UNIVERSITA DEGLI STUDI DI ROMA “LA SAPIENZA”

FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

DILATION THEORY FOR C*-DYNAMICAL SYSTEMS

CARLO PANDISCIA

DOTTORATO DI RICERCA IN MATEMATICA
XVII CICLO

Relatore

Prof. Laszlo Zsido






Contents

1. Introduction

Chapter 1. Dynamical systems and their dilations
1. Preliminaries

Stinespring Dilations for the cp map

Nagy-Foiag Dilations Theory

Dilations Theory for Dynamical Systems

Spatial Morphism

Gl N

Chapter 2. Towards the reversible dilations
1. Multiplicative dilation
2. Ergodic property of the dilation

Chapter 3. C*-Hilbert module and dilations
1. Definitions and notations
2. Dilations constructed by using Hilbert modules
3. Ergodic property

Appendix A. Algebraic formalism in ergodic theory

Appendix. Bibliography

S

(ORI

17

23
23
38

47
47
49
o1

54
56



1. INTRODUCTION 4

1. Introduction

In the operator framework of quantum mechanics we define a dynamical system by
the triple (A, ®, ), where 2 is a C*-algebra, ® is an unital completely positive map and
¢ is a state on 2. In particular, if this map ® is a *-automorphism, (2, ®, ) is said be
a conservative dynamical system.

The dilation problem for dynamical system (2, @, ) is related with question wheter it
is possible to interpret an irrevesible evolution of a physical system as the projection of

a unitary reversible evolution of a larger system (ﬁ, 6, o) [9].

In [26] we find a good description of what we intend for dilation of a dynamical system:
The zdea of dilation is to understand the dynamics ® of 2 as projection from the dy-
namics ® of . In statistical physic the algebras A and A may be considered as algebras
of quantum mechanical observable soAthat A models the description of a small system
embedded into a big one modelled by . In the classical example 2 is the algebra of ran-
dom gam’ables describing a brownian particle moving on a liquid in thermal equilibrium
and A is the algebra of random variables describing both the molecules of the liquid and
particle.

Many authors in the last years have studied the dilatative problem, we cite the pioneer
works of Arveson [1], Evans and Lewis [7], [8], and Vincent-Smith [31]. In absence of
an invariant faithful state, Arveson, Evans and Lewis have verified that the dilations
have been constructed for every completely positive map defined on W*-algebra, while
Vincent-Smith using a particular definition of dilation, shows that every W*-dynamical
system admits a reversible dilation. In our work we will assume the concept of dilation
given by Kiimmerer and Maassen in [12] and [13]. It is our opinion that this definition
is that that describes better the physical processes.

The statement of the problem is the following;:

Given a dynamical system (2, ®,p), to construct a conservative dynamical system

(§l, </I\>, (ﬁ) containing it in the following sense. there is an injective linear *-multiplicative

map ¢ : A — A and a projection & of norm one of A onto i () such that the diagram

A o A
7 7
\ /

i 1 C L€
@ @
/ AN

2A i A

commutes for each n € N.
The (Ql, D, 0,1, 5) is said to be a reversible dilation of the dynamical system (2, ®, ¢),

furthermore an dilation is unital if the injective map i : A — 2 is unital.

Kummer in [12] estabilishes that the existence of a reversible dilation depends on the
existence of adjoint map in this sense:

A completely positive map & : 2 — 2 is a p—adjoint of the completely positive map
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® if for each a,b belongs to 2 we obtain that ¢ (b(® (a))) = ¢ (®* (b) a).

The principal purpose of our work is to establish under which condition is possible to
costruct a reversible dilation that keeps the ergodic and weakly mixing properties of the
original dynamical system. An found difficulty has been that to determine the existence
of the expectation conditioned as described in the preceding scheme (In fact generally,
the exisistence of a conditional expectation between C*-algebras is fairly exceptional !.)
and the presence of an invariant state subsequently complicates the matters.

This thesis is organized as follow.

In chapter 1 we introduce some preliminaries concept and we show the following gener-
alization of the theorem of Stinespring:

Gives an unital completely positive map @ : 20 — 2 on C*-algebra with unit 2, there
is a representation (H,m) of 2 and an isometry V on the Hilbert space H such that
7 (® (a)) = V7 (a) V* for each element a belong to 2. Subsequently we have used re-
sults contained in the paper [20] to show that all W*-dynamical systems for which the
dinamic ® is a *-homomorphism with ¢p—adjoint, admit an unital reversible dilation.
In chapter 2 using the generalized Stinespring theorem and Nagy-Foias dilation theory for
the linear contraction on Hilbert space, we proof that every dynamical system (2, ®, )

has a multiplicative dilations <§1,EI\>,@,Z',S>, that is a dilation in which the dynamic

$: 9 — Aisnot a *_automorphism of algebras, but an injective *-homomorphism. This
dilation keeps ergodic and weakly mixing properties of the original dynamic system. We
also recover a results on the existence of dilation for W*-dynamical systems determined
by Muhly-Solel their paper [16]. We make to notice that our proof differs for the method
and the approach to that of the two preceding authors. For the methodologies applied
by the authors, and relative results, the reader can see the further jobs [15] and [17].

In chapter 3 we apply Hilbert module methods to show the existence of a particular

dilations <§)\I,§>,@,z’,€) of W*-dynamical system (9%, ®, p) where the dynamic D is a
completely positive map such that 91 is included in the multiplicative domains D (6)

of ®. Also (ﬁ, Cf, ?, 1, 5) keeps the ergodic and mixing properties of the C*-dynamical
system (90, @, ).

1For the existence of expectation conditioned the reader can see Takesaki [29] .



CHAPTER 1

Dynamical systems and their dilations

In this chapter using the results of Niculescu, Stréh and Zsido contained in their
paper [20], we have show that a dynamical system with dynamics described by a ho-
momorphism that admits adjoint as defined by Kummerer in [12], can be dilated to a
minimal reversible dynamical system. Moreover this reversible system take the ergodic
property of the original dynamical system. Fundamental ingredient of the proof is the
the theory of the dilation of Nagy-Foias for the linear contractions on the Hilbert space

1. Preliminaries

In this first section, we shortly introduce some results on the completely positive
maps'. For further details on the subject, the reader can see the Paulsen’s books cited
in the bibliography.

A self-adjoint subspace S of a C*-algebra 2 that contains the unit of 2l is called operator
system of 2, while a linear map ® : S — B between the operator system S and the
C*-algebra B is positive if it maps positive elements of S in positive elements of B.
The set of all n x n matrices, with entries from S, is denoted with M, (S). We define a
new linear map ®,, : M, (§) — M, (/) thus defined:

‘I’n (\a:i,jb’j) = ’(I) (aﬁi,j)b’j, Ti j S S, i,j = 1,2...n.

The linear map ® is said be n-positive if the linear map ®,, is positive and we call ®
completely positive if ® is n-positive for all n € N.
We observe that if 2 and B are C*-algebra, a linear map ® : % — B is cp-map if and
only if

b ® (afa;) by > 0

i,J

for each aq, a9, ...a, € A and by, bs....b, € B.
ProposSITION 1.1. If ® : S — B is a cp-map, then
@] = (| (1)]]
PROOF. See [22] proposition 3.5. O

If ®:2A — B is an unital cp map between C*-algebras, we have that ® has norm 1.
A fundamental result in the theory of the cp-maps is given by the extension theorem of
Arveson [1]:

PROPOSITION 1.2. Let S be an operator system of the C*-algebra A, and ® : S —
B(H) a cp-map. Then there is a cp-map, @ : A — B(H), extending ®.

1Brieﬂy cp-map.
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PROOF. See [22] proposition 6.5. O

Let us recall the fundamental definition of conditional expectation.
Let B be a Banach algebra (in generally without unit) and let 20 be a subalgebra of
Banach of 9. We recal that a projection P is a continuous linear map from 25 onto
2 satisfying P (a) = a for each a € 2, while a quasi-conditional expectation Q is a
projection from B onto 2 satisfying Q (zby) = xQ (b) y for each z,y € A, and b € B.
An conditional expectation is a quasi-conditional expectation of norm 1.
In the case that 20 and 9B are C*-algebras there is the following result of the 1957 of
Tomiyama:

PropoSITION 1.3. The linear map £ : B — A is a conditional expectation if and
only if is a projection of norm 1.

PROOF. See [2], proposition 6.10. O

We observe that every conditional expectation is a cp-map.
In fact for each aq, as,...a, € 2 and by, bs....b, € B, we obtain:

>_a; € (bjbj)a; =& (Z@@"%%) > 0.

2% 2%

The multiplicative domains of the cp map ® : A — B is the set
D(@)={acA:D(a")P(a) =P (a*a) and ®(a) P (a*) = P (aa™)}, (1)

furthermore we have the following relation (cfr.[22]):

a € D(®) if and only if ® (a) ® (b) = ® (ab), © (b) P (a) = ® (ba) for all b € A.

2. Stinespring Dilations for the cp map

We examine a concrete C*-algebra 2 of B(H) with unit and an unital cp-map
® : A — A. By the Stinespring theorem for the cp-map ®, we can deduce a triple
(Vg,08, L) constituted by a Hilbert space L4, of the reprensentation o¢ : A — B (Lg)
and a linear contraction Vg : H — L& such that

0] (a) = V%Uq; (a) Vs, ael. (2)

We recall to the reader? that the Hilbert space L is the quotient space of A ® H by
the equivalence relation given by the linear space {a ®¢ VU : |la ® V|| = 0}, where

(a1 @9 V1502 @ W2) . = (V1; P (ajaz) U2)y

and 0g (a) tRe ¥ = ax®ge V, for each @ ¥ € Lo with Vol = 1®¢ U for each ¥ € H.
Since ® is unital map the linear operator Vg is an isometry whit adjoint V3 defined by

Via®e U =2>7(a) ¥,
for each a € A and ¥ € H.

2For further details cfr.[22] and [23].
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PROPOSITION 1.4. The unital cp-map ® is a multiplicative if and only if Vg is an
unitary.
Moreover for each x € D (®) we have

03 (x) VoV = Vg Vios () =04 ().
PRrROOF. For each ¥ € ‘H we obtain the follow implication:
ARV =18 P(a)¥ <<= @(a%a)=2o(a")P(a),
since
la ®e ¥ —1®e ¥ (a) V|| = (¥, (a"a) ¥) — (¥, P (a") @ (a) V).
Furthermore, for each a € 2 and ¥ € H we have Vo Via ®e ¥ =1 Rq ® (a) V. O

Let ® : 20 — 9B an unital cp map between C*-algebra 2 and 9B, for each a € A we
have:

® (a*a) = Vzos (a*) o (a*) Ve > Vios (a*) Ve Vioe (a*) Ve = @ (a*) D (a),
this shows that the Kadison inequality:
O (a*)P(a) < P(a*a) (3)

is satisfied.
We now need a simple lemma:

LEMMA 1.1. Let 9; C B (H;) withi = 1,2, are von Neumann algebra and the linear
positive map ® : M1 — My is wo— continuous, then is w*-continuous.

PROOF. Let {z,} an increasing net in Sﬁf with least upper bound z, we have that
o converges o—continuous to x, it follow that x, converges wo-continuous to z and
since for hypothesis ® (v,) < @ (z) in M and @ (z,) — P (z) in wo-continuous, we
have ® (z) = lub ® (z,), then ® is w*-continuous. O

A simple consequence of the lemma is the following proposition:

PROPOSITION 1.5. If M C B (H) is a von Neumann algebra and ® : MM — M is
normal cp map, then the Stinespring representation og : M — B (Lg) is normal.

PROOF. Let {z,} an increasing net in M+ with least upper bound z, for each a ®4
¥ € Lg we obtain:
(a®¢ V;0¢ (1q) a @ V) = (V; P (ax,a) ) — (¥; ® (axza) U) and
(¥; @ (aza) V) = (a ®o V; 00 () a @p V).
Therefore og (z,) — 04 (x) in wo-topology. O

The Stinespring theorem admit the following extension:

THEOREM 1.1. Let 2 be a C*-algebra with unit and ® : A — A an unital cp-map,
then there ezists a faithful representation (Too, Hoo) of A and an isometry Vo on Hilbert
Space Hoo such that:

V:oﬂ-oo (a) Voo = Teo (lI) (a)) a€, (4)

where
og=1d, P,=0,0P
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and (Vy, 0nt1, Hnt1) is the Stinespring dilation of ®,, for every n > 0,

Hoo = @Hj, Hj = 91®q>].71 Hj_l, for 5> 1 and Hy = H; (5)
=0

and
Voo(Wo, Uy, Uy, ...) = (0, VoW, V1Uq,...)
for each (Wo, ¥y, Vs, ...) € Hoo-
Furthermore the map ® is a homomorphism if and only if Voo Vi, € Too (Ql)l .

PROOF. By the Stinespring theorem there is triple (Vo, o1, H1) such that for each
a € A we have ® (a) = V(o1 (a) Vo. The application a € A — o1 (®(a)) € B(H1)
is composition of cp-maps therefore also it is cp map. Set @ (a) = o1 (P (a)). By
appling the Stinespring theorem to ®;, we have a new triple (Vi,02, H2) such that
®; (a) = Vioz (a) V1. By induction for n > 1 define @, (a) = oy, (P (a)) we have a triple
(Vi, 0nt1, Hit1) such that V,, : H,, — Hpt1 and @y, (a) = Viopt (a) Vi,
We get the Hilbert space Ho, defined in 5 and the injective reppresentation of the C*-
algebra 2l on Hy :

Too (@) = @D on (a) (6)

n>0

with g (a) = a, for each a € 2.
Let Vo : Hoo — Hoo be the isometry defined by

Voo (Vo,V1....0,...) = (0, VoW, V1VU1...V,, U, ..), v, € H;. (7)
The adjoint operator of V, is

Vi (Yo, ¥;...0,...) = (VS\Ill,VI\IIQ....V;_l\Iln...) , U eH,, (8)
therefore

Vi 7o (a) Ve BV, = BV ont1(a) V¥, = PPy (a) ¥, =

= B0 (9(0) Uy = 7o (@) DT

We notice that let E,, = V,,V be the orthogonal projection of B (H,—1), we have:
E (Vo, U;...7,,..) = (0, EgUy, E1 Uy, .. B Uppiq...).
Let ® be a multiplicative map then for each (¥, ¥;...¥,,.....) € Hoo we get:
Voo Vi (U, U1...0,..) = (0, ¥, Uy, .. Uy 11...), 9)
then
Voo ViToo (a) = oo (@) Voo Vi,

while for the vice-versa for each a,b € 2 we obtain:

Too (P (@) Too (P (b)) = Vi Moo (@) Voo Vi oo (b) Voo = Vi oo (@) Too (b) Vo =

=V oo (ab) Voo = 7o (P (ab)) .
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REMARK 1.1. Let 9 be a von Neumann algebra and ® is normal, then the rep-
resentation (oo, Hoo) of M on Heo is mormal, since the Stinespring representations
(Vi, 0nt1, Hint1) of the ep-maps @, = 9 — B(H,,), are normal representations.

We observe that Vo, ¢ T () and Vo Vi ¢ oo () .
Indeed if z is an element x € 2A such that 7o (2) = Vo, we have for definition that for
every (W, Uy,...0,...) € Heo

(ZL‘\I/(), g1 ($) \111, ...On ($) \I/n) = (O, VO\IJO, Vl\Ifl,Vn\I/n) s

therefore x = 0.
If exists a € 2 such that VoV, = 7 (a) then for each (¥g, ¥;...U,,..) € Hoo we have

Too (@) (T, U1, W) = (0, VoVilg, Vi VI, .V, VI,...)
it follows that a = 0.
REMARK 1.2. If x belong to multiplicative domains D (®) we have
Too () Voo Vi, = Vo Vi oo () = oo () -
Moreover let F =1— V Vi, we have Froo (A)V = 0 if and only if the cp map P is

o

multplicative. In fact for each a,b € A we get
(Froo (@) V) Frige (b)) V = 7o (P (ab) — @ (a) @ (b)) .
We study some simple property of the linear contraction V7.
PROPOSITION 1.6. The linear contraction V o satisfies the relation
ker (I — Vo) =ker (I — VL) =0.
Moreover for each ¥ € Hy, we have

n 1 n
k _ N K\ —
OVOO\II = 7}1—{2071 n 1]§0VOO\II =0,

lim
n—oon + 1 e

with
lim <\11,V’;O\I/> ~0.
Moreover for each A € B(Hs) we obtain:
lim VE A*AVE ¥ = 0.
PROOF. Let (Ug, ¥q,...U,...) € Ho with Vo (g, Uy, ... 0,,...) = (Pg, Uy, ...0,...) .
For definition
(0, Voo, V10, V,U,...) = (P, Vq,..0,...)
it follow that (¥, ¥y, ...¥,...) = (0,0,...0....).
It is well known that the relation ker (I — V) = ker (I — V) is always true for linear
contraction on the Hilbert spaces®.
The relation nlLH;o %HE_:OV’;O\IJ = 0 follow by the mean ergodic theory of von Neumann.

For the second relation we get:

3See [19] proposition 1.3.1.
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where for each h,k € N with h > k we set:
Jen = ViVhp1 000 Vi,

n
VAV = 5 31 tsmiadirioeo Vo

2 n 9
< 2 1%l
a=k

since HkalJra,k:faJZ;_l-t,-a,k—a <1

Then lim > ||¥,[* = 0 it follow that lim |[VEVE D] =0.
n—>ooa:k n—oo
Furthermore we get:
(U, VE A*A Vk*\Il> < || AJ? (U, VEVE ).
Since n—+1 Z (U, VE W) — 0 we have D — lim (¥, VE ) = 0* but we get

n—oo

(T, VET)| = Z [(Wo, Jh—14ak—a¥a)| < Z:kH‘I’aHQ
then lim <\Il Vk \IJ> =0. O

n—oo

%k 3k

Proposition 1.1 leads to the following definition:

DEFINITION 1.1. Let ® : A — A be a cp-map, a triple (w, H, V) costitued by a faithful
representation m : A — B (H) on the Hilbert space H and by a linear isometry V, such
that for each a € A we get:

7 (®(a)) =V (a)V (10)

s a isometric covariant representation of the cp map .

For our purposes it will be necessary to find an isometric covariant representation of
appropriate dimensions, this is possible for the following theorem:

PROPOSITION 1.7. Let @ : A — A be cp-map with isometric representation (w,H, V),
if ® isn’t an automorphism, for each cardinal number ¢ there exist an isometric covariant
representation (¢, He, V) with the following property:

Representation o s an equivalent subrepresentation of m. with dimH, > dim (H) and
dimker (V¥) > ¢;
Moreover there is a cp map & : B(H.) — B(H) such that for each a € A, T' € B (H,)
we have

Eo(me(a)T) =7 (a)& (T),
with

E (VITV) = V& () V; (11)

PROOF. Let ¢ be a cardinal number and £ a Hilbert space with dim (£) = ¢, since
® isn’t automorphism we have dim (ker V*) > 1, then there is a vector & € ker V* of
one norm.

We set with H, the Hilbert space H, = H®L and with V the linear isometry

V.= V&I,

ACtr. appendix.
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Let {e;};c; be a orthonormal base of the Hilbert space £, we have card(J) = ¢ and
§ejcker VI jeJ.
Since for each j € J we obtain:
Vilg@e) =(Vol)(§oe) =V§goe;=00e =0,
it follow that dim (ker V) > c.
The faithfull *-representation m : 2 — B (H,) defined by
e (a) =7 (a) @ I, ac

satisfies the relation 10.
In fact for each a € 2 we obtain:

Vi (a) V= (V*@I.)(m(a)@12) (VRI) =V (a) VI, =
=7 (P(a) @Iz =7 (P (a)).
Let [, € L vector of one norm and II;, : H. — H the linear isometry
I,h=h®l, heH,
with adjoint
O h@l={(,l)h, heH, lcL
The cp map &, : B(H.) — B (H) so defined:
E (T) =1, T, T € B(H.) (12)
for each a € A, T € B (H,.) enjoys of the following property:
Eo(me(a)T) =m(a)& (T).

In fact for each hi, hs € Hoo we obtain

<h2, o (’/Tc (a) T) h1> = (’/Tc (a*) Hlohg, THloh1> = <7T (a*) hs ® Lo, THloh1> =

= <7T (a*) hg, HIOTHth1> = <7T (a*) hg, go (T) h1> = <h2, ™ (a) 50 (T) h1> .

We now verify the relation 11.

For each hq, ho € ‘H we have:

<h2, & (V;“TVc) h1> = (VcHlth,TVcHloh1> = (th Rly, TVh ® l0> =

= (II;, Vhy, T1;, Vhy) = (Vho, I} TI;, Vhy) = (Vhy, & (T) Vhy) =

= (ha, V*& (T) Vhy) . O

LEMMA 1.2. Let A be an unit C*-algebra and 0, : A — B (H,) representation of U,
then for every infinite cardinal number ¢ > dim (H,) there is a representation 6 : A —
B (H) such that

0(a) = B0 (a)
Jj€J
with
H :®Ho
JjeJ
and card(J) = c.
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PROOF. Let H be an any Hilbert space with dim (H) = ¢ with {e;},c; and {f;},_;
orthonormal bases of H,, and of £ respectively. For definition we have that card {J} = ¢
while card {I} = dim (H,) .

The cardinal number ¢ isn’t finte then for the notes rules of the cardinal arithmetic it
results that card {I x J} = card{J}. Then we can write that

J=U{Ixj:jeJy=U{lj:jeJ}

with card (I;) = dim (H,).

In fact for every j € J the norm closure of the span{fy : k € I;} is isomorphic to the
Hilbert space H,.

We get

H = Pspan{fi:kel;j} = PHo,

jeJ Jj€J
and for each a € A, ¥; € H, we define

0(a) Y; = Db, (a) ;.

jeJ jeJ

We now have a further generalization of the theorem 1.1:

COROLLARY 1.1. Let @ : %A — A be a cp-map. if ® isn’t an automorphism, there
exists an isometric covariant representation (mw,H,V) and a representation 6 : A —
B (ker (V*)) such that

0(a) = Pro(a), ac,
jeJ
where J is a set of cardinalty
dim (H) > card (J) > dim (Hso) ,
and Hso is the Hilbert space 5.

PROOF. Let ¢ be the infinite cardinal number with ¢ > dim H,, for the proposition

1.7 there is an isometric covariant representation (7., H,, V) subequivalent to 7 with

dim (ker V) > ¢. Then for the preceding lemma there is a *-representation 6 = @7
jeJ

with card(J) = dim (ker V). O

3. Nagy-Foiag Dilations Theory

Let T and S be operators on the Hilbert spaces H and K respectively. We call S
a dilation of T if H is a subspace of K and the following condition is satisfied for each
n e N:
TV = PxS"P, Vv eH,
where Py, denotes the orthogonal projection from K onto H.
Given a contraction operator T on the Hilbert space ‘H, the defect operator D is defined

by
Dt = vI—- T*T.
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Moreover we define the following operator T on the Hilbert space K = H @ [? (DTH)5:

T =

Cr W

A‘TO, (13)

where the operators W : [2 (DT’H) . (DT’H) and Cp : H — [? (DTH) are so
defined:

W (&0, &1--6n) = (0,60, 61--6n..) . € €1 (DTH)
and
Crh = (Dt1h,0,..0...), h€EH,
Dr is the defect operator of T. Moreover for each (&g, &1, ..6p...) € 2 (m) we have:

Crt (&0, &1, ---6n-..) = Dxéo,
and
CyCr=1-T'T.
We observe that for each & € [2 (m)

W* (60,61 6n) = (€1nn),
and
Dw~ (gﬂaglgn) = (5070707 0)

where Dw+ is the defect operator of the contraction W*, therefore Dw+ is the orthogonal
projection of the space DpH. Obviously T is a dilation of T and a simple calculation
shows that T is an isometric, therefore T is an isometric dilation of T. An isometric
dilation T on K of T is minimal if H is cyclic for T; that is

K=\ T,
neN

moreover it is shown that the 13 is the only, up to unitary equivalences, minimal dilation
of T.
The dilations (Tl, IC1> and (Tg, ICg) of T are equivalent if exists an unitary operator

U : K1 — K9 such that U’T‘l = TyU and U‘H = id.
We recall the following proposition:

PropoSITION 1.8. FEvery contraction operator T on the Hilbert space H has a unitary
dilation T on a Hilbert space KC such that (minimal property)

K=\/T*x.

nez
The operator T is then determined by T wuniquely (up to unitary equivalences).

PRrROOF. See [18] theorem 1.1. O

SFor further details cfr.[18] and [19]
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4. Dilations Theory for Dynamical Systems

We define a C*-dynamical systems a couple (2, ®) constituted by an unital C*-
algebra 2l and an unital cp-map @ : 2 — 2.
A state ¢ on U is say be ®—invariant if for each a € U we have

@ (®(a)) =¢(a). (14)
The C*—dynamical systems with invariant state ¢ is a triple (2, ®, ) where ¢ is a
®—invariant state on 2.
A W*—dynamical systems is a couple (9, @) constituted by a von Neumann Algebra
9% and an unital normal cp-map ® : M — M.
The W*—dynamical systems with invariant state ¢ is a triple (91, ®, p) where ¢ is a
faithful normal ®—invariant state on 9.
A C*—dynamical systems (2, ®) is say be multiplicative if ® is a homomorphism, while
is say be invertible if the cp-map ® is invertible. We have a reversible C*-dynamical
systems (A, @) if ® is an automorphism of C*—algebras.

REMARK 1.3. We observe that from the Kadison inequality 3, for every a € A we
have:

@ (®(a")®(a)) < ¢(a’a).
Let (A, ®, ¢) be a C*-dynamical systems with invariant state ¢ and (H, 7y, §2,) its
GNS. We define for each a € &, the following operator of B (H,,):
Uy (a) Sy = mp (@ (a)) Q. (15)

For definition, for each a € 2 we have
17 (@ (@) Qul|* = ¢ (B () @ (a)) < @ (a"a) = [|mg (a) Q|

Then U, : H, — H, is linear contraction of Hilbert spaces.

ExAMPLE 1 (Commutative case). Let (I, o, @) be a abelian W*- dynamical system,
as well known, the commutative algebra MM can be represented in the form L (X) for
some classic probability space (X, X, p) where o (f) = [ f du for each f € L= (X). The
GNS of ¢ is costitued by (L*(X), 7y, Q) whit w, (f) ¥ = -V for each f € L™ (X)
and VU € L?(X). Moreover for the linear contraction U, we get U,¥ = @ (f) - ¥ for
each f € L®(X) and ¥ € L?(X).

We have the following result for the ergodic theory:

PROPOSITION 1.9. Let (A, ®,p) be a dynamical system and (H,,my, Q) the GNS
of the state @. There exists a unique linear contraction Ug on the H, where the rela-
tion 15 holds and denoting the orthogonal projection on the linear space ker (I — U,) =
ker (I — U:‘D) by P, we have

1 n
u,p, =P, U, =P, and ] Z U’; — P, in so-topology. (16)
k=0¢p
If the application ® is homomorphism, then Uy, is an isometry on H, such that

UL, € mp (2 () C B(H,) a7
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and
Ugny, (a) = mp (P (a)) Uy, ae (18)

PROOF. See [20] lemma 2.1. O

4.1. Dilations for Dynamical Systems. We now give the fundamental definition
of dilation of a dynamical system.

DEFINITION 1.2. Let (U, ®, ) be a C*-dynamical system. The 5-tuple (ﬁ, 6, @,i,é’)
composed by a C*-dynamical system (ﬁ,@,@) and cp-maps & : A — A7 : A — §l, is
say be a dilation of (A, ®,p) if for each a € A and n € N we have

& (8" (i (a))) = " (),
and for each x € A
p(z) =¢(E(x)).

Two dilations <§(1, @1, @1,i1,51> and <§l2, @2, @2,@'2,52) of the C*-dynamical system

(A, D, ) are equivalent if exists an automorphism A : é\ll — é\lg such that
AoEI;l:;I\)goA, po=p10A and E oA=&, Aoiy =io. (19)
The dilation (ﬁ,(f),@,i,g) of the C*-dynamical system (2, p,®), is say be a re-

versible [multiplicative] dilation if <§l, 9, {5) is a reversible [multiplicative] C*-dynamical
system.
The dilation (ﬁ,@,@,i,é’) of the C*-dynamical system (2, p,®), is say be a wunital
dilation if the cp-map i is unital, i.e. i (1y) = 14.

REMARK 1.4. Let (ﬁ,@,@,i,é’) be a reversible dilation of (A, p, ®), for definition

we have that £ o1 = idy where i is injective map while £ is surjective map.

We have a first proposition that affirms that the map £ is a conditional expectation.

PROPOSITION 1.10. Let <§l,£f>,<,5,i,€> be a reversible dilation of (A, p, ®), for each

a,be, x e 2 we have:
E(i(a)xi (b)) = a& (z)b.

PRrOOF. For each a € A we obtain
E(i(a)i(a)) =a"a,

since a*a = & (i (a* a))_ (i (a*)i(a)) > & (i(a*)) € (i(a)) = a*a. Then for each a € A,
the element i (a) is in the multiplicative domains of £, it follow by the relation 1 that
i

in
E(i(a)X) =E(i(a)&(X) and € (Xi(a)) = £(X)E (i (a)) for cach X € 2A. O
We observe that if (§l A, p,1,&E ) be a reversible dilation of (2, ¢, ®) we have
€ (i(a1)i(az) --i(an)) = araz - an
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for each a1, ao,...a, € 2, since

8 (Z (al)i(ag) ) (an)) = alc‘: (Z (ag) ) (an)) .

Then
€ ((i(a)i(b) —i(ab))” (i(a)i(b) —i(ab))) =0
and
@ ((i(a)i(b) —i(ab))" (i(a)i(b) —i(ab))) = 0.
From this last relation we have the following remark:
REMARK 1.5. Let (53\7, o, EI;, i, 8) be a reversible dilation of the W*-dynamical system
(M, D, p), then the map @ is multiplicative (but is not necessarily unital) and io€& : MM —

M is (unique) conditional expectation on von Neumann algebra i (9%)"S.

We have now an important definition:

DEFINITION 1.3. The reversible dilation (ﬁ,@,@,i,é’) of the C*-dynamical system
(A, @, ) is to said be minimal if

A=C* (U@k (i (22[)))

kEZ
while is to said be Markov if

A=C* (U@k (i(QI))) :
keN

We study now the relation between the representations GNS of the C*-dynamical
system (2, @, p) and one its possible dilation (5?1, E), 0,1, 5).
Let Z : H, — Hg be the linear operator thus defined:

Zry(a)Q, =75 (i(a) s, ac?U (20)
The operator is an isometry since
1Z 7y (a) Q1> = G (i (a%) i (a) = B (i (a¥a)) = ¢ (a* A) = |7, (a) Q|-

Moreover for each z € A we have:

(T (@) Qg (a) 2,) = 6 (@7 () = 0 (€ (%) a) = (m, (€ (2)) Loy (@) Q).
Then

Z'mp (1) Qp = 7, (€ (2)) Qp, (21)
and a simple calculation shows that for each a € % and = € 2 we obtain:
Zry(a) =75 (i(a)) Z (22)
and
2ty (2) 2 = 7, (€ (2). (23)

6Cfr.[22] Proposition 3.5.
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We notice that the operator Q = ZZ* is the ortogonal projection on the Hilbert space
generated by the vectors {75 (i (a)) Q5 : a € A} with
Qrp () Q= 75 (1 (€ (2))) Qp, e (24)
For all n € N we have
U, = Z*UgZ, (25)
since for each a € A : R R
Z*ULZr, (a)Qp = Z'7p (@" (i (a))> Qp =75 (5 (@n (i (a)))) 0, =
= 75 (" (a)) Qp = UG, (a) Q.
We study now the relation between the orthogonal projections P, = [ker (I — U,)] and
P; = [ker (I — U@)] .
From the relation 25 for each NV € N we have the relation
1 & R
— Y Ut=z2"—> UL |2Z
N + 12 » (N +1 Z ‘P>
k=0 k=0
it follow that
P, =7"P;Z. (26)

ProposiTION 1.11. Let (2/2\[,@,@,2‘,5) be a dilation of the C*-dynamical system

(A, p, ®) the unitary operator Ug is a dilation of the contraction ZU,Z*.
Moreover to equivalent dilations of the C*-dynamical system corresponds equivalent di-
lations of the linear contraction U,,.

PROOF. We observe that for each a € 2 and n € N we have:
(ZU,Z*)" 75 (a) Qp = QULZ75 (a) Q5 = Qrr (&w (i (a))> 0 =
=75 (1 (®" (a))) Qp = YASHE I (a)Qp = (ZzU,Z*)" Zr; (a) Qg
consequently for each ¥ € ‘H,, we have

QUZZh= (ZUsZ")" V.

Let (5[1,5131,@1,7;1,51) and (5/2\[2, @2,@2,2’2,52) are two equivalent dilations of the C*-

dynamical system (2, ®, ¢) with automorphism A : 21 — Ay defined in 19.
We set for each a € A
Aﬂﬂ-sﬁl (a) Q@l = T, (A (a)) Q2
we have an unitary operator Ay : Hg, — Hg, such that
Ay oUp, =Ug, o Ay

P2

We have the following remark:

REMARK 1.6. If (QAI,;I;,@) is a minimal dilation, in general, it is not said that the
operator Ug is minimal unitary dilation of U,,.
In fact the Hilbert space Hg is the norm closed linear space generate by the set of elements

{Uglw (i(ar)) - Ui (i (ax)) Qp a € %, my € N}
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while the space \/, cy UgZH¢ is generate by the set of elements
{ nrs (i (@) Qp a € 2, nez}.
We see now an example of as the Nagy dilation for the contraction on the Hilbert
space is applied to the dilation theory of dynamical systems.

EXAMPLE 2. Let ‘H be a Hilbert space and V an isometry on ‘H, we get the unital
cp-map ® : B(H) — B(H)
®(A)=V*AV, A €B(H),
and ¢ is a ®-invariant state of B(H). In this way we get the C*-dynamic system
(B(H).®,0).
Let <IC,V) be the Nagy dilation of the isometry V*:
S V* 0
V=l ¢ w

)

and Hilbert space K = H @ 12 (T).
We have an auntomorphims ® : B(K) — B(K)

d(X)=VXV*, XeB(H),
such that for each A €B(H) we have:
J*o" (JAJ*) I =D (A).
The C*-dynamical systems (B (K) ,5,@) with
PX) = (IXJ), XeB(K)
is a reversible dilation of (B (H),®,¢), since
B(K) =5 B(K)
il 1€

Hn

BH) 2% BH)

s a commutative diagram, where:
the application & : B(K) — B(H) is the unital cp-map

£(X)=JXJ, XeB(K)
while i : B(H) — B(K) is the *multiplicative map (non unital)
i(A)=JAJ", XeB(K).
We observe that ¢ is a d—invariant state, since
7 (X)) = ¢ (FBX)T) = (FVXVT) = o (VIXIV) = (I7XT) = 3 (X)
for all X €B(K).
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We now study the problem list that we have with the dilations of composition.
Let (2, @, ¢) be a C*-dynamical system and (o, ®o, 0o, o, i) a its Markov multiplica-
tive dilation.
If the C*-dynamical system (2,, ®,, ¢,) admits a minimal reversible dilation
(A, Py, 0x,Ex,ix), we have the follow diagram:

n
¢)00

A — A

ix 1 1 &x mozc*(U‘P’S(io(Q‘)))? o= o&
A, ﬁ} A, keN

o | 1 & Ay = C* LJ(I)If< (ix (Ql))) , Ox = Po 0 Ex
a2 A kez

Then the 5-tuple (A, P, Px,E,i) with € = E,0Ex and i = ix 04, with § = po &,
is a reversible dilation of the C*-dynamical system (2, ®, ), but in generally it is not
minimal.

We observe that if ¢ is faithful state on A then ¢, is faithful state on 2 if and only if &,
is a faithful cp-map.

4.2. The p—Adjoint of morphism. Let (A, ®,p) be C*-algebra dynamical sys-
tem, a cp map T : A — 2 is said to be p-adjoint of ®, if for each a € a we have

@ (®(a)b) = ¢ (a®™ (b))

We observe that (®+)" = &.
Moreover every reversible C*-dynamical system admits a @-adjoint where ®+ = &1,
If & admits a p-adjoint, for each a € 2 we have

U;ﬂ'w (a)Q, =7, (<I>+ (a)) Qy,
since for each a,b € 2, we get:
(Usiry (8) Q.70 (0) Q) = 0 (50 (@) = 0 (8% (b7) a) = (m, (& (1) Uy () ).

We introduce a necessary condition for the existence of a reversible dilation (cfr.[12]
proposition 2.1.8).

PROPOSITION 1.12. Let (A, @, ¢) be a C*-dynamical system with a reversible dilation
<§l,<§,$,5,i>. Then ® has a p—adjoint ®T and <E/Z\l, Cffl,(ﬁ,g,z) is a dilation of the
C*-dynamical system (2, ®T, p).

ProOOF. For a,b € A and n € N we have:

Then the p—adjoint of ® results to be & = £ o d1oi. O

REMARK 1.7. Let (A, ®, ) be a C*-dynamical system with a p-adjont ®. If ®T is
a multiplivative map we have
U, UL = 1.
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Furthermore, if © is a faithful state we have
(@ (a)) = a
for each a € .
We have now the follow proposition:

PROPOSITION 1.13. Let (A, @, ) be a C*-dynamical system with a @-adjont ®, we
have
1-
Ulm, (a) Uy, = my, (27 (a))
if and only if for each a,b,c € A :
o (b9 (a) ) = o (@ () a® () . (27)
2.
U,y (a) UL =y (P (a))
if and only if for each a,b,c € A :

¢ (0@ (a)c) = ¢ (7 (b) a®™ (c)) (28)
PrROOF. We have:
(o (b7) Qp, 7 (BT (@) 7 (€) Q) = 0 (b2 (a) ) = ( ( )a® (c)) =
= (Upmy (b°) Qp, mp (@) Uy (€) Q) :< (a*) Qp, Uiy ((a) Upy (€) Q<p>>

while for the second relation we obtain:
<7r<p (b*) Qp, Uymy, (a) U:‘;mp (c) Q<p> = (m, (®F (b*)) Qy, 1y, (a) Ty (@ (c)) Q) =
= (27 (b") a®™ () = ¢ (5" (a) ¢) = (7 (D) Qpp, T (P (@) 7y (€) ) - O

4.3. The (¢,n)-multiplicative maps. Let ¢ be a state on a C*-algebra 2 and
® : A — A Cp- map, if there is a n € N such that for each a1 az...a,, € 2 we get

¢<ﬁ¢m»>=w<@(ﬁ%))7 (20)
7=0 7=0

then the ® is said to be (p, n)-multiplicative.
The next proposition characterizes the (¢, 2)-multiplicative maps:

REMARK 1.8. Let ¢ be a faithful state on a C*-algebra 2, every (¢, 2)-multiplicative
map ® : A — A is a *~homomorphism.

Proor. Cfr. [6] lemma III-2 O
A simple consequence of the definition is given by the following proposition:

PROPOSITION 1.14. Let (A, o, ®) a C*dynamical system, then the dynamic ® is
(¢, 2)-multiplicative if and only if Uy, is isometric.

PROOF. For definition for each a,b € 2 we have:
(Uamy (b) Qp, Upmy (a) Q) = (4 (P (b)) Qp, T (P (@) ) =
= (2 (%) @ (a)) = ¢ (P (b"a)) = ¢ (P (b"a)) = ¢ (b*a) =
= (T (b) Ly, mp () Q) - O
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5. Spatial Morphism

Let (A, ®,¢) be a C*-dynamical system and (H,, 7, €2,) the GNS of the state .
We set with 9 = 7, (A)"the von Neumann subalgebra of B (H,,) and w the defined state
on M as

w(X) = (Qy, XQ,), X e M.

We say that the cp map ® is spatial” if there exists an unique normal, unital cp map
Py : M — M such that for each a € 2, we obtain:

Dy (7, (a)) = 7y (P (a)) -
We have a W*-dynamical system (90, @4, w) since w is ®y—invariant.
C*-dynamical system (2, ®, ¢) is said to be a separating if €, is cyclic for 7, ().

PROPOSITION 1.15. Let (A, ®,¢) be a separating C*-dynamical system. Then ® is
spatial morphism, and for each X € 9N we have:

Py (X)Qp, =U, X,
If ® is omomorphism the ®4 is an automorphism of von Neumann algebra.
PROOF. It’s a trivial consequence of the proposition 3.1 of [20]. U

An important characterization for the dilations of W*—dynamical systems is given
by the following proposition:

PROPOSITION 1.16. Let (2, ®,¢) be a separating C*—dynamical systems , the fol-
lowing conditions are equivalent:
o & commutes with the automorphism modular group of of (M, p):

of (24 (mp (a))) = @4 (0f (mp(a))), tER, ae€;

° U¢Ait = AitU<p for allt € R, where A is the modular operator of p;
e U, commutes with modular coniugation J, of ¢;
o There exists an unique cp-map O+ : M, — M, such that for each a € M we have

7o (97 (a)) Qp = Ui, (a) Q.
PROOF. It’s a consequence of the proposition 3.3 of [20]. O

We obtain a necessary condition for the existence of dilations of W*-dynamical sys-
tems (see [12] and [14]):

REMARK 1.9. The morphism ® commutes with the automorphism modular group of
of (M, @) if and only if the & admit p-adjoint.

k %k ok
Let (V,H) be isometry on the Hilbert space H, we set with (\Af,ﬁ) the minimal
unitary dilation of (V,H) and Z : H —H isometry operator such that
ZV =VZ.

"Cfr. [3] par.4.
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Let § the set of the operator net {T}, y of B (H) with the follow property:
> - sup {||Tyl| : j € N} < o0
»- VT =T,V
> - VV*Tj = TjVV* j >1
For every net t ={T;},_ belong to § we define
no Ny
S, (t) = ZTyZ* + S, VIZT,FZ*V’
j=1

where F =I — VV* is orthogonal projection on the space ker (V*).

We have another fundamental proposition:

PROPOSITION 1.17. For every element t ={T;}, \ belong to §, the net {Sy (t)}
converges respect to the strong operator topology and

neN
nor. . o ~ N
S(t)=So— lim Y |V-UVzZ(T; ;, — v*T,;V)Z*VU~V  V"ZT,Z*V"
Moreover for each t ={T;}, .y andr ={R;},  belongs to § we have
S(t)S(r)=S(t-r)
where t-r ={T;oR;}, .
Proor. Cfr [20] section 6. O

A simple consequence of the preceding proposition is the following theorem, it is a
first important result in the dilation theory of the dynamic systems:

PROPOSITION 1.18. Let (U, ®,¢) be a multiplicative C*-dynamical system, we set
with (ﬁw,ﬁ%Z(p) the minimal unitary dilation of the linear isometry U, defined in
15:

Uy, (a) Qp = mp (P (a)) Q.
LetZ,:H, — 7?(@ be the linear isometry satisfying Z,U, = IAJ'¢Z¢.
Then exist a representation 7 : A — B <7T(¢> such that for each a € A we have

7 (a) Zy = Zymy (a) (30)
and
(@ (a) = U7 () U, (31)
with
7(a) = Zomy () 25+ Y U4 Z,m, (@k (a)) FZ: 0k — (32)
k=1
— So— lim [ﬁ;”zsm (@" (a)) z;ﬁg} , (33)

where F is the projection 1 -U,Uy, € m, (® (Ql)), and the series converges respect to the
strong operator topology of B (f@;).
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Furthemore, the so-topology closure of the * subalgebra generate by the set:
B=JUz U, = U, 7@ UL (34)
kEZ keN

of B <7T(¢> 18 a von Neumann algebra 9 and Q= 7,9, is a cyclic vector for M satisfying
[ALPSA) =Q and for each a € A we have:

o (a) = <§,%(a)§>.
PROOF. See [20] proposition 6.1. O

Next proposition certifies that for the multiplicative C*-dynamical system the -
adjunction is a sufficient condition for the existence of a reversible dilation.

THEOREM 1.2. Let (A, ®,¢) be multiplicative C*-dynamical system with ¢ faith-
ful state. If ® admit a @-adjoint ®* then there ewists a minimal reversible dilation

(ﬁ,@,@,i,é’) where:
The C*-algebra A is the norm closed of the algebra B defined in 34;

The cp map i is the representation T defined in 308;
The automorphism ® : A — A is thus defined:

T (X)=U,XU%; X e (35)

The conditional expectation & : A — A is defined through the expression:

£ (ﬁ;k% (a) ﬁg;) —r, (q>+k (a)) . acU keN, (36)

while for the state we have
P(X) =¢(€(X)) X el
ProOOF. We get the following inclusions for each n > 0 :

mr () € Ulrr () Uy, € UL 2np () U2 C - UL () TR C - -

since we have
U7 () UL =7 (9 (A) 7 (A),
then
7 () C U7 () Us.
We observe that every element X belong to algebra B defined in 34 has this writing:
X = ﬁ;”wT (x) ﬁg

for some x € A and n € N.
We define the application £ : B — 7, () in the following way:

£ (ﬁ;k% (a) ﬁf;) =, (w (a)) . acL (37)

8Then i is a unital homomorphism.
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We now verify that the application £ is well defined.

Let
S—k~ N TTE _ T7—ha (1) TR
U, "7 (a) Uy = U, "7 (b) Uy,

we obtain for each ¢ € U the following equalities:

(70 (0) oo (0% (@) 0 ) = o (F0* () = o (2F (") 0) =
k
E

= (7 (09, 0747 (@) U505 ) = (7(0) 2, 037 (5 Uz =
=0 (2"()8) = ¢ (2 (D) = (me (oo (27 (1) )

and since the vector (), is separating, for (%) we have 7, (®** (a)) = 7, (®*" (b)) .
The linear application £ : B — 7, (2) is a positive continuous map, since for each a € A
we have

o (645 @02)| = o (a7 < s = [E555 0

and
£ <<U;k% (a) U';) <U;k% (a) U’;)) . (q>+k (a*a)) >0,
moreover for each a € A and X € B we have
8(%(@)X):7r¢(a)8(X). (38)

In fact, if X = U;k% (z) U’; and 7 (a) = U;kﬁ (y) U’; with =,y € A, we have for each
b € 2 that

(o (0) Qp, mp (a) € (X) Q) = <7Te0(b)Q%0’7T%"() (q)+k ) >

- Foo) = (0 905) - (0 00) 10

:<%(b)9¢,7r( ) Tk ()Um> < (6) 5, 0,47 (y )ﬁ

6%) =
= (‘P'“ () yw) = (b*iﬁ’“ (ya?)) = <77</J (b) g,y (‘1’”“ ) >
It follow that

7 (a) € (X)Q, = € (7 (a) X)Qp = 7, <q>+k (yw)) Oy,

again, the vector Q, is separating for 7 () then the relation 38 it’s hold.
Then for each a,b € A and X € B we have:

(T (a) X7 (b)) = my (a) € (X) 7y (),

moreover for each a; € A and X; € B, i =1,2,..m, we obtain:

Zmp(a;k)g( ) o (aj) ZE a;) X7 X;7 (a;)) >0,
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it follow that the map £ : B — m, () is a cp-map and it is extended for continuity to
all the C*-algebra 2.
We define the following state @ on the C*-algebra 2

¢ (X) = (&(x)).

In conclusion, we have the following commutative diagram:

i g
o | 1 &
a Lo

with

for each X € §(, since:
(‘3(@ (X)) _ @(U FHZ (1) Uk+1>

/\v

) (@) = (% (2)) = B(E (X)),
O

We analyze the ergodic properties of the dilation determined by the preceding the-
orem.

THEOREM 1.3. If the state ¢ of (U, @, p) is ergodic [weakly mizing] then the state @
of the dilation <§l, ‘5,@,1’,5) is ergodic [weakly mizing].

PROOF. Let X,V € 2 with X = ﬁ;”% (z) [AJZ and Y = ﬁ;m% (y) IAJZL We deter-
mine the following limit:

lim ——

.For each k > m we have:

Then



5. SPATIAL MORPHISM 22

N
N

— lim — [90 (93 <<I>k (y)>> —p ()¢ (y)] = 0.

The proof of the weakly mixing is performed in the same way. O

[0 (z (2% (1)) = 0 (@) 0 (v)]

We conclude this section with the following remark

REMARK 1.10. Let (A, ®,¢) be C*dynamical system with faithful state ¢. If the
dynamic ® admit a multiplicative p-adjoint ® the operator Ug, is isometric. Then
exchanging the roles, in the precedent theorem, of ® with ® and of U, with Uy, u
is easy to verify that also in this case the dynamic system (A, ®,p) admits a revesible
dilation with ”good” ergodic properties.



CHAPTER 2

Towards the reversible dilations

We will use the generalization of the Stinespring theorem of the precedent chapter
to establish the existence of a Markov multiplicative dilation for a generic C*-dynamical
system. The proof founds it on the property of particular operator system associated
to our system. In this section we also recover a results on the existence of dilation for
W*-dynamical systems determined by Muhly and Solel in [16].

1. Multiplicative dilation

Let (A, ®,¢) be a C*-dynamical system with 20 a C*-subalgebra of B(H) and
(Toos Hoo, Vo) its Stinespring representation of theorem 4.
Let U be the Nagy Foias dilation of the the linear contraction V7 :

_| V&

U-| o QV' (39)

it is the minimal isometric dilation of V7.
The defectes operator Dy = /I — V, V% of V} coincides with the orthogonal pro-
jection F =1 — V V7% on ker V%, therefore

K=Hao? (ker VX))

and for each h € H we have
Cih = (Fh,0,...0...).
Moreover for each (£, &1, &......) € 12 (ker V) we get:

(Cl(ji< + WW*) (ég,fl,fg...o...) = (fo,(), 0) + (0,51,52...0...) = (fo,fl,fg...()...)
then C1C; =1 - WW"™ it follows that the operator U is an unitary.

REMARK 2.1. The operator U* is the minimal unitary dilation of the isometry V .

We observe that for each n € N the operator U” is of the type

n_| Vi 0
U= & wn | (40)
while for the operator C,, : Hoo — 12 (ker V) we obtain
n—1
C,=)» WrUc, vy (41)
=0

23
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with Cy = 0.
In fact we give
UnU — V(()g+1)* 0 V n+l 0 Un+1
CnV* 4 Wncl Wn+1 n+1 Wn+1
and for induction follow that 4
Cpit = C,VE + WGy = (z;?;g w1~ clvgo) Vi + WG, =
— iw(”—l)_jclvg.
j=0
For each ¥ € ‘H and n > 0 we obtain:
Y o) (n—1) step

C,U = FVO V0w FVO2', o FU 0,.0. ). (42)

while for each @¢; € 12 (ker V%) we have:
j=0
o @@ ZV(" JFE . (43)

Jj=
In fact we have
n—1

oo — . ., OO n—1 .
Ci@fi = ZVJCTW("A)*J @fz’ = > V&G (&n-1-jsn—jr Enti—js ) =

Jj= j=0
=T VAFG = zv Al ST
Byj tﬁe unitary property of the operator U, we have the following relations:
C:.C, = [V’g; : Vg;} — VYT Yy (44)
while
CnCt = [W”*;Wm} — WWW™ - WIW (45)
Furthermore
cov={ Gz cawee{ P

We observe that for n € N we have: C,V" = W" C,, = 0.
For unitary operator U we have the follow property:

PROPOSITION 2.1. The unitary operator U satisfies the relation
ker (I —U) =ker (I —U*) =0.

Furthermore for each ¥ € IC, we have

]. n *
kg, k _
7}520”+ § U U = nlgglon 1k;§:0U U =
and .
E CrW) =0
n—>oon—|— - <£a k > 5

for each € € I (ker Vi) T € Heo.
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PROOF. Let U =T @& € Hoo ® 12 (ker VE) with UT @£ =T D&,
For definition

Vi, 0 T Vi T _

Ci W[ l¢ | |CiT+Wg |

and ker (I — V% ) = {0} it follow that T = 0 and W¢ = ¢ then £ = 0 since

(07€0>£17 fn) = (fo,gl,gn)

‘|
§

n
The relation lim n+-1 S U*¥ = 0 follow by the mean ergodic theory of von Neumann.
e k=0

We observe that D—klim <\Il, Uk\IJ> =0
— 00
For the second relation for each ¥ =T ¢ £ € K we get:

<\I/,Uk\11> _ <T,V§T> 4 (€, CT) + <§,W’fg> ,

k—1
where klim I3 Wk§>|2 = klim &> = 0 and klim (Y, VET) = 0 by the proposition
—00 —00,5—0 —00
1.6.
Then D- lim (¥, U*¥) = D- lim (£, C,Y) = 0 it follow that
k—o0 k—o0

n

lim S (€, CLY) = 0.

n—oon + 1 =0

We have a simple proposition:

PROPOSITION 2.2. Let (U, ®, ) be a C*-dynamical system with A C B (H). There
exist an injective representation (IC,7) of the C*algebra A and a isometry J : H — K
such that for each a € A and natural number n > 0, we have:

I (U (a) U™) T = 7 (9" (a)).

PRrROOF. From the corollary 1.1 there exists an isometric covariant representation
(m,H, V) of ® and an unital homomorphism 6 : A — B (ker (V*)).
For each a € A we define the representation

w(a) O

T@=1"9" o)

: (46)

where for each §; € ker V* with j € N:
o0 o0
O (a) B¢ = DI (a) &),
§=0 §=0

The representation 7 is injective map and for each natural number n > 0 we have:

e nx _ | m(®"(a)); V" (a)Cy,
U'm (@)U = ¢ 1 @)V Cor (a) C + WO (a) Wh* (47)

If J is defined by Jh = h & 0 for every h € H, we have the thesis. O

Lot appendix.



1. MULTIPLICATIVE DILATION 26

For each X € B (K) we define

E11(X) = J*XJ. (48)
The map &1 : B(K) — B(H) is a normal cp-map and for each X € B(K), and a,b € 2
we obtain

E11(T(a) X7 (b)) =7 (a)&11 (X) 7 (D).

Since if X = [Xj 5], ;_; , we have:

m(a) O X1 Xip || w(b) O | m(a) X1am(b) =
0 Ofa) || Xo1 Xoo 0 O(b) * *
% 3k ok

THEOREM 2.1. Let (A, D, p) be a C*-dynamical system with A C B (H).
There is a C*-dynamical system <§l, D, @), where A is the C*-subalgebra of B (K) thus
definied:
A=C* ( U U7 () U"*> ; (49)
n>0
while the injective *-homorphism ®:A—Ais defined by:
d(X)=UXU*, Xe (50)
and the state @ on A is R
P(X)=p4(€X), Xe,
where @y is a state on B (H) that extends ¢;
such that for eachn € N

SR
T €11
A 2L BMH)

18 a commutative diagram:
&1 (8" (7 (a) = @"(a), ae
where the cp map 7™ : A — A is the representation defined in 46 while £ : A — B (H) is
the unital cp-map defined by the relation 48;
PROOF. We have for each a € 2 :
1 (8 G () =38 (7 ()3 ="
Let @, : B(H) — B (H) the unital cp-map defined by
D, (A) = V¥V AV, A€ B(H)
and ¢, Hahn-Banach extension of ¢ on B (H).
We set
1 n
Pn Z $Po © (I)Ig

n+1 0w

V"*wia)V” I >J:<I>”(a).
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the set {¢n},cny is a net of the unital ball B (H)] of the fuctional on B (H). It is well
known that the set B (H)] is w*—compact. Then our net admits at least a point limit
¢y that belong to B (H)7 :

@y = w* — lim @y, (51)

Moreover ¢y is ®,—invariant and for each a € 2 we have that ¢4 (a) = ¢ (a).
Since for each N € N we obtain:

ox(@ = 3 g (Bh@) o 3 o (35 @) = ¢ (a).

k>0w k>0w

The state @ is a d-invariant since for definition, for each X € §l, we get

~ ~

7 (®(0) =1 (68.(X)) = 95 (VX11V) = 4 (X10) = B (X),

in fact
Vir(a) V. x

* *

(52)

v

O

The preceding theorem leads to a result that it approaches of very to our definition
of Markov dilation for a C*-dynamic system. To get a dilation in our sense, we have to
determine a good algebra B of B (K) with the following property:

T(RA) CB with £1(B)C A and UBU*CB.

In this way we get that the cp-map &7 7 : A—-B (H) is a conditional expectation between
A and 7 (A).
This will be the purpose of the next paragraph.

1.1. The construction of multiplicative dilations. Let ® : 2l — 2 be a cp map
with 2 C B (H), the triple (oo, Hoos Vo) is the isometric covariant representation 4 of
® and U be Nagy isometry dilation of V* on the Hilbert space K = H @ [2 (ker V*).
Let T': 12 (ker V*) — H the linear operator so defined:

D=3 VEDr (a) YW, ar e, k=1,2.n. (53)
k>0

The operator T is say be a (U,®)-associated operator.
With a simple calculus for each &; € ker V*, we obtain that

L@ =3 VD o (o) By (54)
= k=0

while for each h € H :
I'*h = (Froo (af) Vi, Fries (a}) V2, ... Frio (a) V'R0, (55)

n
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REMARK 2.2. If the elements ay belong to the multiplicative domains of ®, we get
that

r=> v&ir (ax) CTW* =0.
k>0
In fact for each k = 1,2..n we obtain:
Too (k) CTEB@& = Too (ar) Flo = Fries (a) o

Therefore in the multiplicative case the only (U,®)-associated operator are the void op-
erators.

We have a first fundamental proposition:

PROPOSITION 2.3. For every (U,®)-associated operators 'y and Ty, we have the
following result:

F1F§ € Moo (Ql)

n; N .
in particulary if Ty = 3. VF g (@) CTW(k_l) 1=1,.2 we have:
E>1

n

T1T5 = Moo | @1 D [® (a1 4a5,) — @ (ars) @ (a3 )]
k>1

Proor. We have:

DTy =Y VED 7 (a10) CTWF - Y WIC me (a3 ) VT =
E>0 >0

=Y VD (a1k) CYWH WIC 7 (a3 ) VT
k,j>0

and for the relations 45 we obtain:
CTW(k_l)*Wj_lcl = CICl(Si,j where 51’,]’ = {

It follow that:

n
I3 =Y V7 (a14) CiCrmes <a§7k> Vk =
k>1

= 3 Ve (1) (1= VV) 7o (a5, ) VF =
k>1 ’

e (5[ (s - 947 (w010 (1)) ). 0

We have a new operator systems S, of B (l2 (ker V*)) thus defined:
S, ={TeB (12 (ker V*)) : T1TT3 € moo (A) for every (U,®)-ass. op. I'1,I'2}.
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By the preceding proposition, we have that I € S,,.

o0
If I : 12 (ker V*) — ker V* is the linear operator defined for each @¢; € I? (ker V*) by
i=0

and we set for every T € B (I* (ker V*))

Too Tox - - Ton
Tvo Tha - - Tip

T = . . .. ,
Tm,O Tm,l e Tm,n

where T; ; = ILTIL} for all ¢,j € N:
0.] oo 0
THs =D > Ti8
i=0 i=05=0
We study some simple property of the operator systems S,.

PROPOSITION 2.4. If T € S, for each 'y and T'y (U,®)-associated operators we have:

ny n2 .
[T = Y 3 V¥ (a1,:) FT; jFre (a5 ;) VI,
i=0j=0
whit
n;
I = ZVk*Woo (a;r) CWED for i=1,2,
k>1

Then the linear operator T of B (l2 (ker V*)) belong to S, if and only if for each a,b € A
and 1,7 € N, we get

VD 7 (a) BT jFre () VI € o ().

PROOF. From the relations 54 and 55, for each h € H we have:

. n2 .
[1Tl3h = D T@Fre (a3,;) VIR =T1@ 3. T; jFre (a3,;) VUTDA =

ieN iENj=0
ny N2 s ‘
= Z ZV(1+1) Too (al,i) FE,]FT(OO (aii) V(]+1)h
1=05=0

O

We now analyze the existing relations between operator system S, and unitary op-
erator U of B (H & I? (ker V¥)).

LEMMA 2.1. For every a € A and (U,®)-associated operator ', we have

Ci7mo (a) CTES,, CiI'wW*es,.
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n; . )
PROOF. Let T; = 3. VD 1 (a;5) CtWF i = 1,2, the (U,®)-associated oper-
k>0

ators, since for each n > 0 we have W C; = 0 we obtain:
F101 = \/_*’/Too (a171) CTCl
then:
I'Ci7o (a) CiT'5 = V1o (a1,1) CiCimes (@) CTC17Too (a§71) V =
= V*ﬂ'oo (a171) FF17TOO (ail) V =

= Mo ((I) (a171aa271) - & (al’la) (0] (a271) - & (al’l) P (aa271) - o (al’l) d (a) d (ag’l))
For the second relation we have:
['1CiITW* TS = Vg, (a11) C;CITWHTS

n ) .
and if T'= Y V¥Flr (a;) CtW* we get:
Jj=20

TW'Ty =Y VED 7 (ar) CiC17e0 (azp51) VR
k>0

therefore

n
[ (CITWH I3 = ZV*WOO (a1,1) C;C1VFD 1 (ay) CiCreo (ag 1) VD,
k>0
and with a simple algebric calculus we get:
Vi (a1,1) Cfclv(k+1)*ﬂm (ar) C1C17moo (a2 k1) vk —
= V*Too (a1,1) (T = VV*) VED 71 (a) (T = VV*) g (ag 1) VEH?) =
= ® (a1,1 - ¥V (aagpq1)) — @ (ary - D7 (P (ax) - @ (a2 p41))) —

s (a171) - pk+2) (akag,kJrl) + & (CL171) (‘I’k (ak) - O (a27k+1)) . O
The set
Too (@) T .
S = r+ 7 |ie€ A, Tisa (U,P)-ass. op. and T € S, (56)

is a operator systems of B (K) with the following properties:

PROPOSITION 2.5. The operator system S is a U-invariant set:

USuU* C S.
ProoF. If S = ”O;Ea) ; is an element of S, we obtain
USU* — ' V*7so (@) V; V*Too (@) CF + V ITW*

Ci7oe () V + WI*V;  Cy7io (a) Cf + WI*CE + CiIW* + WTW* |
where V*I'W* and V*71, (a) C7 are (U,®)-associated operators.
For the lemma 2.1 we have Ci7 (a) C7, WI*Cj € S,
Moreover WT'W* € S, since we have
n; n;—1
LW =Y VE 1 (0;) CTWF W = V* 3~ VED 7 (a;,) CTWH = V*T;;
k>0 k>0
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where C*W = 0 and T is the (U,®)-associated operator
n;—1
F= 3 VD g (a) CTWH
k>0
It follow that
I (WITW*) T = V* (FiTF;"> Vv,

and for hyphothesis f‘ZTff € Too (A). O

The next proposition is fundamental to establish the existence of a conditional ex-
pectation between the C*-subalgebra C* (S) of B (K) generated by the operator system
S and C*-algebra 7 ().

Let X = X1 X

Xa1 Xz € B(K) we have the *-linear map &; ; thus defined:

We have a first result:

LEMMA 2.2. For each S1,53,...5, € S we have:

5171 (ﬁ Sl) e
=1

PrOOF. We have these simple properties:

n n—1 n—1
11 (H Sl-) = &1 (H sz») 11 (Sn) + €12 (H S¢> €91 (Sn) ;
=1 =1

i=1
n n—1 n—1

&1, (H Sz‘> =&11 (H 51’) E12(Sn) + €12 (H Si) E22(Sn) -
i=1 i=1 i=1

n
and for induction on the length n of the elements [[ S; we have the thesis.
i=1
In fact if S,, is the set of operator
Soo = {70 (@) TT : a € A, T is a (U,®P) -associated operator and T' € S, },

we have:
For n =1 we obtain that £ (51) € A and &12 (S1) € Soo;

For n — 1 we assumed that &1 1 (nlz[l SZ) €A and &2 <n1:[1 S’i> € Soo;
from the relations written above, Z\;é get that the asserti(l;llis true for each n e N. [
PROPOSITION 2.6. There exists a cp map € : C* (S) — A such that:
EX)=&,1(X), XeC'(S) (58)
and for each a; € A, T; € Sy, i = 1,2 and X € C*(S), we have:
€ ((meo (a1) & T1) X (Too (a2) @ T2)) = Moo (a1) € (X) oo (a2)
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PROOF. Let &1 : B(K) — B(H) be the unital cp map 57, for each X € C*(S)
we obtain &1 1 (X) € 2, since the elements X of C* (S) are sum of elements of the type

[[S:; with S; € S for all i = 1,2...n, from the preceding lemma the thesis follows.

i=1
With a simple calculation, for each X € C*(S) and aq,ay € A, T1, T € S,, we have
Too (al) 0 X171 X172 Too (ag) O _ Too (al) X1717TOO (ag) *
0 T1 X271 X272 0 T2 * *
and

8 Too (al) X1,17Too (ag) *
b3
The next proposition establishes the existence of multiplicative dilations for C*-
dynamical systems.

> = Too (a1) € (X) Teo (a2) .
O

THEOREM 2.2. Let (A, ®,¢) be a C*dynamical systems with A C B (H) and let
(Toos Hooy Vo) be the isometric covariant representation defined in 4. If there exists a
*-multiplicative linear map

©: A — B (1% (ker V¥)) (59)
such that for each a € A we get
Too (@) ® O (a) € C* (S).
Then (A, @, p) admit a Markov multiplicative dilation <§l, EI;, @,S,%) where:
(1) The cp map 7 : A — C*(S) is thus defined:
7 (a) = Too () ® O (a), a € A, (60)
(2) A is a subalgebra with unit of C* (S):

A=C* ( U U7 () U™ 1) ; (61)
n>0
(3) The injective *-homorphism ®: A — A is defined by:
d(X)=UXU*, Xe (62)

(4) The conditional expectation € : C* (S) — AU is defined by the relation 58 and
the state o on A is thus defined
5(X) = pEX), Xed
PROOF. Since 7 (/) C S and USU* C S it follows that
Ur()U* Cc UC*(S)U* Cc C* (S).
Then 2 C C* (S) and the injective *-homorphism 62 is well defined.
For definition, the map 7 : 2l — 2 is injective *-multiplicative linear map:

Too (@) 0

T@W=1"" o
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and for each n € N
an i~ | VieTeo (@) Vi Vi 7o (a) Cr,
ST @)= G (@) VI ChACE £ WO (a) W |
For each a,b € 2 and X € 20 we obtain
€ (@ (a) X7 (b)) = meo (a) € (X) Moo (b)

moreover
.
Voo (@) VI %

5(6"@(,4))):5(' : ) >:<I>"(a).

For each X ¢ 25[ we have 2:

5(3(X)) = ¢ (E(UXU)) = 0 (Vi X11 Veo) = (& (X)) = 9 (EX) = B (X).

The theorem is easily adaptable to W*-dynamical systems®:

THEOREM 2.3. Let (I, @, ) be a W *-dynamical systems with M C B (H) and let
(Toos Hooy Vo) be the normal isometric covariant representation defined in 4. If there
exists a normal *multiplicative linear map

©: A — B (I (ker V*)) (63)
such that for each a € 2 we get
Too (@) ® O (a) € S”.
Then (M, @, @) admit a Markov multiplicative dilation <§J\T, EI;, @,S,%) where:
(1) The ¢cp map 7 : M — S” is thus defined:
7 (a) =T (@) ® O (a), a € M; (64)
(2) M is a von Neumann algebra:
"
M = ( U U"% () U”*) : (65)
n>0
(3) The injective *-homorphism DM — M is defined by:
d(X)=UXU*, Xed (66)

2In fact if X = | X, li; € 2, the explicit calculation is the following:

d" (X) = n *
(X) Co X1V + WXo VD (CrnX11+W"X3,1)Cr+

+ (CnX1,2 + W'X3 ) W

VX1, VL, V2 X11CL + VL X; W ‘

3Cfr. Theorem 2.24 of [16].
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(4) The normal conditional expectation € : 8" — M is defined by the relation 58
while normal state o on M is defined by
P(X)=¢(X), Xem
PROOF. It is a simple variation of the proof of the preceding theorem. O
1.2. On the existence of the multiplicative dilations. Let (2, ®,¢) be a C*-
dynamical systems with 2 C B (H).

We study some property of the operator systems S, of B (l2 (ker V*)) associated to our
dynamical systems.

PROPOSITION 2.7. Let I'y and Ty are (U,®)-associated operators, we have
Ffwoo (a)T2 €8,

for each a € .
Moreover the linear space 2y generated by the elements

P Froo () VE Dz o () VED 7 (2A)F
keN

is a *-subalgebra (without unit) of B (ker V*) with S, C 2.
If Ay is the C*-subalgebra of B (Heo) generated by the elements

{F7oo (@) Voo (b) Voo (¢) F :a, b, ce} U {F'}

we obtain

PAv Cc C* (S,)
keN

where C* (S,) is the C*-algebra (with unit I) generated by the set S, :
C*(S,) C B (I (ker V*)) .
PROOF. The operator I'{ 7 (2) T2 belong to S, since
L3 (D 7o (A) T2) T € S,

For every (U,®)-associated operators I's and T'y.
Then for each a1, bmn, Cmpn € A with m,n € N we get

T = Fieo (am.n) VO 70 (b)) VO 70 () F €8 (ker V)

and let T be operator of B (I (ker V*)) thus defined T' = |Tp, |
T € S,, in particular we get:

B Froe () VED 7 () VED 7 (A F CS,.
keN

For each a;, b;,c; € A with ¢ = 1,2 we obtain:
Froo (a1) VE D7 (b)) VEFD 1 () F - Frigg (a2) VE D (bo) VED 1 (63) F =

mneNs We have that

= Froo (a1) VED (bl@’f [@ (c1az) — ® (c1) © (as)] bg) VED 7 (cy) F €21,

The last affirmation is of easy proof now. O
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REMARK 2.3. We observe that if exists (U,®)-associated operators I'y and I'y such
that
;=1
the operator system S, is a *-subalgebra with unit of B (I* (ker V*)) .

We study the relation between the C*-algebra generated of the elements Fro (A) F
of B (ker V*) and the C*-algebra generated of the operator system S, of B (12 (ker V*)) .
For each n-pla A = (a1,a2, ay) of operator Ay of 2, we define the follow operator of
B (1% (ker V*)) :

T, = @ Fro (ar) F. (67)
keN

PROPOSITION 2.8. We have that Ta € S, for each n-pla A = (a1,a2, an) of
elements of A. It follow that:

PC* (Froo )F) C C* (Sy) -
€N
PROOF. For each b;,b5 € 2 and k € N, we have
VD 1 0 (b1) Friss (ag) s (b2) VEHD € 2,
since
VED 7 (1) Frre () Frise (o) VD =
= VED 7 (1) (T = VVH) 1 (ag) (I = VV*) 10 (bp) VEHD =
-V (k+1)* Too (bl) ( ) Too (b2) V(k+1) V(k+1) Too (bl) Too (ak) VV*7re (62) V(k—l—l)_
—VERD 7 (b)) VV*Ts0 (ar) oo (b2) VETD 4
+VED 1 (01) VV* e (ag) VV ¥ (by) VETD =
= o (q)k+1 (blakbg)) — Moo (q)k (‘1) (blak) d (bz))) — TToo ((I)k (‘1) (bl) P (akbz))) +
+Too (‘IJk (P (b1) P (ar) P (bg))) € Too (A). O
We have another claim:
Too () ® C* (S,) € C* (S).
Indeed, if a € A and S € S, we get
Too (@) 0

| T (a) O I 0 I 0
0 I1S: | — 0 S1 0 So 0 Sp |’
k=1
and for each k = 2,3...n
Teo (@) 0 I 0
0 S "0 S | €
then (@
Teo (@) O I 0 I 0 "
0 51'052 """ ‘osn €CT(S).

From theorem 2.2, the existence of a dilations for the dynamical system is conditioned to
the existence of *-linear multiplicatve maps © : A — C* (S,) . We denote with H (2, S,)
this set of applications.

Then for every 0 € H (2, S,) we get a multiplicative dilation for (2, ®, ¢).
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For zero 6 = 0 we get the basic dilation of the our to dynamical system, in this case the

representation 7 : A — 2 is given from:

Teo (@) 0
0 0

An example of *-multiplicative map that belong to H (2, S,) is thus defined:
0 (a) (ho, hlhn) == (aho, (), O)

for each a € 2 and (hg, hi....hy...) € Heo.
We observe that for each a,b,c € 2 we have © (b) € S, since by the proposition 2.3 we
have

, a € .

V™ oo (a) FO (b)) Freo (¢) V™ = 0,
for all m > 0.
Furthermore, if © is unital map we obtain an unital multiplicative dilation.
For abelian dymanical systems this last case is always possible:

REMARK 2.4. If the characters space Q2 () of the algebra 2 is not void (as in the
abelian case), we can take as representation 0 : A —B (ker V*) the map
0(a) = (a)l, a€,
where ¢ is an any element of Q2 (A).

A trivial consequence of the preceding propositions is the follow remark:

REMARK 2.5. If there is a *~homomorphism 6 : A — C* (Fre (A)F) the C*-
dynamical-system (A, @, @) admits a unital multiplicative dilation.

We give a method to determine the elements of H (2, S,) .
PROPOSITION 2.9. Let z, € A and L : moo (A) — oo (A) be a cp-map such that for
each a,b € 2 we have:
L (a,b) = L (a) meo (P (2520) — @ (25) @ (2,)) L (b) .
Then the application

O(a) = Do(a),

neN

where

0 (a) = Freo (x0) VL (a) Vi1 (2) F,
is an elemen that belong to H (A, S,) .

PROOF. The map © belong to H (2, S,) since
Freo (o) VL (a) Voo (23) F €21y

where 2y is a C*-algebra defined in the preceding proposition.
The map 6 is *-linear and for every a,b € 2 we have:

0(a)0(b) =Freo (25) VL (a) V7o (2,) Feo (20) VL () Vi (2) F =
=F7 (z,) VL (ab) V7o (2,) F =6 (ab) ,

V1o (22) Frioo (20) V =re0 (@ (22,) — ® (27) ® () -

o
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A method to determine the applications described in the precedent proposition is
the following:
Let z,, 1y, are elements belongs to 2 such that

Yo [P (z570) — @ (25) @ (20)] Yo = I,
the *-linear map L, : A — A
Ly, (a) = youy;, aec?
satisfies the relation:
Ly, (a) [® (z570) — ® (25) © (25)] Ly, (b) = yoays [P (x520) — P (25) P (w0)] yobys =
= Yoabyy = Ly, (ab).
for each a,b € .

EXAMPLE 3. We consider the matriz algebra My (C) and unital cp map ® : My (C) —
My (C) thus definied:

2
1 .
P (A) = 3 > Ej;AE;,
ij=1

where E; ; are the matrixs:

Ei1=

)

10 01 00 00

Then for each A € My (C) we have:

Let

we get

since

r24+2+2r 0
0 r24+2+2r |°

rt1 0

®(Xs) = 0 r+1

0 (Xh) =

It follow that the map
0(A) =Froo (X) Ve (A) Vg (X*)F

is a *-linear multiplicative map (non unital) such that @ 6 : My (C) — C*(S,) .
neN
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1.3. Faithful dilation. Let (2, ®, ») be C*-dynamical system with dilation
<§l, EI;, o, &, %) of the theorem 2.2. We define a new C*-algebra with unit

b

DEFINITION 2.1. The dilation (ﬁ@,@,&%) is faithful if ﬁgg = {0}.

0 O

91272={X6912X:' 0 X2,2

that results to be U-invariant: N R
UQ{Q’QU* C 912,2.

We observe that if @ is faithful state* the dilation <§l, EI;, o, &, %) is faithful.
In fact let X € ‘512,2, for definition we get
P(X*X)) = (11 (X7X)) =0.

It follow that X = 0. R
If we examine the basic dilation® the C*-algebra 23 9 is not zero since

I—7(1) € Agy.
Then the basic dilation is never faithful.
REMARK 2.6. If o is faithful state with the property
¢ (a*a) = ¢ (aa®), a€,
and the dilation <§1, D, @,5,%) is faithful the @ state is faithful.

2. Ergodic property of the dilation

We study now the ergodic properties of the multiplicative dilation (5[, EI\D, 0,1, & ) of

theorem 2.2 of the C*-dynamical system (2, @, ¢).

Let (H,,mp,8,) the GNS of ¢ and U, the linear contraction 15 associated with C*-
dynamical systems.

We defined the set of the ®—invariant element of 2A:

A* = {a cA: ®(a) =a},
since for each a € 2 we have ® (a*) ® (a) < ® (a*a) < a*a, the set A® is included in the
multiplicative domains D (®) of ® and it is a C*-subalgebra with unit of .
We have the following implication:
Xed® — &,(X)eq?,
and if ¢ is a faithful state we obtain
A* = CI += dimker (I-U,) = 1.

4Then  is faithful state since
@@ (a”)7 () = ¢ (a’a)
for all a € 2.
5That is when 6 = 0.
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We have a fundamental lemma for the study of the ergodic property of the dilation.
LEMMA 2.3. We have the following implication:
AT =CI = A* =CL
PrOOF. We set &1 (X) = AI with A complex number:

AL Xy
Xo1 Xopo

For hypothesis, for each n € N we have Pn (X) = X then®:

X190 =VE X W,
Xo1 = W"Xy,VL;
Xoo2=(ACp + W"X51)CF, + (CrnXi2+ W'Xs ) W"*;

Let & = (£0,&1,....6n...) € 12 (ker V) we have

o0
X126 = ZOLjfj
j:

X

with L; : ker Vi — Hso linear operators, from the first relation we have:
o0 o0 n*
2 Lits = 2 Voo Lijin:
j= j=

Then if £ = (0,0, ....£,0...) with p < n, we have L,, = 0, it follow that X; o = 0.
In the same way it verify that the operator X1 = 0.
the third relation becomes now:

X9 = AC,Cl + W' Xp , W™ = ) (I - W“W”*) WX W

Let X292 = |T; |, .oy where T;; : ker V3, — ker Vi are linear operators, we have:

ije
o0 o0 o0 o0
Aoy - A1, D Toi&wns 2 T1j&4n, - | = | 20 Toi&s > T8, -
=0 =0 =0 =0

and if £ = (0,0, ....6,—-1,0...) we get:
(O, ., AF&,1,0,...0, ) = (TO,n—lgn—lv '--Tn—l,n—lgn—lv ) .

|0 i#En-1
T ={ e 2001

Then

follow that X292 = AL
We have verified that if £ 1 (X) € CI we obtain X = AL

PROPOSITION 2.10. If ¢ is a ergodic faithful state we have
A* = CI.
ProoOF. It’s trivial.

6We have . .
Vi, X11C;, = AV, C;, = 0.
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2.1. The Z;, Operators and ergodic properties. For the study of the ergodic
property of the dilations of dynamical systems we have to determine the value of the
followings limits:

Jim e [B (X8 1) - p 08
and

Jim e (6 (X8 1) - e (1)

for all X,Y € A
We recall that for definition that

9 (X&»’c (Y)) - (5171 (X(T)’“ (Y))) .
and
11 (XEISk (Y)) = &1 (X) &1 (Eﬁk (Y)) + 19 (X) Eaa (Eﬁk (Y)) .
For the study of the ergodic property of the our dilations, we can consider only to the

~ P
elements of the 2 of the type [[ ®™ (7 (a;)) with a; € 2.

j=1
~ ~ Pi ~
For definition of 2, let X € A for each € > 0 there is P. = )" [[ @™ (7 (a;;)) € A such
i j=1
that
| X — P <e.
We have

e z o (x8 () -3 (R (Y))H < o é (X - rI® ()| <cllY ]

for all Y e .
Moreover for the von Neumann algebras We have from the bicommutant theorem, that

let X € O, for each & > 0 there is P. = > H i (7 (a; ;) € 2A such that
i g=1

(X -P) (X -F)) <e

Then
T2 [ (¥ m) -5 (R )] < A 2 [p (1 - PIF ) <
<y B -RIPle (3 m)[ <2
It follow that
Nlinoo—z (X(I’k( ))_NIT;NHg: (Pﬁ)k(y))

* % %

We have a fundamental lemma for the ergodic property for our dilation.
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LEMMA 2.4. If the multiplicative map © of the theorem 2.2 is of the shape

o=@,

neN
for each Y € A and a € A there exists n, € N such that for each k > n, we obtain:
E12 (X)WFO (a) Yo VF = 0.
PROOF. If X; = " (7 (2)) with = € A, we have
&1z (8" (7 (2))) WO (a) Y21 VF = V' 1og () C WO (a) Y,V

and for k > n we obtain that the operator W* C,, = 0.
For induction on the length p of the string of X :

2PN
Xp = H Pk (/7% ($k)), T1,22,..-Tp (S Q[,
k=1

we assume true the relation for p — 1 step, then there is a n, such that for each k > n,
we have:

p—1__
i (T8 (7 (01))) WH0 (@) Va1V =0,
k=1

For p step we have
o (18 G o) =1 (T8 G (o)) €12 (3 (7 2y +

+61a (T8 G (00) €22 (3 7 (5).
k=1

it follow that

E12 (X,) WO (a) Va1 VE = &1 (Xp_1) E10 (cfw (7 (:cp))> W*O (a) Yz VF+

812 (Xp1) E22 (B (7 (2))) WHO () Va1 V*
where for k > my
E1a (cﬁ”p (7 (g;p))) W*O (a) Yo V¥ = 0.

then

€12 (X,) WEO () Yo VE = €13 (Xp-1) E2 (87 (7 () ) WHO () a1 V*

and
€22 (8" (7 (2))) = C, oo () €, + WO () W'

For k£ > n;, we have C;‘LPW’LC = 0 and we obtain that
a2 (cf”p (7 (:rp))> WO (a) Yo 1 VFU = W0 (z,) W0 (a) Yo, VF.
Since O (a) commute W* it follow:

£ (@np (7 (x,,))) W*O () Yo 1 VFU = WFO (2) © (a) Ya 1 V¥
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then
€12 (Xp) WO (a) Yo  VF = €12 (X 1) WHO (20) Yo VF

and for inductive hypothesis there existst a natural number n, such that for each k > n,
we get:

p—1__
1 (T8 (7 (01))) W4 (50) Yo V¥ =
k=1

~ Pi ~
Let X € 2 for each ¢ > 0 there is P. = ) [[ ®" (7 (a;;)) € A such that
i j=1

| X — P <e.
For the continuity of the application &1 2 we have
H51,2 (X)W*O (a )Y21VkH <e+ H512 ) WFO (a) Y2’1VkH
with
E12 (P.)W*O (a) Yo  VF =0
for k > mo. O

REMARK 2.7. In the case that the multiplicative linear map © : 24 — B (ker V*) is

not unital, we can easily verify, through the preceding lemma, that for each X € Ql, there
exists a natural number n, such that for each k > n, we have:

E12 (X)WHY, 1 VE = 0.

k% 3k

To simplify our calculations we introduce new symbol.

If X = H o (7 (a;)) with a1, as..ap, € A, we set
j=1

Zip (ﬁ " (7 <aj>>) = &1 (ﬁ " (7 <aj>>> £21 (5 (V) € oo ()
J=1 j=1
and
PN P ~
Ricp (H;P"f G <a]~>>) = £29 ( [18" (7 <aj>>> £21 (34 (1))
Then

E11 (ﬁlfﬁnf (7 (ay)) B* (Y)) — & (ﬁ & (7 (aj))) oo (B (¥11)) +

It follow that
N

> ¢ (2 (X)) = Jim g > [ (x84 (1)) - ¢ (3128 (1)

N—>00N+1 N—>ooN—|—1k 0
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REMARK 2.8. The ¢ is ergodic state if and only if
Z ¢ (Zkp (X)) =0.

While @ is weakly mixing state if and only if

lim #z 0 (Zap (X)) = 0.

N—oo

NﬂooN—l— 1

We have the following relation for the Z, ;, operators .

21, (ﬁ 3 (7 (aj))) — &1, (ﬁ s (7 (aj))) CLY1 .,V
j=1 j=1

and

el

Zrp (le_[ Ef)”j (ﬁ (aj))) = Too (al) Zkp—1 (Jf[;/f)"j (% (C@))) +
+&12 (‘Tﬂl (™ (al))) Rip-1 (jli‘%nj (™ (%))) :

P
PROPOSITION 2.11. Let X = [[ ®" (7 (a;)) with a1, as..a, € A, and
j=1

ng =min{n; : j =1,2..p} > 0.
If ¢ is a ergodic state we have:
N J PN
]\}Enooﬁ PN (Zkyp (H on (m (aj))) = hm N+1 Z Zkp (
k=0 j=1

Moreover let ¢ be a weakly meazing state, if

(zkp (m nim) (7 (am))‘ 0
7=1

- P
PrOOF. We set X = [[ (") (7 (a;)), we have:
7j=1

lim N;szjo(p (Zrp (X)) = lim wh Z [ (ch’f (Y)> —y (XLIEISk (ym))] _

=

J

lim —Z

N—oo

we have that @ is weakly meaxing.

= h_{n ﬁkNO {‘ﬁ (cf)nq <X(bk7nq (Y)>> - <P(X1,1)<P(Y1,1)} =
- IEHOON;Hk_ [‘5 (X(f’k*"q (Y)) - (P(XLI)‘P(YIJ)] =

"We recal that by the lemma 2.4, for all X € 2 we have
X1.2621 (6’“ (Y)) = X12CrY11 V.

Blns—na) (7 (am)) .
1

43
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= Jim NHZ [8(X8m (1)) = (K1) e (1)) =

N~>oo

= v 5 [B (784 00) - (7008 040)] = i v S (20 (7)),

For the second assertion we get:

7 (lp_[&’nj (7 (aj)) (Y)> —p(X11) e (M11)| =

J=1

LN
= lim +—
NHOON—H’;::O

< ]\}imooj\,#+1 @ <X1,1‘/1;k (Y1,1)> —p <X1,1> p (Y1) + (Z’“’ (f())’ =
- k=0

N _ N -
: 1 : 1 k
s Jm v “P (Zk:,p <X>>‘ T om o ‘<P <X1,1‘1> (Y1,1)> —¢ <X171> @(Yl,l)‘ :
O

(ﬁ o) (7 (ay)) OF (Y)) - ()?171) p(Y11)| <

REMARK 2.9. We have:

Zk,p< ) 11 (jl:[ia’(”j”")( (a ))) Zp— q(

e

Ef)(n]fnq)( (a]))> +

J=q

:]13

+

I
<

+&1,2 (élzli&)(”j_”q) (m (%))) © (aq) Rkp—q-1 ( (ny=na) (7 (aj))) :
J= J

We see that form they take the Zj, , operators for p = 1.
We observe that when k > m we obtain:

Zi1 (87 (7 (a))) = oo (@7 () 7 (V1,0)) = oo (€7 (0) ©* (Y2,
since
21 (87 (7 () = £12 (8" (7 () ) CRY11VE = V7 70g (a) C;, Y11 VE,
We have a simple lemma:

LEMMA 2.5. If ¢ s ergodic state for each a,d € A, Y € 2A and m € N we have:

2 @ (oo (d) 21 (®" (7 (a))) ) =0,

while if @ is weakly miring state we obtain:

o (e 0200 (8 50| 0

N—>ooN—|—1

PROOF. We have
o (d) Zi1 (87 (7 (@) B (V) ) = oo (07 () D5 (¥1,1)) = T (0™ (a) O* (¥1,1))
Moreover

lim ﬁéj:o [QD (d(I)m (a) pk—m (Yl,l)) — (d(I)m (a) oF (Yl,l))] =

N—oo

= (d®™ (a) p (Y11)) — ¢ (d®™ (a) ¢ (Y1,1)) =0,
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while in the weakly mixing case we get:
L3 o (moe (@) 21 (37 (7 ()

235 | (e )220 (87 G 00))| =
N+1 =0

N
= N%lkZ_IO |0 (d@™ (a) @™ (Y11)) — ¢ (d@™ (a) * (Y1,1)) £ ¢ (d2™ (a)) ¢ (Y11)] <

N
< N%lkZ_IO |0 (d@™ (a) @ (Y11)) — ¢ (d®™ (a)) ¢ (Y1,1)| +

*ﬁkio [0 (dB™ (a) @F (Y1) — 0 (2™ (a)) 0 (Vi) O

2.2. Ergodic properties for the basic dilation. We study now the ergodic prop-
erties of the multiplicative dilation <§1,§>,{0\,i,8) of theorem 2.2 in the case that the

multplicative linear map © is zero.

THEOREM 2.4. Let ¢ be ergodic state, if the cp map ® admit a w-adjoin for each

P ~ ~
X=1192%(7(aj) €A, and b A, Y € A we have:
j=1

llm;ZSO(Woo()Zk,p(ﬁ&) (7 (a ))>>—0-

o (210 (fi ) ) -

ProOOF. We show the affirmation for induction on the p lengt of the product.
» For p = 1 the affirmation it’s true for lemma 2.5.

Let X = HCID”J (7 (aj)) , with a; € A, and ny = min{n; : j = 1,2..p} > 0.

Then @ is an ergodic state.
If ¢ is weakly mizing state we obtain

N

lim
Nose N + 1,2,

Then @ is weakly mizing state.

We have

Zk:,p (7'['00 (b) X) = bgl’Q (;I\)nq <)’Z>> 8271 (i\)k (Y)) s
where

X = [18%-" (7 (a)).

=1
Therefore

E1a (cqu (f()) Ea1 (cfﬂf (Y)> - [V"E)?mc;;q + Vné)?mwnﬂ CrY1 VF =

= V"X, ,C;, CkY11VF + Vi X, 5Cr, Vi VETI Ve,

since CyW" = Cy_p,,.

it follow that.

E12 <<I’"q ( )) &1 (‘f’k (Y)> V"iX11C}, ,CrY11VF + P <X1 2821 ( P(h=na) (Y)>> )

since X1,2€2,1 (ff)(k*”q) (Y)) € Too (A) . Then
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@ (Zrp (Moo (b) X)) =
- (bV"3X1710;;quY171V’C> ty (@"q (b) X1.0621 ( Hlk—na) (Y))) .
Now we get
VanLlC;;q = 5172 (‘I)nq (% (X1,1)>>
while we can write that

q P
Xi2=¢&11 (H Pra="a (7 (%))) 12 ( [ @"-"a (7 (%))) :

J=1 Jj=q+1
It follow that

¢ (Moo (b) 21 (X)) =

= (bZ1 (‘/I;”q (7? ()?1,1))>> + @ (dzk—nq,p—q (jzlj!rl@nj_nq (7 (%)))) )

where we set:

Too (d) = @74 (b) €11 (lgl G (%))) :

j=1
We can finally write

ﬁéw (w >zkp<n<1>a< (a >>>> =

- e (e 02 (00 (7 (1))

J=q+1
For the lemma 2.5 we obtain

N ~ ~
S (02 6 (5 (1)) =0
while for the inductive hypothesis
N
]\}EHOON;-H > (dzk,pq ( [1 oni—"a (™ (aq))>> =0.
k=0 Jj=q+1
» For weakly mixing we obtain that

N@Q@ﬁé% <>zk,p(1fll<i> (o >>)
< Jim w35 e (021 (3 (7 (%00))))| +
+ Nhinooﬁé ‘w (dzknq,pq (jf[ﬂ@mm = (aq)))) ‘ :

Again for the lemma 2.5 we have

e o 02 (7 (£ (1)) | o

and for the inductive hypothesis

(t21croma (11 3 ) ) )| 0. -
Jj=q+1

lim Z
I N+1 -




CHAPTER 3

C*-Hilbert module and dilations

In this section we apply Hilbert module methods to show the existence of a particular
dilations that include in its multiplicative domains, the C*-algebra of the observables of
the original dynamical system. The ergodic properties and the weakly mixing property
they have remained.

1. Definitions and notations

We shortly introduce some results on the C*-Hilbert module. For further details on
the subject, the reader can see the references [21] and [32].

DEFINITION 3.1. Let R be a C* -algebra. A pre-Hilbert A -module is a complex vector
space X which is also a right A -module, compatible with the complex algebra structure,
equipped with an A-valued inner product

() : XAxX -2
such that for each X,Y,Z € X, o, B € C and a € A satisfies the following relations:
(X;aY 4+ BZ) = a(X3Y) + B(X; Z);
(X;Y -a) = (V; X) - a;
(X5Y)" = (YV; X);
(X;X) > 0; if (X;X)=0 then X =0.
We say that X is a Hilbert 2-module if X is complete with respect to the topology deter-

mined by the norm ||-|| given by
X1 = VKX X

If X is a Hilbert 2-module, we make the following notations:
Let B (X) be the Banach space of all bounded linear operators T :X — X, while £ (X))
is the set of all maps T € B (X) for which there is a map T* € B (&X') such that
(TX;Y) = (X;T'Y)
for each X,Y € X.
Let By (X) be the Banach space of all bounded module homomorphisms T :X — X" that
is:
T(X a)=T(X) a
for each X € X and a, € 2.
Moreover we have the following inclusion:
£(X) C By (X)
and the set £ (X) is also a C*-algebra with unit.
In general, By (&) is different by £(X) and so the theory of Hilbert C*-modules and

47
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the theory of Hilbert spaces are different.
The set X# is the Banach space of all bounded module homomorphisms from X to 2
which becomes a right 2-module, where the action of 2 on X# is defined by

(a-®)) (X) = a™¥ (X),

for each a € A, ¥ X7,
We say that X is self-dual if ¥ = X# as right A-module.
Then if ¥ :X — 2 is an element of X# there exisist a unique vector X, € X# such that

W (X) = (X; Xo)
for XeX.
ProPOSITION 3.1. If X is self-dual, then
By (X) =£(X).
PROOF. See [21] Proposition 3.4]. O
We have another fundamental proposition:
PROPOSITION 3.2. If A is a W*-algebra, X% becomes a self-dual Hilbert A-module.
PROOF. See [21] Proposition 3.2]. O

A *-representation of a C*-algebra 9 on the Hilbert 2-modulo X is a *-homorphism
B — L£(X).
The representation 7 is non-degenerate if is 7 (B) X dense in X.
We recall that one rank operator | X) (Y| on the Hilbert 2- module X" are thus definied:

(X) Y2 =X-(Y,2)»

for each XY, 7 € X.
The set of compact adjointable operators on X is the closed subspace of £ (X') generated
by the maps |) (-] :

K(X)=span{|X)(Y|: X, Y € X}.

We see the existing relations between Cp-map between C*-algebras and Hilbert
modules over C*-algebras’.
Let @ : A — B unital cp map between C*-algebras with unit 2 and 8.
The set X¢ = AR¢B with the B-valued inner product:

(A1 ®9 Bi; Ay @9 Ba) = B{® (A]As) By,
where A1, Ay € A and By, By € B, is a Hilbert 2 — 9-module that is:
Ag - (A1 ®¢ By) - By = (A241) ®s (B1B2) .
We have the representation g : A — £ (Xg) in the following way:
7o (C)A®e B=CA®s B,

I¥or furthermore information cfr.[21] section 5].



2. DILATIONS CONSTRUCTED BY USING HILBERT MODULES 49

for each A,,C € A B € ‘8.
If Qgis the vector Q¢ = 1 ®g¢ 1 for each A € 9T we obtain

d(A) = (Qs;ma (A) Qo)
The triple (£ (X4); 7a; Q) is say to be the GNS of a cp-map ¢ : A — B.
REMARK 3.1. We observe that if ® : 9 — M is a cp-map between von Neumann

algebra the set X = MReIM is a Hilbert M-module and for the precedent proposition it
is self dual.

PropoOSITION 3.3. Let 9 be a von Neumann algebra and ® : 9N — 9N be a cp-map.

If for each Ay, As € M
d(A1AA2) =0,
we have
e (A) = 0.

PROOF. For each A1 ®¢ B1, Ay ®¢ By € X we have
(A1 ®a Bi;mg (A) Ay ®¢ Bo) = B - (A1 ®9 1; AA3 ®9 1) - By =
= Bj® (ATAA5) By =0,
then <A1 ®e B1; 7o (A) As Re Bg) = 0.
since X is self-dual we obtain 7w (A) = 0. O

2. Dilations constructed by using Hilbert modules

Let @ : 2 — B be an unital cp-map between C*-algebra 20 and 98, We have the
follow applications:
» The Stinespring representation 73 : A — £(Xg), where Xg is Hilbert -8 module
%@ = 91@@%;
» The application & : £ (Xp) — A thus defined:

S@ (T) = <Qq>; TQ¢>x¢ , T el (%@)
» The application 7 : B — £ (Xs) defined by
To (b)z Ry =1®¢ b® (z)v,
for each z ®p y € X and b € B.
To ()2 Ry =1Reb"P (z)y.

We have a first proposition:

PROPOSITION 3.4. The application Tg : B — £ (Xs) is an injective *-homomorphism.

2The operator Ts (b) is one rank operator:
11 ®a b) (e,
and
T2 (1) = Q) (Qe].
Furthermore we have
75 (1) =1 <= & is a multiplicative.
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PROOF. For each 1 ®a y1,72 R y2 € Xp and b € B we have:
(73 (b) 71 ®a Y1572 o Y2)x, = (1 ®a P (1) Y1; 72 Q0 Y2) 5, = (0P (21) y1)* P (z2) y2 =
=37 ® (1) 0" @ (72) y2 = (71 @ y1; To (b") T2 ®3 Y2)x,, -
While
Ts (bl) Ts (bg) TRy = Top (bl) 1®e bo® (a:) Yy =1Rqe b ba® (.’L‘) y="7p (ble) r®ey. U

We have the property of conditional expectation for the map & :
PROPOSITION 3.5. The application £ : £ (Xe) — A is unital cp map such that
Eo (T3 (b1) TTp (b2)) = b1€s (T) ba
for each bi,ba € B and T € £(Xs).
PRrROOF. For each b; € B and T; € £(Xp) with j =1,2...n we have

> biEe (T bi = 3 b7+(Qa; T Tila) by =
i=1 ij=1

n n n n
= Z <1 XP bj;T;Til (9833 bi>%<1> = Z < le KR bj;ZTil KR bz> > 0.
j=1 i=1

2,7=1 2,J=1 j X
while
Eo (To (b1) T7s (b2)) = (Qa; 7o (b1) TTp (b2) Qo) x, =
= <1 Rep bT; T1 ®s b2>%q> = bl . (Qq>; TQ¢>3€® -bg = blgcp (T) bg.

We observe that
(I):€<1>07Tq> and id:&1>07'¢.
In fact for each b € B we have

b= (Qa; 7o (b) )z, -

Let @ : 2 — 2 be unital cp-map, we can define an unital cp-map @ : £ (Xg) — £ (Xo)
by

d = e O 5(197
such that for each x,y € A we obtain

®(Ts (2) Ta (y) = © (Ta (2)) @ (T (1))

Indeed for each a € 2 we have

® (7 (a)) = 7a (a).

Moreover N
£ (Xs) > £(Xa)
Is 1 1 &

(b’n

A — A

is a commutative diagram:

Eo (&w (To (a))) — 3" (a)
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for each n € N and a € .
We defined the ¢ state on £ (Xg) by:

@ (T) = ¢ ((EeT))
foreach T' € £(Xq).
W have verified the following theorem of existence

THEOREM 3.1. The C*-dynamical system (S (Xo) ,&),(5,) is a mnon unital dilation
of (A, ®, ) such that
2cD ()
where <<AI;> is multiplicative domains of the cp-map 3.

3. Ergodic property
For the study of the ergodic property of the dilations of dynamical systems we have
to determine the value of the followings limits:
N

Jim 7 3 [ (X85 (0) - 208 ()]

. L Y vak ~ ~
i o (594 00) 0201
forall X, Y € £(X3).
We observe that for each k£ > 1 we get

O (Y) = o (057 (£2(Y)))

since for each k£ > 1 we obtain:

TF (Y) = s (q> (&b (cf»H (Y)))) .
Consequently we have

%éj:o& (X&Sk (Y)) — lim L g: 7] <X7rq> (‘I’k (€ (Y)))> :

i
s N—oo N + 1,5

N—o0
Also in this circumstance the property of ¢-adjoin it is fundamental for ergodicity:

THEOREM 3.2. Let ¢ be ergodic state if ® admit a p-adjoin ¢ is an ergodic state.
While if ¢ is a weakly mizing state, @ is a weakly mixing state.

PrRoOOF. We have
@ (me (cpk (o (Y)))) — (ab (me (cpk (s (Y)))))

and
s (Xma (0¥ (€3 (Y)))) = (X*Qai7a (* (€5 (Y))) Qa) ., =
= (X*Qp; 2" (€2 (Y)) @a 1), -
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For definition of the Hilbert module Xg, for each € > 0 there is an element polynomial
pe = »_a; o bj such that
2%

X — pellg, <€

therefore

(pe; ®* (£5 (Y)) ®a 1>3€<1> = <Zai R bj; PF (Eo (Y)) R 1> =
1,7 %’?

= %bj@ (a; @ (€2 (Y))),

and
lim 5 ((pes e (@ (€2 (Y))) Qa)y, ) =
N*?OONJ'_lk:OSO e T o ®)xq

- N@wﬁéw (ij@ (a1 (€ (Y)))) =% lim ﬁéw (b;® (12" (€5 (Y)))),

1, 4§ N—ro0

and for hypothesis
N
Jim ek 37 (07 (1) a0 (€3 (Y))) = 0 (07 (1) a) (€ (¥)

then
Jim gty S (zb]@ (410 (€ <Y>>)) —¢ (zbj@ <a:>> 5(Y).
—00 k=0 1,7 2,]

We observe

@ | Xbi(a) | 3 (Y) = ((pei Qe ) B(Y),
z’]
since
> b;® (a7) = (pe; Qo) x,, -
1,]
Therefore
i 1N~X<EkY—1‘ 1S X*Qg; OF (Ep (Y 1)) =
]\}gnooN_-s—lg::o(p< ( )> 7N£nooN_+1k§::080 (< »; " (e (Y)) ®e >) -

= ¢ (= 9a)x, ) B (Y).

Furthermojlgfe we have:

Jim w3 [ (X0 (7)) - () 5(Y)] =

— Jim S 17 (X3 (Y)) = ¢ (e Qa)z, ) 2 (V)] +

N—0o™" T k=0

+[FX) B () = o (5 ), ) 3 (V)]

Since
13(X) = ¢ (93 Qx| = 9 (X — 13 ), ) < 1X70 = pii i, <.
we obtain
. 1 N ~ Tk ~ ~
Jim 53 |3 (X (7)) -2 (X) 5 (Y)] =
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For the weakly mixing property we can write

N;Hé |2 (X" (€2 (Y)) = 2(X) & (Y)| =

_ N;Hé & (Xma (8" (€0 (Y)))) — 3(X) 5 (Y)]
Therej\ffor_e we have
ﬁ’go & (X" (€6 (Y))) — 3 (X) 5 (Y)] <

IN

1 X k 73
1 2 [ (peimo (24 (€0 (V) o)y, ) — 0 (05 0a)s, ) 5 ()| +
[0 (9= 90)x, ) () - 3(X) (V)| +
+ﬁk§0 ‘@ (me (q>k (Es (Y)))) - (<pg; To (cI)k (Ep (Y))) Qq>>3€q>>

Moreover
(5 (Xra (2 (E5 (Y)))) — <<p5; o (OF (€ (Y))) Q‘I’>x¢>‘ =

= |5 (Xma (9% (0 (YD) — 0 (pesma (0F (€ (V) Q) )| =
= ‘so <<XQ<1> — pe; OF (€5 (Y)) Q¢>x¢>' <[ XQs — pellx, 1Y
It follow tkjlvat

Jim s 3 17 (X (€ (YD) = 20 2(Y)] =

+

| & k
N_Hg::o ‘90 <<p€;7T<D (®* (&5 (Y))) Q<1>>3€¢> - ((pe; Qa)x,

~—
ASY
=
I

Ly
- N+1k:0

@ (Z‘P+ (bj) a; @ (Ea (Y))> — (Zbﬂ’ (ai‘)> ¢ (Y)

= Zwlﬁ [0 (8% (b)) 010" (6 (Y))) = ¢ (@ (b)) a}) B (Y)| = 0.
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APPENDIX A

Algebraic formalism in ergodic theory

In this appendix we shortly give some fundamental definitions of the non-commutative
ergodic theory. For further details on the subject, the reader can see the traditional works
[4] and [10] of Doplicher and Kastler and books cited in bibliography.

% 3k ok

The classical dynamic system is constituted by a space of probability (X, X, u) and
measure-preserving transormation T : X — X of the probability space (X, %, u), i.e.

p(T7H(A)) = n(d)

for each A € ¥ (cfr.[11] section 1.1).

We recall the following definitions (cfr.[24] section 2.5):

The transformation 7' (or, more properly, the system (X,X%, u,T) ) is called ergodic if
and only if

> J\}im ﬁ Zszo pw(TFANA,) = p(A) p(A,) for each A, A, € 3;

» We say that 1T is weakly mizing if
A}iinooﬁ S o |p (T*ANA,) — (D) p(A,)|  for each A,A, € X

In algebraic formalism the dynamic system (X, X, u,T") is corresponds to the W*-
dynamical sistem (L*° (X)), ®, ¢) whereL> (X) is space of the bounded measurable func-
tion on (X, X, u) ,the state ¢ is defined

()= [ fdu  fer=(x)
X
while the dynamic ®:L>° (X) — L% (X) is

O(f)=foT, ferL>®(X).

Then in the operator framework of quantum mechanics this definition picks up the
following form:

Let (A, ®) be a C*-dynamical systems, a ®-invariant state ¢ on 2 is ergodic if and
only if

> ]\}gnooﬁ ij:o ¢ (b®F (a)) = ¢ (b) ¢ (a) for each a,b € U,

» We say that ® is weakly mizing if
J\;gnooﬁ Zszo ¢ (b@F (a)) — @ (b) ¢ (a)] =0 for each a,b € A
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Let (A, @, ) be a C*-dynamical systems with invariant state ¢ and (Hy, 7y, ) its
GNS. We can define for each a € 2, the following operator of B (H,,):
Uy (a) Sy = mp (@ (a))

Then U, : H, — H,, is linear contraction of Hilbert spaces.
A fundamental result for the linear contraction of Hilbert space is the Mean Ergodic
Theory of von Neumann:

THEOREM A.l. Let V : H — H is a linear contraction of the Hilbert space H we
have that

1
- 1];: VF — P in so-topology,
where P is a orthogonal projection on the linear space ker (I — V) = ker (I — V*).
PROOF. See [24] theorem 2.1.1. O

We have the following result for the ergodic theory:

PROPOSITION A.1. Let (A, @, ) be C*—dynamical systems with invariant state, @
18 ergodic state if and only if

dim (ker (I - Uy)) = 1.
PROOF. See [20] lemma 5.2. O

Another important definition in ergodic theory is that of set of zero density (cfr.
[20] ):
A subset A of N is say to have zero density if
card{[(), n] N A}
Z 1 (k) =

=0.
n%oon—i— n%oo n-+1

An sequence {z,},y in a topologlcal space X is said to convergence in density to an
element x € X if there exists a subset A C N of density zero such that
Jim 7, =
where 2], = x,, for each n ¢ A.
We will also write

D— lim z, = =x.
n—oo

We recall the fundamental lemma of Koopman-von Neumann:

LEMMA AL, If {zn}, o 15 a sequence of positive real numbers, we have

n

im =0 = D — lim z, =0.
n—oon + 1,2 n—00
PROOF. See [24] lemma 6.2 pag 65. O

For the property of the D — limit, we postpone the reader to the reference [34]
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