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Introduction

We consider a commutative superring K = K0 + K1, and for all Lie superalgebra g over K
we study the representations of g on its symmetric algebra S(g) which are by coderivations
and universal. We stress that many of our results are new also for ordinary Lie algebras over
a �eld of characteristic zero.

The symmetric algebra S(g) has a natural structure of coalgebra, so we have a notion
of coderivation of S(g). A representation ρ of g in S(g) is called by coderivations if ρ(a) is
a coderivation of S(g) for all a ∈ g. We focus on representations ρ by coderivations which
are universal. This means informally that ρ is given by a formula independent of g. We will
explain in section 2.4 why it is natural to consider this kind of representations.

To each formal power series

ϕ = c0 + c1t + · · · ∈ K0[[t]]

we associate a family Φ(a) ≡ Φa of coderivations of S(g) depending linearly of a ∈ g.
We show that Φ is a universal representation by coderivations if and only if

ϕ(t)
ϕ(t + u)− ϕ(u)

t
+ ϕ(u)

ϕ(t + u)− ϕ(t)

u
+ ϕ(t + u) = 0 (1)

in K0[[t, u]].
The most interesting case is when the constant term c0 is equal to 1, In this case, it is

a simple matter to solve the functional equation, because we show (lemma 2.2.2) that it is
equivalent to the functional equation for the exponential function. This last equation has a
non-trivial solution exactly when K contains Q. In this case the unique solution of (1) is

ϕ =
t

et − 1
.

We think that it is an interesting fact that this famous function, the generation function for
Bernoulli numbers, occurs in such an elementary manner.
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We explain the relation of our results with classical subjects like Poincaré-Birkho�-Witt
theorem, Lie third theorem (chapter 3), Maurer-Cartan equation, etc. For example, let U(g)

be the enveloping algebra of g and assume that K ⊇ Q. We use the representation obtained
using the function t

et−1
to de�ne a symbol map σ : U(g) → S(g). We show that σ is an

inverse for the symmetrization β : S(g) → U(g), which gives a natural and direct proof of
the fact that β is an isomorphism. This strong form of the Poincaré-Birkho�-Witt theorem,
with no assumption on g as a K-module, is due to P.M. Cohn ([Coh]) in the case of Lie
algebras and to D. Quillen ([Qui]) in the case of super Lie algebras with K = K0.

Let N ≥ 2 be an integer. We consider a N -nilpotent Lie superalgebras g over K, and
a truncated power series ϕ ∈ K0[[t]]/t

N . To ϕ is associated a family of coderivations Φa

depending linearly of a ∈ g. We show that Φ is an universal representation by coderivations
if and only if ϕ veri�es equation (1) in K0[[t, u]]/IN , where IN is the ideal generated by
{tiuN−1−i|0 ≤ i ≤ N − 1}. There exists a solution with ϕ(0) = 1 exactly when

1

2
,
1

3
, ...,

1

N
∈ K,

and in this case it is unique. As a consequence, we show that for a N -nilpotent Lie su-
peralgebra over a commutative superring containing 1

2
, 1

3
, ..., 1

N
, there is a canonical symbol

map σ : U(g) → S(g) which is an isomorphism. When K ⊇ Q, σ−1 is (as seen above) the
symmetrization, but in general we do not know a formula for σ−1. For N = 2 this is due to
M. El-Agawany and A. Micali ([ElM]). The case N ≥ 3 is new.

The method used to get the universal representations by coderivations can be used to
study the Maurer-Cartan equations over g. For simplicity we consider only the case of Lie
algebras over a �eld K of characteristic zero. We show that each solution f ∈ K[[t]] of

f(u + t)− f(t)

u
+

f(u + t)− f(u)

t
= f(u)f(t)

provides a solution of Maurer-Cartan equation. This functional equation has an unique so-
lution with f(0) = 1, it is f(t) = et−1

t
.

Let (g, h, q), with g = h ⊕ q and h a Lie K-subsuperalgebra, be a K-super symmetric
space. In this situation we get similar results. In particular, if K ⊇ Q, we get representations
Π : g → Hom(S(q), S(q)) which are universal and by coderivations. Our proof uses functional
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equations of type

ϕ(t)
ψ(t + u)− ψ(u)

t
+

ϕ(t + u)− ϕ(t)

u
ψ(u) = h(t + u) (2)

where ϕ, ψ, h are formal power series with coe�cients in K0. In section 2.3 we classify all
triples verifying (2), when K0 is a �eld of characteristic zero.

As an application of the representations Π, we study the image in U(g) of S(q) by the
symmetrization map β. The super vector space β(S(q)) is stable under the so-called twisted
adjoint action ad′ of g. This induces an action of g on S(q) which is one of the representations
Π.

Let K be a �eld of characteristic zero. M. Gorelik proved in [Gor] that if q a �nite-
dimensional, odd, K-super vector space such that the trace of ad(a)|q : q → q is zero for all
a ∈ h, then β(S(q)) has an unique line of ad′-invariant vectors. By solving

{
t coth

(
t
2

)
h′(t + u)− (t+u) coth( t+u

2 )−t coth( t
2)

u
= 0

h′(u) = h′(−u)

we get, in proposition 4.3.1, an explicit formula for Gorelik 's line. This formula is new and
it provides a new proof of Gorelik 's result.

For each Lie superalgebra over K equipped with an invariant, even, symmetric bilinear
form (we do not suppose that it is not-degenerate), we consider in chapter 5.2 a variant of
the Classical Dynamical Yang-Baxter Equation (vCDYBE) with coupling constant ε ∈ K0.
We show that to each odd series f ∈ K0[[t]] verifying

f(t+u)−f(u)
t

+ f(u+v)−f(v)
u

+ f(v+t)−f(t)
v

=
f(t)f(u) + f(u)f(v) + f(t)f(v) + ε mod u + t + v

(3)

we can associate a solution of vCDYBE. Considering v = −t − u, from (3) we obtain a
functional equation in two variables which was independently found by L. Feher and B. G.
Pusztai in [FeP], for a quadratic Lie algebra over R or C.

The interesting case is when K ⊇ Q and ε = 1
4
. In this case the unique solution of (3) is

f(z) = 1
z
− 1

2
coth( z

2
), which gives the so-called universal solution of vCDYBE.

Let g be a quadratic Lie algebra (over C or R). It means that g is �nite-dimensional,
provided with a not-degenerate invariant symmetric bilinear form. For each quadratic sub-
algebra h of g there is a Classical Dynamical Yang-Baxter Equation (CDYBE) (see [EtV]).
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A. Alekseev and E. Meinrenken considered the case h = g and in this case the CDYBE is
equivalent to the vCDYBE. They solve the vCDYBE in [AlM] for g a compact Lie algebra.
Our method of proof is much simpler, and it provides a solution of the vCDYBE for arbitrary
quadratic Lie superalgebras. This was in fact the origin of the present work. For other proofs
in the case of quadratic Lie algebras, see [FeP] and [AlM1].

A. Alekseev and E. Meinrenken used the solution of CDYBE to prove some properties of
their non-commutative Weil algebra. As the universal solution is valid also for any quadratic
Lie superalgebra, we can extend a result of Alekseev and Meinrenken to any quadratic Lie
superalgebra over a �eld of zero characteristic (see chapter 6).
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Chapter 1

Preliminaries

1.1 Lie superalgebras over a superring
In this section we recall the basic de�nitions and examples used in the text, they are from
super linear algebra ([Lei]).

We say that K is a superring if it is an unitary ring graded over Z/2Z. We note K0 and K1

the subgroups of elements with even and odd degree, for each non-zero homogeneous element
a ∈ K we note p(a) its degree. We have 1 ∈ K0.

The superring K is called commutative if ab = (−1)p(a)p(b)ba for all homogeneous and
not-zero a, b ∈ K and a2 = 0 for a ∈ K1.
Convention 1.1.1. Each time we use the symbol p(a) for an element a of a graded group
occurring in a linear expression, it is implicitly assumed that it is not zero and homogeneous.
Moreover the expression is extended by linearity. For example, the expression above will be
written as ab = (−1)p(b)p(a)ba for any a, b ∈ K.

From now to the end of this section, K will be a �xed commutative superring.
We denote by K×0 ⊆ K the subgroup of invertible elements of K0.
De�nition. 1.1.1. A commutative group (M, +) graded over Z/2Z is a K-module if it is
equipped with a bilinear application M × K → M such that, for all α, β ∈ K and m, n ∈ M
we have

(mα)β = m(αβ)

p(mα) = p(m) + p(α).

We note M0 and M1 the K0-submodules composed of even and odd elements.
If K is a �eld, M is also called a K-supervector space.
In a K-module M we use the notation αm := mα(−1)p(α)p(m), for any m ∈ M and α ∈ K. Let
N be another K-module. A map f : M → N is a morphism of K-modules if f(mα) = f(m)α
for any m ∈ M and α ∈ K.
De�nition. 1.1.2. We say that A is a K-superalgebra if it a K-module equipped of a dis-
tributive application A× A

·→ A such that
p(a · b) = p(a) + p(b)

(a · b)α = a · (bα) = (−1)p(b)p(α)(aα) · b
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for all a, b ∈ A and α ∈ K.
We say that A is commutative if a · b = (−1)p(a)p(b)b · a for a, b ∈ A, and c2 = 0 for c ∈ A1.
Let A and B be two K-superalgebras. A map f : A → B is said a morphism of K-
superalgebras if it is a morphism of K-modules such that

p(f(a)) = p(a), f(a · b) = f(a) · f(b)

for any a, b ∈ A and α ∈ K.
Notation 1.1.1. Let A be a K-superalgebra and a ∈ A. We denote by aL : A → A the left
multiplication by a, and by aR : A → A the right multiplication: aR(b) = (−1)p(a)p(b)b · a, for
any b ∈ A.
The following is our de�nition of Lie superalgebra.
De�nition. 1.1.3. Let g be a K-superalgebra such that its product [·, ·] : g× g → g veri�es

[X, Y ] = −(−1)p(X)p(Y )[Y, X], ∀X, Y ∈ g (1.1)
[X, X] = 0, ∀X ∈ g0 (1.2)
[[X, Y ], Z] = [X, [Y, Z]]− (−1)p(Y )p(X)[Y, [X,Z]], ∀X,Y, Z ∈ g (1.3)
[Y, [Y, Y ]] = 0, ∀Y ∈ g1. (1.4)

Such g is called a Lie K-superalgebra.
The product in a Lie superalgebra is called Lie product or Lie bracket, and (1.3) is the Jacobi
identity.
Remark 1.1.1. If 2 ∈ K is invertible (1.2) follows from (1.1). If 3 ∈ K is invertible (1.4)
follows from (1.1) and (1.3).

As explained in [BMP], if g1 6= {0} and 2 ∈ K is not invertible, de�nition 1.1.3 is not
the right one, but it is su�cient for the purpose of this text.

We end this section with some useful examples.
Example 1.1.1. If A is a commutative superring, A[[z]] denote the set formal series in s,
with coe�cients in A. It inherits the graduation (A[[z]])0 = A0[[z]], (A[[z]])1 = A1[[z]] and a
natural structure of commutative superring.
Example 1.1.2. Let M,N be two K-modules.

a) Hom(M, N) is the group of functions F : M → N which are morphisms of K-modules.
It is graded in the following way: F is even if F (M0) ⊆ N0 and F (M1) ⊆ N1, F is odd
if F (M0) ⊆ N1 and F (M1) ⊆ N0. More over, Hom(M, N) is a K-module by Fα : v 7→
(−1)p(v)p(α)F (v)α, for all α ∈ K, v ∈ M .

b) M ⊗N is the K-module generated by {v ⊗ w; v ∈ M, w ∈ N, } with relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(v ⊗ w)α = v ⊗ wα = (−1)p(w)p(α)vα⊗ w, ∀α ∈ K

10



and graduation p(v ⊗ w) = p(v) + p(w).

c) The tensor algebra of M is T (M) := K + (M ⊗M) + (M ⊗M ⊗M) + · · · with product
(v1 ⊗ · · · ⊗ vi) · (vi+1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vn, for all i, n ∈ N. It is an associative
K-superalgebra.
Example 1.1.3. Let M a K-module, Hom(M, M) is a Lie K-superalgebra by [F,G] = F ◦
G− (−1)p(F )p(G)G ◦ F , ∀F, G ∈ Hom(M,M).

1.2 Symmetric algebras
Let K be a commutative superring and M a K-module, we recall the de�nition of its sym-
metric algebra S(M).
The tensor algebra T (M) contains the ideal I generated by

{
v ⊗ w − (−1)p(v)p(w)w ⊗ v, u⊗ u| v, w ∈ M,u ∈ M1

}
,

and we de�ne S(M) := T (M)/I. It is a commutative and associative K-superalgebra.
We have S(M) = K⊕⊕∞

n=1 Sn(M), where Sn(M) is the K-module generated by products
of n elements of M .

1.2.1 Formal functions
We recall that S(M) has a natural structure of cocommutative Hopf superalgebra, and in
particular it is a coalgebra. This means that S(M) is equipped of three morphisms of
superalgebras ∆ : S(M) → S(M) ⊗ S(M), ε : S(M) → K, δ : S(M) → S(M), such
that

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (1.5)
Mult ◦ (id⊗ δ) ◦∆ = Mult ◦ (δ ⊗ id) ◦∆ = ε (1.6)
Mult ◦ (id⊗ ε) ◦∆ = Mult ◦ (ε⊗ id) ◦∆ = id (1.7)
∆ = σ ◦∆ (1.8)

where Mult : S(M)⊗ S(M) → S(M) is the multiplication of S(M) and σ : S(M)⊗ S(M) 3
W ⊗Z 7→ (−1)p(W )p(Z)Z⊗W is the exchange operator. We call δ an antipode, and each even
morphism of K-modules verifying (1.5) is called an associative comultiplication. We refer to
(1.8) saying that ∆ is cocommutative.
For all X ∈ M we have

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, δ(X) = −X.

To give formulas for ∆ we introduce the following notation. Let n ∈ N and Σn be the group
of permutations of n elements. For s ∈ Σn and X1, .., Xn ∈ M , let α(Xs(1), ..., Xs(n)) ∈ {1,−1}
be the sign such that α(Xs(1), ..., Xs(n))Xs(1) · · ·Xs(n) = X1 · · ·Xn in S(M).
If X ∈ M0

∆ (Xn) =
n∑

j=0

(
n

j

)
Xj ⊗Xn−j, ∀n ≥ 0 (1.9)
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and, if X1, ..., Xn ∈ M

∆ (X1 · · ·Xn) =
n∑

j=0

∑
1≤p1<···<pj≤n

α( ~X~p)Xp1 · · ·Xpj
⊗X1 · · · X̂p1 · · · X̂pj

· · ·Xn

where α( ~X~p) := α(Xp1 , ..., Xpj
, X1, ..., X̂p1 , ..., X̂pj

, ..., Xn).
We note S(M)∗ := Hom(S(M),K). Because of S(M) is a coalgebra, S(M)∗ is a commu-

tative superalgebra and it is called the algebra of formal power series over M . More generally,
if N is a K-module, Hom(S(M), N) is called the space of formal functions on M with values
in N .

Each X ∈ N de�nes a "constant function" of Hom(S(M), N): it is the function such
that 1 7→ X and Sn(M) 7→ {0} for n 6= 0. We have the following structure of S(M)∗-
module: Fϕ := (F ⊗ ϕ) ◦ ∆ for ϕ ∈ S(M)∗ and F ∈ Hom(S(M), N). Let Y ∈ M ,
we de�ne ∂(Y ) : Hom(S(M), N) → Hom(S(M), N) as f 7→ (−1)p(f)p(Y )f ◦ Y L for any
f ∈ Hom(S(M), N). It is called the derivative in the direction Y .
Remark 1.2.1. By de�nition, ∂(Y )(X) = 0 for any X ∈ N .

When N = M , Hom(S(M),M) is called the space of formal vectors �eld over M . The
identity of M extends to a morphism of K-modules xM : S(M) → M by Sn(M) 7→ {0} for
n 6= 1. It is called the generic point of M , and it will be denoted by x when there is no risk
of confusion.
Remark 1.2.2. We have ∂(Y )(x) = Y for all Y ∈ M .

Let A be a K-superalgebra. In Hom(S(M), A) we have the following structure of S(M)∗-
algebra: F ·G := Mult ◦ (F ⊗G) ◦∆, for any F,G ∈ Hom(S(M), A).
Remark 1.2.3. For all Y ∈ M , ∂(Y ) is a derivation of Hom(S(M), A).
We have seen that A ⊆ Hom(S(M), A), moreover A is aK-subsuperalgebra of Hom(S(M), A).
If A is associative Hom(S(M), A) is associative, because ∆ veri�es (1.5). If A is unitary
Hom(S(M), A) is unitary, with unit given by ε : S(M) 3 W 7→ 1ε(W ) ∈ A. If A is commu-
tative Hom(S(M), A) is commutative, because ∆ is a cocommutative comultiplication.

In the particular case A = S(M) it is traditional to note ∗ the product of Hom(S(M), S(M)).
In this case δ ∈ Hom(S(M), S(M)) and identities (1.6), (1.7) give

δ ∗ id = id ∗ δ = ε. (1.10)
Lemma 1.2.1. If g is a Lie K-superalgebra, Hom(S(M), g) is a Lie S(M)∗-superalgebra.

1.2.2 Coderivations of a symmetric algebra
De�nition. 1.2.1. Let A be a K-module equipped of a comultiplication ∆. A coderivation
of A is a morphism of K-modules Φ : A → A such that ∆ ◦ Φ = (Φ⊗ id + id⊗ Φ) ◦∆.

To describe the coderivations of S(M), we introduce the K-module P (S(M) = {W ∈
S(M)|∆(W ) = 1⊗W +W ⊗ 1}. Its elements are called the primitive elements of S(M). By
de�nition of ∆, M ⊆ P (S(M)).

Let ϕ : S(M) → P (S(M)) be a morphism of K-modules, we de�ne Φ := id ∗ϕ : S(M) →
S(M).
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Theorem 1.2.1. ([Rad])
The map Φ is a coderivation of S(M) and δ ∗ Φ = ϕ.
Proof. As a �rst step we show that Φ is a coderivation. By de�nition

(id⊗ Φ) ◦∆ = (id⊗Mult) ◦ (id⊗ id⊗ ϕ) ◦ (id⊗∆) ◦∆

(Φ⊗ id) ◦∆ = (Mult⊗ id) ◦ (id⊗ ϕ⊗ id) ◦ (∆⊗ id) ◦∆

∆ ◦ Φ =
(
(Mult⊗ id) ◦ (id⊗ ϕ⊗ id) ◦ (id⊗ σ) + (id⊗Mult) ◦ (id⊗ id⊗ ϕ)

)
◦ (∆⊗ id) ◦∆

so identities (1.5) and (1.8) give that Φ is a coderivation.
The second part of the theorem follows from identities (1.10). In fact we get ϕ = δ∗id∗ϕ =

δ ∗ Φ.
Remark 1.2.4. The previous theorem is valid if S(M) is replaced by any cocommutative
Hopf superalgebra.

1.3 Generic point of a Lie superalgebra
Let K be a commutative superring and (g, [·, ·]) be a Lie K-superalgebra. For any X ∈ g, we
note adX the application [X, ·] : g → g.

Let t and u be two even commuting variables. For any r, q ∈ N we introduce the notation

(truq : [Y, Z])X := [(adX)r(Y ), (adX)q(Z)], ∀X ∈ g0, ∀Y, Z ∈ g. (1.11)

By linearity it is extended to all polynomials in K[t, u].
Lemma 1.3.1. For any polynomial q ∈ K[z], X ∈ g0 and Y, Z ∈ g,

q(adX)([Y, Z]) = (q(t + u) : [Y, Z])X .

Proof. It is su�cient to consider q(z) = zk with k ≥ 1. It means that it is su�cient to show
that

(adX)k([Y, Z]) =
k∑

p=0

(
k

p

)
[(adX)p(Y ), (adX)k−p(Z)], k ≥ 1.

This identity means that adX is an even derivation, which follows from the Jacobi identity.

We introduce gx := Hom(S(g), g). Each X ∈ g is identi�ed to its image in gx. As seen
above (section 1.2.1), the comultiplication ∆ of S(g) and the bracket for g allow to de�ne
the bilinear application [F, G] := [·, ·] ◦ (F ⊗G) ◦∆, for all F, G ∈ gx. We have seen also that
gx is a Lie S(g)∗-superalgebra and g ⊆ gx is a K-Lie subsuperalgebra. Let x be the generic
point of g.
Remark 1.3.1. Let n ∈ N \ {0}, (adx)n : gx → gx is a S(g)∗-morphism of gx. In particular,
if Y ∈ g, (adx)n(Y ) : S(g) → g is the map

X1 · · ·Xp 7→
{

0, p 6= n
(−1)p(Y )p(X1+···+Xn)

∑
s∈Σn

α(Xs(1), ..., Xs(n))adXs(1) ◦ · · · ◦ adXs(n)(Y ), p = n

for any p ≥ 0 and X1, ..., Xp ∈ g. If n = 0, (adx)0(Y ) := Y ∈ gx.
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Let q = c0 + c1t + c2t
2 + · · · ∈ K[[t]] and Y ∈ g. As a consequence of the last remark, we can

de�ne
q(adx)(Y ) := c0Y + c1(adx)(Y ) + c2(adx)2(Y ) + · · ·.

It is the morphism of K-modules from S(g) to g such that, for any n ∈ N, its restriction to
Sn(g) is cn(adx)n(Y ).

Remark 1.3.2. In the Lie superalgebra gx, we consider the formula (1.11) with X = x. This
gives the formula of a morphism of K-modules from S(g) to g. Let Y, Z ∈ g, for any n ∈ N
and X1, ..., Xn ∈ g, this morphism is given by

(truq : [Y, Z])x(X1 · · ·Xn) =

=

{
0, n 6= r + q∑

s∈Σn
α(Xs)[adXs(1) ◦ · · · ◦ adXs(r)(Y ), adXs(r+1) ◦ · · · ◦ adXs(n)(Z)], n = q + r

where the coe�cients α(Xs) are given by

α(Xs) := (−1)p(X1+···+Xn)p(Z)+p(Y )p(Xs(1)+···+Xs(r))α(Xs(1), ..., Xs(r+q)).

As above this allows to de�ne (p(t, u) : [Y, Z])x for any formal power series p ∈ K[[t, u]]. The
following theorem plays a basic role in this text.

Theorem 1.3.1. Let Y, Z ∈ g and q(z) ∈ K[[z]]. In gx we have

∂(Y )
(
q(adx)(Z)

)
= (−1)p(q)p(Y )

(
q(t + u)− q(u)

t
: [Y, Z]

)
.

Proof. We only need to consider the case q(z) = zk, with k ≥ 0. For k = 0 the statement
follows from remark 1.2.1. We recall that ∂(Y ) is a derivation. By induction over k and by
the Jacobi identity in gx, we get

∂(Y )((adx)k+1(Z)) = ∂(Y )([x, adx)k(Z)]) =

= [Y, (adx)k(Z)] + [x, ∂(Y )((adx)k)(Z)]

= (uk : [Y, Z]) + adx

((
(u + t)k − uk

t
: [Y, Z]

)

x

)

= (uk : [Y, Z])x +

(
(t + u)

(u + t)k − uk

t
: [Y, Z]

)

x

=

(
(u + t)k+1 − uk+1

t
: [Y, Z]

)

x

.
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Chapter 2

Universal representations by
coderivations

2.1 Functional equations associated to coderivations
Let K be a commutative superring and ϕ(z) =

∑
j zjcj ∈ K[[z]]. For any Lie K-superalgebra

g and a ∈ g, we de�ne ϕa := ϕ(adx)(a) ∈ gx. We recall from remark (1.3.1) that

ϕa(X1 · · ·Xn) = (−1)p(a)p(X1+···+Xn)
∑
σ∈Σn

cnα(Xσ(1), ..., Xσ(n))adXσ(1) ◦ · · · ◦ adXσ(n)(a) (2.1)

for any n ∈ N and X1, ..., Xn ∈ g. In particular, if X ∈ g0 we get

ϕa (1) = c0a (2.2)
ϕa (Xn) = n!cn(adX)n(a), ∀n ≥ 1.

Remark 2.1.1. (Functorial property)
Let h be a Lie K-superalgebra and f : g → h be a morphism of Lie K-superalgebras. The
formula (2.1) shows that f ◦ ϕa(X1 · · · Xn) = ϕf(a)(f(X1) · · · f(Xn)), for any n ∈ N and
X1, ..., Xn ∈ g.

Let ρ(t, u) =
∑

j≥0

∑j
i=0 tiuj−idi,j−i ∈ K[[t, u]]. To a, b ∈ g we associate the map

(ρ(t, u) : [a, b])x ∈ gx. We recall that (remark 1.3.2) for X ∈ g0 and n ∈ N we get
(ρ(t, u) : [a, b])x(X

n) = n!
∑n

i=0 (tiun−idi,n−i : [a, b])X .

Remark 2.1.2. By lemma 1.3.1 we have ϕ[a,b] = (ϕ(t + u) : [a, b])x.

By theorem 1.2.1, to the map ϕa we associate the coderivation Φa := id ∗ ϕa ≡ Mult ◦ (1 ⊗
ϕa) ◦∆. We have

Φa (X1 · · ·Xn) =
n∑

j=0

∑
1≤p1<···<pj≤n

a( ~X, ~p)Xp1 · · ·Xpj
· ϕa

(
X1 · · · X̂p1 · · · X̂pj

· · ·Xn

)
(2.3)

where a( ~X, ~p) := (−1)p(ϕa)p(Xp1+···+Xpj )α(Xp1 , ..., Xpj
, X1, ..., X̂p1 , ..., X̂pj

, ..., Xn). In particu-
lar, if X ∈ g0 we get Φa (Xn) =

∑n
j=0

(
n
j

)
Xj · ϕa(Xn−j).

Let ψ ∈ K[[t]], b ∈ g, and let Ψb : S(g) → S(g) be the associated coderivation.
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Remark 2.1.3. By de�nition, for all Y ∈ g we have id ∗ Y = Y L.
Lemma 2.1.1. For any Y ∈ g we have
i) Φa ◦ Y L = id ∗

(
ϕa ∗ Y −

(
ϕ(t+u)−ϕ(t)

u
: [a, Y ]

)
x

)

ii) Φa ◦Ψb = id ∗
(
ϕa ∗ ψb − (−1)p(a)p(ψ)

(
ϕ(t+u)−ϕ(t)

u
ψ(u) : [a, b]

)
x

)
.

Proof. i) From the fact that ∆ is, in particular, a morphism of algebras, and from remark
2.1.3 we have

Φa ◦ Y L ≡ (
id ∗ ϕa

) ◦ Y L = id ∗ {
ϕa ◦ Y L + (−1)p(ϕa)p(Y )Y ∗ ϕa

}
.

As ∗ is commutative, this shows that

Φa ◦ Y L = id ∗ {
ϕa ◦ Y L

}
+ id ∗ ϕa ∗ Y.

By de�nition ϕa ◦ Y L = (−1)p(Y )(p(ϕ)+p(a))∂(Y )(ϕa), so the theorem 1.3.1 gives the desired
formula.

ii) Let us consider the Lie superalgebra gx and its generic point y ∈ Hom(S(gx), gx). By
de�nition and by remark 2.1.3 we have

Φa
g ◦Ψb

g = Φa
(gx)y

◦ (id ∗ ψ(ady)(b)) |S(g) = Φa
(gx)y

◦ ψ(ady)(b)L|S(g).

As ψ(ady)(b) ∈ (gx)y, from case i we get

Φa
g ◦Ψb

g = id ∗
{

ϕ(ady)(a) ∗ ψ(ady)(b)−
(

ϕ(t + u)− ϕ(t)

u
: [a, ψ(ady)(b)]

)

y

}
|S(g).

By de�nition
(

ϕ(t+u)−ϕ(t)
u

: [a, ψ(ady)(b)]
)

y
= (−1)p(a)p(ψ)

(
ϕ(t+u)−ϕ(t)

u
ψ(t) : [a, b]

)
y
so the proof

is �nished.
Theorem 2.1.1.

[Φa, Ψb] = id ∗ (−1)p(ψ)p(a)

(
−ϕ(t + u)− ϕ(t)

u
ψ(u)− ϕ(t)

ψ(t + u)− ψ(u)

t
: [a, b]

)

x

.

Proof. Let ω(t, u) := −ϕ(t+u)−ϕ(t)
u

ψ(u) − ϕ(t)ψ(t+u)−ψ(u)
t

, we denote by Ω[a,b] the coderiva-
tion corresponding to (−1)p(ψ)p(a) (ω(t, u) : [a, b])x. By theorem 1.2.1 we want to show that
[Φa, Ψb] = Ω[a,b]. From lemma 2.1.1 we get

[Φa, Ψb] =

= id∗
(
−(−1)p(a)p(ψ)

(
ϕ(t + u)− ϕ(t)

u
ψ(u) : [a, b]

)

x

+ ϕa ∗ ψb

)
+

id∗
(

(−1)p(b)p(ϕ)+p(Φa)p(Ψb)

(
ψ(t + u)− ψ(t)

u
ϕ(u) : [b, a]

)

x

− (−1)p(Φa)p(Ψb)ψb ∗ ϕa

)

= −(−1)p(a)p(ψ)id ∗
(

(−1)p(ϕ)p(ψ)ψ(t + u)− ψ(u)

t
ϕ(t) +

ϕ(t + u)− ϕ(t)

u
ψ(u) : [a, b]

)

x

= id ∗ (−1)p(ψ)p(a) (ω(t, u) : [a, b])x .
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To prove the next theorem we need some preliminaries, which we state in a form that will
be useful later.
De�nition. 2.1.1. Let N ≥ 1 be an integer. A Lie superalgebra g is said to be N-nilpotent
if we have

adX1 ◦ · · · ◦ adXN = 0, ∀X1, ..., XN ∈ g.

Remark 2.1.4. For N = 1 we have a commutative Lie superalgebra, for N = 2 we have a
Lie superalgebra of Heisenberg type.
Lemma 2.1.2. For any N ≥ 2, there exists a Lie K-superalgebra gN , N-nilpotent, equipped
of an in�nite family of even elements {α, β, X1, X2, ...} such that

⋃
0≤r+s≤N−2

{[adXi(1) ◦ · · · ◦ adXi(r)(α), adXi(r+1) ◦ · · · ◦ adXi(r+s)(β)]; i(1), ..., i(r + s) ∈ N}

is a free family.
Proof. We start by considering the free Lie algebras h over Z, with an in�nite family of
generators α, β, X1, X2, ... By properties of free Lie algebras ([Bou] prop. 10, page 26) we
know that

⋃
r,s≥0

{[adXi(1) ◦ · · · ◦ adXi(r)(α), adXi(r+1) ◦ · · · ◦ adXi(r+s)(β)]; i(1), ..., i(r + s) ∈ N}

is contained in a basis of h.
Let IN be the ideal of h generated by {adx1 ◦ · · · ◦ adxN(Y )|x1, ..., xN , Y ∈ h}. The
quotient hN := h/IN is a N -nilpotent Lie superalgebra over Z and the family fN :=⋃

0≤r+s≤N−2{[adXi(1) ◦ · · · ◦ adXi(r)(α), adXi(r+1) ◦ · · · ◦ adXi(r+s)(β)]; i(1), ..., i(r + s) ∈ N} is
contained in a basis of hN .
We de�ne gN := hN⊗K, it is a N -nilpotent Lie superalgebra over K and hN is a Lie subsuper-
algebra. As the tensor product of modules is distributive, gN inherits from hN the property
that fN is contained in a basis of gN .
Lemma 2.1.3. Let ω(t, u) =

∑∞
i,j=0 cijt

iuj ∈ K[[t, u]] and N ≥ 2. If for any N-nilpotent Lie
K-superalgebra g

(ω(t, u) : [a, b])x = 0, ∀a, b ∈ g,

then cij = 0 for any 0 ≤ i + j ≤ N − 2.
Proof. We consider the case g = gN , where gN is the N -nilpotent Lie superalgebra of lemma
2.1.2. Choosing a = α and b = β we get (ω(t, u), [α, β])x =

∑N−2
i+j=0 ci,j(t

iuj : [α, β])x.
Let 0 ≤ p ≤ N − 2, remark 1.3.2 gives

(ω(t, u), [α, β])x(X1···Xp) =

p∑
i=0

ci,p−i

∑
s∈Σp

[adXs(1)◦···◦adXs(i)(α), , adXs(i+1)◦···◦adXs(p)(β)].

As (ω(t, u), [α, β])x(X1 · · ·Xp) is zero, lemma 2.1.2 gives that ci,p−i = 0 for any i = 0, ..., p.
As 0 ≤ p ≤ N − 2, the proof is �nished.

Let λ ∈ K[[z]], we consider the coderivation Λa : S(g) → S(g) for any a ∈ g.
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Theorem 2.1.2. Let ϕ, ψ, λ ∈ K0[[t]]. For any Lie K-superalgebra g we have
[Φa, Ψb] = Λ[a,b], ∀a, b ∈ g (2.4)

if and only if ϕ, ψ, λ verify
(
−ϕ(t + u)− ϕ(t)

u
ψ(u)− ϕ(t)

ψ(t + u)− ψ(u)

t

)
= λ(t + u)

in K0[[t, u]].
Proof. Let ω(t, u) := −ϕ(t+u)−ϕ(t)

u
ψ(u)−ϕ(t)ψ(t+u)−ψ(u)

t
−λ(t+u). Using theorem 2.1.1 and

remark 2.1.2, we see that (2.4) is equivalent to
id ∗ (ω(t, u) : [a, b])x = 0, ∀a, b ∈ g.

By theorem 1.2.1, this identity is equivalent to
(ω(t, u) : [a, b])x = 0,∀a, b ∈ g.

We get immediately that the functional equation is su�cient. To show the converse, it is
su�cient to apply the lemma 2.1.3 to any N -nilpotent Lie superalgebra gN , with N ≥ 2. We
get that in ω(t, u) the coe�cients of degree N − 2 are zero, for any N ≥ 2. In particular
ω(t, u) = 0.
Theorem 2.1.3. Let ϕ ∈ K[[t]]. For any Lie K-superalgebra g, we have

[Φa, Φb] = Φ[a,b], ∀a, b ∈ g (2.5)
if and only if ϕ has even coe�cients (ϕ ∈ K0[[t]]) and veri�es

(
−ϕ(t + u)− ϕ(t)

u
ϕ(u)− ϕ(t)

ϕ(t + u)− ϕ(u)

t

)
= ϕ(t + u). (2.6)

Proof. As p(Φa) ≡ p(ϕ) + p(a), identity (2.5) needs p(ϕ) = 0. The theorem 2.1.3 follows
from theorem 2.1.2.

2.2 Universal representations
Let K be a commutative superring, ϕ(t) =

∑
j tjcj ∈ K0[[t]], g a Lie K-superalgebra. We

consider the map Φ : g 3 a 7→ Φa ∈ Hom(S(g), S(g)) de�ned in section 2.1 by formulas (2.1)
and (2.3). From theorem 2.1.3 we know that Φ is a representation for all Lie K-superalgebras
g, if and only if ϕ ∈ K0[[t]] veri�es the functional equation (2.6). We look for solutions of
this functional equation.
De�nition. 2.2.1. (universal representation)
Let M(g) be the symmetric algebra or the enveloping algebra of g. We call a representation
Φ : g → End(M(g)) universal, if for any a ∈ g and any morphism of Lie K-superalgebras
f : g → h the following diagram, with f̃ the morphism of superalgebras induced by f , is
commutative:

M(g)
Φa−→ M(g)

↓f̃ ↓f̃

M(h)
Φf(a)−→ M(h)

.
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For any commutative superring K we introduce

ϕ0(t) := −t ∈ K0[[t]]. (2.7)

For any c ∈ K×0 , if K ⊇ Q, we introduce also

ϕc(t) =
t

e
t
c − 1

∈ K0[[t]]. (2.8)

All these series verify ϕc(0) = c.

Lemma 2.2.1. Let K0 be a commutative �eld. The solutions of equation (2.6) which lie in
K0[[t]] and such that ϕ(0) = 0, are ϕ = 0 and ϕ = ϕ0.

Proof. If ϕ(0) = 0, the limit limu→0 applied to the equation (2.6) gives ϕ(t)
(
1 + ϕ(t)

t

)
= 0,

so ϕ(t) is zero or ϕ(t) = −t because K0[[t]] is a domain.

Lemma 2.2.2. i) Let ϕ ∈ K0[[t]] be a solution of equation (2.6). If the constant term
ϕ(0) =: c is invertible, f(t) := ϕ(t)+t

ϕ(t)
satis�es





f(t) · f(u) = f(t + u)
f(0) = 1
f ′(0) = 1

c

. (2.9)

ii) System (2.9) has solutions if and only if K0 contains Q. In this case the unique solution
is e

t
c ∈ K0[[t]].

iii) Let K ⊇ Q and c ∈ K×0 . The unique solution of (2.6) in K0[[t]] verifying ϕ(0) = c is
ϕc(t).

Proof. i) We recall that c is invertible if and only if the series ϕ is invertible, so we write
the equation (2.6) as

ϕ(t) + t

ϕ(t)
· ϕ(u) + u

ϕ(u)
=

ϕ(t + u) + t + u

ϕ(t + u)
.

We have ϕ(t)+t
ϕ(t)

= 1 + 1
c
t + · · ·.

ii) Let f = 1 + 1
c
t +

∑∞
k=2 fkt

k. The system (2.9) gives f ′(t) = 1
c
f(t), so 2f2 = 1

c2
and

kfk = 1
c
fk−1 for any k ≥ 3. By induction we get that k is invertible and fk = 1

k!ck for any
k ≥ 2.
iii) When f(t) = e

1
c
t, we get ϕ(t) = ϕc(t).

We have shown the following theorems

Theorem 2.2.1. The map Φ0 : g → Hom(S(g), S(g)) associated to ϕ0 is a representation
by coderivations.
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Remark 2.2.1. Let a ∈ g. The map Φa
0 is in the same time a derivation and a coderivation

of S(g) : for any X1, ..., Xn ∈ g we have

Φa
0(X1 · · ·Xn) =

n∑
j=1

(−1)p(a)p(X1+···+Xj−1)X1 · · · Φa
0(Xj) · · ·Xn.

It is the only derivation of S(g) such that Φa
0(X) = [a,X] for X ∈ g, so Φ0 is the adjoint

representation of g in S(g).

Theorem 2.2.2. Let K ⊇ Q. For any c ∈ K×0 , the series z

ec−1z−1
∈ K0[[z]] gives a represen-

tation by coderivations Φc : g → Hom(S(g), S(g)).

Theorem 2.2.3. Let ϕ ∈ Q[[t]]. For any commutative superring K ⊇ Q and any Lie K-
superalgebra g, the map Φ : g → Hom(S(g), S(g)) is a representation by coderivations, if and
only if ϕ is zero, or ϕc, c ∈ Q.
Remark 2.2.2. The Bernoulli numbers {bk ∈ Q, k ∈ N} are de�ned by the generating series

ϕ1(z) ≡ 1

ez − 1
=

∞∑

k≥0

bk

k!
zk.

For example b0 = 1, b1 = −1
2
, b2 = 1

6
. Let c ∈ K×0 , the fact that ϕc(t) ∈ K0[[t]] veri�es the

identity (2.6) can be written in the following way:

∀k ≥ 0, 0 = bk +
k−l∑
p=0

(
k − l

p

)
bpbk+1−p

(l + 1)
+

l∑
p=0

(
l

p

)
bpbk+1−p

(k + 1− l)
, l = 0, ..., k.

2.2.1 The case of nilpotent Lie superalgebras
We are going to give an analogue of theorem 2.2.2 for K not necessarily containing Q.

Let N ≥ 2, g a N -nilpotent Lie superalgebra over K, a and b ∈ g.

Remark 2.2.3. i) The notation ϕ(adx)(a) ∈ gx is well-de�ned for ϕ ∈ K[t]/tN a truncated
polynomial with coe�cients in K.
ii) The notation (ρ(t, u) : [a, b])x ∈ gx is well-de�ned if ρ(t, u) ∈ K[t, u]/IN , where IN is the
ideal generated by {tiuj, i + j ≥ N − 1}.
To a truncated polynomial ϕ(z) ∈ K0[t]/t

N we associate a family of coderivations still denoted
by Φa : S(g) → S(g), a ∈ g. The direct part of the following theorem is a particular case of
theorem 2.1.2.

Theorem 2.2.4. For any g a N-nilpotent Lie superalgebra over K the map Φ : g 3 a 7→
Φa ∈ Hom(S(g), S(g)) is a representation by coderivations, if and only if ϕ veri�es

ϕ(u)
ϕ(t + u)− ϕ(t)

u
+ ϕ(t)

ϕ(t + u)− ϕ(u)

t
= −ϕ(t + u) (2.10)

in K0[t, u]/IN .
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Proof. Let ω(, u) := −ϕ(u)ϕ(t+u)−ϕ(t)
u

− ϕ(t)ϕ(t+u)−ϕ(u)
t

− ϕ(t + u). Proceeding as in the
proof of theorem 2.1.2 we get that equation (2.10) is equivalent to

(ω(t, u) : [a, b])x = 0, ∀a, b ∈ g.

Moreover, for a N -nilpotent Lie superalgebra, this reduces to

(ω(t, u) mod IN : [a, b])x = 0, ∀a, b ∈ g.

We get immediately that the functional equation (2.10) is su�cient to get a representation.
The converse follows from lemma 2.1.3.

Example 2.2.1. Let K0 be a �eld.
a) Let N = 2 and 1

2
∈ K0. We look for ϕ(t) = c0 + c1t mod t2 solution of

2c0c1 = −c0.

We have ϕ(t) = c1t or ϕ(t) = c0 − 1
2
t.

b) Let N = 3 and 1
2
, 1

3
∈ K0. We look for ϕ(t) = c0 + c1t + c2t

2 mod t3 solution of

2c0c1 + (3c0c2 + c2
1)(u + t) = −c0 − c1(t + u).

We get ϕ(t) = c2t
2, or ϕ(t) = −t + c2t

2, or ϕ(t) = c0 − 1
2
t + 1

12c0
t2 with c0 6= 0.

Lemma 2.2.3. Let N ≥ 2. The equation (2.10) has solutions in K[t]/tN with ϕ(0) ∈ K×0 , if
and only if 1

2
, ..., 1

N
∈ K. In this case the unique solution such that ϕ(0) =: c ∈ K×0 is

ϕc(t) mod tN .

Proof. We look for ϕ ∈ K0[t]/t
N such that 1 + t

ϕ(t)
∈ K0[t]/t

N+1 solves the system (2.9) in
K[t, u]/IN+2.

The system (2.9) has solutions in K0[t, u]/IN+2 exactly when 2, ..., N are invertible in K.
In this case the unique solution is e

1
c
t mod tN+1 with c ∈ K×0 , it means that ϕ(t) = ϕc(t).

We have shown that

Theorem 2.2.5. Let K ⊇ {1
2
, ..., 1

N
}. For any c ∈ K×0 , the truncated polynomial ϕc(t) ∈

K0[t]/t
n gives a representation by coderivations Φc : g → Hom(S(g), S(g)).

Theorem 2.2.6. Let K be a �eld, p its characteristic, ϕ ∈ K[t]/tN . We assume that 2 ≤
N < p. For all N-nilpotent Lie K-superalgebra g the map Φ : g → Hom(S(g), S(g)) is a
representation by coderivations, if and only if ϕ = 0 or ϕ = ϕc mod tN , c ∈ K.
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2.2.2 Some properties of the representations Φc

This section applies to the cases K ⊇ Q and g any Lie K-superalgebra, and to the case
K 3 1

2
, ..., 1

N
with N ≥ 2 and g a N -nilpotent Lie K-superalgebra.

Remark 2.2.4. If c ∈ K×0 , the representation g 3 a 7→ Φa
c ∈ Hom(S(g), S(g)) is faithful

because Φa
c(1) = c · a.

Remark 2.2.5. From theorem 2.1.2 we get [Φa
0, Φ

b
c] = Φ

[a,b]
c , for all a, b ∈ g and c ∈ K×0 ∪{0}.

Theorem 2.2.7. Each representation Φc, c ∈ K×0 , is equivalent to Φ1.

Proof. Let c ∈ K×0 . We consider the map fc : S(g) → S(g) such that fc(X1 · · · Xn) =
cnX1 · · ·Xn for all X1, ..., Xn ∈ g. We have f−1

c ◦ Φa
c ◦ fc = Φa

1, ∀a ∈ g.

Let g and h be two Lie K-superalgebras, f : g → h be a morphism of Lie K-superalgebras.
It extends to a morphism of algebras f̃ : S(g) → S(h).

Remark 2.2.6. (Functorial property)
By remark 2.1.1, for any a ∈ g and c ∈ K×0 , the following diagram commutes

S(g)
Φa

c−→ S(g)
↓f̃ ↓f̃

S(h)
Φ

f(a)
c−→ S(h)

.

2.3 A more general equation
Let K be a �eld of characteristic zero, t and u be two commutating variables. We classify
the triples of formal series (ϕ, ψ, ρ) such that ϕ, ψ, ρ ∈ K[[t]] and

ϕ(t)
ψ(t + u)− ψ(u)

t
+

ϕ(t + u)− ϕ(t)

u
ψ(u) = ρ(t + u). (2.11)

This is motivated by theorem 2.1.2, it is clear that equation (2.6) is a particular case of
equation (2.11). The classi�cation is contained in theorems 2.3.2 et 2.3.3.

Remark 2.3.1. Applying the limit t → 0 we get

ϕ(0)ψ
′
(u) +

ϕ(u)− ϕ(0)

u
ψ(u) = ρ(u). (2.12)

Remark 2.3.2. Applying limits t → 0 and u → 0 to equation (2.11) we get

ϕ(0)ψ
′
(u)− ψ(0)ϕ

′
(u) =

ϕ(0)ψ(u)− ψ(0)ϕ(u)

u
.

This di�erential equation gives the existence of a ∈ K such that ϕ(0)ψ(u)− ψ(0)ϕ(u) = au.
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As the series ρ is determined by (2.12), it is natural to ask if equation (2.11) can be reduced
to an equation for the couple (ϕ, ψ). To get this equation we introduce p(t), q(t) ∈ K

t
+K[[t]]

such that
ϕ(t) = tp(t), ψ(t) = tq(t).

Theorem 2.3.1. The pair (p(t), q(t)) gives a solution of (2.11) if and only if

q
′
(u){p(t + u)− p(t)} = p

′
(t){q(t + u)− q(u)}. (2.13)

Proof. Equation (2.11) becomes

p(t){(t + u)q(t + u)− uq(u)}+ q(u){(t + u)p(t + u)− tp(t)} = ρ(t + u).

We recall that a function f(t, u) is a function of t + u if and only if ∂
∂t

f(t, u)− ∂
∂u

f(t, u) = 0.
We apply this fact to f(t, u) := p(t){(t + u)q(t + u)− uq(u)}+ q(u){(t + u)p(t + u)− tp(t)}
and we get equation (2.13).

Formula (2.13) is very elegant. However, we will use it only trough the following remark.

Remark 2.3.3. If the pair (p, q) is a solution without poles of (2.13) then q
′
(u)(p(u)−p(0)) =

0, so p or q is constant.

Theorem 2.3.2. All triples of series (ϕ, ψ, ρ) verifying (2.11) and ϕ(0)ψ(0) = 0, are given
by the following list
i) (ϕ(t), ψ(t), ρ(t)) = (ϕ(t), ct, cϕ(t)), c ∈ K, ϕ ∈ K[[t]],
ii) (ϕ(t), ψ(t), ρ(t)) = (ct, ψ(t), cψ(t)), c ∈ K, ψ ∈ K[[t]].

Proof. It is su�cient to consider the case ψ(0) = 0. From remark 2.3.2 we get ϕ(0)ψ(u) =
au, with a ∈ K. Let ϕ(0) 6= 0, we get ψ(u) = cu with c ∈ K. Equation (2.11) is veri�ed with
cϕ(t) = ρ(t), so we have a triple of type i.
Let ψ(0) = ϕ(0) = 0. From remark 2.3.3 we get q(u) or p(u) constant, that means we get a
triple of type i or ii.

Now we treat the case ϕ(0) · ψ(0) 6= 0.

Remark 2.3.4. Let a, b ∈ K. If (ϕ(t), ψ(t), ρ(t)) veri�es the functional equation (2.11), also
the triple (aϕ(t), bψ(t), a · bρ(t)) veri�es (2.11).

It is su�cient to look for series such that ψ(0) = ϕ(0) = 1.

Remark 2.3.5. Let a, b ∈ K. If (ϕ, ψ, ρ) veri�es (2.11), the triple (ϕ(t) + at, ψ + bt, ρ(t)−
a · bt− aψ(t)− bϕ(t)) veri�es it.

By this remark, we can restrict ourself to look for triples with ϕ = ψ and ϕ(0) = 1, ϕ′(0) = 0.

Remark 2.3.6. Let a ∈ K. If (ϕ(t), ψ(t), ρ(t)) veri�es the functional equation (2.11), then
(ϕ(at), ψ(at), aρ(at)) veri�es (2.11).
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For any c ∈ K we introduce the notation

θc(t) =
√

c coth(
√

ct) = 1 +
c

3
t2 − c2

45
t4 + · · · ∈ K[[t]].

In particular θ0(t) = 1.

Lemma 2.3.1. Let c ∈ K. There exist exactly one triple (ψc, ψc, ρc) such that ψc(t) =
1 + c

3
t2 + o(t2). Moreover ψc(t) = ψc(−t),

(ψc(t), ρc(t)) = (
√

ct) coth(
√

ct), ct).

Proof. We consider the left hand side of (2.11). As its derivatives by t must be equal to its
derivative by u (see the proof of theorem 2.3.1), if ϕ = ψ we get

ψ′(t)
ψ(t + u)− ψ(u)

t
+ ψ(t)

∂

∂t

(
ψ(t + u)− ψ(u)

t

)
+ ψ(u)

ψ′(t + u)− ψ′(t)
u

= ψ(t)
ψ′(t + u)− ψ′(u)

t
+ ψ′(u)

ψ(t + u)− ψ(t)

u
+ ψ(u)

∂

∂u

(
ψ(t + u)− ψ(t)

u

)
.

As ψ(0) = 1 and ψ′(0) = 0, the limit t → 0 gives

−1

2
ψ′′(u) =

ψ′(u)

u
(ψ(u)− 1)− ψ(u)

ψ(u)− 1

u2
. (2.14)

Substituting ψ(t) = 1 + c
3
t2 +

∑∞
k=3 ckt

k we get

ck+2 =
−2

k(k + 3)

(
kckc

3
+

k−1∑
p=3

cpck−p+2(k − p + 1)

)
, k ≥ 1.

This formula gives c3 = 0. By induction, all coe�cients c2j+1, j ≥ 2 are zero. The series
t coth(t) = 1 + 1

3
t2 + · · · is a solution of equation (2.14). By remark 2.3.6 also ct coth(ct) =

1 + c
3
t + · · · is a solution of equation (2.14).

Theorem 2.3.3. All solutions of (2.11) verifying ψ(0)ϕ(0) 6= 0 are in the following list:




ϕ(t) = aθc(ft) + bft
ψ(t) = dθc(ft) + eft
ρ(t) = f(ae + bd)θc(ft) + (adc + be)ft

with a, b, c, d, e, f ∈ K and a · d 6= 0.

Remark 2.3.7. We have
ϕd + ϕ−d = ϕ0, ∀d ∈ K× (2.15)

and θc(t) ≡
√

c
(
ϕ 1

2
√

c
(t)− ϕ− 1

2
√

c
(t)

)
= 2

√
c
(
ϕ 1

2
√

c
(t)− 1

2
ϕ0(t)

)
.
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2.4 Motivations
In this paragraph we consider the case of Lie algebras over a Q-algebra. So we assume that
K = K0 is a commutative ring, and g a Lie K-algebra.

Let K ⊇ Q and g be a Lie K-algebra. In this chapter we have considered coderivations
associated to vector �elds on g of type

ϕa = ϕ(adx)(a)

with a ∈ g, ϕ ∈ K[[t]], x ∈ gx the generic point of g. We have seen in remarks 2.1.1 and 2.2.6
that ϕa and the corresponding coderivation Φa satisfy a functorial property. We are going to
prove the converse.

We look for any morphism of K-modules Fg : S(g)⊗ g → g such that, for any morphism
of Lie K-algebras f : g → h the diagram

S(g)⊗ g
Fg−→ g

↓f̃⊗f ↓f

S(h)⊗ h
Fg−→ h

, (2.16)

where f̃ : S(g) → S(h) is the algebra-morphism induced by f , commutes.

Theorem 2.4.1. For each n ∈ N, there exists cn ∈ K such that

Fg(X1 · · ·Xn ⊗ a) = (cn(adx)n(a))(X1 · · ·Xn)

for any X1, ..., Xn, a ∈ g.

Proof. We consider the free Lie K-algebra h with generators x1, ...xn+1. Let Y := Fg(x1 ·
· · xn ⊗ xn+1). Let t ∈ Q. We �x i ∈ {1, ..., n + 1}. By the universal property of free Lie
algebras, the map

ft,i : Xj 7→
{

Xj, j 6= i
Xit, j = i

, ∀j = 1, ..., n + 1

extends to a morphism of Lie K-algebras f̃t,i : h → h. As the diagram (2.16) associated to this
map commutes, we get Y t = f̃t,i(Y ). We write Y =

∑
n Yn,i where Yn,i is a bracket containing

n times xi, so ft,i(Y ) ≡ ∑
n Yn,it

n. To get Y t =
∑

n Yn,it
n, we need

∑
n 6=1 Yn,i(t− tn) = 0 for

any t ∈ Q. As the family {Yn,i|Yn,i 6= 0, n ≥ 0} is free (see [Bou], prop. 10, page 26), we get
that Y =

∑n+1
i=1 Y1,i. This is true for any i ∈ {i, ..., n + 1}, so Y is a linear combination of

brackets of n elements, exactly elements x1, ..., xn+1.
Using the Jacobi identity and the fact that the bracket of a Lie algebra is antisymmetric,
we show that Y is a linear combination of adxs(1) ◦ · · · ◦ adxs(n)(xn+1), with s ∈ Σn. Let
Y =

∑
s∈Σn

csadxs(1) ◦ · · · ◦ adxs(n)(xn+1), with cs ∈ K. As a permutation u of {x1, ..., xn}
extends to a morphism gu of Lie K-algebras, from the commutative diagrams (2.16) for gu

we get
∑

s∈Σn
(cs − cs◦u)adxs(1) ◦ · · · ◦ adxs(n)(xn+1) = 0. By properties of free Lie algebras

(see [Bou], prop. 10 page 26) we get that the family {adxs(1) ◦ · · · ◦ adxs(n)(xn+1)|s ∈ Σn} is
free. In particular cs − cs◦u = 0 for any s ∈ Σn. As it is true for any permutation s, we get
cs = cid for any s ∈ Σn. We note cid as cn, so Y = cn

∑
j∈Σn

adxj(1) ◦ · · · ◦ adxj(n)(xn+1).
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Let f be a map {x1, ..., xn, xn+1} → g in a Lie K-algebra. From the universal property
of free Lie algebras, f extends to a morphism of Lie K-superalgebras still noted f . Let
a := f(xn+1), f(xi) =: Xi. The commutative diagram for f gives

Fg(X1 · · ·Xn ⊗ a) = cn

∑
j∈Σn

adXj(1) ◦ · · · ◦ adXj(n)(a).

Remark 2.4.1. The previous theorem is not valid for a Lie superalgebra g. For example, if
θg = θ is the map such that θ|g0 = id and θ|g1 = −id then g 3 a 7→ (adx)n(θ(a)) has the
functorial property expressed in diagram (2.16).

2.5 The Poincaré-Birkho�-Witt theorem
Let K be a commutative superring and g be a Lie K-superalgebra. We assume that 1

2
∈ K

or that K = K0 and g = g0.
We recall that the enveloping algebra U(g) is de�ned as the quotient of the tensor algebra

T (g) by the ideal J generated by {a⊗ b− (−1)p(a)p(b)b⊗ a− [a, b]|a, b ∈ g}. The inclusion of
g in T (g) gives a map j : g → U(g). Let gr(U(g)) be the graded module of U(g) associated
to the �ltration {Ui}i≥0 with U0 = K and Ui the K-module generated by {j(X1) · · · j(Xl)|l ≤
i,X1, ..., Xl ∈ g}. The hypothesis give that it is a commutative superalgebra.

Remark 2.5.1. If our assumptions are not veri�ed, gr(U(g)) is not commutative. For
example let us consider g = Ze with odd e and [e, e] = 0. As j(e)2 /∈ U1(g), gr(U(g)) is not
commutative.

By the universal property of symmetric algebras, j extends to the algebra-morphism

j̃ : S(g) → gr(U(g))

such that X1 · · ·Xn 7→ j(X1) · · · j(Xn) mod Un−1, for any X1, ..., Xn. This map is onto.

De�nition. 2.5.1. We say that g veri�es the weak Poincaré-Birkho�-Witt theorem if j̃ is
bijective.

Before giving the next de�nition we recall that a map f : g → g is said to be an automorphism
if it is an invertible morphism of Lie K-superalgebras. Such a map induces two isomorphisms
of algebras: f̃ : S(g) → S(g) and f : U(g) → U(g).

Remark 2.5.2. A derivation g : g → g extends to derivations g1 : U(g) → U(g) and
g2 : S(g) → S(g). Moreover, g2 is also a coderivation.

De�nition. 2.5.2. We say that g verify the strong Poincaré-Birkho�-Witt theorem if it does
exist an isomorphism ρ ∈ Hom(S(g), U(g)) such that
i) ρ(Sn(g)) ⊆ Un(g) for any n ∈ N,
ii) the associated graded map gr(ρ) is j̃,
iii) ρ commutes with any derivation of g and any automorphism of g.
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Remark 2.5.3. Let n ≥ 1. From i and ii we have ρ(Sn(g)) ⊕ Un−1 = Un. From ii we get
that ρ(Sn(g)) is stable by any derivation or automorphism of g. In particular S(g) and U(g)
are isomorphic for the adjoint representation.

Now we suppose also that

Hypothesis 2.5.1. K ⊇ Q or g is N-nilpotent with N ≥ 2 and 2, ..., N ∈ K×0 .
From theorems 2.2.3 and 2.2.5 we have a representation Φ1 : g → End(S(g)). By the universal
property of enveloping algebras, it extends to an algebra-morphism Φ : U(g) → End(S(g))
such that Φ1 = Φ ◦ j. From Φ we construct the map σ : U(g) → S(g), called the symbol map
and de�ned by

σ(u) := Φ(u)(1), ∀u ∈ U(g).

For example, for all a1, a2, a3 ∈ g we have

σ(1) = 1

σ(j(a1)) = a1

σ(j(a1)j(a2)) = a1 · a2 +
1

2
[a1, a2]

σ(j(a1)j(a2)j(a3)) = a1 · a2 · a3 +
1

2

{
a1 · [a2, a3] + [a1, a2] · a3 + (−1)p(a1)p(a2)a2 · [a1, a3]

}
+

+
1

12

{−(−1)p(a2)p(a1)[a2, [a1, a3]] + [[a1, a2], a3]
}

+
1

4
[a1, [a2, a3]].

Lemma 2.5.1. Let K be any commutative superring and g any Lie K-superalgebra. If λ ∈
K[[z]] with λ(0) = 1, the coderivations corresponding to λ have the property

Λan ◦ · · · ◦ Λa1(1)− an · · · a1 ∈ ⊕n−1
j=0 Sj(g), ∀a1, ..., an ∈ g.

Proof. If n = 1 the theorem is evident. As Λan ◦ · · · ◦ Λa1(1) = Λan (Λan−1 ◦ · · · ◦ Λa1(1)),
by induction there exists pn ∈ ⊕n−2

j=0 Sj(g) such that Λan−1 ◦ · · · ◦ Λa1(1) = an−1 · · · a1 + pn.
As for all p ≥ 0

∆(Sp(g)) ⊆
p⊕

j=0

Sj(g)⊗ Sp−j(g),

we have Λan(pn) ⊆ ⊕n−1
j=1 Sj(g), it is su�cient to show that Λan(an−1 · · · a1) − an · · · a1 ∈

⊕n−1
j=0 Sj(g). This identity follows using ∆(an−1 ···a1)−an−1 ···a1⊗1 ∈ ⊕n−2

j=0 Sj(g)⊗Sn−1−j(g),
using the de�nition of Λ, using (2.2).

Theorem 2.5.1. Assume hypothesis 2.5.1. Then
i) the map σ is invertible,
ii) g veri�es the strong Poincaré-Birkho�-Witt theorem with ρ = σ−1.

Proof. i) By lemma 2.5.1 the graded map gr(σ) : gr(U(g)) → S(g) is well-de�ned and onto:
for any n ∈ N we have

gr(σ)(a1 · · · an + Un−1) = σ(a1) · · · σ(an), ∀a1, ..., an ∈ g.
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The inverse of gr(σ)|Un/Un−1 is j̃|Sn(g), so gr(σ) is one-to-one.
ii) In i we have seen, in particular, that j̃ = gr(σ−1). Let f : g → g be an automorphism of
g we want to show that σ ◦ f = f̃ ◦ σ. It follows from remark 2.2.6.

Let g be a derivation of g and a1, ..., an ∈ g. We want to show that g2 ◦ σ = σ ◦ g1, which
means

(g2 ◦ Φa1 ◦ · · · ◦ Φan) (1) =
n∑

j=1

(−1)p(g)p(a1+···+aj−1)
(
Φa1 ◦ Φg(aj) ◦ Φan

)
(1), ∀a1, ..., an ∈ g.

By induction, it is su�cient to show that [g2, Φ
a
1] = Φg(a) for any a ∈ g. By de�nitions

g2 ◦ ϕa
1 = ϕa

1 ◦ g2 + ϕg(a), it gives [g2, Φ
a
1] = 1 ⊗ ϕa

1 ◦ (g2 ⊗ 1 + 1 ⊗ g2 −∆ ◦ g2) + Φg(a). The
fact that g2 is a coderivation ends the proof.

Let β := σ−1.

Remark 2.5.4. (Functorial property)
Let f : g → h be a morphism of Lie K-superalgebras. By remark 2.2.6 we get a commuting
diagram

S(g)
β−→ U(g)

↓f̃ ↓f

S(h)
β−→ U(h)

.

To get formulas for β we use the following lemma.

Lemma 2.5.2. For all n ∈ N and a ∈ g0 we have (Φa
1)

n(1) = an.

Proof. If n = 1 the statement is obvious. By induction

(Φa
1)

n+1(1) ≡ Φa
1 ◦ (Φa

1)
n(1) = Φa

1(a
n) =

n∑
j=0

(
n

j

)
aj · ϕa(an−j).

From identity (1.2) we get ϕa(aj) = 0 for j ≥ 1, so (Φa
1)

n+1(1) = an · ϕa(1) = an+1.

Corollary 2.5.1. i) For all a ∈ g0 we have

β(an) = β(a)n = j(a)n, ∀n ∈ N.

ii) For each n ∈ N and a1, ..., an ∈ g

n!β(a1 · · · an) =
∑
s∈Σn

α(as(1), ..., as(n))β(as(1)) · · · β(as(n)).

From now on β will be called the symmetrization map. If K contains Q, β is the usual
symmetrization map. If K does not contains Q, the previous corollary does not give an
explicit formula for the symmetrization map. However, we can compute β(X1 · · ·Xn) (as in
the following example) but we do not know a nice formula.
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Example 2.5.1. Let K = Z/3Z, it contains 1
2
. Let g be a 2-nilpotent Lie superalgebra over

K. For each a ∈ g, Φa = aL + 1
2
ada. Let a1, a2, a3 ∈ g, we have

σ(1) = 1

σ(j(a1)) = a1

σ(j(a1)j(a2)) = a1 · a2 +
1

2
[a1, a2]

σ(j(a1)j(a2)j(a3)) = a1 · a2 · a3 +
1

2

{
a1 · [a2, a3] + [a1, a2] · a3 + (−1)p(a2)p(a1)a2 · [a1, a3]

}
.

By inversion we get

β(a1 · a2) = j(a1)j(a2)− 1

2
β([a1, a2]) = j(a1)j(a2)− 1

2
j([a1, a2])

β(a1 · a2 · a3) = j(a1)j(a2)j(a3)− 1

2
β

(
a1 · [a2, a3] + [a1, a2] · a3 + (−1)p(a2)p(a1)a2 · [a1, a3]

)
=

= j(a1)

(
j(a2)j(a3)− 1

2
j([a2, a3])

)
− 1

2

(
j([a1, a2])j(a3) + (−1)p(a2)p(a1)j(a2)j([a1, a3])

)
.

Remark 2.5.5. (Historical note)
In the literature you can �nd proofs of the fact that β is an isomorphism of K-modules for
K = K0 ⊇ Q, g a Lie K-algebra ([Coh], [Bou] exercise 16, page 78) or a Lie superalgebra
(appendix of [Qui]). All these proofs are reduced to the case of free Lie algebras.
The case of N-nilpotent Lie superalgebras was known only for N = 2. It was proved by M.
El-Agawany and A. Micali (see [ElM]).

Before [Coh] the theorem was known for some class of Lie algebras. For example P.
Cartier showed the Poincaré-Birkho�-Witt theorem for a Lie algebra over a Dedeking ring
(see [Car]). In the same paper there is an example of Lie algebra not verifying weak Poincaré-
Birkho�-Witt property. An older example is contained in [Sir].

Cohn uses that the theorem is true for g a free Lie algebra, to prove that β is injective
if K is torsion-free and g a Lie K-algebra. He is the �rst to prove the strong Poincaré-
Birkho�-Witt theorem with no assumption on g as a K-module. The same paper contains a
family of examples of Lie algebras over a ring of prime characteristic p, not verifying weak
Poincaré-Birkho�-Witt theorem, one for each p prime.

In [Bou]) it is shown that β is one-to-one for a Lie algebra over Q. The proof is reduced
to the case of free Lie algebras.

In the appendix of [Qui], to prove that β is one-to-one, the proof is also reduced to the
case of free Lie superalgebras.

2.5.1 Universal representations over the enveloping algebra
We still assume hypothesis (H 2.5.1). By theorem 2.5.1 we can transport each coderivations
Φc, c ∈ K×0 ∪ {0}, on U(g).

We recall that U(g) is equipped of a natural comultiplication ∆
′ , such that for a ∈ g we

have ∆
′
(j(a)) = 1⊗ j(a) + j(a)⊗ 1.

Lemma 2.5.3. The symmetrization map verify ∆
′ ◦ β = (β ⊗ β) ◦∆. In particular for all

a ∈ g and c ∈ K×0 ∪ {0}, β ◦ Φa
c ◦ β−1 is a coderivation of U(g).
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Proof. We consider the map g → g × g such that X 7→ (X, X). It induces the comultipli-
cation over S(g) and U(g), so remark (2.5.4) ends the proof.

Let a ∈ g. In U(g) we have adj(a) = j(a)L − j(a)R.

Theorem 2.5.2. For all a ∈ g we have
i) β−1 ◦ adj(a) ◦ β = Φa

0

ii) β−1 ◦ j(a)L ◦ β = Φa
1

iii) β−1 ◦ j(a)R ◦ β = −Φa
−1.

Proof. i) The map g 3 X 7→ [a,X] is a derivation of g, it extend to derivations adj(a) and
Φa

0. The theorem 2.5.1 gives the identity i.
ii) Let W ∈ S(g), to show that σ (j(a) · β(W )) = Φa

1(W ) we only need to recall that by
de�nitions we have σ (j(a) · β(W )) = Φa

1 ◦ σ (β(W )) ≡ Φa
1(W ).

iii) As adj(a) = j(a)L − j(a)R in U(g), the previous cases give

β−1 ◦ j(a)R ◦ β = Φa
1 − Φa

0.

From (2.15), the coderivation Φa
1 − Φa

0 is equal to −Φa
−1.

Remark 2.5.6. The map a 7→ β ◦ Φa
c ◦ β−1 interpolates the regular left representation a 7→

j(a)L (c = 1) and the regular right representation a 7→ −j(a)R (c = −1).

Theorem 2.5.3. Let K = K0 be a �eld of characteristic zero and g = g0. All universal repre-
sentations g → Hom(U(g), U(g)) by coderivations are equivalent to the zero representation,
or to the adjoint representation, or to the regular left representation.

Proof. Let F : g → Hom(U(g), U(g)) be a representation by coderivations. We assume
that F is not the zero representation. By lemma 2.5.3, for any a ∈ g, G(a) := β−1 ◦F (a) ◦ β
is a coderivation of S(g). In particular G is a representation by coderivations of g in S(g).
Using that K is a �eld and using theorem 2.4.1, we get that G is one of the representations
given in theorems 2.2.1 and 2.2.2. From theorem 2.2.7 we get that G is equivalent to Φ1 or
Φ0. By theorem 2.5.2, g 3 a 7→ G(a) is equivalent to g 3 a 7→ adj(a) or g 3 a 7→ j(a)L.

Remark 2.5.7. Let K a �eld of characteristic zero. We note π1 : S(g) → g the projection
over g and we put P = π1 ◦ β−1. By theorem 1.2.1 the part ii and iii of theorem 2.5.2 is
equivalent to P ◦ aL = ϕa

1 ◦ β−1, P ◦ aR = −ϕa
−1 ◦ β−1. In [Sol] and [Hel] we can �nd a

formula for P .

Remark 2.5.8. In [Ber] and [Ras] we can �nd the formula for β−1 ◦ aL ◦ β which is in
theorem 2.5.2.
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Chapter 3

Lie groups

3.1 Dual representations
In this section we suppose that K is a �eld of characteristic zero and that g is a Lie K-
superalgebra.

We recall that, if A is a K-algebra equipped with a comultiplication ∆, its dual A∗ :=
Hom(A,K) is a K-algebra.

Lemma 3.1.1. The dual map of a coderivation is a derivation.

Proof. Let Φ : A → A be a coderivation and let ΦT be its transposed map. By de�nitions
we have

ΦT ◦Mult = Mult ◦ (1⊗ ΦT + ΦT ⊗ 1).

In particular if a, b ∈ A we have ΦT (a · b) = ΦT (a) · b + (−1)p(Φ)p(a)a · ΦT (b).

We note g∗ = Hom(g,K) the dual supervector space of g. Let be X ∈ g and let ∂(X)
be the derivation of S(g∗), with parity p(X) such that for f ∈ g∗ we have ∂(X)(f) =
f(X)(−1)p(f)p(X). Between the superalgebras S(g) and S(g∗) we have a natural pairing
noted < ·, · > and de�ned by

< X1 · · ·Xn, f >= ∂(X1) ◦ · · · ◦ ∂(Xn)|0(f) (3.1)

for all X1, ..., Xn ∈ g and f ∈ S(g∗).
Let c ∈ K. The map g 3 a 7→ (Φa

c)
T gives a representation of g in S(g)∗, by derivations.

We note ξc this representation, for all a ∈ g we have ξa
c : S(g)∗ → S(g)∗.

Theorem 3.1.1. For all a ∈ g and c ∈ K×0 , the restriction of ξa
c to g∗ is −ϕc(adx)(a).

Proof. Let f ∈ g∗ and X1, ..., Xn ∈ g. By de�nitions

−(−1)p(X1···Xn)p(a) < X1 · · ·Xn, ξa
c (f) >= − < Φa

c(X1 · · ·Xn), f >

= − < ϕa
c(X1 · · ·Xn), f > .

Remark 3.1.1. Let ξa
c |X : S(g)∗ → K be the evaluation of ξa

c in X ∈ g0. For all X ∈ g0, the
previous theorem gives ξa

c |X = −ϕc(adX)(a).
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Remark 3.1.2. Let K = R or K = C. The vector �elds {ξa
c , c ∈ K×0 }a∈g are analytic.

As explained for instance in [DuK], the existence of such a family of analytic vector �elds
can be used to show that g contains an open neighborhood U of the origin, equipped with an
associative map u : U ×U → g. This is the theorem, due to Sophus Lie, which states that we
can choose U in such a way that u veri�es also u(X,−X) = 0 and u(X, 0) = u(0, X) = X,
for any X ∈ U .

3.2 Lie groups
Let be K = K0 = R, g = g0 a �nite-dimensional Lie K-algebra, G a Lie group with Lie
algebra g.

For any c ∈ K, we consider the open set gc composed of X ∈ g such that adX has
no eigenvalues in (2πci)Z \ {0} ∈ C. For any a ∈ g and X ∈ gc, the series ϕc(adX)(a) is
convergent, and ξa

c is a vector �eld over gc. Moreover for any X ∈ gc, ξa
c |X is the corresponding

tangent vector in the point g.
We note C∞

g the sheaf of regular functions over g and C∞
G the sheaf of regular functions

over G. If exp : g → G the exponential map of G, it induces exp∗ : C∞
G → C∞

g .
Let V0 ⊂ g be an open set such that exp|V0 is a invertible, then exp∗ : C∞

G (expV0) → C∞
g (V0)

is invertible. In particular T a,c := (exp∗)−1 ◦ ξa
c ◦ exp∗ is a vector �eld over exp(V0 ∩ ga

c).

Remark 3.2.1. For any c ∈ K, the map g 3 a 7→ T a,c is a representation of g.

Let g ∈ G, we note TgG the tangent space in g, lg : G → G is the left multiplication by
g ∈ G, dlg : g → TgG is its di�erential.

Theorem 3.2.1. Let a ∈ g, c ∈ K. For all X ∈ V0∩ga
c the tangent vector T a,c

exp(X) ∈ Texp(X)G
is given by

T a,c
exp(X) =





dlexp(X)

(
1−e−adX

1−e
adX

c
(a)

)
, c 6= 0

dlexp(X)

(
(e−adX − 1)(a)

)
, c = 0

Proof. We have T a,c
exp(X) = (ξa

c ◦ exp∗)|X = d(exp)X ◦ ξa
c |X . It is well known (see for example

[Var]) that d(exp)X = dlexp(X) ◦ 1−e−adX

adX
.

Remark 3.2.2. We have

T a,1
exp(X) = −dlexp(X)

(
e−adX(a)

)
, T a,−1

exp(X) = dlexp(X) (a)

so a 7→ T a,1 and a 7→ T a,−1 are respectively the right and left regular representations.

Remark 3.2.3. The family {g 3 a 7→ T a,c}c interpolates the left and the right regular
representations.
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3.3 Di�erential forms over a module
Let K be a commutative superring and M a K-module. To introduce the notion of di�erential
form we need the following de�nition.
De�nition. 3.3.1. We denote by ΠM the K-module with graduation (ΠM)0 = M1 and
(ΠM)1 = M0. The identity over M gives an odd map π ∈ Hom(M, ΠM). The structure of
K-module for ΠM is given by

(πm)α = π(mα),∀m ∈ M, ∀α ∈ K.

Let N be a K-superalgebra.
De�nition. 3.3.2. The space of di�erential forms over M and with values in N is

A(M, N) :=
∞⊕

n=0

Hom(Sn(ΠM)⊗ S(M), N).

Let n ∈ N. A di�erential n-form is an element of An(M,N) := Hom(Sn(ΠM)⊗ S(M), N).
As Hom(S(M), N) is S(M)∗-superalgebra, we have a structure of S(M)∗-superalgebra over
the space of di�erential forms.

Let V be a K-module. For any ϕ ∈ Hom(S(V ), V ) and F ∈ Hom(S(V ), N), we introduce
∂(ϕ)(F ) = (−1)p(ϕ)p(F )F ◦ Φ ∈ Hom(S(V ), N)

where Φ ∈ Hom(S(V ), S(V )) is the coderivation corresponding to ϕ. Let α ∈ A0(M, N) and
b ∈ M , ∂(b)(α) = (−1)p(b)p(α)α ◦ bL (it is equal to the derivative in the direction b introduced
in section 1.2.1). Let α ∈ A(M, N) and ϕ ∈ Hom(S(M),M). We introduce

i(ϕ)(α) := ∂(π ◦ ϕ)(α) ∈ A0(M, N).

In particular, if α ∈ An(M,N), with n ≥ 2, and a1, ..., an ∈ g, we have i(a1) · · · i(an)(α) :=
(−1)p(α)p(πa1+···+an)α(πa1 · · · πan ⊗ id) ∈ A0(M, N). We introduce the map δ ∈ Hom(S(M ⊕
ΠM), M ⊕ ΠM) such that

δ(πm) = m, ∀m ∈ M

δ(M) = {0}
δ(Sn(M ⊕ ΠM)) = {0}, ∀n 6= 1.

The de Rham di�erential of α ∈ A(M, N) is the di�erential form dα := −∂(δ)(α). We
have the following commutation rules

[d, i(a)] = ∂(a), [i(a), ∂(b)] = 0, [i(a), i(b)] = 0, ∀a, b ∈ M.

Remark 3.3.1. Let α0 ∈ A0(M,K), α1 ∈ A1(M,K) and α2 ∈ A2(M,K). For any X, Y, Z ∈
M we have

i(X)(dα0) = (−1)p(X)∂(X)(α0)

i(X)i(Y )(dα1) = −∂(X)(i(Y )(α1)) + (−1)p(X)p(Y )∂(Y )(i(X)(α1))

i(X)i(Y )i(Z)(dα2) = ∂(X)
(
i(Y )i(Z)(α2)

)
+ (−1)p(πZ)p(X+Y )∂(Z)

(
i(X)i(Y )(α2)

)
+

+(−1)p(πX)p(Y +Z)∂(Y )
(
i(Z)i(X)(α2)

)
.
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3.4 Maurer-Cartan equations
Let K be a commutative superring and g a Lie K-superalgebra. We call a left invariant
Maurer-Cartan form over g, each 1-di�erential form α ∈ Hom(Πg ⊗ S(g), g) such that,
i(a)(α) : S(g) 3 1 7→ a for any a ∈ g, its de Rham di�erential d(α) veri�es the Maurer-
Cartan equation

d(α) = −1

2
[α, α]. (3.2)

In an analog way we have a notion of right invariant Maurer-Cartan form over g. We note
α̃ such a 1-form. The di�erence with α it that the di�erential dα̃ veri�es another equation
of Maurer-Cartan:

d(α̃) =
1

2
[α̃, α̃]. (3.3)

For any a ∈ g, the contraction i(a)(α) belongs to Hom(S(g), g). We look for di�erential
forms α and α̃ described in the following way: i(a)(α) = f(adx)(a) where f ∈ K0[[t]] is a
formal series such that f(0) = 1.
Let β ∈ {1,−1}, the two Maurer-Cartan equations (3.2) and (3.3) can written as

−∂(a)(f(adx)(b)) + (−1)p(a)p(b)∂(b)(f(adx)(a)) = β[f(adx)(a), f(adx)(b)], ∀a, b ∈ g (3.4)

where β = 1 corresponds to α and β = −1 corresponds to α̃.
Lemma 3.4.1. Equation (3.4) is equivalent to

(
f(u + t)− f(t)

u
+

f(u + t)− f(u)

t
+ βf(u)f(t) : [a, b]

)

x

= 0, ∀a, b ∈ g. (3.5)

Proof. From theorem 1.3.1 we have

∂(a)(f(adx)(b)) =

(
f(t + u)− f(u)

t
: [a, b]

)

x

,

so ∂(b)(f(adx)(a)) = −(−1)p(a)p(b)
(

f(t+u)−f(t)
u

: [a, b]
)

x
.

Theorem 3.4.1. i) Let β ∈ {1,−1}. The equation (3.5) is veri�ed for all Lie K-superalgebras
if and only if

f(u + t)− f(t)

u
+

f(u + t)− f(u)

t
+ βf(u)f(t) = 0 (3.6)

in K0[[t, u]].
ii) Let K ⊇ Q, the unique solution in K0[[t]] with f(0) = 1 is f(t) := e−βt−1

−βt
.

Proof. The �rst part follows from lemma 3.4.1. As seen in the proof of theorem 2.1.2, an
equation of type (3.5) is veri�ed for any K-Lie superalgebra if and only if the functional
equation (3.6) is veri�ed.
ii) The functional equation (3.6) gives f ′(t)+ f(t)−f(0)

t
= −βf(0)f(t). If we �x f(0) := c, this

equation has only one solution which is a formal series. For c = 1 and we have the unique
solution f(t) = e−βt−1

−βt
.
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Corollary 3.4.1. Let K ⊇ Q. Each Maurer-Cartan equations has one analytic solution
independent of the Lie K-superalgebra:

α =
1− e−adx

adx
, α̃ =

eadx − 1

adx
.

Remark 3.4.1. Let K = R. An analytic solution of the Maurer-Cartan equation can be used
to prove the third Lie theorem on the existence of local Lie groups (see [Sha]).

Remark 3.4.2. For any a ∈ g, there exist a, ã analytic vector �elds over g such that
i(a)(α) = i(ã)(α̃) = a. More over a = −ϕ−1(adx)(a), ã = ϕ1(adx)(a).

The vector �eld a is called the left invariant vector �eld of a, ã is the right invariant one.
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Chapter 4

Symmetric spaces

Let K be commutative superring. We recall the de�nition of a K-supersymmetric space.
De�nition. 4.0.1. Let g be a Lie K-superalgebra, h and q two K-modules such that g = h⊕q.
We say that (h, q) is a supersymmetric space if

[h, h] ⊆ h, [q, q] ⊆ h, [h, q] ⊆ q.

Example 4.0.1. Let g be a Lie K-superalgebra. As examples of symmetric spaces we have
i) g with h = g0 and q = g1, if g = g0 or 1

2
∈ K.

ii) The direct product of Lie superalgebras g×g becomes a symmetric space if h is the diagonal
and q = {(X,−X), X ∈ g}, when 1

2
∈ K.

Let g be a Lie K-superalgebra. We consider the family {Φc}c of representations introduced
in section 2.2. We start with some properties of Φc related to g× g.
Lemma 4.0.2. Assume K ⊇ Q. The couple (Φc, Φd), with c and d in K×0 , is composed of
commuting representations for any Lie K-superalgebra g , if and only if c = −d.
Proof. Let us consider the couple Φc et Φd. By theorem 2.1.2 and by formula (2.12) they
commute if

0 = d · ϕ′c(z) + ϕc(z) · ϕd(z)− d

z
.

If we derive and we set z = 0 we get 0 = c + d.
If c = d = 0, we get Φ0, which commutes with itself only for g commutative. To end the

proof, we need to show that c = −d 6= 0 is also a su�cient condition. This means that

−ϕ−c(y)
ϕc(x + y)− ϕc(x)

y
− ϕc(x)

ϕ−c(x + y)− ϕ−c(y)

x
= 0.

this equation is equivalent to ϕc(−y)ϕc(x+y)−ϕc(x)
y

= −ϕc(x)ϕc(−x−y)−ϕc(−y)
x

who is true.

Let ρ : g×g → Hom(S(g), S(g)) be a representation, it decomposes into the sum of two com-
muting representations ρ1, ρ2 : g → Hom(S(g), S(g)) such that ρ(a1, a2) = ρ1(a1) + ρ2(a2)
for each (a1, a2) ∈ g× g. We write ρ = (ρ1, ρ2).
In the following theorem we consider only Lie K-algebras g such that one of the following
hypothesis is veri�ed:
a1) K ⊇ Q,
aN) g is N -nilpotent and 1

2
, ..., 1

N
∈ K.
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Theorem 4.0.2. Let N ≥ 1, K = K0 be a �eld, g = g0 be a Lie K-algebra. A representations
by coderivations of g × g over S(g) is universal in the family of Lie algebras g verifying aN

if and only if it is the zero representation, or (Φc, 0), or (0, Φc) with c ∈ K×0 ∪ {0}, (Φd, Φ−d)
with d ∈ K×0 .
Proof. If ρ is a representation by coderivations for any Lie algebra verifying aN , also ρ1 and
ρ2 have the same property. Theorems 2.2.3, 2.2.5 and lemma 4.0.2 end the proof.

Using the previous theorem, corollary 2.2.7, theorem 2.5.2 we get

Corollary 4.0.2. Let N ≥ 1, K = K0 be a �eld, g = g0 be a Lie algebra. We have 5 classes
of equivalence for non-zero representations by coderivations of g × g → Hom(U(g), U(g))
which are universal in the family of Lie algebras g verifying aN :

g× g 3 (a, b) 7→ αada + (1− α)adb, α ∈ {0, 1}
g× g 3 (a, b) 7→ αaL − (1− α)bR, α ∈ {0, 1}
g× g 3 (a, b) 7→ aL − bR.

Let m(t) ∈ K[[t]]. To any a ∈ g we associate the coderivation Ma : S(g) → S(g). By
theorem 2.1.2 we get

Lemma 4.0.3. Assume that 1
2
∈ K. For any Lie K-superalgebra g the identity

[Ma,M b] =
1

4
Φ

[a,b]
0 ,∀a, b ∈ g (4.1)

is veri�ed, if and only if m ∈ K0[[t]] veri�es

m(u)
m(t + u)−m(t)

u
+ m(t)

m(t + u)−m(u)

t
=

1

4
(t + u). (4.2)

We consider the identity (4.1) because it occurs in the paper [AlM].

Theorem 4.0.3. i) Let K ⊇ Q. The identity (4.1) is veri�ed for all K-Lie superalgebras g,
if m(t) = 1

2
ϕ0(t), or m(t) = −1

2
ϕ0(t), or m(t) = 1

2
t coth(ct) with c ∈ K×0 .

ii) Let N ≥ 2 and K ⊇ {1
2
, ..., 1

N
}. The identity (4.1) is veri�ed for all N-nilpotent Lie

superalgebra g, if m(t) = 1
2
ϕ0(t), or m(t) = −1

2
ϕ0(t), or m(t) = 1

2
t coth(ct) mod tN with

c ∈ K×0 .
Proof. i) By the previous lemma we are reduced to look for all triples (ϕ(t), ϕ(t), 1

4
t)

verifying equation 2.11. Theorem 2.3.2 gives ϕ = ±1
2
ϕ0 and theorem 2.3.3 gives ϕ =

±1
2

(
ϕ 1

2c
− ϕ−1

2c

)
.

ii) Let IN be the ideal of K0[[t, u]] generated by {tiuj|i + j ≥ N − 1}. In analogy with
section 2.2.1, we want to solve equation (4.2) in K0[[t, u]]/IN . Any solution of (4.2) in K0[[t]],
truncated to degree N , gives a solution of (4.2) in K0[[t, u]]/IN .
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4.1 The symmetrization map for super symmetric spaces
Let K ⊇ Q be a commutative superring. Let g = (h, q) be a supersymmetric space over K.
We consider d(t), p(t) ∈ K[[t]] such that p(t) = p(−t), d(t) = −d(−t). To any a ∈ g we
associate the coderivation Πa : S(q) → S(q) such that

Πa =

{
id ∗ p(adx)(a), a ∈ q

id ∗ d(adx)(a), a ∈ h
.

In particular

Πa(1) = 0, ∀a ∈ h (4.3)

We note Π : g → Hom(S(q), S(q)) the map such that g 3 a 7→ Πa.
Theorem 4.1.1. The map Π is a representation for all K-supersymmetric space, if (p(t), d(t)) =
(0, 0) or (d(t), p(t)) = (−t, t coth(ct)), c ∈ K×0 .
Proof. By theorem 2.1.2 we solve the following system of equations

d(y)
d(x + y)− d(x)

y
+ d(x)

d(x + y)− d(y)

x
= −d(x + y) (4.4)

p(y)
p(x + y)− p(x)

y
+ p(x)

p(x + y)− p(y)

x
= −d(x + y) (4.5)

p(y)
d(x + y)− d(x)

y
+ d(x)

p(x + y)− p(y)

x
= −p(x + y). (4.6)

Equation (4.4) give d(x)
(

d(x)
x

+ 1
)

= 0. We consider only d(x) = 0 and d(x) = −x.
If d = 0, equation (4.6) give p = 0 and equation (4.5) is veri�ed.
Let be d(x) = −x, equation (4.6) is veri�ed and equation (4.5) becomes

p(y)
p(x + y)− p(x)

y
+ p(x)

p(x + y)− p(y)

x
= x + y.

If we compare with equation (4.2) we get p(z) = 2m(z). As p(z) = p(−z), we get p(t) =
t coth(ct) with c ∈ K×0 .

For any c ∈ K×0 we denote by Πc : g → Hom(S(q), S(q)) the representation correspond-
ing to the couple of series

(p, d) = (t coth

(
t

c

)
,−t).

In the case of a supersymmetric space, the symmetrization map β : S(g) → U(g) induces

β|S(q) : S(q) → U(g)/U(g) · h.

Considering the case c = 1 we have the representation Π1 : g → Hom(S(q), S(q)). By
universal property of the enveloping algebras, it extends to a morphism of algebras Π :
U(g) → Hom(S(q), S(q)). It gives a map U(g) 3 u 7→ Πu(1) ∈ S(q). By (4.3), this map
induces a symbol map σ:

σ : U(g)/U(g) · h → S(q).
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Theorem 4.1.2. The map β|S(q) : S(q) → U(g)/U(g) · h is a module-isomorphism with
inverse map σ.

Proof. Let a ∈ q0. By Πa(1) = a we get

σ ◦ β(an) = an, ∀n ∈ N. (4.7)

By looking at the generic point of q, this implies the assertion: in the following we give the
details.

We consider the Lie superalgebra gy := Hom(S(q), g) over S(q)∗. It has a natural struc-
ture of symmetric space gy = qy⊕ hy, where hy = Hom(S(q), h) and qy = Hom(S(q), q). We
denote by y ∈ qy the generic point of q. From identity (4.7) we get

σgy ◦ βgy |S(qy)(y
n) = yn, ∀n ∈ N. (4.8)

Let X1, ..., Xn ∈ q. By de�nitions we have yn(X1 · · ·Xn) = n!X1 · · ·Xn, and
(
σgy ◦ βgy(y

n)
)
(X1 · · ·Xn) = n!σ ◦ β(X1 · · ·Xn).

In particular X1 · · ·Xn = σ ◦ β(X1 · · ·Xn) for any X1, ..., Xn ∈ q, so σ ◦ β = id. As β is onto,
this shows that σ is the inverse of β.

We denote by θ : g → g the map such that θ|q = −id and θ|h = id. Let ad′ : g× U(g) →
U(g) be de�ned as

ad′(a)(X) = a ·X − (−1)p(a)p(X)X · θ(a), ∀X ∈ U(g).

We call ad′ the twisted adjoint action of g.

Theorem 4.1.3. For all a ∈ g we have ad′(a) ◦ β = β ◦ Πa
2.

Proof. We remark that ad′(a) ◦ β = aL ◦ β− θ(a)R ◦ β. If we note Ψa = β−1 ◦ aL ◦ β− β−1 ◦
θ(a)R ◦ β, from theorem 2.5.2 we get

Ψa = Φa
1 + Φ

θ(a)
−1 =

{
Φa

0, a ∈ h

Φa
1 + Φ−a

−1, a ∈ q
= Πa

2.

This means that β−1 ◦ ad′(a) ◦ β = Πa
2.

Corollary 4.1.1. The set β(S(q)) is invariant by the ad′-action of g.

4.2 Supertrace and Berezinian determinant
Let K be a commutative superring. The algebra of square matrices with coe�cients in K
and size (n + m) has the following graduation: let M =

(
A B
C D

)
be a matrix such that

A,B,C,D have size n, (n,m), (m,n), m. We say that M is even if A, D have coe�cients in
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K0 and B, C have coe�cients in K1. We say that M is odd if A,D have coe�cients in K1

and B, C have coe�cients in K0. The supertrace of the graded matrix M is de�ned as

str(M) := tr(A)− (−1)p(M)tr(D).

Let us consider an even matrix M with D an invertible matrix. The berezinian determi-
nant is de�ned as

Ber(M) := det(A−B ·D−1 · C)det(D−1) ∈ K.

Proposition. 4.2.1. ([Ber1])
i) str(M ·N) = (−1)p(M)p(N)str(N ·M).
ii) When the Ber(M) and Ber(N) are de�ned, Ber(M ·N) = Ber(M)Ber(N).
iii) Let K ⊇ Q. When the exponential matrix eM is de�ned1, Ber(eM) = estr(M).

Let consider a freeK-module V of �nite rang. Let {ei}i be a basis of V and {e∗1, ..., e∗n+m} ⊂
V ∗ be the dual basis. If f : V → V is a K-linear map, it is represented by the matrix
Mij := e∗i (f(ej)). We de�ne str(f) := M and Ber(f) := Ber(M).

4.3 A formula for Gorelik 's line
Let K be a �eld of zero characteristic.

In the paper [Gor], M. Gorelik assumes that q = q1 is a �nite-dimensional vector space
and strq(ada) = 0,∀a ∈ h. She shows that U(g) contains a line of ad′-invariant vectors . By
theorem 4.1.3, this is equivalent to say that S(q) contains a line belonging to the kernel of
Π2.

In this section we give a formula for the Gorelik 's line in S(q). Before giving the proof
we give a an example the formula when q is of dimension two:

Lemma 4.3.1. Let (h, q) be a supersymmetric space over a �eld of characteristic zero, with
strq(ada) = 0 for all a ∈ h, q = q1, {v1, v2} a basis for q. Gorelik 's line is generated by

v1 · v2 +
1

12
strq(adv1 ◦ adv2).

Proof. Let p(t) = t coth( t
2
) = p1 + p2t

2 + · · · = 1 + 1
6
t2 + · · ·. By de�nitions

Πv1
2 (v1 · v2) = p2(adx)2(v1 · v2) + p1v1 · v1 · v2 = p2(−[[v2, v1], v1] + (−1)p(v1)[v2, [v1, v1]]).

Using the Jacobi identity we get

Πv1
2 (v1 · v2) = 3p2[v1, [v1, v2]] =

1

2
[v1, [v1, v2]].

Let {v∗1, v∗2} be the dual basis of {v1, v2}. As strq(ad[v1, v1]) = 0, identity (1.4) and the Jacobi
identity give v∗2([[v1, v1], v2]) = 0. In particular [v1, [v1, v2]] ∈ span{v1} and

Πv1
2 (v1 · v2) =

1

2
1v∗1([v1, [v1, v2]]) =

1

4
Πv1

2 (1)v∗1([v1, [v1, v2]]).

1For instance if M is nilpotent matrix
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From the Jacobi identity we get [[v1, v1], v2] = 2[v1, [v2, v1]]). In particular

strq(adv1 ◦ adv2) = −v∗1([v1, [v2, v1]]) + 2v∗2([v2, [v2, v1]]).

We get that

strq(adv1 ◦ adv2) = 3v∗1([[v2, v1], v1]) + 2strq(ad[v1, v2]) = 3v∗1([[v2, v1], v1]) = −3v∗1([v1, [v1, v2]])

so
Πv1

2 (v1 · v2) = − 1

12
Πv1

2

(
strq(adv1 ◦ adv2)

)
.

In particular Πv2
2

(
v1 · v2 − 1

12
strq(adv2 ◦ adv1)

)
= 0. In a similar way we show that Πv2

2 (v1 · v2)+
1
12

Πv2
2 (strq(adv1 ◦ adv2)) = 0. If a ∈ h we have Πa

2(1) = 0 and

Πa
2(v1 · v2) = [a, v1] · v2 + v1 · [a, v2] = −strq(ada)v1 · v2

By hypotheses we get Πa
2(v1 · v2) = 0.

Let n := dim(q) be the dimension of q as K-vector space. If n ≥ 3, it is not easy to
generalize the previous proof. We are going to reduce the research of a formula for the
Gorelik 's line to the resolution of a functional equation.

By the natural pairing (3.1) each T ∈ S(q) gives the morphism of K-modules < T, · >:
S(q∗) → K. Let v1, ..., vn be a basis of q = q1, to each f ∈ S(q∗) we can associate the
morphism of K-modules mf : S(q∗) → K de�ned by

mf (g) = (−1)np(f) < v1 · · · vn, f · g >, ∀g ∈ S(q∗).

We denote by ∂f : S(q) → S(q) the derivation such that ∂f (vi) := f(vi). If g1, ..., gn ∈ S(q∗)
we note ∂g1···gn := ∂g1 ◦ · · · ◦ ∂gn .

Remark 4.3.1. We have < v1 · · · vn, f · g >= (−1)np(f) < ∂f (v1 · · · vn), g >.

Let v
(n)
0 = v1 · · · vn + · · · ∈ S(q) be in the Gorelik 's line, we can write v

(n)
0 = ∂f (v1 · · · vn)

with f ∈ S(q∗) such that its component over K = S0(q∗) is 1. We note this component with
f(0). In the following we �nd a formula for f .

Let {πa, a ∈ g} be the family of vector �elds over q de�ned by the representation Π2. If
y is the generic point of q we have πa = ga(ady)(a) with

ga(z) =

{ −z, a ∈ h

z · coth( z
2
), a ∈ q

.

Remark 4.3.2. By duality (−1)p(a)p(T ) < T, πa(·) >=< Πa
2(T ), · > for all a ∈ g and T ∈

S(q∗).

By this remark, v
(n)
0 veri�es < v

(n)
0 , πa(·) >≡ 0 for any a ∈ g.

Let x1, ..., xn be the dual base of vi, in this section we note ∂
∂xi

:= ∂(vi). As y = vi ⊗ xi ∈
q⊗ S(q∗), for a ∈ g we note

πa
i := (−1)p(vi)p(a)xi(g

a(ady)(a)) ∈ S(q∗), i = 1, ..., n

so πa =
∑n

i=1 πa
i · ∂

∂xi
∈ q⊗ S(q∗).
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Lemma 4.3.2. For any f ∈ S(q∗)0 and a ∈ g, we have

< ∂f (v1 · · · vn), πa(g) >= − < v1 · · · vn, (πa(f) + f · div(πa)) · g >, ∀g ∈ S(q∗1).

Proof. By de�nitions we get

f · πa(g) =
n∑

i=1

(−1)p(vi)p(a+vi)
∂

∂xi

(f · πa
i · g)− πa(f) · g − f · div(πa) · g.

As q1 is �nite-dimensional, for each i we have < v1 · · · vn,
∂

∂xi
(g) >= 0.

We have shown that

Theorem 4.3.1. For each n ≥ 1, v
(n)
0 = ∂f (v0 · · · vn) = v0 · · · vn + · · · ∈ S(q) is in Gorelik

's line if and only if the element f ∈ S(q∗) veri�es
{

πa(f) + f · div(πa) = 0, ∀a ∈ g

f(0) = 1
. (4.9)

To solve (4.9) we use a preliminary lemma, it uses the following notation. Let be p(z), q(z) ∈
K[z] and a ∈ g,

(p(t)q(u) : ada)y := [p(ady)(a), q(ady)(·)] ∈ Hom(g, g)

which is extended by linearity to polynomial in K[t, u].

Lemma 4.3.3. Let be (h, q) a super symmetric space over a �eld K, such that q is �nite-
dimensional. For each polynomial q(z) ∈ K[z] such that q(z) = −q(−z) we have

strq

((
q(u + t)t : ada

)
y

)
= 0, ∀a ∈ h, .

Proof. It is su�cient to consider q(z) = qk(z) := z2k+1 with k ≥ 0. By de�nitions

strq

(
(qk(u + t)t : ada)y

)
=

2k+1∑
j=0

(
2k + 1

j

)
strq

(
ad

(
(ady)j(a)

) ◦ (ady)2k+2−j
)
.

This supertrace is zero because bracket rules in a symmetric space give

[adjy(h), ad2k+2−jy(q)] ⊆ h⊗ S(q∗1), ∀j.

Proposition. 4.3.1. Let (h, q) be a supersymmetric space over a �eld of characteristic zero,
with q is �nite-dimensional and odd supervector space and strq(ada) = 0 for a ∈ h. For all
(h, q), f = Berq

(
sinh( ady

2
)

ady
2

)
∈ S(q∗)0 is a solution of (4.9).

42



Proof. Using de�nitions and theorem 1.3.1 we get

div(πa) = (−1)p(vi)
∂

∂xi

xi(g
a(ady)(a)) = xi

(
∂

∂xi

ga(ady)(a)

)
=

= (−1)p(vi)xi

(
ga(t + u)− ga(u)

t
: [vi, a]

)

y

=: −strq

((
ga(t + u)− ga(u)

t
: ada

)

y

)
.

Choosing f = estrq(h(ady)) with h(t) ∈ Q[t] we have
∂f

∂xi

= f · ∂

∂xi

(strq(h(ady))) = f · strq

(
∂h(ady)

∂xi

)
= f · strq

(
h′(ady)

∂ady

∂xi

)

and by fundamentals properties of the supertrace we get
∂f

∂xi

= (−1)p(vi)f · strq (h′(ady) · advi) .

From lemma 1.3.1 we get ∂f
∂xi

= (−1)p(vi)f · strq

(
(h′(t + u) : advi)y

)
, so we have

πa(f) = (−1)p(vi)p(a)xi(g
a(ady)(a))

∂f

∂xi

=

= f · strq

(
(h′(t + u) : adga(ady)(a))y

)

= f · strq

(
(h′(t + u)ga(t) : ada)y

)
.

Equation (4.9) becomes




strq

((
h′(t + u)ga(t)− ga(t+u)−ga(t)

u
: ada

)
y

)
= 0,∀a ∈ g

h(0) = 0

which means



strq

(
(−h′(t + u)t + 1 : ada)y

)
= 0, a ∈ h

strq

((
t coth( t

2
)h′(t + u)− (t+u) coth( t+u

2
)−t coth( t

2
)

u
: ada

)
y

)
= 0, a ∈ q

h(0) = 0

. (4.10)

Hypothesis over the supertrace can be written as strq((1 : ada)y) = 0 for a ∈ h. By lemma
4.3.3 we put 




h′(u) = −h′(−u)

t coth( t
2
)h′(t + u)− (t+u) coth( t+u

2
)−t coth( t

2
)

u
= 0

h(0) = 0

who can be reduced to {
h′(u) = 1

2
coth(u

2
)− 1

u

h(0) = 0

so h(u) = lg
(

sinh(u
2
)

u
2

)
.
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Remark 4.3.3. In the previous proof we use the formal series sinh( z
2
)

z
2

. Its logarithmic deriva-
tive is equal to the series giving the universal solution of the cyclotomic equation in theorem
5.2.2.
Remark 4.3.4. By de�nition strq(advi ◦ advj + advj ◦ advi) = strq(ad[vi, vj]) for all i, j =
1, ..., n, so

strq(advi ◦ advj) = −strq(advj ◦ advi).

For any permutation s ∈ Σn we denote by |s| its signature.
Corollary 4.3.1.

v
(2)
0 = v1 · v2 +

1

12
strq(adv1 ◦ adv2)

v
(3)
0 = v1 · v2 · v3 +

∑

s∈Σ3,s(1)<s(2)

(−1)|s|
1

12
strq(advs(1) ◦ advs(2))vs(3)

v
(4)
0 = v1 · v2 · v3 · v4 +

1

12

∑

s∈Σ4,s(1)<s(2)

(−1)|s|strq(advs(1) ◦ advs(2))vs(3) · vs(4) +

1

278

∑

s∈Σ4,s(1)<s(2),s(3)<s(4)

(−1)|s|strq(advs(1) ◦ advs(2))strq(advs(3) ◦ advs(4)) +

− 1

2880

∑
s∈Σ4

(−1)|s|strq(advs(1) ◦ advs(2) ◦ advs(3) ◦ advs(4)).

Proof. Let M := ady, if dim(q) ≤ 4 we have M5 = 0 so

f = Berq

(
1 +

1

24
M2 +

1

1920
M4

)
=: Berq

(
1 + aM2 + bM4

)
=

= estrqlg(1+aM2+bM4)

= e
strq

�
aM2+bM4−a2

2
M4
�

= 1 +

(
b− a2

2

)
strq(M

4) + a · strq(M
2) +

a2

2
· strq(M

2)2

= 1− 1

2880
strq(M

4) +
1

24
strq(M

2) +
1

1152
strq(M

2)2.

If n = 2 we have M2 = (−adv1 ◦ adv2 + adv2 ◦ adv1)x1 · x2 so

f = 1− 1

12
strq(adv1 ◦ adv2)x1 · x2

∂f (v1 · v2) = v1 · v2 +
1

12
strq(adv1 ◦ adv2)∂x1 ◦ ∂x2(v2 · v1)

If n = 3, M2 =
∑

s∈Σ3
(−advσ(1) ◦ advσ(2) + advσ(2) ◦ advσ(1))xσ(1) · xσ(2) and

f = 1− 1

12

∑

s∈Σ3,s(1)<s(3)

strq(advs(1) ◦ advs(2))xs(1) · xs(2)

∂f (v1 · v2 · v3) = v1 · v2 · v3 − 1

12

∑

s∈Σ3,s(1)<s(2)

(−1)|s|strq(advs(1) ◦ advs(2))∂xσ(1)
◦ ∂xσ(2)

(vs(1)vs(2)vs(3)).
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If n = 4 we have M2 =
∑

1≤i<j≤4−(advi ◦ advj − advj ◦ advi)xi · xj and

M4 =
∑
s∈Σ4

(advs(1)◦advs(2)−advs(2)◦advs(1))(advs(3)◦advs(4)−advs(4)◦advs(3))xs(1)·xs(2)·xs(3)·xs(4)

so

f = 1 +
1

12

∑

s∈Σ4,s(1)<s(2)

strq(advs(1) ◦ advs(2))vs(2) · vs(1) +

+
1

278

∑

s∈Σ4,s(1)<s(2),s(3)<s(4)

(−1)|s|strq(advs(1) ◦ advs(2))strq(advs(3) ◦ advs(4))x1 · x2 · x3 · x4 +

− 1

2880

∑
s∈Σ4

(−1)|s|strq(advs(1) ◦ advs(2) ◦ advs(3) ◦ advs(4))x1 · x2 · x3 · x4.

Example 4.3.1. ([ArB])
As a �rst example we consider the Lie superalgebra

g = osp(1, 2) =








0 a b
−b c d
a e −c


 ; a, b, c, d, e ∈ K





with q = g1 equipped of the basis

v1 =




0 1 0
0 0 0
1 0 0


 , v2 =




0 0 1
−1 0 0
0 0 0




in this basis v
(2)
0 = v1 · v2 + 1

4
.

Example 4.3.2. [ArB]
As second example we have

g = osp(1, 4) =








0 vT wT

−wT C D
v E −CT


 ; v, w ∈ K2, D = DT , E = ET





with C, D, E 2-dimensional matrices. As a basis for q1 we take

v1 =




0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0




, v2 =




0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0




v3 =




0 0 0 1 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, v4 =




0 0 0 0 1
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0




.
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In this basis
v

(4)
0 = v1 · v2 · v3 · v4 − 5

12
(v2 · v4 + v1 · v3)− 3

16
.

In [ArB] are given formulas for the image of the Gorelik 's element in U(g), for all g =
osp(1, 2n) with n ≥ 1. From these formulas it is easy to get the corresponding formulas for
S(q). For n = 1 and n = 2 we have formulas which look slightly di�erent because we use a
di�erent basis.
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Chapter 5

A special classical dynamical
Yang-Baxter equation

Let K be a commutative superring.

5.1 Quadratic Lie superalgebras
Let M, N be two K-modules. A linear application α : M ⊗ M → N is called a bilinear
form and we write α(X,Y ) = α(X ⊗ Y ) for any X, Y ∈ M . We say that α is symmetric if
α(X,Y ) = (−1)p(X)p(Y )α(Y,X) for any X, Y ∈ g. We say that α it is not-degenerate when
α
′
: g 3 X 7→ α(X, ·) ∈ g∗ is one-to-one.
Let g be a Lie K-superalgebra, we say that α : g ⊗ g → N is invariant if α(X, [Y, Z]) =

α([X, Y ], Z) for any X, Y, Z ∈ g.
Lemma 5.1.1. Let g be equipped with an invariant bilinear form α : g ⊗ g → K. For all
X ∈ g0 and Y, Z ∈ g we have

α((adX)j(Y ), Z) = (−1)jα(Y, (adX)j(Z)), ∀j ∈ N.

Proof. The statement follows by induction over j.

We extend α to a bilinear form gx ⊗ gx → S(g)∗ still noted α, in the following way:

α(F, G) := α ◦ (F ⊗G) ◦∆, ∀F, G ∈ gx.

Remark 5.1.1. If α : g⊗g → K is invariant, the extension α : gx⊗gx → S(g)∗ is invariant.
De�nition. 5.1.1. Let K be a �eld, g0 and g1 be �nite-dimensional vector spaces. If α
is even, symmetric, invariant and non-degenerate, we say that (g, α) is a quadratic Lie K-
superalgebra.

5.2 A solution of vCDYBE
Let g be a Lie K-superalgebra equipped of an invariant, symmetric, even bilinear form γ :
g⊗ g → K.

Let f(t) ∈ K0[[t]]. For any Y ∈ g we consider the map fY = f(adx)(Y ) ∈ Hom(S(g), g).
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Remark 5.2.1. Let be Y, Z ∈ g. As γ is invariant, γ(f(adx)(Y ), Z) = γ(Y, f(−adx)(Z)).
As γ is symmetric γ(f(adx)(Y ), Z) = (−1)p(Z)p(Y )γ(Z, f(−adx)(Y )).
We suppose also that f(t) = −f(−t). The previous remark allows to introduce the di�erential
2-form ω ∈ Hom(S2(Πg)⊗ S(g),K) such that

i(X)i(Y )(ω) = (−1)p(X)γ(fX , Y ), ∀X,Y ∈ g

As γ is invariant, we introduce the 3-di�erential form α ∈ Hom(S3(Πg)⊗ S(g),K) such
that

i(X)i(Y )i(Z)(γ) = (−1)p(Y )γ([X, Y ], Z), ∀X, Y, Z ∈ g.

If l, q, r are three power series with coe�cients in K0, we introduce the notation
((

l(t)q(u)r(v) : α(X, Y, Z)
)

x

)
:= (−1)p(Y )γ([lX , qY ], rZ) ∈ S(g)∗

for any X, Y, Z ∈ g. This notation is extended to all formal power series in K0[[t, u, v]].
Remark 5.2.2. For all X, Y, Z ∈ g we have

((
l(t, u, v) : α(X, Y, Z)

)
x

)
= (−1)p(πX)p(πY )

((
l(u, t, v) : α(Y, X, Z)

)
x

)
((

l(t, u, v) : α(X, Y, Z)
)

x

)
= (−1)p(πZ)p(πY )

((
l(t, v, u) : α(X, Z, Y )

)
x

)
.

In particular, if l(t, v, u) = l(t, u, v) = l(u, v, t) we get a 3-di�erential form over g. In this
case we write (l(t, u, v) : α(X, Y, Z))x =: i(X)i(Y )i(Z)((l(t, u, v) : α)x).
Let ε ∈ K0, by remark 5.2.2, the equation

(f(t)f(v) + f(u)f(v) + f(t)f(u) + ε : α)x = d(ω) (5.1)

is well de�ned. This equation is (see below) a variant of the Classical Dynamical Yang-Baxter
Equation (vCDYBE). If equation (5.1) holds, we say that the formal series f(t) ∈ K[[t]] is a
solution of (5.1).
Lemma 5.2.1. We have the identity

d(ω) =

(
f(t + u)− f(u)

t
+

f(v + t)− f(t)

v
+

f(v + u)− f(v)

u
: α

)

x

.

Proof. Let X, Y, Z ∈ g. From remark 3.3.1 we get

i(X)i(Y )i(Z)(dω) = (−1)p(Y )∂(X)(γ(fY , Z)) + (−1)p(X)+p(πZ)p(X+Y )∂(Z)(γ(fX , Y )) +

+(−1)p(Z)+p(πX)p(Y +Z)∂(Y )(γ(tZ , X)).

From theorem 1.3.1 and from de�nitions we get

∂(X)(γ(fY , Z)) = γ(∂(X)(fY ), Z)) =

= γ

((
f(t + u)− f(u)

t
: [X, Y ]

)

x

, Z

)
=

= (−1)p(Y )i(X)i(Y )i(Z)

((
f(t + u)− f(u)

t
: α

)

x

)
.
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In particular ∂(Z)(γ(fX , Y )) = (−1)p(X)i(Z)i(X)i(Y )
((

f(t+u)−f(u)
t

: α
)

x

)
. From remark

5.2.2 we get

∂(Z)(γ(fX , Y )) = (−1)p(X)+p(πZ)p(πX)i(X)i(Z)i(Y )

((
f(t + u)− f(t)

u
: α

)

x

)
=

= (−1)p(X)+p(πZ)p(Y +X)i(X)i(Y )i(Z)

((
f(t + v)− f(t)

v
: α

)

x

)
.

In the same way we get

∂(Y )(γ(tZ , X)) = (−1)p(Z)+p(πX)p(Y +Z)i(X)i(Y )i(Z)

((
f(u + v)− f(u)

v
: α

)

x

)
.

By this lemma, equation (5.1) is equivalent to the equation
(

f(t + u)− f(u)

t
+

f(v + t)− f(t)

v
+

f(v + u)− f(v)

u
: α

)

x

=

= (f(t)f(v) + f(u)f(v) + f(t)f(u) + ε : α)x .

Theorem 5.2.1. The previous equation is veri�ed for all Lie K-superalgebras equipped of an
invariant bilinear form, if

f(t + u)− f(u)

t
+

f(u + v)− f(v)

u
+

f(v + t)− f(t)

v
=

= f(t)f(u) + f(u)f(v) + f(v)f(t) + ε mod t + u + v (5.2)

in K0[[t, u, v]].

Proof. We only need to remark that the invariance of γ(·, ·) gives (t + u + v : α)x ≡ 0 so, if
g(t, u, v) ∈ K0[[t, u, v]] we have ((t + u + v)g(t, u, v) : α)x ≡ 0.

If t + u + v = 0 (5.2) becomes

f(t + u)− f(u)

t
+

f(u + t)− f(t)

u
+

f(u) + f(t)

u + t
= f(t)f(u)−f(u)f(t+u)−f(u+ t)f(t)+ ε.

(5.3)

Lemma 5.2.2. Equation (5.2) has only one solution f ∈ Q[[t]]. If ε = 1
4
we get f(t) =

−1
t
+ 1

2
coth

(
t
2

)
= 1

2
+ ϕ1(t)−1

t
.

Proof. We apply u → 0 to equation (5.3) and we get f ′(t) = −2f(t)
t
− f(t)2 + ε. This

equation has only one odd formal power series in Q[[t]] as solution.

Theorem 5.2.2. Let K ⊇ Q be a commutative superring. For any Lie K-superalgebra
equipped of a invariant bilinear form, the odd series ρ(z) = −1

z
+ 1

2
coth

(
z
2

) ∈ Q[[z]] gives a
solution of equation (5.1) with ε = 1

4
.

The series ρ(z) is called the universal solution of the cyclotomic equation (5.1).
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Remark 5.2.3. (The classical dynamical Yang-Baxter equation)
Let K = R or K = C, g be a �nite-dimensional Lie algebras, h a Lie subalgebra. We consider
a map r : h∗ → g⊗g analytic in an open set containing zero. For any 1 ≤ i, j ≤ 3 with i 6= j,
we use the standard notation rij : h∗ → g⊗ g⊗ g (for example r12 = r ⊗ 1 and r23 = 1⊗ r).
Let

CY BE(r) := [r12, r13] + [r12, r23] + [r13, r23] ∈ g⊗ g⊗ g.

For any X ∈ g we use the standard notations X1 = X⊗1⊗1, X2 = 1⊗X⊗1, X3 = 1⊗1⊗X.
Let {ej}j be a basis of h, we introduce (see [EtV])

CDY BE(r) := CY BE(r) +
∑

j

(ej)1
∂r23

∂ej

− (ej)2
∂r13

∂ej

+ (ej)3
∂r12

∂ej

∈ g⊗ g⊗ g.

We say that r veri�es the classical dynamical Yang-Baxter equation if CDY BE(r) = 0.
Let us suppose that g is equipped of a bilinear form γ such that (g, γ) is a quadratic Lie

algebra. We identify g and its dual g∗. The bilinear form γ de�nes an element c ∈ g ⊗ g.
By looking for solutions for which r − r21 is a constant multiple of c, one obtains a modi�ed
Classical Dynamical Yang-Baxter Equation (vCDYBE) for the antisymmetric part of r. We
denote by {ei}i the basis for g such that γ(ei, ej) = δi,j for any i, j. Let ε ∈ K and ϕ :=
ej ⊗ ek ⊗ [ej, ek] ∈ g ⊗ g ⊗ g. We consider h = g. The modi�ed equation vCDYBE with
coupling constant ε is the equation CDY BE(r) = εϕ, where r : g → g⊗g, is a function with
values in the antisymmetric part of g⊗ g.

Let f(t) ∈ K[[t]]. We consider rγ =
∑

j,k γ(ej, f
ek

)ej ⊗ ek. Using properties of γ, we get
that the modi�ed equation vCDYBE for rβ is equivalent to

γ
(
[fZ , Y ], fX

)
+ ∂(Z)

(
γ(fY , X)

)
+ γ

(
[fY , X], fZ

)
+

+∂(Y )
(
γ(fX , Z)

)
+ γ

(
[fX , Z], fY

)
+ ∂(X)

(
γ(fZ , Y )

)
=

= εγ([X, Y ], Z), ∀X, Y, Z ∈ g.

This cyclotomic equation is equation (5.1) for g = g0.

Remark 5.2.4. P. Etingof and A. Varchenko give in [EtV] a classi�cation of solutions of
the classical dynamical Yang Baxter equation when g is a simple Lie algebra and h a Cartan
subalgebra.

A. Alekseev and E. Meinrenken in [AlM] consider the modi�ed equation vCDYBE with
ε = 1

4
and g a simple Lie algebra. They show that f(t) = −1

t
+ 1

2
coth( z

2
) gives a solution of

vCDYBE (they deduce it using [EtV]).
The functional equation (5.3) was found independently by L. Feher and B.G. Pusztai in

[FeP]. They give another direct proof of the fact that rβ is a solution of vCDYBE when
f(t) = −1

t
+ 1

2
coth( z

2
). Their proof uses the theory of holomorphic functional calculus of

linear operators.
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Chapter 6

A remarkable application

6.1 Some properties of quadratic Lie superalgebras
LetK = K0 be a �eld, g be a Lie �nite-dimensionalK-superalgebra equipped of a bilinear form
γ such that (g, γ) is quadratic (see de�nition 5.1.1). We �x a basis {ei}i and the corresponding
dual basis {e∗i }i ⊆ g∗. We consider also the basis {ei}i for g such that γ(ei, ej) = δi,j for any
i, j.
Remark 6.1.1. For any X ∈ g we have X =

∑
i eiγ(ei, X) =

∑
i e

iγ(X, ei).
Corollary 6.1.1. For each X ∈ g0 we have

str
(
(adX)2k+1

)
= 0, ∀k ≥ 0.

Proof. By de�nition str((adX)k) =
∑

i(−1)p(ei)γ(ei, (adX)k(ei)). We have str((adX)k) =∑
i(−1)p(ei)γ(ei, ej)γ((adX)k(ei), ej). As γ is invariant and symmetric we get

γ((adX)kei, ej) = (−1)kγ(ei, (adX)kej) = (−1)k+p(ei)p(ej)γ((adX)kej, ei)

so str((adX)k) = (−1)kstr((adX)k).

The bilinear form γ : g⊗ g → K extends to a bilinear form γ : gx ⊗ gx → S(g∗) (see section
5.1). This last one preserve properties such that the degree, the property of being symmetric.
Let x be the generic point of g. As g is �nite-dimensional, x =

∑
i ei ⊗ e∗i ∈ g ⊗ S(g∗). Let

J := Ber

(
sinh( adx

2 )
adx
2

)
∈ S(g)∗ (it has been introduced in section 4.3).

Lemma 6.1.1. i) It does exists F (z) ∈ K[[t]] such that F (z)2 =
sinh( z

2
)

z
2

, F (z) = F (−z) and
F (0) = 1.
ii) It does exist J

1
2 ∈ S(g)∗, such that J

1
2 · J 1

2 = J and J
1
2 (1S(g)) = 1. More over J

1
2 =

Ber (F (adx)).
We consider

t := ρ(adx) ≡ 1

adx
− 1

2
coth

(
adx

2

)
∈ Hom(S(g), End(g))

and we introduce the matrix S with coe�cients in S(g)∗ given by
Sij := −(−1)p(ej)γ

(
t(ej), ei

)
.
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Lemma 6.1.2. For any couple of index i, j we have Sij = (−1)p(πei)p(πej)Sji.

Proof. Let ω be the di�erential form introduced in section 5.2, with f = ρ. The statement
follows from Sij = −i(ej)i(ei)(ω).

6.2 The quantization map
The paper [AlM] contains an application of the universal solution ρ in theorem 5.2.2.

Let h be the Lie algebra of a compact Lie group H. Using the fact that the universal solu-
tion veri�es the cyclotomic equation (5.1), A. Alekseev and E. Meinrenken get a quantization
map from the usual Weil algebra to their non-commutative Weil algebra.

Here we generalize this result of A. Alekseev and E. Meinrenken to any quadratic, �nite-
dimensional Lie superalgebra over a �eld K = K0 of characteristic zero. From now on g will
be such a Lie superalgebra. We start with the following de�nition

De�nition. 6.2.1. (H. Cartan)
Let A be a superalgebra over a ring. We say that A is a g-di�erential algebra if it is equipped
with derivations d, {L(a), a ∈ g}, {i(a), a ∈ g} such that d has degree 1, L(a) degree p(a),
i(a) degree p(a) + 1 and

[i(a), i(b)] = 0, [L(a), L(b)] = L([a, b]), d ◦ d = 0
[d, i(a)] = L(a), [i(a), L(b)] = i([a, b]),

∀a, b ∈ g. (6.1)

Each element of Abas := {w ∈ A; L(a)(w) = i(a)(w) = 0, ∀a ∈ g} is called a basic element.

We introduce the superalgebra S(g∗) ⊗ S(Πg∗) called the Weil algebra. It is equipped with
the following structure of g-di�erential algebra. Let {ei}i be an homogeneous basis of g and
{e∗i }i ⊂ g∗ its dual basis. For any a ∈ g, we have

iW (a)(πψ) = ψ(a), LW (a)(πψ) = −(−1)p(a)p(πψ)π(ψ ◦ ada)

iW (a)(ψ) = 0, LW (a)(ψ) = −(−1)p(a)p(ψ)ψ ◦ ada, ∀ψ ∈ g∗

dW (πψ) = ψ +
1

2

∑
i

(−1)p(ei)πe∗i · LW (ei)(πψ)

dW (ψ) =
∑

i

−(−1)p(ei)e∗i · LW (ei)(πψ).

De�nition. 6.2.2. Let (B, dB, iB, LB) be a g-di�erential algebra. The equivariant cohomol-
ogy Hg(B) is the cohomology of ((S(g∗)⊗ S(Πg∗)⊗B)bas, d

W ⊗ id + id⊗ id⊗ dB).

Example 6.2.1. Let B = K. It is equipped of the trivial structure of g-di�erential algebra.
The usual equivariant cohomology Hg(B) is the set of invariants of S(g∗).

Let (g, γ) be a quadratic Lie superalgebra. We introduce the bilinear form γπ : πg⊗πg →
K such that γπ(πX, πY ) = (−1)p(X)γ(X, Y ) for any X, Y ∈ g. Let I be the ideal of T (Πg)
generated by

{
πX ⊗ πY − (−1)p(πY )p(πX)πY ⊗ πX − γπ(πX, πY )|X,Y ∈ g

}
. We de�ne the

Cli�ord algebra
Clif(Πg, γπ) := T (Πg)/I.
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A. Alekseev and E. Meinrenken have introduced a new equivariant cohomology. This one is
de�ned by a g-di�erential algebra structure over U(g)⊗Clif(Πg, γπ) which A. Alekseev and
E. Meinrenken called the non-commutative Weil algebra. This g-di�erential structure is

iW(a)(πZ) = γ(Z, a), iW(a)
(
j(Z)

)
= 0

LW(a)(πZ) = (−1)p(a)π[a, Z], LW(a)
(
j(Z)

)
= j([a, Z]) (6.2)

dW(πZ) = j(Z) + 1
2

∑
i(−1)p(ei)πei · LW(ei)(πZ)

dW(j(Z)) =
∑

i πei · j([ei, Z])

where a,X, Z ∈ g and j is the inclusion of g in the enveloping algebra U(g).

De�nition. 6.2.3. ([AlM])
Let (B, db, ib, LB) be a g-di�erential algebra. The new equivariant cohomology Ĥg(B) is the
cohomology of ((U(g)⊗ Clif(Πg, γπ)⊗B)bas, d

W ⊗ id + id⊗ id⊗ dB).

Example 6.2.2. Let B = K be equipped of the trivial structure of g-di�erential algebra.
Then Ĥg(B) is the center of the enveloping algebra U(g).

As g is quadratic, we have the natural isomorphism g 3 X → γ(X, ·) ∈ g∗. In particular
(dW , iW , LW ) induces a structure of g-di�erential algebra over S(g)⊗ S(Πg): for any a ∈ g

i
′
(a)(πZ) = γ(Z, a), i

′
(a)(Z) = 0

L
′
(a)(πZ) = (−1)p(a)π[a, Z], L

′
(a)(Z) = [a, Z], ∀Z ∈ g. (6.3)

d
′
(πZ) = Z − 1

2

∑
i(−1)p(ei)πei · L′

(ei)(πZ)

d
′
(Z) = −∑

i e
i · π[ei, Z]

A. Alekseev and E. Meinrenken have introduced a map

Q : S(g)⊗ S(Πg) → U(g)⊗ Clif(Πg, γπ)

exchanging di�erentials d
′ and dW . Its explicit formula uses two supervector space isomor-

phisms.
One is

σγ : Clif(Πg, γπ) → S(Πg) (6.4)
1 7→ 1.

Let X1, ..., Xn ∈ g. We denote by sγ(X1) the sum of the left multiplication (πX1)
L and of

the derivation 1
2
i
′
(X1). We de�ne σγ(X1 · · ·Xn) = sγ(X1) ◦ · · · ◦ sγ(Xn)(1).

Notation 6.2.1. Let f ∈ S(g)∗. It de�nes the operator ∂f : S(g) → S(g) such that

∂f (1) = f(1)

∂f (X ·W ) = ∂f◦XL(W ) + (−1)p(f)p(X)X · ∂f (W ),∀X ∈ g, ∀W ∈ S(g).

To get simpler notations, it will be denoted also by f .
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Example 6.2.3. Let X, Y ∈ g. We have

∂f (X) = f(X) + f(1)X

∂f (X · Y ) = f(X · Y ) + f(X)Y + (−1)p(f)p(X)Xf(Y ) + f(1)X · Y

Remark 6.2.1. For any f, g ∈ S(g)∗ we have ∂f ·g = ∂f ◦ ∂g.

The other vector space isomorphism is Duf := β ◦ ∂
J

1
2

: S(g) → U(g) (J 1
2 was introduced

in lemma 6.1.1). It allowed M. Du�o to show ([Duf]), in the case of a Lie algebra, that the
center of U(g) is isomorph, as an algebra, to {W ∈ S(g); LW (a)(W ) = 0,∀a ∈ g}.

The formula of A. Alekseev and E. Meinrenken is

Q = (Duf ⊗ σ−1
γ ) ◦ e

P
a,b Sab⊗i

′
(ea)◦i′ (eb).

By lemma 6.1.2, the map Q is well-de�ned.

Remark 6.2.2. For any W ∈ S(g), Q(W ⊗ 1) = Duf(W )⊗ 1.

Theorem 6.2.1. For each a ∈ g we have

Q ◦ i
′
(a) = iW(a) ◦Q, Q ◦ L

′
(a) = LW(a) ◦Q.

Proof. See appendix A.

Theorem 6.2.2. The map Q intertwines the di�erentials d
′ and dW if ρ(z) is solution of

the cyclotomic equation (5.1) with ε = 1
4
.

A. Alekseev and E. Meinrenken give two proofs of the fact that Q exchanges di�erentials.
One is a direct calculation, we can �nd in appendix A its generalization to quadratic �nite-
dimensional Lie superalgebras. This calculation uses commutation rules (6.1), the properties
of γ(·, ·). It shows that exchanging di�erentials is a consequence of the fact that ρ verify the
cyclotomic equation (5.1). The hypothesis on the topology of H and the results of [EtV],
allow A. Alekseev and E. Meinrenken to use this property of ρ.

Theorem 6.2.3. Application Q induces a one-to-one map in cohomology.

Proof. As Q is a morphism of g-di�erentials algebras and Q(0) = 0, Q induces a map in
cohomology. The map Q is one-to-one because Duf and σγ are one-to-one. In particular
also the map induced by Q in cohomology is one-to-one.
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Appendix A

Intertwining property

Let K = K0 be a �eld of characteristic zero and g be a quadratic Lie K-superalgebra. This
appendix is devoted to show theorems 6.2.1 and 6.2.2.

Let {ej} be a basis of g and {xj} ⊆ g∗ its dual basis.

A.1 Preliminary properties
For any X ∈ g we introduce dΛ(πX) := 1

2

∑
j πej · π[j,X] ∈ S(Πg). In the following lemma

we give formulas for the structure of g-di�erential algebra over S(g) ⊗ S(Πg) introduced in
(6.3).
Lemma A.1.1. For any a ∈ g we have

L
′
(a) = Φa

0 + (−1)p(a)
∑

j

(π[a, ej])L ◦ i
′
(ej) (A.1)

d
′
=

∑
j

(
(ej)L + dΛ(πej)L

) ◦ i
′
(ej) + (−1)p(ej)(πej)L ◦ Φ

ej

0 . (A.2)

Proof. The formula (A.1) follows from de�nitions and from the remark 6.1.1. As d
′ is a

derivation of S(g ⊗ Πg), it is su�cient to show that the formula is true over Πg and g.
We remark that the formula (A.2) is veri�ed over Πg. From d

′ ◦ d
′

= 0 we get d
′
(X) =∑

j(−1)p(ej)πej · [ej, X] for any X ∈ g. In particular the formula (A.2) is veri�ed over g.
Remark A.1.1. For any a ∈ g and f ∈ S(g)∗ we have [aL, ∂f ] = −∂∂(a)(f).

The identi�cation between g and g∗ allows to extend L
′
(a) to End(gx).

Lemma A.1.2. For any a ∈ g we have
i) L

′
(a)(adY ) = ad[a, Y ], ∀Y ∈ g

ii) L
′
(a)(adx) = 0.

Proof. i) We have adY =
∑

i[Y, ei]⊗ xi =
∑

i[Y, ei]⊗ ei, so

L
′
(a)(adY ) =

∑
i

L
′
(a)([Y, ei])⊗ xi + (−1)p(Y +ei)p(X)[Y, ei]⊗ L

′
(a)(ei) =

=
∑

i

[a, [Y, ei]]⊗ xi − (−1)p(Y )p(X)
∑

i,k

[Y, ei]⊗ e∗i ([k, ek])xk

= ada ◦ adY − (−1)p(Y )p(a)adY ◦ ada.
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ii) From i we get

L
′
(a)(adx) =

∑
i

L
′
(a)(adei ⊗ xi) =

∑
i

ad[a, ei]⊗ xi −
∑

k

ad[a, ek]⊗ xk.

The family {L′
(a), a ∈ g} induces the dual action over S(g)∗. It is still noted L

′ .

Lemma A.1.3. For any a ∈ g and f ∈ S(g)∗ we have [L
′
(a), ∂f ] = ∂L′ (a)(f).

Proof. We remark that [L
′
(a), ∂f ] = [Φa

0, ∂f ]. By de�nitions [L
′
(a), ∂f ](1) = 0. Let b ∈ g

and W ∈ S(g). By notation 6.2.1 and by de�nition of Φ0 we get

[Φa
0, ∂f ](b ·W ) =

= [Φa
0, ∂f◦bL ](W ) + (−1)(p(f)+p(a))p(b)bL ◦ [Φa

0, ∂f ](W )− (−1)(p(f)p(a)∂f◦[a,b]L(W ).

We suppose by induction that [Φa
0, ∂g](·W ) = ∂L

′
(a)(g)(W ) for any g ∈ S(g)∗, so

[Φa
0, ∂f ](b ·W ) =

=
(
∂L

′
(a)(f◦bL) + (−1)(p(f)+p(a))p(b)bL ◦ ∂L

′
(a)(f) − (−1)p(f)p(a)∂f◦[a,b]L

)
(W )

=
(
−(−1)p(a)(p(f)+p(b))∂f◦bL◦Φa

0
+ (−1)(p(f)+p(a))p(b)bL ◦ ∂L′ (a)(f) − (−1)p(f)p(a)∂f◦[a,b]L

)
(W )

=
(
−(−1)p(f)p(a)∂f◦Φa

0◦bL + (−1)(p(f)+p(a))p(b)bL ◦ ∂L′ (a)(f)

)
(W )

= −(−1)p(f)p(a)
(
∂f◦Φa

0◦bL + (−1)(p(f)+p(a))p(b)bL ◦ ∂f◦Φa
0

)
(W )

≡ −(−1)p(f)p(a)
(
∂f◦Φa

0

)
(b ·W )

=: ∂L′ (a)(f)(b ·W ).

Theorem A.1.1. For any a ∈ g, L
′
(a)(J) = 0.

Proof. We remark that J = e
str

�
ln

sinh( adx
2 )

adx
2

�

, so L
′
(a)(J) = J · str

(
L
′
(a)

(
ln

sinh( adx
2

)
adx
2

))
. Let

G(z) := ln
sinh( z

2
)

z
2

. We have str
(
L
′
(a) (G(adx))

)
= str

(
G′(adx) · L′

(a)(adx)
)
, and by lemma

A.1.2 we get L
′
(a)(adx) = 0.

Lemma A.1.4. Let γ : g⊗ g → K0 be an invariant, even, bilinear form. For any a ∈ g,
i) L

′
(a)(γ(X, t(Y ))) = γ(a, [X, t(Y )] + [t(X), Y ]),

ii)
∑

i,j
1
2
L
′
(a)(Sij) ◦ i

′
(ei) ◦ i

′
(ej) =

∑
i,j Sij ◦ i

′
(ei) ◦ i

′
([ej, a]).

Proof. i) From lemma A.1.2 part ii we get L
′
(a)(t) = 0. In particular

0 =
∑
i,j

L
′
(a)(ej ⊗ tji ⊗ xi)) =

=
∑

i

[a, t(ei)]⊗ xi + (−1)p(a)p(ej)ej ⊗ L
′
(a)(e∗j(t(ei))⊗ xi −

∑

k

t([a, ek])⊗ xk.

Using that γ is invariant we get

0 = −γ([a, ej], t(Y ))− L
′
(a)(γ(t(ej), Y ))− γ([a, t(ej)], Y ), ∀j.
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In particular,

0 = −γ([a,X], t(Y ))− L
′
(a)(γ(t(X), Y ))− γ([a, t(X)], Y )

= −γ(a, [X, t(Y )]) + L
′
(a)(γ(X, t(Y )))− γ(a, [t(X), Y ]).

ii) This part follows from part i, using the de�nition of Sij and the commutation rules for
i
′
(·).

A.1.1 Formulas for the non-commutative Weil algebra
In this section we give formulas for the structure of g-di�erential algebra over U(g) ⊗
Clif(Πg, βπ) introduced in (6.2). The most important formulas are given in theorem (A.1.3).

For any a ∈ g we introduce γa := 1
2

∑
j πej · π[ej, a] ≡ 1

2
(−1)p(a)

∑
j π[a, ej] · πej ∈

Clif(πg, γπ).
Lemma A.1.5. Let γ : g⊗ g → K0 be an invariant, even, not-degenerate bilinear form. For
any a, b ∈ g we have
i) [πb, γa] = π[b, a], [γa, πb] = (−1)p(a)π[a, b]
ii)

[
γa, γb

]
= γ[a,b].

Proof. i) For the �rst part we have

2[πb, γa] = (−1)p(b)
∑

j

γ(b, ej)π[ej, a] + (−1)p(b)+p(πb)p(πej)πejγ(b, [ej, a]) = 2π[b, a].

ii) From the �rst part we get

2[γa, γb] = (−1)p(a)
∑

j

π[ej, a] · π[ej, b]− (−1)p(a)p(b)πej · [[ej, b], a] =

=
∑

k

πek · π([[a, ek], b]− (−1)p(a)p(b)[[ek, b], a])

so the Jacobi identity gives 2[γa, γb] = 2γ[a,b].

From the previous lemma we get
Theorem A.1.2. Let γ : g ⊗ g → K0 be an invariant, even, not-degenerate bilinear form.
For any a ∈ g we have

LW(a) = adj(a) + adγa, iW(a) = adπa

dW = ad
∑

i

πei · j(ei) + ad
∑

i

1

3
(−1)p(ei)πei · γei .

We identify Clif(πg, γπ) and S(Πg) by σγ (see (6.4)), so we get a structure of g-di�erential
algebra over U(g)⊗ S(Πg). In theorem A.3 we give formulas for this structure, they will be
used in this section A.3.3. As a preliminary remark we have

{
σγ ◦ (πa)L ◦ σ−1

γ = (πa)L + 1
2
i′(a)

σγ ◦ (πa)R ◦ σ−1
γ = (πa)L − 1

2
i′(a)

∀a ∈ g. (A.3)
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Lemma A.1.6. Let γ : g⊗ g → K be an even, symmetric, not-degenerate bilinear form. For
any a ∈ g we have

σγ ◦ (γa)R ◦ σ−1
γ = (−1)p(a)

∑
i

1

2
π[a, ei]L ◦ πeL

i −
1

2
(π[a, ei])L ◦ i′(ei) +

1

8
i′([a, ei]) ◦ i′(ei)

σγ ◦ (γa)L ◦ σ−1
γ = (−1)p(a)

∑
i

1

2
π[a, ei]L ◦ πeL

i +
1

2
(π[a, ei])L ◦ i′(ei) +

1

8
i′([a, ei]) ◦ i′(ei).

Proof. Using the formulas (A.3) we get

2(−1)p(a)σγ ◦ (γa)R ◦ σ−1
γ =

=
∑

i

(−1)p(πei)p(πa)

(
(πei)

L − 1

2
i′(ei)

)
◦

(
(π[a, ei])L − 1

2
i′([a, ei])

)

=
∑

i

(−1)p(πei)p(πa)(πei)
L ◦ (π[a, ei])L − 1

2
str(ada)− 1

2
π[a, ei] ◦ i′(ei) +

−
∑

i

1

2
(−1)p(πei)p(πa)πei ◦ i′([a, ei]) +

1

4
(−1)p(πei)p(πa)i′(ei) ◦ i′([a, ei])

=
∑

i

π[a, ei]L ◦ πeL
i − (π[a, ei])L ◦ i′(ei) +

1

4
i′([a, ei]) ◦ i′(ei).

In the same way we get

2(−1)p(a)σγ ◦ (γa)L ◦ σ−1
γ =

=
∑

i

(
(π[a, ei])L +

1

2
i′([a, ei])

)
◦

(
(πei)

L +
1

2
i′(ei)

)

=
∑

i

(π[a, ei] · πei)
L +

1

2
str(ada) +

1

2
(−1)p(πei)p(πa)(πei)

L ◦ i′([a, ei]) +
1

2
(π[a, ei])L ◦ i′(ei) +

+
∑

i

1

4
i′([a, ei]) ◦ i′(ei)

=
∑

i

(π[a, ei] · πei)
L + (π[a, ei])L ◦ i′(ei) +

1

4
i′([a, ei]) ◦ i′(ei)).

Theorem A.1.3. The structure of g-di�erential algebra induced over U(g)⊗ S(Πg) is

σγ ◦ iW(a) ◦ σ−1
γ = i′(a)

σγ ◦ LW(a) ◦ σ−1
γ = L

′
(a)

σγ ◦ dW ◦ σ−1
γ =

∑
i

dΛ(πei)L ◦ i′(ei) + (−1)p(ei)(πei)L ◦ adj(ei) +
j(ei)L + j(ei)R

2
◦ i′(ei) +

+
1

24

∑

i,j,k

i
′
(ei) ◦ i

′
(ej) ◦ i

′
(ek)γ([ek, ej(−1)p(ej)], ei)

for any a ∈ g.
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Proof. The formula for σγ ◦ iW(a) ◦ σ−1
γ follows from formulas (A.3), the formula for

σγ ◦ LW(a) ◦ σ−1
γ follows from lemma A.1.6. From theorem A.1.2 we get 3dW |Clif(πg,γπ) =:

3dW |Clif =
∑

j(−1)p(ej)
(
(πej)L ◦ (γej)L − (γej)R ◦ (πej)R

)
. Using formulas (A.3), lemma

A.1.6 and de�nitions, we get

3σγ ◦ dW |Clif ◦ σ−1
γ =

=
∑
i,j

3

2
(π[ej, e

i] · πei)
L ◦ i′(ej) +

1

8
i′([ej, e

i]) ◦ i′(ei) ◦ i′(ej) +
∑

i

1

2
str(adei)i′(ei).

By (A.3) we have

σγ ◦ ad

(∑
i

πei · j(ei)

)
◦ σ−1

γ =

=
∑

i

σγ ◦
(
(πei · j(ei))L − (j(ei) · πei)

R
) ◦ σ−1

γ

=
∑

i

σγ ◦ (πei)
L ◦ σ−1

γ ◦ j(ei)L − σγ ◦ (πei)
R ◦ σ−1

γ ◦ j(ei)R

=
∑

i

(πei)
L ◦ adj(ei) +

1

2

(
j(ei)L + j(ei)R

) ◦ i′(ei).

A.2 Proof of theorem 6.2.1
Let a ∈ g. The �rst identity follows from from σ−1

γ ◦ i
′
(a) ◦ σγ = iW(a) (theorem A.1.3) and

from that fact that [i
′
(a), i

′
(b)] = 0 for any a, b ∈ g.

To show the second identity we use the following lemma. Let W =
∑

i,l Sil ◦ i
′
(ei) ◦ i

′
(el).

Lemma A.2.1. For any a ∈ g we have W ◦ L
′
(a) = L

′
(a) ◦W .

Proof. By commutation rules in a g-di�erential algebra we have

W ◦ L
′
(a) =

∑
i,j

Sij ◦ i
′
(ei) ◦ i

′
(ej) ◦ L

′
(a) =

=
∑
i,j

(Sij + (−1)p(πei)p(πei)Sji) ◦ i
′
(ei) ◦ i

′
([ej, a])− [L

′
(a), Sij] ◦ i

′
(ei) ◦ i

′
(ej) +

+L
′
(a) ◦ Sij ◦ i

′
(ei) ◦ i

′
(ej).

By lemmas 6.1.2 and A.1.3 we get

W ◦ L
′
(a) =

∑
i,j

(
2Sij ◦ i

′
(ei) ◦ i

′
([ej, a])− L

′
(a)(Sij) ◦ i

′
(ei) ◦ i

′
(ej)

)
+ L

′
(a) ◦W,

so it is su�cient to show that 0 =
∑

i,j 2Sij ◦ i
′
(ei) ◦ i

′
([ej, a])− L

′
(a)(Sij) ◦ i

′
(ei) ◦ i

′
(ej). It

follows from lemma A.1.4, part ii.

From the previous lemma we get Q ◦ L
′
(a) = σ−1

γ ◦ L
′
(a) ◦ σγ ◦ Q. The theorem A.1.3

gives σ−1
γ ◦ L

′
(a) ◦ σγ = LW(a), so the proof is �nished.
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A.3 Proof of theorem 6.2.2
Let W =

∑
i,k

1
2
Sik ◦ i

′
(ei)) ◦ i

′
(ek), in this section we show theorem 6.2.2. It is equivalent to

show the identity β ◦J
1
2 ◦e−W ◦d

′ ◦eW ◦J−
1
2 = σ−1

γ ◦dW ◦σγ ◦β. If Ad denote the conjugation,
this identity becomes

Ad(J
1
2 ) ◦ Ad(e−W )(d

′
) = β−1 ◦ σ−1

γ ◦ dW ◦ σγ ◦ β. (A.4)

Lemma A.3.1.

Ad
(
e−W

)
(d

′
) = d

′ −
∑
i,j

1

2
γ(ej, t(ei)) ◦ i

′
([ei, ej]) + γ(ei, t(ej)) ◦ i

′
(ej) ◦ Φei

0 +

−1

2

∑

i,j,l

(
∂(el)

(
(−1)p(ej)γ

(
ej, t(ei)

))
+

1

2
(−1)p(ej)γ

(
t(el), [ej, t(ei)]

)) ◦ i
′
(ei) ◦ i

′
(ej) ◦ i

′
(el).

The proof of this identity is a long calculation so we give it in a di�erent paragraph.

A.3.1 Proof of lemma A.3.1
We have Ad

(
e−W

)
(d

′
) = ead(−W )(d

′
) = d

′ − [W,d
′
] + 1

2
[W, [W,d

′
]] + · · ·. The proof of lemma

A.3.1 is the computation of the terms of this series.

Lemma A.3.2.

[W,d
′
] =

∑
i,j

1

2
γ(ej, t(ei)) ◦ i

′
([ei, ej]) + γ(ei, t(ej)) ◦ i

′
(ej) ◦ Φei

0 +

+
1

2

∑

i,j,l

∂(el)
(
(−1)p(ej)γ(ej, t(ei))

) ◦ i
′
(ei) ◦ i

′
(ej) ◦ i

′
(el).

Proof. By commutation rules in a g-di�erential algebra (see (6.1)) we get

2[W,d
′
] =

∑
i,j

Sij ◦ [i
′
(ei) ◦ i

′
(ej), d

′
]− [d

′
, Sij] ◦ i

′
(i) ◦ i

′
(j) =

=
∑
i,j

(−1)p(ej)Sij ◦ i
′
([ei, ej]) + (−1)p(ej)p(ei)(Sij(−1)p(πei)p(πej) + Sji) ◦ L

′
(ei) ◦ i

′
(ej) +

−
∑
i,j

[d
′
, Sij] ◦ i

′
(ei) ◦ i

′
(ej).

From (A.2) we have a formula for d
′ . We compute

[d
′
, Sij] =

∑

l

−[Sij, (e
l)L] ◦ i

′
(el)(−1)p(ei)+p(ej) + (πel)L ◦ [L

′
(el), Sij](−1)p(el) =

=
∑

l

[(el)L, Sij] ◦ i
′
(el)(−1)p(πel)p(ei+ej) + (πel)L ◦ L

′
(el)(Sij)(−1)p(el).
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For any a ∈ g we have L
′
(a) = Φa

0 + L
′
(a)|S(Πg) (see formula A.1). From lemmas A.1.4 and

6.1.2 we get
∑

i,j,l

(−1)p(el)(πel)L ◦ L
′
(el)(Sij) ◦ i

′
(ei) ◦ i

′
(ej) = 2

∑

i,j,l

(−1)p(ej)p(ei)Sji ◦ L
′
(ei)|S(Πg) ◦ i

′
(ej).

The lemma 6.1.2 and the remark A.1.1 give

2[W,d
′
] =

∑
i,j

(−1)p(ej)Sij ◦ i
′
([ei, ej]) + 2(−1)p(ej)p(ei)Sji ◦ Φei

0 ◦ i
′
(ej) +

+
∑

i,j,l

−∂(el)(Sij) ◦ i
′
(ei) ◦ i

′
(ej) ◦ i

′
(el).

Lemma A.3.3. 1
2
[W, [W,d

′
]] = 1

4

∑
i,j,l−(−1)p(ej)γ

(
t(el), [ej, t(ei)]

) ◦ i
′
(ei) ◦ i

′
(ej) ◦ i

′
(el).

Proof. By the commutation rules in a g-di�erential algebra and by the fact that S(g)∗ is a
commutative superalgebra we get

4[W, [W,d
′
]] = [W, 2

∑

l,m

(−1)p(el)p(em)Slm ◦ L
′
(em) ◦ i

′
(el)].

We compute

[W,
∑

l,m

(−1)p(el)p(em)Slm ◦ L
′
(em) ◦ i

′
(el)] =

=
∑

i,j,l,m

(−1)p(el)p(em)Slm ◦
(
L
′
(em)(Sij) ◦ i

′
(el) ◦ i

′
(ei) ◦ i

′
(ej) + Sij ◦ [i

′
(ei) ◦ i

′
(ej), L

′
(em)] ◦ i

′
(el)

)

=
∑

i,j,l,m

(−1)p(el)p(em)Slm ◦
(
−L

′
(em)(Sij) ◦ i

′
(ei) ◦ i

′
(ej) ◦ i

′
(el) + Sji ◦ i

′
(ej) ◦ i

′
([ei, ej]) ◦ i

′
(el)

)

=
∑

i,j,l,m

(−1)p(el)p(em)Slm ◦
(
−L

′
(em)(Sij) ◦ i

′
(ei) ◦ i

′
(ej) ◦ i

′
(el)

)

=
∑

i,j,l,m

(−1)p(el)+p(em)Sml ◦
(
L
′
(em)(Sij) ◦ i

′
(ei) ◦ i

′
(ej) ◦ i

′
(el)

)
.

The lemma A.1.4 and the remark 6.1.1 complete the proof.

Lemma A.3.4. [W, [W, [W,d
′
]]] = 0.

Proof. The proof follows from the commutation rules for i
′
(·) and from the fact that

[∂f , ∂g] = 0 for any f, g ∈ S(g)∗.

A.3.2 Some others properties
Theorem A.3.1. Let X ∈ g. We have 2J

−1
2 · ∂(X)(J

1
2 ) =

∑
i(−1)p(ei)γ(ei, t([ei, X])).
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Proof. As seen in lemma 6.1.1, J 1
2 = Ber(F (adx)) where the formal series F (z) is invertible.

We have ∂(X)(J
1
2 ) = J

1
2 · str

(
F ′(adx)
F (adx)

· ∂(X)(adx)
)
and ∂(X)(adx) = adX, so

str

(
F ′(adx)

F (adx)
· ∂(X)(adx)

)
= −

∑
i

(−1)p(ei)γ

(
ei,

F ′(adx)

F (adx)
([ei, X])

)
.

As F (z) = F (−z) we have 2F ′(z)
F (z)

= F ′(z)
F (z)

− F ′(−z)
F (−z)

. By F (z)F (−z) =
sinh( z

2
)

z
2

(lemma 6.1.1) we
get F ′(z)

F (z)
− F ′(−z)

F (−z)
= −ρ(z). In particular 2∂(X)(J

1
2 ) · J− 1

2 =
∑

i(−1)p(ei)γ (ei, t([ei, X])).

Corollary A.3.1.

Ad(J
1
2 ◦ e−W )(d

′
) = Ad(e−W )(d

′
) +

1

2

∑
i,j

γ(ei, t(ej)) ◦ i
′
([ej, ei]) (A.5)

Proof. The operators in the formula of Ad(e−W )(d
′
) (lemma A.3.1) not commuting with

J
1
2 are L

′
(X), XL with X ∈ g.

Let f ∈ S(g)∗0 be invertible. From notation 6.2.1 and lemma A.1.3 we get

f−1 ◦XL ◦ f = XL + f ◦ ∂(X)(f−1)

L
′
(X) ◦ f = L

′
(X)(f) + f ◦ L

′
(X).

If L
′
(X)(f) = 0 for any X ∈ g, these formulas give

Ad(f−1 ◦ e−W )(d
′
) = Ad(e−W )(d

′
) +

∑
i

f ◦ ∂ei(f−1) ◦ i
′
(ei).

To end the proof we only need to consider the case f = J−
1
2 , in fact

L
′
(X)(J−

1
2 ) = −1

2
J−1 · J− 1

2 · L′
(X)(J)

which is zero by theorem A.1.1. The theorem A.3.1 and the remark 6.1.1 give
∑

j

f ◦ ∂ej(f−1) ◦ i
′
(ej) =

1

2

∑
j,i

γ(ei, t(ej)) ◦ i
′
([ej, ei]).

Let e(X, Y, Z) be an expression depending of three elements of g. We introduce the no-
tation

Cycl(e(X,Y, Z)) := e(X, Y, Z) + (−1)p(πZ)p(X+Y )e(Z,X, Y ) + (−1)p(πX)p(Y +Z)e(Y, Z,X).

Let
Li,l,k := −∂(ek)(γ(t(el(−1)p(el)), ei)) + γ([t(ek), el(−1)p(el)], t(ei)).

We have shown in corollary A.3.1 and lemma A.3.1 that

Ad(J
1
2 ◦ e−W )(d

′
) = d

′
+

∑

i,k

γ(ei, t(ek)) ◦ i
′
(ek) ◦ Φei

0 −
1

6

∑

i,l,k

Cycl(Li,l,k) ◦ i
′
(ei) ◦ i

′
(el) ◦ i

′
(ek).
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A.3.3 The role of vCDYBE
We recall that Hom(S(g), S(g)) has the following structure of S(g)∗-module: Ff = Mult ◦
(F ⊗ f) ◦∆ for any F ∈ Hom(S(g), S(g)) and f ∈ S(g)∗.

Theorem A.3.2. Let f ∈ S(g)∗.
i) For any ϕ ∈ Hom(S(g), g) we have id ∗ (ϕf) = (id ∗ ϕ)f ,
ii) for any derivation F : S(g) → S(g) we have ∂f ◦ F = fF .

Proof. i) This part follows from de�nitions.
ii) We remark that ∂f ◦F (1) = f(1)F (1) = (fF )(1). Let X ∈ g and W ∈ S(g). We suppose
by induction that ∂f ◦ G(W ) = (fG)(W ) for any derivation G : S(g) → S(g). Using this
hypothesis, the de�nitions and the notation 6.2.1 we have

∂f ◦ F (X ·W ) = ∂f (F (X) ·W + (−1)p(X)p(F )X · F (W )) =

= (fF (X)L)(W ) + (−1)p(X)p(F )
(
∂f◦XL + (−1)p(f)p(X)XL ◦ ∂f

) ◦ F (W )

= (fF (X)L)(W ) + (−1)p(X)p(F )
(
(f ◦XL)F + (−1)p(f)p(X)XL ◦ (fF )

)
(W )

= (fF (X)L)(W ) + (−1)p(X)p(F )
(
(f ◦XL)F + f(XL ◦ F )

)
(W )

=
(
f(F ◦XL) + (−1)p(X)p(F )(f ◦XL)F

)
(W )

= (fF ) (X ·W ).

We recall that j : g → U(g) is the inclusion of g in the enveloping algebra U(g).

Corollary A.3.2. For all a ∈ g, β−1◦ 1
2
(j(a)L +j(a)R)◦β = aL +

∑
i(−1)p(ei)γ(t(a), ei)◦Φei

0 .

Proof. By theorem 2.5.2 we know that β−1◦(j(a)L+j(a)R)◦β = Φa
1−Φa

−1. The coderivation
1
2
(Φa

1 − Φa
−1) − aL is associated to the formal series 1

2

(
z

ez−1
− z

e−z−1

) − 1 which is equal to
−zρ(z). By de�nitions we get

adx ◦ ρ(adx)(a) ≡ adx ◦ t(a) = adx(ei)γ(ei, t(a)) = −
∑

i

ϕei
0 γ(ei, t(a)) =

= −
∑

i

(−1)p(ei)γ(t(a), ei)ϕei
0 .

The part i of theorem A.3.2 gives that the coderivation associated to −adx ◦ ρ(adx)(a) is∑
i(−1)p(ei)γ(t(a), ei)Φei

0 . From the part ii of theorem A.3.2 we get that γ(t(a), ei)Φei
0 =

γ(t(a), ei) ◦ Φei
0 .

This corollary, theorems A.1.3 and 2.5.2, the formula (A.2) for d
′ , give

Ad(∂
J

1
2
◦ e−W )(d

′
) =

= −1

6

∑

i,k,l

(
Cycl(Likl) +

1

4
γ(el, [(−1)p(ek)ek, ei])

)
◦ i

′
(ei) ◦ i

′
(ek) ◦ i

′
(el) +

+β−1 ◦ σ−1
γ ◦ dW ◦ σγ ◦ β.
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In particular the identity (A.4) is equivalent to
∑

i,k,l

(
Cycl(Likl) +

1

4
γ(el, [(−1)p(ek)ek, ei])

)
◦ i

′
(ei) ◦ i

′
(ek) ◦ i

′
(el) = 0.

Using the notations of chapter 5 we have

Cycl
(
Likl

)
= i(el)i((−1)p(ek)ek)i(ei) (−dω + (ρ(t)ρ(v) + ρ(u)ρ(v) + ρ(t)ρ(u) : α)x) .

By theorem 5.2.2 we get Cycl
(
Likl

)
+ 1

4
γ(el, [(−1)p(ek)ek, ei]) = 0 for any i, k, l, so the proof

of identity (A.4) is �nished.
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Errata Corrige

Title of paragraph 2.5.1: "Universal representations in the enveloping algebra"

page 10, third line of example 1.1.2 part a: "Moreover"

page 12, �rst line after remark 1.2.2: "S(M)∗-superalgebra"

page 21, third line of theorem 2.2.6: replace "if and only if" by "if"

page 23, remark 2.3.5: the right formula is "(ϕ(t)+ at, ψ(t)+ bt, ρ(t)+ abt+ aψ(t)+ bϕ(t))"
after remark 2.3.5: "By this remark and by remark 2.3.2"

page 24, line 2: "θc(t) =
√

ct coth(
√

ct)"
lemma 2.3.1: "there exists" ... "(√ct coth(

√
ct), ct)."

proof of lemma 2.3.1: "as its derivative"
theorem 2.3.3: set f = 1

page 26, �rst line of remark 2.5.1: "gr(U(g)) might not be commutative"
�rst line of de�nition 2.5.2: "g veri�es"

page 28, second line after corollary 2.5.1: "if K does not contain Q"

page 30, lemma 2.5.3: "The symmetrization map veri�es"
theorem 2.5.3: "and g = g0 a Lie K-algebra."

page 33, ninth line after de�nition 3.3.2: the right signe of i(a1)···i(an)α is (−1)p(α)p(πa1+···+πan)

page 35, corollary 3.4.1: "Let K ⊇ Q. Any K-superalgebra has the Maurer-Cartan forms"
second line of remark 3.4.2: "Moreover"

page 37, theorem 4.0.2: set N = 1
end of corollary 4.0.2: replace "ada" by "adj(a)", "adb" by "adj(b)", "aL" by "j(a)L", "bR"
by "j(b)R"

page 39, proof of theorem 4.1.3: replace "aL" by "j(a)L", "θ(a)R" by "j(θ(a))R"
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end of the proof of theorem 4.1.3: the right text is

”Ψa = Φa
1 + Φ

θ(a)
−1 =

{
Φa

0, a ∈ h

Φa
1 + Φ−a

−1, a ∈ q
.

This means that β−1 ◦ ad′(a) ◦ β|S(q) = Πa
2."

corollary 4.1.1: replace "invariant" by stable

page 41, fourth line after remark 4.3.1 : "formal vector �eld"
line 18: f ∈ q∗

page 42, third line after theorem 4.3.1: "∈ Hom(g, gx)"

page 43, last line: replace "lg" by "ln"

page 44: the right formula of v
(4)
0 is

v
(4)
0 = v1 · v2 · v3 · v4 +

1

6

∑
s∈Σ4

s(1)<s(2)
s(3)<s(4)

(−1)|s|strq(advs(1) ◦ advs(2))vs(3) · vs(4) +

+
1

288

∑
s∈Σ4

s(1)<s(2)
s(3)<s(4)

(−1)|s|strq(advs(1) ◦ advs(2))strq(advs(3) ◦ advs(4)) +

− 1

2880

∑
s∈Σ4

(−1)|s|strq(advs(1) ◦ advs(2) ◦ advs(3) ◦ advs(4))

page 47, third and fourth lines of section 5.1: replace "g∗" by "Hom(M,N)", "g" by "M"

page 48, second line of remark 5.2.1: replace "f(−adx)(Y )" by "f(adx)(Y )"
line 8: "i(X)i(Y )i(Z)(α) = (−1)p(Y )γ(X,Y, Z)"

page 49, after theorem 5.2.1: "if t + u + v = 0, equation (5.2) becomes"
lemma 5.2.2: this lemma assume that K ⊇ Q
proof of lemma 5.2.2: "We apply the limit u → 0"

page 50, �rst line of remark 5.2.3: "g be a �nite-dimensional Lie K-algebra"
eighteenth line of remark 5.2.3: "Using the properties of γ"
nineteenth line of remark 5.2.3: replace "rβ" by "rγ"
eighteenth line of remark 5.2.4: replace "coth( z

2
)" by "coth( t

2
)"

68


