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ABSTRACT. We study the irreducibility and the separation of characteristic polyno-
mials, associated to the energy graph of the non-linear Schrédinger equation. This
fact will be useful in the study of stability of a class of normal forms of the completely
resonant non-linear Schrodinger equation on a torus described in [I0]. The problem
can be also considered as an independent interesting algebraic combinatorial problem.
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1. INTRODUCTION

The main object in this work is the study of an algebraic and combinatorial problem
(cf. Theorem [1.1)) which arises from the study of non linear Schrédinger equation (NLS
for short) on an n—dimensional torus:

(1) — fug + Au = klu*u+ 8:G(|uf*),g > 1 €N

where k € R, u = u(t, ), p € T", The case g = 1 is associated to the cubic NLS.

The NLS is an example of a universal nonlinear model that describes many physical
nonlinear systems. The equation can be applied to hydrodynamics, nonlinear optics, non-
linear acoustics, quantum condensates, heat pulses in solids and various other nonlinear
instability phenomena.

Remark 1.1. One can rescale u to get k = £(q¢+1).
Proof. See Appendix 9] O

So one can restrict to the NLS of this form:
(2) —iu; + Au=+(g+ Dufu,qg > 1 €N
We fix the sign to be + since in our treatment it does not play any particular role.

1.1. Some related literature. The cubic NLS in dimension 1 has a long history. It
is one of the simplest partial differential equations (PDEs) with completely integrability
and several its explicit solutions are known (see [12], [9], [1]). Moreover by [§] it has a
convergent normal form. In higher dimensions we loose the complete integrability and all
techniques associated to it, but we can still use the following well-known fact

Proposition 1. The NLS can be written as an infinite dimensional Hamiltonian
dynamical system @ = {H,u}, where the symplectic variables are Fourier coefficients of
the functions

(3) ult,p) = > up(t)e®9).

kezn
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the symplectic form is i), cym dug A diy and the Hamiltonian is

(4) H .= Z |k|2ukﬂ;€ + Z Uy Uy Uk Uy - U2g+1U2g+2
kezn kezZn:3 2012 (~1)ik; =0
Proof. See Appendix [10] O

By formula (4)) we can write equation as an infinite dimensional Hamiltonian system,
where the quadratic term consists of infinitely many independent oscillators with rational
frequencies and hence completely resonant (all the bounded solutions are periodic). The
presence of the nonlinear part couples oscillators and modulates the frequencies so that
one expects the existence of small-periodic (and almost-periodic) solutions for appropriate
choices of the initial data. In order to prove the existence of such quasi-periodic solutions
for Hamiltonian PDEs there are two main methods used in the literature: one by KAM
theory and the other by using Lyapunov-Schmidt decomposition and then Nash-Moser
implicit function theorems. In particular in [4] Bourgain studied the cubic NLS in di-
mension two and proved the existence of quasi-periodic solutions with two frequencies by
using the second method (the so-called Craig-Wayne-Bourgin approach, see [5], [4] and a
more recent paper [3]). Meanwhile the KAM algorithm was used by Geng-Yi in [6] for
the NLS in dimension one with the nonlinearity |u|*u and by Geng-You and Xu in [7]
to prove the existence(but not stability) of quasi-periodic solutions for the cubic NLS in
dimension two. It is important to notice however that for both approaches it is necessary
start from a suitably non degenerate normal form (see Definition and the existence
of a such normal form is not obvious for equation .

Recently in the paper [10] C.Procesi and M. Procesi have studied A Normal Form for
the Schréodinger equation with analytic non—linearities.

In this paper the normal form is described by an infinite dimensional Hamiltonian
which determines a linear operator ad(N), depending on a finite number of parameters &;
(the actions of certain excited frequencies), on a certain infinite dimensional vector space
FO.1 (see Definition .

Stability for this infinite dimensional operator will be interpreted in the same way as it
appears for finite dimensional linear systems, that is the property that the linear operator
is semisimple with distinct eigenvalues.

This was shown in [I1] to be true for cubic NLS outside a zero measure set of parameters
and on a smaller set of positive measure it was shown that the dynamic is elliptic. This
condition in a more precise quantitative form (which will be discussed elsewhere) in the
Theory of dynamical systems is referred to as the second Melnikov condition(see .
This fact will be useful in [I3] in order to prove, by a KAM algorithm, the existence and
stability of quasi—periodic solutions for the NLS (not just the normal form). The fact that
this property makes at all sense depends upon the results in [I0], where it is shown that
this linear operator decomposes into an infinite direct sum of finite dimensional blocks.
Furthermore, these finite dimensional blocks are described by translating, with suitable
scalars, a finite number of combinatorially defined matrices, constructed from certain
combinatorial objects called marked colored graphs with vertices certain integral vectors
(cf. Definition and Remark [£.2).

The characteristic polynomials det(tI — ad(N)r) of the operator ad(N) restricted to
the infinitely many blocks I' are all polynomials in the variables & and t with integer
coefficients. The issue is thus to prove that a rather complicated infinite list of polyno-
mials in a variable ¢, of degree increasing with the space dimension, and with coefficients
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polynomials in the parameters §; have distinct roots for generic (see Appendix values
of the parameters.

In general, following the classical Theory of Sylvester in order to prove that a single
polynomial has distinct roots, one has to prove the non—vanishing of its discriminant (see
Definition , for two polynomials to have different roots the condition is the non—
vanishing of the resultant (see Definition [L1.1]).

Although both the discriminant and the resultant can be computed by explicit formulas
above (see , ) a proof of their non—vanishing for the infinite list of complicated
polynomials appearing seems to be a hopeless task.

We thus followed a different approach. Remark that, if we have a list of different
polynomials in one variable ¢, with coefficients in a field F', a sufficient condition that
all their roots (in the algebraic closure F of F) be distinct is that they are all irreducible
(over F'). This follows immediately from the fact that an irreducible polynomial is uniquely
determined as the minimal polynomial of each of its roots.

In our case we can consider all the characteristic polynomials as having coefficients in
the field of rational functions in the parameters &;, its algebraic closure is a field of algebraic
functions. Thus the resultant of two distinct irreducible polynomials in Q(&q, ..., &mn)[t] is
non—zero as a polynomial in the £ and thus outside a real hypersurface the two polynomials
have distinct roots.

The way in which we shall attack this problem is by showing that

Theorem 1.1. (Separation and Irreducibility Theorem)Polynomials det(tI —ad(N)r) are
all distinct and irreducible as polynomials with integer coefficients.

The proof of this proposition is the content of Part 2 and Part 3, and requires a rather
tedious and lengthy case analysis.

1.2. The plan of the thesis. The thesis is devoted to prove Theorem[I.1] It is composed
of three parts. The first part explains why we need to study the problem. The second
part considers the case of cubic NLS in all dimensions, meanwhile the third part considers
higher degree NLS in low dimensions.

Part 1. Some background

ABSTRACT. This part is a short summary of some of the results of [10] for all ¢ which
explain the nature of the matrices which will be analyzed in the second and the third
part.

We work on the scale of complex Hilbert spaces
(5) 1@ = {u = {uphreze] 3 hunl2e2 Mg = Jul2, < co}a > 0,p > n/2
kezn
equipped with the symplectic structure i), ;. duy A duy. These choices are rather stan-
dard in the literature:
Remark 1.2. The condition imposed on u by means that:

o We restrict our study to functions which extend to analytic functions in the domain
of the complex torus C"/2nZ™ where (z1,...,2,) € C", Im(z;) < a.
o The functions on the boundary are in the Sobolev space HP.
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e The condition p > n/2 implies that the function space under considemzion embeds
in L. In particular the following uniform bound holds for each u € {(*P);

—alk|

ullq pe
6) ] < o)

In fact this implies that {®®) has a Hilbert algebra structure.

(k) := max(1,|k|).

Remark 1.3. For any function f(u,u) we have:

; . of .0H 0 OH
O f= Yt g = S+ g (i) = (1)
k

2. CONSERVATION LAWS

We may write, for any d

(8) [u]2d = Z uklﬂk2uk3ﬁk4...uk2d717._Lk2d = Z ( Z ) ( g >u0‘ﬂﬁ

k;ezn a,Be(Z)N:|ali=|8l1=d

where a : k + o, € N, same for 3. It is easy to see that for any d [u]?? is an analytic
function of wu, u.

Remark 2.1. All the terms in the right hand side of Poisson commute with L. The
terms which Poisson with the momentum M are the ones which satisfyi)_, k(ar—pB;) =0,

meanwhile the terms which Poisson with the quadratic energy K =, |k[*uxty are the
ones which satisfy Y, |k|?(c, — Bx) = 0.

Proposition 2. (Conservation laws) Our Hamiltonian H (see Formula ({)) has (n + 1)
conserved quantities: the n-vector momentum M = >, klug|? , the scalar mass L =

ok Jug[?.
Proof. (Proof of Proposition [2| and Remark

Since by Remark M ={H,M} L ={H, L}, it is enough to prove that M, L Poisson
commute with H.

We get easily

) 0 ifk#£h
{unt, un} = {iuh if k= h.
and
o 0  itk#h
Lok, T} = {—iuh if k= h
Hence

(9) {M, uh} = ihup, {M, ’L_Lh} = —ihuyp, {L,uh} = iup, {L,ﬂh} = —iup,

{K, uh} = i|h\2uh, {K, ﬂh} = —i|h|2ﬂh
We have:
00 {50y = (T = ST i) = S T ons ™ o) =

k j#k k j#k

—E Hu Tagupt 4 zig opu®.
k

k j#k
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Similarly,
(11) (L0} = -1) " gy’
Bk

(12) {M,u"} =i kagu®
k

(13) (M, 0’} = —i>_ kpu®
k
From and we have:
(14) {L,u*@?} = {L,u*}a” +u{L, 0"} = iZ(ak — Br)ua”
k

and from and

(15) (M ual} =1 k(ay, — Br)ua’
k
Similarly,
(16) {K,u @’} =1 [k[*(ax — Bp)ua’
k

From ,, we have Remark and {L,uptun} = {M,upap} = {K,upap} =
0 Vh € Z™. The term

E Uk, ﬁk2...uk2q+1ﬁ2q+2
ky.kg.... kg1 kag o €Lm
SHTA (- )ik =0

in Formula can be written in this form:

(17)
_ _ q+1 q+1 o
E Uy Uk -+ UKoy 4 U2g+2 = E ( o B u uﬁ
k1.2, ok2gq1,k2q42 €27 a,Be(@™)Ni|al;=|8l1=q+1,
S22 (—1)yik;=0 X kg =Xk kB =0
Since
E Uk, ﬂk2...uk2q+1ﬂ2q+2

ki,ko,..., kog41-kaq42€LM
2 2 i
S22 (—1)ik; =0

contain the terms u®u? with |y =, ax = |81 = 3, B, from we get
{L, Z Uk, ﬂkz...uk2q+1ﬂ2q+2} =0.

k1 koo kogt1 koo €LT
2 2 i
$29F2 (_1yikg=0

From and we get
(18) {M, Z uklﬂk2-~-uk2q+1ﬂ2q+2} =0

k1,k2, kg i1 kog42Z™
2q+2 ;
SHT2 (- 1)ik=0

We have proved that every term in formula of H Poisson commutes with L, M, hence
{L,H}={M,H} =0. O
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3. THE NONLINEAR SCHRODINGER EQUATION AS AN INFINITE DIMENSIONAL
HAMILTONIAN EQUATION

In [10] C. Procesi and M. Procesi used a standard instrument called the ”resonant
Birkhoff normal form” (see [2]).

In Formula denote by K = >, _;u |k[*ugtix. The first step of "resonant Birkhoff
normal form” is the sympletic change of variables which reduces Hamiltonian H to

H - HRes + H(2q+4); HRes - K + Hr(*gg—i_z)(u?ﬂ)?

where H (44 is an analytic function of degree at least 2¢ + 4, while HZ1+2) §g of degree
2q + 2 and consists exactly of the degree 2q + 2 terms of which Poisson commute with
K. Then one wants to treat the truncated system Hges = K + HT(EZH)(u, @), as the new
unperturbed system and H 4% as a small perturbation. Although the truncated system
is very complicated(see Formula ) they showed that it admits infinitely many invariant
subspaces (see , defined by requiring uy = 0 for all k ¢ S where S = {vy,...un},
tangential sites, it is some (arbitrarily large) subset of Z™ satisfying the completeness
condition (see Proposition . By momentum conservation for any set S C Z", the
subspace uyp = 0 for all k ¢ Span(S) is invariant(not only for Hpges but also for full
Hamiltonian H). They restricted to this subspace and denoted by S¢ = Span(S) \ S
the normal sites. Collecting the terms by the degree (denoted by #5¢) in the variables
Uk, Uk, k € S, one has:

Hpes = Hg + Hyge—1 + Hyge—o + Hygeso

by definition the completeness is equivalent to the fact that Hyg.—; = 0. Then they showed
that the term Hygeso is negligible and gave an explicit formula for Hyse—o described by
an infinite dimensional matrix (cf. Formula (41)).

3.1. One step of Birkhoff normal form. By the monomial u®%” Poisson com-
mutes with K if and only if >, |k|*(ax — 8k) = 0. We apply one step of Birkhoff normal
form, by which we cancel all the monomials of degree 2(g + 1) which do not Poisson com-
mute with K. This is done by constructing an analytic change of variables with generating

function
. qg+1 qg+1 u*uP
A= Z ( o ) ( B ) >owlon — Bi) k|2

a,pe@)N:|al=|8l=q+1;
Sk (ap—Br) k=0, (a —Bk) | k|2#0

We denote the change of variables by (1) = ¢%@4 and notice that it is well defined and
analytic: B, X Be, — Be,, with €9 = (2¢,,,) "' (here B, denotes the open ball of radius
7, Cap is the algebra constant of the space £(%:P)).

By the construction W' brings to the form H = Hp.s + H>92) (), where

B +1 +1 _
(19)  Hpes = [kPugiiy + 3 ( “ ) ( qﬂ )mﬁ
keZm a,B€@™)N:|a|=|8|=q+1;
Yp (e =B k=0, (af,— By [k 2=0

and H?(9%2)(y) is analytic of degree at least 2(q 4 2) in w, it is analytic and satisfies the
bound

Xpatar) |lap< coste®t3 Ve < ¢y

(20) SUP (u,a)€ B, x Be

where cost denotes a universal constant (depending only on ¢, ¢, and the function G).
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Remark 3.1. The three constraints in the second summand of the formula erpress
the conservation of L, M and the quadratic energy K.

Definition 3.1. We say that a list k1, ..., kaq of vectors in Z™ is resonant if, up to re-
ordering we have:

ky+ks+..dkog 1 = kotkya+...+koa, |k |24 k3|2 4. k2a1]? = [k2)®+|ka)®+... 4 |koa|

We say that the list is integrable if furthermore, up to reordering, we have koj_1 = koj, i =
1,...,d. A subset of Z" is called integrable if all the list of 2q+2 vectors which are resonant
are also integrable.

The resonant list with d = ¢+ 1 describe resonant monomials, that is those monomials
which Poisson commute with K, which appear in Hg.s. The integrable list describe the
monomials in |up|?.

Example 3.1. When q = 1:ky + k3 = ko + ky, |k1]? + |k3|? = |k2|? + |ka|? is equivalent to
ki + ks = kg + kg, (k1 — k2, k3 —k2) =0

This means that the points kq, ko, k3, ks are vertices of a rectangle.

FIGURE 1. A resonant quadruple k1, ks, k3, k4

3.2. Invariant subspaces. Given any set S C Z", set
Zgl’p) ={ue 0er) sy =0,k ¢ Span(S)}.

Z(Sa,p) % Zgl’p)

Then by the conservation of momentum is an invariant set for the dynamics.

We want to study Hpges on the invariant subspaces E_(Sa’p ) for suitable choices of S.

Definition 3.2. A subset S C Z" is called complete if the Hamiltonian vector field X ..
is tangent to the subspace Vg of equations

ug = 0 = ug, vk € S¢ = Span(S) \ S
(this of course implies that this subspace is stable under the dynamics).

From the definitions one immediately deduces



CHARACTERISTIC POLYNOMIALS, ASSOCIATED TO NLS 9

Proposition 3. S is complete if and only if, for any choice of 2q + 1 vectors v; € S the
following holds: if there exists a further vector w € Z™ such that the list vy, ..., V2g41, W 5
resonant then w € S.
Proof. By the definition the tangent space of Vg at the point v € Vg is

O o)
Oouy, v oty v

By the definition of the Hamiltonian vector field we have

. OHpRes O OHpRes O
(22) Xipp, = -1y (s — — =fies -
k

(21) T,(Vs) = Spankes(

ou, Ouy Oou,, Ouy
From , and since we work on Ega’p ) we get

(23) Xbp.=—1 > (K urt
keSpan(S)

+(g+1) 3 < qzl ) < % >u“a5)8i
o BE@M:|aly =g+ LA =0, 5, 1o — )=k, 5, [1]2 (c— )= K] F

(k2 + > (G (5" )wmge
8, BE(Z ) a)1=0, 81 =q+1, 5, Udr—Br)=—k, 5, 1112 (@1 —Br)=—|k|? k

where OAzi:Oéi,Bi :ﬁi for alli;«ékz, OAfk :ak—l,BkZﬁk—l.
Notice that

(24) 3 (qgl>(g)uau3):

a,Be@m )N ahi=q+1,|811=4,57; ler—B) =k, 32, 12 (aa—Br)=|k|?

= E ukluk2...ukzqflu;%u;%ﬁl
kyokoqn €20 00T (— 1)tk =k, 3202 (< 1)1 kg 2= k|2

and

(25) > (g)(g)uduﬁ):

&,BE(Zm)N:|ali=q,|Bli=a+1, 5, U —PB1)=—k, 3, [ (r—Br)=—|k|?

= Z U, Uk ...ukzqflﬂk%ﬂkzq“
ki, kg kogr2€Zn: 3, (= 1) it ki=—k,3>, (—=1)i+1|k;|2=— k|2
-If there exists a resonant list k1, ..., kogy1, k such that kq,...,keq+1 € S but k£ ¢ S, then
: — - d

from , and we see that Xp,, , contains the term ug, g, ... Uk, Uko, Ukoy 11 Gy s K ¢
S. Then by X, is not tangent to the subspace Vs.
-Inversely, if S satisfy the condition of Proposition then for every v € Vg since
U,y = Uk = 0 for all k£ € S¢ we see from that Xp,,.. is a linear combination
of%h,%h,ke& Hence Xy, . € T,(Vs). O
Remark 3.2. A sufficient condition for S to be integrable is the following: Set S =
{v1,...,vm}, introduce variables ey, ..., e,,,. For any choice of 2¢q + 2 elements ¢;,, ..., €;,, .,
if the expression

62'1 =+ ...+ €i2q+1 — (61‘2 —+ ...+ 6i27+2)
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is not zero then
Viy oo T Vigyy — (117;2 + ...+ Ui2q+2) 75 0.

Proof. In fact if a list of 2¢ + 2 vectors v;,,...,v4,,,, € S is resonant, then we have
Viy + oo+ Vi — (Vi + o+ 0iy,,) = 0,50

iy + oot €inyy — (€ + oo F€iy, ) = 0.

Since ey, ..., e,, are variables, one deduces that up to reordering i; = g, ..., %2441 = 92¢+2,
and hence up to reordering vi; = Uiy, -+, Viyy 1 = Viggss- (]

Example 3.2. ¢ = 1,n = 2,m = 4: Four vectors vi,vs,v3,v4 in the plane are not
complete if they form a picture of type

1. e v

Laa

FIGURE 2

that we have the a right triangle which is not completed to a rectangle. The list
1---. - L] 1'_:;

FIGURE 3

is complete but not integrable. Finally, the list

- o

FIGURE 4

is complete and integrable.
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We introduce

2
(26) = ¥ (4 T ) Tk

Do ki=r
Denote by Hg the restricted Hamiltonian to the subspace Vg. We have

Proposition 4. If S = {v1,...,vn} is complete and integrable the restricted Hamiltonian
18 :

27) Hs =3 [vil*fun, * + Agia (o, 2o Jto, ) =

i=1
:Z|Ui\2\uvi2 Z ( q ) H‘um 2s;
i=1 Y, si=q+1
Proof. From Formula , the definition of Vg, the completeness of S we have:
m
(28) Hs = Z Uz| ‘um Z Uky Uky -+ Ukng g Ukngin
=1 ki €8:3, (—1)ik;=0,5, (—1)i|ki[2=0

Since S is integrable, we have k1 = ko, ..., kag41 = kag+2 (up to reordering). So:
(29)

2s;

Z |UZ| |wo,

m
20 S (|t ) = 3 PPl P Y ( g+l )Hm

k€S i=1 >, si=q+1
O

3.3. Tangential sites in action variables. We set

(30)  wp = zp, k € 5% uy, = /& + i = VE(1 +f+ Je®ifori=1,...,m,

considering &; as parameters,|y;| < &;, while y, z, w := (z, Z) are dynamical variables.

Definition 3.3. We denote by ((*P) the subspace of £(%P) x 1{9P) generated by the indices
in S with coordinates w = (z, Z).

For all € > 0 and for all

(31) Ce A= (& %EQ <& <e),

Formula is a well known analytic and symplectic change of variables \Iléz) in the
domain
(32)

D py(s,7) = D(s,7) :={z,y,w: 2 € T, |y| < 2, || w l(apy< 7} C Ty xC™ x o(ep),

Here € > 0,5 > 0 and 0 < r < ¢/2 are auxiliary parameters. T7" denote the open subset
of the complex torus T{ := C™/27Z™ where € C™, |Im(s)| < s. Moreover if

(33) V2m(maz(|v;|))Pestomarvile < ¢,

the change of variables sends D(s,r) — B, so we can apply it to our Hamiltonian.
We thus assume that parameters €, 7, s satisfy . Formula puts in action angle
variables (y; ) = (Y1, .--s Ym; X1, ...Tm ) the tangential sites, close to the action & = &1, .5,
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which are parameters for the system. From wuj = 0¥k ¢ Span(S) and Formula the
symplectic form now becomes

m
i Z dug A diig = iZduvi A dity, + i Z dug A diig, =
kezn i=1 keSe

m
= dyi Adwi+i Y dey Adz=dyAdz+i Y dz Adz.
i=1 keSe keSe
In the new variables

M= Zézvﬂrz.yzvﬂrzklzklg L= Z&+Zyz+2|2k|2

kesSe keSe

S kPugiiy = K = (w0, €+ ) Z P s — (s ).
kezm kesSe

Remark 3.3. The terms Y., &, >, &vi and >, &|vi|* are constants and can be dropped,

renormalizing M, L, K.

We formalize the momentum and mass by two linear maps
(36) m: Z™ — Span(S),w(e;) = v; : momentum;n : Z™ — Z,n(e;) = 1 : mass
where {e1, ..., e, } be a basis of Z™.

3.4. A normal form.

Definition 3.4. (Normal form) We separate Hpes + P22 (u) = H = N + P where N
is called the normal form and collects all the terms of Hges (as series in y,w) of degree
< 2 in the variables y, w

The series P collects all terms of P2(¢+2) (u) and all the terms of Hges of degree > 2
in the variables y,w. It is called the pertubation.

Definition 3.5. (edges) Consider the elements:

(37) X, : f{efziel fzeel,héo —2e;,7(¢) € {0, -2}}

7j=1
The support of an edge £ =), nie; is the set of indices i with n; # 0.
We have . [¢;] < 2¢ and have imposed the mass constraint >, ¢; = n(¢) € {0,—2}.
We call all the elements respectively the black, n(¢) = 0 and red n(¢) = —2 edges and

denote them by X g, X 2 respectively.
Notice that by our constraints the support of an edge contains at least 2 elements.

Constraint 3.1. (1) We assume that 37", njv; # 0 for alln; € Z, 37, Ini| < 2¢+2.
(2) 13, nvi? = > nilvil* # 0 when n; € 2,y ;mi = 1,1 < > i <2+ 1.
(3) We assume that Z;"Zl Ljvj # 0, when u:= ), Ljv; is either an edge or a sum or
a difference of two distinct edges.
(4) 23700 log | + | 3272 Lyvs]? # 0 for all edges £ =37 Ljej in X2
We now recall Lemma 2 and Proposition 4 in [10]

Lemma 3.1. Constraint[1] is an integrability constraint. Constraint[dis a completeness
constraint. Constraint|5 means that an edge ¢ = Z;nzl Liv; is determined by the associated

vector m(€) = 3770, Ljv;.
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Proof. -The first statement follows from Remark [3.2]

-Using Proposition |4 under Constraint ?? it is enough to show that we can not find
2q + 1 vectors u; = vy, for which there is a further vector wZ™ with ui,.., uzg41,w
resonant. Otherwise w = ). n;v; is a linear combination with +1 coefficients of the v;,
hence it is a vector satisfying the hypotheses of item [2] but the quadratic condition in the
same item implies that the list is not resonant.

-Constraint |3| implies that 7(u —v) # 0 = 7(u) # w(v) if u, v are two distinct edges.
Hence the last statement is true. Il

Proposition 5. Under the previous constraints we have

(38) N = (@(©),9) + D [k’|z]* + Q(x, w)
keSe
where
(39) W =wo + VgAqH(f) —(¢+ 1)2Aq(£)lv wo = (|’01|2> ey \”Um|2)~

does not depend on the dynamical variables. Here 1 € N™ denotes the vector with all
coordinates equal to 1,Q is given by formula .

Definition 3.6. o When ¢ € Xg, we define Py as the set of pairs k,h satisfying

(13)-
o When (€ Xq_z, we define Py as the set of unordered pairs {h,k} satisfying .

For every edge £, set £ = T — ¢~ and define

(40)
et qo— q q a .
(q+ 1)25 2 ZQGN"”;|OL+Z+‘1ZQ ( EJF +a ) ( Vi +a )6 ) IS X¢(1)7
0) = c,(0) = A +1 -1 a =
e(f) = <o(t) (¢+ 1)Q§[ T ZaeNm;\aH*Il:q*l ( 52 +a ) ( E(i to )f ek 2
cq(0) = cg(—0), e X3

(41) Q(z,w) = Z C(E)ei(e’”:) Z 2k + Z c(l) Z (ei(e’””)zhzk—&—e_i(e’z)zhék)

LeX? (h,k)EPy tex;? h,kEP,

Proof. (Proof of Proposition [5) By the definition the normal form collects all the terms
of Hpes (as series in y, w) of degree < 2 in the variables y, w. In turn H is the sum of the
quadratic term K = ), uzty, and of the terms of degree 2¢ + 2 in the original variables
U, U.
From Remark [3.3] the quadratic term K contributes to N the terms
(wo,y) + Y [kl
keSe
The remaining terms wy, Uk, ..Uk, , Uk, ,, Satisfy the constraint:
(42) Z(_l)iki =0, Z(—l)i|ki|2 =0.
i i
These terms may contribute to terms of N only if they are of total degree < 2 in y,w.
We analyze three possible cases of degree 0,1,2 in w:

e degree 0 If all the k; are in S the momentum ) _,(—1)%k; is a linear combination
> ;m;vj. From momentum conservation and constraint I} we must have m; =
0,Vj. This implies that we can pair the even and odd k’s and, as shown in
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proposition [4] this gives a contribution Ay11(€ + y). In this expression the terms
of degree < 2 give a constant(which we ignore) and the term (VeAg41(8), ).
e degree 1 One and only one of the k; = k € S¢. Formula becomes

k — Znivi = O,|k|2 — Zni|vi|2 =0
i %

where ), n;v; satisfies the hypotheses of constraint Thus these terms do not
occur and S is complete .

o degree 2 Given h,k € S¢ we compute the coefficients of zpZy or zpzr or zjZzk.
These terms are obtained when all but two of the k; are in S. Each k; in S

contributes /& + y;et*, giving a coefficient \/H;-n:l {fj e(t?) whenever:

(43) (zn2k) 0 > _Lvs+h—k=0;Y_ &lvj]* + > = k> = 0,£ € X{
Jj=1 j=1

(44) (zn2k) 0 Y Gvj+k+h =0 Lo + k> + [h]> = 0,0 € X2
j=1 j=1
m m

(45) (Zn2k) Y vy —h—k =0, Llvj]> = [b* = [k|* = 0,0 € X}

Constraint [3] where u is the sum or difference of two edges, implies that h, k fix £ uniquely.
In Formulas and we see that we cannot have ¢ = F2e;, since the equations in
these Formulas have the only solution h = k = v; € S. This explains why in Definition
we exclude +2e; as edges. Constrain implies that h # k in Formulas , . By
Constraint 3| where v is an edge, in (43) h = k implies £ = 0. This contributes a term
(q+ 1)2A4(6) Y rese |26 Tt is convenient to write

D g+ 1A,z = (¢ +1)°A lekl2+2yz (q+1)? Zyz

k

and notice that (¢+1)2A44(£)(X}, [2k|*+_; i) is a mass term (hence a constant of motion
for the whole Hamiltonian) and can be dropped from the Hamiltonian, so we change N
into:

(46) N =K + (VeAg1(6) — (¢ +1)?4(€)L,y) + Qz,w), K = (wo,y +Z Ll e

where 1 denotes the vectors with all coordinates equal to 1.
Let us now compute Q(z,w), given an edge ¢ set £ = T — ¢~ Formula comes from
the expansion
(47)
(q + 1)2 Zehl —€ky +eh,2...+ehqfekq:£ Hg:1(€hi§ki)1/27 te Xz(1)7
- a 1/2 -2,
Cq(g) T (q + 1)q Zehl 7ek1+eh,2.“+eh,q7176kq7176h,q76quz Hl:1(§h1€k1> / ) ‘€ S Xq 9
ca(—0) = cq(0)
O
Q is a very complicated infinite dimensional quadratic Hamiltonian, one needs to de-

compose this infinite dimensional system into infinitely many decoupled finite dimensional
systems.
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3.5. The new Hamiltonian. Following Theorem 1 in [I0] for all e, 7, s satisfy and
for all £ € A2 there exist an analytic symplectic change of variables

D i (y,2) X (2,2) = (u,0)

from D(s,r/2) = Ba, such that the Hamiltonian in the new variables is analytic
and has the form

(48) Ho®e = (w(€),y) + > Uulzl* + Q& w) + P(&,y, 2, w)
kesSe

where Qp, = k|2 + 327, [wiPLO (k), L (k) € Z satisty |[L?) (k)| < 4ng, P is small.

Moreover, following Corrolary 1 in the same paper there exists an algebraic hypersurface
A such that on the open region Az \ A there is a further analytic change of coordinates
taking Q into a diagonal form with constant coefficients plus a form Q with constant
coefficients depending only on finitely many variables zg, Zx, k € A. The Hamiltonian is
then

(49) Hyip = @(€),9) + Y Qlzil’ + Q+ P(&,y, 7, w)
kese
where

(50) Qk:{ Ok + Ak(), Ve S5\ 4;

Qk, ke A
The correction A, (€) is chosen in a finite list, say
(51) A (€) € (AD(€), - A}, K = K (n,m),

of different (real) analytic functions of &.

3.6. KAM scheme. An interesting application of the results for this normal form is to
prove the existence and stability of quasi-periodic solution by a KAM scheme (see [13]
and also [I4] for an existence result). This kind of scheme is based on verification of the
following hypotheses:

(1) A regularity/ smallness condition on the perturbation P, namely that || Xp [|<<
2
e,
(2) A regularity condition namely w(¢) must be a diffeomorphism and (&) — |k|?
must be a bounded Lipschitz function.
(3) A non-degeneracy condition, that is three Melnikov resonances

(52) (w(€),v) =0, (w(&),v) + (&) =0, (w(&),v) + (&) + oQ(&) =0

hold in a set of measure 0.
(4) A Quasi-Toplitz condition to control the measure estimates in the second Melnikov
condition.

4. THE OPERATOR ad(N)

4.1. The map .

Definition 4.1. Denote by Z™ := {>_:" | a;e;, a; € Z} the lattice with basis the elements
€. Setm L™ —7T", e — ;.
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At this point it is useful to formalize the idea of energy transfer in a combinatorial way.
Let S2%[Z™] := {ZTJZI a; jeej}, a;; € Z be the polynomials of degree 2 in the e; with
integer coefficients. We extend the map 7 and introduce a linear map a — a(® as:

7T(€Z') = v, 7'('(67;6]') = ('Uiyvj)v *(2) 2" — 52(Zm)7 e; — 612.
We have w(AB) = (n(A),n(B)),VA,B € Z™.

Remark 4.1. Notice that we have a'® = a2 if and only if a equals 0 or one of the
variables e;.

4.2. The spaces V¥ and F°!.

Definition 4.2. We denote by V¥ the space of functions spanned by elements of total
degree i iny and j in w and VP = ditj=h Vid Voo = D Viid,
Denote by FO1 the subspace of VO commuting with momentum.

The space V%! has a basis over C given by the elements {eizj ViTig e 125 Vit Zr }s
where v € Z™ |k € S°. The space F%! has as basis, which we call frequency basis, the set
Fg of elements

(53) FB:{eiZi”j"”jzk, eiizf”ﬂjék}; Zujvj—i—kzﬂ(u)—i—k:(), ke S°.
J

An element of Fg is completely determined by the value of v and the fact that the z
variable may or may not be conjugated, thus sometimes we refer to ¢ 25 Vi Z_n(v) @S

(v,+) and to e~ 2 Yi®s Z_x(v) as (v, —). By construction v € Z7* where
(54) L ={peZ™| —m(n) € 5%,

We can further decompose the space F%1 = @Ff 1 by the eigenspaces of the mass
operator ad(L). Notice that the mass of ¢! 23 ¥i% 2 is { = >; vi+1, thus on the subspace
commuting with L we have —1 = ). v; for (v,4+). Now the blocks for ad(N) appear in
a natural matrix representation on the space F! as infinitely many matrices with coeffi-
cients quadratic polynomials in the variables v/£;. One easily sees that in the characteristic
polynomial of each one of these matrices the square roots disappear.

4.3. The Cayley graphs. We recall how we have found useful to cast some of the de-
scription of the operator ad(N) into the language of group theory and in particular of the
Cayley graph. In fact to a matrix C' = (¢; ;) we can always associate a graph with vertices
the indices of the matrix and an edge between %, j if and only if ¢; ; # 0. For the matrix
of ad(N) in the frequency basis the relevant graph comes from a special Cayley graph.

Let G be a group and X = X! C G a subset.

Definition 4.3. An X -marked graph is an oriented graph I' such that each oriented edge
is marked with an element x € X.

a—=b a < b
We mark the same edge, with opposite orientation, with x='. Notice that if ©?> = 1 we
may drop the orientation of the edge.

A typical way to construct an X-marked graph is the following. Consider an action
G x A — A of G on aset A, we then define.
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Definition 4.4 (Cayley graph). The graph Ax has as vertices the elements of A and,

given a,b € A we join them by an oriented edge a ——=b , marked x, if b= xa, = € X.

In our setting the relevant group is the group G := Z™ x Z/(2) the semidirect prod-
uct, denote by 7 := (0,—1) so G = Z™ U Z™r. We think of an element a = ¢' 23 %% z,
as being associated to the group element which, by abuse of notation, we still denote
by a = Zj viej € Z™. Then a = e 125 ¥i% 5 is associated to the group element
ar = (>_;vje;)T € Z™7. Thus the frequency basis is indexed by elements of G\
Ui~ {—e;, —e;7}, where

G':={a,ar, a € Z™|n(a) = —1}.

We now consider the Cayley graph G x of G with respect to the elements X g UX, 2(see
Definition B.4). If p € Z it is easily seen that the set G, := {a, n(a) =0, a7 |n(a) = p}
form a subgroup. In particular

Remark 4.2. G_5 is generated by the elements X := X((I) U Xq’2 and it is a connected
component of the Cayley graph.

We distinguish the edges by color, as X° to be black and X2 red, hence the Cayley
graph is accordingly colored.

G' is also a coset of G_y and it is also a connected component of the Cayley graph.

If G acts on two sets A; and As and 7 : A; — Ay is a map compatible with the G
action then 7 is also a morphism of marked graphs.

A special case is obtained when G acts on itself by left (resp. right) multiplication and
we have the Cayley graph GY (resp. G%). We concentrate on G which we just denote
by Gx. One then immediately sees that

Lemma 4.1. If G acts on a set A and a € A the orbit map g — ga is compatible with
the graph structure.

The graph Gx is preserved by right multiplication by elements of G, that is if a,b are
joined by an edge marked g then also ah,bh are so joined, for all h € G.

The graphs G, G are isomorphic with opposite orientations under the map g — g~ *.

The graph Gx is connected if and only if X generates G, otherwise its connected com-
ponents are the right cosets in G of the subgroup H generated by X.

4.3.1. The linear rules. Denote by Z™ := {>_I"  a;e;, a; € Z} the lattice with basis the
elements e;.

We consider the group G := Z™ % Z/(2) semi—direct product. Its elements are pairs
(a,0) with a € Z™, 0 = +1. It will be notationally convenient to identify by a the
element (a,+1) and by 7 the element (0, —1). Note the commutation rules ar = 7(—a).
Sometimes we refer to the elements a = (a,+1) as black and ar = (a, —1) as red.

Consider the masrﬂn (2™ =7, ne;) = 1.

Definition 4.5. We set A to be the Cayley graph associated to the elements X, := Xg U
X2
q

We give a definition useful to describe the graphs that appear in our construction.

Definition 4.6. A complete marked graph, on a set A C Z™ % Z/(2) is the full sub—graph
generated by the vertices in A.

1 the name comes from dynamical considerations
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Definition 4.7. o A graph A with k + 1 vertices is said to be of dimension k.
e We call the dimension of the affine space spanned by A in R™ the rank, rk A, of
the graph A.

o Ifthe rank of A is strictly less than the dimension of A we say that A is degenerate.

4.4. The matrix description of ad(N). Define iM is the matrix of ad(N) in the fre-
quency basis ez, e )z w(u) + k = 0,n(u) = —1. We now compute iM. Recall
that we have the rules of Poisson bracket:

(55) Awiry;} = {zi, 25} = 0. {yi, 25} = 6% {yi, 2} = {zj, 2} = 0

{zh,zk} = {Zh,fk} =0, {Zh,zk} = 162
We have:
(56) {yi e 2z} = e 2 {y; 2} 4 €l 2 MjwjiZszl{yian} =

J
= il 205 Hi%i 5 E 11500 = ipe’ 25 i 4
J

Hence
. m . m .
(67 {(wor9) @S2} = {3 [oilPys, € Sz} =13 pafug 261 S w5 2,
i=1 i=1
and

(58)  {(Vedq1(6) = (4 +1)2Ag(E)L,y), € =517 5} =

" 9A - ;
=i w2 g 1) > e

(59)  {|zk|?, € 2 1% 2} = {2z, el 20 M%)} = zpel DT {7 2} = 26l 2 HTIigE,

(60)
= (X Pl €y = U S = ()Pl T2 = 1] 3 e .
keSe J

Now consider the operator ad(Q). It is easy to see that

(61) (/) 2y, 7z, €1 20 %3 5} = el 225 (bt ra)es 4y 6k
(62) {ei(l’z)zhzk, el 2 it 21t =0,
(63) {em 1) 2y 70 el Za i )} = ize T Da G mHIZIgh 4z e, (6T gk

And we get easily similar formulas for the action of terms of N in Formula on
eI itz Finally, from — we get the following: Given a =), ji;e;, 0 = %1 set

(64) C((a,0)) = G0 +a®) = Z((Y pmier) + > mie).
K((@,0)) = m(Cw) = 51D il + 3 puloil?).
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Sometimes we call K (u) the quadratic energy of u, notice that C'(u) has integer coefficients.
In particular if @ € Z™ we have K(aT) = —K(a) and we have for a,b € Z™

(65) M,.=K(a Z aAq“ Zuzq+1 (8,

0A
MaT,aT:K(aT)_Zz q“ +Zuzq+1 q(§)

(66) Marpr = —c(l), Mgy = c(£), if a, bare connected by a black edge ¢

(67) Mapr = —c(l), Morp =c(f), if a, br are connected by a red edgel

We have shown in [10] that the blocks M on F! come into pairs of conjugate Lagrangian
blocks I', I'r. With respect to the frequency basis the blocks are described as the connected
components of a graph Ag which we now describe.

Definition 4.8. Given an edge u——>v , u = (a,0),v = (b,p) = 2u, ¥ € X,, we say
that the edge is compatible with S or 7 if K(u) = K(v).

Remark now that K(—e;) = K(—e;)T = 0. We call the elements {—e;, —e;7} the
special component.

Definition 4.9. The graph Ag is the subgraph of G* \ U,{—ei, —e;T} in which we only
keep the compatible edges.

‘We then have

Theorem 4.1. The indecomposable blocks of the matrix M in the frequency basis corre-
spond to the connected components of the graph Ag.

The entries of M are given by , , .

The fact that in the graph Ag we keep only compatible edges implies in particular that
the scalar part i%[zj wi(lv|* + 122 ;vi]?] (which is an integer) is constant on each
block. On the other hand, in general, there are infinitely many blocks with the same
scalar part.

Remark 4.3. One of the main ingredients of our work is to understand the possible
connected components of the graph Ag, we do this by analyzing such a component as a
translation I' = Au where A is come complete subgraph of the Cayley graph but contained
in G_q and containing the element 0. In particular we have shown (cf. [10], §9) that A
can be chosen among a finite number of graphs which we call combinatorial.

4.5. Geometric graph I's. In order to understand the possible components of the graph
Ags we need to study a purely geometric graph. We define a graph on R™ using formulas

and ()

Definition 4.10. An edge { € Xq_2 defines a sphere Sy through the relation
-1
2 _ 12 12
(68) o+ 3 i) = 5 (3 vl + 3 o)
An edge £ € Xg defines a plane Hy through the relation

(69) (5,3 o) = 303 vl + S tfuil)
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FIGURE 5. The plane H, with ¢ = e; — v; and the sphere S; with ¢ =
—e; — e;. The points hq, k1, v;,v; form the vertices of a rectangle. Same
for the points ha, v;, k2, v;.

Definition 4.11. Each { € Sy is joined by a red unoriented edge to —x — >, {;v; € S.
Fach x € Hy is joined by a black oriented edge to x — ZZ biv; € H_y. We construct the
geometric graph |Gammag with vertices all the points of R™ and edges the black and edges
described.

It is convenient to mark each edge of the graph with the element —(¢) from which it
comes from. Remark that Constraint [I] implies that the edge ¢ is uniquely determined by
the vector —m(¢).

Remark 4.4. It is immediate by the definitions that the points in S are all pairwise
connected by black and red edges and it is not hard to see that, the completeness constraint[1]
implies that the set S is itself a connected component which we call the special component.

4.6. From the combinatorial to the geometric graph. In our geometric setting, we
have chosen a list S of vectors v; and we then define 7 : Z™ — R™ by 7 : €; — v;.
We then think of G also as linear operators on R™ by setting

(70) ak:=—7(a)+k, keR", acZ™, 71k=—k

We extend 7 : Z™ — R™ to Z™ % Z/(2) by setting n(a7) := 7(a) so that —m is just
the orbit map of 0 associated to the action (the sign convention is suggested by the
conservation of momentum in the NLS).

We then have

Remark 4.5. X defines also a Cayley graph on R™. and in fact the graph U's is a subgraph
of this graph.
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There are symmetries in the graph. The symmetric group S, of the m! permutations
of the elements e; preserves the graph. By Lemma we have the right actions of GG, on
the graph:

(71) (b,0) — (b,o)T =bor, (b,0)+ (b,0)a=(b+0a,0), Va,be Z™.

Up to the G action any subgraph can be translated to one containing O.

Each connected component of the graph I's has a combinatorial description based on
and which encodes the information on the various types of edges which connect
the vertices of the component.

Example 4.1.

xr — v + U3 xr — v + V2 4+ v4 + U3

xr — Vg + U3 xr — Vg + U3

1,3 3,2 1,3

—x+v v T —x+v 4+
T2 + v1 +v2 = +v1 +v2

the equations that x has to satisfy are:

(z,v2 — v3) = |v2|* — (v2,v3) (, v — v3) = |v2|* — (v2,v3)
2> = (2,01 + v2) = —(v1,v2) |z]? + (2,01 + v2) = —(v1,v2)
(2,01 — v3) = |v1]* — (v2, v3) (2,01 — vg —vg —v4) — |v1|* + (v1,02) + (v1,v3)

—(va,v3) + (v1,v4) — (v2,v4) — (v3,v4)

4.7. The correspondence of I's with Ag. This correspondence comes from the fact
that

Remark 4.6. FEquations which define edges in the graph I's are exactly the ones which
define compatible edges in Ag, in other words, set a,b € Z™ such that —m(a) = x,—m(b) =
Yy, we have
(1) z,y € Sy are connected by a red edge marked by —pi(€) if and only if a,br are
connected by a red edge marked by ¢ and K(a) = K(b).
(2) x € Hy,y € H_y are connected by a black edge marked by —pi(€) if and only if a,b
are connected by a black edge marked by £ and K(a) = K (b)

Proof. We will prove [1| The proof for [2|is similar. i) Let z = Y_"" | u;jv; € Sp. We have
a€l™:a=— Z;n:l wie; such that —m(a) = z. By Definition x is joined by a red
edge marked by —7(€)(¢ = 37", lje; € X?) with y if and only if y = —z — 37" 40,
and we have b € Z™ : b= 3", (1 +{;)e; such that —7(b) = y. Since a+b = 37" | Lje; €

Xq’z, a,br will be connected a red edge marked by ¢. We have

(72) e = 50 = Lol = Ll

1 m
(73) 5 |Z UJ| "‘Z i+ 4 ‘U]|
j=1 j=1

l\D
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(74)
K(br) = —%(| ZM%’FH Z@UHQJF?(ZM%Z@%HZ/~Lj|vj|2+zfj|0j|2)
J J J J J J
From and we get
(75) K(a) = K(br) © 2| ZM;‘WF + Q(Z ijjazéjvj) =—( Zfﬂ’jF + Z&'I%‘P)
J J J J J

1
& o+ (2, L) = —3(l > L+ 4l
J J J
The last equation in (75)) is exactly the equation which defines S,. O

Therefore we have:

Remark 4.7. The map —m gives an isomorphism between connected components of Ag
to its image in I'g.

In application of the KAM algorithm to our Hamiltonian a main point is to prove
the validity of the second Melnikov condition. The problem arises in the study of the
second Melnikov equation where we have to understand when it is that two eigenvalues
are equal or opposite. The condition for a polynomial to have distinct roots is the non—
vanishing of the discriminant while the condition for two polynomials to have a root in
common is the vanishing of the resultant. In our case these resultants and discriminants
are polynomials in the parameters &; so, in order to make sure that the singularities are
only in measure 0 sets (in our case even an algebraic hypersurface), it is necessary to
show that these polynomials are formally non—zero. This is a purely algebraic problem
involving, in each dimension n, only finitely many explicit polynomials and so it can be
checked by a finite algorithm. The problem is that, even in dimension 3, the total number
of these polynomials is quite high (in the order of the hundreds or thousands) so that the
algorithm becomes quickly non practical. In order to avoid this we have experimented with
a conjecture which is stronger than the mere non-vanishing of the desired polynomials. We
expect our polynomials to be irreducible and separated, in the sense that the connected
component of the graph giving rise to the block and its polynomial can be recovered from
the associated characteristic polynomial.

4.8. Characteristic polynomials of complete color marked graphs. For every com-
plete colored marked graph G we will consider the matrix Cg indexing by vertices of G
as computed in , (66)), (67). The irreducibility property of characteristic polynomials
is invariant under translations (see Theorem so in the proof of the irreducibility can
assume that the graph contains 0. Hence every vertex has mass equal to 0 or -2 and we
have constant K (a) = K(0) = 0Va (since we keep only compatible edges). So the matrix
Cg will be as follows: Given (a,0),a = ", n;e; set

)
(76) (¢ +1)a(§) == Z”ia?_Aqul(f)
i=1 ‘
then
e In the diagonal at the position (a,0),a =Y.~ n;e; we put

- (¢+Da() ifo=1(= nla) =, n=0)
~(q+ Da(€) ~ 20g + 124,(6) o= —1(= n(a) =, n; = ~2)
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e At the position ((a,04), (b,0p)) we put 0 if they are not connected, otherwise we
put ope(f) (c. f. where £ is the edge connecting a, b.

Define xg = xc,(t) = det(tI — Cg)- the characteristic polynomial of Cg.
Theorem 4.2.
(78) Cra)=c§)I+Cq, Cg=—-Cg.
where T, is the translation map by vector ¢, G is the image of G under the sign change
(see (71))).
Consequence 4.1.
(79) Xr.(6)(t) = xa(t — ¢(£))
Proof. We have by theorem [4.2
Xro(c)(t) = det(t] — C7 () = det((t — c(§)) — Ca) = xa(t — c(§))-
O

As we said in [I] in order to check the second Melnikov condition we expect that for
connected colored marked graphs G x¢g are irreducible over Z and separated.

Remark 4.8. In the proof of separation we do not assume that the quadratic energy K(a)
is zero. And in fact in our proof of the separation we use only the induction, the constant
K(a) does not play any role.

Lemma 4.2. For any a € Z™: a(§) has integer coefficients.

Proof. Let a =", nje;. We have

0 _
a—éAqH(f) = Z ( q;l )20 Pt ghm

BEN™;|Bl1=¢+1;8:>1

s =T s T ek

is divisible by ¢ + 1. O

Hence all diagonal elements of Cg are divisible by ¢ + 1. Besides by the formula [40] all
off-diagonal elements of Cg are also divisible by ¢ + 1. Thus we can write:

Cg = (¢+1)Cg = xcg (t) = det(t] — Cg) = det((g+ 1)t — (q+1)Cg) = (g+1)" ' x g, (D)

So in order to prove the irreducibility of the polynomials xc, it is enough to prove the
irreducibility and the separation of the polynomials Xgg- For simplicity we will denote
X¢, also by xg, and we will redefine ¢(¢) by division the right hand sides of by ¢+ 1:
(80)

etpe” q q « .

@+ D65 Coampaneima (o ha ) (e )€ £eX3

c(b) = cq(f) = et g+1 qg—1 a -2
g2 Za€N7rl;|a+£+|1:q71 I +a i +a &, le Xq .

Take a complete colored marked graph A and compute its characteristic polynomial x 4 (t).
We have:
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Theorem 4.3. When we set a variable & = 0 in x4(t) we obtain the product of the
polynomials x 4,(t) where the A; are the connected components of the graph obtained from
A by deleting all the edges in which i appears as index, with the induced markings (with

& =0).

Proof. This is immediate from the form of the matrices. (]

Part 2. The separation and irreducibility of characteristic polynomials,
associated to the cubic NLS

ABSTRACT. This part is the proof of Theorem for the cubic NLS. It requires a
lengthy and complicated analysis. One needs to classify graphs by the appearance of
indices and apply induction on the size of matrices and on the number of variables
&i-
The cubic NLS is the equation of the form when ¢ = 1. In this case:
(81)

m 8 m
A1) = As(§) =D & +4> &b = 3—5A2(£)=2@+4Z@=—2&+4Z@-
j=1 !

i#k J#i j=1
A, =41 =) &
-

=1
X =X)={ej—ej,i#jel,....,m]}, X=X (—e;—ej)r, i#j€l,....m]}.
Let (a,0),(b,p) € Z™ xZ/(2).
e We join (a,0), (b, p) with an oriented black edge, marked (i, j) if
oc=p, b=a+e —e€j, &< a=b+e; —e;.
e We join (a,0), (b, p) with an unoriented red edge, marked (3, j) if
op=1,b+a+e +e; =0.

(4:9) ei—ej
b=a+e; —e¢; a—>=>b <= a—>b

(—ei—ej)T

c+d+ej+e =0 c d

From Formula for g =1 we get c(f) =2,/&¢; if b =e; —ej or { = —e; —¢;.
For every connected component G of I's we will consider the matrix Cg indexing
by vertices of G.Given (a,0),a = > i~ n;e;, by Formula (190) in the case ¢ = 1 we

— . i&i fUazln(a):O
h =150 ni(—2¢+4 ) = Zlng’ ! ) )
ave a(€) = 1 3, ni(~26 14, &) {_Zini&_@k% s
Hence we get easily

(i,9)

d <—

Lemma 4.3. The entries of the matriz Cq, over the indexing set of the vertices of G,
are:
e In the diagonal at the vertex (a,o) equals to —o > n;&;.
o At the position (a,0), (b, 7) we put 0 unless they are connected by an oriented edge
e = ((a,0), (b, 7)) marked with (i,7). In this case we place

(82) C(e) :=274/&&;.
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It is easily verified that when we expand the characteristic polynomial of such a ma-
trix the square roots disappear and we get a polynomial, denoted x4 (¢) monic in ¢ and
with coefficients polynomials in the variables & with integral coefficients. Our goal is to
prove that each of these polynomials is irreducible (as polynomial in Z[t,]) , this we call
irreducibility theorem and furthermore that the graph A is determined by xa(t), this we
call the separation lemma.

In fact in this form the statement is not true, we need to restrict to the subspace
of F(O1) where mass is conserved. This is enough for the dynamical consequences. In
algebraic terms the conservation of mass consists in restricting to the coset of Gy (one of
the connected components of the Cayley graph) of elements a,ar € G, a € Z™, n(a) = —1.
Moreover, in [II] we have proved

Theorem 4.4. For generic choices of S (see the redefinition of genericity in Appendix@)
the connected components of graph Us, different from the special component, are formed
by affinely independent points.

In particular each component has at most n + 1 points.

5. THE IRREDUCIBILITY AND SEPARATION

5.1. Preliminaries. Observe first that, given a € Z™, A C Z™ we have that xa(t) is
irreducible if and only if x 4t4(¢) is irreducible.

Consider a projection m; : Z™ — Z™~! where m;(a1,...,am) > (a1, .., G, ... am) (We
remove the i*" coordinate). Take now a set A C Z™ of vertices and consider the graph
obtained from I' 4 by removing all the edges which contain ¢ in its marking, call this new
graph T'yy. Even if A is connected this new graph I'Yy may well not be connected. We now
claim

Proposition 6. If A is connected the map m;, restricted to 'Yy, is injective and a graph
isomorphism with T'z, 4y, a graph in zZm L,
If A is non degenerate each connected component of I'x, () is non degenerate.

Proof. We know that the augmentation ¢ = n(a) depends only on the color of a so that
we have a; = n(a) — n(m;(a)) and thus if a,b are black vertices (or red vertices), m;(a) =
m;(b)m(a) = n(b) hence a; = b; = a = b. Otherwise, if a is black, b is red then it is
clearly m;(a) # m;(b) because m;(a) is black, m; () is red. If we decompose X = X,, into
the elements containing the index i and the complement X! we see that m; establishes
a 1-1 correspondence between an and X,,_1 from which the second claim. The third
claim follows easily from the definitions.

d

A simple corollary of this proposition is that.
Corollary 5.1. If we set § = 0 in the matriz C4 we have the matriz Cy (4, hence

XA()le;=0 = X, (a)(t)
Let By, ..., By be the connected components of m;(A). We have

k
]._.[ XB; (1) = Xr,(4)(t) = xa(t)]&;=0-
j=1

As a consequence, we have the following inductive step.
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Corollary 5.2. Assume that A is non degenerate and that we have already proved the
irreducibility theorem for m — 1 or for n < |A|. We deduce that the factors xp,(t) of
X (4)(t) are the irreducible monic factors of x a(t)|e,=o-

We want to prove Theorem [I.1] by induction as follows. We assume irreducibility and
separation in dimension n — 1 and prove first the separation in dimension n and finally
irreducibility in dimension n.

Take a connected A and let £ be the augmentation of a black vertex of A, then the
augmentation of a red vertex is —2 — /.

Lemma 5.1 (Parity test). (1) If we compute t at a number g 2 ¢ mod (2), we have
xa(g) # 0.
(2) If a linear form t + . a;&, a; € Z divides xa(t) we must have ), a; = {
mod (2).

Proof. 1) We compute modulo 2 and set all §; = 1, we get xa(t) = (t +£)™ mod (2),
hence xa(9) 2 (g+ )™ X g+{¢ mod (2).

ii) A linear form t+) ", a;&;, a; € Z divides x a(t) if and only if we have x a(— >, ;&) =
0, then set & = 1 and use the first part. (I

We shall use the parity test as follows.

Lemma 5.2. Suppose we have a connected set A in Z™, in which we find a vertexr a and
an index, say 1, so that the graph I" 4 has the following properties:

C

1

we have:
e 1 appears in all and only the edges having a as vertez.
e When we remove a (and the edges meeting a) we have a connected graph A with
at least 2 vertices.
o When we remove the edges associated to any indez, the factors described in Corol-
lary[5-1] are irreducible.

Then the polynomial x a(t) is irreducible.

Proof. We take a as root, and translate the set A so that a = 0. Setting & = 0 we have
by Corollary and the hypotheses, that x4 (t) = t P(t) with P = x_4(¢) irreducible of
degree > 1. Thus, if the polynomial y 4 (t) factors, then it must factor into a linear ¢t — L(§)
times an irreducible polynomial of degree > 1.

Moreover modulo & = 0 we have that 0 and ¢ coincide, thus L(§) is a multiple of &;.

Take another index ¢ # 1,h if a is an end and the only edge from a is marked (1,h)
otherwise just different from 1 and set & = 0. Now the polynomial x4(t) specializes to
the product []; x4, (¢) where the A; are the connected component of the graph obtained
from A by removing all edges in which i appears as marking. By hypothesis {a} is not
one of the A;.

If no factor is linear we are done. Otherwise there is an isolated vertex d # a so that
{d} is one of the connected components A;. The linear factor associated is t + d(&)|¢,=o-
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Clearly we have that the coefficient of &; in d(&) is +1 (since the marking 1 appears only
once). This implies that L(£§) = +&; and this is not possible by the parity test. O

By Theorem we need to consider only the graphs formed by affinely independent
vertices.

6. THE SEPARATION LEMMA

Let be given a colored marked graphs G. We define the graph 7G = {(—a, —0)|(a,0) €
G}.

Remark 6.1. 7G is a connected graph, if and only if G contains only black edges.

Proof. If there exists a red edge marked i, j that connects two vertices a, b then a + b =
—e; —ej = —a — b=¢; + e, then —a, —b are not connected in 7G. If b —a =¢; —¢; =
—b—(—a) =a—b=e; —e;, —a,—b are connected by a black edge marked j,i in 7G. O

Lemma 6.1. (Separation lemma) Let be given two connected colored marked graphs
G1,Ga. If xa, = Xa,, then G1 = Gy or G = 7Gs.

Since if G is of mass —1 we have that 7G is of mass 1, we deduce that a connected
color marked graph G of mass -1 can be recovered from its characteristic polynomial.

Proof. We will prove this lemma by induction. When n =0 : xg(t) =t + a, it is easy to
see that G = {(a,+)} or G = {(—a,—)}.

Induction process: m > 1. Suppose that we have the separation and the irreducibil-
ity for graphs of dimensions & < n — 1. Take a connected colored marked graph G =
{(v1,01)s- s (Unt1,0m)}, (vi,0;) € Z™ x Z/(2), the associated matrix Cg and its char-
acteristic polynomial yg. We want to show that G can be uniquely (up to the sign)
reconstructed by xg. It means that we must recover coordinates (up to the sign) of all
vertices and collect all together in a graph. We set one of the variables &; = 0 for instance
&1 = 0. We know that the matrix Cq specializes to the direct sum of the matrices Cg,
where the G; correspond to the various connected components of the graph G which are
obtained by removing all edges in which 1 appears as marking and dropping in each com-
ponent the first coordinate of the various vertices. We have that specializing &, = 0 we
specialize the polynomial x¢ to ], xg,. Since we are assuming irreducibility in dimen-
sions less than n — 1 the factors x¢, are all irreducible and thus can be determined by
the unique factorization of polynomials. Therefore all the vectors of 71 (G), that is the v;
with the first coordinate removed can be recovered uniquely (up to the sign) by induction:
V; = :|:(>I<7 bi, C3.i5 -y Cm i3 O'i)

Now we set another variable, say £ = 0. By similar arguments as above all the v;
with the second coordinate removed can be recovered (up to the sign) by induction:
vy = (@i, %, €34y -y Cm iy 04)

1) Recovering coordinates (up to the sign) of vertices

We need to consider the vectors in G which have the form: +(x,x,¢3,...,¢n;0), where
C3,- .., Cm; 0 are fixed. Vectors of the form (x, *, ¢3, ..., ¢;n; 0) are in the subspace U of Z™:

U={(x1,.tm;0) €Z™ XZ/(2): i =c;, Vi=3,...m'0 =0}, dimU =2

Since the vectors in the graph by assumption are affinely independent, we have at most 3
vectors with the form (x, *, 3, ..., ¢, ). Moreover, these vectors have the same sign and are
in the same graph, then they have the same mass. Vectors of the form (x,*,cs, ..., ¢;n; 0)
with the mass k are in the affine subspace U’ of U:U’ = {(z1,...,2m;0) € U : 1 + 25 =
k—>"4¢,0 =0}, dimU’ = 1. Since the vectors in the graph by assumption are affinely
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independent, we have at most 2 vectors of the form (x,x, ¢s, ..., ¢;y; 0) where ¢3, ..¢pp,, 0 are
fixed. And with the sign we have in G at most 4 vectors of the form =+(x,x,cs, ..., C;n; 0)
where c3, ...c;,, 0 are fixed. We will exclude the case of 4 vectors. In fact, if in G there
are 4 such vectors

v = (alvblvc?n ---acm§0')7'02 = (CLQ,bQ,Cg, --'7CT)’L7U)7U3 = <a’37b37c37 <5 Cmj; _U)7U4 = ((14,b4,83, cees Cmyy _0')

Since v1,vo has the same sign, they also have the same mass, then a; + b = as + by =
ay —ag = —(by — ba) = vy — vy = (p,—p). Similarly, vz, vy have the same mass, then
vy — vg = (¢,—q). One deduces from this an affine dependence of vy, v9,v3,vs, which
is not possible. Now our problem is this: if we know the vectors obtained from these
< 3 elements after removing the first or the second coordinate can we recover the given
vectors? We shall need to perform a case analysis.

a) There are in G only 2 vectors of the form =+(x, %, ¢3, ..., ;o) Where cs, ...cp,, 0 are
fixed. For simplicity we denote ¢ := (c3, ..¢y,) and their sum by c.

i) When they have the same sign, let them be (a, b, ¢s, ..., ¢, o) and (a’, V', c3, ..., Cm, 7).
We know the elements (a,a’) and (b,d’) and we need to reconstruct if a is paired with b or
with /. We want to show that if we permute a,a’, we will get the same vectors. Assume
that we have

(83) a+b+c = |,
(84) ad+bt+ec = 1,

Since (a, *, ¢; o) and (d/, *, ¢; o) have the same sign, the permutation of b, b’ must conserve
the equality of their masses

(85) at+b+c = U,
(86) a+b+ec = U,

From and we have b — b = [ — ', from [84 and ?? we get b — b’ = I’ — I, hence
=V =V-1l=1-I'=0=1l=I'=b=0V=a=d = (a,bc) = (¢,V,c), which
contradicts the affine independence of vertices in G.

ii) When they have opposite signs, let them be (a, b, ¢; o) and (—a’, —b', —¢; —0). They
are in the same graph, soif a+b+c =1, then —a’' -V —c=-2—-1=d +V +c =
I+2=21+2=a+ad +b+V +2c, ie. | is uniquely determined by these 2 vectors. So
if we permute a,a’, we will get 1 vector of the mass I, 1 vector of the mass [ + 2. There
are 2 possibilities, either

(87) d+b+c=l,
(88) a+b +c=1+2,
or

(89) ad+b+c=1+2,
(90) a+b +c=1,

One deduces, in the first case a = o’ , and in the second case b = b'. In any case the
permutation of a,a’ gives the same vectors.

b) There are in G 3 vectors of the form +(x, *,¢c; o) in G, where ¢, o are fixed. By affine
independence it is easy to see that among them there are 2 vectors of the same mass (i.e
with the same sign). Let 3 vectors be (a1, b1,¢;0), (az,b2,¢;0), (—as, —bs, —¢; —0). Let

(91) ar+bi+e=1,
(92) ag+by+c=1,
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then
(93) —a3—b3—c=-2—-1l=a3+bs+c=10+2

We have 3] + 2 = a1 + as + ag + by + by + bs + 3¢, i.e. [ is uniquely determined by these
3 vectors. So if we permute aq,as, a3, we will also get two vectors of the mass [ and 1
vector of the mass [ + 2.

i) There are 3 cases associated to the permutation (ajasas).

-The first case is:

(94) as+b+c=142,
(95) as+by+c=1,
(96) a1+ bs+c=1,

From and we get by = b3, and from and as = as. Hence (a1,b1,c) =
(a1,bs,¢), (az,be, c) = (as, ba, c), (—as, —bs, —c) = (—ag, —by, —c), i.e. the permutation of
ai,as,as gives the same vectors.

-The second case is

(97) az+bi+c=1,
(98) az+by+c=10142,
(99) a1 +bs+c=1I,

From and we get a; = ag, and from (93)and by = bz. Hence (a1,b1,c) =
(a2,b1,0), (a3, b2, ) = (a1, bs, ), (—as, —bs, ) = (—az, —ba, —c), i.c. the permutation of
a1, as, a3 gives the same vectors.

-The third case is

(100) az+by+c=1,
(101) az + by +c=1,
(102) a1 +bs+c=1+2,

From and we get a1 = as, and from and as = a3. Hence a1 = ay = ag,
we are done.

ii) Three cases associated to the permutation (ajasas) are treated similarly.

2) Collecting vertices together in a graph.
We do not know (a™, (1), ¢(; o1) will be connected with (a(®, 53, ¢ gy) or —(a®, ), 2 7).
There are only following possibilities:

a) If o1 = o and a® + bW + D = 4@ 4+ @) 4 ) then +(a®,bM), MV 01) will be
connected with i(a(z), b2 2. o9) respectively, we will obtain 2 graphs Gy, G2:G1 = 7Ga.

b) If o1 = 09 and a® 4+ M = 2442 42 4¢3 then (a(l)7 b ), o1) will
be connected with —(a(®, b, ¢(?): gy), we obtain only one graph.

¢) If 0y = —0p and a® 4+ M + V) = -2 — (¢ + 52 4 ¢?), then (aM, 0™ D) 0y)
will be connected with (a®, b, ¢(?);0y), we will obtain only one graph.

d) If 01 = —03 and aD +pM) 4 () = —2) _p(2) _(2) then +(aM), b ). o1) will be
connected with F(a®, b3, ¢?); g5) respectively, we will obtain 2 graphs G, G2:G1 = 7Gh.

O

7. IRREDUCIBILITY THEOREM

We prove this by induction. Suppose the separation and irreducibility in all dimensions
less than n, we will prove the irreducibility in dimension n. Since this property is invariant
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under translation we often choose a vertex as the root and assume that it corresponds to
0.

Let G be connected marked graph and take a maximal tree T' of G. So T consists
of n linearly independent edges. We must have at least n distinct indices appearing in
the edges, otherwise these edges span a subspace of dimension less than n. In total on
the n edges of T appear 2n indices counted with multiplicity. If no index appears with
multiplicity 1 we must have that all the indices appear with multiplicity 2.

If only one index appears with multiplicity 1, the remaining k& > n — 1 cannot all have
multiplicity > 3 since 3(n — 1) > 2n — 1 unless n < 2, in which case this can also be
excluded since no edge is of the form —2e;. Thus we may have one index of multiplicity
1 and another of multiplicity 2. If only two indices appear with multiplicity 1 and in the
same edge the remaining indices must still be k& > n — 1 since they give n — 1 linearly
independent edges. Thus they cannot all have multiplicity > 3 by the previous argument.

We thus have to treat 3 cases.

Remark 7.1. e Dash lines mean that they may be black or red.
e Black edges are denoted by single lines, red edges-by double lines.
e A denotes the completed graph obtained from the graph A.

Lemma 7.1. If in T there are two blocks A, B and two indices i,j such that:
(1) i,7 do not appear in the edges of the blocks A, B.
(2)

(103) Xilei=¢,=0 = XBlei=¢,=0

Then |B| = |[A| =1,A = {a}, B = {b} and b = Ty,e,4n;e,(£a). The sign and the numbers
ng,n; are determined by the path in T from a to b.

Proof. Choose the root in A. This gives to each vertex v a sign o,. Since i,j do not
appear in A (resp. B), the vertices in A times their sign vo, have the same i-th and j-th
coordinates, similarly for B hence there exist m;, m; such that:

(104) A= Tmie;+mje; (A/) g XA(t) = XA'(t —m&; — mjfj) = XA
where vertices in A’ have zeros as the i-th and j-th coordinates. Similarly,

(105) B = Tpiei+pje; (B/) = XBlfiZEjZO = XB’-

From , and we have x5 = xp/- Hence by the separation lemma A’ =
+B’, then B = Tp,e,4pje;, (FA). A= Timie,4mye;(A) = £A = Trmic,7mye, (£A) =
B = T(p1$m7;)e7¢+(pj$mj)ej(:l:A)' Clearly |B| = |A|7 let A = {(01,0'1),...,(ar,0'r)};B =

{(b1,61), ..., (br, ;) }. Set v = (p; F m;)e; + (pj F pj)e;, since B = 1,(+A) we have:
b, = +a; + ov;8; = £o;. So if |A] = r > 2, we have by — by = £(az — a1) in the

£&i=£;=0 = XA’

case o1 = 09 and by + by = *(as + a1) in the case 05 = —o;. This contradicts affine
independence of vertices of G. Hence |A| = |B] = 1. Let A = {a}, B = {b}, we have
b = Tn,e;+n;e; (Fa), where n; = p; F mj,n; = p; Fm;. O

Suppose T is a maximal tree in a graph I" and ¢ be an edge in T" containing the indices
1,j. We have two connected components A, B of T obtained by removing /.

Lemma 7.2. Assume that the two connected components A, B do not have the index i in
any edge. Then any other edge in I' connecting A, B must contain the index i.

Proof. In a path which is a circuit you cannot have that an index appears only once (or
even an odd number of times). ]
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We now consider two edges {1, {5 containing the indices ¢, h and ¢, k respectively. When
we remove these edges in T' we have 3 connected components in T’

Ak BEEC
in the complete graph T once we remove all the edges containing i the graph Bis a

connected component. Then we may either have other 2 components A, C' or a connected
component AU C.

Lemma 7.3. If there exists a pair of indices, say (1,1), such that 1 appears only once in
the maximal tree T and T has the form.:

A~ B
FIGURE 6

where i # h, and i appears only in the block B. Then x¢q is irreducible.

Proof. Let the root be in A. Since 1 appears only once in T, every edge in G that connects
A and B must have 1 in the indexing. We have:
(106) Xélei=0 = XaXBlei=o0-

By induction assumption and since 1 does not appear in B, the polynomials x 1, X l¢; =0
are irreducible. Hence, if x¢ is not irreducible, it must factor into two irreducible poly-
nomials: yg = UV such that:

(107) Ulg,=0 = X -

Let Bj,..., Bs be the connected components obtained from B by deleting all the edges
which have 7 in the indexing, B; be the component that is connected with A. We have:

(108) Xa

Remark that deg(U) = |A| < deg(x755,) = |Al + [Bi1]. Ulg=¢,=0 = xa is irreducible,
then Ul¢,—o must be irreducible. Hence

£:=0 = XAUB, X Bs&=0---XB, |¢,=0-

(109) Ulg,=0 = x5, le,=0 for some j € {2,..., s}
From (107) and (109) we get xx = x5, le,=¢;=0- So, by lemma |A| = |B;| = 1. Let
A = {a}. Then by lemma for the vertex a and the index 1, x¢ is irreducible. O

Corollary 7.1. If there are two indices which appear only once and not in the same edge
in the mazximal tree then x g is irreducible.

7.1. Two indices which appear only once and in the same edge. Let these two
indices be 1,2. If there exists another index, say 3, which appears only once, then we can
replace 2 by 3 and we are back in the case of Corollary Otherwise all other indices,
different from 1, 2 appear at least twice. Due to the dimension we must have at least n—1
distinct indices, different from 1, 2. Since we have all together 2n indices (with repetition),
we have exactly n — 1 distinct indices different from 1, 2 and they appear twice. Take one
of these indices, say 3. If we cannot apply lemma [7.3] we must be in the case, in which
the maximal tree 7" has the form
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A*3ikafli2fo3ith
FIGURE 7

where the indices 1 and 3 do not appear elsewhere in the tree. Consider the case of figure
@' By inspection all edges in G which connect A and C' contain 1,3 in the indexing, all
edges in G which connect B and D contain 1,3 in the indexing. Then we have:

(110) XcGlei=0 = XauE-Xaople =o-

(111) XGles=0 = XaA-XBUales=0-XDles=0  0r  Xcles=0 = Xaup-XBocles=0-

The second case holds when A, D are joined by some edge which does not contain 3.
From (110) we see that if ¢ is not irreducible, then it must factor into two irreducible

polynomials: xg = UV, Ul¢,—o = xz55- Comparing (110) and (111) by degree and using
the irreducibility of x 1, X p|e;=0 We get the following possibilities in the first case of (111])

(1)
Ules=0 = xaxples=0 = Xaoples=0 = Ulei=¢3=0 = XaXDles=¢1=0
On the other hand:
XaoEl6=0 = Xa-X5le=0

(112) = XBles=0 = XD les=e1=0

Hence by lemma [7.1) we must have: |B| = |D| =1 and d + b = nye; + nzes. But
in fact by figure (7]) we see d £ b = +es + 2#2 n;e;, a contradiction.

(2)

(113) Ulgs=0 = XBucles=0 = Xauples=0 = Ulg=¢,=oXB0ales=6=0

(114> == XC‘|€3:€1:0 = XA
Hence by lemma[7.1] we get [A| = |C| =1, A = {0},C = {c} ¢ = +e; L €3, but in
fact by figure we see ¢ = teg + 2#2 n;e;, contradiction.

In the second case of (111)) we arrive at the same conclusions.

7.2. There is only one index, say 1, which appears once in the tree. Other indices
appear at least twice in the tree. We have exactly n — 1 indices, different from 1, since
if there are more than n — 1, then they exhaust 2n indices (with repetition). From this
we see that there is only one index, say 3, which appears three times. All other indices,
different from 1, 3, appear twice.

7.2.1. When 1, 3 appear together in one edge. If T' has the form as in figure then, by
lemma [7.3] x¢ is irreducible.

QB p o 2k

FIGURE 8
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Therefore, assume that 7" has the form as in figure @D

Qg 18 o 2k g

FIGURE 9

1) If A, D are not joined by an edge then:

(115) XG|€1:0 = XAUBXCUD|51:0’
(116) Xcle=0 = XaXpoele=0Xple=0-
2) If A, D are joined by an edge, this edge contains 1 and we have x¢|e,—0 = XFoclca=0XATD]€2=0-

From (115) we see that if x¢ is not irreducible, it must factor into 2 irreducible poly-
nomials: yg = UV. Choose the root in A to be 0 so that:

(117) Ule=0 = Xaus-
Hence deg(U) = |A| + |B]. In case 1), from (116]) we get the following possibilities:
a)
(118)  Ule,=0 = Xpuclea=0 = Xauple=0 = Xpuela=c=0
— XaXBle=0 = X5le—oXcla=6=0 = Xxa = Xcla=g—o-
b)
(119)

XAUBle2=0 = XaXbla=ga=0 = XaXsBle=0 = XaXpla=e=0 = XBle=0 = Xplei=g=0
In case 2) we arrive at the same conclusions. By symmetry we need to consider only case
([118). By lemma [7.1] we get get |[A| = |C| = 1,4 = {0},C = {c},c = Tuye1+n2e,(0). By
inspection of Figure (9) nq,ng € {+1}.
(120) n(c) € {0,-2} = c==x(e1 —ea),—e1 — €2
i. e. there exists an edge marked (1,2) that connects 0 and ¢. Moreover, all indices,
different from 1, 2 must appear an even number of times in every path from 0 to c.
Consider the index k.

i) If k1 # 3, then k; must appear once more in the block B like:

2,k1 ki1,s 1,3 2,ko
0---B,——-—-By———-¢c—-—-—D

Now we can apply to the pair (1, k1) and get the irreducibility of x¢.

ii) If k1 = 3, consider the index ks.

A) If ko # 3, then either ko appears in the block D as in figure , or it appears in
the block B as in figure .

FIGURE 10
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B,
ik::s
N
_‘_“h‘i_iﬂ/,
FIGURE 11

In the case of figure 7 by lemma for the pair (1, k2), x¢ is irreducible.
Now consider the case of figure .

(121) XGley=o = XouBluBZX@kl:m
(122) XGler, =0 = XoUB T X Ba €4, =0X Dk, =0
We have assumed that xg = UV with U,V irreducible and Ul¢, =9 = XoUBUB,- From
(122)) if we have U|€k2=o = X0UB;Uc — XOUBIUB2|€7€2:O = XOUBlLJclflzo = XE2|Ek2:0 =
Xcley=0. Then by lemma we have By = {ba},c = Tike+er, (£b3). We have in the case
Opy = 0 = ¢ = by £ (e7 — €p,), i. e. there exists a black edge with the marking
(1, k2) that connects ¢ and be; and in the case oy, = —0, = n(ba +¢) = -2 = c=
—by — €1 — eg,, 1. e. there exists a red edge with the marking (1, k2) that connects ¢ and
bs.

+) If s = 3 and By = {b1}, then, by lemma for the vertex b; and the index 3, x¢
is irreducible.

+) If s =3 and |B;| > 1, let ¢ be an index that appears in the block By. If i appears
twice in the block B; then by Lemma [7.3] for the pair (1, k), x¢ is irreducible. Hence,
since i appears only twice, we need to consider the case, when ¢ appears once in the block
B; and once in the block D as in figure (|12]).

‘BJ
ikzrs
2.3 e 3 2.k, im
0‘————- ————— -B' -——:E ————— ¢ ————-——:——D-_ ———————————— D:
iLht
B- n
FIGURE 12

Compare the factorizations of x¢|e,—o and

Xclei=0 = Xgup,ueuBTum, X By |€=0X D, lgi=0-
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We have that Ug, —¢,—0 = XoUb,UB] XB7- If Ug,—o = X0Ub, UcUB,UD; we get Xm‘&:() =
X5 l¢,=0 (by Lemma this implies |¢U D| = 1, which is impossible). The other cases
can also be similarly excluded, for instance xp, |¢,=¢,—0 = XoUb,UBT (by Lemma this
implies |0 U by U Bf| = 1, which is impossible).

B) If ko = 3 and |B| > 1. Let i be an index that appears in B. If i appears twice in B,
then, by lemma [7.3| we get the irreducibility of xg. Otherwise, ¢ appears in this form:

FIGURE 13

Consider the factorizations of xgl¢,=0 and xcgle,=0 We get easily either xg55-|e,=0 =
XB,le;=o (by Lemma 7.1 this implies |c U D;| = 1, that is impossible), or xp,[¢,=¢;=0 =
Xoog, (by Lemma is implies |0 U By| = 0, that is impossible). The situation when
|D| > 1 is treated similarly. So now we have to consider only the case, when |B| = |D| = 1.

C) ky = 3,|B| = |D| = 1. Up to symmetry, we have 4 subcases, displayed in figures

9-ED-

v

FIGURE 15
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0 23 b
i
1,2 2.1 1.3
i >
2.3
FIGURE 16
O e 2 b
1.2
13 12 |13
23
d C
FIGURE 17

By using the program Mathematica we have verified that the characteristic polynomials
of these graphs are irreducible.

7.2.2. When 1, 8 do not appear together in any edge: We have three possible cases (figures

(8, @9, @9).

1) When T up to symmetry has the form as in figure :

A-2_pB
FIGURE 18

where 3 appears only in the block B then, by lemma for the pair (1,3), x¢ is irre-
ducible.
2) When T up to symmetry has the form as in the figure :

3,k 1,2 3.k 3.k
A-2-B-Z_c-""_pTlF
FIGURE 19
We have
(123) XG|£1:0 = XAuBXCuDuE|£1:0
XAXBOGes=0XDles=0X B les=0
XAUDXBUC |€3=0XE|£3=0
(124) XG‘{;,:O — AUD BUC|53 E|Es

XATDXNBUGUE €5=0
XAXDXBOCUE€=0
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Arguing as in previous cases, if x¢ factors then we can factor it as UV with Ug,—¢ = xz55-
Analyzing the possible values of Ug,—¢ we have, comparing (123) and (124) and setting
& = & =0, the following possibilities (shown in equations (125])-(129))):

(125> U§3:0 = XW|£3:0 = XA = XC_'|§1:€3:0’
(126) Ueys—0 = {XM|£3_0 = X8les=0 = Xpler=¢5=0,
XAXD|£3:0
(127) Ugy=0 = Xples=0XEles=0 == either x g4 = Xple,=¢5=0, XBles=0 = X le1=¢5=0, OT
(128) XA = XEl&=¢65=0, XBles=0 = Xples=¢5=0,
(129) Ugs=0 = XaXEle&s=0 = Xgles=0 = Xglei=¢5=0--

We see that (127]) implies (129)), (128)) implies (126]). So we need to show that (125),(126])

and (129) cannot hold.
-If holds, by lemma and by inspection we deduce that A = {0},C = {c¢} and
¢ = +(eq —e3), —e1 — es. Hence there is an edge that connects 0 and ¢ and all indices,
different from 1,3, must appear an even number of times in any path that connects 0 and
c. In particular, k1 must appear in B or k; = 2.

a) If k1 € B we can apply lemma replacing i by ki.

b) If k1 = 2, consider the positions of the index ko.

i) If ko € DUEFE or ko = ks, then, by lemma for the pair (1, k2), x¢ is irreducible.

ii) If ko € B then it must appear in the form:

3,2 1.2 3k Gk,
0---"ree- Br o CmemnAee Dot E
Ll
ky.s |
B,
FIGURE 20
Then:

(130) XG|§1:0 = XOuBlungcUDUE‘&:O’
(131) XG|£k2 =0 = X0UB;UcX B> ‘kaZOXDUEka:O'

Comparing and and setting & = &, = 0 we have xp,[¢,, =0 = Xele,=0- By
lemma we have By = {ba},bs £ ¢ = nje; + ng,ex,, but this is not possible, since by
the inspection of figure , by £ c = tey + Zm¢2 Nom €m. -

- If holds, then, by lemma[7.1] B = {b}, D = {d} and d + b = nie; + nzes. This
case is treated similarly as the case of (125]).

- If holds, then, by lemma {0}, E = {d} and e £ b = nye; + nzez. By
the form of T in the figure we have ny = £1,n3 € {0,£2}. It is easy to check that
there does not exist a such pair (nq,n3) in order to get n(e+) € {0, +2}, a contradiction.
iii) When T has the form:
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QMg 12 o 3k g
\

13,ko
|
D

FIGURE 21

(132) XGle1=0 = XATEXEUDUE|61=0

XAXBOG€=0XDles=0X Eles =0

XATDXBUC €=0X Eles=0
(133) Xéle=0 =  XaueXBuclea=0XDple=0

XAXBUE |€s=0XBUEles=0

XATBUEXBUC€5=0

From we see that if x ¢ is not irreducible, then xyg = UV, where U, V are irreducible,
Ule,=0 = Xagp- See (133), there are the three following subcases:

1)xéles=es=0 = x4, by Lcmma A ={0},C = {c},c = nie; + ngez. Hence, all
indices, different from (1,3) must appear an even number of times in any path from 0 to
c.

-If k1 # 2, then k; must appear in B, then by lemma for the pair (1,k1), x¢ is
irreducible.

-If ky = 2, consider k3. If k3 € DU E or kg = ks, then we use Lemma [7.3] for the pair
(1, k3) to get the irreducibility. Otherwise k3 appears as follows:

3,2 1,2 3,ks

0-2"-B - = —¢c—2"F
| |
| k3,s | 3,k2
[ \
By D

Considering specializations xgle, =0 and xcle,, =0, We get easily either [cUD| = | Bs| =
1, or |0U By| = |E| = 1. Both of them are not possible.

2) XBles=0 = Xples=g,=0 by lemma[l.1] = [B|=[D|=1,B = {b},D = {d},d+b=
nie; + nges. Hence, all indices, different from 1, 3, must appear an even number of times
in any path from b to d.
-In particular, if k3 # 2, ko must appear in the block C. Then, by lemma[7.3] for the pair
(1,k2) xc is irreducible.

-If ko = 2, consider positions of k3:

+) If k3 € CUE, then, by lemma for the pair (1, k3), x¢ is irreducible.
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+) If ks € A:
PPy T L e L
!
13,2
!
d
by lemma for the pair (1, ks) we get either |A2 Ub| = 1, either |C' Ud| = 1. Both of them
are not possible.
+) If kg = kli
Al oo g
!

13,2
|
d

By lemma [7.3| for the pair (1, k1) we get either |C'Ud| = |A| =1 (which is not possible),
or E ={e},e+ b= +(e; —eg,) (this is not possible since by inspection e + b = tes +
> m3 VmEm.)

3) XBles=0 = XBles=gs=0- By lemma[7.1|we get |B| = |E| = 1,B = {b}, E = {e},e+b =
nie; + nzes. This case is treated by similar way as in 2), changing the role of ko and kj.
7.3. Every index appears twice in the tree. We start with some special cases:

73.1. n=2.

—61—62704>€1—62

=& — & 2v/6& 0

Ca = | —2v&& 0 2v&162
0 2v&i& &L —&

determinant
(=& — &o)(—4&1&2) + 4&162(& — &) = 86,63
t+& +& =266 0
Xa(t) = det(tl — Cg) = det 2616 t -2V &

0 —2V&i& -+ &
if it is not irreducible it is divisible by a linear form, set & = 0 get ¢(t 4+ &2)(t — &2) set
& =0 get t(t + &1)? so the possible linear factor can be

tLt+&,tE&
On the other hand:
(134) xa(t) = % +268° + (& — &)t — 86163
Then we have:
(135) xc(0) = —86,€3,
(136) Xa(—€1) = =& + 267 + (& — ) (=€) = —T6&3,
(137) Xc(62) = & + 26165 + (6 — §)&2 = £1& — 66183

(138) xa(—&) = —&& — 66,65

So x¢ does not have any linear factor, hence it is irreducible.
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7.3.2. n=3. T has the form as in figure or as in figure :

1,2 2,3 1,3
0---b—-—-c—-—--d

FIGURE 22

1,2 2,3
0--—-b-—--c¢
[

11,3

\
d

FIGURE 23

Remark 7.2. If all edges in T are black, or there are exactly two red edges then the edges
are linearly dependent.

1) When the maximal tree T has the form as in figure

Remark 7.3. o Ifin T there is an edge marked (1,3) that connects 0 and c, then,
by lemmal[5.9 for the vertex b and the index 2, x¢ is irreducible.
o If in T there is an edge marked (1,2) that connects b and d, then, by lemma
for the vertex ¢ and the index 3, x¢ is irreducible.

a) If all edges are red, then G = T has the form:

FIGURE 24

By lemma for the vertex b and the index 2, y¢ is irreducible.

We need to consider the cases, when in 7" there is one red and two black edges.
b) When the red edge connects 0 and b:

bl) When T has the form:

1,2 2,3 1,3
b——c

0 d

We have

b=—e1—ey,c—b=ey—e3 = c= —e; —es.



CHARACTERISTIC POLYNOMIALS, ASSOCIATED TO NLS 41

Hence in G = T there is a red edge marked (1,2) that connects 0 and ¢. Hence by remark

X is irreducible.
b2) If T has the form:

1,2 2,3 1,3
0——b<~—0cc—>d

We have b—c=¢e; —e3,d—c=e; —e3 — d—b=-e1; —es,i. e. in GG there is a black
edge marked (1,2) that connects b and d, hence by remark X¢ is irreducible.
b3) If T has the form:

1,2 2,3 1,3

0

AVESES 0 0

t
_ —-2V6& t+& +& 2/Ex&3 0
(189)  xg = det 0 V68 6 +26 & 2v&1&s
0 0 2V &3 t+ 28 + 265 — 23

By using the program Mathematica we computed yg and verified that it is irreducible.
¢) When the red edge connects b and ¢:
cl) If T has the form:

1,2 2,3 1,3
0 b=——=c<——-d

we have b+ c= —es —e3,c—d=e€; —e3 = b+ d= —e; — €9, i. e. there is a red edge
marked (1,2) that connects b and d, hence by remark Xgq is irreducible.
¢2) If T has the form

1,2 2,3 1,3
0——=b c

d

we have b=e1; —eg,b+c= —eg —e3 = c=e; —e3, i. e. there is a black edge marked
(1,3) that connects 0 and ¢, hence by remark Xg is irreducible.
¢3) If T has the form:

1,2 2,3 1,3
0<"—b=—=c—>d

we have

t —-2v/&1& 0 0
(140) xg=det| “2VaE2 f-btl o 2VE 0
¢ 0 —2VG6E -6 +26+6 2V61Gs
0 0 2v&i&3 t— 281 + 26 + 283

We use the program Mathematica to compute xg and to verify that it is irreducible.
2) When T has the form as in figure (23): -
a) When in T there are 3 red edges, then G = T has the form:
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FIGURE 25

This figure can be obtained from figure by exchanging the role of indices (i. e. the
role of variables &1, &2, &3). Hence x¢ is irreducible.
b) When in T there is only one red edge, by the symmetry property of T we may suppose
that this red edge connects 0 and b.
bl) If T has the form:

1,2 2,3
0 b——=c
1,3
d
we have b= —e; —eg,c—b=ey —e3 = c=¢ey —e3+ b= —e; —e3. Hence in G there

is a red edge marked (1, 3) that connects 0 and c. There is another maximal tree of G:

1,3 1,2

1,3
0

b d

Cc

in which the index 2 appears once, the index 1 appears three times. So x¢ is irreducible
by the subsection
b2) If T has the form:

1,2 2,3
0 b c
il,g
d
we have b= —e; —e3,d—b=¢€; —e3 = d = —ey — e3, hence in G there is a red edge

marked (2,3) that connects 0 and d. There is another maximal tree of G:

2,3 1,2 2,3
0 b

d c

in which 1 appears once, 2 appears three times. So x¢ is irreducible by the subsection
(.2
b3) If T has the form:

1,2
0

2,3
<—C

b
d
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we have b —c=ey —e3,b—d =e; —e3 = d— c= ey — e1, hence there is a black edge
marked (2,1) that connects ¢ and d. There is another maximal tree of G:

1,2 2,3 2,1
0 b<=——c———>d

in which 3 appears once, 2 appears three times. So x¢ is irreducible by the subsection
)

7.4. n > 4. At this point we are assuming that we have n > 4 edges in a maximal tree T’
and n indices, each appearing twice. Thus given an index, say 1, it appears in two edges
paired with at most two other indices, thus we can find another index, say 2 which is not
in these two edges. Up to symmetry we may have six cases displayed in figures -:

Alh_p 2k 2o LI

FIGURE 26

2,i |

A71;h7371,7k76‘,72j'7E

FIGURE 27

A,IL}L,B,QLk,C,Ei,D,ZLj,E

FIGURE 28

QMg Lk a2 5 20 g

FIGURE 29
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D
\

1,i

A71Lh7372,7k76‘,72j’7E

Ficure 30

FIGURE 31

What is common to all these cases is that when we put £ = 0 or &, = 0 we may have
at most 3 connected components in the graph, so by induction we deduce that, if the
characteristic polynomial is not irreducible it can factor in at most 3 factors. If we have
exactly 3 factors we see that in each case we have two pairs of disjoint blocks which give
under specialization the same characteristic polynomials. At first we start with several
lemmas which will be useful for further consideration of all figures.

Lemma 7.4. If there exist two indices 1, 2, such that T is of the form as in figure
, 0 € A then either x¢g is irreducible, or B = {b},D = {d},d £ b = +e; £ ey or
A={0},E ={e},e =+2(e1 — e2).
Proof.
(141)

| xaxsla—oxeopoElei=o,if in T there is no edge that connects A with CUDUE
X6ler=o = XACCUDUEX B e =0, if in T there is an edge that connects A with CUD U E
(142)

| XaoB0eXblea=0XBles=0, if in T' there is no edge that connects AU BUC with E
XGle=o = XATBOEUEX b lea=0, 1f in T there is an edge that connects AU B U C with E

Suppose that y¢ is not irreducible, then its factors under the specializations £&; = 0 and

& = 0 give (141) and (142).

1) If there is a factor U which under & = 0 gives x5z or xgl¢, =0, then U under §& = 0

gives either x ple,—o0 or X gl¢e,—0. We get the following sub-cases:

(143)

either xgle,=0 = Xple,=e,=0, by lemma|7.1} |B| = |D| =1,B = {b}, D = {d},d = Tn e, +nse, (£D)
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By inspection ny € {£1},n9 € {+2} = d+b= te; £ es.

(144) or Xplei=0 = Xgle=6=0-
We get B = {b},E = {e},e £ b = nie; + ngeg, where ny € {£1},ny € {0,+2} =
n(e £b) € {£1,£3}, a contradiction.

(145> or Xa = XD|§1:E2:0 = D= Tn161+n2€2(A)
= |A|=|D|=1,A={0},D ={d},d = T e;+nqe,(0) = n1€1+nz2e2,04 = 0p =1 = n(d) =n(0) =0.

But in fact by inspection ny € {0,4£2},ny € {£1} = n(d) € {£1,£3} = n(d) #0,
a contradiction.

(146) or X4 = XE|E1:E2:0 = F= Tniei+nzes (A)
= |A|=|E|=1,A={0},E ={e},e = Tnje14nse,(0) = n1e1+nges, 0. =09 =1 = n(e) =n(0) =0.

By inspection ny € {0,+2},n2 € {0,£2}. Then in order to have n(e) € {0, —2},e # 0 we
must have e = £(2e; — 2es).

2) If we have xg = UV, U¢,—0 = Xaopugmlei=0s Ver—=0 = XaX5le1—0. We must then have
that Ve,—0 = Xples=0XE|e2=0 and we are back in one of the previous cases. (]

Lemma 7.5. If there is a pair of indices, say (1,2), such that T has the form as in figure
, 0 € A, then at least one of the following statements is true:

e Y is irreducible

e A={0},C ={c},c==x(e1 —e2)

e B= {b}7D = {d},d:l:bz :|:€1 :teg

o D={d},E={e},etd==te; £es.

Proof. We have

(147)
| ) xaxgoeoElei—oxplei—o, if in T there is no edge that connects A, D
XGle=0 = XATHXBOETE €1 =0, if in T there is an edge that connects A, D
(148)

| ) xaoexeoples=0X Eles—0, if in T' there is no edge that connects B, E
XGlea=0 Xm)(ml&zo, if in T there is an edge that connects B, E.

Suppose that x¢ is not irreducible, then xg = UV (U,V may be irreducible or not).
According to and , since the roles of U,V are the same, then there are 2
following possibilities:

DU|g,=0 = xa = Ule,=g,=0 = x g is irreducible = Ulg,=0 = Xgle,=0 = X3 =
Ule,—¢,=0 = Xiley—¢2—0- Hence by lemma[7.1] we have A = 0, E = {e},e = nie1 + naes.
According to figure ny € {£1},ny € {0,£2}. So n(e) = +£1,£3 ¢ {0,—2}, a
contradiction.

Ule,=0 = xplei=0 == Ulg,=e2=0 = Xple,=¢,—0 is irreducible, so Ule,—o = Xgle;—0 =
Xbler=g2=0 = Ule,=,=0 = Xples=6,=0 = Xg|es=g;=0- Hence by lemma[T.1] D = {d}, E =
{e},e = Tnie,+nge,(Ed). Moreover, according to figure ny = £l,ng = £1 =
e+ d= te; £es.

2) Ule,—0 = Xgueuglei=0- There are 2 subcases:

a) Ulg,—0 = XaupXEle=00r Xaupor = X4 = X¢lei=g—0, by lemma [7.1] we get
Al = |C] = 1,A = {0},C = {c},¢ = Tnie;+nse,(0). According to the figure (30)
ny = £1,ny = £1, in order to get n(c) € {0, —2} we must have ¢ = £(e; — e2), —e1 — ea.
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b) Ule,=0 = Xauplea=oXElea=0 == Xaupla=6=0XElei=t=0 = Ulwon=¢,=0 = XBoouEl6i=6=0 =
Xcle=e=0Xplei=e2=0X Blei=e,=0 = XBlei=0Xcla=e=0XEl6=6.=0 = Xple=g,=0 =
X 5le,=0, hence by lemma D = {d},B = {b},d = Tnye,4nse. (£D),0(d) = op,n(d) =
7(b), according to figure (30) 1 = £1,n0 = £1 = d+ b= te; L eo.
O

Now we will prove the irreducibility of x in each case, displayed in figures —.
7.4.1. Figure .

Lemma 7.6. If there are two indices, say 1, 2, such that T is of the form as in figure
, then x¢ s irreducible.

Proof.
(149)
) XaXBoeopla=oXxEle o, if in T there is no edge that connects A, E
Xaler=o = XATEXBUEUD €1 =0, if in T there is an edge that connects A, E

We have the following two cases:
1) In T there is no edge that connects AU B with DU E.
We have:

(150) XGlea=0 = XaupXele=0XpuEle=o-

Suppose that x¢ is not irreducible, x¢ = UV (U, V may be irreducible or not). Comparing
(149) and (150)), since the roles of U,V are the same, we get the following possibilities
((151)-(154))

(151) Ulg,=0 = X4, Ulgy=0 = Xclea=0 == Xa = X¢lei=e,=0

(152) Ule,=0 = XEle1=0, Ulea=0 = Xclea=0 = Xelei=6,=0 = XEle,=¢2=0

(153)  Ule,=0 = Xpoeoplei=0, Ule=0 = Xagsle=oxele=o
= Ulei=g,=0 = XBueoplei=6.=0 = Xauplei=0Xcle=ga=0
= XBla=0Xclei=ea=0Xplei=e2=0 = XAXBle1=0X e =c2=0
= Xpla=g=0 = Xa

(154)  Ule,=0 = Xpueupla =0 Ule=0 = XpuEple=0Xcle=o
— Ulei=e2=0 = XBucuple1=¢2=0 = XpuElei=0Xcle=g.=0
— XBla=0Xclei=6=0Xblei=e2=0 = Xples=e2=0XEle1=0Xcle1=€2=0
— XBlei=0 = X&le1=g2=0
By symmetry we need to consider only the cases (151 and (153).
a) Consider case (I5I), by lemma [7.1] we have |C| = [4] = 1,C = {c},4 = {0},c =
Tihe e, (0) , since n(c) =€ {0, -2} = ¢ = *(e; — e2), —e; — e3. Hence there is an edge
marked (1,2) connecting 0 and c¢. All indices, different from 1, 2 must appear an even
number of times in the path connecting 0 and c. In particular, k£ appears in this path in
Bork=h.
i) If k appears in B:

1,h s,k 2,k 26 1,j
0--2"-B -2 -By-Z—¢c-2-D-2_F
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Since U is a linear polynomial looking at x ¢, =0, we see that we can only have Ul¢, = =
XB,le,=0 hence |By| = 1,By = {bs}. Then the vertex by and the index k satisfy the
conditions of lemma hence y¢ is irreducible.

ii) If k = h, consider the index ¢, ¢ may appear as:

0‘___1_{"____ L L i LI |
FIGURE 32
or as:
LI (L
E_..Si
FIGURE 33

A) Counsider figure By lemma for the pair of indices (h,i) we get the following
two possibilities:
+) B={b},Dy ={d1},dy £b= +tej +e¢,;. By lemma for the vertex b and the index
h, xqg is irreducible.
+) Dy = {d2},ds = £2(ep, — e;). But in fact, if we look at the path (0,¢, Dy, d3) we see
that the h-th coordinate of ds is zero.
B) Consider figure (33). We have

(155) XGlen=0 = XoUeUDUEXB,UB; len=0,

(156) XGlei=0 = XouB U X B le:=0XBUE e =0-

From we see that if x¢ is not irreducible, then it must factor into 2 irreducible poly-
nomials: xg = UV, Ule,=0 = X505;1¢n=0 hence Ule,—¢,—0 = Xg7le,=¢,=0X7;le:=¢, =0
Then for we have the only possibility that Ule,—0 = Xpgglei=os. This implies

XBiUB; |6n=6:=0 = XpUElen=c=0 == X5, le;=e,=0XB,le:=en=0 = XpUEle;=¢s=0- But this
is not possible, since i does not appear in D U E, x5z remains irreducible by induction
assumption.

b) Consider the case (153). By lemma [7.1] we get |[D| = |A| = 1,A = {0},D = {d}
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and d = nje; + noes, where by figure ny € {£1},ny € {0,4£2}. So we have
n(d) € {£1,+£3}, a contradiction.

2) In T there is an edge that connects AU B with DU E.

We have:

(157) XGle=0 = XauBuDUEXC€2=0

From (157)) we deduce that if ¢ is not irreducible, it will factor in exactly 2 irreducible
factors: xg = UV, one of them, say U, under the specialization & = 0 gives x¢&e,=o0-
Then deg(U) = |C| < |B|+ |C| + |D| = deg(x5oeop), so according to (149) Ule, —o must
be equal to x 7 or Xg|e,=0. Then we have following cases:

(158) Xolei=ea=0 = X4,

(159) Or X¢le=ga=0 = X&le1=0

In any case by lemma [7.1)we get |C| = 1,C = {c}. Then we can apply lemma [5.2| for the

vertex ¢ and the index 2 and get the result.
O

7.4.2. Figure .

Lemma 7.7. If there are two indices, say 1,2 such that T is of the form as in figure ,
then x¢ is irreducible.

Proof. We have:
(160)
XAXBler=0XETpoEe1=0, if in T there is no edge that connects A with CUDUE
Xalei=o = {XAUOUDUEXB|E1—0a if in T there is an edge that connects A with CUD U E
(161)
Xleszo = {XWXD|€2—OXE|€2—O7if in T there is no edge that connects D, E
=0 =

XATBOEXBUE €2=0, 1if in T there is an edge that connects D, E

Suppose that x¢ is not irreducible. Comparing (160 and (161)) and by a simple analysis
we have only the following possibilities:

(162) X4 = XDle1=¢:=0,
(163) or X4 = Xgler=t=0,
(164) or Xglei=0 = Xplei=e2=0,
(165) or Xgle,=0 = Xglei=g2=0-

By the symmetry property we need to consider only and .

1) Consider (162). We get by lemmal[7.1]|A| = |D| = 1, A = {0}, D = {d},d = nye; +nazez,
where ny € {0,£2},ny = {£1}. Then n(d) ¢ {0, -2}, a contradiction.

2) Consider (164)), we get by lemma [7.1] B = {b}, D = {d},d £ b = %e; + e5. From this,
we have in the case o, = 04 = 1n(b) =n(d) = d—b= *(e; —e2), i. e. thereis a
black edge marked (1,2) that connects b and d. In the case o, = —04 = n(b) +n(d) =
—2 = d+b=—e; —eg, i. e. there exists a red edge marked (1, 2) that connects b and
d. Then in any case ¢ must appear twice in the path from b to d. There are the following
subcases:

a) If i # k then i must appear as
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FIGURE 34

Applying lemma [7.4] for the pair of indices (1,4) we get either

(166) 02 = {Cg},CQ:l:b:ﬂ:el:l:ei,
or
(167) A= {0},d = :|:2(€1 - ei).

-If holds then the vertex ¢y and the index i satisfy all conditions of lemma5.2] hence
X¢ is irreducible.

— cannot hold, since if we look at the path from 0 to d in figure , we will see that
the second coordinate of d is equal to 1 or —1.

b) If i = k, consider the index j. There are the following possibilities (figures (35)-(38)):
i) If j appears as:

/d
L2 7 o
. P
-~ 1 ) :
Ak ____ljfc___c N
FIGURE 35

Applying lemmafor the pair of indices (1, j) we get either B/ = {¢’}, e'+b = teite;
(this is impossible, since by inspection ¢’ +b = +eg + Zm;ﬁQ Nmem), or B = {e""}, A =
{0}, €” = £2(e1 —e;) (this is also impossible, since by inspection e” = £ea+3 o Nmem).
ii) If j appears as
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.
[

FIGURE 36

Applying to the pair (1,5) the process that we have done for the pair (1,2) at the
beginning of this proof, we get: either Cy = {co},co £ b = teq + e; (this is impossible,
since according to figure (36): co b= Lex +>_, 4 mem), or B = {e},extb= e L,
(this is impossible, since by inspection e +b = +es + Zmﬁ N €m)-

iii) If j appears as:

-
A
*
[
=

-
. - 5
At i B, Bt O B B

FI1GURE 37
then, by lemma for the pair (4,1), x¢ is irreducible.
iv)Ifj=h:

o
LA =" 1k

FIGURE 38

(168) XGlex=0 = XATp0aXEUE =0,
(169) Xélen=0 = X AXgocaTalen=0XElen=o-
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From we see that if yg is not irreducible, then yg = PQ, where P,Q are irre-
ducible: Pl¢,—o = X750 From we get Ple,—0 = X30604l¢h=0 = XATp0dlén=0 =
Xgocudlei=¢,=0 = XaXboudle,=0 = Xcle=e=oxsudle,—0 = Xa = Xcle=e=o-
Hence by lemma A ={0},C ={c},c = T, ep+npe, (0) where according to figure (38))
np,ni € {1}, n(c) € {0,-2} = ¢ = *(ep —ex),—en — ex. So in G there is an
edge marked (h, k) that connects 0 and ¢. Then the vertex b and the index 1 satisfy all
conditions of lemma[5.2] x¢ is irreducible.

O

7.4.3. Figure (28).
Lemma 7.8. If there exist two indices, say 1, 2, such that T is of the form as in the
figure , then xg 1s irreducible.
Proof. We have:
(170)

XAXBOE|e1=0XB0Ele1=0, 1f in T there is no edge that connects A with DU E
Xalei=o = {XwXM|£1—Oa if in T there is an edge that connects A with D U E
(171)

XATEXETB€2=0X 5|e2=0, if in T there is no edge that connects AU B with E
X6lea=o = {XAUBUEXCUD|€2—07 if in T there is an edge that connects A U B with E

Comparing (170)) and (171]) and by a simple analysis we get the following possibilities:
Assume x¢ is not irreducible:yg = UV. Since U,V play the same role, by (170)

and (171) we may suppose Ulg,—g = x7 or Ule,—o equals xgoale, =0 or xpogle=o-If

Ule,=0 = xz we must have Ulg,—o = x5 and

(172) XA = XEBle1=:=0-

Otherwise if Ul¢,—o equals xz5ale,=0 or Xpugle—o-
We may have Ul¢,—o equals Xz55le.=0 0 Xagple,=0- We deduce, respectively:

(173) X4 = Xcle=e2=0

(174) or Xale =¢,=0 = XBle1=¢2=0

(175) or Xgle,=0 = Xpler=¢2=0

(176) or Xple=¢2=0 = Xzle1=62=0; XFle1=c2=0 = XFle1=c2—0-

By symmetry is similar to (173)).

1) Consider case This happens if xg = UV with Ulg,—0 = xgue, Ule=o0 =
XAup- By lemma we get |[A] = |C] = 1,A = {0},C = {c},¢ = Tnie;4naes(0).
According to figure (28) nq,ne € {1} = ¢ = *(e; — ea),—e1 — ea. Hence there
is an edge marked (1,2) that connects 0 and ¢ and all indices, different from 1, 2, either
do not appear or appear twice in any path from 0 to c. We now divide this case into 4
sub—cases

a):h#k b):h=ki#j, i€B, c):h=ki#j i€D, d:h=Fk i=jorick.

a) If k # h, then k must appear once in an edge of the block B which belongs to the
path that connects 0 and ¢, T has the form :

1,h s,k 2,k 1,0 2,j
0--2"-B -2 -By-Z—¢c-2-D-2_E
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We apply lemma [7.6] for the pair of indices (1,%) and get the irreducibility of x¢.
b) Ifk=h,i#j, i€ B, then T has the form or the form .

1,h 2,h 1, 2,5
0---By---¢c-—--D-=--F
|

| 2,8
I
By

FIGURE 39

1,h i,8 2,h 1,2 2,3
o-"p - op M Y. p P g

FIGURE 40

-Consider the case of figure . From the fact that Ule,—0 = xz05 = XoUB,UB, and
Xélei=0 = XouBiele=oXm;le=0XpUEle=0 o Xale=0 = Xoupuele~oXBupuBlei=0 We
may have Ule,—0 = Xpuglei=0, ot Ulgi=0 = Xm,upuErlei=0 or Ulei=0 = Xgup,Uelei=0- We
see that Ule,—0 = Xpygle;=o is incompatible with Ulg,—0 = X755 = Xguz05; implying
0U By| = 1.

Ulg;=0 = Xg;upusle; =0 18 also incompatible with Ule,—0 = X205 = Xouz,up; implying
XDlea=6:=0X Ele2=¢;=0 = Xgup; (that is an equality between product of 2 polynomials and
an irreducible polynomial).

Hence the only case to consider is: Ule,=0 = Xgumoglei=0- Since Ule,—0 = X7z =
XoUuB,uB, Ve deduce Xg2|§i:0 = X0|Ei:§2:0 — |Bg| = I,BQ = {bz},c + by = +e; & es.
But this is not possible since by inspection of figure (39) ¢ £ by = +ej, + Zmﬂl Non€m -

-The case of figure is treated similarly as the case by considering factorizations

of xale; =0, XGles=0-

c¢) Ifk=h,i+#j,i € D, then T has the form or the form .

1,h 2,h 1,4 is 2,5
0---B-~-¢c-—--D1—---Dy-=-F

FIGURE 41
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1,h 2,h 1, 2,
0---B-—--¢c-—--D;—-=-F
[

| 2,8
|
Dy

FIGURE 42

Consider case , If x¢ is not irreducible, then, by lemma for the pair of indices
(h,i) we get either |[Dy U E| = 1 (that is impossible); or B = {b},D; = {d1},d1 £b =
+ep, +e; (that is impossible, since according to figure di£b==+e; + Zm# Ny €m)-

Consider case (42). By lemmal(7.4we get either |Ds| = 1, Dy = {ds},d2 = £2(ep, —¢;),
(that is not possible, since by inspection do = *ea + 3, 4o imen); or [D1UE| = [B] =1
(that is not possible, since |Dy U E| > 2).

d) If k= h,i € E (or i =j), then T has the form:

1,h 2,h 1, s,
0-2-B-"—¢c-2""-E -2-E,

FIGURE 43

Applying lemma [7.4] for the pair of indices (i,h) we get either Ey = {e2}, e2 = +2(e; —
ep) (that is not possible, since ¢ = +(e; — e2) and h does not appear elsewhere in a path
from ¢ to eq, or B = {b}, E1 = {e1},e1£b = te;tey, (that is not possible, since according
to figure (43) e1 £b= e + 3, 44 Nmem).

2) Consider case ({L75)  This happens if xg = UV with Ul¢,—0 = x5ge: Ule—0 =
Xcop- This implies B = {b}, D = {d},d £ b = Fe; & e. Hence all indices, different from
1, 2 appear an even number of times in any path connecting b and d. We have 4 cases
a),b),c),d) depending on the values and positions of h, i, k.

a) If k # 4, k must appear once more in the path from b to d as:

1,h 2,k k,s 1, 2,5
AfffbfffclffngfffdfjfE

Then we apply lemma for the pair (1,%) and get the irreducibility of x¢.
b) If k =4, h € C, then T has the form:

Ay o M g
h
¢,
Consider factorizations of Ul¢, =g and U

XaXc,
and XG'&L:O = { AXCy
XAUCQXbUCz'lUdUEkh:O

§&=0- Since U|51:£h:0 = Xsuc, |51:Eh:OX072|51:£h:0

£n=0X30UC, UdUE 1£n=0
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AUCs
ble, the first gives |bU Cy| =1 and the second |[dU E| = 1.

¢)If k=1i,h € E or h =j, then T has the form:

We may have U|€h:0 = {XAXCZ|E’“‘_O or U|5h:0 = X30c, UdUE" Both are incompati-

QL G L B R S
or
gl L, 2k oo
then by 1emma for the pair (h,1), x¢ is irreducible.
d)Ifk=ihe A

h,s h K )i N
PRy P N L B

suppose x¢ is not irreducible then by lemma for the pair (h,i) we get either Ay =
{a2},C = {c},c + as = +e;, + e;(which is not possible since by inspection ¢ + ay =
Ee1 + )z nker); or [dU E| = [A;] =1, a contradiction.

3) Consider case (172)). 'We have a factor U so that Ul¢, =9 = X7, Ule,=0 = x- This
implies A = {0}, F = {e},e = +2e; £ 2e5. Hence all indices, different from 1, 2 appear
twice in the path from 0 to e. Consider the possible positions of the index 1.

a) If 7 appears in one edge of C or D in the path from 0 to e, i. e. T has the form

0 g B g Mg 2
or

O,Eh,B,2;k,C, EifDl 71‘,737D2 20,
then, by lemma for the pair (2,14), x¢ is irreducible.
b) If i appears in one edge of B in the path from 0 to e:

1,} is 2,k 1,i 2,j
0- =B -ZL-By-"-C-"-D-"_¢
Since U is a linear polynomial this is impossible as setting £ = 0 the factorization of
X¢Gle;=o0 has no linear polynomial.
¢) If i = j, consider the positions of the index h.
i) If h appears in one edge of B in the path from 0 to e:

1,h h,s 2.k 1,4 2,
0-~=-B -~ -By-~-C-"-D-"—¢

then, by lemma [7.4] for the pair (h,2) we get either |C U D| = |B;| = 1 (that is certainly
not possible, since |C'U D| > 2); or e = £2e;, + 2e3) that contradicts the fact that
e = £2eq1 £ 2es.

i) IfheC:

0 Lt g 2k c, 7h7,5702 IRE
then applying lemma for the pair (h,i) we get either |BU C;| = |D| = 1 (that is
not possible, since |B U Cy| > 2), or e = +2¢j, £ 2¢; (that contradicts the fact that
e = 12e; £ 2es).

iii) If h € D:

1,h 2.k 1, h,s 2,
0---B---C—---D1—-—=--Dy—=-¢
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Considering the factorizations of x¢le,=0 and x¢le,=0 we get the following possibilities:
-Xo = kah:&:o or Xmlfh,:£2:0 = Xele,=¢,=0. Both of them imply that |CUD,| =
1, a contradiction.

-XBlen=0 = Xp,len=¢,=0- By lemmawe get B = {b}, Dy = {d2},d2 £ b = npep, +naea,
but by inspection do +b = +ej + Zm# N € -

iv) If h=k:

o-p P o 2 p .
FIGURE 44

Applying lemma for the pair (k,4) we get following possibilities:
-B = {b},D = {d},d + b = +e, £ e;. But according to figure d+b = +e +

> 1 Mmem, a contradiction.

e = +2(ex, — €;), this contradicts e = £2(e; — e2). O
7.4.4. Figure (29). By lemma [7.4] we have 2 subcases:
1)

(177) B={b},D={d},d+tb=+e; tes, or A={0},E={e},e==22(e; —e2).
In the second case all indices appear twice in the path from 0 to e. Consider the possible

positions of the index h.
a) If h appears in an edge of B in the path from 0 to e, or h = k, T will have the form:

Lh h,s Lk 2,i 2,j
0-~2=-B -~ -By---C-"-D-"_¢
By lemma [7.4] for the pair (h,2) there are 2 possibilities:
1)By = {b1},D = {d},d+ by = tep, +es, but by inspection: d £b; = te; + Zmﬂ N €, -

ii) e = +2(ep, — e2), this contradicts (177]).
b) If h appears in an edge of C in the path from 0 to e:

h k h,s K ,J
Oflffolffle fngfofoQfer
by lemma for the pair of indices (h,2) there are 2 possibilities:
i) |IBUC4| = |D| =1, a contradiction, since |B U Cy| > 2

ii) e = +2(ep, — e2), this contradicts (L177]).
c¢) If h appears in an edge of D in the path from 0 to e:

1,h 1,k 2,i h,s 2,5
0-—--B-—-—-C—--=--D1—-—--Dy—=-¢

then, by lemma for the pair (h,2) we get the irreducibility of x¢-.

d) If h = 4, consider the index k.

i)If k € B or k € C, then by lemma [7.6|for the pair (h, k) we get the irreducibility of xq.
ii) If k € D or k = j, then by lemma [7.8|for the pair (h, k) we get the irreducibility of xq.
e) If h = j, then for any case: k € Bor k € C or k € D or k =4, by lemma [7.6] for the
pair (h, k) x¢ is irreducible.

ii) e = £2(ex, — e2), this contradicts (177]).

2)

(178) B={b},D={d},d+b=de, +e,
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We get d — b = £(e1 — e3) in the case o4 = 04, m(d) = n(b), and d + b = —e; — €5 in the
case 04 = —0yp,1(d) + n(b) = —2. Then in T there is an edge marked (1,2) that connects
b and d and all indices, different from 1, 2 must appear an even number of times in the
path from b to d. Consider the possible positions of the index k:k € Cor k=i. If ke C

4

il:h

b..

T

! e L

1Lk Sl

i o) T e 8

c ks o 2T 2 op
FIGURE 45

By lemma for the pair (k,2) we get 2 possibilities:
i) C1 = {c1}. Then the vertex ¢; and the index k satisfy all conditions of lemma o
X¢ is irreducible.
ii) |JAUb| = |E| =1, a contradiction since |A U b| > 2.
b) If k = 4, consider the possible positions of the index j: j € A,j=h,j€Corje€ E.
i) If j € C then j must appear as:

1,h 1, 2, 2,5
A-—-b-—--C1—-=--d-=--¢
|

138
|
Cs

then, by lemma for the pair (1,7), x¢ is irreducible.
ii) If j € A or j = h, then, by lemmafor the pair (4,1), x¢ is irreducible.
iii) If j € E:

4

il h

b,

| 5. 19

i e

i Ny e ;
i B E._.___ir ______ E,

FIGURE 46
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by lemma [7.4] for the pair (i, ) there are 2 possibilities:
- C ={c},Ey = {e1}. Then the vertex c and the index i satisfy all conditions of 5.2} so
X¢ is irreducible.
-|AUb| = |Es| =1, a contradiction, since |[AUb| > 2.

7.4.5. Figure (30). By lemma we have to consider 4 subcases:

1) When D = {d}, E = {e},e+d = %e; £ eq, all indices, different from 1, 2 must appear
an even number of times in the path of T from d to e. In particular, i € C or i = j.

a) If ¢ appears in C as:

d
\

1,6l
| B .
1,h 2,k 8 2,7
A-2_p-Zoo =Yoo, e

then, by lemma for the pair (2,7) and since |A U B| > 1 we get the only possibility
Cy ={c1},etc; = te; +ey. So j = s or j appears in one edge of Cy in the path from e
to ¢;. Hence, by lemma for the pair (4,1), x¢ is irreducible.

b) If i appears in C' as:

d
\

1,41
I
Co
I
1,8 |
AP
then, by lemma for the pair (4,2), xg is irreducible.
¢) If i = j, consider the positions of the index k:
i)Ifke€ Aor k € B or k= h, then, by lemmafor the pair (k,4), xq is irreducible.
ii) If k € C, then k must appear as

d
\

1,i
2,

I
At op Moo M
|

| k,s
I
Cs

by lemma for the pair (1, k) and since |C7 Ue| > 1 we get 2 possibilities:

+) B = {b},d £ b = +e; + e, but this is not possible since by inspection d + b =
+ey + Zm# N, €om -

+) Cy = {ca},co £ d = ey £ e, but this is not possible since by inspection co £ d =
+e; + Zm# Ny, Comy -

2) When A = {0},C = {c},c = £(e1 — e2), all indices, different from 1,2, must appear
an even number of times in the path from 0 to ¢. In particular, h € B or h = k.
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a) If h € B, then h must appear as:

D
\
1]
s . lo2
o-"p "o, M Y g
It is easy to see that T has the form of figure , replacing (1,2) by (h,2). Hence we
have already shown that y¢ is irreducible.
b) If h = k, consider the index i.
i) If ¢ € D, then T has the form of figure , replacing (1,2) by (k,i). Hence x¢g is
irreducible.
ii) If i € E or i = j, then by lemma for the pair (k,4), x¢ is irreducible.
iii)If 4 € B, then ¢ must appear as:
D
\
1,0
0o-Yp M g
\
| 7,8
I
By

By lemma for the pair (k,i) and since |¢ U E| > 1 there are only the two following

possibilities:

o By = {b2},ba = £(ex — €;), but this is not possible, since by inspection by = +e; +
1 m€m.-

o By = {b1},D = {d},d £ by = +tej, £ e;, but this is not possible, since by inspection

d+ b = te; + Zmil T € -

3) When B = {b},D = {d},d £ b = £e; £ ey, then it is easy to deduce that in any case

there is an edge marked (1,2) that connects b and d. All indices different from 1, 2, must

appear an even number of times in the path from b to d.

d
\

1,
a) If k appears in one edge of C in the path of T from b to d, then by lemma for the
pair (1, k), xq is irreducible.
b) If k = 4, consider the index h.There are 4 possibilities:
i) If h € A, then T has the form , replacing (1,2) by (h,2).
ii) If h € C, then h must appear as:

d
I
1,4 |
\ .
1,h 2.k 2,5
A-Z oy - p
I
| h,s

\
Cy
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By lemma[7.5 for the pair (h,i) and since |C; U E| > 1 there are only two possibilities:
+) Cy = {ca},c0 £ b = tep, £ e;, but this is not possible since by inspection ¢y £ b =
+ey + Zm# Ny, €omy -

+) Cy = {ca},c0 £ d = ey, £ e, but this is not possible, since by inspection ¢y +d =
+e; + Zm#l Ty, €, -

iii) If h € £

d
\

1,
I . s
Afllhfbfzikafo’jfEl N — Es
then, by lemma for the pair (h,2), xg is irreducible.
iv) If h = j:

FIGURE 47

then by lemma for the pair (h,i) the only possibility is A = {0},C = {c},c =
+(ep, —e;). But this is not possible, since according to figure (47)) ¢ = ey + Zm# N € -
7.4.6. Figure . Let 0 € A. We distinguish four cases:

1) When in the complete graph there is an edge that connects C, D and an edge that
connects A, E:

E
whl
5 i
4 |
i ik
 LHS L 03
A s Bsiecinis
; ~
! e
1 - /
:E-JF rd
i Ve
; s
W
D
FIGURE 48
we have:
(179) XGle=0 = XauEXEUBuDl6=0,

(180) XGlea=0 = XATBOEXGUD€2=0-
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From and we deduce that xg = UV, where U, V are irreducible and:Ul¢, —o =
Xa0m Ule=0 = Xauplea=0- Hence:xzug = Ulg=e,=0 = Xaupléi=6=0- By lemmal[7.1] we
get |CUD| =|AU E| =1, a contradiction.

2) When in the complete graph there is an edge that connects C, D and there is no edge
that connects A, E:

E
Lk
1Lh : 2.7
b I P b7 .o (5
i s
: £
i . <
i 2-.} d
: s
| p
! //
D
FIGURE 49
we have
(181) Xale=o0 = X aXEle,=0XeoB0Dl6 =05
(182) XGlea=0 = XATBOEXGUD€2=0-

Comparing and we get easily Xaople,=¢a—=0 = XAXE|e—0- But since 1,2 do
not appear elsewhere in C'U D, xarple,=¢,—0 is irreducible, then we get a contradiction.

3) The case when in the complete graph there is no edge that connects C, D and there
is an edge that connects A, F, is absolutely similar to the previous case.

4) When in the complete graph there is no edge that connects C, D and there is no edge
that connects A, E, we have:

(183) XGlei=0 = XAXEUBUD 6 =0X Ele1=0,
(184) XGlea=0 = XaupoEXc|e=0X b lea=o0-

Suppose that y ¢ is not irreducible, then its factors under specializations &, = 0 and & =0

give (183)) and (184) respectively. Comparing (183) and (184) and by a simple analysis

we get only the following subcases:

(185) X4 = X¢la=¢e=0,
(186) or X4 = Xple,=¢.=0,
(187) or Xgler=¢:=0 = Xpler=¢.=0,
(188) or Xgle =0 = Xcler=¢2=0-

By the symmetry of the tree in figure , we need consider only case . We get
easily by lemma[7.1] |[A] = |C| = 1,A = {0},C = {c},c = +(e1 — e2), —e1 — €. Hence all
indices, different from 1,2, must appear an even number of times in any path from 0 to c.
a) If h # i, h must appears once more in the block B.
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-If h appears in B as:

2,i |
|
1,h h,s 1,k
0--2"-B -2 -By,-~-F

12,5

then we can apply lemma for the pair of indices (h,2) and get the result.
-If h appears in B as :

then T has the form of figure , replacing (1, 2) by (h,2). Hence we have already shown
that y¢g is irreducible.
b) If h =

consider the index j.
i) If j € D then, by lemma for the pair (j,7) x¢ is irreducible.
ii) If j € BUE or j =k, then in T there is the following subgraph:
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FIGURE 50

In this case the pair (¢,7) plays the role of the pair (1,2) in parts 1), 2), 3) of this
subsubsection, hence yg is irreducible.

Part 3. The separation and irreducibility of characteristic polynomial,
associated to higher degree NLS

ABSTRACT. In the previous part we proved completely theorem for the cubic
NLS(i.e. the equation in the case ¢ = 1). For bigger ¢ we do not have the affine
independence between vertices of every connected component G of 's. So we shall
prove the separation and irreducibility theorem directly by arithmetical arguments.

As we said in the last part of subsection for every complete colored marked graph
G we will consider the matrix Cg indexing by vertices of G.Given (a,0),a = Y"1 | n;e; set

(189) WHMQ:ngfm@

then
e In the diagonal at the position (a,0),a = >, ne; we put

a() fo=1
(190 {—M®—2@+DAA8 ifo = -1

e At the position ((a,0,), (b,0p)) we put 0 if they are not connected, otherwise we
put opc(f) (c. f. (80)), where £ is the edge connecting a, b.

Define xg = x¢, (t) = det(tl — Cg)- the characteristic polynomial of Cg.

Remark 7.4.
(191) D M1 (Ol = 2 Ayr (O)ere Vin
o, q+1 &i=& — ag] q+1 &i=¢ Ve,

Remark 7.5. Let b = Zle nie;, n; 7% 0; Zle n; = 0. Then:

(192) b(§)|§1252:--~:§k =0
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Proof. By the remark [7.4] we have:

k k
0 0
b(£)|51:§2:»--:§k = ZniaigAq+1(€)|fl:§2:---:Ek = ?&Aq+1(£)|51252:-~;5k an =0
i=1 ¢ i=1
O
Remark 7.6. Let £ = (T — (= be an edge. We have:
i) If £ is a black edge, then [{T]; = (7|1 < q.
ii) If £ is a red edge, then [{T|; <q—1,[(7]; <q+1.
Proof. By the definition of edges we have :
(193) [T+ [0 < 29
On the other hand:
i) If £ is a black edge, then
(194) (5[ =7 =0.
From (193) and (194) we get [(*]; = [(7]1 < q.
ii) If £ is red edge, then
(195) )y — [0 = —2.
From (193) and (195]) we get [¢T] <q—1,[07]; < g+ 1. O

Remark 7.7. : Let { = Zle nie; =T — 47, n; # 0, be an edge.

i) If € is a black edge and k = m, then [0*]; = [~|, = q and c(£) = (q+1)¢¢ +£7)/2 (i

ii) If £ is a red edge and k = m, then [(T|; = ¢— 1L, |¢7|1 = ¢+ 1 and c(¥) =

(rvey2 (a+1 g—1
€ <€_ )

Proof. Since S = {v1,...,0,,} is some arbitrarily large set, we may suppose m > 2gq.
If kK = m then [¢T|; + 071 = >, n; > m > 2q. Moreover, by definition of edges
Yot n; < 2q. Hence:

(196) [+ 101 :ZMZQQ-
i=1

i) When 7 is a black edge, we have

(197) = 1l =0

From (196) and (197) we get |[(T|; = |[¢7|1 = ¢. By formula we obtain ¢(¢) =
(e nee v (L) ()

~

ii) When ¢ is a red edge, we have

(198) [ =07 = -2

From ((196) and (198) we get [¢T]|; = ¢ — 1,[{7|1 = ¢+ 1. By formula we obtain
+40- qg+1 qg—1

c(f) = gc >/2< - ) o+ > 0

We finally recall Proposition 14 of [10]
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Proposition 7. (i) For n =1 and for generic choices of S, all the connected components
of T's are either vertices or single edges.

(ii) For n = 2, and for every m there exist infinitely many choices of generic tangential
sites S = {v1,...,vm} such that, if A is a connect component of the geometric graph T'g,
then A is either a vertex or a single edge.

Obtained results: For graphs reduced to one vertex the statement is trivial. At
the moment we are able to prove the irreducibility and separation in dimension 1, and
dimension 2, under the assumptions of Proposition [7]for all ¢ since all graphs which appear
have at most one edge.

8. ONE EDGE

8.1. Separation. In this case we have immediately the separation of the characteristic
polynomial by the same analysis as in 1) a) of |§| since in this case in the graph there are
only two vertices.

8.2. Irreducibility.

Theorem 8.1. For any q and any connected colored marked graph with one edge the
characteristic polynomial is irreducible.

Proof. We choose the root so that the graph has one of the forms:

¢ 4
/ or 0
black red

Let ¢ = Zle nie;, n; 0. We have
(199)

1 b 0 ; qg+1 q 1 Bi—1
E(g) = q-i—il ;niai&Aq-H(f) = Zni Z ( B )( Bl Bi—1, ..., Bm )51 & -

=1  BeN™;|Bl1=¢+1;8;>1
Set £(&) == £(&) if n(¢) = 0 and £(€) := —L(£) — 2(q + 1) A, (&) if n(¢) = —2.

Remark 8.1. For every i in the support of ¢ the polynomial ((§) contains the term &
with non zero coefficient.

Proof. In the formula of ¢(§) there is the monomial:
(ni+ (g+1) ) nn)él,
h#i
since ), np = n(¢) this equals
—qni&i ifn(€) =0

and

[ni + (g +1)(=2 —ny)|&]  if n(0) = -2
In A,(€) the monomial & appears with coefficient 1,50 we get in £ the coefficient of £ is:
(200) =i+ (g +1)(2+n) —2(¢ + 1) = gns

which is non zero since i is in the support of ¢, n; # 0. ]

£

Bm

m
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We now compute with the matrix
Cp — ( 0 O’gc(g) >
g c(f) ()

(201) Xo(t) = det( _ct( ) t‘ffg((f)) ) — 2~ T(6)t — opelt).

Suppose that yg is not irreducible, then:

(202) xg(t) = (t+ 7))t = £(&) —(£))-
Compare the free coefficients in and 202] we get
(203) r()(—€(€) = 7(€)) = —oec(t)*.

By the formula c(¢)? is divisible by fl"il,Vi =1,..,k. B
For any i if r(¢) is divisible by &, by remark[8.1]¢(¢) is not divisible by &, then —£(&)—r(¢)
is not divisible by &;. And inversely, if —¢(£) — r(§) is divisible by &;, then () is not
divisible by &;. Hence we have:
(204) re) = &"lsieca
(205) U -1 = & u.jeB.
where AUB = {1,...,k}; AN B =1.

(1) If A+# () and B # (), then for some couple i, j we have:

(206) 1) = —(&"si+¢'uy)
From remark [8.1] we must have nj, = 0,Vh # 1, j,
(a) When / is a black edge:
We have o, = 1 and by the definition of edge (cf. £ =ne;—ne;; 2|n| < 2gq.
We may suppose i = 1,j = 2,n > 0. We have £(§) = (&) and:

@) 1 =n( Y (LT 4 T

BEN™;|B]1=q+1,812>1
qg+1 q 1eB=1 B
- Z ( ﬁ/ )( B, ﬁ/ —1... ﬂ/ )611 22 §m )
B/ EN™S|B/ |1 =q+1384 >1 Pz e
Remark that

D =T e B 1= B, B =By — 1,8 = Bi¥i > 3

Then:
q! (g+1)! B1 Bi—1.8

BeN™ |5l g LA 31 (81— D!B2l.Bm! Bil... B! B2+ 1

By [206] we must have
(209) 0(&) = —(&1's1 + Eue).
(i) fn>1,wetake f1 =1,80=n—1,3=q+1—n,64 = ... = B =0,
then in the formula (208)) of £(£), there is the monomial
q! q+1)! 1, e _
( ) (1_7)21g+1 n#o

"D g+ 1-n)(n—Dli(g+1—n)
and it is not divisible by £7' or 5. This contradicts (209).
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(i) n = 1. We have ¢+ = (1,0,...,0); ¢/~ = (0,1,...,0). Then from [80] we
get
(210)

C(£>2 = (q + 1)26152( Z ( a1 + 1’0(527 ey Oy ) ( ap, s +q1’ ey O > ga)Q

aeN™:3 a;+1=q

Let p be a prime divisor of ¢ +1:¢ + 1 = p*u, g.c.d(p,u) = 1. We have:

(211) Xg = t(t = £(§))(mod p) = xg = (t+ ps)(t — ps — £(S))
By (201)and (210) the free coefficient of yg must be divisible by p?*:
(212) p**lps(—€(€) — ps)

By formula we see that the coefficient of the term &7 is —g, the
coefficient of the term & is ¢. One deduces that ¢(£) is not divisible
by p since g.c.d(q,q+ 1) = 1. Hence (—£(§) — ps) is not divisible by
p. So by we must have p?*~!|s. Now take & = & = £(£) = 0,
then the free coefficient of xg when &; = & is divisible by p**. But in
when & = & the free coefficient of yg is —c(€)?|¢,—¢,, it is not
divisible by p**, since in if we take oy = as = 0,03 = g — 1, we
have the monomial:

(q+ 1@’
is not divisible by p**.

(b) When ¢ is a red edge: we may suppose £ = ne; — (n+2)eg, n > 0. By Remark
we must have n < ¢ — 1. From (209)) we have:

(213) 0&) = —¢&s1 — & us.

On the other hand, by computations we get easily:

(214) L) = ﬁew%;:m, G 1)‘!’;2!“' o gflf;:!(n—(nm)ﬁﬁl) A ISR
(215) E() = ~(€) — 2(q + 1)A4,(€) =
R DR e A T A e e v R

e e A ARl )+ DT el

sewm ot _pr, (B = DB B! B

>1

B12

B2+ 1

If wetake 8: 1 =1,80=n+1,83=q—n—1,81=..= B =0, then in
Formula (215) for £(£) there is the monomial

_((n + 1)!(;1! n— 1)!)2(q +1)(n+ 1)ggtie !

which is not divisible by &} or &2, This contradicts (213).

&' =



CHARACTERISTIC POLYNOMIALS, ASSOCIATED TO NLS 67
(2) If B =0, then A = {1,...,k}

(216) r(g) = gml. gl

(a) When ¢ is a black edge: Take & = ... = &, by the remark we have
0(&)|e,=..e, =0, hence

(217) Xg(t)|§1:~-:§k = (t + r(§)|€1:-~:§k)(t - r(£)|51:-~:§k) =
=t —r(&)[F = ¢,

ko
By the free coefficient of xgl¢,=..—¢, is divisible by §f Dl g by
the free coefficient of x¢le,=.. —¢, is —c(0)?[e,=.. ¢, -

. 2 2
-If k = m, then by remark—c(€)2|51=_“=§k = —(q—|—1)2§125=1 el ( q > ( 4 )

s 0~
k .
is not divisible by §f iz Imal
-If K < m, then

(218)
—C(€)2|51:-~:Ek = _(Q+1)2§12§:1 Inil( Z ( €+Z_a )( E_C—]Fa )512L1 aifl(:iil-..fgmmy

aeN™:[{++ali=¢

Take oy = ... = ay = 0,ap41 = ¢— |11, we see that —c(£)?|¢, . ¢, contains
the term 52’?:1 \m|£2(q—|z+|1) with the coefficient —(g+1)2( q )2( q )2
1 k+1 I +a 0 +a’
2 . P 221?= ‘TL»L|
Hence —c(€)?|¢,=...=¢, is not divisible by & <=t """,
(b) When / is a red edge: Take & = ... = £, we have
) ) . )
(219) a—éAq+1(§) = 675»14‘1“(5)%’] = 5(5)\&:...:& = Znigflqﬂ(f) =
i j i1 !
0 1 Q+1 ? 1+ag+.. . toap—1p0k Qm
= —267&Aq+1(5) = -2 Z q—i—il ( o > TS I o fk-ﬁl--- m
|ali=q+1,a1>1
q ? B
(220) Aq(f)‘&:m:ﬁk = Z ( B ) §f1+...+ﬁk§ki+ll...§£{”.

B:1Bl1=q
From and we have
(221)  —L(&)|e,=..—e, = (L&) +2(q + 1) Ag(&))]e,=..=¢,, =

2 2
_ a1 q+ 1 . q i+ tap—1£0k41 Ay
= -2 Z (q+1( a ) (Q+1)(a1_1 "Oém>)1 Ept1 € =

S
alali=g¢+1;a1>1

ar o (g+ 1)), q! 2y par oy —1 pak

= _9 IRV Nt 1+ tagk 1 gQm
Z (q+ l(oq!...am!) g+ )((al — 1)!...am!) )& Skt b

azlali=g¢+1;a12>1

q' (Q+ 1)' a1 +...toap—1 s Qm
=2 Z (a1 — Dlauy! all...am!(al RS ' Skr{lgm '

a:lali=g+1;01>1
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Hence —((€)|¢,~...—¢, is divisible by &1. By @16) 7(€)]¢,=.. —¢, = & 711 ls
is divisible by &. Then (—£(§) — r(§))|e,=...=¢, is divisible by & .By (203)
and (216))we have:

(222)
éh\ln1| ]Lnk|8(__(£)_r(§)) 20(6)2 _ |1ﬂ1‘ L"k|( Z ( e(;z&-;la ) ( ggil()z >£O‘)2

aeN™:[{++al;=¢—1

—scro-ro - > (A (A )er

a€eN™: [t +ali=q—1

e —sto-re = X (A ) (2 )er

aeN™:[ft+ali=¢—1

So the right hand side of (223 when & = & = ... = & must be divisible by
&1. But in fact:
- If k = m, then by remark [7.7]

2 2
qg—1 qg+1 a2 [ g—1 qg+1
Cox (AL )er=(at) ()
aeN™:[{++al;=¢—1

is a constant, not divisible by &;.
- If k < m, take & such that &3 = ... = & = Qg2 = .. + Qp, = 0, 0541 =
g — 1 — ¢ then the right hand side of (223)) contains the monomial

2 2
qg—1 g1 ) 2a-1-iethy
t+a (" +a k+1 '
Hence the right hand side of (223)) is not divisible by &;.
(3) The case A=0,B ={1,...,k} is similar.

Part 4. Appendix

ABSTRACT. This part contains proofs of the facts related to the NLS and the Hamil-
tonian that we described in Section and some useful definitions.

9. APPENDIX: PROOF OF REMARK [L.1]

Proof. Let v = at. We have: u; = aty, Au = aAG, |u| = |a||d], then is equivalent to

(224) —iady + oAt = klal*%ald*%a
Dividing 2 sides of (224) by « we get
(225) — il + Nt = k|a*?|a[*9a

Hence if we take o such that |o|?? = (¢ + 1)|x| ™!, then in (225) k|a|?? = (¢ + 1)k|k| 7t =
+(q+1). O
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10. APPENDIX: PROOF OF PROPOSITION [II

Proof. The Poisson bracket, associated to the symplectic form i}, .. duy A diiy, is:

(226) {f.g} = - A A of g
k

Ouy, Oty 8uk ouy,

‘We wish to find H so that

OH Ou OH Ou 0H Ou oH
. . _O0H Ou _ }: el(k:p)
(227) 4 el 1;( Ouy, Oty * iy, 5uk) lauk duy, 8“’“ .

On the other hand from

(228) =Y e ¥
k
From and (| we get
OH 6
We have
(230) Au = Z a =) ug(t)e'®#) Zkz =) [EPun(t)el )
gDJ kezZm kezn

(231)  |u*u = utta? = (Z ukei(k"‘p))qﬂ(z e )1 =
k

_ E — — i(k1—kotks—kat...+kog—1—kog+k s
= ukl...uk2q+1uk2...uk2qe( 1=kotkz—kat..Ahoq_1—kaqth2e1 SD).

k1, k2q41

From we have

(232) - iw = —i ) e P = ~Au + (¢ + D%

From ([230)-(232)) we get

.. 2 _ _
(233) — Uy = |]€‘ Up + (L] + 1) E Uky -+ Uk g Uy - Uky,, -
k1. kg1 €47
Ky —ko+kg—kgt...Ahoy 1 —kogthags1=k

From and - we have
(234)
oH

n = |[k|Pug + (¢ + 1) > Uy o U sy Uy Uy, Vh € 2T

ky,skogp1 €2
k1—kotkg—kgt...+hog_1—kagtkagr1=F

‘We can write:
(235)

_ _ +1 a-
> st i, = > (TP (4 )

Kiyeens kog41€LT a,Be(@™)N:|al=q+1,|8]1=a,
k1—kotkg—kgt . .+kog_1—kagtkagr1=F X ey =By =k
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Then

(236) (q + 1)/ Z U, ~~~Uk2q+1ﬂk2~~~'ak2qdﬂk =

ki, koq 1 €2
k1 —kgtkg—kgt...+hag_1—kaqtkagr1=k

—Br+1
o xR

a,Be@™)N:|al=q+1,|8]1=q, i#k
S lap—B))=k

B (e

a,Be@)N:|aly=|Bl1=q+1,

21 ey —=B)=0
where 3; = 3; for i # k and By = Br + 1.
Hence
_ 2 q+1 q+1\ o 5
(237) H = |k|uruy + Z ( o )( F uu” + C
OL«BE(Z"’)N:\all_:|l§|1:<1+1v
>y ey —B1)=0

where §< = 0. If we compute ggv for k' # k by (234) and (237) we get ‘967%9 = |k Pup =
C = |k [*up iy + C'. If we continue this process for all k we get easily Formula (). O

11. APPENDIX: THE RESULTANT AND DISCRIMINANT OF POLYNOMIALS

Definition 11.1. Let f(t) = ant™+an_1t" "' +...4ait+ag and g(t) = bypt™+by,_1t™ 1+
. + b1t 4+ bg be two polynomials of degree n and m, respectively, with coefficients in an
arbitrary field F. Suppose that in the algebraic closure of F [ has n roots aq,...,au, g
has m roots P, ..., Bm (not necessary distinct). The resultant of f and g is

(238) R(f,9) = abl, [T ] (i = 85)-

i=1j=1

Definition 11.2. Let f(t) = ant™ + an_1t" ' + ... + a1t +ag be a polynomial of degree n
with coefficients in an arbitrary field F. Suppose that in the algebraic closure of F' f has
n roots aq, ..., . The discriminant of f is:

(239) D(f) = a?"? H (o — ).
1<i<j<n

There are well-known formulas for the resultant and the discriminant:

Qn  Gp, Ap_9 ... a1 ag O 0 .. O

0 ay, Ap_1 ... Qi ag 0O 0 .. O

0 0 0 0 an .. a1 ay O

. 0 0 0 0 0 a, ... Q1 G

(240) R(fg)=det] 4 "y, O 0 0 .. 0 0
0 bm bm—l 0 0 0 0

0 0 0 by bmo1 ... by by O

0 0 .. 0 bm e. by b1 by

where the m first rows contain the coefficients a,,,a,—1,...,a9 of f shifted 0,1,....m — 1
steps and padded with zeros and the n last rows contain the coefficients b,,, b,_1, ..., bo



CHARACTERISTIC POLYNOMIALS, ASSOCIATED TO NLS 71

shifted 0,1, ...,n—1 steps and padded with zeros. In other words, the entry at (¢, j) equals
Opyi—j if 1 <t <mand bj—; if m+1<i<m+n, withae; =0if7 >nori¢<0and
b, =0ifi>mori<0.

(241) D(f) = (=1)"=D24=1R(f, fYfor n. > 1

12. APPENDIX: GENERICITY CONDITION

Definition 12.1. Given a list R := {Pi(y),...,Pn(y)} of non—zero polynomials in
k wvector variables y;, called resonance polynomials, we say that a list of vectors S =
{v1,...,um},v; € C" is GENERIC relative to R if, for any list A = {u1,...,ur} such
that u; € S, Vi,u; # uj, the evaluation of the resonance polynomials at y; = w; is non—
zero.

If m is finite this condition is equivalent to requiring that S (considered as a point
in C™) does not belong to the algebraic variety where at least one of the resonance
polynomials is zero.

Example 12.1.
Pi(y1,y2,y3) = (y1 — y2, 41 — ¥3)
means that we require
(vi —vj,v; —vg) #0
foralli#j#k

In our specific case the required list of the resonances, Pi(y),...,Py(y), are non—
zero polynomials with integer coefficients depending on d = 4¢g(n + 1) vector variables
¢=(C1y-.0,Ca) with ¢ = (¢}, ..., ¢"). The explicit list of these resonances (see Definition
22 in [10]) depends on some non trivial combinatorics, nevertheless it is easy to give
a (highly) redundant list of inequalities out of which the resonances appear. There is
a constant C' > 0 depending only on ¢,n so that we can take resonances the non-zero
polynomials of the form:

e Linear inequalities: For all non-zero vectors (a1, ..., Gag(n+1)) With a; € Z, |a;| < C
we require that

4q(n+1)

i=1

e Quadratic inequalities : Let ({;,¢;) = >_p_; ¢/'¢} be the scalar product. For all

. dq(nt1) _ . .
non-zero matrices {ai,j}i%(;l;_ ) with a; ;Z,\a; ;| < C we requires
4q(n+1)
> @i ;GG 0.
4,J=1

e Determinantal inequalities: Consider n linear combinations uy out of the list of
elements £ := Z;ﬁ(l"“) an,iCi,aniZ, |ap ;| < C.
The determinantal resonances are contained in the list of the formally non-zero
expressions of type det(uy, ..., un), u; € L.
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