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Introduction

The phenomenology of elementary particle physics is described on the theoretical side, to a
high degree of accuracy, by the perturbative treatment of relativistic quantum field theories.
On the mathematical and conceptual side, however, the understanding of these theories is
far from being satisfactory, as illustrated, for instance, by the well known difficulties in the
very problem of providing them with a mathematically sound definition in d = 4 spacetime
dimensions. Another example, not unrelated to the previous one, even if more on the con-
ceptual level, is given by the problem of confinement. This issue arises in the theoretical
description of hadronic physics, which, according to the common belief, is provided by
guantum chromodynamics (QCD), a non-abelian gauge theory coupled to fermion fields,
and amounts to the fact that the asymptotic ultraviolet freedom of QCD, together with other
experimental and theoretical results such as the scaling of deep inelastic scattering cross sec-
tion, or hadron spectroscopy fitting with the quark model of Gell-Mann and Ne’eman, seem
to speak in favour of the existence of particle-like costituents of hadronic matter, quarks
and gluons, which do not appear as asymptotic states at large distances, and are hence per-
manently confined in hadrons, due to a force between them that grows with distance. The
conceptual problem with this notion of confinement arises when one notes that it ascribes a
physical reality to theoretical objects which are not observable, such as the gauge and Dirac
fields out of which the QCD lagrangian is constructed, while the observables are the only el-
ements of a quantum theory to which it is possible to attach a physical interpretation. From
what we know at present, we cannot exclude at all the possibility that there exists some
other lagrangian, with a totally different field content, and nevertheless such that the corre-
sponding quantum field theory, provided it can be constructed, yields the same observables
as QCD. On the contrary, several examples are known of such a situation. It is well known,
for instance, that a given S-matrix can be obtained from different systems of Wightman
fields, relatively local with respect to each other (a so-called Borchers class of Wightman
fields [Bor60]). Another classical, more relevant example is given by the Schwinger model,
i.e. QED in d = 2 spacetime dimensions with massless fermions, which has been consid-
ered as a simple illustration of QCD phenomenology, since in d = 2 the electric potential
is linearly rising with distance, so electrically charged fermions are expected to be confined
in this model, and only composite neutral objects can appear as asymptotic states. This
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model is exactly solvable, and what one indeed finds, is that the algebra of observables is
isomorphic to the one generated by a massive free scalar field [LS71], so that actually the
model has no charged states. But the same set of observables is obtained starting from a free
field lagrangian, so it is unclear why one should speak of “confined electrons” described by
the theory. More recently, the discovery of a web of dualities between pairs of (supersym-
metric) Yang-Mills theories [Sei96] has given support to the possibility of existence, even
in 4 dimensions, of theories defined by different lagrangians, with different gauge groups
and matter content, but having the same infrared behaviour, and hence the same charges,
particles etc.

In view of the above considerations, D. Buchholz has advocated the following point of
view [Buc96b]. in order to decide if a given theory intrinsically describes at small scales
objects corresponding to the physical idea of confined particles and charges, one has to look
at the observables of the theory alone.

As a matter of fact, a conclusion of this kind should not have come as a surprise, since
the principle that a theory is fixed by the assignment of its algebras of local observables
has been at the heart of the algebraic approach to quantum field theory [Haa96] for more
than forty years. This axiomatic framework has been considerably successful in analysing
structural aspects of quantum field theory such as collision theory, gauge symmetry and
superselection structure in physical and low-dimensional spacetimes, quantum field the-
ory on curved spacetime, and thermal states. In particular superselection theory gives
a completely general procedure to recover, from the knowledge of the net of local ob-
servables, the set of charges (also called superselection sectors) described by the theory,
together with their composition rule, permutation statistic and charge-anticharge symme-
try [DHR71, DHR74, BF82], as well as a canonical system of charge carrying fields and a
global gauge group selecting the observables as the gauge invariant combinations of fields,
and labelling charges by its irreducible representations [DR90]. We can expect then that
this analysis should play a relevant role in an intrinsic understanding of confined charges
in the spirit put forward above. The other essential ingredient in this task is necessarily
a framework allowing a canonical analysis of the structure of local observables at small
spatio-temporal scales. This framework has been provided in [BV95], where an algebraic
version of the conventional renormalization group methods is established, and it is then used
to show that the small scales behaviour of the observables of a given theory is canonically
described by a new theory (or, more generally, by a family of theories), itself defined by a
net of local algebras, which is then regarded as the scaling (ultraviolet) limit of the given
theory. It is then possible to apply the superselection analysis to this new theory, and the
resulting sectors, which, in view of their construction, are canonically determined by the
observables of the underlying (i.e., finite scales) theory, can be naturally considered as the
charges described by the underlying theory at small scales. This has to be contrasted with
the unphysical degrees of freedom usually associated with the small scales behaviour of
gauge theories considered above. The superselection structure of the underlying theory and
of its scaling limit are in principle different. Suppose then that there is a canonical way to
recognize some charges of the scaling limit as suitable small scales limits of charges of the
underlying theory. Then, since the physical idea of confined charge is that of a charge that
cannot be created by operations at finite scales, one would get a natural and intrinsic defini-
tion of confined charge by declaring that a confined charge of a given theory is a charge of
its scaling limit that it is not obtained as a limit of charges of the underlying theory.
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In this thesis we study the relations between the scaling limit and the underlying the-
ory’s superselection structures, with the aim of establishing such a notion of charge scaling
limit. As the analysis of the phase space properties of renormalization group orbits carried
out in [BV95] makes clear (see also chapter 2), one cannot expect on general grounds this
limit to exist for an arbitrary sector of the underlying theory, since it may happen that lo-
calizing a charge in a sequence of regions shrinking to a point requires energies growing
too fast with the inverse radius of those regions, and the resulting charges of the scaling
limit theory, if they existed, would then require an infinite amount of energy to be created
in finite regions. What we will do then is to single out a class of sectors of the underlying
theory with “good” phase space properties, and show that the limit of these sectors can be
defined in a natural way. Also, we will consider both the cases of sectors which are finitely
localizable, the so called DHR charges, after [DHR71, DHR74], and of sectors which are
localizable in arbitrary spacelike cones, first studied in [BF82], the reason for this being
that the latters are expected to appear in non-abelian gauge theories, the cone representing a
roughened version of the Mandelstam string emanating from charged particles observed in
lattice approximations, and that, on the other hand, non-abelian gauge theories are precisely
the ones expected to exhibit the confinement phenomenon, so that a physically interesting
intrinsic confinement criterion should necessarily encompass cone-like localizable charges
in its range of application.

The organization of the thesis is as follows. In chapter 1, after having stated explicitly
the general assumptions of the algebraic approach to quantum field theory, we recall the
main results of the theory of superselection sectors both for localizable and for topological
(i.e. cone-like localizable) charges, including the results of [DR90] about the reconstrucion
of the field net and the compact gauge group. In chapter 2 we briefly review the algebraic
version of the renormalization group and the construction of the scaling limit, together with
some illustrative examples, taken from [BV98], among which there is the above mentioned
Schwinger model, which is the simplest case in which confined charges can be intrinsically
identified. New results on the scaling limit of charges are exposed in chapter 3. Here, we
first extend the scaling limit construction to the case of a net of field algebras with normal
(i.e. Bose-Fermi) commutation relations, and carrying an action of a compact gauge group
G, obtaining as a scaling limit a new net of field algebras, again with normal commutation
relations and an action of G. We show then that the DHR sectors of the underlying theory
which satisfy a condition of “ultraviolet stability” — physically motivated by the above phase
space considerations, and which is expressed in terms of the Hilbert spaces in the field net
implementing the considered sector — admit a natural notion of scaling limit, in the precise
sense that for any of such sectors it is possible to construct Hilbert spaces in the scaling
limit of the field net, which carry the gauge group representation associated to the given
ultraviolet stable sector, and inducing a DHR sector on the scaling limit theory.®) We then
expose the results on the extension of this analysis to quantum topological charges, as cone-
like localizable sectors are also known. In this case there remain some conceptual and
technical difficulties that will be discussed, but we feel that there are promising partial
results, and work is in progress in order to obtain a clear physical picture. In particular, we

aWork of C. D’Antoni and R. Verch in this direction is also in progress [DV]
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consider sectors satisfying a condition of ultraviolet stability similar to the one employed
for localizable charges, together with some natural conditions of asymptotic localizability
(in bounded regions), which are suggested by the observed behaviour of these charges in
models. To these sectors we are able to associate in the scaling limit a normal net of field
algebras on bounded regions, and Hilbert spaces in these algebras carrying the relevant
representations of G. Adding a technical assumption on this net, the status of which still
needs to be clarified, we are also able to show that these Hilbert spaces induce DHR sectors
on the scaling limit theory. We remark that this is precisely what is expected to happen
in asymptotically free theories, where, due to vanishing of interactions at small scales, the
strings disappear in the scaling limit, leaving only finitely localized excitations. Finally, in
appendix A we collect some geometrical results on spacelike cones which are needed in the
above analysis, and in appendix B we exhibit an example of a theory (the Majorana free
field with Z, gauge group) whose localizable sectors comply with the ultraviolet stability
assumption referred to above.



CHAPTER 1

Superselection sectors and the
reconstruction of fields

The existence of a restriction to the superposition principle for pure states, represented by
vectors in the physical Hilbert space of quantum field theory, was discovered in [WWW52],
where it was shown that this Hilbert space is the direct sum of coherent subspaces, or su-
perselection sectors, for instance labelled by the electric charge, or by univalence, in such
a way that the phase relations between vectors belonging to different sectors are unobserv-
able. In [HK64] this was recognized as an aspect of the representation problem in quantum
field theory, i.e. the existence of several inequivalent irreducibile representations of the al-
gebra of observables for systems with an infinite number of degrees of freedom (in contrast
to the situation prevailing for non-relativistic finite systems): the algebra of observables of
guantum field theory is faithfully represented on each superselection sector, such represen-
tations being inequivalent, and the role of unobservable fields is that of transferring some
“superselection quantum number” from one sector to another. This shifts the attention from
the Hilbert space formulation of quantum field theory, central in the Wightman approach, to
the abstract net of algebras of local observables and its representations, which are the object
of study in the algebraic approach. In this framework it is taken as a fundamental postu-
late that all the information is encoded in the net of algebras of local observables, which
then characterizes a given theory completely; superselection theory is then the study of the
structure of the set of irreducible representations of such a net (or better of the subset of
them which are “relevant for particle physics™”). Remarkably enough, one finds, as we will
see below, that it is possible to endow this set with structures, such as composition or con-
jugation of sectors, which reflect the corresponding physical operations with charges, and
also that sectors are in one-to-one correspondence with unitary equivalence classes of irre-
ducible representations of a global gauge group. This culminates in the Doplicher-Roberts
reconstruction theorem, also discussed below, which embeds the observable net as the gauge
invariant part of a canonical field net with Bose-Fermi commutation relations.

In this chapter we will state explicitly the main postulates of the algebraic approach
to quantum field theory, briefly discussing also some basic consequences needed in the
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following. Then we will review in section 1.2 the main results of superselection theory,
both for localizable and topological charges, and finally, in section 1.3, we will discuss the
above mentioned reconstruction of fields and global gauge group.

1.1 Basic assumptions of algebraic quantum field theory

For this work to be reasonably self-contained, and to fix a notation, in this section we will
briefly discuss the fundamental assumptions of the algebraic approach to quantum field
theory. We refer to the monograph [Haa96] for further details and references.

The arena of relativistic quantum field theory is Minkowski space, i.e. the (affine)
space R* endowed with the pseudo-euclidean structure, called Minkowski metric, induced
by the symmetric matrix g = (g )uv—o,. 4 = diag(1,—1,—1,—1). For x,y € R*, we
will write x -y = g,wx"y¥ for this bilinear form (summation over repeated indices is un-
derstood), and x? := x-x. The symmetry group of Minkowski space is the Poincaré
group & :=0(1,3) x R*, with O(1,3) the group of matrices A € M4(R) leaving g in-
variant, A'gA = g, acting in the natural way on R*. We will only make use of the
connected subgroup SOT(1,3) of those A with detA =1, A% > 0, and correspondingly
we get a subgroup 9”1 of . We will also need to consider the universal cover-
ing SL(2,C) = {A € M,(C) : detA =1} of SO(1,3), with covering homomorphism de-
noted by A — A(A) (for its definition we refer to [BLOT90, 3.1.C]). Correspondingly
971 = SL(2,C) x R* is the universal covering of 2!, and n: 931 — 3”1 will denote
the covering homomorphism. Generic elements of 9”1 and 3‘31 will be denoted by s,t,...
and their action on x € R* by s-x. The metric g defines the standard causal structure, to
which the terms timelike, lightlike etc. will be referred. The open forward (backward)
lightcone V. is the set of points in R* which are future (past) timelike to the origin. We set
V :=V,UV_. Forany set.# C IR*, its spacelike complement .#" is the set of points in R*
which are spacelike separated form all points in ..

Throughout all this thesis, we shall use the symbol & to denote the generic element
of the family of open bounded subsets of R*, which form an upward directed net under
inclusion. A frequently used subnet of causally complete regions is that of open double
cones Oy p = (a+V_)N(b+Vy), witha € b+V,. This family is clearly upward directed
under inclusion, and the union of all its elements is all R*. Moreover, any double cone is
Poincaré equivalent to a double cone of the form & := Ole,, —re,, With €9 = (1,0), and they
form a basis for the standard topology of R*.

Definition 1.1. A net of C*-algebras over Minkowski space is a net
0 —A0) (1.2)

of unital C*-algebras over the directed set of open bounded regions in R?, all the algebras
having the same unit.

We can embed all the local algebras 2((¢’) of a net as above in a quasi-local C*-algebra
2, defined as the C*-inductive limit of the inductive system (&) of C*-algebras, i.e. as the
completion of the x-algebra joc = Ug2A(&) in its unique C*-norm (as A(&1) C A(O,) if
01 C 0, the C*-norms of A(&1) and (&) agree on 2A(&1)). We will use the symbol 2/ to
denote both the net and its quasi-local algebra. To unbounded regions . C R*, we can then
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associate the C*-subalgebra of 2( generated by all the 2((&), & C .. Given two nets 2;,
i =1,2, a net homomorphism is an homomorphism @: 2(; — 2, of the quasi-local algebras,
such that @(21 (&) C 2, (&) for each &. A net isomorphism is a net homomorphism which
is invertible as such. For a subset & of an algebra 2f, we denote its commutant as &'.

Definition 1.2. A net of C*-algebras is said to be local if &1 C &) implies A(&1) CA(0%)'
in A

We recall that for a unitary strongly continuous representation U of R* on a Hilbert
space 4, the spectrum of U, SpU, is the support of the spectral measure determined by U,
or, equivalently, the joint spectrum of its generators P, u=0,...,3.

Definition 1.3. A Poincaré covariant net of C*-algebras is a pair (2(,a), where 2 is a net
of C*-algebras and a : (@l — Aut®l is a group homomorphism (also called an automorphic
action of 9”1 on 2A) such that for each &,

as(A(0)) =A(s-6), se P!, (1.2)

A vacuum state® on (21, a) is a state won 20 which is a-invariant, and such that, denoted
by (1t.7#,Q) its GNS representation, and by U the associated unitary strongly continuous
representation of 1, the translations x € R* — U(1,x) satisfy the spectrum condition
SpuU(1,-) CV,.

An homomorphism of Poincaré covariant nets (2;,a'), i = 1,2, is a net homomorphism
@ of the underlying nets 2; which intertwines the actions of the Poincaré group

poal=a’.q  se L. (1.3)

Sometimes we will consider nets that are only translation covariant, and it is evident
how to adapt the above definitions.

As already mentioned above, the fundamental postulate of the algebraic approach to
quantum field theory is that all the physically relevant information on a given theory is
encoded in its algebra of observables. Together with the trivial observation that all mea-
surements on a physical system are performed in some bounded spacetime region, and with
Einstein causality, which implies that observations localized in spacelike separated regions
cannot interfere with each other, so that the associated quantum mechanical operators need
to commute, this implies that the algebra of observables has the structure of a local net of
C*-algebras, the algebras 2((&) being interpreted as generated by observables measurable
in@.

Taking also into account that we are interested in applications to particle physics, i.e.
to describe localized excitations of the vacuum, we conclude that the data determining a
theory are given by a triple (2, a,w), constituted by a Poincaré covariant local net with a
pure vacuum state.

aThe traditional notation wy for the vacuum state will be used in this thesis with a different meaning, so that
we will here denote the vacuum state simply by w. Correspondigly, its GNS representation will be denoted by
(T, 5¢,Q) instead of (T, 74, Q).
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Usually, as a consequence of the observation that all known superselection rules (in-
cluding here not only charges in particle physics, but also thermodynamic quantities) are
determined by global aspects of the states, the hypotesis is also made that all physically
relevant states are locally normal states of the vacuum representation, i.e. for any such state
¢ on 2, and any &, ¢ [ 2A(&) is a normal state of the representation 11| 2(&’). Then we are
locally in the same situation as in quantum mechanics of systems with a finite number of
degrees of freedom, as we have only to deal with a single quasi-equivalence class of repre-
sentations of each local algebra 2/(&). Thus we can assume that the net is defined directly
in its vacuum representation. By B(.7#°) we will denote the C*-algebra of bounded operators
on a Hilbert space 7.

Definition 1.4. A local Poincaré covariant net of C*-algebras in vacuum representation
is a quadruple (#7,2,U,Q), with 2 a Hilbert space, 2 a local net of C*-subalgebras of
B(4#), U astrongly continuous unitary representation of ,92’1 on ¢ satisfying the spectrum
condition, and Q € 4 a unit vector cyclic for 2, such that, with as := AdU(s), (,a) isa
Poincaré covariant local net of C*-algebras, and Q is the (up to a phase) unique unit vector
invariant under translations U (1,x).

The unicity condition on Q implies that the vacuum state w := (Q|(-)Q) is pure on %,
or, equivalently, 2 is irreducible on 27, 2l' = C1 4 [Haa96, thm 3.2.6]. In the situation
described by the above definition, it is also customary to assume that the local algebras are
actually von Neumann algebras, as the von Neumann algebra® /(&) := 2(&)" has by
definition the same normal states as (). In this context, an assumption that is frequently
made, but which we will use only occasionally, is weak additivity of the net <7, i.e. that

\/ #(6+x)=B(H) (1.4)

xeR4

holds for each & This is clearly suggested by the idea that the algebras are generated by an
underlying system of Wightman fields.

We now list a couple of basic results on the structure of local nets, essentially conse-
quences of positivity of the energy, which will be needed in the following. For the proofs
we refer to [D’A90].

Theorem 1.5 (Reeh-Schlieder). [RS61] Let (##°,2(,U, Q) be a translation covariant net in
vacuum representation. Let.# C R* be such that there exists .#, C . and a neighbourhood
A of zero in R* for which #+ .4 C ., and \/,cgs 2A(F +X)" = B(#). Then Q s cyclic
for A(¥).

We remark explicitly that this result does not rely on locality of 2. Examples of regions
satisfying the hypothesis of the above theorem are given by the spacelike complements &
of any bounded &, or by wedges, i.e. Poincaré transforms of #; 1 := {x e R* : £x! > [x°|}.
Indeed, for any such region, one can find a translated region that contains any given bounded
open set. If the net o satisfies weak additivity, another example is given by bounded
regions, so that in this case, if the net is also local, the vacuum vector is cyclic and separating
for the algebras &7 (©).

) Throughout the thesis, we will use script capital letters to denote nets of von Neumann algebras.
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Theorem 1.6 (Borcher’s property B). [Bor67] Let (.7, %7,U, Q) be a translation covari-
ant local net of von Neumann algebras satisfying weak additivity. Then for any non-zero
projection E € &7 (&) and for any &, D €, there exists an isometry V € o7 (£1) whose final
projection is E, E =VV*,

As we will see, this property finds an important application in superselection theory.

We will also have to deal with nets of algebras generated by unobservable fields, which
then need not be local. For future reference, we collect here the relevant definitions for this
case. As customary, we denote the commutator of operators by square brackets, and the
anticommutator by curly brackets.

Definition 1.7. (i) A normal net of C*-algebras with gauge symmetry is a triple
(%,B,k) where F is a net of C*-algebras, {3 is an action of a compact group G on § (the gauge
group) by net automorphisms, and k € G is a central element, such that k? = e (the identity
of G), and such that § obeys local Z,-graded commutativity with respect to the grading de-
fined by y:= P, i.e. if for F € § we define its Bose and Fermi parts as F := %(F +vy(F)),
we have that for any pair F € §(&), i = 1,2, with &) C &7, there holds

Fi+. P4l =[F+.P-]=F R ={F_,_}=0. (1.5)

(i) A normal Poincaré covariant net with gauge symmetry will be a quadruple
(3,B,k,a%), with (F,B,k) a normal net with gauge symmetry, (3,a%) a ﬁl-covariant net,
and such that af and By commute for each s € 21 geG.

(iii) Given a Poincaré covariant local net (2,a), a normal Poincaré covariant net with
gauge symmetry over (2(,a) is a quintuple (15,3, B, k,a), with (3, B,k,a®) as in (ii), and
Tz - 2 — § a net homomorphism, such that af o Ty = Tz 0 0y s), and TR(A(F)) = F(6)C,
the fixed points of F(&) under the action (3 of G.

It is also clear what will be the definition of a vacuum state wover (§,B,k,a%). Asinthe
case of local nets, we have the following spatial version of the above definitions (actually,
below we give only the spatial version of definition 1.7(iii), it is however clear how the
spatial versions of the other two definitions should be formulated).

Definition 1.8. Let (#°,2(,U,Q) be a Poincaré covariant local net. A Poincaré covariant,

normal net with gauge symmetry in its physical representation over (#,2,U, Q) is a quin-

tuple (1, 3,V, k,Ug) with Tz a representation of 2( on a Hilbert space 7% containing the

vacuum representation, § a net of C*-subalgebras of B(.7#%), V a unitary strongly continu-

ous representation of a compact group G on %%, k € G a central element with k? =, and

Uz a unitary strongly continuous representation of 931 on .#% such that:

(i) with Bg:=AdV(g) and af := AdUz(s), (1%, §, B, k,a¥) is a Poincaré covariant normal

net over (A, AdU);

(ii) the translations x — Uz (1,x) satisfy the spectrum condition;

(iii) Q is gauge invariant, V(g)Q = Q, g € G, and is the unique translation invariant unit
vector in .7#3.

Remark. If (13,3,V,k,Uz) is as in the above definition, Reeh-Schlieder theorem and nor-
mal commutation relations imply that Q is separating for the local von Neumann algebras
§(&)~ (the bar denoting closure in the weak operator topology on B(##%)): if F € §(&)~
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is such that FQ = 0, then by gauge invariance of Q, also FLQ =0, so that if F' € F(&"),
by normality FF'Q = F'FL.Q + (F{ —F/)F_Q =0, and by the Reeh-Schlieder theorem
applied to F(&"), F =0.

As we mentioned in the introduction, in the subsequent analysis we shall encounter
charges which are localizable (in a sense made precise in section 1.2) only in certain un-
bounded regions, called spacelike cones (see appendix A for their definition). Corrispond-
ingly, the fields carrying such charges will also only be localized in spacelike cones, so
that they will generate, instead of a net & — §(&’) on bounded sets, a net € — F(%) on
spacelike cones.9) It is then clear how to modify the above definitions in order to deal with
such situation, and we will call the resulting quadruple (§,B,k,a%), with § a net on space-
like cones, an extended normal Poincaré covariant (field) net with gauge symmetry. The
extended field net arising from topological sectors through the Doplicher-Roberts recon-
struction theorem (see section 1.3 below) has some additional features, so that it deserves a
formal definition.

Definition 1.9. Let (##,47,U,Q) be a Poincaré covariant local net of von Neumann al-
gebras. A Poincaré covariant, normal extended net with gauge symmetry in its physical
representation over (7, 47,U,Q) is a quintuple (1i#, #,V,k,Uz) with 1& a representa-
tion of &7 on a Hilbert space #z containing the vacuum representation, .% an extended net
of C*-subalgebras of B(#%), V a unitary strongly continuous representation of a compact
group G on %%, k € G a central element with k? = e, and Uz a unitary strongly continuous
representation of 1 on . such that:

(i) with By:=AdV(g) and af := AdUz(s), (F,B,k,a7 ) is a Poincaré covariant normal

extended net of von Neumann algebras;

(i) Gsyoﬂy = Tz o Qp(s) and y((g)G =Tz (A (%)),
(iii) for each %, the union of all the algebras .% (% +x), x € R*, is irreducible;

(iv) # is cyclic for each algebra .7 (%);

(v) the translations x — U £ (1, x) satisfy the spectrum condition;

(vi) Qs gauge invariant and is the unique translation invariant unit vector in 7.

1.2 Superselection theory

The states of interest in particle physics are characterized by the idealization that they de-
scribe a few localized excitations in empty space. The subject of superselection theory is
to formulate precise criteria selecting, among all states on the quasi-local algebras, those
that comply with this physical picture, and then to classify the (irreducible) representations
of the quasi-local algebra induced by such states, and to study the structure of the resulting
set of unitary equivalence classes, called superselection sectors. Here we will give a very
brief account of the results obtained for the two main known classes of sectors: localizable
— or DHR - sectors [DHR71, DHR74] (see also [Rob90] for a pedagogical overview), and
topological sectors [BF82], which are essentially distinguished by the kind of localization

9Here the term net is slightly abused, since the set of spacelike cones is not directed, and stands for the
isotony property of the correspondence € — F(¥), i.e. €1 C %> implies F(%1) C F(%2).
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regions of the corresponding charges, double cones for the former, and spacelike cones for
the latter (a unified treatment is however possible, and has been given in [Kun01]).

1.2.1 Localizable sectors

Throughout this section, & will denote a double cone in Minkowski space. Let
(#,2,U,Q) be a Poincaré covariant?) local net of C*-algebras in its vacuum represen-
tation, that we denote by 1. We also assume that 2/ satisfies property B, theorem 1.6, and
essential Haag duality

w4 (0) =24 (", (1.6)

where & — A%4(£) .= A(£")" is the dual net of . Equation (1.6) is equivalent to locality
of A4, If in particular 2A9(&) = A(&)" (by locality of 2, 2A(£)" C AY(&), so this can
be viewed as the requirement that 2l is maximal with respect to locality) then 2l is said to
satisfy Haag duality tout court. This last property, in terms of which DHR theory was orig-
inally formulated, is known to hold in free field theories [Ara63, Ara64], but is violated in
models with spontaneous symmetry breaking [Rob76]. Essential duality is however to be
considered as a generic property of local nets, as it is satisfied whenever the net is gener-
ated, in any reasonable sense, by Wightman fields [BW75, BW76]. The class of states (or,
equivalently, representations) which we will consider is specified by the following criterion,
where we use 22 to denote unitary equivalence, and [ to denote restriction.

Definition 1.10 (DHR selection criterion). [DHR71] A representation Ttof the quasi-local
algebra satisfies the DHR selection criterion (or is a DHR representation) if, for every dou-
ble cone &,

A0 =1 [ A0, (1.7)

The above criterion was suggested by the findings of [DHR69a], where an irreducible
field net with gauge symmetry § over 2l is considered, and it is then shown that the irre-
ducible representations of 2 appearing in .%#% are DHR.

For what concerns the physical interpretation of the DHR criterion, if ¢ is a normal state
of a DHR representation, then

H !/
Jim |6~ o) 12(8)] =0,
and this statement also admits a partial converse under some not really restrictive hypotesis
on the representation considered. Thus we see that the DHR criterion select states which
are close to the vacuum at spacelike infinity in a rather strong sense, and therefore excludes
states with nonvanishing total electric charge, since this can be measured, thanks to Gauss’
law, in the spacelike complement of any bounded region. This is clearly due to the vanishing
of the photon mass, implying that electromagnetic forces are long-range, but we will see
below that topological charges, which are not DHR, arise also in purely massive theories.

dMost of the results of DHR theory of superselection sectors are independent of covariance of the theory,
which enters directly only when dealing with covariant sectors, but since in the application to the scaling limit
theory covariance is an essential ingredient, we include this hypotesis from the beginning.
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It follows from property B that the set DHR(2() of DHR representations of 2 is closed
under direct sums and subrepresentations. Actually, it has a much richer structure, which
can be uncovered by relating it to a set of endomorphisms of the quasi-local dual algebra
29, This is accomplished as follows, using in an essential way notions from category theory,
for which we refer to [McL98, DR89b]. The set DHR(2) is, in a natural way, the set of
objects of a C*-category, whose space of morphisms (14 : T&) between objects 15, i = 1,2,
is given by the intertwiners between 1y and Ty, i.e. operators T € B(.%,,.#%,) such that
Tm (A) = To(A)T for each A € 2. This C*-category is seen to be isomorphic to DHR ()
(with no risk of confusion, we denote by the same symbol a category and the set of its
objects) by associating to each 1€ DHR(2!) its unique extension ftto 29, which is an
element of DHR(2Y) [Rob90], and thanks to essential duality, this last category is in turn
equivalent to the C*-category A of transportable localized endomorphisms of 29, defined as
follows.

Definition 1.11. Let 2 be a net of C*-algebras. An endomorphism p € End(2() is localized
in a double cone & if p(A) = A for each A € 2(&"), and is transportable if for any double
cone & there exists p; localized in ¢ and a unitary U € 21 which intertwines p and p;.
The space of morphisms between localized transportable endomorphisms p and o, denoted
by (p: 0), is the subspace of intertwiners between p and o which belong to 2I.

We denote by A(&) the full subcategory of A defined by endomorphisms local-
ized in ©. The above mentioned equivalence is then the identity on morphisms, and
is given by p € A — Top € DHR(2Y) on objects. What one gains in considering en-
domorphisms, is that they allow a simple and natural definition of composition of sec-
tors, since it is easy to show that po € A (composition of endomorphisms) for p,o € A,
and that the semigroup structure thus defined on A, with the vacuum representation T
as a unit, passes to the quotient A/ =. One can then define a corresponding product
(T1,T2) € (p1:01) X (P2 :02) = Ty x Ty € (P1P2 : 0102) on morphisms, in such a way as
to equip A with the structure of a tensor C*-category.

The composition law of s