derivative w.r.t. the time vari-
able t, ∇ and ∇· derivatives w.r.t. the space variable x, ∂u derivative w.r.t.
the state variable u. For a function ϑ explicitly depending on the x vari-
able, ∂x denotes the partial derivative w.r.t. such a variable. Namely, given
the smooth functions u : T → [0, 1] and ϑ : [0, 1] × T → R, we understand
(∇ϑ(u(x), x)) = (∂uϑ)(u(x), x)∇u(x) + (∂xϑ)(u(x), x).

In the following, when a martingale M : [0, T ] × X → C([0, T ]) is given,
we write equivalently Mt ≡M(t, v), depending on which aspect of the process
we want to emphasize. For T > 0, B a real Banach space and {Mt}t∈[0,T ] a
B-valued martingale, for each φ ∈ B∗ we denote by {〈Mt, φ〉}t∈[0,T ] the real–
valued martingale obtained by the dual action of Mt on B. In the following
martingale will always stand for continuous martingale.

In this chapter, the following hypotheses will be always assumed

H1) f : [0, 1]→ R is a Lipschitz function.
H2) D : [0, 1]→ R is a uniformly positive Lipschitz function.
H3) a ∈ C2([0, 1]) is such that a(0) = a(1) = 0, and a(v) 6= 0 for v ∈ (0, 1).
H4) {ε}ε>0 ⊂ H1(T) and

∫
dx ε(x) = 1 is a sequence of positive mollifiers

weakly converging to the Dirac mass centered at 0.
H5) u0 : T→ [0, 1] is a Borel measurable function.

79
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3.1.2. Stochastic scalar conservation laws. We refer to [12] for a gen-
eral theory of stochastic equations in infinite dimensions. Let us fix a standard
filtered probability space

(
Ω,F, {Ft}0≤t≤T ,P

)
, on which an L2(T)–valued cylin-

drical Brownian motion W is defined. Namely, W is a continuous, Gaussian,
L2(T)–valued martingales {Wt, 0 ≤ t ≤ T} with quadratic variation:[

〈W,φ〉, 〈W,ψ〉
]
t

= 〈φ, ψ〉t (3.1.1)

for each φ, ψ ∈ L2(T). For ε > 0, we consider the following stochastic Cauchy
problem:

duε =
[
−∇ · f (uε) + ε

2
∇ · (D(uε)∇uε)

]
dt+ εγ∇ ·

[
a(uε)(ε ∗ dW )

]
uε(0, x) = u0(x)

(3.1.2)
Here the writing∇·

[
a(u)(ε∗dW )

]
stands for the martingale differential acting

on H1(T) as 〈
∇ ·
[
a(u)(ε ∗ dW )

]
t
, ψ〉 = −〈dWt, 

ε ∗ [a(u)∇ψ]〉 (3.1.3)

The following theorem is an immediate consequence of Proposition 3.5.7 in
the appendix, where we also recall how solutions to (3.1.2) are defined.

Proposition 3.1.1. Assume limε ε
γ‖ε‖L2(T) = 0. Then there is an ε0 > 0

small enough such that, for each ε < ε0, there exists a unique {Ft}-adapted
process uε : Ω→ U ∩ L2

(
[0, T ];H1(T)

)
solving (3.1.2).

Note that the total mass of uε is conserved a.s. by the stochastic flow
(3.1.2), namely for each t ∈ [0, T ] we have

∫
dx uε(t) =

∫
dx u0. Consider the

formal limiting equation for (3.1.2)

∂tu+∇ · f(u) = 0
u(0, x) = u0(x)

(3.1.4)

Recall the notion of Kruzkov solution to (3.1.4) given in Section 1.4. The
following statement follows from item (i) in Theorem 3.1.7 below and by a
simple adaptation of Proposition 2.2.6 to the setting of this chapter, namely
to the case x ∈ T.

Proposition 3.1.2. Assume that f ∈ C2([0, 1]) is such that there is no
interval in which f is affine. Assume also γ > 1/2 and limε ε

2(γ−1)
[
‖ε‖2

L2(T) +

ε‖∇ε‖2
L2(T)

]
= 0. Let ū be the unique Kruzkov solution to (3.1.4). Then

Pε → δū weakly in probability, w.r.t. both the topology of U and the strong
Lp([0, T ]× T) topology.

Proposition 3.1.2 establishes a convergence result for laws of the processes
uε solutions to (3.1.2), as ε → 0. We are then interested in large deviations
principles for these laws. In the next sections, we first introduce some prelim-
inary notions and state a first a large deviations principle. We then introduce
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some additional preliminaries and state the second large deviations principle.
Note that most of the definitions are similar to the ones introduced in Sec-
tion 2.2; however, for convenience of the reader, we next detail the adaptated
versions of these definitions in the current setting.

3.1.3. Scalar conservation laws. Let U denote the compact separable
metric space of measurable functions u : T→ [0, 1], equipped with the metric
inherited by the ∗-weak topology of the finite measures on T. Namely, for
{φN}N∈N ⊂ C(T) a dense subset in C(T) containing the constant function 1I,
define the metric dU on U as

dU(u, v) :=
∞∑
N=1

2−N
∣∣〈u− v, ϕN〉∣∣

1 +
∣∣〈u− v, ϕN〉∣∣ (3.1.5)

Given T > 0, let U be the set C
(
[0, T ];U

)
endowed with the uniform metric

dU(u, v) := sup
t∈[0,T ]

dU
(
u(t), v(t)

)
(3.1.6)

An element u ∈ U is a weak solution to (3.1.4) iff for each ϕ ∈ C∞([0, T ]× T)
it satisfies

〈u(T ), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈u, ∂tϕ〉〉 − 〈〈f(u),∇ϕ〉〉 = 0

We also introduce a suitable space M of Young measures and recall the
notion of measure-valued solution to (3.1.4). Consider the set N of measurable
maps µ from [0, T ] × T to the set P([0, 1]) of Borel probability measures on
[0, 1]. The set N can be identified with the set of positive finite Borel measures
µ on [0, T ]×T×[0, 1] such that µ(dt, dx, [0, 1]) = dt dx. Indeed, by existence of
a regular version of conditional probabilities, for such measures µ there exists a
measurable kernel µt,x(dλ) ∈ P([0, 1]) such that µ(dt, dx, dλ) = dt dx µt,x(dλ).
For ı : [0, 1]→ [0, 1] the identity map, we set

M :=
{
µ ∈ N : the map [0, T ] 3 t 7→ µt,·(ı) is in U

}
(3.1.7)

in which, for a bounded measurable function F : [0, 1] → R, the notation
µt,x(F ) stands for

∫
[0,1]

µt,x(dλ)F (λ). We endow M with the metric

dM(µ, ν) := d∗w(µ, ν) + dU
(
µ(ı), ν(ı)

)
(3.1.8)

where d∗w is a distance generating the relative topology on N regarded as a
subset of the finite Borel measures on [0, T ] × T × [0, 1] equipped with the
∗-weak topology. (M, dM) is a complete separable metric space.

An element µ ∈ M is a measure-valued solution to (3.1.4) iff for each
ϕ ∈ C∞

(
[0, T ]× T) it satisfies

〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉 − 〈〈µ(f),∇ϕ〉〉 = 0
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If u ∈ U is a weak solution to (3.1.4), then δu(t,x)(dλ) ∈M is a measure-valued
solution. On the other hand, there exist measure-valued solutions which do
not have this form.

3.1.4. First order large deviations. Recall that we defined the Polish
space (M, dM) in Section 3.1.3, and consider the process µε : Ω→M defined
by µεt,x := δuε(t,x). We let Pε := P ◦ (µε)−1 ∈ P(M) be the law of µε onM. In
Section 3.3 we prove

Theorem 3.1.3. (i) Assume γ > 1/2. Then the sequence {Pε} ⊂
P(M) satisfies a large deviations upper bound on M with speed ε−2γ

and rate functional I :M→ [0,+∞] defined as

I(µ) := sup
ϕ∈C∞

(
[0,T ]×T

) {〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉

− 〈〈µ(f),∇ϕ〉〉 − 1
2
〈〈µ(a2)∇ϕ,∇ϕ〉〉

}
(3.1.9)

(ii) Assume γ > 3/2, limε

[
ε2γ−1‖∇ε‖2

L2
+ ε2γ−3‖ε‖2

L2

]
= 0, and that

ζ ≤ u0 ≤ 1− ζ for some ζ > 0. Then {Pε} ⊂ P(M) satisfies a large
deviations upper bound on M with speed ε−2γ and rate functional I.

We denote by Pε := P ◦ (uε)−1 ∈ P(U) the law of uε on the Polish space
(U , dU). By contraction principle [13] we get

Corollary 3.1.4. Under the same hypotheses of Theorem 3.1.3, the se-
quence {Pε} ⊂ P(U) satisfies a large deviations principle on U with speed ε−2γ

and rate functional I : U → [0,+∞] defined as

I(u) := inf
{∫

dt dxRf,a2

(
u(t, x),Φ(t, x)

)
,

Φ ∈ L2([0, T ]× T) : ∇Φ = −∂tu weakly
}

where Rf,σ : [0, 1]× R→ [0,+∞] is defined by

Rf,σ(w, c) := inf{
(
ν(f)− c

)2
/ν(σ), ν ∈ P([0, 1]) : ν(ı) = w}

in which we understand (c− c)2/0 = 0.

Note that, if I(µ) < +∞, then µ0,x(ı) = u0(x) and analogously I(u) < +∞
implies u(0, x) = u0(x). On the other hand, if I(µ) = 0 then µ is a measure-
valued solution to (3.1.4). However, as it follows from Corollary 3.1.4, if f is
nonlinear in general we have I(u) < I(δu), so that I vanishes on a set wider
than the set of weak solutions to (3.1.4).

In general there exist infinitely many measure-valued solutions to (3.1.4),
but Proposition 3.1.2 implies that {Pε} converges in probability on M to the
unique entropic solution ū to (3.1.4) (more precisely, to the Young measure µ̄
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defined by µ̄t,x = δū(t,x)). We thus expect that other nontrivial large deviations
principles may hold on scales finer than ε−2γ.

3.1.5. Entropy-measure solutions to conservation laws. Recalling
(3.1.6), we let X be the same set C([0, T ];U) endowed with the metric

dX (u, v) := ‖u− v‖L1([0,T ]×T) + dU(u, v) (3.1.10)

Convergence in X is equivalent to convergence in U and in Lp([0, T ] × T) for
p ∈ [1,+∞). Note that X can be identified with the subset {µ ∈ M : ∃u ∈
X , µ = δu} ofM, and dX is a distance generating the relative topology induced
by dM on X .

Let C2([0, 1]) be the set of twice differentiable functions on (0, 1) whose
derivatives are continuous up to the boundary. A function, resp. a con-
vex function, η ∈ C2([0, 1]) is called an entropy, resp. a convex entropy,
and its conjugated entropy flux q ∈ C([0, 1]) is defined up to a constant by
q(u) :=

∫ u
dv η′(v)f ′(v). For u a weak solution to (3.1.4), for (η, q) an entropy

– entropy flux pair, the η-entropy production is the distribution ℘η,u acting on
C∞c
(
[0, T )× T

)
as

℘η,u(ϕ) := −〈η(u0), ϕ(0)〉 − 〈〈η(u), ∂tϕ〉〉 − 〈〈q(u),∇ϕ〉〉 (3.1.11)

Let C2,∞
c

(
[0, 1) × [0, T ] × T

)
be the set of compactly supported maps ϑ :

[0, 1] × (0, T ) × T 3 (v, t, x) 7→ ϑ(v, t, x) ∈ R, that are twice differentiable
in the v variable, with derivatives continuous up to the boundary of [0, 1] ×
[0, T ) × T, and that are infinitely differentiable in the (t, x) variables. For
ϑ ∈ C2,∞

c

(
[0, 1] × [0, T ) × T

)
we denote by ϑ′ and ϑ′′ its partial derivatives

w.r.t. the v variable. We say that a function ϑ ∈ C2,∞
c

(
[0, 1]× [0, T )×T

)
is an

entropy sampler, and its conjugated entropy flux sampler Q : [0, 1]×[0, T ]×T is
defined up to an additive function of (t, x) by Q(u, t, x) :=

∫ u
dv ϑ′(v, t, x)f ′(v).

Finally, given a weak solution u to (3.1.4), the ϑ-sampled entropy production
Pϑ,u is the real number

Pϑ,u := −
∫
dx ϑ(u0(x), 0, x)

]
−
∫
dt dx

[(
∂tϑ)

(
u(t, x), t, x

)
+
(
∂xQ

)(
u(t, x), t, x

)] (3.1.12)

If ϑ(v, t, x) = η(v)ϕ(t, x) for some entropy η and some ϕ ∈ C∞c
(
[0, T ) × T

)
,

then Pϑ,u = ℘η,u(ϕ).
The next proposition introduces a suitable class of solutions to (3.1.4) which

will be needed in the following. We denote by M
(
[0, T )×T

)
the set of Radon

measures on [0, T )×T that we consider equipped with the vague topology. In
the following, for % ∈M

(
[0, T )×T

)
we denote by %± the positive and negative

part of %. For u a weak solution to (3.1.4) and η an entropy, recalling (3.1.11)
we set

‖℘η,u‖TV := sup
{
℘η,u(ϕ), ϕ ∈ C∞c

(
[0, T )× T

)
, |ϕ| ≤ 1

}
(3.1.13)
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‖℘+
η,u‖TV := sup

{
℘η,u(ϕ), ϕ ∈ C∞c

(
[0, T )× T

)
, 0 ≤ ϕ ≤ 1

}
The following result is a restatement of Proposition 2.2.3 in the slightly

different setting of this chapter.

Proposition 3.1.5. Let u ∈ X be a weak solution to (3.1.4). The following
statements are equivalent:

(i) There exists c > 0 such that ‖℘+
η,u‖TV < +∞ for each η ∈ C2([0, 1])

with 0 ≤ η′′ ≤ c.
(ii) For each entropy η, the η-entropy production ℘η,u can be extended to

a Radon measure on [0, T ) × T, namely ‖℘η,u‖TV < +∞ for each
entropy η.

(iii) There exists a bounded measurable map %u : [0, 1] 3 v → %u(v; dt, dx) ∈
M
(
[0, T )× T

)
such that for any entropy sampler ϑ

Pϑ,u =

∫
dv %u(v; dt, dx)ϑ′′(v, t, x) (3.1.14)

A weak solution u ∈ X that satisfies any of the equivalent conditions in
Proposition 3.1.5 is called an entropy-measure solution to (3.1.4). We denote
by E ⊂ X the set of entropy-measure solutions to (3.1.4). Recall that in Chap-
ter 2 we have discussed regularity properties of the entropy measure solutions.
In particular, if f ∈ C2([0, 1]) is such that there are no intervals in which f is
affine, then E ⊂ C([0, T ];L1(T)).

A weak solution u ∈ X to (3.1.4) is called an entropic solution iff for each
convex entropy η the inequality ℘η,u ≤ 0 holds in distribution sense, namely
‖℘+

η,u‖TV = 0. In particular entropic solutions are entropy-measure solutions
such that %u(v; dt, dx) is a negative Radon measure for each v ∈ [0, 1].

Up to minor adaptations, the following class of solutions have been also
introduced in Section 2.2, where some examples of such solutions are are also
given.

Definition 3.1.6. An entropy-measure solution u ∈ E is entropy-splittable
iff there exist two closed sets E+, E− ⊂ [0, T ]× T such that

(i) For a.e. v ∈ [0, 1], the support of %+
u (v; dt, dx) is contained in E+, and

the support of %−u (v; dt, dx) is contained in E−.
(ii) For each L > 0, the set

{
t ∈ [0, T ] :

(
{t} × [−L,L]

)
∩E+ ∩E− 6= ∅

}
is nowhere dense in [0, T ].

(iii) There exists δ > 0 such that δ ≤ u ≤ 1− δ.
The set of entropy-splittable solutions to (3.1.4) is denoted by S.

Note that S ⊂ E ⊂ X , and that we require u0 to be uniformly far from
0, 1, so that S is nonempty.
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3.1.6. Second order large deviations. We still denote with Pε := P ◦
(uε)−1 ∈ P(X ) the law of uε on the Polish space (X , dX ). Since

∫
dx ε(x) = 1

(see hypothesis H4)), we have that ε − 1 is the derivative of some smooth
function J on T, defined up to an additive constant. We define ‖− 1I‖W−1,1(T)

as the minimum of ‖J‖L1(T) on the set of functions J such that ∇ · J = ε− 1.
We have the following

Theorem 3.1.7. (i) Assume that f is such that there is no interval
in which f is affine. Assume also γ > 1/2 and limε ε

2(γ−1)
[
‖ε‖2

L2(T) +

ε‖∇ε‖2
L2(T)

]
= 0. Then the sequence {Pε} ⊂ P(X) satisfies a large

deviations upper bound on (X , dX ) with speed ε−2γ+1 and rate func-
tional H : X → [0,+∞] defined as

H(u) :=

{∫
dv %+

u (v; dt, dx) D(v)
a2(v)

if u ∈ E
+∞ otherwise

(3.1.15)

(ii) Assume that f ∈ C2([0, 1]) is such that there is no interval in which f
is affine. Assume also limε ε

−3/2‖ε−1I‖W−1,1(T) = 0 and limε

[
ε2γ−1‖∇ε‖2

L2
+

ε2γ−3‖ε‖2
L2

]
= 0. Then the sequence {Pε} ⊂ P(X) satisfies a large

deviations lower bound on (X , dX ) with speed ε−2γ+1 and rate func-
tional H : X → [0,+∞] defined as

H(u) := sup
O3u
O open

inf
v∈O∩S

H(v)

Since H is lower semicontinuous on X , we have H ≥ H on X and H = H
on S, namely a large deviations principle holds on S. In order to obtain a full
large deviations principle, one needs to show a H(u) ≥ H(u) also for u 6∈ S.
This amounts to show that S is H-dense in X , namely that for u ∈ X such
that H(u) < +∞ there exists a sequence {un} ⊂ S converging to u in X such
that H(un) → H(u). This issue was briefly discussed in Section 2.2. The
main difficulties arise from the lacking of a chain rule formula connecting the
measures ℘η,u to the structure of u itself. If u has bounded variation, Vol’pert
chain rule [3] allows an explicit representation for ℘η,u and thus H(u), see
Remark 2.2.7. On the other hand, there exists u ∈ X with infinite variation
such that H(u) < +∞, see Example 2.2.8. While chain rule formulas out of
the BV setting are subject to current research investigation, see e.g. [11, 2],
only partial results are available.

3.2. Convergence and bounds

In the following we use the notation

σ(v) := a(v)2
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Lemma 3.2.1 (Itô formula). Let (ϑ;Q) be an entropy sampler –entropy
sampler flux pair for the equation (3.1.4). Then (hereafter, for sake of read-
ability, we possibly omit the explicit dependence of ϑ w.r.t. the (t, x) variables):

−
∫
dx ϑ(u0(x), 0, x)−

∫
dt dx

[(
∂tϑ)

(
uε(t, x), t, x

)
+
(
∂xQ

)(
uε(t, x), t, x

)]
= − ε

2
〈〈ϑ′′(uε)∇uε, D(uε)∇uε〉〉 − ε

2
〈〈∂xθ′(uε), D(uε)∇uε〉〉

+ ε2γ

2
‖∇ε‖2

L2(T)〈〈ϑ′′(uε)a(uε), a(uε)〉〉
+ ε2γ

2
‖ε‖2

L2(T)〈〈ϑ′′(uε)∇uε, [a′(uε)]2∇uε〉〉+N ε;ϑ
T

(3.2.1)

where {N ε;ϑ
t , t ∈ [0, T ]} is the martingale

N ε;ϑ
t := −εγ

∫
[0,t]

〈ε ∗
[
a(uε)ϑ′′(uε)∇uε + a(uε)∂xϑ

′(uε)
]
, dWs〉 (3.2.2)

Moreover the quadratic variation of N ε,ϑ is bounded by[
N ε;ϑ, N ε;ϑ

]
t
≤ ε2γ

∫
[0,t]

ds
〈
σ(uε)

[
ϑ′′(uε)∇uε+∂xϑ

′(uε)
]
, ϑ′′(uε)∇uε+∂xϑ

′(uε)
〉

(3.2.3)

Proof. Equation (3.2.1) follows, up to minor manipulations, from Itô for-
mula [12] for the map

F ϑ : U → R
F ϑ : u →

∫
dt dx ϑ(u(t, x), t, x)

By (3.2.2) and (3.1.1), the quadratic variation of N ε;ϑ is given by[
N ε;ϑ, N ε;ϑ

]
t

= ε2γ
∫

[0,t]
ds〈

ε ∗
{
a(uε)

[
ϑ′′(uε)∇uε + ∂xϑ

′(uε)
]}
, ε ∗ {a(uε)ϑ′′(uε)∇uε + ∂xϑ

′(uε)}
〉

so that the inequality stated in the lemma follows by Young inequality for
convolutions and hypothesis H4). �

Lemma 3.2.2. Let ζ, T > 0 and {Xt; t ∈ [0, T ]} be a local continuous real-
valued L2–supermartingale starting from 0, and τ ≤ T a stopping time. Let
F : R→ R+ be such that:

F (x)

F (ζ)
≤ 2

x

ζ
− 1, for all x > ζ. (3.2.4)

Then:

P
(

sup
0≤t≤τ

Xt ≥ ζ,
[
X,X

]
τ
≤ F (sup

t≤τ
Xt)

)
≤ exp

{
− ζ2

2F (ζ)

}
; (3.2.5)
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Proof. Hypotheses on F imply that the map Gζ : x→ ζ
F (ζ)

x− 1
2

ζ2

F (ζ)2
F (x)

has the property Gζ(x) ≥ Gζ(ζ) = ζ2

2F (ζ)
for all x ≥ ζ. Therefore:

P
(
supt≤τ Xt ≥ ζ,

[
X,X

]
τ
≤ F (supt≤τ Xt)

)
≤ P

(
e

ζ
F (ζ)

supt≤τ Xt− 1
2

ζ2

F (ζ)2
F (supt≤τ Xt) ≥ e

1
2
ζ2

F (ζ) ,
[
X,X

]
τ
≤ F (supt≤τ Xt)

)
≤ P

[
supt≤T e

ζ
F (ζ)

Xt− 1
2

ζ2

F (ζ)2

[
X,X
]
t ≥ e

1
2
ζ2

F (ζ)

]
≤ e−

ζ2

2F (ζ) .

where in the last line we used maximal inequality for positive supermartingales,
see [17]. �

Note that the hypotheses (3.2.4) on F are satisfied by any nonincreasing
function, and by functions with affine or subaffine behaviour. The lemma is a
generalization of the well known Bernstein inequality [17].

Corollary 3.2.3. Assume γ > 1/2, limε ε
2γ−1‖ε‖2

L2(T) = 0 and limε ε
2γ‖∇ε‖2

L2(T) =

0. Then there exists C, ε0 > 0 depending only on {ε}, f , D and σ such that
for each ε < ε0:

ε〈〈∇uε,∇uε〉〉 ≤ C +N ε
T (3.2.6)

where {N ε
t }t∈[0,T ] is a martingale starting from 0 and satisfying

P
(

sup
t≤T

N ε
t > ζ

)
≤ exp

{
− ζ2

ε2γ−1C(1 + ζ)

}
(3.2.7)

Proof. Let χ ∈ C∞c ([0, T )) be a smooth decreasing function such that
χ(0) = 1. Evaluating Itô formula (3.2.1) for ϑ(u, t, x) = ϑ(u, t, x) := u2χ(t)

−〈u0, u0〉+ ε〈〈∇uε, D(uε)∇uεχ〉〉 − 〈〈uε, uε∂tχ〉〉 =

N ε;ϑ
T + ε2γ‖∇ε‖2

L2(T)〈〈a(uε), a(uε)χ〉〉+ ε2γ‖ε‖2
L2(T)〈〈∇uε, [a′(uε)]2∇uεχ〉〉

By H2), H3) and the hypotheses of this lemma, there exist ε0 > 0 such
that, for each ε ≤ ε0 and v ∈ [0, 1], ε2γ‖ε‖2

L2(T)[a
′(v)]2 ≤ 1

2
εD(v) and

ε2γ‖∇ε‖2
L2(T)σ(v) ≤ 1. Therefore, since also 〈u0, u0〉 ≤ 1, 〈〈uε, uε∂tχ〉〉 ≤ 0

ε

2
〈〈∇uε, D(uε)∇uεχ〉〉 ≤ 2 +N ε;ϑ

T

As we send χ to the indicator function of [0, T ) uniformly on compact subsets,
it is not difficult to obtain the inequality

ε

2
〈〈∇uε, D(uε)∇uεχ〉〉 ≤ 2 +N ε;2

T (3.2.8)

where N ε;2
t :=

∫
[0,t]
〈ε ∗ [σ(uε)∇uε], dW 〉. Since D is uniformly positive, there

exists C1 > 0 such that σ(v) ≤ C1D(v)/8 for each v ∈ [0, 1]. Therefore, apply-
ing again Young inequality for convolutions to bound the quadratic variation
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of the martingale {N ε;2
t }, we gather for ε ≤ ε0[

N ε;2
· , N ε;2

·
]
T
≤ 4 ε2γ〈〈∇uε, σ(uε)∇uε〉〉
≤ ε2γC1

2
〈〈∇uε, D(uε)∇uε〉〉 ≤ C1 ε

2γ−1
[
2 +N ε;2

T

]
Applying Lemma 3.2.2 to the martingale {N ε;ϑ

t }

P
(

sup
t≤T

N ε,ϑ
T ≥ ζ

)
≤ exp

[
− ζ2

2C1ε2γ−1(2 + ζ)

]
Since D is uniformly positive, for a suitable choice of C we conclude by (3.2.8).

�

Lemma 3.2.4. There exists an increasing sequence {K`} of compact subsets
of U such that

lim
`

lim
ε
ε2γPε(Kc

` ) = −∞

Proof. Let d ∈ C1([0, 1]) be a map such that d′(v) = D(v) for v ∈ [0, 1].
Then, integrating twice by parts the diffusive term in the weak formulation of
(3.1.2), for each ϕ ∈ C∞(T) and s, t ∈ [0, T ]

|〈uε(t)− uε(s), ϕ〉| ≤
∣∣ ∫

[s,t]
dr 〈f(uε),∇ϕ〉

∣∣
+ ε

2

∣∣ ∫
[s,t]
dr 〈d(uε),∇(∇ϕ)〉

∣∣+ εγ
∣∣ ∫

[s,t]
〈a(uε) ε ∗ ∇ϕ, dWr〉

∣∣
≤ C ′ϕ|t− s|+ εγ

∣∣ ∫
[s,t]
〈a(uε) ε ∗ ∇ϕ, dWr〉

∣∣
for some constant C ′ϕ depending only on f, d and ϕ. On the other hand, by
Young inequality for convolutions, the martingale term in the last line of the
above formula enjoys the bound (3.2.3) evaluated for ϑ(v, t, x) = v ϕ(t, x), so
that by Bernstein inequality, there exists a constant C ′′ϕ > 0 depending only
on a and ϕ such that for each ξ, ζ > 0 and s ∈ [0, T ]

P
(
εγ sup

t : |t−s|≤ξ

∣∣ ∫
[s,t]

〈a(uε) ε ∗ ∇ϕ, dWr〉
∣∣ ≥ ζ

)
≤ exp

(
− ζ2

C ′′ϕ ε
2γξ

)
We thus obtain, for each ϕ ∈ C∞(T), ζ > 0, s ∈ [0, T ] and ξ, ε small enough,
and for some constant Cϕ depending only on ϕ, f , D, a

Pε
(

sup
t : |t−s|≤ξ

∣∣〈u(t)− u(s), ϕ〉
∣∣ ≤ ζ

)
≤ exp

(
− ζ2

Cϕ ε2γξ

)
Since (U, dU) is compact, this inequality implies the exponential tightness of
{Pε} on U = C

(
[0, T ];U

)
by standard tightness arguments for probability

measures on spaces of continuous functions [6]. �
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3.3. Large deviations on the scale ε−2γ

We recall a well known method to prove large deviations lower bound, see
e.g. [9, 14], which can be easily restated in terms of Γ-convergence. A more
general statement connecting large deviations principle and Γ-convergence of
the relative entropy can also be found in the introductive chapter of this thesis,
see Section 1.2.3. In order to avoid confusion between the functional H defined
in (3.1.15), in this chapter, for P, Q two Borel probability measures on a Polish
space, we denote by Ent(Q|P) the relative entropy of Q w.r.t. P (so we will
not use the standard notation H(Q|P) for the same quantity).

Lemma 3.3.1. Let X be a Polish space, let {αε} ⊂ R+ be a sequence such
that limε αε = 0, and let {Pε} ⊂ P(X). For ε > 0 define the functionals
Entε : P(X)→ [0,+∞] as

Entε(Q) := αεEnt(Q|Pε)

and the functional I : X → [0,+∞] as

I(x) := (Γ–limε Entε)(δx)

where δx denotes the Dirac measure concentrated at x. Then {Pε} satisfies a
large deviations lower bound with speed {α−1

ε } and rate I. Conversely, suppose
that {Pε} satisfies a large deviations principle with lower semicontinuous rate
functional I. Then (Γ–limε Entε)(Q) ≤

∫
X

Q(dx) I(x).

Lemma 3.3.2. There exists an increasing sequence {K`} of compact subsets
of M such that

lim
`

lim
ε
ε2γPε(Kc`) = −∞ (3.3.1)

Proof. Let the sequence {K`} of compact subsets of U be as in Lemma 3.2.4.
For ` > 0 consider the set

K` := {µ ∈M : µt,x = δu(t,x) for some u ∈ K`}

Then Pε(K`) = Pε(K`) and by Lemma 3.2.4, (3.3.1) holds. On the other hand
K` is precompact in (M, dM). �

Proof of Theorem 3.1.3: upper bound. Let d ∈ C2([0, 1]) be such
that d′ = D. For ε > 0 and ϕ ∈ C∞([0, T ] × T), since Pε solves (3.1.2), the
map

N ε;ϕ : [0, T ]× C([0, T ];X)→ R
N ε;ϕ : (t, v)→ 〈v(t), ϕ(t)〉 − 〈u0, ϕ(0)〉 −

∫
[0,t]
ds
[
〈v, ∂sϕ〉

+ 〈f(v),∇ϕ〉+ ε
2
〈d(v),∇(∇ϕ)〉

] (3.3.2)
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is a Pε-martingale. Let Me := {µ ∈ M : µ = δu for some u ∈ U}. Note that,
by its definition, Pε is concentrated on Me by definition. Therefore the map

N ε;ϕ : [0, T ]×M→ R
N ε;ϕ : (t, µ)→ 〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉

−
∫

[0,t]
ds
[
〈µ(ı), ∂tϕ〉 − 〈µ(f),∇ϕ〉+ ε

2
〈µ(d),∇(∇ϕ)〉

]
is a Pε martingale, since N ε;ϕ(t, δv) = N ε;ϕ(t, v). By the same reason, and by
inequality (3.2.3) the map

Qε;ϕ : [0, T ]×M→ R
Qε;ϕ : (t, µ)→ exp

{
N ε;ϕ(t, µ)− ε2γ

2

∫
[0,t]
ds 〈µ(σ)∇ϕ,∇ϕ〉

}
is a continuous, strictly positive, Pε supermartingale, with Qε;ϕ(0, µ) = 1. For
a compact subset K ⊂M we then have

Pε(K) = Pε
(
1IK(·)Qε;ϕ(T, ·)[Qε;ϕ(T, ·)]−1

)
≤ supµ∈K[Qε;ϕ(T, µ)]−1Pε

(
1IK(·)Qε;ϕ(T, ·)

)
≤ infµ∈K[Qε;ϕ(T, µ)]−1

Since this inequality holds for each ϕ, we can evaluate it replacing ϕ with
ε−2γϕ obtaining

log Pε(K) ≤ −ε−2γ infµ∈K

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉

−〈〈µ(f),∇ϕ〉〉 − ε
2
〈〈µ(d),∇(∇ϕ)〉〉 − 1

2
〈〈µ(σ)∇ϕ,∇ϕ〉〉

}
≤ −ε−2γ infµ∈K

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉 − 〈〈µ(ı), ∂tϕ〉〉

−〈〈µ(f),∇ϕ〉〉 − 1
2
〈〈µ(σ)∇ϕ,∇ϕ〉〉

}
+ ε−2γ+1Cd,ϕ

for some constant Cd,ϕ depending only on the maximum value of d on [0, 1]
and on ϕ. Multiplying by ε2γ and taking the limsup for ε → 0, the last term
vanishes. Optimizing on ϕ:

limε ε
2γ log Pε(K) ≤ − supϕ∈C∞([0,T ]×T) infµ∈K

{
〈µT,·(ı), ϕ(T )〉 − 〈u0, ϕ(0)〉

−〈〈µ(ı), ∂tϕ〉〉 − 〈〈µ(f),∇ϕ〉〉 − 1
2
〈〈µ(σ)∇ϕ,∇ϕ〉〉

}
Bu minimax lemma we gather that upper bound with rate I, see (3.1.9), holds
on each compact subset K ⊂ M. By Lemma 3.3.2, it holds on each closed
subset of M. �

Proof of Theorem 3.1.3: lower bound. We will prove the lower bound
by the means of Lemma 3.3.1. More precisely, consider the set

M0 :=
{
µ ∈M : ∃r > 0 : µ = δu for some u ∈ C2

(
[0, T ]× T; [r, 1− r]

)}
Here we prove that for each µ ∈ M0 there exists a sequence of probability
measure {Qε} ⊂ P(M) such that Qε → δµ and lim ε2γEnt(Qε|Pε) ≤ I(µ).
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By Lemma 3.3.1 this will yield a large deviations lower bound with rate Ĩ :
M→ [0,+∞] defined as

Ĩ :=

{
I(µ) if µ ∈M0

+∞ otherwise

By a standard diagonal argument, or as it follows from Proposition 1.2.4, the
lower bound then also holds with the lower semicontinuous envelope of Ĩ on
M as rate functional. In Theorem 2.4.1 it is shown, in a slightly different
setting, that the lower semicontinuous envelope of Ĩ is indeed I. By the
assumption r ≤ u0 ≤ 1− r (which is equivalent to the requirement that σ(u0)
is uniformly positive), it is not difficult to adapt the arguments in the proof
of Theorem 2.4.1, to obtain the analogous result in this case. We are thus left
with the proof of the lower bound on M0.

Let µ = δu ∈M0 be such that I(µ) <∞. Then necessarily u(0, x) = u0(x),
and by the definition of I and the smoothness of u

I(µ) = I(δu) = sup
ϕ∈C∞

(
[0,T ]×T

) {− 〈〈∂tu+∇ · f(u), ϕ〉〉 − 1
2
〈〈σ(u)∇ϕ,∇ϕ〉〉

}
≥ sup

ϕ∈C∞
(

[0,T ]×T
) {− 〈〈∂tu+∇ · f(u), ϕ〉〉 − ζ

2
〈〈∇ϕ,∇ϕ〉〉

}
where ζ > 0 is a real constant such that σ(u) ≥ ζ on [0, T ] × T. Such a
constant exists, since we assumed u to be uniformly far from the zeros of σ.
Note that the supremum in the last line of the above formula is finite iff there
exists Ψu ∈ L2

(
[0, T ];H1(T)

)
such that

∂tu+∇ · f(u) = −∇ · [σ(u)∇Ψu] (3.3.3)

holds weakly. In such a case

I(µ) = 〈〈σ(u)∇Ψu,∇Ψu〉〉 (3.3.4)

Note that, as we assumed u smooth and σ(u) uniformly positive, Ψu is also
smooth by standard regularity results for (3.3.3), say Ψu ∈ C2([0, T ] × T).
Recall the definition (3.3.2) of the martingale N ε;ϕ. It is immediate to extend
the definition of N ε;ϕ to the case ϕ ∈ C2([0, T ]× T). For ε > 0 we define the
real-valued Pε-martingale M ε;u

t (v) := ε−γN ε;Ψu . Note that[
M ε;u,M ε;u

]
T

= ε−2γ〈〈ε ∗ [a(u)∇Ψu], ε ∗ [a(u)∇Ψu]〉〉 ≤ 2ε−2γI(µ) (3.3.5)

by Young inequality for convolutions and (3.3.4). Since the quadratic variation
of M ε;u uniformly bounded, its stochastic exponential Eε;u

t := exp
(
M ε;u

t −
1
2
[M ε;u,M ε;u]t

)
is also a Pε-martingale. For ε > 0 we define Qε;u ∈ P(U) by

its derivative as

Qε;u(dv) := Eε;u
T (v)Pε(dv)
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and we let Qε;u be the pushforward of Qε;u w.r.t. the map U 3 u 7→ δu ∈ U .
Then

ε2γEnt(Qε;u|Pε;u) = ε2γEnt(Qε;u|Pε;u) = ε2γ
∫

Qε;u(dv) logEε;u
T (v)

= ε2γ
∫

Qε;u(dv)
(
M ε;u

T (v)− [M ε;u(v),M ε;u(v)]T
)

+ ε2γ

2

∫
Qε;u(dv)[M ε;u(v),M ε;u(v)]T

= 1
2
〈〈ε ∗ [a(u)∇Ψu], ε ∗ [a(u)∇Ψu]〉〉

≤ 1
2
〈〈σ(u)∇Ψu,∇Ψu〉〉 = I(µ)

(3.3.6)
where we used the Girsanov theorem, stating that M ε;u

t − [M ε;u(v),M ε;u(v)]t
is a Qε-martingale, and thus has vanishing Qε;u expectaction.

By (3.3.6), (3.3.1) and Proposition 1.2.2, the sequence {Qε;u}ε is tight in
P(M), and in view of (3.3.6) it remains to show that any limit point of {Qε;u}
coincides with δµ. Still by Girsanov theorem, Qε;u is the law of a process vε

that takes values in U ∩ L2

(
[0, T ];H1(T)

)
and is a solution to the martingale

problem associated with the stochastic partial differential equation

dv =
[
−∇ · f(v) + ε

2
∇ ·
[
D(v)∇v − a(v)

(
(ε ∗ ε) ∗ (a(u)∇Ψu)

)]]
dt

+ εγ∇ ·
[
a(v)(ε ∗ dW )

]
v(0, x) = u0(x)

(3.3.7)
where we used the same notation of (3.1.2). We will use (3.3.7) to show that∫
U Qε;u(dv) supt

∫
dx|v−u| converges to 0 as we send ε→ 0. In view of (3.3.6)

this will conclude the proof.
Let l ∈ C2([−1, 1]). Applying Itô formula to the map [−1, 1]× [0, T ]×T 3

(v, t, x) 7→ l(v − u(t, x)), and denoting zε = vε − u, some direct computations
show that for each t ∈ [0, T ]∫

dx [l(zε(t, x))− l(0)]

=
∫

[0,t]
ds
{
− ε

2
〈l′′(zε)∇zε, D(vε)∇zε〉+ 〈l′′(zε)∇zε, f(u+ zε)− f(u)〉

+ 〈l′′(zε)∇zε, a(vε)
(
ε ∗ jε ∗ [a(u)∇Ψu]− a(u)

(
ε ∗ jε ∗ [a(u)∇Ψu]

)
〉

− 〈l′(zε),∇
{
a(u)

(
ε ∗ jε ∗ [a(u)∇Ψu]− a(u)a(u)∇Ψu]

)}
〉

+ ε2γ

2
‖∇ε‖2

L2(T)〈l′′(zε)a(vε), a(vε)〉

+ ε2γ

2
‖ε‖2

L2(T)〈l′′(zε)∇vε, [a′(vε)]2∇vε〉
}

+N ε;l
t

(3.3.8)
for some square-integrable martingale {N ε:l

t }. Let us define B` := {v ∈ U :
〈〈∇v,∇v〉〉 ≤ `}. By Corollary 3.2.3, (3.3.6) and the inequality (1.2.7), we
have

lim
`→+∞

lim
ε

Qε;u(Bε−2`) = 1 (3.3.9)
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Let us now assume l convex. Then we can define, for ε, ` > 0, t ∈ [0, T ]

A1,l := maxz∈[0,1] |l′(z)|
A2,l := maxz∈[0,1] |l′′(z)|
A3,l :=

√
maxz∈[0,1] |l′′(z) z2|

Rε,l(t) :=
√∫

[0,t]
ds 〈l′′(zε)∇zε, D(vε)∇zε〉

Aε,u :=
∫
dtds

∣∣∇{a(u)
(
ε ∗ jε ∗ [a(u)∇Ψu]− a(u)a(u)∇Ψu]

)}∣∣
(3.3.10)

For vε ∈ Bε−2`, by (3.3.8), Cauchy-Schwarz inequality and using the smooth-
ness of u and Ψu, there exists a constant C independent of ε, such that for
each t ∈ [0, T ]∫

dx [l(zε(t, x))− l(0)] ≤ − ε
2
(Rε;`(t))2 + CA3,lRε,l(t) + CA1,lAε,u

+Cε2γ‖∇ε‖2
L2(T)A

2,l + Cε2γ−2‖ε‖2
L2(T)A

2,l +N ε;l
t

≤ 3(A3,l+A1,lAε,u)2C2

2ε
+ Cε2γ‖∇ε‖2

L2(T)A
2,l + Cε2γ−2‖ε‖2

L2(T)A
2,l`+N ε;l

t

Assume now also l(0) = 0. Integrating in dt, taking the Qε;u expected value
on v, and redefining the constant C

Qε;u
(

1IBε−2`(v)
∫
dt dx l(v − u(t, x))

)
≤ C

[
(A3,l + A1,lAε,u)2ε−1

+
(
ε2γ−1‖∇ε‖2

L2(T) + ε2γ−3‖ε‖2
L2(T)`

)
εA2,l

] (3.3.11)

Note now that, by the smoothness of u and Ψu, since ε ∗ ε is a sequence of
mollifiers converging to the identity, limεA

ε;u → 0. By the assumptions of this
theorem, the term in round brackets in the last line of (3.3.11) also vanishes.
It is the easy to see that there exists a sequence {lε} such that the lε(·)→ | · |
uniformly on [−1, 1], and the r.h.s. of (3.3.11) vanishes as ε → 0. We then
conclude by (3.3.9). �

Proof of Corollary 3.1.4. The proof is achieved by following closely
Corollary 2.2.2. �

3.4. Large deviations on the scale ε−2γ+1

The next proposition is a convenient restatement in this setting of Tartar
compensated compactness method. We refer to [18, Chapter 9] for the proof.

Proposition 3.4.1 (Tartar). Assume that f is such that there are no
intervals where f is affine. Let K ⊂ U be a compact w.r.t. dU . Suppose that
for each η ∈ C2([0, 1]) there exists a compact (w.r.t. the strong H−1([0, T ]×T)
topology) set Kη ⊂ H−1([0, T ]× T) such that ∂tη(u) +∇ · q(u) ∈ Kη, for each
u ∈ K. Then K is strongly compact in X .
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Lemma 3.4.2. Under the same hypotheses of Theorem 3.1.7 item (i), there
exists an increasing sequence {K`} of compact subsets of X such that

lim
`

lim
ε
ε−2γ+1 log Pε(K`) = −∞

Proof. Let η be an entropy, and let q be its conjugated flux. For ϕ ∈
C∞c ((0, T ) × T), by Itô formula (3.2.1) applied to the function ϑ(v, t, x) =
η(v)ϕ(t, x)

−〈〈η(uε), ∂tϕ〉〉 − 〈〈q(uε),∇ϕ〉〉 = − ε
2
〈〈η′′(uε)∇uεϕ,D(uε)∇uε〉〉

− ε
2
〈〈η′(uε)∇ϕ,D(uε)∇uε〉〉

+ ε2γ

2
‖∇ε‖2

L2(T)〈〈η′′(uε)a(uε), a(uε)ϕ〉〉
+ ε2γ

2
‖ε‖2

L2(T)〈〈η′′(uε)ϕ∇uε, [a′(uε)]2∇uε〉〉+N ε;ηϕ
T

(3.4.1)
where {N ε,ηϕ

t , t ∈ [0, T ]} is the martingaleN ε,ηϕ
t := εγ

∫
[0,t]
〈ε∗[σ(uε)∇(η′(uε)ϕ)], dW 〉.

For ε, ` > 0 let us define the stopping time τ ε,` : X → [0, T ] as

τ ε,`(v) := inf
{
t ∈ [0, T ] : ε

∫
[0,t]

ds 〈∇v(s),∇v(s)〉 ≥ `
}

(3.4.2)

where we understand 〈∇v(s),∇v(s)〉 = +∞ if v(s) 6∈ H1(T). Note that by
(3.2.3) [

N ε;ηϕ, N ε;ηϕ
]
t
≤ 2ε2γ

∫
[0,t]
ds
[∥∥σ(uε(s))η′′(uε(s))ϕ(s)∇uε

∥∥2

L2(T)

+
∥∥σ(uε(s))η′(uε(s))∇ϕ(s)

∥∥2

L2(T)

]
so that, for some constant C1 > 0 depending only on σ and η[

N ε;ηϕ, N ε;ηϕ
]
t∧τε,` ≤ C1ε

2γ−1

∫
[0,t]

ds
[
`
∥∥ϕ(s)

∥∥2

L∞(T)
+ ε
∥∥∇ϕ(s)

∥∥2

L2(T)

]
By the Sobolev embedding of L1(T) in H−1(T), we gather that, for each ` >

0, the law of the H−1(T)-valued martingale {N̄ ε,`;η
t , t ∈ [0, T ]} defined as

N̄ ε,`;η
t (ψ) := N ε;ηψ

t∧τε,` for ψ ∈ H1(T), is exponentially tight in H−1([0, T ]×T) as
ε→ 0, see e.g. [12, Chapter 12].

By (3.4.1) we get for some constant C depending only on η, f , D and σ∣∣〈〈η(uε), ∂tϕ〉〉+ 〈〈q(uε),∇ϕ〉〉
∣∣ ≤ εC‖ϕ‖L∞([0,T ]×T)〈〈∇uε,∇uε〉〉

+εC〈〈∇ϕ,∇ϕ〉〉1/2〈〈∇uε,∇uε〉〉1/2 + |N ε;ηϕ
T |

+ε2γC‖ϕ‖L∞([0,T ]×T)

[
‖∇ε‖2

L2(T) + ‖ε‖2
L2(T)〈〈∇uε,∇uε〉〉

]
(3.4.3)

Therefore, for uε in the set {τ ε,` ≥ T} we have∣∣〈〈η(uε), ∂tϕ〉〉+ 〈〈q(uε),∇ϕ〉〉
∣∣

≤ C
(
`+ ε2γ‖∇ε‖2

L2(T) + ε2γ`‖ε‖2
L2(T)

)
‖ϕ‖L∞([0,T ]×T)

+ C
√
ε`‖∇ϕ‖2

L2([0,T ]×T) +
∣∣ ∫

[0,t]
dN̄ ε,`;η

s (ϕ(s))
∣∣
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Since the term in square brackets in the first line of the r.h.s. is bounded
uniformly in ε, by the compactness result on {N̄ ε,`;η

t } and the the compact
embedding of L1([0, T ] × T) in H−1([0, T ] × T), we get for each ` > 0 the
existence of a sequence {K`,n}n of compact subsets of H−1([0, T ] × T) such
that

lim
n

lim
ε
ε2γ−1Pε

(
η(u)t + q(u)x ∈ Kc

`,n, τ
ε,`(u) ≥ T

)
= −∞

Since, by Corollary 3.2.3

lim
`

lim
ε
ε2γ−1 log Pε(τ ε,` ≥ T ) = −∞

we get that the law of η(uε)t + q(uε)x is exponentially tight in H−1([0, T ] ×
T). The statement of the lemma then follows by Lemma 3.2.4 and Proposi-
tion 3.4.1. �

Proof of Theorem 3.1.7: upper bound. Recall Proposition 1.2.3 proved
in the introduction. Let H :M→ [0,+∞] be the (lower semicontinuous) op-
timal rate functional for the large deviations upper bound principle of {Pε}
with speed ε−2γ+1. Such an optimal rate exists, as we characterized it as the
Γ-liminf of the functional (1.2.8). Since {Pε} satisfies a large deviations upper
bound with speed ε−2γ and with a rate functional I :M→ [0,+∞] which is
strictly positive off the set of measure-valued solutions to (3.1.4), H is infinite
off the set of measure-valued solutions. On the other hand, since the topology
generated by dX on X coincides with topology induced on X by the immersion
map X 3 u 7→ δu ∈ X , Lemma 3.4.2 implies that H is infinite off the set
Me = {µ ∈ M : µ = δu for some u ∈ X}. Thus, since Pε is the pushfor-
ward of Pε w.r.t. this immersion map, and since a measure-valued solutions
µ to (3.1.4) that are in Me have necessarily the form µ = δu for some weak
solution u ∈ X , the optimal rate functional for the upper bound of {Pε} is
infinite off the closed set W of weak solutions to (3.1.4). Therefore, in view of
Lemma 3.4.2, we have to prove the large deviations upper bound inequality for
{Pε} with speed ε−2γ+1 only on compact subsets K of X , that are contained
in W .

Let (ϑ,Q) be an entropy sampler-entropy sampler pair. By Lemma 3.2.1
it is not difficult to see that the map [0, T ] 3 t 7→

∫
dxϑ(u(t, x), t, x) ∈ R is

continuous. With the same notation of Lemma 3.2.1, consider the exponential
supermartingale obtained as the stochastic exponential of {N ε;ϑ

t }. By the
bound (3.2.3) and the just stated continuity property of u, we have that for
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each ε > 0 the map

Eε;ϑ : [0, T ]×X → R+

Eε;ϑ : (t, u)→ exp
{∫

dx ϑ(u(t), t, x)−
∫
dx ϑ(u0, 0, x)

−
∫

[0,t]×Tds dx
[(
∂sϑ)

(
u(s, x), s, x

)
+
(
∂xQ

)(
u(s, x), s, x

)]
+
∫

[0,t]
ds
[
ε
2
〈ϑ′′(u)∇u,D(u)∇u〉+ ε

2
〈∂xθ′(u), D(u)∇u〉

− ε2γ

2
‖∇ε‖2

L2(T)〈ϑ′′(u)a(u), a(u)〉
− ε2γ

2
‖ε‖2

L2(T)〈ϑ′′(u)∇u, [a′(u)]2∇u〉
]

− ε2γ

2

∫
[0,t]
ds
〈
σ(u)

[
ϑ′′(u)∇u+ ∂xϑ

′(u)
]
, ϑ′′(u)∇u+ ∂xϑ

′(u)
〉}

is a continuous strictly positive Pε-supermartingale, with Eϑ
0 = 1, Pε almost

surely. For ` > 0 let B` := {u ∈ X ∩ L2

(
[0, T ];H1(T)

)
: 〈〈∇u,∇u〉〉 ≤ `}.

Given a compact subset K ⊂ X we have, for C, ε0 as in Corollary 3.2.3 and
` > C, ε ≤ ε0

Pε(K) ≤ Pε
(
Eε; ϑ

ε2γ−1 (T, u)[Eε; ϑ
ε2γ−1 (T, u)]−11IK∩B`/ε(u)

)
+ Pε(B`/ε)

≤ supu∈K∩B`/ε [E
ε; ϑ
ε2γ−1 (T, v)]−1 + exp

(
− (`−C)2

Cε2γ−1(`+1)

)
(3.4.4)

where in the last line we used the supermartingale property of Eε;ϑ and
Corollary 3.2.3. On the other hand, by Cauchy-Schwartz inequality, for each
u ∈ B`/ε

ε2γ−1 logEε; ϑ
ε2γ−1 (T, u) = −

∫
dx ϑ(u0(x), 0, x)

−
∫
ds dx

[(
∂sϑ)

(
u(s, x), s, x

)
+
(
∂xQ

)(
u(s, x), s, x

)]
+ ε

2
〈〈ϑ′′(u)∇u,D(u)∇u〉〉+ ε

2
〈〈∂xθ′(u), D(u)∇u〉〉

− ε2γ

2
‖∇ε‖2

L2(T)〈〈ϑ′′(u)a(u), a(u)〉〉
− ε2γ

2
‖ε‖2

L2(T)〈〈ϑ′′(u)∇u, [a′(u)]2∇u〉〉
− ε

2
〈〈σ(u)ϑ′′(u)∇u, ϑ′′(u)∇u〉〉 − ε

2
〈〈σ(u)∂xϑ

′(u), ∂xϑ
′(u)〉〉

−ε〈〈σ(u)ϑ′′(u)∇u, ∂xϑ′(u)〉〉
≥ −

∫
dx ϑ(u0(x), 0, x)

−
∫
ds dx

[(
∂sϑ)

(
u(s, x), s, x

)
+
(
∂xQ

)(
u(s, x), s, x

)]
+ ε

2
〈〈ϑ′′(u)∇u,

(
D(u)− σ(u)ϑ′′(u)

)
∇u〉〉 − Cϑ

√
ε`

−Cϑε2γ‖∇ε‖2
L2(T) − Cϑε2γ−1`‖ε‖2

L2(T) − Cϑε−
√
ε`Cϑ

for a suitable constant Cϑ > 0 depending only on ϑ, D and σ. The key point
now is that, if the entropy sampler ϑ satisfies

σ(u)ϑ′′(u, t, x) ≤ D(u) ∀u ∈ [0, 1], t ∈ [0, T ], x ∈ T (3.4.5)

then the term 〈〈ϑ′′(u)∇u,
(
D(u) − σ(u)ϑ′′(u)

)
∇u〉〉 is positive, namely the

largest term related to the quadratic variation of N ε;ϑ
t is controlled by the

positive parabolic term related to the deterministic diffusion. Therefore, by
the hypotheses assumed on ε, for each entropy sampler ϑ satisfying (3.4.5),



3.4. LARGE DEVIATIONS ON THE SCALE ε−2γ+1 97

u ∈ B`/ε and up to redefining the constant Cϑ, there exists a sequence αε → 0
such that

ε2γ−1 logEε; ϑ
ε2γ−1 (T, u) ≥ −

∫
dx ϑ(u0(x), 0, x)− Cϑ(1 + `)αε

−
∫
ds dx

[(
∂sϑ)

(
u(s, x), s, x

)
+
(
∂xQ

)(
u(s, x), s, x

)]
By (3.4.4), taking the logarithm, multiplying by ε2γ−1 optimizing on ` > 0 and
ϑ satisfying (3.4.5), and passing to the limit ε→ 0

limε ε
2γ−1Pε(K) ≤ − supϑ infu∈K

{
−
∫
dx ϑ(u0(x), 0, x)

−
∫
ds dx

[(
∂sϑ)

(
u(s, x), s, x

)
+
(
∂xQ

)(
u(s, x), s, x

)]}
where the supremum is taken on the entropy samplers ϑ satisfying (3.4.5). It
is immediate to see that the map X 3 u 7→ −

∫
dt dx

[(
∂tϑ)

(
u(t, x), t, x

)
+(

∂xQ
)(
u(t, x), t, t

)]
∈ R is lower semicontinuous in X for each ϑ. Therefore

the minimax lemma yields

limε ε
2γ−1Pε(K) ≤ − infu∈K supϑ

{
−
∫
dx ϑ(u0(x), 0, x)

−
∫
ds dx

[(
∂sϑ)

(
u(s, x), s, x

)
+
(
∂xQ

)(
u(s, x), s, x

)]} (3.4.6)

As noted at the beginning of this proof, we need to show the upper bound
only for compact sets K contained in the set of weak solutions to (3.1.4). On
the other hand, for such a K, (3.4.6) reads

lim
ε
ε2γ−1Pε(K) ≤ − inf

u∈K
sup
ϑ
Pϑ,u

where, as usual, the supremum is taken over the entropy samplers ϑ satisfying
(3.4.5). In the proof of Theorem 2.2.5, it was shown that a weak solution u
to (3.1.4) such that supϑ Pϑ,u < +∞- is indeed an entropy-measure solution
u ∈ E , and supϑ Pϑ,u = H(u). �

Proof of Theorem 3.1.7: lower bound. We will use the entropy method
suggested by Lemma 3.3.1, as we did in the proof of Theorem 3.1.3 item (ii).
Given u ∈ S, we need to show that there exists a sequence {Qε} ⊂ P(X ) such
that lim ε2γ−1H(Qε|Pε) ≤ H(u) and Qε → δu weakly* in P(X ). Still following
the proof of Theorem 3.1.3 item (ii), we can construct such a sequence {Qε;u}
using exponential martingales. By the calculation in (3.3.6), everything boils
down to find a sequence of martingales {M ε;u}ε such that

lim
ε

ε2γ−1

2

[
M ε;u,M ε;u

]
T
≤ H(u) (3.4.7)

and such that any sequence of martingale solutions {vε} to the problem

dv =
[
−∇ · f (v) + ε

2
∇ · (D(v))∇v)−Gir

]
dt+ εγ∇ ·

[
a(v)(ε ∗ dW )

]
uε(0, x) = u0(x)

(3.4.8)
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converges to u in X . Here Gir stands for the Girsanov term, namely the
cross quadratic variation of the martingale M ε;u with the martingale term
εγ∇ ·

[
a(uε)(ε ∗ dW )

]
.

With minor adaptations from Theorem 2.2.5, we have that the following
statement holds. For each sequence αε → 0 and each each u ∈ S, there exists
a sequence a {wε} ⊂ X and a sequence {Ψε} ⊂ L2

(
[0, T ];H2(T)

)
such that:

(a) wε → u in X , and wε(0, x) = u0(x).
(b) ε〈〈∇wε,∇wε〉〉 ≤ C for some C > 0 independent of ε.
(c) limε ε

−1〈〈σ(wε)∇Ψε,∇Ψε〉〉 = H(u).
(d) αε〈〈∇[a(wε)∇Ψε],∇[a(wε)∇Ψε]〉〉 ≤ C ε−1, for some C > 0 indepen-

dent of ε.
(e) The equation

∂tw
ε +∇ · f(v)− ε

2
∇ ·
(
D(wε)∇wε

)
= −∇ ·

(
σ(wε)∇Ψε

)
holds weakly.

We let αε := ε−3/2‖ε − 1I‖W−1,1(T), and let {wε}, {Ψε} be chosen correspond-
ingly. Note that with this choice and by the assumption on ‖ε − 1I‖W−1,1(T),
the quantity

βε := ε−2

∫ t

0

ds ‖ε ∗ ε ∗ [a(wε)∇Ψε]− a(wε)∇Ψε‖2
L2(T) (3.4.9)

converges to 0 as ε→ 0.
We define the martingale M ε;u as

M ε;u
t := ε−γ

∫
[0,t]

〈ε ∗ [a(wε)∇Ψε], dWs〉

Then by Young inequality for convolutions:

1

2

[
M ε;u,M ε;u

]
t
≤ ε−2γ

2
〈〈σ(wε)Ψε,Ψε〉〉

so that by property (c) we have that (3.4.7) is satisfied for this choice of M ε;u.
Moreover for this choice of M ε;u the equation (3.4.8) reads

dv =
[
−∇ · f (v) + ε

2
∇ · (D(v)∇v)

]
dt

+
[
∇ · a(v)( ∗  ∗ (a(wε)∇Ψε)

]
dt+ εγ∇ ·

[
a(v)(ε ∗ dW )

]
vε(0, x) = u0(x)

(3.4.10)
For ε > 0 let vε ∈ X ∩ L2([0, T ];H1(T) be the canonical process for a generic
martingal solution to (3.4.10).

For l ∈ C2([−1, 1]), let us apply Itô formula for the map X∩L2([0, T ];H1(T) ∈
v 7→

∫
dt dx l(v − wε(t, x)). Direct computation and the equation in (e) above
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yield, denoting zε = vε − wε∫
dx [l(zε(t, x))− l(0)]

=
∫

[0,t]
ds
{
− ε

2
〈l′′(zε)∇zε, D(vε)∇zε〉+ 〈l′′(zε)∇zε, f(vε)− f(wε)〉

− ε
2

∫
[0,t]
ds〈l′′(zε)∇zε, [D(vε)−D(wε)]∇wε〉

+ 〈l′′(zε)∇zε, [a(vε)− a(wε)]
(
ε ∗ jε ∗ [a(wε)∇Ψε]

)
〉

− 〈l′′(zε)∇zε, a(wε)
(
ε ∗ jε ∗ [a(wε)∇Ψε]− a(wε)a(wε)∇Ψε]

)
〉

+ ε2γ

2
‖∇ε‖2

L2(T)〈l′′(zε)a(vε), a(vε)〉

+ ε2γ

2
‖ε‖2

L2(T)〈l′′(zε)∇vε, [a′(vε)]2∇vε〉
}

+N ε;l
t

(3.4.11)
for each t ∈ [0, T ]. Here N ε;l is a square-integrable martingale with vanish-
ing Qε;u mean. Recall the definition B` := {u ∈ X ∩ L2

(
[0, T ];H1(T)

)
:

〈〈∇u,∇u〉〉 ≤ `}. With the same notation of (3.3.10), we gather by Cauchy-
Schwartz inequality, for each ` > 0 and vε ∈ B`/ε∫

dx [l(zε(t, x))− l(0)] ≤ − ε
2
(Rε;`(t))2 + C1A

3,lRε,l(t)

+
√
εC1

[
ε
∫ t

0
ds 〈∇wε,∇wε〉

]1/2
A3,lRε,l(t)

+C1

[ ∫ t
0
ds ‖ε ∗ ε ∗ [a(wε)∇Ψε]‖2

L2(T)

]1/2
A3,lRε,l(t)

+C1

[ ∫ t
0
ds ‖ε ∗ ε ∗ [a(wε)∇Ψε]− a(wε)∇Ψε‖2

L2(T)

]1/2√
A2,lRε,l(t)

+C1ε
2γ‖∇ε‖2

L2(T)A
2,l + C1ε

2γ−2‖ε‖2
L2(T)A

2,l`+N ε;l
t

(3.4.12)
for some constant C1 > 0. The terms in square brackets in the second and
third lines of (3.4.12) are bounded uniformly in ε by properties (b) and (c)
respectively. Therefore, recalling (3.4.9), maximizing the r.h.s. of (3.4.12) as
Rε;`(t) runs on R, and assuming l such that l(0) = 0, we get for vε ∈ B`/ε and
for some C2 > 0∫

dx l(zε(t, x)) ≤ ε−1C2(A3,l)2 + εC2A
2,lβε

+C2

[
ε2γ−1‖∇ε‖2

L2(T) + ε2γ−3‖ε‖2
L2(T)`

]
εA2,l +N ε;l

t

Integrating in dt, taking the expectation w.r.t. Qε;u

Qε;u
(

1IBε−1`(v)
∫
dx l(v − uε(t, x))

)
≤ ε−1C3(A3,l)2 + εC3A

2,lβε

+C3

[
ε2γ−1‖∇ε‖2

L2(T) + ε2γ−3‖ε‖2
L2(T)`

]
εA2,l

(3.4.13)
for some C3 > 0. The term in square brackets in the last line of (3.4.13) van-
ishes by assumption. On the other hand, it is easy to see that there exists a se-
quence {lε} such that lε(·)→ |·| uniformly on [−1, 1], and the r.h.s. of (3.4.13)
vanishes as ε → 0. By the entropy bound (3.4.7) on ε2γ−1Ent(Qε;u|Pε;u), by
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(1.2.7) and Corollary 3.2.3 we have

lim
`→+∞

lim
ε

Qε;u(Bε−1`) = 1

so that we can conclude by (3.4.13) and property (a).
�

3.5. Appendix A: Existence and uniqueness results for fully
nonlinear parabolic SPDEs with conservative noise

In this appendix, we are concerned with existence and uniqueness results
for the Cauchy problem in the unknown u ≡ u(t, x), t ∈ [0, T ], x ∈ T

du =
[
−∇ · f(u) + 1

2
∇ ·
(
D(u)∇u

)]
dt+∇ ·

[
a(u)( ∗ dW )

]
u(0, x) = u0(x)

(3.5.1)
Although we assume the space-variable x to run on a one-dimensional torus
T, it is not difficult to extend the results given below to the case x ∈ Td or
x ∈ Rd for d ≥ 1. The assumptions on the quantities involved in (3.5.1) are
given below.

We assume that a standard filtered probability space
(
Ω,F,Ft,P

)
is given,

and that W is a cylindrical Brownian motion on this space. Hereafter we set

Q(v) :=
[
(∂ua)(v)

]2 ∫
dx |∇(x)|2

We will assume the following hypotheses:

A1) f and D are uniformly Lipschitz on R.
A2) a ∈ C2(R) is uniformly bounded.
A3)  ∈ H1(T) and, with no loss of generality,

∫
dx |(x)| = 1.

A4) D is uniformly positive, and there exists c > 0 such that D ≥ Q+ c.
A5) u0 is F0 measurable and satisfies E〈u0, u0〉 < +∞.

We introduce the Polish space Y := C
(
[0, T ];H−2(T)

)
∩L2

(
[0, T ];H1(T)

)
∩

L∞
(
[0, T ];L2(T)

)
. A probability measure P̄ on Y is a martingale solution to

(3.5.1) iff the law of u(0) under P̄ in L2(T) is the same of the law of u0, and
for each ϕ ∈ C∞

(
[0, T ]× T

)
Lut (ϕ) := 〈u(t), ϕ(t)〉− 〈u(0), ϕ(0)〉−

∫
[0,t]

ds
〈
u, ∂tϕ〉− 〈f(u)− 1

2
D(u)∇u,∇ϕ

〉
(3.5.2)

is a continuous square-integrable martingale (w.r.t. P̄(du)) with quadratic vari-
ation [

Lu· (ϕ), Lu· (ϕ)
]
t

=

∫
[0,t]

ds 〈 ∗ (a(u)∇ϕ),  ∗ (a(u)∇ϕ)〉 (3.5.3)
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We say that an {Ft}-adapted process u : Ω → Y is a strong solution to
(3.5.1) iff u(0) = u0 P-a.s. and for each ϕ ∈ C∞

(
[0, T ]× T

)
Lut (ϕ) =

∫
[0,t]

〈 ∗
(
a(u)∇ϕ

)
, dW 〉 (3.5.4)

In this appendix we prove

Theorem 3.5.1. Assume A1)–A5). Then there exists a unique strong
solution u to (3.5.1). Furthermore, if u0 takes values in [0, 1] and a is supported
by [0, 1], then u takes values in [0, 1] a.s..

By compactness estimates we will prove that there exists a solution to the
martingale problem related to (3.5.1). Then we will prove that there exists a
most one strong solution u to (3.5.1) using a stability result similar to the one
used in the proof of Theorem 3.1.7. By Yamada-Watanabe theorem we get
the existence and uniqueness stated in Theorem 3.5.1.

Lemma 3.5.2. Let 0 ≤ t′ < t′′ ≤ T , let u′, v be two Ft′ measurable ran-
dom functions on L2(T) such that E‖|u′| + |v| + |∇v|‖2

L2(T) < +∞. Then the
stochastic Cauchy problem

dw =
[
−∇ · f(v) + 1

2
∇ ·
(
D(v)∇w

)]
dt+∇ ·

[
a(v)( ∗ dW )

]
w(t′, x) = u′(x)

(3.5.5)

admits a unique strong solution u with values in L2

(
[t′, t′′];H1(T)

)
∩C
(
[t′, t′′], H−1(T)

)
.

Such a solution u satisfies

〈u(t), u(t)〉+
∫

[t′,t]
ds〈D(v)∇u,∇u〉 = N(t, t′) + 〈u′, u′〉

+
∫

[t′,t]
ds
[
〈Q(v)∇v,∇v〉+

∫
dxS(v)

] (3.5.6)

where N(t, t′) := 2
∫

[t′,t]
〈∗
(
a(v)∇u

)
, dW 〉. Furthermore E supt∈[t′,t′′] ‖u(t)‖2

L2(T) <
+∞.

Proof. Existence and uniqueness follows by explicit representation, see
e.g. [12]. Applying Itô formula to the map w 7→ 〈w,w〉 acting o on L2(T) we
get (3.5.6). Note that by Doob inequality, for a suitable constant C > 0

E supt∈[t′,t′′] |N(t, t′)| ≤ 2E
[
N(·, t′), N(·, t′)

]1/2
t′′

= 4
[ ∫

[t′,t′′]
ds 〈 ∗

(
a(v)∇u

)
,  ∗

(
a(v)∇u

)
〉
]1/2

≤ 4
[ ∫

[t′,t′′]
ds 〈a(v)∇u, a(v)∇u〉

]1/2

≤ C
[ ∫

[t′,t′′]
ds 〈D(v)∇u,∇u〉

]1/2

so that the bound on E supt∈[t′,t′′] ‖u(t)‖2
L2(T) is easily obtained by (3.5.6). �
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We next introduce a sequence {un} of adapted Y -valued processes. We will
gather existence of a weak solution to (3.5.1) by tightness of the laws {Pn} of
this sequence.

For n ∈ N and i = 0, . . . , 2n let tni := i2−nT , and let {ın} be a sequence of
smooth mollifiers on T such that limn 2−n‖ı‖2

L1(T) = 0. We define a process un

on Y and the auxiliary random functions {vni }2n

i=0 on T as follows. For i = 0
we set

u(0) = u0

vn0 := ın ∗ u0

and for i = 1, . . . , 2n − 1 and t ∈ [tni , t
n
i+1], we let un(t) be the solution to the

problem (3.5.5) with u′ = u(tni ) and v = vni , and we set

vni :=
2n

T

∫
[tni−1,t

n
i ]

ds un(s)

By Lemma 3.5.2, these definitions are recursively well-posed, and indeed un

takes values in Y . We also define a sequence of D
(
[0, T );L2(T)

)
cadlag pro-

cesses {vn} by requiring vn(t) = vni for t ∈ [tni , t
n
i+1).

Lemma 3.5.3. There exists a constant C > 0 independent of n such that

E sup
t∈[0,T ]

〈un(t), un(t)〉+ E〈〈∇un,∇un〉〉 ≤ C (3.5.7)

and for each ϕ ∈ H1(T) such that 〈∇ϕ,∇ϕ〉 ≤ 1, for each δ > 0 and r ∈ (0, 1)

P
(

sup
s,t∈[0,T ] :|s−t|≤δ

∣∣〈un(t)− un(s), ϕ〉
∣∣ > r

)
≤ C δ r−2 (3.5.8)

Furthermore for each δ > 0

lim
n→∞

P
(
〈〈un − vn, un − vn〉〉 > δ

)
= 0 (3.5.9)

Proof. Writing Itô formula (3.5.6) for un in the intervals [tni , t
n
i+1] and

summing over i, we get for each t ∈ [0, T ]

〈un(t), un(t)〉+
∫

[0,t]
ds 〈D(vn)∇un,∇un〉 = Nn(t) + 〈u0, u0〉

+
∫

[0,t]
ds
[
〈Q(vn)∇vn,∇vn〉+

∫
dxS(vn)

]
where, by the same means of Lemma 3.5.2, the martingale Nn(t) := 2

∫
[0,t]
〈 ∗(

a(vn)∇un
)
, dW 〉 enjoys the bound E sups∈[0,T ] |Nn(t)| ≤ C1〈〈D(vn)∇un,∇un〉〉1/2

for some C1 > 0 depending on D and a. Note that, by the definition of the
vni , hypotheses A5) and Young inequality for convolutions∫

[0,t]
ds 〈Q(vn)∇vn∇vn〉 ≤

∫
[0,t]
ds 〈Q(vn)∇un,∇un〉+ C2

∫
[0,tn1 ]

ds 〈ın ∗ u0, ı
n ∗ u0〉

≤
∫

[0,t]
ds 〈(D(vn)− c)∇un,∇un〉+ 2−nT C2 ‖ın‖2

L1(T)〈u0, 〈u0〉
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for some constant C2 depending only on a. Patching all together

E supt∈[0,T ]〈un(t), un(t)〉+ c〈〈D(vn)∇un,∇un〉〉
≤ +

(
1 + 2−nT C2‖ın‖2

L1(T)

)
E〈u0, u0〉

+ C1〈〈D(vn)∇un,∇un〉〉1/2 +
∫

[0,t]×Tds dxS(vn)

Since S(·) is bounded by a constant depending only on  and a, it is not difficult
to gather (3.5.7).

Since u satisfies (3.5.5) in each interval [tni , t
n
i+1]∣∣〈un(t)− un(s), ϕ〉

∣∣ ≤ C3

(
1 + 〈〈∇un,∇un〉〉1/2

)
|t− s|1/2〈∇ϕ,∇ϕ〉1/2

+
∣∣ ∫

[s,t]
〈 ∗ (a(v)∇ϕ), dW 〉

∣∣
for a suitable constant C3 depending only on f and D. (3.5.8) then follows
from the first part of the lemma.

In order to prove (3.5.9), by (3.5.7) it is enough to show that for each ` > 0

lim
n→∞

P
(
〈〈un − vn, un − vn〉〉 > δ, 〈〈∇un,∇un〉〉 ≤ `

)
= 0

Let κ ∈ C∞(T) be such that
∫
dx κ(x) = 1, and note

‖κ− id‖−1,1 := sup
{ ∫

dx
∣∣ ∫ dy κj(x− y)ϕ(y)− ϕ(x)

∣∣,
ϕ ∈ C∞(T), supx |∇ϕ(x)| ≤ 1

}
< +∞

It is easily seen that exists κ such that ‖κ − id‖−1,1 ≤ ζ
8`

, as this quantity
vanishes as we let κ converge weakly to the Dirac mass centered at 0. Then

‖un − vn‖L2([tn1 ,T ]×T) ≤ +‖un − κ ∗ un‖L2([tn1 ,T ]×T)

+‖vn − κ ∗ vn‖L2([tn1 ,T ]×T) + ‖κ ∗ un − κ ∗ vn‖L2([tn1 ,T ]×T)

≤ ‖κ− id‖−1,1

∫
[tn1 ,T ]

dt
[
〈∇un,∇un〉+ 〈∇vn,∇vn〉

]
+
∫

[tn1 ,T ]
dt 〈κ ∗ (un − vn), κ ∗ (un − vn)〉

By the definition of vn,
∫

[tn1 ,T ]
ds∇vn,∇vn〉 ≤

∫
[tn1 ,T ]

ds 〈∇un,∇un〉. Moreover∫
[tn1 ,T ]

dt 〈κ ∗ (un − vn), κ ∗ (un − vn)〉
= 2n

T

∑2n−1
i=1

∫
[tni ,t

n
i+1]

dt
∫

[tni−1,t
n
i ]
ds 〈κ ∗ (un(t)− un(s)), κ ∗ (un(t)− un(s))〉

≤ sup|t−s|≤2−n+1T 〈κ ∗ (un(t)− un(s)), κ ∗ (un(t)− un(s))〉
Therefore

‖un − vn‖L2([tn1 ,T ]×T) ≤ ζ
4`

∫
[tn1 ,T ]

dt 〈∇un,∇un〉+
+ sup|t−s|≤2−n+1T ‖κ ∗ (un(t)− un(s))‖2

L2(T)

(3.5.10)

so that

limn→∞ P
(
〈〈un − vn, un − vn〉〉 > ζ, 〈〈∇un,∇un〉〉 ≤ `

)
≤ limn→∞ P

(
2 ‖un − vn‖L2([0,tn1 ]×T) >

ζ
4

)
+ P

(
2‖un − vn‖L2([tn1 ,T ]×T) >

3ζ
4
, 〈〈∇un,∇un〉〉 ≤ `

)
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The first term in the r.h.s. of this formula vanishes by the bound on the
L∞
(
[0, T ];L2(T)

)
in (3.5.7). By (3.5.10), the second term in the r.h.s. is

bounded by P
(

sup|t−s|≤2−n+1T ‖κ ∗ (un(t) − un(s))‖2
L2(T)〉 ≥ ζ/4

)
, which also

vanishes by (3.5.8). �

We define Pn to be the law of un, considered as a stochastic process on
C
(
[0, T ], H−2(T)

)
⊃ Y .

Corollary 3.5.4. {Pn} is tight, and thus compact, on C
(
[0, T ], H−2(T)

)
equipped with the uniform topology. Furthermore each limit point P̄ of {Pn} is
concentrated on Y and satisfies

Ē sup
t
〈u(t), u(t)〉+ Ē〈〈∇u,∇u〉〉 < +∞ (3.5.11)

Proof. The estimate (3.5.8) implies that for each ϕ ∈ H1(T) the laws of
the processes t 7→ 〈un(t), ϕ〉 are tight in C

(
[0, T ]; R

)
as n runs on N, see [6, pag.

83]. A standard application of Mitoma’s theorem (see [21, Cap. 6, Corollary
6.16]) implies that {Pn} is tight on C

(
[0, T ], H−2(T)

)
. (3.5.11) follows by

(3.5.7). �

The following statement is derived following closely the proof of Proposi-
tion 2.3.5.

Proposition 3.5.5. Let K ⊂ U be a compact w.r.t. dU . Suppose that each
u ∈ K has a weak x-derivative ∇u ∈ L2([0, T ] × T), and suppose that exists
ζ > 0 such that 〈〈∇u,∇u〉〉 ≤ ζ. Then K is strongly compact in X .

Proposition 3.5.6. Each limit point P̄ of {Pn} is concentrated on Y and
is a weak solution to (3.5.1).

Proof. Let P̄ be a limit point of {Pn} along a subsequence nk. It is easily
seen that the law of u(0) under P̄ coincides with the law of u0.

For u ∈ Y , v ∈ D
(
[0, T );L2(T)

)
and ϕ ∈ C∞

(
[0, T ]× T

)
let

Lu,vt (ϕ) := 〈u(t), ϕ(t)〉−〈u(0), ϕ(0)〉−
∫

[0,t]

ds
〈
u, ∂tϕ〉−〈f(v)− 1

2
D(v)∇u,∇ϕ

〉
By (3.5.9), (3.5.7), and Proposition 3.5.5, the law of Lu

n,vn

T (ϕ) under Pn con-
verges, along the subsequence nk, to the law under P̄ of Lu,uT (ϕ) = Lu· (ϕ).

On the other hand, for each n and ϕ, Lu
n,vn

· (ϕ) is a martingale w.r.t.
Pn, with quadratic variation

[
Lu,v· (ϕ), Lu,v· (ϕ)

]
t

=
∫

[0,t]
ds 〈 ∗ (a(vn)∇ϕ),  ∗

(a(vn)∇ψ)〉. Still by (3.5.9), (3.5.7), and compactness in L2

(
[0, T ] × T

)
, we

have that Lu· (ϕ) is a martingale under P̄, with quadratic variation given by
(3.5.3). �

Proposition 3.5.7. There exists at most one strong solution to (3.5.1).
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Proof. Let u, v be to strong solutions to equation (3.5.1). By Ito formula,
for l ∈ C2(R) with bounded derivatives∫

dx l(u− v)(t)− l(0) + 1
2

∫
[0,t]
ds 〈D(u)l′′(u− v)∇(u− v),∇(u− v)〉

= X(t) +
∫

[0,t]
ds〈l′′(u− v)∇(u− v), f(u)− f(v)〉

− 1
2

∫
[0,t]
ds 〈l′′(u− v)∇(u− v), [D(u)−D(v)]∇v〉

+ 1
2

∫
[0,t]
ds 〈l′′(u− v), ‖∇‖2

L2(T)

(
a(u)− a(v)

)2

+ ‖‖2
L2(T)

(
(∂ua)(u)∇u− (∂ua)(v)∇v

)2〉

where, as usual, the quadratic variation of the martingale X(t) is bounded by∫
[0,t]
‖l′′(u− v)∇(u− v) (a(u)− a(v)) ‖2

L2(T). Introducing

R :=
[
E
∫

[0,t]

ds 〈l′′(u− v)∇(u− v),∇(u− v)〉
]1/2

and using Holder inequality, assumptions A2) and A5) and the bound (3.5.11),
we get for a suitable constant C > 0

E supt≤T
∫
dx l(u− v)(t) + cR2

≤ l(0) + C
[
E‖l′′(u− v)|u− v|2‖L∞([0,T ]×T)

]1/2
R

+ CE
∫

[0,t]
ds 〈l′′(u− v)|u− v|, |u− v|〉

For any δ > 0, we can choose l so that |z| ≤ l(z) ≤ |z| + δ, l(z) = |z| for
|z| ≥ δ, and |l′′(z)| ≤ 3δ−1. Therefore

E supt ‖u− v‖L1(T) ≤ E supt
∫
dx l(u− v)(t) ≤ δ − cR2 + C

√
δR + Cδ

≤
(
C2

4c
+ C + 1

)
δ

Since this holds for any δ > 0, u = v. �

Proof of Theorem 3.5.1. Existence and uniqueness of a strong solu-
tion to (3.5.1) is a g consequence of Proposition 3.5.6, Proposition 3.5.7 and
Yamada-Watanabe theorem [16, Cap. 5, Corollary 3.23]. The fact that u
takes values supported by [0, 1] is provided in the same fashion of Corol-
lary 3.2.3. Let {ln} be a sequence of infinitely differentiable convex functions
on R with bounded derivatives. We can choose {ln} such that for v ∈ [0, 1]
(
(
∂u,uln)(v) ≤ D(v) a−2(v) and ln(v) ≤ Cn(1 + v2) (for some Cn > 0), while

ln(v) ↑ +∞ for n→ +∞ pointwise for v 6∈ [0, 1]. By Itô formula (3.2.1)∫
dx
[
ln(u(t))− ln(u0)

]
+ 1

2

∫
[0,t]
ds
〈(
∂u,uln

)
(u)D(u)∇u,

(
∂u,uln

)
(u)∇u

〉
= 1

2

∫
[0,t]
ds
〈(
∂u,uln

)
(u)∇u,Q(u)∇u

〉
+
∫

[0,t]
ds
∫
dx
(
∂u,uln

)
(u)S(u) +Nn(t)

where Nn(t) is a martingale, and by Young inequality its quadratic variation
bounded by

[
Nn(·), Nn(·)

]
t
≤
∫

[0,t]
〈a(u)

(
∂u,uln

)
(u) a(u)∇u,

(
∂u,uln

)
(u)∇u〉.
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Following closely the proof of Corollary 3.2.3, we gather for some constant
C independent of n

E sup
t≤T

∫
dx ln(u(t)) ≤ E

∫
dx ln(u0) + C

As we let n → ∞, the l.h.s. stays bounded, and since ln → +∞ pointwise off
[0, 1], necessarily u(t, x) ∈ [0, 1] dt dx dP-a.s.. �
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