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Abstract

We consider the problem of the splitting of invariant hyperbolic manifolds for close to integrable,
Hamiltonian systems and consequently “ Arnold diffusion”.

Following Chierchia- Gallavotti:Drift and diffusion in phase space and Gallavotti: Twistless KAM
tori, quasi flat homoclinic intersections... we work on a Hamiltonian which is a model for small
analytic perturbations of stable, integrable Hamiltonian system near a simple resonance. We will call
the small perturbation parameter €.

Roughly speaking the model Hamiltonian represents a set of n > 2 rotators and clocks, weakly (¥
with P > 2) coupled to a generalized pendulum with Lyapunov exponent /.

Namely if I,9 € R* x T", p,q € R x T are pairs of conjugate action-angle variables, a set of rotators
and clocks is given by a quadratic Hamiltonian of the type: TA(e)I+b(e)I where A(e) is semi-positive
definite and lim._,q A(e) = A.

Finally a generalized pendulum is a two dimensional Hamiltonian system H (p, q) = %p2 +eF(q), with
F(q) analytic on T, having p = ¢ = 0 as the only unstable fixed point on the energy level E = 0.
The initial data and the matrices A(e), b(e) are suitably chosen so that there are are at least three
relevant time scales for the uncoupled system: namely there will be m # 0 order one (fast) frequencies,

n—m slow frequencies of order gzta (with a < %) and finally the Lyapunov exponent of the pendulum
NG

KAM-like results show that the presence of the small (¢¥ with P > 2) coupling term preserves a
set of n dimensional unstable tori together with their n + 1 dimensional local stable and unstable
manifolds. In general such manifolds intersect in a curve; proving such intersection and evaluating
the transversality of the manifolds is the so called problem of homoclinic splitting which is the basis
for proving Arnold instability.

The thesis is mostly dedicated to the study of upper and lower bounds for the determinant of the
splitting matrix, which is a measure of the “angles ” of the homoclinic splitting.

We use perturbative theory and in particular, following Gallavotti: Twistless KAM tori, quasi flat
homoclinic intersections..., and Gallavotti, Gentile, Mastropietro: Separatriz splitting for systems
with three time scales we construct a suitable tree representation to evidence the cancellations in the
perturbative expansion of the splitting determinant.

The main results are:

1) We prove that the splitting determinant is exponentially small in €, for systems interacting through
an analytic function depending only on the angle variables.

We present two alternative methods of proving the assertion, one is direct, using the cancellations;
while the second (following the strategy of Berti, Bolle: A functional analysis approach to Arnold
diffusion) constructs perturbatively a suitable set of coordinates, where the generating function of the
splitting has a simpler form which implies that the the splitting determinant (which is the Hessian of
the generating function at the intersection point) is smaller that any power of ¢.

2) We give lower bounds for systems with one fast variable (m = 1) and satisfying a set of conditions
which are sufficient to prove that the first order of perturbation in the splitting determinant (the
Melnikov term) dominates, thus providing a lower bound.

3) We find lower and upper bounds on the splitting determinant for “D’Alembert like” Hamiltonians
similar to those proposed in Gallavotti, Gentile, Mastropietro: Hamilton-Jacobi equation and existence
of heteroclinic chains in three time scales systems. Such Hamiltonians carry a “large” (i.e. order ¢)
unimodal perturbation.

For completeness the last chapter is dedicated to showing the construction of the transition chains

for systems where the Melnikov term dominates.
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Introduction

Generalities and a class of models

The problem of the stability under perturbations of dynamical systems is a “funda-
mental” problem of classical mechanics (as formulated by Poincaré in [P]).

For integrable Hamiltonian systems with n degrees of freedom, it was long believed
(up to the 50’ies) that maximal (i.e. n dimensional) invariant tori were usually de-
stroyed by most perturbations'. This was disproved for non-degenerate Hamiltonians?
in the theorem by Kolmogorov, proved in full detail by Arnol’d for real-analytic flows
and for smooth maps by Moser. The Kolmogorov, Arnold, Moser (KAM for short)
theorem states that those invariant tori with sufficiently incommensurate (diofantine?)
frequencies w(I), persist for sufficiently small perturbations of a non-degenerate inte-
grable system. Such tori form a set of positive measure in the phase space, and as
the system approaches to integrable the measure of the complementary set approaches
zero?,

One expects that the, dense but zero measure, set of maximal tori of the unperturbed
system with commensurate frequencies is not preserved, in general, under perturbations
no matter how small.

Such sets of tori with commensurate frequencies are called “resonant”. In particular

!Some standard definitions: An n degrees of freedom Hamiltonian system is characterized
by a Hamiltonian function A defined on a 2n—dimensional manifold M endowed with a symplectic
structure i.e. a closed alternate and non-degenerate two-form w. In local coordinates (p,q) € R2"
such that the two form is dp A dg we call the flow ¢! (g0, po)) € R*" the solution of:

The change of coordinates which preserve w are called symplectic.

A Hamiltonian system is called integrable if there exists a symplectic change of coordinates: p,q —
I, € R* x T", T™ being the n dimensional torus, where the Hamiltonian h(p(I,v), q(I,v) = H(I).
In such case the flow is confined on n dimensional tori:

I(t) = 1(0),  ¥(t) = ¢(0) + (ViH)|1(0)t-

The vector w(I) = (V1H)|r is called the frequency of the torus with initial datum I.

2we say that H(I) is non degenerate in a domain D C R if det 9?H(I) # 0 for all T € D.

3A vector w € R™ is diofantine, with constants C, 7, if it satisfies a relation of the form |m - w| >
C/|m|" for all integer vectors m # 0.

4This means that the constant C' can be taken to be small with the perturbation parameter.
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if there there exists a £ x n entire matrix IV, of rank &, such that
Nw(l) =0 with N € Maty«,(Z), Rank (N)=%k (0.1)

we will call I an order k resonance.’.

For iso-energetically non-degenerate® systems with two degrees of freedom the existence
of a positive measure set of two-dimensional persistent tori forces the behavior of the
whole system to be stable for purely topological reasons as the two-dimensional tori
separate the three-dimensional energy surface. The, possibly chaotic, behavior near
the resonances is thus confined in the layers between persistent tori.

On the other hand there is no a-priori objection to the possibility of action-unstable
motions for higher dimensional systems, as the complementary set of the preserved tori
is connected.

Arnold, for the first time in the appendix of [A1], formulates the problem and states
the following conjecture(see [Dy]):

“...A typical case in many-dimensional problems of perturbation theory is topological
instability: through an arbitrarily small neighborhood of any point there pass phase
trajectories along which the action variables drift away from the original value by a
quantity of order one...”

Such topological instability is known as Arnold Diffusion.

In this thesis we shall consider the n 4+ 1 degrees of freedom Hamiltonian:

1 1

where
(1), (.9) € (U x (~1,1)) x (T" x T), U CR"

are a set of conjugate action-angle variables (T" being the standard torus R" /277Z"), ¢,
p are small parameters and the matrix A is semi positive definite (A and b can depend
on ¢ in a fashion we will specify in the following). The functions F(¢) and f(v, q) are
real analytic and even. Moreover we choose the function F(q) so that p? = —2eF(q)
is the graph of a separatrix having p = ¢ = 0 as the only (unstable) fixed point.

The basic problem addressed here is the study of homo /heteroclinic transversal intersec-
tions and finding upper and lower bounds on suitable measures for the transversality.
It should be clear that such problems are much simpler if one considers ¢ > 0 and y < ¢
an independent parameter; in such case Hamiltonian (*) is called a-priori unstable .

>This means that the unperturbed motion with initial datum I(0) = I is on a n — k dimensional
torus.
6 An Hamiltonian H(T) is called iso-energetically non degenerate if

O2H O H
det( O H 0 ) #0

on the energy surface.
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In this thesis we will mainly consider the a-priori stable case, which means setting
p = e? for some P > 1 (in some special case we will consider also P = 1).

To motivate the choice of Hamiltonian (*) we briefly review the properties of an
iso-energetically non degenerate Hamiltonian near an order & resonance. We will argue
that the a-priori stable Hamiltonian (*) is a “natural” model for iso-energetically non
degenerate Hamiltonians near a simple, i.e. order one, resonance (kK = 1 in relation

(0.1)).

Resonant Hamiltonians

We consider a close to integrable, analytic system
H(I,4,e) = Ho(I) +eF (1, ¢),

in action-angle variables I € U C R? ¢ € T?. .

Classical averaging theory (see for instance [Dy]|) shows that near an order k
resonance described by the matrix NV as in relation (0.1), H is modeled, in appropriate
local action-angle coordinates, by a Hamiltonian:

H(II’{;“) +6gN(Ilawl) +:uf(1171/),)7 (02)
with .
.(JN(]’;W) - Z gk([’)em-d)IJ

kEAN

Ay being the lattice generated by the rows of N.
The functions gy (I',¢'), f(I',9') are analytic in some U’ x T (U’ close to U) and
p=cP with P> 1.

As remarked for Hamiltonian (*), it is simpler to study Hamiltonian (0.2) consid-
ering 1 and ¢ as independent parameters.
For simple resonances, it is easily seen that the Hamiltonian (0.2) is still “analytically
soluble” for ¢ > 0 and ¢ = 0. Up to a linear symplectic change of coordinates,
I',¢)' — J, @, one can assume that gy depends only on one angle, say @yt

H(J,e) +egn(J, 0a) + pf(J, 0). (0.3)

Let us study Hamiltonian (0.3) for u = 0. The actions .Jy,...,.J; ; are still constants
of motion; the time evolution of .J;, ¢, does not depend on the ¢; with i < d and so is
soluble (by integrations and inversions).

Notice that Hamiltonian (0.3) with g = 0 is not integrable, in the classical sense
(i.e. in the sense of footnote (1)), as the resonant variable ¢, can have unstable fixed
points and one cannot define action-angle variables near the hyperbolic trajectories.
A model for Hamiltonian (0.3) with p = 0 is:

_ 1
H(J,go],s):H(J],...,Jn)+§p2+5(cosq—1), (0.4)
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with n = d — 1 and Jg, ¢4 = p,q. Notice that Hamiltonian (*) with F(¢) = cosq — 1
is of the type (0.4).
On the other hand, if we consider higher order resonances, the y independent Hamil-
tonian

H(I' )+ egn(I', 0",
is generally not analytically soluble so that, in connection to the problem of Arnold
diffusion, most authors consider only simple resonances (see [LMS] for an approach
to general resonances).

The dynamics of Hamiltonian (0.4)

The trajectories of Hamiltonian (0.4) are the direct product of an integrable motion
on n = d — 1 dimensional tori and of the motion of the pendulum.

In our notation the pendulum has a stable fixed point in ¢ = 7w, p = 0 and an unstable
one in ¢ = p = 0. The stable and unstable manifolds of such fixed point coincide and
are represented in phase space by a curve, called the separatrix p* = 2e(cosq — 1).
We have n dimensional unstable tori 7 (.J) (direct product of the motion of the ¢1,. .., ¢,
and ¢ = p = 0) and their (n + 1 dimensional) stable/unstable manifolds W*(T(.J))
which are the direct product of the motion of the ¢q,..., ¢, with the motion on the
separatrix.

If H(J,p,q,e) is iso-energetically non degenerate for £ # 0 a set of such unstable n
dimensional tori 7 (.J, 1), survive (on fixed energy levels) the onset of the p depen-
dent perturbation, together with their n + 1 dimensional stable-unstable manifolds
WH(T(J,1)). Such manifolds however may intersect transversally in a curve, this is
the so called “homoclinic splitting” and is known to be related to “chaotic” behavior.

General techniques for proving Arnol’d diffusion

The existence of Arnold diffusion is usually proved by following the mechanism pro-
posed by Arnold in [A2], where the author considers a model of an a-priori unstable
almost integrable system near a simple resonance. Interest on the subject was renewed
in [CG], followed by several papers; see for instance [GGM3|, [BB1] and references
therein.

To illustrate the mechanism used for proving Arnold diffusion, let us state some
definitions taken from [C], where“Arnold diffusion” is named “Arnold instability”.

Definition 0.1 (Heteroclinic chains). A heteroclinic chain is a set of N > 1 tra-
jectories z' (), ..., 2N (t) together with N + 1 different minimal sets” Ty, ..., Ty such
that for all1 <1 < N

lim dist (2'(t), ;1) = 0= lim dist (2'(t), T;).

t——o0 t—o00

TA closed subset of the phase space is called minimal (with respect to a Hamiltonian flow ¢!) if
it is non-empty, invariant for ®! and contains a dense orbit. In our case the minimal sets will be
unstable tori 7 (I) with w(I) diofantine.
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Definition 0.2 (Transition chains). A heteroclinic chain is called a transition chain
if for any r > 0 there exists a trajectory z(t) and a time T > 0 such that

dist (2(0),Ty) <r, dist (2(T),Tn) <1, sup dist (2(t),Z) <r
0<t<T

where 7 is the closure of the union over i of the {2'(t) : t € R}. The sets Ty and Ty
are said to be connected by as transition chain.

Definition 0.3 (Arnold instability). Given E € R consider an Hamiltonian h,
(with Hamiltonian flow ¢;75) such that hy represents an integrable system.

The system (¢}, h-'(E)) is called Arnold unstable if there exist two positive numbers &g
and dy such that for all € € (—eg,e0) there exist (closed) invariant sets T'(€), T'(e) C
h'(E) satisfying the following conditions:

£

(i) T'(e), T'(e) are continuous, at € = 0, in the Hausdorff metric and if I1; denotes the
natural projection over the action variables then

LT0) = {1}, ILT0)={I'Y, with [I'—I]>dy:;

(ii) for each 0 < |e| < ey T'((¢), T'(¢) are connected by a transition chain.
Finally the system is said uniformly Arnold unstable in a region V. € R" for any
E € [Ey, Es] if the invariant sets T'(¢), T'(g) have the property:

I1,7(0), I1;,T'(0) € V
and the constants ¢, dy depend only on V' and on Eq, Fs.

Thus, to prove Arnold instability for system(*) one typically proceeds in three
steps:

1. Homoclinic intersection:

- Prove that the systems (*) admit a set of unstable n dimensional tori together
with their n + 1 dimensional stable-unstable (Lagrangian) manifolds W=; for
system (*) such manifolds are graphs on the angles:

W* = {I*(¢,q),p"(¢,q),¢ € T",q € (—a,a) with a € (0,7)}.

- Prove that such manifolds intersect transversally in a curve (as expected). In
the case of Hamiltonian (*), the assumed parity conditions imply that ¢ = 0
g = m is a Homoclinic point, i.e. lies on the intersection curve.

- Provide estimates on the measure of the transversality in appropriate (order
one) regions in the action variables.
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2. Prove the existence of heteroclinic chains of n-dimensional tori by showing that
the persistent tori are “close enough” with respect to the transversality measure
in the prescribed regions.

3. Prove that such heteroclinic chains are transition chains for which the action
variables undergo an O, (1) variation in a finite time®.

A natural question that arises in this scheme for proving Arnold instability is what is
a good measure of transversality.

For system (*) (in the coordinates (I,)) one may consider (as in [A2]) the splitting
determinant, i.e. the determinant of:

A = 0y, (If (. 7) = I} (¥, 7)),

whose eigenvalues estimate (in local coordinates) the angles of the intersection of W+
and W~ at the Poincaré section ¢ = 7.

Then, if the gaps on the persistent tori are smaller than |det A|?, one can use the
Implicit Function Theorem to prove heteroclinic intersections for persistent n dimen-
sional tori at distances of order | det A|” (for suitable a,b > 0).

Remark 0.4. This is a local point of view. However, since the symplectic group
acts transitively on the couples of transverse Lagrangian manifolds, estimates on the
“Buclidean ” angles of the intersection are expected to be coordinate dependent’.

Analytical proofs of Arnold instability rely strongly on the choice of an appropriate
region of the initial data in the action variables (and on the characteristic frequencies);
to illustrate this let us return to Hamiltonian (*) which we describe in full detail.

H(I,p,¥,q.e,p) = %(p2 +1-A()) +b(e) - I +eF(q) + nf (¥, q), (*)

where, as we said before, A(g) is an n X n semi positive definite matrix.

The integrable part of Hamiltonian (*) (with x = 0) can model both completely
anisochronous systems of rotators (i.e. A(e) is positive definite) and isochronous sys-
tems of harmonic oscillators (A(g) = 0); moreover by varying the e—dependence of
A(g), b() one can model both non-degenerate and degenerate Hamiltonians.

To prove Arnol’d instability (following the scheme proposed in page ix) in a region of
the action space, one needs conditions on the order of magnitude of the frequencies
w(I) = AI + b in such region. In particular we require that the components w;(/)
are “not too slow” by setting |w;(I)| > Ce for some order one'® C'. Moreover it is

8Having performed these three steps one can rise the question of finding (good) estimates on the
instability time

9 [LMS] provides an intrinsic definition of the transversality measure (which coincides with A in
local coordinates at the Poincaré section ¢ = 7) and its variation laws through symplectic change of
coordinates and different choices of Poincaré sections.

'%0ne could prove Arnold instability under less restrictive conditions |w;(I)| > Ce® for some b > 1,
we set b = 1 only for simplicity.
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useful to distinguish between fast (i.e. order one in €) and slow (going to zero with ¢)
components of the frequency vector w(I); we will call V,,(E) C R" a region (of action
space) having “energy” E (i.e. [AI+bI = E) and m fast components for the frequency
vectors (often referred to as m fast frequencies or variables ) and consequently n —m
slow frequencies.

The regions where there are at least two different orders of magnitude for the frequencies
are particularly relevant in proving Arnol’d instability (in this thesis we will mainly
consider such regions).

Quantitatively we set the following (non minimal but already quite cumbersome)
conditions on A(e), b(¢) and V,,(E):

Condition 0.5. e The functions F(q) and f (v, q) are real analytic and even. Moreover
we choose the function F(q) so that p?> = —2eF(q) is the graph of a separatriz having
p=q =0 as the only (unstable) fized point.

o A(e) is diagonal.

o The eigenvalues'! of A(e), a; (where i =1,...,n)are either identically zero or:
a; = Ce*  with 0<a; <1, andC non zero and c-independent.

o Without loss of generality we will suppose that a; # 0 for alli < h for some 0 < h <
n. The remaining n — h eigenvalues a; are zero.

e b(e) is an n-dimensional diofantine vector b = (by, ..., b,) such thatby =--- = b, =
0 and the remaining b; have the form:

by = CeP with 0<3;<1, and C = O(1).

e We consider the system near a simple resonance for the variable p: p € B\/g(()).

o Let w(I) = Al + b,we assume that the I variables are in a domain

R* D V,(E):={I:0.(1)>|I;| >0:(e),j=1,....n, AI-I+bl=EFE
there exist iy, ..., 1n such that |w; (I)] = O.(1)},

with m < n and E = O.(1); we will call V,,, a domain with m fast frequencies
Wiy, wi (or fast variables) as the orbits of Hamiltonian (*) with p = 0 are tori
run with frequency w(I) = A(e)I + b(e).

In the domains Vi where there are no fast variables (m = 0), the Hamiltonian (*)
can be written (via an appropriate change of variables) as a-priori unstable and then
solved via classical perturbation theory (see [CG| and [C]). In fact, for small enough

"Now and in the following we will say that C(e) = O-(f(g)) if lim._0C(g)/f(e) =1 #0.
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¢ the matrix A is well approximated by its first order perturbation in pu, the so-called

Melnikov integral:

My = [ @ud, 00,000 (0.5)

— 00
Where (t), qo(t) is the motion on the separatrix for p = 0.
The presence of m # 0 fast variables makes matters much more difficult as the deter-
minant of M is exponentially small in € while (if m # n) the higher order truncations
of A have generally only polynomially small entries so that one should consider u
exponentially small w.r.t £ in order to have

A~ M.

As we have said the natural value of p is 7 for some P > 0. In such case M is
not a good approximation of A and it is not a trivial matter to show that det A is
exponentially small in € for m # 0.

The first step in estimating det A is finding exponentially small upper bounds for
systems with fast frequencies.

Then one would like to prove that det M is large enough to dominate on the higher
order terms in the p expansion of det A and consequently prove lower bounds on det A.
Upper bounds, with y < &”, are derived in [G1] for m = n in [GGM1] for systems
with three degrees of freedom and three time scales and in [BB1] for isochronous
Hamiltonians and generic n, m.

All the cited articles set F'(¢) = cosq — 1 and require that the perturbating function
f(¥,q) is a trigonometric polynomial in ¢ while we shall allow more general functions
F(q) and analytic assumptions on f(g,) (see Condition 0.5). The cited articles pro-
vide as well lower bounds on det A (see as well [GGM1]- [GGM4]) for systems with
one fast time scale.

The problem of upper bounds is considered as well in [LMS] for quite general (n + k
dimensional) systems, in the presence of an order k resonance in a region characterized
by two time scales (m = n). The results of [LMS], applied to Hamiltonian (*) (so to
a simple resonance) lead to the results of [G1], however the proof contained in [LMS]
is coordinate independent so it would be interesting to see if it applies to three time
scale systems.

A system with m = n = 2 is considered in [DGJS] providing upper and lower bounds
on the distance between stable and unstable manifolds, it is not however clear if this
estimates can be used to prove the existence of heteroclinic chains (see the discussion
in [GGM2]).

In this thesis we generally follow the strategy proposed in [CG], [G1] and [GGM1].
These articles use perturbation theory to construct the “homoclinic trajectories” (i.e.
the trajectories which are bi-asymptotic to an n dimensional torus run with prescribed
frequency). This approach by series expansion in the parameter p (with fixed e > 0) is
quite old; it is a generalization to the partially hyperbolic setting of Hamiltonian (*),
of the Lindstedt series proposed by Poincaré, Lindstedt et al. in the 19’th century.
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Proving the convergence of such series is quite complicated and was indeed an open
problem, even in the non hyperbolic setting, up to the '80-ies when it was solved by
Eliasson [E], see as well [G1] and [CF] (moreover see [GGM4] for a proof of the con-
vergence in the hyperbolic setting). The main point is to find sufficient compensations
between “big” terms of the Lindstedt series in order to ensure the convergence.
While one can use KAM theory to prove the local existence of the manifolds W+
(and then extend them via the Hamiltonian flow), one cannot use the KAM algorithm
to estimate the splitting determinant as the computations involved are unmanageable.
The problem of convergence of the perturbation series is avoided, in [CG] [G1], by
combining Lindstedt series and KAM theory. Namely one considers suitable trunca-
tions of the Lindstedt series whose remainder is bounded via a KAM theorem (which
ensures, under appropriate conditions, that the homoclinic trajectories exist and are
analytic in g < pug). To study a large but finite number of terms in the perturba-
tion series it is natural to use a “graph theoretical” (tree) representation (see [GJ] for
applications of tree representations to Taylor series). The tree representation, which
contains information on the symmetries of the Taylor series, is well suited to show the
cancellations which are necessary to prove the exponential smallness of the splitting
matrix.
Roughly speaking the exponentially small terms in the splitting matrix appear via the
following “shift of contour” formula ( ¢; and ¢y are positive £ independent parameters):

o

| / e g(t)] < O(e 2),

for all the analytic g(t) € L.

This formula proves for instance that the Melnikov term (defined in (0.5))is exponen-
tially small.

The main problem is that the terms of order higher than one in the expansion of the
homoclinic trajectories are in general not analytic in ¢ (for ¢ = 0 as they come from the
time evolution of W* for ¢ > 0 and W~ for ¢ < 0). so that, even if all the frequencies
are fast (m = n), the splitting matrix apparently contains “big” (i.e. polynomially
small in £) terms, arising from integrals of non analytic functions. In [G1] the author
shows that such “big” terms cancel so that a suitable ( say order K(g)) truncation of
the splitting matrix is exponentially small in £. Bounds on the splitting matrix are then
derived by showing that one can choose k£ < K (¢) so that the remainder (estimated via
KAM theory) at order k is small with respect to the bounds on the order £ truncation.
A different approach is to prove directly the convergence of the Lindstedt series by prov-
ing via the tree representation both cancellations and compensations (see [GGM4]).

Brief description of the main results and of the techniques used

In this thesis we consider mainly the items 1) and 2) at page ix and we simply give a
brief review of the construction of Arnold unstable orbits (taken from [CV]). We will
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not attempt any estimate on the diffusion time. For such estimates see for instance
[BB1], [Be|, [BB2], [BCV] and references therein.

e We prove exponentially small upper bounds for det A for Hamiltonians in the
class (*) in regions V,,, with m # 0 fast variables.

Theorem 0.6 (Upper bounds). Assume Conditions 0.5. The Hamiltonian (*) ,
considered in the domains V,,(E) with E = O.(1) m # 0 has an homoclinic point at
g =,y =0. The determinant of the splitting matrixz in such point is

det A < OE(efc/Eb).

where ¢ and b depend on the domain V,, and on the analytic properties of the perturbing

function f(,q).

This Theorem generalizes [GGM1] and [BB1] which consider respectively a partially
isochronous and partially degenerate Hamiltonian (*) with three degrees of freedom,
and a completely isochronous Hamiltonian (*) with n degrees of freedom. Both refer-
ences set F'(q) = cosq — 1 and f(v,q) a trigonometric polynomial (at least in the ¢
variables).

e For systems with m = 1 fast variables (say ;) we prove lower bounds for the
splitting determinant for the Hamiltonians (*) satisfying the following conditions:

Condition 0.7. a) The function f(1,q) is a trigonometric polynomial in the 1);

F@Wq) =Y flge™?,

VI<N

and all the functions f,(q(t)), where 1(t), q(t) is the solution of Hamiltonian (*) for
p = 0, are rational function of e’V?'. JeX > 0 is the Lyapunov exponent of the
generalized pendulum (see next item).

b) The Hamiltonian p* + €F(q) has the following trajectories:

1. ¢ = ¢ =0 is an hyperbolic fized point and the separatriz

q'2
5+8F(q):0

contains only this fixed point.

2. On the separatriz, we can chose a sign for ¢ and the equation of motion on the
separatriz 1S:

¢ =+V2y/F(q) = +G(q)
where G(q) > 0 and G(q) = 0 if and only if ¢ = 0,27. Notice that ¢(t) is even
and q(t) is odd provided that we set q(0) = 7.
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3. The time evolution on the separatriz q(t) (on a prefized branch), satisfies

e = R(e ™) where R(y) is a rational function . (**)

c) The function f((t),q(t)) satisfies appropriate “non-degeneracy conditions”, which
we describe later, here let us state simple sufficient conditions:

1. The functions f,(q(t)) all have the same poles t1,...,ty. The function q(t) has
poles T1,...,Tn and:

D= min [Imt;] < .minN\Im ;).
_ i

i=1,..., i=1,..,

2. The Melnikov matriz defined in (0.5) is non degenerate and the fo.(q)i=1,...,n
are all different from zero.

A simple example of functions F'(q) satisfying Condition 0.7 b) are the following:
L, .5 2
F(q) = —§(s1n g+ a(cosq —1)?),

with a € [1,00) (a = 1 is the standard pendulum).
Under this conditions we prove the existence of heteroclinic intersections provided that
p < ¥ where P depends on the poles of ¢(t) and of the functions f,(q(t)).

Theorem 0.8 (Lower bounds). Consider Hamiltonian (*) under conditions 0.7.

Given 0 < o < 1 consider the domains W (E, 1, ) =

{IeVi(E), |lw(D)]=0.01), O.e) < |w;(I)] <O (%), j=1,....nj #1}.

The determinant of the splitting matriz at the homoclinic point, ¢ = mw,¢ = 0, is
bounded from below by a quantity of the order of the Melnikov integral:

|det A| > Ce~ Qe P/VE,

provided that
p<e”

where P = max(p+5,47+4) 7 being the diofantine exponent of the frequency vector w.
The parameters p, Q) depend on the degree of the poles of the f,(q(t)) (p is the degree
of the pole closest to the real azis) and D is defined in Condition 0.7 c).

After proving this Theorem we provide a Normal Form Theorem for Hamiltonian
(*). Such theorem, restricted to systems with one fast frequency implies the existence
of heteroclinic chains.
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Theorem 0.9 (Arnold instability). Given E € [E\, Es] with Ei, By = O.(1), the
Hamiltonians (*), satisfying Conditions 0.7 and having at least one degenerate variable
(namely one or more of the a; are of order ), are uniformly Arnold unstable in each
of the domains D(FE,7), for all values of p such that:

p<e’
where P depends on the constants p and Q) of the preceding theorem.

The bounds on p proposed it this Theorems are not optimal, in particular one can
obtain better bounds by using the techniques proposed in [Ge]. We illustrate this on
examples of three degrees of freedom systems'? where we prove Arnold instability for

U < €p+5/2.

e Finally we consider some special systems with three degrees of freedom and three
time scales which we call “D’Alembert-like” Hamiltonians as they are quite similar to
the Hamiltonian proposed in [CG] (see as well [GGM3]) as a model for the D’ Alembert
problem. Such problem, of interest in celestial mechanics, is characterized by the
presence of three relevant time scales and of a big (i.e. order €) uni-modal (i.e. the
lattice generated by the frequencies of f(1), q) is one dimensional) perturbation. To be
explicit let us write down the simplified D’Alembert Hamiltonian proposed in [GGM3]:

S 7) + T+ el(cosg — 1)+ aA@+ ) B@)] + uf(6,00),  (06)

where the functions A(x), B(x) are trigonometric polynomials of degree N and « is
a free (order one in ) parameter. The technically difficult question is to prove lower
bounds on the splitting determinant (Melnikov dominance) when « is of order one in
e, and so clearly does not satisfy the conditions of Theorem (.8.

The article [GGM3] proves a semi-hyperbolic KAM theorem and consequently upper
bounds on the splitting determinant for Hamiltonian (0.6). The problem of lower
bounds is left open as it requires proving appropriate cancellations in the series rep-
resentation of the splitting determinant. We prove such cancellations (and so lower
bounds and Arnold instability) provided that f(¢,,q) is NOT a trigonometric poly-
nomial and respects the following:

Condition 0.10. the function f is a trigonometric polynomial in 1, ¢ and rational in
e’ with at least one pole for finite values of Imq and Req # 0.

Theorem 0.11. The Hamiltonian (0.6), respecting Condition 0.10, is uniformly Arnold
unstable in the domain:

W(E) = {H(I,J,,6) = E, 0.(1)=b<I,/J] <a=0.(1)}

for B € [Ey, Ey] with By, Ey = O,(1), provided that p < e™5/2 and o < 1 but still
0O.(1).

12This restriction is only to give explicit examples, we show that one can apply the same procedure
to systems with n degrees of freedom.
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Brief review of the techniques

Following [CG], [G1] and [C] we use perturbation theory to construct the “homoclinic
trajectories” (i.e. the trajectories which are bi-asymptotic to an n dimensional torus
run with prescribed frequency). This leads to recursive equations for the coefficients
of the Taylor expansion of the homoclinic trajectories (in the parameter p with £ > 0
a fixed parameter).

Then, still following [G1], we introduce a suitable “graph theoretical” representation
of the homoclinic trajectories useful to identify cancellations. We use quite standard
notions on trees: mainly labeled rooted trees and their automorphisms groups. With
respect to [G1], we use a different grouping algorithm for the tree representation; in
particular we use the isomorphism groups of trees which, we believe, make computa-
tions on trees more explicit and we hope simpler. We assign quite a few labels to the
trees to represent directly on the trees the relevant structure of the homoclinic trajec-
tory. As mentioned before, the terms of order higher than one in the expansion of the
homoclinic trajectories are in general not analytic in ¢. Following [G1] we represent
this by introducing specially labeled nodes (called fruits); such nodes are responsible
for the appearance of the non analytic terms. An accurate study of the tree repre-
sentation (and some notions on asymptotic power series) enable us to prove Theorem
0.6. One of the main tools is a formal linear equation for the splitting matrix (which
generalizes the one proposed in [GGM1]). This formal linear equation directly implies
exponential smallness and, we think, simplifies significantly the procedure of [GGM1]
(as wee as extending the results of [GGM1] to Hamiltonian*).

We provide as well an alternative proof of Theorem 0.6, following the strategy
of [BB1] adapted to perturbative series and tree representation (so we generalize the
results of [BB1] to anisochronous Hamiltonians although our bounds are less sharp
that those obtained in the cited article).

The proofs of Theorems 0.8 and 0.9 follow the general strategies proposed in

[GGM1] and [GGM3]| which we refine and develop so to apply them to our more
general Hamiltonian (*)).
To prove Theorem 0.8 we provide “accurate enough” bounds on the coefficients of the
series representation of the homoclinic trajectories. We explicitly compute the first
order term and use Cauchy estimates to find upper bounds on the terms of order
higher than one. The fact that f(1,q) is not taken to be a trigonometric polynomial
creates various technical problems. For instance one cannot Fourier expand f (1, q)

F@g) = D fame' eV,

neZ , meLm™

and bound it (and its derivatives) on annular domains T"*" x i(—r,r); instead one
has to choose suitable (in general non annular) domains on which to perform Cauchy
estimates.

To prove Theorem 0.9 we provide a Normal Form Theorem (which generalizes the
corresponding Theorem proposed in [GGM3]).
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Finally, in the proof of Theorem 0.11 we use the “improved” tree representation
introduced in [Ge]. The main idea is to apply the improved bounds coming from this
tree representation to the “analytic” terms (related to “fruitless” trees as said above),
this is quite delicate and requires, for instance, an attentive use of the formal linear
equation used for the proof of Theorem 0.6.

The thesis is organized as follows:

In Chapter 1 we provide some basic notions.
In Section 1.1 We consider an anisochronous Hamiltonian of type (*), namely with
A(e) positive definite for ¢ # 0 (consequently b(¢) = 0). Moreover we set F(q) =
cosq — 1.
For such system we state a KAM theorem; following [CGJ, we define the homoclinic
trajectories

2o w,t) = ((p,w,t), Y(pwt), qlp,w,t)),
running for positive (resp. negative) times ¢ on the to unstable (resp. stable) manifolds
of the persistent torus of diofantine frequency w € R".The initial data are (¢, w,0) =
p €T, q(p,w,0) = 7. The value of I(¢,w,0") (resp. I(p,w,07)) is fixed by requiring
that the homoclinic trajectory is on the unstable manifold for positive times so that
the homoclinic trajectory is possibly discontinuous for ¢ = 0 and analytic in R*.
We finally define the splitting vector:

Ali(p,w) = I(p,w,07) — I(p,w,07)

and the splitting matrix which is the Jacobian of the splitting vector at the intersection
point ¢ = 0.

The KAM theorem ensures that the S/U manifolds are analytic in p for small enough
. Then we find a recursive algorithm for computing the Taylor expansion of the

manifolds in p:

ZH(SOJ w, t) = Z Zk(¢7 W, t)'
k=0
To do so, again following [CG], we introduce a suitable generalization of the improper
integration we call it the operator §'. This definitions are essentially taken from [G1]
and only slightly modified in order to deal with non trigonometric perturbations.

In Section 1.2 we give some definitions of trees, labeled trees and their symmetry
groups. We then define admissible trees, which are a set of labeled trees whose labels
satisfy suitable conditions. Finally we define the order of an admissible tree k£ > 0.
Such trees carry quite a few labels (sometimes referred to as “decorations”); they will
be used in Chapters 2 and 4 to prove cancellations in the perturbation series of the
S/U manifolds. The decorations are necessary to infer the cancellations directly from
the trees.

In particular, following [G1] we consider special end-nodes, called fruits, which carry
a different set of labels from the ordinary nodes, called free nodes. Such distinction is
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useful to evidence the holomorphic parts of the homoclinic trajectory. We call the set
of admissible trees T trees with fruits and call the subset of T of trees without fruits

A.

In Chapter 2 we define linear operators on fruitless trees A, called the tree values,
which set the homoclinic trajectories, splitting vector and splitting matrix, in corre-
spondence with particular linear combinations of trees.

Consequently the tree values are appropriate (generally non analytic) functions of time
and of the initial data (¢, w). We then define suitable linear combinations of trees of
order k£ whose values are in correspondence with the order k& term in the expansion of
the homoclinic trajectory or of the splitting vector...

We repeat the same scheme on the trees with fruits 7, defining “holomorphic tree
values”; again such values set the homoclinic trajectories, splitting vector and splitting
matrix, in correspondence with particular linear combinations of trees with fruits.

The “holomorphic tree values” are called so as the value of all fruitless trees A is
a real analytic function in .

The presence of the fruits generates the possibly non analytic terms which are respon-
sible for the complexity of the problem of evaluating the splitting determinant.

We are mainly interested in cancellations for the splitting vector and for the splitting
matrix. We view such cancellations on the trees by setting two trees to be equivalent
if they have the same value.

In Chapter 3 we define trees with prefixed total frequency v € Z", A(v) where
A € A and their values.

Setting appropriate (non minimal) hypothesis on the function f(1,q), we provide
bounds for the contribution to the splitting matrix of a tree A(v) of order k.

Given a > 0 and d < 7/2, consider the domain:

C(a,d) ={t € C: |Ret| < a, |Imt| <d} U{t € C: |Ret| > a, |Imt| < 27};

we consider perturbing functions f(v,q) such that:
1) f(¥0(t), qo(t)) is analytic inside a domain C'(a, D) and has poles on the border.
2) There exists p > 0 such that:

max _|f(vo(t), qo(t)] < CVE". (0.7)

teC(2a,D—+/¢)

For such systems we prove that, for 4 < £”, the contribution to the splitting matrix
of a tree A(v) of order £ is bounded from above by

(k) (CLo) e P11V,
ge2

with C', ¢; and ¢, are appropriate constants not depending on the tree. P depends on
the meromorphic properties of f(y(t), go(t)) -
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In Chapter 4 we use the bounds of Chapter 3 and the formalism of Chapter
2 to prove exponentially small bounds on the splitting determinant. We follow the
techniques proposed in [GGM2] which we have generalized and, we hope, simplified.
In Section 4.1 we consider the completely anisochronous systems treated in the pre-
vious Chapters. In Subsection 4.1.2 we prove that the splitting vector is a Lagrangian
manifold generated by a function S(p) called the generating function of the splitting.
Subsection 4.1.3 contains some technical identities on A;. Finally, in Subsection 4.1.4,
we prove that the splitting matrix satisfies two formal linear non homogeneous equa-
tions which ensure the exponential smallness of the splitting determinant.
In Section4.2 we consider Hamiltonian (*) with F'(¢) = cosq — 1 and show that
we can repeat the procedure proposed in the preceding section and prove the same
exponentially small upper bounds.
Finally we discuss (non optimal) exponentially small upper bounds for the splitting
determinant of Hamiltonian (*) and prove Theorem 0.6.

In Chapter 5 we give an alternative method for computing the upper bounds on
the splitting determinant for the completely anisochronous case. Following [BB1], we
construct recursively a transformation ¢ : T? 3 ¢ — a € T? such that in the induced
symplectic coordinates the generating function of the splitting (which we prove is
S o0 1) is the integral & of an analytic function F(a,t) plus a remainder of order n’
with K = O(g~?) for an appropriate b depending on the number of fast variables. This
implies that the splitting determinant, i.e. the determinant of the Hessian of S, is
O.(cc). So this Chapter provides a possibly simpler proof of the upper bounds on the
splitting determinant. Moreover the existence of ¥/ implies a stronger condition, which
is useful to prove fast diffusion (see [BB2]). For each a € T? the Hessian matrix of
S o9 has the following block structure:

where My is an m x m matrix whose entries are O.(e*), Np is a n — m X m matrix

whose entries are O,(¢*) and Mg contains terms which are polynomial in g, ".

In Chapter 6 we find lower bounds on the splitting determinant and on the eigen-
values of the splitting matrix, for systems with one fast frequency. This can be done
independently by using the results of Chapter 4 or of Chapter 5.

First we compute the Melnikov integral for perturbations f(1,q) satisfying the
Condition 0.7 with F'(¢) = cosq — 1; then we use the upper bounds proved in Chapter
3, restricted to systems with one fast frequency, to infer that the Melnikov integral
dominates on the higher order remainder if 4 < 7. We obtain Theorem 0.9 for the
pendulum (i.e. for F'(¢) = cosq — 1).

In Section 6.2 we consider systems with three degrees of freedom and adapt the



xxi

techniques of [Ge] and [GGM4] to prove better bounds on P (which depends on the
poles of the function f(ty(t), qo(t)).

Finally in Section 6.3 we apply our results to D’Alembert- like Hamiltonians thus
obtaining Theorem 0.11.

In Chapter 7 we generalize the dependence of the ¢ variable of the (yu)-unperturbed
pendulum. We can consider the full Hamiltonian (*) with conditions 0.7.

We find non perturbative conditions on F' such that one can “shadow” the procedure
used in the preceding chapters and prove lower and upper bounds on the splitting
determinant (we show the procedure explicitly on an example). The conditions on F
will be quite technical but the fact that they require no closeness conditions with the
pendulum is, possibly, interesting.

In Chapter 8 we prove the existence of heteroclinic chains and we sketch the
procedure for proving that such chains are transition chains.

The Appendices contain particularly technical proofs and some notions and defi-
nitions which are useful in the thesis.

In Appendix A.1 we give examples of functions with essential singularities which sat-
isfy the bounds (0.7). Moreover we prove that the only entire functions f(q) satisfying
(0.7) are trigonometric polynomials.

InAppendix A.2 we provide some computations on trees, useful in Chapter 3.

In Appendix A.3 we provide some basic notions on lattices in Z".

In Appendix A.4 we prove the Normal Form Theorem needed to solve the “gap
bridging problem”.

In Appendix A.5 we report a proof (taken from [GGM3]) of the convergence of a
KAM theorem for the D’Alambert-like Hamiltonian of Chapter 6.

In Appendix A.6 we give the complete proof of Theorem 0.6 extending the proof of
Chapter 4 to general analytic functions f(v, q).

In Appendices A.7- A.8 we review some cancellations on trees, which are not strictly
needed in the thesis but which we find nonetheless interesting.
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Chapter 1

Preliminaries

1.1 Whiskered KAM tori for anisochronous Hamil-
tonian systems

We discuss a completely anisochronous version of Hamiltonian (*) and present a brief
review of known results on the problem of homoclinic splitting.

In Subsection 1.1.1 we will first state a classical KAM Theorem for partially hyper-
bolic systems (see [CG]) which ensures the existence of unstable tori and of their local
S/U manifolds and then prove the ezistence of functions

Ii(.q,w) . I, (¥, q,w) (1.1)

that parameterize respectively the unstable and stable manifolds for all »p € T" and
q € (—m + 0,7 —0). These are well known results which can be found in most of the
references so we will give no proofs of the KAM theorem.

In Subsection 1.1.2 we discuss the perturbative construction of the manifolds (1.1),
by studying the trajectories that are asymptotically quasi-periodic for t — +oo. These
are known results as well, we will briefly report the proofs as they will be useful in the
following sections.

Consider the model Hamiltonian:

2

LAOD V4 cfeosta) 1) + f(w.0) (12)

the pairs I € R", ¢ € T" and p € R, ¢ € T are conjugate action-angle coordinates,

g, p are small parameters. For the moment we will consider this parameters as in-

dependent and finally prove that we can take |u| < e for some appropriate positive
P.

As said in the introduction A is a diagonal matrix, whose eigenvalues a; < O.(1). For

¢ # 0 the matrix A is positive definite, and for € = 0 it can have some zero eigenvalues.

We have in mind a matrix with eigenvalues of the type a;(¢) = % with 0 < a; <1
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for j = 1,...,n. Some of the a; will be zero; in particular we set ay,...,a,, = 0 for
0<m<n.

We will consider the system at energy E of order E = O.(1), € # 0 is a fixed parameter,
and we will construct a perturbation theory in pu.

The system (1.2) is integrable for e # 0, u = 0. Tt represents a list of n uncoupled rota-
tors and a pendulum. We will denote the frequency of the rotators (which determines
the initial data 7(0)) by w so that:

I(t) =1(0) = A 'w, ¥(t) = (0) + wt.

The initial data are chosen in an appropriate domain D,, so that there are at least
two characteristic orders of magnitude for the frequencies of the unperturbed system.
Given 0 < o < % and 6 € R™ such that:

1 1
a > max ((1_7-—5), 01,0 =0, 54—(1—% <d0;<1l—aqj, for j=m+1,....n
j=1,...n
and there exists i € {m+1,...,n} such that §; = 1 + o — «;, we consider the domain:
LT _ 5 , 5;
Do, 6) = {I: 1-AI =2F, re% <|[;| < Re%

for all 1 =0,...,n and for some R,r = O.(1)}.
This implies that the corresponding frequencies are in a domain

Q={w:Y " wla=2E, w= (wy, €2 %ws,) with w;] > e, w; € R™ ;

r<|wii| <R and r < |wy| < R for some R,r = O.(1)}.

Notice that, for n — m > 2 not all the components of wy are necessarily of order one
in €.

There are at least three characteristic time scales O, (1), O.(¢2+*) and /z which is the
Lyapunov exponent of the unperturbed pendulum.

We will call ¢y, - -, ¢, the fast variables and we will sometimes denote them as ¢)p €
T™. Conversely we will call ¢, 41, - -+ , 1, slow variables g € T" ™.

Notice that we can consider indifferently systems that are degenerate or non-degenerate
fore = 0. The only (obvious) restriction is that if the system is degenerate in some of its
action variables, for ¢ = 0, then these are necessarily slow variables with characteristic
frequency wy; < tpy -

The perturbating function f (1), q) is a trigonometric polynomial of degree N in the
rotators ¢, it is analytic in ¢ in a domain T x i(—R, R), for simplicity we take it even
and with zero mean value; this means that:

FWg)= > fanerY)

n,weZn+2|y|<N

Where fO’O = O’ fna’/ = ffnafy and |fnyl/‘ S CueiR‘,n‘ S CeiR‘,n‘ .
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These conditions are sufficient to ensure the convergence of the local KAM theorem
and to provide exponentially small upper bounds on m eigenvalues of the splitting
matrix. In the case of one fast frequency (m = 1)we will restrict our attention to
perturbating functions f(g, ) that are rational in €' (with no singularity on the unit
circle). In this case we will give lower bounds on the eigenvalues of the splitting matrix
and finally consider the problem of heteroclinic intersections.

For each w € R" the unperturbed system has an unstable fixed torus :

p(t) =q(t) =0, I(t)=1(0)=A"w, () =(0) +wt.

The stable and unstable manifolds of such tori coincide and can be expressed as graphs
on the angles:

p=+v2/T—cosq, q(t) = 4arctan etV ;

I=A" , P(t) = ¥(0) + wt.

It is known that for diofantine values of the frequencies the unstable tori, with their
S/U manifolds, survive the onset of a small perturbation (and so does the property of
being graphs over the angles) but generally the two manifolds will no longer coincide
and one should expect a transversal intersection; evaluating the “intersection angle”
will be the purpose of the following sections.

1.1.1 The KAM construction, definitions of splitting vector
and splitting matrix.

Definition 1.1. given any v € R, 0 < v < 0(6%“‘) and a fired T > n — 1, we define
the set
Q,={we: |w-n| > 1 Vn € 2" /{0}}
n T
of v, 7 diofantine vectors in Q. Now we consider

11

=0, % (5.3

)

and for all (w, p) € Q) we set w, = (1 + p)w.

For all (w, p) € ¥ an for alln € Z"/{0} |w,-n| > TR

w € Q, implies that wy and wy are diofantine as weh; we will call T and 15 their
exponents.

Theorem 1.2. There ezists' po(e,v) such that if |p| < po and if (w,p) € Q, there

Yin the Appendix A.4, we will specify ug(e,7); generally speaking, if we consider only those w €
Q. () which are as well in B : {w : |w-n| > CEs V|n| < s}, one obtains, by combining classical
perturbation theory and KAM techniques, that ug(e,e™) = ¥ with [ = max(2,w) . This
estimates can be much refined by using the existence of separate time scales, see for instance Theorem
1.4 of [GGM4]. In that article the authors consider a system with three degrees of freedom (and three

1

time scales 1, v/&,3+7); they obtain pio(e,7) = ¥ for all y < e -3+
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exists one and only one n-dimensional H,-invariant torus T, (w, p) whose Hamiltonian
flow is analytically conjugated to the flow T™ > ¥ — ¥ + w,t.

The torus T(w, p) admits local stable/unstable manifolds W;floc(w,p), described by a
function:

T x Bgr X B;lm X Q’Y = (197 (.Z'+,.’E7),/L,Ldp) - 5#(197'77_'—:'7;77(“)9) (13)

3 4 o : n o B2 « B

C® in all its arguments. For fized (w, p) the function is analytic on T} x By, X B, ;where
. . 1 .

k is some e-independent constant and r = O.(e). In terms of the function (1.3) one

has:

Ty(w, p) = {£,(0,0,0,w,)9 € T"}
W (w,p) = {0, 27,0,w,)0 € T, |z+] < 2r} (1.4)

w,loc
W oew, p) = {£,(0,0, 27, w,)Y € T, |2~| < 2r}

w,loc

on the local stable/unstable manifolds the flow is:
Flet + - _ + —At .— At
I (0,270 w,) = (0 +wpt,aTe Mo e w,)
where the Lyapunov exponent A = A, (9,27, 27, w,) has the same regularity as .

The proof of this theorem can be found, for example in [CG].

We have introduced the variable p in order to fix the energy of the perturbed system
equal to? E (for all w € Q).

Proposition 1.3. There ezists a function p = p(u,w), analytic in pu, such that for

E € [Ey, Ey):
H,(£4(0,0,0,wp(u), €, 1) = E.
Proof. As
Ho(64(0,0,0,w),2,0) = - A ' =
and

1 _
0, Hy(4(0,0,0,0,),2,0)] =0 = [y A 'w(1+ p)?]_, = 2B > 0
we can apply the implicit function theorem and obtain w,(u, w). ]

Notice that Theorem 1.1 is local in the hyperbolic variables z*, = (it holds in a
domain |z%| < 2r = O(e7)),to find extended stable/unstable manifolds we “follow the
flow” i.e. we apply the Hamiltonian flow @jT to the stable/unstable local manifolds,
where T is sufficiently large (positive for the unstable manifold and negative for the
stable one).

2The final goal is to find heteroclinic intersections on the fixed energy surface, and so “Arnold
diffusion”, but in the following sections we will discuss only homoclinic intersections and so we will
drop the parameter p
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The time T = &2 log e~ is such that given a point z € T x R inside the local unstable

manifold of the pendulum, ®_,(z) = (2v/=, ),
Now the extended stable unstable manifolds are:
5;(19,m+,m*,w) = @inj(ﬂ,mﬂm*,w).
And by the choice of T"
T {& (0,27, 0,w,) ¢ |2t < 2r} D [, 0) VY, (1.5)
7 {&u(0,0,27,w,) |27 <2r} D (0, 7] V9. (1.6)

Proposition 1.4. The branches of the stable/unstable manifolds can be represented as
graphs on the rotator angles, for instance for p < 03:

EX(0,27,0,w) =4, IF (1, q,w), q, 1 (1, q,w), (1.7)
E;(ﬁJ 07 .Z‘i, w) = w? I;(w? q7 w)? q7p;(z/)7 q7 w)
A proof of this Proposition can be found, for example, in [C].

Definition 1.5. We will study the difference between the stable and unstable manifolds
on an hyper-plane transverse to the flow (a Poincaré section). In the following Sections
we will use » = p € T",q = m and call ]j(gp,w) the graphs of the S/U manifolds at
the Poincaré section. We will call
AI(QOJ Ld) = ]7(907 w) - ]+(907 Ld)

the splitting vector. We will prove that AI(p = 0,w) = 0. We will call

M : alp(I:(gpaw) o I‘:(SO,(A))‘
the splitting matriz and detM the splitting determinant.

It is convenient to re-scale the time and action variables so that the Lyapunov
exponent of the unperturbed pendulum is equal to one. Namely we will consider the
following Hamiltonian:

(1LA@EI) | p’

s+ 5+ (cos(@) = 1) +0f (0, 0). (1.9)
which generates the same Hamilton equations as (1.2), provided that:
. I+ - t
Ve 1
I(t) = 1) = (— _F
() =—F. PO =), n="
) t (1.10)
. PUzE -
Pty = =2, q(t) = a(—=).

Ve

We re-scale the domains D,,, and {2 consequently so obtaining a rescaled frequency
W= (%, £%ws). In the following sections we will consider the system after this change
of variables, but we will omit the tilde (except in w).

To retrieve the true size of I we must only remember to multiply by /2, the inverse
for the variable ¢, to have the correct estimates on the diffusion times.

3notice that pj(d), ¢,w) is obtained via the energy conservation one we have fixed the sign of p.



6 Chapter 1. Preliminaries

1.1.2 Perturbative construction of the homoclinic trajectories

In this Subsection we will use perturbation theory to find the (analytic for pu < pug)
trajectories on the S/U manifolds of Hamiltonian* (1.9)

(2 (|t 0, @) = B (I (0, @), 0,7) = ()2 (1, 0, @).

The basic ideas, which go back to Poincaré, consist mainly in determining the trajec-
tories on the S/U manifolds by requiring boundedness as t — +oc.
Namely given the Hamilton equations of system (1.9):

—(0) fp,(W,q), p=sin(q) — (n)fo(¥,q),
(1.11)

Y; = a;l;, q=n,

an initial datum @, I (o, @), 7, p; (¢, @) is on the stable (unstable) manifold if and
only if its flow approaches the invariant torus of frequency @ for > + — 400 . This
requirement is sufficient to determine the initial datum as a power series in 7).

Definition 1.6. To avoid the + apex we will set®:

o2t ift>0
Zj(t)_{z(t) ift <0

Moreover as we will now consider @ as fixed we will omit W in the expansion coefficients.

Inserting in the Hamilton equations the convergent power series representation:

It o,n) =D o) 15t ), Wt o,n) =D g F(t, o),
p(t,o.m) = Yookt ), a(t,o,m) = ¢°(t) + >0 () g (L, ¢)

we obtain, for £ > 0, the hierarchy of linear non-homogeneous equations”:

If :Ff({wf},;:g,_,,n), 1/)k =a;I%, forj=1,...,n

155 0

1.12
= cos b + EE{) o), = (1.12)

4Notice that the apex k on the functions I, represents the order in the expansion in n NOT an
exponent. To avoid confusio, when we need to exponentiate we always set the argument in parentheses.

%and so tends, as t — 400, to a quasi-periodic function with frequency & at an exponential rate
given by the Lyapunov exponent

Snote that the functions so defined are possibly non continuous in ¢ = 0 as each boundedness
condition (¢ — +oo determines uniquely the value in ¢ = 0

Twhen it is not strictly necessary we will omit the prefixed initial data of the angles ¢ =

$1(0), -, ¥n(0); Yo(0) =7
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where the functions F are defined as follows. Set:

1 d*
e = 2577
we have for j =0,....n
k—1 k—1
k 1+ 6JU[SID( (n)hwg(t))]kv
h=1 h=1

where §;; denotes the Kronecker delta and ¢"(t) is the vector ¢2(t),...,¢"(t). For
k = 0 we obtain the unperturbed homoclinic trajectory:

D) = (p+ —=t, AT 0y, (),

Ve \/

(q°(t),p°(¢)) is the lower branch of the pendulum separatrix starting at ¢ = 7:

2
¢"(t) =darctane ', p’(t) = ————,
cosh 1.13)
0 2 . 2sinht (1.
cosq =1 — sing = ———
e (cosht)?’ I (cosh t)?

For £ > 0 we have a linear non-homogeneous ODE that we solve by variation of
constants.
The fundamental solution of the linearized pendulum equation is given by:

(1iw°(t) sinht __ _sinht_
W(t) — 4 (cosh t)? (cosh t)?

wO(t) 1
4 cosht
t + sinh 2t
0
w(t) =2———,
*) cosht

so that integrating equations (1.12) we have:

D) = wi (Dp(0%) + wn (1) /wm( VER()dr — wialt /w21 ir.

0 0
¢
VE() = wa (1)p* (0F) 4wy () /11)22(7)}7(;“( — Wyt /71)2] dr
0 0

(1.14)

t

IF(t) = I"(0%) + /FJ.’“(T)dT

() = ay (I (0*)t /t—TFk dr).

0
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the functions w;; are the entries of W(t) and we have used the fact that, for & > 0,
YF =0 foralli=0,n.

Remark 1.7. This procedure can be repeated for any generalized pendulum; see Section
7.2 for the construction of the Wronskian matriz. One obtains a matriz W'(t) having
the same qualitative properties a W.

To give meaning to the t — +oo limit ,following [CG], in the following Subsection
we shall introduce a suitable generalization of the standard improper integration.

1.1.3 Whisker calculus

Let D be the class of functions f smooth for ¢t # 0, such that for any k£ > 0, there exist
a > 0 > b for which, given ¢ € R the function:

t

u— Fi(u,t) = / e B (7)dr  where o(t) = sign(t) (1.15)

o(t)oo

is analytic on the complex domain {u € C : Ru > a} and admits an analytic contin-
uation which is meromorphic in {u € C : Ru > b} and analytic in a neighborhood of
u=0.If f € D we set "= Fy(0,1).

Notice that if limsup,_,, e fE(4)] < oo for some r > 0, then f € D and

t
%t(f) = fr;(t)oc f .
It is easy to check that f = /e’ € D for any j and any non-zero complex number c.
Polynomials are clearly not contained in D. Nevertheless, we extend the operator &
on

D & ring of Polynomials in t
by defining 377 = t;%
Now set H to be the largest subset of D which is closed under product, derivative
and integration & and . .
M={feH: npf=0}

where 7p is the natural projection onto polynomials.

On H one can set
d /
C‘tf 7{ Y / *“‘T‘f(r)dr, (1.16)

277r11

where the integration in the u variable is performed on a suitably small |u| < ¢ circle
around u = 0 It is easily seen that expression (1.22) works as well on polynomials in ¢
the only difference being that

t

/ 67“‘7—‘]0(7')(17'

o(t)oo
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will no longer be analytic in u = 0.
For all f € H, 3'f is a primitive of f as:

3o f = / f(r)dr, (1.17)

for any f € H and any s,t such that o(t) = o(s).

Let us consider some interesting subspaces of H.

Definition 1.8. (i) H is the vector space (on C) generated by monomials of the form:

to,
m = (f(t)aumhe"(‘”“’t)'” whereh € Z, veZ", j €N,
z=e¢ " a=0,1, o(t) = sign(t). (1.18)

(i1) Given two positive constants b and d, H(b,d) is the subset of (couples of) func-
tion(s) f(t) that admit a (unique) representation:

Ft)y =3 =M (2,0 + wi), (1.19)

with M;(x, ) trigonometric polynomials in .
The Fourier coefficients M;,(x) are all holomorphic in the x-plane in an annulus 0 <
|z| < e and satisfy the following properties.

1) The M;,(z) have possible singularities
outside the disk |z| < e ® and outside the

larities at x = 0.

If M,Z(t) # 0 then k is called the ¢ degree of
f- In Figure 1.1 we have represented a pos-
sible “candy”shaped domain of analyticity
for the M, ; Figure 1.1:

cone |argz| < d. /v
2) The M;,(z) have possible polar singu- \Cﬁ d

Notice that H is contained in all the spaces H (b, d); moreover if [t| > b, f(t) can
be represented as an absolutely convergent series of monomials of the type m.

One can easily check that the integration & acts on monomials m of the form (1.18)
as:

+1,.h i(p+wt) z]: ‘t|.7'fp
—O'a €T '67' wt)-v : '
%t(m) — =0 (j —p)l(h —iow - v)Ptl
gatl ‘t|7+1 .
BN it |h] + ] = 0

it |h|+|v] #£ 0

(1.20)
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This and equation (1.17) show that S* acts on H(b,d) as (1.20) if |t| > b and if
|t| < b as

SEdQL / (1.21)

obviously the choice of 2b is arbitrary.
On H(b,d) we can extend S to complex values of ¢ such that ¢t € C(b, d) where:
C(b,d):={teC:|Imt|<d, |Ret|<b}u{teC:|Imt| <27, |Ret| > b},

is the domain in Figure 1.1 in the ¢ variables.

F2im

To extend 3* simply consider the definition 1.16, for t € C(b,d) so that if t = t; + is,
with #;,s € R, the integral is performed on the line Im7 = s.

t
d“‘ —o(T)ut
%tf:]{%m / e~ £ (7)dr, (1.22)
o(t)oo+is

where o(t) = sign(Re ).
This definition does not modify the expressions (1.18) (one simply sets ¢t = t; + is,
x = x17(1)%) . The following property holds:

Lemma 1.9. H(b,d) is closed under the application of I'.

Proof. Let us expand f as in (1.19) and consider the single term
i dwer a(t
tel Mg (z), (1.23)

moreover, if |¢| < b, we divide 3" as in (1.21). For |[t| > b we can expand M;gt) (z) in
convergent power series of z and apply (1.18). The radius of convergence is the same
and the degree of the pole in zero is the same. Moreover
t
/ Tgezw-uTM;T'gt) (.’I?’)
2:7(t3b+is
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is well defined and finite provided that s < d and | Re #| < b.
Finally as f is a finite combination of terms like (1.23) so S*f is still in H(b,d). O

Definition 1.10. We define as Hy the subspace of H of functions that can be extended
to an analytic function in some strip around the real azis.

Hy(b,d) is the subspace of H(b, d) of functions that can be extended to analytic functions
in C(b,d).

Notice that f is in Hy(b,d) if it is in H(b,d) and fT(¢) and f~ join analytically at
t=0.

Remark 1.11. Notice that if f € Hy(b,d) then generally Sf ¢ Hy(b,d) and has a
discontinuity in t = 0. For instance if f € Ly is even, then:

3(f) =8 3" = [ £ 20

We can construct operators which preserve Hy(b,d); let § = S0 — 30" and

5 19 ift >0
TS -9 ift<o,

gt 3t ift <0
Tl ST+S ift>0.

The operator
1 ot ot 1 (oY
5 3, =S ia(t)\s (1.24)
p==+1

preserves the analyticity.

Now let us cite two important properties of Hy(b, d), whose proofs are taken from

(G1].

Lemma 1.12. In Hy(b,d) we have the following shift of contour formulas:
Vf € Hy(b,d) and for alld > s € R

(i) Sf(r) =Sf(7+1is),

t

- . 18 dR —Ro(7)(7+1s .

(i) Z %ﬁf" f(r) = % 5 Z /e Ro(T)(m+19) £ (7 4 is)dr .
lp:ilpoo

p==1

The integrals in the right hand side have to be considered to be the analytic contin-
uation on R from R positive and large.
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Proof. (i) If f is a polynomial one can check by direct calculation that the relation is
0=0.
For R large and positive

/UeRTf(T)dT—i-/OeRTf(T)dT (1.25)

is well defined and can be shifted by is for all s < d. It is equal to

0

0
/ efTH) £ (7 4 is)dr + /eRTiSf(T +is)dT — i /(eiR taw BT £ (iT)d.

0

S

— 00

This differs from

0 0
/ e f(T +is)dT + /eRTf(T +is)dr (1.26)
precisely by:
0 0
(e'fs — 1) / BT f(r 4 is)dr + (e — 1) /eRTf(T +is)dT— (1.27)

i /(eiRT — Y fiT)dr.
0

This implies (i) by taking the residues at R = 0.
We consider only f with no polynomial component, so the t-integrals are all analytic
in R for R = 0. This implies that the residue of (1.27) is zero.

(ii) The two sides differ by the residue at R = 0 of

S

—i [ (e7"FT — BT f(iT)dr
/

which vanishes. O

1.1.4 Analytic expansions for the whiskers

Let us consider some (probably non minimal) conditions on the perturbing function
f(q,v). Namely we will consider only those functions f(q,) which are trigonometric
polynomials in ¢ and such that f(q(t),(t)) € Hy(b, d) for some b, d.
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Remember that ¢(¢) and (¢) are the mo- ]
tions on the unperturbed separatrix after
the change of variables (1.10). — -
The trajectory ¢(t) can be analytically ex-

tended tot € Rx (—n/2,7/2), in Figure 1.2 .
we show some ¢(t+id), t,d € R for various
values of |d| < 7/2. Figure 1.2:

We have in mind functions f such that

fla. ) =Y eV F, (")

v< N

and there exist & < 1 < 8 and ¢ such that the F,(y) are all analytic in the domain
a<lyl<p, y-1<c

Given f we define

a= infyegs {b: F, (") € Hy(b,d) for some d and Vv}

D = supyp+ {d: F,(e“Y) € H(a,d) Vv}. (1.28)

In Figurel.3 we have represented in light-

blue the region 3 < |y| < 2 and in dark //’
blue the image through €®) of the region | ( i
C(3,7/16). if the F,(y) have no poles in- \% 2
side this region and have a pole on the bor-

der both of the circle around y = 1 and on

the “annulus” around S' then ¢ = 3 and
D = r/16. Figure 1.3:

-2i

We easily see that 2*(t) and hence F* belong to H for all k > 0 so that:
I*(t) — S'FF = ¥ (070 — g FF, (1.29)

Remark 1.13. (i) The quasi-periodic average,

T
. 1 L . Foo) —

R e e e

0

of an asymptotically quasi-periodic (couple of) function(s) f = ¢ + g, where g is

exponentially decreasing, coincides with the quasi-periodic average of 1;

(i1) if f is asymptotically quasi-periodic with < f >= 0 then both f and S'f belong to

H and < Sf >=0 as well.



14 Chapter 1. Preliminaries

Thus taking the quasi-periodic average in the first line of (1.11), one sees that both
F* and I* | which are asymptotically quasi-periodic, have vanishing quasi-periodic
average. Therefore taking the quasi periodic average in (1.29) we obtain I}(0) = SFf
and so:
() = S'F) g = a;(S'[STF)] = SISTFS)).
With similar arguments (and keeping in mind the asymptotics of W (t), we find that

0

P (0%) = / won () EE(7)dr-

+o0

Finally we summarize the equations for the stable/unstable manifolds as:

L) =S'(Ff)  vj(t) = a;05(F)) (1.30)

where i = 1,n and 7 = 0,n and aqg = 1.
The operators O} are defined in terms of '
_ 0 1
= Q) + B)' + R}’
Qi(9) = 3 22—t Sh(w;(t, T)g(7))

R'(9) = 4l (03 (r)g()) 11 = Ii 1]

wi(t,7) = (f(f)T} (H)2(7) — o(T)2(t)xl (7))

t] j#0 1 j#£0  (1.31)

w1 e ) =0

2 +1

Notice that 2} belongs to Ho(0,7/2) z; belongs to H(0,7/2) and that w(t,7) is in
Hy(0,7/2) % HO(O 7/2). By our aqqump’rlonq F} j = 0,n belongs to Hy(a, D). Thus
Lemma 1.11 guarantees that H(a, D) is closed ander the application of §* and O!.

Remark 1.14. If f(v,q) is a trigonometric polynomial then F_’jl J = 0,n belongs to
H(0,7/2) which is closed under the action of " and O}.
In the following Section we will work symbolically on I 1/), so we will not note weather
we are working in H(b, d) or in H. Then in Chapter 3, where we estimate the integrals,
we will need to keep track of the action of Q; on H(b, d).

Remark 1.15. We have expressed the operators O; in terms of QQ; and R; to keep
track of the occurrence of terms not in Hy; actually we start with f(p + @t,q(t)) and
cos(q(t)) which are in Hy, but the operators R}' produce x; which is clearly not in Hy.
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The following proposition contains some important properties of the operators @);
all proved in [G1].

Proposition 1.16 (Chierchia). (i) The operators Q; and O; are “symmetric” on H:

S(fQjg) =S(9Q;f),  S(f0j9) =S(90;) ).

(ii) Ho(a, D) is closed under the application of QY.

(11i) The operators (Q); preserve parities and if f € H is odd then Sf =0
(iv)If F,G € H are such that npF - G has no constant component, then:

SV G(r)d, F(r) = F(0°)G(07) — ¥ F(r)d,G(T)

Proof. (i) Consider the bilinear forms:

(Fe*Rl\t\’QjGe—Rg\t\)E / thde/w t7) Rz\ﬂg( Vi

— 00

For sufficiently large values of R;, R, the integrals are proper and the bilinear form
is symmetric (as w;(t,7) is odd). So taking the residues at Ry, Ry = 0 we obtain the
symmetry of the operators (); on H.

(ii) We are simply restating Lemmal.11 and remarking that the operators (), preserve
the analyticity in ¢ = 0.

(iii) The operator & changes the time parity (it is the inverse of a derivative); moreover
we remember that

wi(t,7) =x;(t)o

S o
—~
=~
~—
—~
q
~—
=
L=
—~
q
~—
Q
—
S~
~—
=
L=
—
S~
~
=
<o
—~
\1
~

where both the :c are even.
(iv) We want to Compute

t

7{ d?t /e“t’F(t’)dt,G(t’)—F(t)G(t)

2miu
,u‘tl‘G d / % / 7u\t/‘F
% 27mu / ! 27rz G(¥)

o(t)oo
the third summand is clearly zero if [1pF'G = 0 as in that case

t

/ e PG

o(t)oc
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is analytic in v = 0. If FG is a polynomial a direct computation on #* shows that

t
du )
— ultlk — §(k,0).
fom | e (k,0)
a(t)oo

Corollary 1.17. For any even f,g € H:
SfSw;(t, 7)g = 2 fSaig — %ajl.f%x?g + SgSw; (¢, 7) f.

Proof. We simply substitute (1.24) in Proposition 1.16(i) and then use 1.16(iii) to set
he integrals of odd functions to zero. O

1.2 Trees

We supply the necessary definitions of trees, labeled trees, rooted trees and introduce sets
of trees (which we will call admissible) having labels and grammatical rules adapted to
our dynamics. We construct a vector space V on Q generated by the sets of admissible
trees and define on V linear and multi-linear functions. The definitions are adapted
to the problem of describing the homoclinic trajectories with the aid of trees; therefore
many definitions could be given in more general terms and maybe appear then more
natural (for a general presentation see for instance [GR]).

We hope however that the notation will become more clear when we define the
connection with the dynamics in Chapter 2.
All the definitions of trees are standard, notice however that we are using a different
notation from that of [G1] and the subsequent papers, which use numbered trees. This
minor modification enables us to follow the combinatorics more explicitly.

1.2.1 Trees, symmetry groups and admissible trees

The definitions contained in this Subsections are all adapted from [GR].

Definition 1.18. A graph G consists of two sets V(G) (vertices), E(G) (edges) such
that £(G) is a subset of the unordered pairs of distinct elements of G. We will always
consider finite graphs, i.e. graphs such that N(G) = |V(G)| is finite. Two vertices
i,j € V(G) are said to be adjacent if (i,7) € E(G). It is customary to write n € G in
place of n € V(G) and (i,j) € G in place of (i,7) € E(Q).

Two graphs G1, Gy are equal if and only if they have the same vertex set and the same
edge set.

Definition 1.19. A path joining the vertices i,j € G is a subset P;; of E(G) of the
form

Pij = A{(i,v1), (v1,09),- -+, (vk, J) }-
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A graph G is connected and without loops if for all i,j7 € G there exists one and
only one path that connects them. Such graphs are called trees. Their vertices are
called nodes and their edges are called branches.

A tree T such that the set V(T') = {1,2,..., N(T)} is called a numbered tree.

8
2 10
11
7

3 12 6
4

Figure 1.4: A numbered tree

Definition 1.20. A labeled tree is a tree A plus a label L£4(v) > 0 which is generally
a set of functions f4(v) defined on the nodes.

When possible we will omit the subscript A in the functions f*.

Definition 1.21. Two labeled trees X,Y are isomorphic if there is a bijection, h
say, from V(X) to V(YY) such that for all a € V(X) , Lx(a) = Ly (h(a)), moreover
(a,b) € E(X) if and only if (h(a),h(b)) € E(Y).

We say that h is an isomorphism from X to Y. Notice that since h is a bijection
h=1 is well defined and is an isomorphism from Y to X.
We will call symmetries or automorphisms of X, the isomorphisms from X to X.

It is often convenient and more compact to represent a tree by a diagram, with
points for the nodes and lines for the branches, as in Figure 1.5. In this diagrams the
positions of the points and lines do not matter - the only information it conveys is
which pairs of nodes are joined by a branch. This means that the two diagrams in
Figure 1.5are equal by definition.

Strictly speaking these diagrams do not de-
fine graphs, since the set V' is not speci-
fied. However, if the diagram has N points,
we may assign distinct natural numbers
1,2,..., N to the points (which we still call

nodes), so obtaining a labeled numbered <
tree.

Then it is easily seen that the two trees in
Figure 1.5 are isomorphic. Figure 1.5:
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Definition 1.22. Formally we can define such diagrams as the equivalence classes of
labeled trees via the relation A = B if and only if A and B are isomorphic.

An obvious consequence of this definition is that, L4(v) and N(A) are well defined on
the equivalence classes.

We can choose a representative A’ of the equivalence class A by giving a numbering
1,2,--- , N(A) to the nodes of A.

Remark 1.23. Given an equivalence class of labeled trees A let A' be a numbering,
and let S(A") be the group of automorphisms of A'.

This means that S(A") is the subgroup of the permutations o € Syay which fix both
E(A) and the labels j4 ,04. Namelyo € S(A) — oL = L and ja(v) = ja(c(v)),da(v) =
da(o(v)).

Given two isomorphic trees A'; A" of A, let h be the bijection such that E(A") = o€(A").
The groups S(A’) and S(A”) = h™'S(A")h are isomorphic. We will improperly call the
equivalence classes via this relation the symmetry group S(A) of the diagram A.

Using standard notation (see for instance [L]) we denote by a := (i1,d9,...,0mn)
with N 3 4; < N(A) the permutation such that a(iy) = ip41, alin) = i1, and a(n) =n
for all N 3 n < N(A) such that n ¢ {iy,4s,...,4,}. Moreover (i,j,k)(l,m) is the
composition of a = (7, j, k) and b = (I, m).

As an example in Figure 1.6 consider the 1 ,
numbered tree A (N(A) = 6), its symme-
tries are the identity and: a := (1,4); 5 6

b:= (2,3);¢c =aob;d = (5,6)(1,2)(4,3),
e:= (5,6)(1,3)(2,4); f:=(5,6)(1,2,4,3);

g := foa. Clearly any other numbering A 3
on A, would give an isomorphic symmetry
group. Figure 1.6:

Given a node v € A ,we define its orbit:

[v] :={w € A :w = g(v) for some g€ S(A),

i.e. the list of nodes obtained by applying

the whole group S(A) to v, notice that this L
is an equivalence relation (a proof of this L

statement is in  [GR]). In the example of L
Figurel.6 there are two orbits, which in the L

chosen numbering are:

(1] ={1,2,3,4} and [5] = {5, 6}. Figure 1.7:
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Remark 1.24. The orbits are well defined on the equivalence classes of labeled trees,
it should be clear , for instance, that the nodes signed in black in the diagram of Figure
1.7 are an orbit

Definition 1.25. A rooted labeled tree is a labeled tree A plus one of its nodes called
the first node (va or vg); this gives a partial ordering to the tree, namely we say that
i > j if Puyj C Pugi (see Figurel.8). Moreover choosing a first node induces a natural
ordering on the couples of nodes representing the branches namely (a,b) € E(A) implies
that a < b.

We recall some definitions on rooted trees:

a) the level of v 1(v) is the cardinality of Pyyy;

b) the nodes subsequent to v, s(v), are the nodes adjacent to v and of higher level; the
node preceding v is the only node adjacent to v and of lower level;

¢) given v node of A, we call A=Y the rooted tree (with first node v) of the nodes w > v;
we call A\’ the remaining part of the tree A.

An isomorphism between rooted trees (A,v,4), (B,vp) is an isomorphism between
A and B which sends v4 in vp.
The symmetries of a rooted labeled tree (A, v4) ,which we denote again by S(A,v4)
are the subgroup of the symmetries of the corresponding unrooted tree, that fix the
first node v4. As done for trees, we can represent the equivalence classes of rooted
trees with diagrams, representing by convention the first node on the left and all the
nodes of the same level aligned vertically (it should be obvious that the definitions
v > w, A\ and A>" are well posed on the equivalence classes).

Vi

w

Figure 1.8: A rooted tree, [(v) = 1, [(v1) = 2, in this example the nodes subsequent to
v, s(v) are the orbit of v.|S,,(A)| = 6, the tree A\ is (vg, w)

Remark 1.26. By the Lagrange theorem (see [L] or [GR]) we have that:
S(A)]
IS(A,v4)| = :
[va]l

where [v4] is the orbit of va considered as a node in the unrooted tree A.
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S(A,v4) is a group, so we can define its orbits on the nodes v which we call again [v]
(see Figurel.8). Notice that now [v4] = {va}. Moreover if v; € [v]:

I(v) =1(vy) and A7 = AZY = AZIY,
We call [v]; the cosets of level [ and m[v] = |[v]].

Lemma 1.27. The order of the symmetry group |S(A,va)| is:
|S(Aa 7)A)| = H m[v]!|5(A2[v}’ 7)) ‘m[v}
[v]h

Proof. We apply the Lagrange theorem repeatedly: first we choose a node v of level
one, and prove that the order of its stabilizer (in S(A4,v,4)) is the product of |S(AZ", v)|
and |S(AV,v4)|;then in A\ choose a node w € [v] and so on until all the nodes in [v]
are canceled; one gets

m[v]!|S, (A=) S (AN, v,)

where (A\P] v,) is the rooted tree A deprived of all the subtrees AZ* with w € [v]. So
in A\ we consider another coset [v'] # [v] and repeat the procedure. A more detailed
proof is in [GR]. O

Now we will fix the label functions and restrict our attention to trees respecting
some rules (a grammar) which reflect the properties of our perturbative expansion of
the homoclinic trajectory.

Definition 1.28. We consider rooted labeled trees such that some nodes are distin-
guished by having a different set of labels 8. An admissible tree is a symbol:

AAfvat, v, om b {ws, o wn}

such that A is a tree, all the v;,w; and v4 are nodes of A, the v; are all end-nodes,

{wihiz N {“).7'}?:1 =9
and the v; are all different.

We call {v;}]", = F(A) the fruits of A, {w;}!_, = M(A) the marked® nodes of A and
the set

0

A {o¢ F(A)}
the free nodes of A.
The labels are distributed in the following way:

a) For each node v # v4 one angle label j, € {0,...,n} (remember that we are consid-
ering a system with n + 1 degrees of freedom).

8The dynamical meaning of the labels will be clear when we will define the “value” of a tree
%a node v can appear many times in M (A) we will say it carries more than one marking.
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b) For each node v one order label §, = 0,1 if v € f(i and 0, € N otherwise.

c¢) For each node v € M(A) one angle-marking J = 0, ..., n and one function-marking
h(t) € H.

d) For each node v € F(A) one type label i =0, 1.

We set a grammar on the so defined labeled rooted trees, namely:
o =0—={jo=J,=0, [s(v)] >2, jy, =0V € s(v)}.

To draw the diagrams without writing down the labels we give a color to each j = 1,n
(which forces 6 = 1) and two different colors for the couples of labels j = 0,0 = 1 and
j=0,06=0.

In all the pictures we will set n = 2 and choose the colors blue, green, black and white,
see Figurel.9. The fruits F(A) will be represented as “bigger” end-nodes colored with
the color corresponding to their component label and with their order and type written
on a side. The marked nodes will be distinguished by a box of the color corresponding
to their angle-marking and with their function-marking written on a side.If the function
marking is A(t) = 1 we will omit the function marking.

/ X
\'

0
Figure 1.9: Examples of trees in A® and in 7°

Definition 1.29. 1) We will call fruitless trees the (labeled rooted trees) A such that
F(A) is empty. We will say that a fruit v stems from w if v € s(w).

2)We will call T the set of equivalence classes (as in definition 1.22) of admissible

0 0
trees, T the subset of T of trees with at least a free node and A the subset of T of
“fruitless” trees.

Finally we will call A the subset of A of fruitless trees with no marking.

3) We will call .7-"}’“ the “tree” composed of one fruit of order k angle j and type i;

clearly
0

T=T |J F"
i=0,1
7=0,...,n
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Notational Convention 1. Using standard notation we represent the equivalence
classes by [A] where A is an admissible tree.

Moreover givea a tree A we will write A € T if it is a representative of an equivalence
class in T .

Definition 1.30. The order of an element [A] € T is:

o(4) =) 4.

vEA

The order of a node v of A is o(v) = o(AZ").

Given a tree A € 70' and one of its nodes v we call A”Y the tree composed of the
nodes greater or equal to v; if AZY is not a fruit then it is not admissible as it carries
a label § in the first node. In such case, we conventionally set AZY € T by setting a
mark J(v) = j,, h(v,t) =1 on v and subsequently “forgetting” the label j,.

It is easily seen that o(A) > 0 for all A € T and that
Th= {AeT tc ofA) =k}

0
is a finite set (see also Proposition 1.37); clearly the same is true in 7 and in A

Notational Convention 2. in all our sets an apex k means we consider the subset
of trees of order k.

0
We list here all the subsets of 7, 7 and A that we will need in the following
sections.

Definition 1.31. a) T, (resp T, and A, ) is the subset of T (resp 70', A) such that v4
appears ezxactly once in M(A) and h(va,t) =1 or vy = F(A).

b) 70; (A;) is the subset 0f70; (A.) such that J(va) = j and M(A) = {va};

0
ok
T; = Tj Ukeni=og Fj-

¢) Ag,rayis the subset of A such that M(A) = {va} and J(va) = j, h(va,t) = f(2).

d) Ag.nwy),G.r)) s the subset of A such that M(A) = {va, v} for some v € A moreover
J(va) =1, h(va,t) = h(t), J(v) =j, h(v,t) = f(1).

For each of these sets we will consider a vector space on Q generated by the set; if
S is the set we represent it by V(S).

Definition 1.32. V(S) is the vector space of linear combinations of elements of S with
rational coefficients.

(Al e S = [A]eV(S),  [AL[B] € V(S) = qi[A] + q2[B] € V(5) , V1,02 € Q
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V(S) is an infinite dimensional vector space
and can be expressed as direct sum of fi-
nite dimensional spaces generated by the
sets S* (we call these spaces V*(S)). For
example (remember that . n = 2) A3 is
the set in Figurel.10. The values of the la-
bels j; of the nodes 1,...,4 are free: they
can be 0,1,2 while ¢; is fixed to one be-
cause s(1) = 1 and the nodes 2,3,4 are
end-nodes ; the dimension of V§ = V3(A4,)
is |.A3 = 19. Figure 1.10:

|

-

1.2.2 Functions on admissible trees

We define some functions on the subspaces of 7 which will be useful in the following
sections. The definitions are very much “ad hoc” so they will necessarily seem quite
unnatural.

Such functions will then be extended to linear functions on the corresponding V.

Definition 1.33. Consider a rooted labeled marked tree A, with first node v, angle-

marked J(va) and function-marked h(t) = 1 (A is not necessarily in 70;) We define
A as the tree obtained from A by setting Jj(v;) = J(va) and subsequently forgetting the
marking J,h =1 of va so that the first node does not have a different labeling from the
other free nodes.
Given a tree B € 70' plus one of its nodes v # vy let w be the node preceding v, we
define: )

9a(B,v) = E(A) U{E(B) \ (w,v)} U (w,va) U (va, ),

and

ga(B,v) = { Ga(B,v) if ga(B,v) € 7

0 otherwise.

Finally we can define ga(B) = >, c594(B,v), this is a function ga : T > V(70') 50

0
we can extend it linearly on V(T).

Definition 1.34. For all k € N we define functions on unordered k-ples of trees in T,.
Let A be a labeled rooted marked tree with at least one free node, and {B;}*_, be an
unordered set of trees B; € T,.

We call as usual vy the first node of A and vp, the first nodes of the B;.
If B € {B;} is not a fruit and J(vg) is the marking of vy we call B the tree obtained
from B by setting j,. = J(vg) and forgetting the marking. Then we define

fa(Br,... By) = { Ui(vg,vg ) UE(A) U E(By) if it is in T

0 otherwise.
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This functions as well can be extended to V(T,) by linearity.

It should be clear that the definition is in-
variant by permutations of the B;. No- O— @
tice moreover that it is not necessary that
A € T, to obtain a (linear or multi-linear)
function fa4: 7. — T. (or ga). Consider

for instance the trees in Figure 1.11 respec- O
tively for linear functions g4(B) and for
multi-linear functions (k > 2). Figure 1.11:

Definition 1.35. We will use functions whose arguments are in some specified sub-
spaces'® V¥ (T;) (this means that the image is in some fized V" (T;) as well):

k k+o(A
f{/z,h}k:®?:,07;hx"'x7;h_)7;+0( )’
R =1 N—.—
ph
namely there is an ordering of the set {B;} such that By, . . ., B, € 7! then By,

Bpéﬂ,} € T;' and so on, see Figurel.13.

All this this functions are well defined on the equivalence classes, namely if
A=A B= B —ga(B) = gu(B)...;

this implies that the functions can be represented graphically on the diagrams. Func-
tions g4(B) use the marking of the first node of A as angle label and substitute the
branch w, v with A by joining the first node of A to v and w (we set the result to zero
if we obtain a tree not in 7).

Functions fa({B;}) use the marking of the first node of the B; as an angle label
and join with a branch the first nodes of A and of the B;. They have v, as first node.
As an example if A; and A, are the two trees in Figure6.3.1,then f4,(As) is the tree in
Figurel.12(a) while fa,(A;) = 0 as all nodes with §(v) = 0 must be followed by nodes
with j = 0.

Let us define the multi-linear functions:

0

T fa((s) where the tree a(0) € 70' is O;

4
r {p}e

{pt

these functions are used to construct recursively the sets Ak,

0remember that {ph} is a weighted partition of k: a list of numbers in Ny such that

> hpl =k
i.h
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K
0
~ %
~ N\
ik v
0
AL GoA1 V)

Figure 1.12: Linear functions on V; the diagrams A; and A, are those of Figure 1.9.

A=+——9 BfB 82= E’i Bs=

Figure 1.13: A multi-linear function f: A} x A2 x A2 — Al
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For each A € ./Zk, let v4 be its first node and vy,...,v,, the nodes of level one. Now
for each [ =0,...nand h=1,...,k — 1 let p}'(A) be the number of elements w of the
list s(v) such that A=* € AP; notice that

n,

k
th?(A) =k — oy,

1=0
h—1
Remark 1.36. Given A € ./Zk
_ Oy >v1 >Um
AfF{p?(A)}(A yeeey AU,

Conversely the set § € (0,1), {A}S, € Ul_gA; with K > 1, represents one and only
one (non zero) tree: namely for any 0 <1 <mn, h > 1, set {pl'}ia,} to be the number
of trees in the list {A;} belonging to A, and consider the tree

A= F?p?}{Al}({A;}). (1.32)

Clearly there are many lists 6 € (0,1), {A;}[X, such that expression (1.32) gives zero .

This simple Remark leads to a constructive algorithm for constructing the sets Ak
from the sets A"; with h < k.

Proposition 1.37 (Recursive construction of A*). For all k € N:

3=0,1; {t} }r s
Al (a)e Al

Proof. This follows directly from Remark1.36 as expression (1.33) generates all the
lists 6 € (0,1), 7 € (0,...,n), {A}F . O

Now to generate A (and in particular the sets A”) we consider linear functions
0
which add extra markings to a tree; given A € 7 the symbol:
h(v,t)0) A

represents the application of an angle-marking J(v) = [ and a function-marking h(v, t)
in the node v; formally

A, {UA}, {7)i};’7;1’ {wj},ljlzl — A, {'UA}v {'Ui}?ilv {{wj}_’jl:] U {7)}}'
We can define the linear function:
D;(h(#)[A] =Y h(v, 1)} A. (1.34)
’UGAO

Lemma 1.38. The set A is obtained from A by successive applications of the mark-
adding functions. In particular A; is generated by

a;')or{p?}'
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To generate 70’ we can consider functions which add fruits to a tree: given A € 7(L The
function d;k(v) adds a fruit Fi* to the node v by adding a node y labeled (i, k, j) to
the list F(A) and setting y € s(v). Then naturally we can define the linear function:

ik ik
DP[A] =Y di (v)]A]. |
UGAO | h
This is not the only possible way of adding 0
fruits namely if a®* is the tree in Figure
1.14 then we consider the linear function:

B(i,k)[A] — Z i (A, V). Figure 1.14:

vEA
Jv=0

Finally to generate all the possible trees with one fruit we consider the function:
Fz’k[A] = fai’k (A)a

defined on trees 4 € A,

| S !
Kk
L GO ¢

|

ik
(i.k) /¢§ 0 (i,k) 0
Bl—el = o . F[——e] =

Figure 1.15: The adding fruits functions

0 m
Lemma 1.39. The set T is obtained from A by successive applications of the fruit-
adding and mark-adding functions; in particular:

L DVPrA LR A FOPL Al = A(LF),

m
where A(1F') are the trees without markings and with only one fruit.
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Another way of manipulating trees is to change the first node (which is distinguish-
able only as it does not have the label j). Generally one can obtain various trees in

0

T by simply changing the uncolored node (for example one can shift the angle labels
down along a path joining any node v to the uncolored one v,). However not all the
trees obtained in such a way are in 7

0
Definition 1.40. Given a tree A € T let vy be the first node and v a free node; the

change of first node P(A,v) : 70' — 70' s so defined:

let va = vg,v1,...,0, = v be the nodes of the path P,, ,. P(A,v) is obtained from
A {val, {vi}™,, {wj}_;-‘:] by shifting only the j labels of the nodes of P, , ., in the direc-
tion of va. This automatically implies that v is left j—uncolored and is the first node
of P(A,v). If we obtain a tree not in T we set P(A,v) = 0.

P :V(T) = V(T) is the linear function such that VA € T, P(A) = > o P(A,v).

A = P(AV) = <:
\.V

Lemma 1.41. P(A,v) =0 if and only if 6,, =0, |s(va)| =2 . This means that the
possibility of applying the change of first node does not depend on the chosen v # v4.

Proof. Consider the trees A and P(A,v) and the nodes vq = vg,v1,..., v, = v of the
path P,, ,. For each i = 0, m — 1 v; precedes v;4; in A and follows it in P(A, v). So for
each node w # v, v the number of following nodes s(w) is the same in A and P(A, v);
s(va) decreases by one and s(v) consequently increases by one. This implies that all
trees A with §,, = 0 and |s(v4)| = 2 have P(A,v) = 0 for all v. Moreover if v; has
d = 0 then it has j = 0 as well as all the nodes (including v;,) following it. This
means that in P(A,v) it will still have § = j = 0, the same s(v;) > 2; moreover v;
that follows v; in P(A,v) has j = 0.

U

T 0
Notational Convention 3. We will call T the subspace of T of trees whose first node
can be changed. In general an apex v on a tree set S means that we consider only trees
in S whose first node can be changed.

Definition 1.42 (change of nodes in 7). Given a tree A € Tiny g let
va and v be respectively the first node and the other marked node. We define P, =
P(A,v) : TanG.p — TG.p.6.n0); see Figurel. 16.

Remark 1.43. Notice that given a tree A € T and one of its nodes v there exists a
unique B such that P(A,v) = B. This means that for all i,j and for all the functions
h,feH:

T

ﬁi,h),(j,f) A ﬁ]vf)v(hh)
If i,5 # 0 then Tan),G.py = Tiny,G.p) and s0 TanyG.r) <> TG.0.0)-
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P(A) =

Figure 1.16: Example of P;(A); we have evidenced the path joining the two marked
nodes.

In To.5).ii,p) (1 # 0) we have trees not in T i.e. trees with dyo = 0 and |s(vg)| = 2. Call

7250}) (i) such subset.

Lemma 1.44. 71(0?})7(7:’}1) is the image of Ty py by a suitable linear function, (similar to

9a(B)).
Proof. We choose
ap = @f(y, t where feH

(this is a marked rooted tree with one node y) and consider the application g, (A, v)
. Then we apply the change of first node in y. We have a “linear function”:

Li(A) =) P(ga;(A,0),9)

Consider a tree A € T(;p), as oy has degree zero in k the degree of g, (A, v) is the same
as that of A. However the trees g, (A, v) are never in 7 . We then apply the change
of first node and obtain the linear function 7 — T Ly(A) whose first node is y marked
zero and s(y) = 2; the node v (that follows y) is labeled j = 0 by the definition of g,
while the node that precedes v in A (that now follows y) gets the label j = 0 from y
by the shift of labels; the trees we obtain are in 7. Notice that L; is an injective linear

function 7?::9,17,) — V(ﬁg,(}),(i,h)) and that each tree B € 71(0?}];7(7:’}1) uniquely identifies the
couple A, v where A € 72?7,1) and v is one of its nodes. O

Corollary 1.45. Consider the set
A= AnA

~ m 0
A generates A (and consequently A and T ).
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0=0
Proof. We simply consider the linear function L(A) := P(g,(A,v),v) where a= O |

and proceed as in Lemma 1.44. ]



Chapter 2

Tree expansion for the homoclinic
trajectory

In the preceding Chapter we have defined all the necessary spaces of trees; now we
finally set the trees in correspondence with the dynamics. In particular we will define
two applications ¥V and W defined on A and two applications V' and W' defined on
T. Correspondingly we will define two vectors

k k k >k
O; € V(AT), and A € V(T
this vectors will have the property:

V(©5) = VI(A)) = o5

70

SW(B) = SWH(AF) = ALY,

Moreover V' (A), W'(A) € Hy for all A € A, while the presence of fruits introduces
non analytic terms.

2.1 Holomorphic properties of tree representations

2.1.1 Linear operators on trees,

To establish a correspondence between each function 1/);“(7‘) and a vector of V(A4,), let
us first write the functions Fyk explicitly (using well known formulas on the derivatives
of composite functions):

FF == )" (V™ f(t) (-

meNg {Piae—1 I2
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where {p/} 5 is a list of numbers in Ny = NU {0} and respect the relation
dop=mi. 3 hoi =k
h jh

similarly {p}n is a list of numbers in Ny such that Y, p, =n, >, hp, = k, finally

n

m] n d
= Ha Nvi=pra s d"9(a(1) = =g (W0)lso=antr
bo=qo(t) /7/)0

We have that:

VE(t) = a;0NF)) = a;[Q;(F)) + L Z (S FN)] . AL (t=0) = S(F}).

Given a list {p)}} we set:
Py =1, mi=> s 1 =1F, f*=coslq), M= pl'
h
and define the multi-linear functions on x; € H:
Ff,’,‘?}}(fﬁ,xM) = (=1)’vre T ] s

Notice that F* =0 if § =0 and j # 0 as in that case 9;f° = 0. We can write:

{l'}
00 (F1 vev T
TIRY) Db SRSy
0=0.1{p} s !
where 7, = - = g = Y(t) , 7y = -+ = Tyyp = Pi(t)--- and the ordering is

arbitrary.
We now construct the linear functions

Vo V(Ui_gAj) = H, W,:V(A) - H
such that for each j € {0,1,...,n} and for each k there is a unique %% € V¥ such that
wf(t, p) = VW(U;?) and ATk = %W@(Uf).
The function W is defined recursively on the the finite sets A" and then extended to

A via the mark adding functions and to V(.A) by linearity. V is directly defined on the
sets A;.

First we define the functions on trees of order one W( Zl) and V(Aj).

m o=1
Remember that A' is the tree: U' = O  and A;- the tree U} = 6_;-’0(5]

W,o(B') = =) (f'(a(t), 0 + &1)), Vo(U5) = —(m)a;Q; (V9 [ (q(t), o +@t))  (2.1)
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Then, using Remark1.36, we see that by setting:
Ve [05°T 1 ({A})) = a;05(=n)" (V75 f5HV

for each list 6 = 0,1 j = 0,n and {A4;} € U,;A;, we can define V recursively on all the
Ak In the following we will omit the initial data © whenever it is possible.

Namely the value V of a tree A € A, is found recursively from the value of its level
one subtreest 4”7,

We have seen in the preceding section that we can obtain A from A by successively
adding marks, so given a tree with no marks on the first node we add the marks
Jis s g1 hi(ve,t), ..., hy(vg, t) and set:

!

W(H hi(UO, )avoz; Hh va,t VZ e, fl
=1
l
W T 85 hi(vo, 1) A) = (=) H hi(wvo, )(VH TR f0) 1T 45,05, W(AZY),
= 'UES(’U(])

where 1;(v) is the number of nodes v’ € s(v) having j,» = i. This extends W to A.

Definition 2.1. We define recursively the vectors U’; that we will prove to be in cor-
respondence with 1/);“

=2 2 P{p iy Bos - By, O, Uy U = 0j°0",

o= Ol{ph} 1

notice that each U? appears p"j times.

The definition immediately implies

V(U) = (n)* 5.

Proposition 2.2 (Determination of U’; ). For each j, k

Uk = Z = ) c(4)4, (2.2)

Ae A’C AeA’;

where the sum A € Ak means choosing one representative from each equivalence class of
Al (clearly this is well defined as |S(A)| does not depend on the chosen representative).

'remember that, if v is a node of level one, we consider A=Y € A, and the angle label j, becomes
an angle-marking with function-marking h(v,t) = 1.
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Proof. We proceed by induction. The assertion is trivially true for U} so we suppose it
true for all 2 and Vh < k. By Definition 2.1 and Proposition 1.37 U/]g is the sum of all
the trees in A’; and we only have to prove that the coefficients are those of expression
(2.2). '

Given a tree A € .A'; let v; v, be its level one nodes and A', ---A™ its level one
subtrees; by the definition of U we have to prove that:

1 N(A'Y, -, Am & 1
S P{pf(A)} ZH]S(AZ‘)

where {pf(A)} is the number of trees {47} in A" and N(A',--- A™) is the number
of ways in which one can choose one summand form each U, ..., 0% ! and obtain the
unordered list (A", -+ A™).

Now if m[v;] is the cardinality of the orbit of v; (so there are m[v;] subtrees equal to
A L),

D e PO S LSS R S
N =g S ™ Wisgay = isgesmyn
U
2 J
O = + 2
i=0,1,2
3
0. 1 + L PR +
2 2 2
i
2 —es—e 4 L
i,j=0,1,2 ) 2

J
Figure 2.1: the vectors U3 and 053, as in Figurel.10 some of the labels j are left free,
they can be equal to (0,1,2), in any case 6 = 1
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Notice that
Vy(A) =V,(B) if and only if A= B,

so we will always consider isomorphic trees as equal and make no difference between
the tree and its diagram.

To compute the expansion of the action variables we use Expression (1.30). It is
easily seen that the splitting vector of order & (17)’1“A]J’-C can be expressed as the value
SW,, of Uf.

2.1.2 Holomorphic and non holomorphic contributions (trees
with and without fruits)

We have mentioned in Remark 1.15 that it can be useful to divide the series expansion
of ¢(n,t,¢) in an analytic part, due to successive applications of @); and a part not in
Hy due to the appearance of the operators R; To represent this choice we use the full
space 7. In particular the fruits will represent the choice of one of the R.

We set:

Wb = a,0,(Ff) = a;Q;Ff + > al!GIF . where GIF = 5% ST Fy (2.3)

i=0,1

Then as in the preceding subsection we define a vector in V(7*) which we want to set
in correspondence with the angles z/);“

Definition 2.3. We define recursively /0\; = U;-,

: 1
A=) T i (A A
k P{p};}ay {p?}( 0° yiin )

0=1.0 {p"} ks

and finally
A= 3" FE 4 AR

J
i=0,1

Proposition 2.4. As in Proposition 2.2:

Proof. We proceed by induction:

M=0+) 7

i=0,1



36 Chapter 2. Tree expansion for the homoclinic trajectory

verifies the Proposition, so we suppose it to be true Vj = 0,n and Vh < k. By the
inductive hypothesis:

— vo 0 1 k—1
3 X T e AT
=10 (s
where the A? h <k — 1 are in V(T;"), and we proceed as in Proposition2.2 . O

We now give a value W' to trees in 7 and the define a function V' so that Vl(Af) =
w;“ As usual we proceed recursively on trees of increasing order and decorations:

0
given a tree in 7 with no marks on the first node we add the marks ji,..., 7, hi(t),
., hy(t) and set:

Hh VA, t BUAU Hh VA, t VZ “ifl

i=1
l

WHT T 25 hi(va, 1) A) =

i=1
% Hh 0 (VT ) T oy, Qp IV (AZ)] T &) ()G,
vesg(va) vEF(va)
1 . 0
i,k i
G ziaj%xjwl( Af),
where 1; is the number of nodes in s(vg) having j, = 7 and so(v) is the number of free

0
nodes following v. As seen in the previous Section this defines W' on 7.
0
Then we define the values V', recursively on U;7; by setting:

VH(A) = 0;Q;V (A)).
for all A € 7' Finally we extend the definition to fruits by setting:

By Definition 2.3 the “value” of a fruit of order h label j and type ¢ is as well :
Lo liles,i :
_5%33_[7‘}%{%)/\)[”?]}-
Notice that the fruits bring non analytic terms namely
0
VI(FM) ¢ Hy, and G = Sz (AF),

0 0
with 2; W' ( A%) ¢ H,. In general, for trees in 7, it is useful to consider the following
function

\I’@(A) :H(_%T’)%VZ?omq,(j)ejfr?,, H .’E' H hﬁ v 7_1) 7_““7_1) H G Z 7

acF(v) BEM(v) a€cF(A
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F(v) are the fruits stemming from v, M(v) is the list of markings of the node v and
finally m,(j) is the number of elements in {v, s¢(v), F(v), M(v)} having angle label
(or angle marking) equal to j. We write so(v), F(v) instead of s(v) to remark that the
fruits are not considered proper nodes. Notice that W} (A) contains the kernels of the
integral operators (); so that W is obtained by “integrating” on the times 7, v > vy.

HA) =2 [ 9 + 9™, (4) = 00 T, (A).

V>0

Remark 2.5. For the splitting vector we have j = 1,n and:
k— o —10k _ 1Ak
Aly =2a; G;" = SW[A]]. (2.4)
The angles 1/);“ for 3 =0,n are:

Uk = VU(AR) = (S + S Juy(F, 7o) W' (A) (2.5)

2.2 Equivalent trees and cancellations

In this section we use the tree expansion to prove properties of the homoclinic trajectory
and of the homoclinic splitting matrix.

0
First let us define some particular vectors in V(7).

Definition 2.6. Fori,j = 0,n, and given f(t),h(t) € H, we define for any k € N:

V(7-(?,/”)) > A](Cz‘,f) = Z c(A)f(vo,1)0;" A = Z c(A)A,

AeTk AET(z )

V(A?z’,f)) > UI(Ci,f) = Z c(A) f(vo, 1) 0" A = Z c(A)A,

AcA A€A;,p)
V(TEp6m) @ Mipom = D D A0 flua )i h(v,)djA= 3 c(A)4A,
AeTr []eA AETE 5y )

V(A .6m) 2 Blpam = D Z (A,0)f(0a, DO h(0, NOFA = (A)A,

b k
Ac Ak v]e AE‘A(i,f),(jah)

where
1 _ m[v]

c(A) = ==, c¢(Av) =

(4) S (4,0) S(A)
for all labeled trees A. By convention we will omit the marking function if it is equal
to one.
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Notice that
SW,(BF) = SWL(AD) = ATF(p), SW,(UF,) = SWL(AL,) = 0, A7 ().

Moreover as we said before AT} = 2G*.

Now we have set up all the necessary formalism to study the cancellations in the series
for the vector AIF(¢) and its Jacobian matrix 9, AIf(¢). The cancellations occur
because the applications SW! or equivalently SW (defined on V(A)) are clearly not
injective so that apparently different trees can give the same contribution.

We have introduced all this formalism on the trees to be able to identify cancellations
directly in the formal space of trees V. We have considered trees modulo isomorphism,
now we add identities due to the dynamics.

Definition 2.7. Given two trees A,B in 70' we set
A=B & A— B € ker W',

notice that isomorphic trees are equal.
This equality can hold for all initial data @ or only for some special values in the latter
case we will set A = B(p = ¢). The same reasoning can be done with the operator

SW in A.

Remark 2.8. Notice that by our definition of equivalent trees adding a fruit of order
0

k type i and angle j in the free node v of a tree A € T is equivalent to adding a mark
a?_[jl} ()9} to the node v and multiplying by the n and ¢ dependent function G"f

The cancellations between trees are due to the symmetries of the (); and O; oper-
ators that we evidenced in Propositionl.16, we will write them again schematically:

a) The operators (); and O; are symmetric; given F' and G € H

SF(t)Q;(G(r)) = SG(t)Q;(F (7))

SF(t)0;(G(1)) = SG(1)0;(F(r))
b) The operator (); preserves the parity; moreover Sf = 0if f € H is odd.
¢)Given two continuous functions F,G € H if 7p G # ¢ holds then:

STG(t)d, F(t) = F(T)G(T)) — STF(t)d,G(t).
d) By energy conservation the stable and unstable manifolds are on the same energy
level.

Each of these properties brings some cancellations, we will first check those coming
from property (b), as they are the simplest ones:

Lemma 2.9. for each j, k and for any even function f(t):
V(Af ) € ker SW,y.

In the same way
V(T )) € ker SW,_,.
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Proof. By Propositionl.16 (b) we only need to prove that W,_¢(A) is odd for all
A€ Alp

We proceed by induction

W(B p)) = FE)VFH (@t q0(1))

which is odd as f and f! are even. If k > 1 then call I(A) > 0 the number of subtrees
of level one. W(A) is the product of I(A) odd functions times f' derived I(A)+1 times
so it is odd.

Then, for each j, k, the function

Gl (1 =0) = SW(2i0%) =0

as it is the integral of an odd function. So in 70' all the trees with fruits have zero value.
0
Finally if A € T is fruitless then W'(A) is odd. O

Theorem 2.10. [homoclinic intersection] The stable and unstable manifold intersect
at q =m, 1 = 0.

Proof. the distance between stable and unstable manifold at ¢ = 7,1 = ¢ is:

S HAL ) = 3 S )t S|
j=1 k=1 Jj=1 k=1

O

Another important feature for identifying cancellations is the symmetry with re-
spect to changes of the first node.

Lemma 2.11. By Propositionl.16(a) we have:

VAE7T', Voe A: P(Av)—AE€ker %W;

. (2.6)
VA€ TG nan Pi(A) — A € ker SW}
for the same reasons:
VAE/L Voe A: P(Av)— A€ ker SW, 27

VA € A pn - Pi(A) — A€ ker SW,.
Proof. Notice that given a tree A and one of its nodes v if w € P(va,v) then:

P(A,v) = P(P(A,w),v),
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so that we only need to prove the assertion for v € s(v4). Given A € T and v € s(va)
such that j, = j we compare: SW'(A) and SW!(B) with B = P(A,v), so B has first
node v (no label j,) and a node vy in s(v) with j,, = j.

IW'(A) = ()% QY2 malides foug H Q. V' (AZ")]

wes(va)

wH#v
Qil(-m)P v fre [T owi(azm),

wi€s(v)

which by the symmetry of (); is equal to

SV () e [T WAz Q- m)Pa v mea s proa T @j, ! (A=)
wi€s(v) wes(va)

wH#v

This is the value of B, namely, both in A and in B, m, (i) with 7 # j is the number of
elements in (s(v), M(v), F(v)) having label ¢ and m,(j) — 1 is the number of elements
in (s(v), M(v), F(v)) having label j.

]

A = P(A,V) = °
S

\Y

Figure 2.2: An example of trees that are equivalent by changing the first node

Example 2.12. let A be the tree in Figure2.2:
W, (A) = vertete L) Qy (1o, 1) [V f 1 (11)]Qo (70, 2) [V £ (72)]

Q:z(To, 7'3) [V62+eo.f1(7'3)Q0(73, 7'4)[V80f1(7'4)]]

while

W;(P(A; v)) = V[ (70)Qo (70, T1) {V62+e°.f1(7'1)Q2(7'1,7'2) [Verteeteo fl(r,)

Q1(72,73) [V f(73)]Qo (72, 74)[V8°f1(74)]]]

so we apply repeatedly the Proposition 1.16(b).
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0
We have seen that many trees in 7 are equivalent; we will concentrate on relations
for the vectors U, ; and A;;. Let us summarize some properties of the coefficients

c(A,v).
Consider A € 70' and let A be the rootless tree associated to A. By the Lagrange
theorem if v4 is the first node of A and S(A,v4) is the stabilizer of v, in A then

S(A)] = |S(A va)| = |S()]
as v, is the only uncolored node of A.

Lemma 2.13. e (i) let [v] be the cosets of v by the action of S(A) and m(v) = |[v]]:

NI

v

the sum [v] means choosing a term from each coset to obtain summands that are
all different.

The coefficient c(A,v) = 22 is the cardinality of the subgroup S(va,v) of S(A)
that fizes vy and v;

e (ii) This subgroup fizes all the nodes of the path P(va,v) and so does not depend
on the labels of the nodes on the path. So given a tree A and a node v

c(A,v) =c(P(A,v),0v,4)

Proof. e (i) we group the identical terms in ) ¢(A)0}A corresponding to nodes
in the same coset [v] of A so we have m|[v] terms for each coset [v].

e (ii) first we note that S(A) sends adjoint nodes in adjoint nodes so for each
permutation o € §(v4,v) and for each v; in the path P,, , (that have length m)
o(v;) = w; is adjoint to w;y1 = o(v;1). Now as by definition o fixes wy = vy = va
and w,, = v, = v the list of nodes {w;}, is a path joining v4 to v. In a tree
the paths are unique so w; = v; for each 7+ < m.

0

This Lemma and Remarks 1.43 imply the following identities on the vectors A, ;
and U; ;. we write them explicitly only for A.

Proposition 2.14. Fori,j # 0, f,h € H and for each k the following equality holds:

A’C = AF

(h) — GR) G)

Proof. We have seen that A VG A (k) o f) and that the trees in correspondence
have the same value. We only need to prove that the corresponding summands in
AI(Ci,f) Gy and A?j,h) (.5 have the same coefficient; this follows from Lemma2.13(ii).
Namely given A in A@.,f) (. then S(A) is the stabilizer of the two marked nodes of A,

then ¢(A) = ¢(P(A4)). O
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Proposition 2.15. Given any two functions in H: h(t) and f(t), for each k and for
each 1 = 1,n we have:

Aow 6. = Ny o) + La(Afi )

Proof. As in the preceding Proposition /T\’E“0 W Gnf) = /T\’E“Z 1 (O.h)"
To prove that A’(“(?h) i) = Lh(A’(“i f)) we show that the coefficient of corresponding sum-

mands are the same (we have seen that to each element of A’(“é”h)’(iyf) there corresponds
an unique summand of Ly(Af; ;). Given a summand (tree A) of A, ;  marked
in the node v, its coefficient ¢(A) is the inverse of the cardinality of the stabilizer of
va, v. If vy is the only? node following v, and not in P(v4,v) then |[S(A)] is as well
the cardinality of stabilizer of the the path joining v; to v (which passes by v4 by
definition). So it has the same coefficient as P, g,, (B, v1) where B is the tree , having

first node v, such that Pg,, (B, v) = A. O

2it is unique as A € Ags i)



Chapter 3

Basic estimates on tree expansions

We prove upper bounds on the value of trees of order k. In particular our bounds on
W' (A) are exponentially small for all A € A (we will call these the “analytic bounds”).
Upper bounds on W' (T) for T € T are derived more or less in the same way as in [G1];
notice however that we do not request that f(,q is a trigonometric polynomial. We
also consider bounds on the values V' of fruitless trees, which will be useful in Chapter
5. Moreover in Section 3.2 we will prove some technical lemmas on asymptotic power
series which will be useful in Chapters 4 and 5.

In Chapter 2 we have introduced a tree representation for the series expansion of
Y;(p,n) and I;(p,n). The KAM theorem 1.2 guarantees the convergence of this two
series and of the splitting matrix. So we can consider the series:

Aj = ZA_’;, and the functions V) (A;) and SW_(A;),

k>1

are well defined smooth functions of by the KAM theorem. We would like to consider

series of the type:
D e(Ad)Aa,

acl
where [ is a numerable set and the A, € T. For such series we have no guarantee of the
convergence of the corresponding values. We will consider them as formal series and
write identities between the formal series which are true term by term. Such identities
will be written as A ~ B.
In this chapter we prove that such formal series are polynomial asymptotic series
in n,e.

Definition 3.1. A formal power series

r = Z(U)kﬂﬁk(5)
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15 polynomially asymptotic in 0, if there exists a neighborhood of € = 0 where for any
q € N there exists p(q) such that:

zp(e) < e POk WE <79 Ve £ 0.

3.1 Upper bounds on the values of trees

Given a fruitless tree A € A of order k (so with at most 2k — 1 nodes), its value
through SW, is of the form:

0% H C\Tw e (\m E)N(A)(n)ﬁm sz Mg (5)e; f(SvO

2
V>V
[T ) w=im e froa(r,, ) (a)
v>vq
Its value V! is:
1 m
H (C\Tw + C\Tw)(n)(sv (_5) VZ o (9)ei f(sv (Tw; 7-71)7 (b)

v>vg

where w is the node preceding v and by convention: 7, = t.
Remember that, setting 2 = e~/

wj(t, 7) = o(t)zj(t)25(r) — o(7)a5(t); (7))

x]:{ i j#0 : {1 j#0 (3.

t _ . €Xr, = 2 .
@) j=0 ’ i J=0
And that the operators & and %fo are: =3 — 3% and
ot 3! ift>0
Sy = + 0~ t : )
+ Q0T QY +Q ift<0

same for 3 .
We expand f! in Fourier series in the rotator angles,

g = > e f(q),
v|<N
so that each node has one more label v, € Z". Be will represent as A(v) a tree A with

labels v, such that such that
S h=w

vEA

As A is fruitless V'(A) depends on the initial data via the function ™.
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In each node v with § = 1 we have as factor the function d™ f, (q(t)) where n, =
m,(0). Moreover as ¢(t) = 4arctan(e’) then f,(q(t)) = F,(e') with F(y) analytic in
some strip around y > 0.

To find upper bounds on the trees one needs very few assumptions on the pertur-
bating function f', we will consider some ( not minimal) hypothesis that guarantee
that the value of an integral of type a) on fruitless trees of total frequency v and order
k, with initial data ¢ € T are bounded by

eSO\V\(k!)KH [P(67 871)}1967%‘0“/‘.

Where D is defined in Definition 1.28, P(g,7!) is a polynomial and we will fix sy of
order one.

We prove t dependent bounds for the analytic integrals (b); this bounds will be useful in
Chapter 5. We consider them here only because the proof is parallel to that of integrals
(a). Notice however that in this context there is no guarantee that the values V' of
fruitless trees are bounded for ¢ — oo as such trees have no dynamical meaning. The
bounds on integral (a) assure that the formal tree series we will consider in Chapter 4
are all asymptotic series.

The functions f,(¢) are such that F,(e') € Ho(a, D) (remember that a, D are those
of definition 1.28). Naturally by our analyticity assumptions f,(q(¢)) is limited for
|t| = oo in |Im #| < 2.

Notice that if D < 7/2 the image of C(a, D) via ¢(t) is a compact region and that
there exists v such that F,(e') has singularities on the lines

|Im ¢| = D and |Re t| = a.

Moreover as the image of R x [—7/2,7/2] through € is the Riemann sphere there
must be a singularity | Re ¢/ < 7/2.

Definition 3.2. We consider the subset of Hy(a, D):

B(a,D) = {f(¢(t),q(t)) € Ho(a, D) : max _[F(e")| < MVe "}  (32)

teC(2a,D—/E)
for some p € Ny.

In Appendix A.1 we will give various examples of functions f(q,), with essential
singularities in ¢ and satisfying this condition (even with p = 0).

Proposition 3.3. (i)The functions d} f,(q(t)) = Fj(e') are all in Hy(a, D) if f is so
moreover if f is in B(a, D) then so are the F¥ and:

a FEN| < KIMA/E PR
tec(;gngﬁ)\ , (€] < Ve

'In Appendix A.6 we will prove non-optimal upper bounds for the tree expansion of the homoclinic
trajectory for Hamiltonian (*)
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Proof. The assertion is equivalent to proving that for any finite b and d # 0, 7/2:
min (1) - q(r)] > A, k.

t,r€C(b,d)
[t],|7|<b
Im (t-m)=k<1

A direct computation of the minimum gives
A(b,d) > He™® (3.3)

for any € independent d and big enough b. Then the image of C'(3a, D —2,/¢) through
q(t) is compact, contained in the image of C'(2a, D — /=) and the distance between the
frontiers of the two sets is greater or equal to e 2?\/z. We can use Cauchy estimates
on the derivatives 9% f,(q(t)) = FF(et).

We can prove 3.3 geometrically by noticing that, provided that b is big enough, the
minimum distance |q(¢) — ¢(7)] is attained on the border |t| = |7| = b (whose image in
the variable ¢ is a circle around ¢ = 0, for large enough b).

This is clearly seen in Picture3.1; to prove

it one notices that ¢(¢) is convex, more- 4
over if #(q), 7(q) are such that Re q(t) =

Re ¢(7) = q € (0,7n] then the function —
Im(q(t(q)) — q(7(q)) is strictly increasing

in (0, 7]. By triangulation this implies that -4

the minimum distance is on the border i.e. -6

on the image ing space of |t| = b which for

large enough b is a circle around ¢ = 0. Figure 3.1:

Analogous reasonings can be applied to a generalized pendulum.

A more direct proof, valid only for functions having D # 7 /2, is the following. The
functions d% f,(¢(t)) are all limited, so we can bound them by k!C*, with C' = O.(1),
in the e-independent domains | Im ¢| < 27, | Re t| > 3a.

In the rectangles | Im ¢| < d — 2/e (d < 7/2), | Re t| < 3a the application t — ¢(t) is
conformal, let us call the inverse T'(q) = logtan(q/4). Then if?> g(t) = f(q(t)):

diT(q)
hl

1

[T, o'

as T(q) is (in a limited ¢ independent domain) not & close to its singularities we set

h
%!(q) < O™ for some order one C, then we bound dtz”' Phg(t) with e=PF2aPr)/2(5° p )L

Finally we bound the sum:

A" g (1) i=rg)(

)Ph7

k k
defu(q) =digoT =)
{Pn}

. 2
Y (Capn)e P iy 3 (P ok amaghy
[T, pn! [ 1, pa!

2As in Chapter 1 the symbol {pp}x is a list of non-negative numbers p,, h € N such that
Z/Q] hpy = k.

{Pn}r {Pn}r
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as the sum in the middle term is the order k derivative, computed in zero, of f o f
where f(z) = % for € R. Notice that this proof holds true allso for a generalized
pendulum?. ]

If we restrict our attention to rational functions F,(e') and call #, their poles in
[Imt| < 7 (all with Im¢ # 0) then:

D= Min ,cnney Im (£)]; a= max | Re (£)]. (3.4)

v,i€[1,N(v)]
Moreover the following proposition holds.

Corollary 3.4. (i) The functions 95 f,(q(t)) = Fk(e!) are all limited rational functions
of €', whose poles are the same as those of F°(e!). (i) If the order of the pole vy’ is p!,
for F)) then it is pl, + k for F} (except for £i% where it is always pi,).

Proof. (i) First we recall that limited rational functions can be decomposed in “partial

fractions” (see [RU]) as

C+ZP

i=1,-,N,

- UV ’
where the polynomials P; have no constant coefficient. Then as f,(q(t)) = F,(e'), we

have
dofo(q(t)) - 4(t) = duf, (q(t)) = diF, (€"),
and so Fl(y) = #ydyFy(y) Now d,F(y) = > i, n, Fi( L) is a sum of polynomi-

vyl
als of degree greater or equal to two, so (1 + yQ)P,'(yjy,) is limited and F!(y) admits

the same kind of representation as F(y) (it has obviously the same poles). For £ > 1
we proceed recursively. (i) The order of the pole ¥’ is the degree of the corresponding

polynomial.
0

Having fixed v = ) v, in integral (a) we shift the integration to R + io(w,)d
where d < D, w, = 2 - v and o() is the sign of z . As the functions are all analytic
in |Im(¢) < d the integral (a) is unchanged.

In integral (b) we consider complex values of the time ¢t + id with ¢,d € R. Then we
use Lemma 1.12 (ii) to shift the integration on the nodes.
Notice that in integral (a) we cannot choose the sign of the shift in the single node
integrals and so we need to work in the (symmetric) domains H(a, D) to guarantee the
indifference of extending in the lower or upper half-plane. To simplify the notation we
set

o(w,) =+ and define E(d,v) = e "I,

3In the Appendix A.1 we will show that the only functions f(q(t),(t))satisfying the bounds 3.2
and having only isolated singularities on| Im¢| = 7 /2 are rational functions, which obviously satisfy
Proposition 3.3.
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If A has k nodes with § = 1 let {r,}% be the lists of k vectors v, € Z" such that
S v, = v . The value of A(v) (tree A € A with total frequency v) in integral (a) is

(_%)N(A)eiu-tpE(d7 V) Z[ H (ivy 5)™ )]

{ro}l s=L..m
! du=1,v>v9

o

dR
— —0(Tug ) Rug [ vg f0v Wy Tug
7{ 2T R, / AT, € [d™ f,2 (a(7o, + id))]e

— 0o

Tw Tw

H % 2771_R / dTU + /‘dTv)eO’(Tq))Rv(TU"‘id)wjﬂ (Tfu; + Zd, T’l) —|— Zd)

V>0

[T 1d £3 (ar, + id))Je™;  (a)

V>0

naturally f2 = 0 for all non zero v.
The same tree in integral (b), has value:

. dR'u
ewyd(_%)N(A)ew-tpedwu Z [ H ZV1; 9 mﬂ g H % 27:7TR7)

v, Yk s=1,...n v2>v0
{ U}V v=1 7’”2”0
Tw Tw
( / dTv + /dTv)e o (7o) B (o +4 )wju(Tw + Zd; Ty + Zd)
“oo %

[Tl 2 at + il (b)

V>0

As usual w is the node preceding v, m,(s) is the number of nodes in the list v, s(v)
with label j = s, n(v) the number of those with label j = 0 and w, = w,,, finally
Twy — t.

The residues in R are introduced following the definitions of 3! for complex values of
t given in Subsection 1.1.3. The factors (iv,,)™ come only from nodes with §, = 1
so their product is bounded by* N?*. Now we want estimates on the integrals that
depend only on the order k; we start by splitting the sums in monomials.

1) Split w; (7, + id, T, + id) into 6 terms if j = 0 or 2 terms if j # 0: we obtain 6%~
terms. Each of this terms is of the form
T,y () 2,y (2w)),

where x, = eIl | 0 < h, b, I')] <1 and both y(z), 3'(z) are analytic in |z < 1
(we will call this the limited 2 dependent part of the Wronskian).

“In Appendix A.6, we will deal with functions f(1/,q) which are not trigonometric polynomials in
1), the same reasoning could be applied in this Chapter, so removing the extra hypothesis on f, we
consider only trigonometric polynomials only for simplicity.
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2) Separate [ dr, + [ dr,, and Sdr,, in integral (a). We get other 2¥ terms like:

s(0)]+2
H % 2771_R / dTve*U(Tv )Rv (Tq)‘l‘ld) e’LU.IU Ty (Tq;)hﬂ xlv H y’lj} (x'u)).
Pv 0O 7=1

where 0 < [,, h,, < |s(v)| + 1. Notice that p, is not the sign of 7, but an extra label.
The functions y/ are chosen in the following way:

(i) one of the y/ is either cos(q(7, + id)) , sin(g(r, + id)) or one of the F} .
(ii) one is the limited x, dependent part of a term from the Wronskian at the node v.

(iii) for each node v’ following v there is one function y/ which is the x, dependent
part of a term coming from the Wronskian w(7,, 7,/).

Notice that the functions y are by definition all in H(a, D) and respect condition 3.2.

3) Given a node v € s(vg) split the integral fpi”go dr, as fp(loo dr, — fpovnoo dr, + fpi”n“oo dr,
and proceed recursively for all nodes (other 32**! terms). We consider first the con-

tributions from the term with f " dr, for all nodes (the others will be expressed as

products of the same kind of 1ntegrals) .

Set p,, = —1, we want to estimate:
Tw [s(v)]+2
dR, o
dT eRv(Tv"‘zd)eiUJﬂTﬂ 7— hﬂ 7— 35
v|>1|) %227‘_ R, / v v I I U v ( )
0

Finally for integral (a) we split the first integral fi)oo = f:;o + ffan. ag > 0 is suitably
large (ag = 2a).

In integral (b) we split ffoo = [ +ffan for |t| < ay and maintain ffoo otherwise.
We consider the first term and expand the functions y; as Taylor series in z,, = e™
(the sign plus comes from the fact that we are considering only ¢ < —ag < 0).

Remark 3.5. The mapping t — €' maps the region
{Re(t) <0, 0<Im(t) <2mi}

in the unitary ball |x| < 1 and the half-lines t + iy with t < 0 and 0 <y < 27 going to
—oc in the radiuses , of angle y, going to zero. Conversely the mapping t — e~' maps
the region

{ Re(t) >0, 0<Im(t) <2mi}

in the unitary ball |x| < 1 and the half-lines t + iy with t > 0 0 < y < 27 (going to o)
in the radiuses of angle —y(going to zero). Notice that by our symmetry assumptions
the image of H(a, D) is the same in both mappings; moreover the y; coming from the
fE are all analytic in x = 0, in the ball || < e~ and in all the section Arg(x) < D.
The yj coming from f° have a double pole in i and those coming from the Wronskian
have simple poles in +1.
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We set y7(7,) = >, _oy; 2" and C,y = [, y;". The integral is

Tw

o ) )
]7(;10 — Res Z O{TU} H W H(/ qu)eR1)(T1)+Zd)+E1)T1) ezwvﬂ)x?;v dTr,; (36)
{T1)} v v v e
with wy = —ag. Starting from the end-nodes we now perform the integrals in dr, then

the derivatives in E, and finally the residues in R,, we do this first for all the end-nodes
and then proceed to the inner nodes, hierarchically .

Proposition 3.6. Integral (3.6) produces the bounds

s(v)|+2

|
a —am T v £
fy < e O I TT Qo))
h

v 7=1

m is the number of nodes (< 2k —1) ,|s(v)| the number of nodes following v and Cy is
some order one constant.

In integral a) yo = e ™ and s = 0 ; while in integral b) s = 0, yo = e~ ™ if |t| < ag
and s =1, yo = e "= otherwise.

Fz';zally a < % 1s defined in Chapter 1 and 7 is the diofantine exponent of % up to
order K:

5*%|w -n| > e%y|n|""  for some v = O.(1) and for all |n| < KN.
If we choose ag > a the series are all convergent (by the analyticity of the y;’s in xg).

We choose 7y = % and estimate the coefficients of the Taylor series in the ball

a

x| < 5=

oo
v,k _k v
k| gk < 2 max (y7).

kz—; |y] |x0 B ‘I‘Sa;m(o(yy)

Proposition 3.6.

The integral

t .
/ xr(eimem _ xKe(zA+B)t
K+ B+ iA

so the E, derivatives in the end-node v give 2" terms of the form:

Z;) eidRU 6(7:0-71) +Ry )Tw

ry + Ry + 1w,

T
vy
hl-

(10)"  hY + hY = h,. (3.7)
The residue of R, ! times (3.7) is (3.7) if |r,| + |w,| # 0 and

hy! . ,
) (i) | ] =0
2 .
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Developing the binomial we obtain other 27**! terms all of the type:

Ghv"‘lmlxrﬂ 670-71) Tw (7-“) ) hoy .

The constant G is the maximum between one (r, # 0) , (miny <y |w - v[)~" or (%)

(we use that d < 7). After integrating all the end-nodes following a node w we can

integrate in dr,, a sum of 2 Yvestw) M FL terms of the type:
BTN Fw iQ0 T h
G"hlxre™ ™ (1)

where 7, = Zves(w) Tuy, 0y = Zves(w w, and h + h < Zveg (w) h, + 1. We have proved
that the integrals derivatives and residues correspond to calculating the integrands in
(3.6) at the limiting point (ay or t), ignoring the oscillating factors e, substituting
the Taylor coefficients with their moduli and multiplying by a factor bounded by:

26k73(k!)4 max (|w V|) 27(2k—1) <Ck(k')4T+4
0<|v|<mN
zo is equal to e~ in integral a) and is 2o = e /" in integral b). If |t| < aq then
zg < e % The factor 1/]7 comes from the divergent terms x, 2ol evaluated at the

J0
limiting point. The term |¢|?! in integral b) can be bounded by ao* if [¢| < ay. O

We now consider the “left out part” ffao dty, (we will set £ = 0 in integral (a)).
Let v; be a node of level one.
We break the integral S™odr,, as S~ "dr,, + fT““ dr,,. If we choose the first term and

my is the number of nodes of A="*, the integral on A="* can be bounded by /% and
we are left with the problem of bounding the “left out part” _fjao dr,, on the remaining

subtree A/"'. We repeat the procedure hierarchically and we end up with 2™ terms of

the form:
o1 1 / dr, W' (9

IS

where the subtree ¢ has m nodes and m + ) m,; = m. We bound the last integral by
the maximum of the integrand for integral (a) and for |t| < aq in integral (b) we obtain

Ca(] H maX |7J7 Tv)‘

0,—ao]
Ve, 7

In integral (b) for |t| > ay we obtain

(Cet])™ max 15 ()]
Ty €[0,—an

vED i

Let us now examine the 3" —1 integrals left aside in the analysis of item 3). Starting

from the end-nodes we cut off all the subtrees 1) that contribute a definite integral 3°



52 Chapter 3. Basic estimates on tree expansions

Such integrals are of the type I,(1J;) that we have already considered . We are left with
an integral again of the type I, (9y) where 1y is the tree deprived of the 9J;. The total
number of nodes of the 1, i =0,---, h is m.

Now we only have to compute the maxima of the |yf(7,)| that means the maxima of

the moduli of Gy = COS]W, Gy = e 'sinh(t), G = 1 — m, Gy = CSOithhQ((tt)) and of all
the F* in the regions Re(t) > a + 1, 0 <Im(#) < 27 and on Im(¢) = d.

To bound the functions F} we go back to the variable ¢ =arctg(e') so Fy — df f,(q).
The maxima are then taken in a compact region C T x iR where the f, have no
singularities, and which is contained in the image of H(a,d) which is compact as
d < D < w/2. Let us consider the integral (a) and set d = D — /e, this means
that in some of the considered functions we are going /2 close to the singularity with
Im(t)) = D 5. As we are not interested in optimality, we will estimate the maximum
of GG; with ﬁ that of GGy with a constant , and G5, G4 by %

—k—2ko+1

Lemma 3.7. The functions G; contribute at most a factor € where kg is the

number of nodes with 6, = 0.

Proof. There are kg < k — 1 nodes with §, = 0 contributing either G5 or G4, then each
of the k + kg — 1 nodes v # vy, carries a summand of

m 0 1
a ) ma ‘
teC(D*Q)\(/E’Qa)(m] ) t€H(2a,D}52\/E)(‘x] )

from the Wronskian so either G? or G1Gs.

The functions F]' appear exactly k times. Moreover Zf:] n,, counts each node
with d, = 1 plus all its successive nodes. as each node with §, = 0 has s(v) > 2

k
> T, <Y ny —3ko =2k — ko — 1
i=1 v

We can bound the maxima of the F in H(2a, D — 24/2) via Proposition 3.3 so we

have a factor \/Ef(pw)kﬂCn
Finally we notice that E(D — 2y/2,v) ~ E(D,v) and we sum on all the trees of
order k. This implies the following proposition:

Proposition 3.8. We obtain the following bound on the order k of fruitless trees with
initial data @ such that |Im @| < sp:

>0 e ]Indl X enerr) N*E(D v)vE T (38)
A€A(OF) v v|<kN

where C' is an £ independent constant and ¢; = 27 + 2.

5We approach all the singularities simultaneously only if D = ’7 This fact can be used to give

better bounds on integral (a); we will give some examples in Section 6.2.
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Integral (b) is bounded by:

ewyde(2k+l)(\t\+d) Z esn\u\c]k(k!)clNQk\/g*(p+5)k+3. (39)
W<k

The extra factor e+~ comes from w(t,,,).

The bound (3.9) is much overestimated (as explained in [GGM4]). In particular
if ||, d are of order 7, as D is 1 independent, the maxima of F and of the G; are not
taken in a region near their singularities and so are - independent, for small enough
. Moreover as w, < £ 3/2 for all k < &' then if n < £3/2 the factor e“? is small. In
this case can use the following bound on analytic contributions to w;“ (t) with t € C
and [t| = O(n):

(kN)" e N COF (k) N2k, (3.10)

Remark 3.9. Consider for each k a finite sum of integrals of type (b) which is known
a priort to be bounded in t. This is possible only if all the integrals carrying divergent
terms t" or el! cancel. Then we can bound such finite sums by

3
ew,,d Z eso\u\clk(k!)rnNQk \/5

(p+5)k”
V| <kN £

We will generally consider formal power series on trees whose coefficients are the
¢(A) of the preceding section. The following bound can be useful:

Lemma 3.10. Given a tree A € Ay let S(A) be its symmetry group and n(v) be the
number of nodes w in the list v, s(v) such that j, = 0. The following bounds hold:

HOEDS |S(1A)| < (4n)".

Ac Al

Ni(k) = Z

Ac A¥

H n(v)! < (4n)*.

vEA

1
|S(A)]

A proof of this assertions is in Appendix A.2. Now let us see how one can apply
the bounds (3.8) to trees with markings and with fruits.
If we want to consider formal power series on marked trees we only need to remember
that for any h(t) € B(a, D) applying the linear function

Dimy(A) =) h(r,)05 A,

vEA

is equivalent to multiplying by

NE  max  |h(t)]
t€C(2a,D—/7)
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if 7 # 0 and by
k
— h(t
Ve tec(g;%{ﬁ)l @)
if j = 0. If h(f) is not in Hy then we set d = D = 0 (we will call this non-analytic

bounds).
As we have seen the value of a fruit is

7] 1 i i QU0
VI(F = 2ol () SW! (0] A%).

j
Moreover by Remark 2.8 adding a fruit of order & type 1 and angle j in the free node
v of a tree A € 'T is equivalent to adding a mark T ( )07 to the node v of A and
multiplying by the 7 and ¢ dependent function 1%)/\/1 (2 6”01\’“). This is the sum of
2n* values of trees with fruits (and with a marklng ’I“]a in the first node), so we repeat
the procedure and cut away the fruits.

So we have (2n)* lists of [ (at most 2k — 1) marked trees without fruits. t The value
IW?! of a list is the product of the values SW! of the trees and the value of a tree
with fruits is the sum of the values of lists of trees obtained. As the tree values depend
only on the order the sum is (2n)* times the value of a list.

We can apply the analytic bounds only to those trees whose markings are all analytic
( 05, a:] ). All the trees with carry a mark 9, x;, ,, are bounded via the non-analytic
1ntegrals (d = 0) Notice that ,in our bounds, each' marking with j = 0 gives a factor
bounded by % and that there are exactly 2/ markings.

Lemma 3.11. The bound (3.8)implies the following bound for trees with fruits:

DK Hn S e Ima(an ey (ke N E PR (300

AcAk lv|<kN

Proof. We have decomposed a tree with fruits A in (2n)F lists of marked trees Ay, ..., A
each of order k; such that 22:1 k; = k and bearing a total of 2/ markings. The value
of a list is:

1 . -
H ! Z eSo\V\(QnCI)k(k!)mN4k\/g*(p+5)2i:1kl+5l 21

ve{A;} |v|<kN

Theorem 3.12. The bounds (3.11) and (3.10) imply that the values of fruitless tree
power series expansions of definition 2.6:

n=2 U0 Banem =Y 0

k>1 k>1
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via W and V), , for | Im ¢| < so and [t| = O(n), are asymptotic power series in 1
and €.

Moreover, fork < e ! andn < \/Ep+5+201, the value of trees of order k is bounded from
above by c* with ¢ < 1

Proof. Let us first consider the value of the fruitless tree power series expansion 0;
through SW,°%. In each node, v # vy, we apply an operator O; so we can divide O; in
tree terms (applying a label i = 0,1, b respectively for R;’, R} and @;). Then we cut
off the terms due to the operators R;.

We obtain the lists of trees described above and we can use the bound (3.11). This
implies that the series UJ; are asymptotic moreover for k& < e' k! < 7% and so if
n < e is small enough then (3.11) is bounded by ¢* with ¢ < 1.

Applying the bounds (3.10) is the same only easier as one considers directly fruitless
trees.

If we want to consider formal power series on marked trees we only need to remember
that for any h(t) € B(a, D) applying the linear function

D(j:h)(A) = Z h(Tq))a;}Aa

vEA

is equivalent to multiplying by

NE  max _ |h(t)]
teC(2a,D—+/¢)
if 7 # 0 and by
k
— h(t
VE tecéﬁf}iﬁ)| ()]
if j = 0. 0

Now we define a generality criterium. From now on a Proposition is said to be true
“in general 7 if it is true for (possibly fixed) functions f and for all |n| < &b, |e| < &g
for some non zero g.

Corollary 3.13. (i)In general the values through %W;; of non analytic trees, or of
fruitless trees with total frequency v such that vp = 0, of order k < 7', are of the

type:
P(e,e YY" where P is a polynomial.
(ii) A formal power series of definition 2.6 whose summands are all fruitless trees with”
ve # 0 is asymptotic under the same conditions of Theorem 3.12; moreover its terms
(A
of order® k < (1/2) 20 i, n are all bounded from above by’:

P(e,e ) 0.(e 7).

6Notice that we are not distinguishing between analytic and non analytic terms.
"For instance U; ; with i or j < m.

8remember that 74 is the diofantine exponent of wy.

9We will derive much better bounds for systems with one fast frequency
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Proof. (i) We are not interested in shifting the integration in the complex plane, so all
the integrands of integral a) can be bounded with ¢ independent constants. Then as
we consider trees of order k < ¢!, one can bound the factors k! with =%,
(ii)) We are simply using the bounds (3.8). Fixed k < (6)7(%721)) (b < ﬁ) then the
frequencies that are accessible at order k are such that |v| < Nk. Moreover wy is
diofantine:

lwy - 1| > ypln| ™, with vy € Z™

and so for v < kN:

_lwyrq] ck*”‘“)

E(D, V) S e Ve e“‘)?HVQ‘ S Ckef( NG

Consequently
max  E(D,v) = O.(e &F).

3.2 Identities for asymptotic power series.

We will prove some simple classical identities, true for asymptotic power series, which
will be useful in the following sections.

Lemma 3.14. (i) The sum and product of asymptotic power series is still an asymp-
totic power series. The division by an asymptotic power series x(n, €) such that (0, &) #
0 is still asymptotic. The integration and derivation of an asymptotic power series on
the parameter n is still an asymptotic power series.

(ii) Consider two formal power series that satisfy the formal relation AB ~ C' and
such that

A=S"()"Ap with |Ay] ~ (=)F for all k < K,
1

oo
k=0 0

with ¢ < 1 ; same for B and C. Then their order K truncations ASK, B<K satisfy
the relation
ASKEBSK — 0K 4 o(c5),
for all n < np.
(i1) Consider a function f(x) analytic in a domain D and

K

o) = Do nba with o] ~ (",
0

k=0

for all k < K and for some ¢ < 1, such that x(n) € D for all ||eta] < ny. The
following property holds:
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for all |n| < ny/2.

Proof. (i) consider two asymptotic power series

o

(ar(s) B =3 (n)*bile)

0 k=0

A:

WE

B
I

with ag # 0 and such that max(|ay|, |by]) < e P* for all k < K = 79 Their product
and sum is obviously asymptotic. Moreover:

1 1
Al e~ Zrk(n)k ~

0 (g 1+ a]_o 220:1 a’h(n)h

o0
k=

this is an analytic function of z = % — 1 provided that |z| > 1. Now for any truncation
of A of order K = £77 this condition is verified and we can find the coefficients
(k < K) as finite combinations of the a; with i < k.
(i) This says simply that:
K k K &k
ASKB =N ") Y " ABeow+ () DY () AxBregr = CF 4+
h=0 k=

k=0 1 =1
Kk
(m™ Z Z(n)bAkBKH;fk
k=1 b1
where
K k
(m™ Z Z(n)bAkBKer—k < 2K (e)
k=1 b—1

(iti) f(n) = FO1,(n)Fxy) is an analytic function of 7 for < 7y So its Taylor
expansion at order K has the property:

K (U)kf(k) N f(K+1)(77;)

(K +1)! A

(n
k=0

Finally we apply Cauchy estimates on f&+1 (/) in [n| < ny/2. O

Lemma 3.15. The equation A+ B ~ C+ D where A, B,C, D are formal power series
such that |ag|, ¢, are at most polynomially small in e while by, dy = O.(e>) for all
k <71 4s in general equivalent to the two equations:

an~c br~d forall E<e %
Proof. We are simply saying that in general it is not possible that

P(s,e ") = f(¢) where f is a trancendental function.
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This leads to the following relation for matrix formal series. Consider three matrix
formal power series D € Mat n x n and X.Y € Mat n x h and let D(K), X (K), Y(K)
be their truncations to order K = ¢ %

K K K
D(K) = (n)"Di(e), X(K) =Y () Xe(e), Y(K) = (n)"Vile).

k=0 k=0 k=0

Suppose that D(K) is symmetric and that for n < &P :

C C
and [ Dy || X| < (5)’“; Vil < 0(8)(5)'“

,

set sup D = |Dy
2]
for some ¢ < 1 and C(g) = O.(¢*). Moreover suppose that X, has an h x h non zero
minor and X;;o = O.(1).

Lemma 3.16. (i) Suppose that the expansions of D and X admit a decomposition
Dy = Dy + Doy, Xy = Xqp + Xog, all truncations of an asymptotic series; moreover
(D1 )ij and (X )ij at most polynomially small in e, while (Day,)i; (Xok)i; are O:(C(g))
. Then the formal power series relation DX ~'Y 1is equivalent to

D]X] ~ 0 D]XQ + DQX] + DQXQ ~Y f()T all k S e 9.
(i1) The formal power series relation
DX ~ Y,

implies that D(K') has in general at least h eigenvalues A < O.(C(e)) for all |n| < e7P.
If Do + Dyq is non singular, the eigenvalues are A = O.(C(¢))

(iii) Moreover if D is a convergent series in n with convergence radius ny = P then
D as well has an eigenvalue A < O, (max(C(g), (c)° ") for all |n| < emax(P:r1),

Proof. (i) Is a direct consequence of Lemma 3.15.
(ii) Lemma 3.14 (ii) implies that:

Di(K)X,(K) = Ry, with |R;| < o(c")

where K =79, D, is (in general) symmetric and the columns of X; are independent
and of order one. Let us set D;(K) in diagonal form A;(n), ... A,(n); correspondingly
X7 still has independent and order one columns. This means that foreach j =1,... A
there exists 4(j) such that (Xi¢)i;); 7 0. Then the equation A;;)Xi,¢;); ~ 0 implies
that Ay, = 0 for all £ < K.

As D(K) is a C(g)-small perturbation of D (K)+ Dy, classical perturbation theory
guarantees the existence of at least h eigenvalues'® of order < O.(C(¢))
(iii) We simply note that as D is convergent then D = D(K) + o((;5)") with 5y =
ebr. O

10The small eigenvalues are exactly h if for instance

Id,_p 0 )

Dio+ Dy = < 0 C(e)1dy



Chapter 4

Upper bounds on homoclinic
splittings I

We prove that determinant of the splitting matriz is erponentially small in . The
techniques are those of [GGM1] and we discuss them first for completely isochronous
systems and then we generalize to Hamiltonian (*) with F(q) = cosq — 1.

Notice that such bounds probably can be derived using the methods proposed in
[LMS] (where the authors consider the case m = n). This would be a quick (and in-
trinsic) proof of the exponential smallness. Notice however that the bounds so obtained
are generally not optimal as one has to set the Hamiltonian system in normal form and
consequently looses the information on the nature of the singularities of f. We have
seen in Chapter 3 that the singularities of f fix the parameter D of the bound (3.8), so
that the exponentially small term in the value of a fruitless tree of total frequency v is
E(D,v). In Chapter 6 we will prove that, for functions f(1,q) which are trigonometric
polynomials in 1) and rational in €, the exponentially small term E(D,v) is optimal
as the (computable) first order of the splitting matriz has (under some non degeneracy
assumptions as discussed in Lemma 3.16) exactly m exponentially small eigenvalues:

A=Y Pie.c YED,v).

v<N

4.1 Cancellations and splitting determinants

We use the tree formalism of Chapter 2 to find formal identities for the splitting vector
and the splitting matriz. Then we apply the various Lemmas on asymptotic power series
of Subsection 3.2 to prove O.(£°°) upper bounds on the splitting determinant. This is a
generalization of the strategy proposed in [GGM1] for partially anisochronous systems
with three degrees of freedom. It is based on the existence of linear formal power series
relations (like those of Lemma 3.16 for the splitting matriz.

Such linear relations are discussed in Subsections 4.1.2 and 4.1.3; Subsection 4.1.1
15 dedicated to proving that the stable-unstable manifolds are Lagrangian; we do not
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need this property to prove the exponentially small bounds we report the proof only for
completeness.

4.1.1 The generating function of the splitting

Using Observation 1.43 and the Lemmata 2.13 we can verify that the n+1 dimensional
manifold AL; (¢, q,n) = >, (n)*AI} (¢, q) is Lagrangian. In particular we have that:

Theorem 4.1 (Eliasson, Gallavotti ). The splitting vector AIF () is the derivative
with respect to the angle @, j =1,...,n of a function S(p) called generating function.
S(p) is the value S oW of of the tree vector:

Z
N(B)|S(B)|
Proving the theorem is equivalent to proving for each k, j the relation:

D;(B)
-3 s T 2 NS -y

AA"

where N(B) is as usual the number of nodes in B and D; = D,(h(t) = 1) is defined in
(1.34).
The theorem is equivalent to this last relation ((4.1)) as

k(r — ) — k
Alj (t=0)=So W(Uj)
and as we are considering fruitless trees:
WA Y ) = 9 We X st
BeAk v Be Ak

We prove relation (4.1) simply by translating it in a relation between trees with two
markings:

Proof. For each A € A¥ we consider N(A) copies A, of A, each having an evidenced

node v; now as j # 0 Ak = Ak For each coset [v] we have m[v] identical copies, we
will name them Ajp,); we have:

1 [7)]14[1,
2 \5 > N(A) Z 1S(A)]

AcAk Ac Ak [v]

mlv]P(A,v)
Z A v) %}: S(A)
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Then by Lemma2.13(ii):
m[v]P(A,v)  mlvald;*B

(S 1S(B)|
where B € A is the tree (first node v) such that 0;"B = P(A,v).

Corollary 4.2. With the same technique one can prove that

A 1 B
ZN(A)IS(A)I_? 2 S(B)”

Ac Ak BeAk:4, =1

this is the representation of the generating function given in [G2]. This representation
shows that the generating function is a function of the homoclinic trajectories 1;(p,t).

Proof. For each tree in A we consider k copies each with one node 6, = 1 in evidence,
conversely for each tree in B € A* : §,, = 1 we consider N(B) copies each with one
node in evidence. The corresponding coefficients are two points stabilizers and so are
the same for corresponding trees on the left and right hand side. Now calculating the
value of the generating function, and summing over k£ = 1, 0o, we obtain (simply via
the definitions of the values of trees):

St = Y- SIS s~ [ a9 )

k=1 h<k 0

Ul

0

We will not be interested in proving that this is a true (not formal) relation. To do
so one simply needs to show that all the involved functions have dynamical meaning
and so their series expansion in 7 is a-priori convergent.

Remark 4.3. The generating function is a function on rootless trees; call A' the cosets
of A with respect to the usual equivalence relation : Ay ~ Ay if there exists v in Ay
such that Ay = P(Ay,v).

Let K € A' and consider a representative A: then there are N(A) trees in the coset
K all with N(A) nodes. As the trees in K have the same value the value of K is well
defined, the generating function is:

S(p) =S oW,()_ C(K)K)
and the coefficient C(K) =3 1o W.

Corollary 4.4. The fruits can be written in terms of the generating function (at least
as trees):

Gi= a3 oW, Y m [D;(#)[B] + 8oL (B))]

Be Ak
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4.1.2 Cancellations due to energy conservation

We consider the cancellations due to energy conservation i.e. the fact that the S/U
manifolds are on the same energy level. These cancellations are best seen directly
on the values of trees an in a non-perturbative setting; then if needed they can be
translated in cancellations on the trees. This cancellations were first noticed in [G1].
Let us set

H, (L, (t, 0), py(t, ), Uyt 0), 4y (t, ) = By = Z(n)hEh,

where by the KAM results reported in Subsection 1.1.1, E, is analytic in 7 near n = 0
and is independent of o(¢). Recalling that ¢, (07, ¢) = ¢ and 7,(07, ¢) = 7 we find:

(0%, @) - AL/(07, @) + (p, (0%, 9))* + 21 f (o, ) = 2, =

(1,(07,9))* + (py (07, 9))* + 2nf (@, 7),

now we derive in ¢; with j = 1,..., n and compute at the homoclinic point' 7(0F, ¢ =
0)=1(0",p=0):

0 0

A (AL (Elsmo- (21 (0.0 = 0) = 5

o, (Apy())]o=0(2p,(0, 0 = 0).

Now let us write this perturbatively (i.e. in terms of trees); by the boundedness
condition

P07, ) = 97 oW, Tl

We are on the lower branch of the separatrix so po(7) = —2 and I(¢) = A~'@; now
call U p) Zk>1 U’“7 ny> let A be the splitting matrix and for j = 0, n set?:

I =S 0 WonoUan) = 8 0 WU

dg =S o WWZOU(MO)]-
(this is the ¢ gradient of Ap,). Finally call () = {]
Proposition 4.5. The splitting matriz satisfies the following equation
A@+ ATM) = —do(—2 + IV).

This means that we can tie the behavior of some fruits to that of the splitting matriz.

!Clearly at the homoclinic point p* and p~ coincide as well
2Note that as we are at the homoclinic point the only non zero contributions come from fruitless
trees
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Remark 4.6. There are quite a few cancellations cancellations (on fruitless trees)
coming from the symmetry of S wvia integration by parts in the time variable. This
cancellations are a simple generalization of the results in [GGM1]. Nevertheless they
imply some heavy computations and are only actually not needed to prove exponential

smallness for the splitting determinant, therefore we will state this results in Appendiz
AP

4.1.3 Relation between trees with and without fruits

We have seen that trees with K fruits are homogeneous functions of degree K in the
G'" with 1 = 0,1, j = 0,n. We know as well that GY"(¢ = 0) = 0. We want to estimate
the matrix

det(A) where A;; = 0, Z(U)kA[ik(SO =0))
k

so it should be clear that it is useful to group trees by their degree in G;h rather than

in 7. We then decompose T=A® A(1F) @ --- and add up the degrees in 7 (this are
the formal power series discussed in Chapter 3):

kool Lk k ! ! L
U =) 08 Gi=> "G Agwy =D Al Gi=SW Aty = >.G)
k k k A

k

etc... The cancellations described in Chapter 2 are obviously still true in the sense of
formal power series.

Remark 4.7. To pass from Ai(kF) to Ai((k + 1)F) one can apply the fruit adding
linear functions discussed in Section 1.2.

The problem is that in general A € A(kF) and Y, D*(A) (or Y, B{"(A)) do
not have the same symmetry group and so we cannot translate this relation on the
AFF — ARH1F except in the case of k = 0.

We use Remark 2.8 to write a tree with one fruit in v as a tree with a mark a:; times

the fruit function G; The fruit adding functions become special mark adding functions
T

Definition 4.8.
Dj(a}) = Dj, Ly =L  F'(A)=ax(y)05 f*(A)
F{(A) = hly)ah(n) b f*(A) Fly = P

6=0

where as usual o 18 O

3Notice that the cancellation mechanism that we illustrate in the Appendix A.7 is exactly the same
used in [GGM1], the only difference is that here the cancellations can be seen directly on the trees
and so the notation is more compact.
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Lemma 4.9. In A" we have:

AL = ZZGl { B + oo LE (B + G0 F) (UO)]} (4.2)

1=0,1 m=0

Proof. By Lemma 1.39 we only need to prove that the summands in the two sides of
the relation have the same symmetry coefficient. This is true as the symmetry group
of trees with one fruit is the subgroup of the symmetries, of the corresponding fruitless
tree, that fixes the node where we will attach the fruit.

As both D; and L' act as sum on the nodes one can write them as sums on the

cosets [v]:
D ZT@” meav;

so that the summands of (4.2) are all d1fferent.
Consider a tree A in Agfh) carrying a fruit of type [ label r and order m in the node

v; we will call B the tree obtained by removing the fruit. If B € A (it respects the
grammar) then
|Sa(B)]

mlv]
If B¢ A, consider again A. If v # vy, then r = 0, §, = 0 and there is a unique node
following v, call it y. Then

A= G'"mallm[v)o° B and |S(A)| =

A= Gy"mlylga U](B' y)

I'm

0
for some B' € A (B’ is simply A without the piece § ).
|S(B’)]

m(v]

Again we have |S(A)| =
fixed by S(A).
We now consider v = vy, B ¢ A, this means that:

, namely as y is the only node following v then v is

A=GymF\(B")
and there is an only node of level 1; by Remark1.27: |S(A)| = |S(B")]. O

Definition 4.10. In the following we will be interested in trees marked only with the

Junctions x; so we will contract the notations:

Ilm __

ial) Gy s T
4.1.4 Formal power series relations involving the splitting ma-
trix

Proposition 4.11. The splitting matriz depends only on the trees with zero or one
fruit.
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Proof. Using Lemmad4.9 we write:

ALt =0,0=0) =q; ' W(&»+a{gowH§:§:GPM’U

1=0,1 r=0

+6,0(LU(15;)]} + terms of order > 2 in G}

so as G(¢ = 0) = 0 (see the proof of Lemma 2.9) the terms of order > 2 in G don’t

give contributions to the derivative:

Aij =S oWi[Gi;+ DY ;(GLIDI(B;) + 6,0 (LY(B)]

1=0,1 r=0

Similarly the value of

1
@Gi;iw@%omgmg

with r =0,...,n and j = 1,...,n depends on trees with at most one fruit:

2G) ;= 20;GL. = a,So Wy [U}; + ZG [ 4 60 (LB + 6,0 FH7H(T5)))].

m=0,1 h=0

This is a linear relation that we can express in matrix form as:
G=AOMG+ J)
where G is a 2n + 2 X n matrix with entries:

o[ oG if i=1,...n+1
N 8G1 if i=n+2,....,2n+2.

i—n—2

The matrix J is again 2n + 2 X n with entries:

. %OWOU,]WQJ ifi=n4+2,....2n+2

O and A are 2n + 2 X 2n + 2 matrices:

1 0
Opt1  Idpiq 1 A
O=| " A==
Idny1 Opga 2 1
0 A
where A is the diagonal matrix with eigenvalues a; j = 1,...,n.

2n + 2 X 2n 4+ 2 matrix with entries:

Finally M is a
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Li=1,.. . n+1
[ SoWHOL it 51 (LN (O] 6,1 P (B0)) it L
e i=n+2,...,2n+2
So WU, o j 1 051 (LHD], o)+ Gins2 PO H(D0)) i ;:’}H L
e i=n42,..., 2042
%OW&(U?ELU_'_ 5,7H+Q(L0(U?7n72)+ (sin+2FOU(UO)) if ;:Z+27_._=22+2
1=1,....,n+1
j=n+2,....,2n+2

{ So W(} Uv]kol,jfnffi_ Wy n+2(LO(U}:f1)+ 01 F°' (Go)) if

Proposition 4.12. The matriz M is symmetric.

Proof. 1f 1,5 # 1,n+ 1, then M;; = Mj; is equivalent to Proposition2.14.
Same if i, 7 = 1 or n + 1, then the symmetry condition is:

Uy + L°(Bg) = By + L' (Bp)
and so equivalent to the symmetry of the operators (); (see Propositions2.14,2.15).
Lastly if i = 1,n+ 1 and j # 1,n + 1 the condition is:
l,m m,l { m
Gyj = Ujy + LI(T})
that is Proposition2.15 for trees without fruits. O

It can be useful to evidence the block structure of the matrix M:

t t
0
4
Ugo MO[] V10 MUI GU
M = ; ; GlJ]| =
1
U1 MO] U11 M]] Gl

Vi,j€[1,...,n] (Mn)y=SoW,00, (M) = SoW,0;} , (My)ij = SoW, ;"

ij ij o ij
e 17500 _ Cx Tr911 e 17510 e 17501
(ui1); = SoWyUy; 5 (u0); = SoWy By, (uor); = SoW; Uy, (vor); = SoW, Uy -

Remark 4.13. The definitions of M and J imply that J = OMT where T is the
2n 4+ 2 X n matrix :
0n+]

T = 0

Id,
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Again from the definitions of A and G we have that AA = 2Gy = 2TOG

In the preceding Subsection we proved that
IA(@ + ATM) ~ —go(=2 + 1)

where w+ AT has norm of order O, (¢~ 2) and (if there are slow frequencies) —go(—2+1I5)
has norm O.(g¥) for some P (see Chapter 3; remember that this are all convergent
series). Independently in Appendix A.8 we have proven that M is degenerate and
satisfies the equation:
n+1 1 n
e N Wanbw
MY, = B where Y{ = ( .2, —w)

5 - n+1

and B' = 2([81)(75 =0), IM(t=0) ,”0 ). This relation gives a constraint on Gy (as
(O — M)G = MT) that coincides with the one given by the energy conservation.

Proposition 4.14. The matriz Gy = %AA satisfies the relation:
Go(A™'@ + 1) = —go(-2+ I"),

notice that gy = %do.

Proof. Tt is obvious from the energy conservation see Proposition4.5, now we derive it
from the degeneracy of M. We use PropositionA.24 and the relations between M .J
and G:

(O — AM)G = AMT — (A'V1)'OG — (Y[ M)G = Y/ MT

this implies that
WA Gy + gt (2 — 1) — (IM)'Gy = 0

we have used O = I, Y/M = B" and B'T = 0. O

So one can see that the (hard) cancellations due to the integration by parts are
only needed to check the consistency of our equations.

We want to estimate det Go; now for the first time we consider the existence of a
fast time scale, we will say j € Fif w; = %is fast (resp. S). We concentrate only on
the m fast variables ¢y, 1, by applying the 2n + 2 x m matrix Y = (0 , Id,, 0 ).

n+2 n—m

Then we set

t
myg

MU
MYy, = Mp =

t
my

Ml
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B U
Lemma 4.15. The order k < Ce *0+77) truncations of the matriz My and the vector
_ 1

my are of order O.(e = "),

Proof. The entries of this matrices are all derivatives d;L, where j € F is a fast
variable, and L is the integral of a function in Hy;. We are considering the analytic
parts of M, uy; and M;;, and M is a function on fruitless trees. So we only have
contributions from fruitless trees with analytic markings and non-zero total frequency
in the fast direction vx # 0 and we can apply Corollary 3.13 (ii). O

Proposition 4.16. There ezist two matriz formal power series X and Y, in Mat(n X

1
m) such that their K < £ T fruncation is X|=0.(1) and |Y| = O.(e= "),
for \n| < &P and e < ey # 0 (here we choose P = (p+5)/2 + ¢, following Theorem
3.12, in Section 4.2 we will use less restrictive hyptheses on P). Moreover this series
satisfy the formal equation:

GoX ~ Y.

Proof. We can prove this only formally, i.e. the convergence of the vectors we define
is not guaranteed; the bounds on the truncations are assured by the computations of
Chapter 3.

Y;(O - AM)G ~ Y;AMT — XtG(] — myg - (]6 — AFM();GO — mlqi — AFM{Gl = AFM{

where X = (0, Id,,) in an nxm matrix and Ap is the m xm diagonal matrix a,, . . ., a,.
Substituting relation (4.14) we have:

1

Go(X - MOAF S —
241

(Ao + 1My omg) ~ gy -mt + (Id, + G1) M, Ap.

Notice that the problem in proving the convergence is not so much in the convergence
of Gy or g; (that have dynamical meaning) as in that of proving convergence for the
“bare” parts My, M7, mg and m;. This all is done, for systems with three degrees of
freedom, in [GGM4]*. O

Now we can apply Lemma 3.16 to Gy or equivalently to A; we have proven that the
determinant of the splitting matrix is bounded from above by some constant of order

1
Og(e*”/gz(1+rp)) where ¢ is a suitable constant of order one. Consider the splitting

matrix truncated at some order £ < 0572(1“1—710) call it ASF, we can write it as a sum
of matrices ASF = AS* + AS* where A, contains all the exponentially small terms
(coming from analytic integrals with non-zero fast mode as discussed in the end of
Section 3.1). Both A; and A, are well defined as asymptotic series. We can divide X

4We will discuss the article [GGM4] in detail in Section 6.2.
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as well in analytic (X3) and non analytic (X;) terms, both asymptotic power series.
So we apply Lemma 3.16(ii) which states that:

Corollary 4.17. In general, the matriz A= has (at least) m zero eigenvalues o(n*)-
close to Span(X]Sk). Moreover the determinant of the splitting matriz is bounded from
above by:

1
‘dgtA| S 05(670/52(%‘7'[4‘))’
for some order one c.

Moreover in Section 6.2 we will use the following statement:

Corollary 4.18. The splitting matriz satisfies the following equation:

1

Go(Id, - ———
24 1§V

(1471(1) + I(l))u61 + M();IA) = —uugluth - GIAMII + AMII-

Proof. We insert Proposition 4.14 in the last n lines of the linear equation: G =
A(OMG + J). O

4.2 Extension to partially isochronous systems

In this Section we will summarize the (few) modifications that are necessary to apply
our techniques to partially isochronous systems.

We consider the following Hamiltonian:

(I’AQ&+‘*"J+%2+€(COS(Q)1)+uf(1/),¢,Q)- (4.3)

As in Section 1.1 I € R",¢ € T", p € R,q € T and we have coupled our systems
with N clocks of frequency @ € RY. The action angle variables of the clocks are
JERY TN .

A is the diagonal matrix with eigenvalues a; described in Chapter 1.

The system 4.3 is integrable for ¢ # 0, 4 = 0. It represents a list of n uncoupled
rotators, N clocks and a pendulum. We will denote the frequency of the rotators
(which determines the initial data 7(0)) by w so that:

I(t) =1(0) = A 'w, 9¥(t) = (0) + wt
J(t) = J(0), o(t) = ¢(0) + wt.

The clocks ¢; are not changed by turning on the perturbation in p. As in the previous
sections we will look for S/U trajectories converging exponentially to a quasi-periodic
function with diofantine frequency 2 = (w,w). So we will fix the initial data of the
rotators as in Section 1.1. As usual we divide our frequency vector Q = (w, w) in slow
and fast frequencies and call m the total number of fast frequencies in the n+ N vector
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Q. Notice that the clock frequencies can be indifferently slow or fast. It is well known
that for diofantine values of € one can apply a local KAM scheme, equivalent to that of
Theorem 1.1, to construct the local S/U manifolds for the Hamiltonian 4.3. As usual
we apply the canonical change of variables 1.10 and set the unperturbed Lyapunov
exponent to one. Consequently the characteristic frequency is = &~ 3Q).

We use the Hamiltonian flow to extend the local manifolds. The extended S/U man-
ifolds are graphs on the angles. As in the previous section we consider them at the
Poincaré section ¢ = m. To avoid using many variables we will set the initial data®
, ¢ = € T and set:

Jii(go,ﬁ,n) In+7(g0,7r,77) fori=1,...,n

Now we construct the S/U manifolds perturbatively exactly as in subsection 1.1.2. The
Hamilton equations are

[] = _(n)fw,(¢;¢;Q)= 1/) - CL][ fOI‘j = 1""’”’

Ji = =) o (¥, 6, q), ¢; = @, fori=1,...,N, (4.4)
p—gln( ) ( )fq("/)a )a q=np,
We insert in the Hamilton equations the convergent power series representation:
Lilt,oon) =Y (It @) wilt,em) =Y m)fite) forj=1,...n
k=0 k=0
(t,0,m :Z IF .t ») ¢,;(t,g0,77):</57;+it fori=1,...,n
— Ve

finally

Zptso to.n +Z “Ug(t )

we obtain, for k > 0, the hierarchy of linear non—homogeneous equations:
:F]k({qvbvh}rvl:(])a forjzla--'an+N
h<k
YF =a;If, fori=1,...,n
7 =eos )0 + Rty b =0t

with
k-1 _ k-1

1) " b+ %mm + S0lsin(> () ")k

Using the whisker calculus developed in subsection 1.1.3 we find:
IF(t) = S'(F)  4j(t) = a;O5(Fy)
withi=1,....n+ Nand j=0,...,n

5Qur convention will be that the rotator angles are ¢1, ..., ¢, and the clocks are @, 1,...,OniN
so the fast variables are not ordered sequentially but will be ¢;,,..., i, .
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4.2.1 Tree representation

Passing to tree representation is now easy (and identical to what done in Chapter 2).
We have seen that ¢’; = 0 for k # 0 so the labels j of nodes v # v, will still have
values in 0,...,n and the vector space V(A;) such that V(U%) = ¢f for j = 0,n, is
unchanged.

We have seen however that markings represent derivatives on the node function
f (1o, .., uin so the set of trees adapted to this dynamics is generated by A via
the usual fruit adding functions (with type label i = 0, 1, order label § € N/ and angle
j = 0,n) and via mark adding functions:

h(t,v)05 with J=0,n+ N.

0
We will improperly call this spaces A and T as well. The function W is defined on A
exactly as in Section 2.1.1, leading to the relation:

AIF =SoW(9,0%), for j=0,n+N.

The same holds for V' and W*'. As an example we write down explicitly the function

U, (A) for A e T

1 n+N n Ne: 7(’
Wy (A) = (=) V[ TT o)™ ay, ] 950 a0 po T afeh T hs(va, 7o)
1)6140 a€F(va) ﬂEM(?)A)
V#£V0
H VZ;L;)N nv(.j)ej’f(sq) H .’E' H hﬂ v 7—7))7“0]1) 7'1‘“7'," H G z
vEAO a€F(v) BEM(v) aEF(A
V>0

where N(A) is the number of free nodes, F(v) are the fruits stemming from v, M(v)
is the list of markings of the node v and finally n,(j) is the number of elements in
{v, s0(v), F(v), M(v)} having angle label equal to j. Remember that j,, jo =0,...,n
while the angle-markings are .J, = 0,n + N.

The energy conservation for the system ((4.3)) leads to the relation:

3

AQ+ ATDY = —dy (=2 + 1{),

where as in subsection 4.1.2 ; A is the n+ N x n+ N splitting matrix, dy = V,Ap|,—g,
b= S Ii(t = 0,90 =0) and A" is an n+ N x n+ N matrix so defined:

A0
Al = .
Remark 4.19. We can repeat the procedure proposed in this Subsection for any Hamil-
tonian ((*)) such that p*/2+ F(q) = 0 is the separatriz of a generalized pendulum (see
the introduction). We only have to use the Wronskian matriz of the generalized pen-
dulum in equations (1.14) and consequently change the functions z} in the definition

of Og. The qualitative behavior in unchanged.
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We can find bounds similar to those of Corollary 3.13 (ii) for the fruitless trees
of the expansion of Hamiltonian (*). However if we do not impose Condition 3.2 to
f((t),q(t)) we do not find optimal bounds as we cannot get near to the singularities.
We set that F(q) is analytic in | Im ¢| < ry and f(1, q) is analytic in | Im ¢| < rq, |
Im ;| < r;. This means that:

S fad PO with | f, ] < Ce (WD,

v,heZn+l

Theorem 4.20. The contribution of fruitless trees of total harmonic v is bounded by:
e " ICK (RN E(cy,v)(e)7F,
where C, ¢y are € independent constants and ¢; = 217 + 2.

Proof. The proof is identical to that of Proposition 3.8, if f(1,q) is trigonometric in
1. The only difference is that in the proper integrals we do not go e-close to the
singularities so such terms are not divergent in £ (the factor £ * comes from small
denominators). The proof for general analytic functions f(1),q) is not difficult but
quite long; we will report it in the Appendix A.6. O

4.2.2 Formal power series relations involving the splitting ma-
trix

The linear non-perturbative equation (4.2) is unchanged ,so :

Aij = SIWI0:+ 3 D 9(GOIDY(B:) + dro (LI (B5)],

1=0,1 k=0,n

and the derivatives of the fruits are (j € [0,...,n + NJ):

]_ m m
Gy = 0,Gh = o, WO, + D D7 GIIOR + Sna(L (D) + 0,0 FH ) (B50))]

m=0,1 h=0,n

this are linear relations :
G=AOMG+J) A= (N'G+ ). (4.5)

G is now a 2n + 2 x n + N matrix with entries:

a1 9GL, ifi=1,...,n+1
Y 0GlL, s ifi=n+2...2n+2
The matrix J is again 2n + 2 x n + N with entries:
" %W0z53n27 ifi=n+2,...,2n+2
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O, A and M are the 2n + 2 x 2n + 2 matrices defined in the preceding subsection:

1 0
O - Opsr Idyiy A= A
Idn+1 0n+] 1
0 A
where A is the diagonal matrix with eigenvalues a; j =1,...,n.
apo Uﬁo ao1 ufn q(t)
Upo M V10 Mél el
M = 3 3 G[ J] =
Qo1 Vi aii Uqq T
Up1 Moy, Uy My, el

VA

Vi.jell,...,n] (My);=SW,0;) ij

/L’j ?
17500 17511 17510 17501
(un1); = SW, Uo,j ; (u); = SW Uo,j , (uor)j = SW, Uo,j , (vor); = SW, Uo,j-
Ais the n + N x n + N splitting matrix; J; is againn + N x n+ N
Jiij = SW,07)
finally A is 2n + 2 x n + N, we represent it in block structure as:

t
N

NU

7
A3

Nl
where:

Nj; = SW 0, N = SW0)5 . (na)i = SW, 005, (ug); = SW, 04,
withi e (1,...,n+ N),j € (1,...,n).

As in the previous Section we consider the n+ N x m matrix Yz such that Y} is the
canonical projection on the fast components; we apply this projection to the second

relation in ((4.5)); then we use the energy conservation and the relation:

Id, O

GozlAz‘ 0 0

‘A.
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We obtain:

YViA = (YENYG + YiT = (Np)Gh +nipgt + (Np)'Go + norgh + Jir =

1
—=Ny F(Q + A]I(]))tA + J] F-

= (N}];‘)tG] + ny FJ1 + (Ng,)tIA + m

We have again found m independent vectors X such that (at least formally) AX =Y
with [ X| = O.(1) and Y| = O(ev?):

X =Yr+INp+ Q+ A'Tngp

—m !
241"

Y = (Jl,F‘ + (N}];‘)tG] + ny F‘g])t.
This and Theorem 4.20 imply that:

Theorem 4.21. The Hamiltonian (*) , considered in the domains V,, defined in the

o 1
Introduction, has an homoclinic point at ¢ = w,7p = 0. The order k < Ce (p+m)

term of the splitting determinant in such point is bounded from above by:

1
() (kl)er e eale T
where C, ¢y are € independent constants and ¢; = 217 + 2.

Proof. We can adapt Corollary 3.13 (ii) to find exponentially small upper bounds for
det A. Namely we set

n

jorllvpl ~TF
Z e "ME(C,,v) < Z exp(— Z \l/j\(r]—5“\@2\02)67(”‘”“ ),

vi|vp|#£0 v:|vp|#0 j=m+1

Now if @ > 0 then r; — %|wy|cy > 0,while if &« = 0 we consider this a condition on ¢,.

So we can sum on the slow frequencies v; with 7 > m. Finally we split the sum over
. — . )

the fast frequencies in |vp| < e (277 (where % dominates) plus a remainder

(where |rq||vg| dominates). O

T4l
Finally this implies Theorem 0.6 provided that v < £ 7ET As the splitting deter-
minant is smaller than:

S ldet Al + (uTpo),

k<K

o 1
and we can choose K = Ce (Q(TF“)).



Chapter 5

Upper bounds on homoclinic
splittings 11

Following [BB1], we construct recursively a transformation 9 : T? 5 ¢ — a € T? such
that in the induced symplectic coordinates the generating function of the splitting (which
we prove is So1) is the integral S of a function F(a,t) € Hy plus a remainder of order
n® with K = O(e~®) with B = —% +b. This implies that the splitting determinant,
i.e. the determinant of the Hessian of S, is O.(s ). So this section provides a
possibly simpler proof of the upper bounds on the splitting determinant. Moreover the
ezistence of 9 implies a stronger condition, which is useful to prove “fast ” diffusion'.
For each o € T the Hessian matriz of S o9 has the following block structure:

M(a) = (5.1)

where Mg is an m x m matriz whose entries are O.(¢>), Ng is a n —m X m matrizc

whose entries are O,(e°) and Mg contains terms which are polynomial in e, ",

As in the preceding section we use tree techniques, so we will give constructive
proofs of our assertions, nevertheless the strategy of this Chapter shadows quite faith-
fully [BB1]. Namely we will study an auxiliary problem:

d; = 0o sin(Pg) — (1) @idif (@) + Ai(n)gi(t) (5.2)

where the g;(t) are prefixed functions in Hy. We will look for exponentially quasi-
periodic “solutions” of this system. There are two main differences:

1. As usual the tree techniques can be easily applied to anisochronous systems, so our
results apply to Hamiltonian (4.3).

'We will not prove fast Arnold diffusion in this thesis, so this Chapter should be seen as an
alternative (possibly more intrinsic) way of proving exponentially small homoclinic splitting
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2. On the other hand it is quite difficult to prove the convergence of Lindstedt series.
The auxiliary problem is not Hamiltonian so there is no guarantee that the quasi-
periodic “solutions” of this system exist. Although it should be possible to prove
convergence using the techniques of [GGM4], the procedure is not easy.

To avoid this we will consider order (1)® truncations of the solutions, with K = .
In the next subsection we will use the results of Chapter 3 to explain why this is
sufficient. Let us first remind a simple variation property of the generating function
through changes of coordinates on T".

Proposition 5.1. Given an analytic transformation v : T — T", let 9, be the cor-
responding symplectic transformation lifted to the cotangent bundle. The generating
function of the splitting in the coordinates I',v)' = U,.(I,v¢),p" = p,¢ = q at the
Poincaré section ¢ = is S'=Sov .

Proof. Given ¢ : T" — T" we consider the prescribed symplectic transformation:

V=9@) I'=J)"

¢ =q p=p

this is the canonical lift to phase space of ¥ x 1 : T"*! — T"*! As the pendulum angle
g is unchanged and the Poincaré section is the same ¢ = ¢’ = 7 the two coordinate
systems describe the same S/U manifolds so:

FEW ) = [T@O)larn] THO @), )

By the definition of the generating function we have

AT 1) = Dy, S' (W) = [T0)lo-1u] Dy SW) ot

5.1 Moving Poincaré sections

Following the ideas in [BB1] we will study an “auxiliary” system of K (n+1) linear non-
homogeneous ODE’s whose solutions we will call ®(t) with » < K and j =0,...,n.
The idea is to choose the “auxiliary” system and the initial data (depending on a
parameter a € T%) so that ®;(a,t) € Hy. Then we will define a function S(a) and we
will find sufficient conditions on the “auxiliary” system such that there exists a (real)
analytic transformation ¢ : T}, — T7 with S = S o 9.

The “auxiliary system” is of the type (0 <h < K, j=0,...,n):

= (k k My k—1,n .
O = a; [FN (@M )+ Abgi()] i =1,....n

(ke k k h)yk—1,n
B = cos(an (1)@ + Fy ({85}, 07) + Afgo (1)
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This is the order K Taylor expansion of the equation 5.2.

We have modified the forcing terms by the functions A;(n)g;(t) where g(t) € Hy is
an even function tending exponentially to a quasi-periodic function with zero average
for |t] — oc.

The initial data on @;k) are for the moment free and the only restriction is that the

(%)

functions @;"(t) tend exponentially to a quasi-periodic function as [t| — oco. For

ae T, we set (b_gh‘)(t =0) = (I)ﬁh’)(a) for h > 0, while @go)(a) = « for j # 0 and

®\"(0) = 7 (the initial data are y—close to (a,m)). We can repeat the procedure

used in Subsection 1.1.4 to determine the ®% (v, t) recursively (the required asymptotic

(k)

behavior is the same). The only difference is in the initial data; this implies that P,

have the form:

Ok (a, 1) = 2 (1) 0" (a) + a; OLFF{ @M (0, ) 1347 _) + Ak g (7)) (5.3)

Correspondingly:

(1) = SUFF{@M Y0 0) + Abgi(t)]

Remember that we are using the formalism of subsection 1.1.4 where we did not need
any convergence property on the series Y, (7)*®" to recursively establish the bound-
edness of the ®*(a,t).

Proposition 5.2. If the functions g; repsect the property:
for each o we can fizx A¥(a) and @;k)(a) so that ®¥(«, t) € Hy.

Proof. We proceed by induction using the fact that F}(®?) is in Hy and that
(h’)(a,T) € Hy, foralli=0,...,n

i

Ff(xl, <+ Ty) € Hy if z; are in Hy. Suppose that ®
and h < k:

o (a, 1) = 2910 (0) + a5 | QL [FF {0 (0, 1Y Ty) + Abgy(7)] +
LAl [rh(r) (FE (0 (0, 7S ) + Abgy ()] +
2y (S [ (1) (FEH@M (0 ) Hhog) + Abgs ()]

If we choose

(5.4)

and
oW (a) = S} (r) (FEFHDM (0, 7)1 o) + AR (@) g;(1))] (5.5)
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the non analytic terms cancel and we have that:

o (o, t) = QUFF({ M (a, 7)Yyt o) + Ak gi(7)]

j i
SO @;k)(oz,t) is in H, as Ff({@fh)(aj)}) € Hye @ : Hy— H,. O

Notice that A%(a) is now the integral of a function in Hy and that (obviously) @;’(f)
is in Hy as well. For simplicity we will normalize the g; setting

S2lg; = 1.
In this Chapter we will always consider truncated series:

K K

Ai(0) = S Ak(), di(t0) = S () Bkt a) ...,

k=1 k=0

with K = 57ﬁ = ¢ 9. However the relations we will find are all formal series relations
on the corresponding complete series. We will express the A? and ®¥(¢, o) as values of
finite sums of fruitless trees (see the next subsection).

This means that we can use the bounds on fruitless trees discussed in Chapter 3.

Lemma 5.3. Provided that f(1,q) is analytic in some H(a, D) and respects the bounds
3.2 then:

(i) ®5 € Hy respects the bounds of Remark 3.9. Moreover if |t| = O(n) it respects the
bound 3.10.

(ii) A; (and all the values SW' of the trees we will describe in the following subsection)
15 the truncation of an asymptotic power series in 1, €.

Proof. (i) To apply Remark 3.9 we only need to remember that ®* € Hj is bounded
by construction. We will see in the next subsection that <I>"; is a finite sum of values of
analytic trees.

(ii) The A’; are the integral & of functions in Hy so their tree representation will be
through analytic trees which can be bounded by 3.8. 0J

We will repeatedly use Lemma 3.14 to write formal power series identities as identities
between the order K truncations plus a known (smooth in 7 and «) remainder of order
o(e”®). We will say that the identity is true up to order O(n’).

As seen for system (1) the energy conservation implies that (Subsection 4.1.2) the
value of Af(a) is related to the A¥(a) with j # 0. For compactness we will state this
relation in terms of the sum

K

Aie) = () A (), it ) = Y () Pt a) .

k=1 k=0
Proposition 5.4. For each value of a we define

LYo, (1) (@a(a ) — @2, 1)) = O(n),

ki = (5
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fori=20,...,n. We have:

240(0) = T D Aj(0)(w; + by (56)

up to order O(n™).

Proof. Our auxiliary system is the order K truncation of the expansion of system 5.2.
This means that, by Lemma 3.14, for small enough 7, ¢, the function ®;(a,t) € Hy
solves the equation 5.2 up to order O(n’):

®; = Siosin(Po) — (n)ai0if (®) + Ai(n)gi(t) + ()" Fr(a, ). (5.7)

The function Fpg is analytic and bounded in ¢ € R x (—id, id), | Im | < sy. Remark
3.9 and Lemma 3.14 (iii) ensure that |Fr(a, )] < C¥e ™K for some p € N. The energy
conservation for system 5.2 leads to:

T oo )~ (1) £ (0, )~ 3 Ay()3 . g+ Gl 1) = cost,

> 5

j:()v"'vn ]

the function G'p has the same properties as Fj. <I>7(f) is continuous and <I>(]] = wj for
j#0,®) = -2z, so we obtain:

S A4S0 = 0= (M D [widbS(g:) + D00k AV ] -
2145((1) : %(37890) + Z}Kk Ag%go@g—h}.

This is a formal power series relation:

n

D widiS(g) — 240 (x0g0) ~ > AiSGi(®i — B) + AgSgo(Py — ).

i=1 i=1

We use the normalization Sg;z) = 1. By the boundedness of the ®F the
1
ki = (5)50@97;(@ — @)

are smooth functions of o and are of order 1, so (1+ k)" is a well defined asymptotic
series for small enough 7. Passing to the order K truncation we obtain the desired
equality. Notice that the remainder is a known smooth function of n and o by Lemma
3.14(ii). O
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5.2 'Tree representations of the auxiliary dynamics

In describing the tree representation of <I>§h’)(a) we will use the fact that the structure

is the same as in the tree representation of system (1). Therefore we will not repeat
the proofs (which are identical) but simply cite the Theorems we are adapting.

Definition 5.5. Let T be the set (of equivalence classes) of marked rooted labeled trees
with fruits such that:

a) each node carries the labels j =0,...,n§ =0,1 and k > 0.

b) The labels respect the following grammar:

0y =0, k, = 0 implies that j, =0, s(v) > 2;
k, > 0 implies that 6, = 0 s(v) = 0.

By definition we will call fruits the nodes with k, > 0. The markings are the same as in
Section 1.2 (i.e. an angle marking J, = 0,...,n and a function marking h(t,v) € Hy).
As usual we will consider the vector space V(T ) generated by T on Q. We can redefine
all the subspaces of Definition 1.31.

The order of a tree is now: o(A) =Y 6,+k, and we can express V(T) as a direct
sum of finite dimensional spaces of prescribed order. As in the preceding Section we
will call S(B) the symmetry group of a tree B € T.

Given these definition we can set (see identity 2.1) a(d,k) ='¢"", d°a(d k) € T,
and:

(m)a;Q; (V4 )] ifk=0,0=1
V(07 (s k) =
a;(n)*AQ;(g;)] itk #£0,6=0

We can repeat what done in subsection 2.1.1 and set (D"; in correspondence with ele-

0
ments A% of V(7;Fj). Then we can restate Proposition 2.2:

Proposition 5.6. For each j, k V" (A’;) = @_’;(a,t) where:

k 1 _
Y= st = 2 oW

AeT(;k AeT(;’c

0
Now, as in Subsection 2.1.2, to each tree A € T (possibly marked) we associate a
value W'
Given a tree in with no marks on the first node we add the marks ji,...,7j;, hi(t),
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.., hy(t) and set:
Hh VA, b 8”*‘ 10 Hh va,t Ziejifl’
i=1

l
Wl (H a;;“ hi(UA; H h UA, Vm-l-z €j; f ) H aj, ij [Wl (AZU)] H
- ’UGS(UA)OAO vEF(va)
a;,Qj,195,] A%,

kE_ Ovarl) Ak
AE = —aOW (AR,

0
where 1, is the number of nodes in s(vy) having j, = i. As in Section 2.1.2 A; is

A — F;.
0
In 7 we can define the change of first node. Notice that Proposition 2.11 is still true.

Remark 5.7. A tree with a fruit k, # 0 j, is equivalent to the tree deprived of the
fruit, marked Q);,[g;,] on the node w preceding v, and multiplied by a;, Ai’)’. Notice that

the dependence on the initial data is contained only in A’;;’(O/) and that this markings
are always in Hy.

0

This means that we can use the analytic bounds 3.8 to bound the values of trees in T

(even those with “ fruits” i.e. nodes with k, > 0). On the other hand as h;(t) = Q'(g;)

we can apply proposition 1.16 (i) and the change of first node also to the nodes with
0

k, > 0 except that we never obtain trees € T .
Remark 5.8. The A"; and @f are trigonometric polynomials in o

Lemma 5.9. We can restate Propositions2.14 and 2.15, if we consider,
1) Fori,j # 0, for all k and for any f,h € Hy we have the identity:

k _ Ak
AGpyam = Mim -
2) If i # 0, for all k and for any f,h € Hy we have the identity:

k Y
At om + L) = Mow .-
the linear operator Ly is defined in Sectionl.2.2.

T 0 0
Definition 5.10. We call T the subset of T of trees that stay in T by applying the
change of first node?.

2our convention is not to consider trees with only one node k, > 0 in 7" as these are not proper
nodes
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Definition 5.11. We consider a funm‘?on S( ) that is similar to the generating fum’—

tion S(p). We call T the set of trees inT having no markings; recall that for any B € T
, N(B) is the number of free nodes of B (i.e. such that k, =0) and ¢(B) = &

5., (B)"
— gW! {Z
BeT
as usual restricted to trees of order < K.
Lemma 5.12. The following identity holds:
Ao =5, A0S o
BET UEB

Proof. The proof is identical to that of Theorem4.1. O

Clearly this is different from A;(a) = 9;S(a), which is generally false as we are
considering trees with o dependent fruits. Nevertheless the A;(a) are linear functions
of 9,5(c) as we will see in the following proposition. Let us first prove a technical
Lemma.

Lemma 5.13. Let T* be the subspace 0f7r' of trees of order k:
IW,| Z c(5) Z h B] = Z o, AT i (5" — 4,Qi9:)
o N(B) Ak" j A 1Y

BeTk V:ky >0 Jv i,h<k

Proof. We fix our attention on the nodes v of B with k, > 0; we have

B da, Aj: Al
Y ;((B)) >, B = Z Akv’ B. (5.8)

Bej—k V:ky >0 Jv Bej'k Ty > Jv

Now we shift the first node in v ( a representative of the coset [v] ), we obtain A(v) ¢ B
whose first node v has k, > 0, moreover in A(v): s(v) = vy e J,, = j,°; we call the set
of trees of this form D**. Notice that any tree in B € 7;’“7'“ with at least a node
vk, =0is equal to A" for some tree A(v) € D¥**; moreover the value of A(v) is:

%gﬁ a’jv in W] [szl ] *

Now * @';7}" — a,jA’;*h’ngj, is a sum of trees in 77“7}" with at least one node v : k, = 0,
and we have:

Z Sg:(0F " — a; AF " Qigi) = IW,( Z c(A)A) (5.9)

ih<k AeDk "

3remember that P(A,v) shifts the labels j,, of the nodes in the path va,v towards the first node
v4, see Definition 1.40
4we subtract the only tree with all the node labels k, > 0
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as in DFI ¢(A) = ¢(AZ).
In the right hand side of relation 5.9 we consider N(A) copies of each tree A in each
we evidence a node v with k, =0

AeDk h AeDkh [v]:ky=0
O
Proposition 5.14. for each o we have:
Do gk(a) - A? + Z Myhyg(%q’ffh) - Z vaAfih%((J?Q?(q?))
h<k,i=0,...,n h<k,i=0,...,n
where M, ; = 0;A;(c) is an n X n+ 1 matri.
Proof. To prove this assertion we first consider the relation
k
ok - 1 C(B) v 1 C(B) aaj Aj:
00, 5" () = SWD N (D) > /Bl + WA N(B) > e Bl.  (5.10)

BeT veEB BeT v:ky >0 Jv

Then by Lemma5.12 the first sum is %ngf, in the second sum we set M]k;v = Oa, A?;J
and apply Lemma 5.13. ]

Now we want an homogeneous linear equation relating V.S to A = {A;}7_, of the type

A= (1-M)"'V5(a),

where M is an n x n matrix of order 7. In order to have such an identity we have
to impose conditions on the functions g;. There are (at least) two possible and nearly
equivalent choices. One has a clearer dynamical meaning (and is the condition proposed
in [BB1]) and leads to possibly more explicit formulas; the second on the other hand
can be easily implemented by a computer, moreover it is obvious that there exist
functions g; € Hy satisfying the latter condition so one does not have to verify the
existence. We will describe both conditions and use the second one.

(a)  S[gi(P;(a) —®°)] =0 foreach i=0,... n. (5.11)

With this restriction Proposition 5.14 states that:

0o, S(a) = Aj — Z M;;Ai3(9:Qi(g:))—
i=1,...,n
1 M,

STk i Z (wi + ki) AiS(90Q0(90))

=1 5e-T2
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up to order (n)*. We write this relation compactly as:

VS(a) = (1~ M)A where M;; = M;; + ——(w; + kj).

1+ ko

Notice that |[M]| = O(n) so that 1 — M is invertible.
The second condition (which is easier to verify) is the following, as usual we call A the

set of fruitless trees,
UF =Y ¢(B)B,
Be Ak

the value of this sum does not depend on the choice of the g; and we ask that®:

K

(®) SV O _(m)*F =0 for each i. (5.12)

k=1

This means that Sg;(®;(a, t) — ®)(c,t)) depends only on trees with at least one node
k, > 0 and so:

Sgi(Di(a, t) — DY (e, 1)) Z Ai(a,n)Cij(a,m)

Jj=1,...n
up to order (n)¥.
We define

Mx

Cijla,m) = 6;50:36:Qi(g:) + \sgZ (o, t).

h=1

The functions ") are V! applied to A? deprived of one “fruit” with label j%. We

ij

substitute in Proposition 5.14 and find
- 1 i
804]-5(04) = Aj — Z MleliAi — m Z M]'lclo ZAZ((A)Z + kz)
; , 0/ 1=0,....n i=1

which is the required linear relation; in this case:
| Oz: M,]C]]—Q(lil Oz: M1]C]0(w]+k )
=U;..m yeensTl

Proposition 5.15. The generating function can be written in compact notation as:

Ul

S(am) = / (SF@@t) + Y 9 (A)[S(gi(®s(ar 1) — B(ar,1))]

0 1=0,...,n

for any non zero ¢ this is a finite set of orthogonality conditions

6We discussed in Lemma 4.9 the problem of taking away a fruit from a tree without changing its
combinatorial coefficient, for trees with more than one fruit it is not easy to describe the needed linear
function, but it is clear that it is well defined , so we will not go in any details.
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- Z A?%(giQigi); (5-13)

1=0,...,n

up to order O(n™).

Proof. The proof is identical to that of Corollary 4.2; In S*, for each tree A consider
k copies:

K ¢(B)B 1 c¢(B)m[v]|B c(B)m|v]k,B
ERP PR AP VDM (P VS (N

BeT BeTh k=0 [0]:ke>0
o

The first sum in the right hand side is equivalent to the first term in the right hand
side of 5.13, as in Corollary 4.2. Finally we can apply Lemma 5.13 to the second term:

c(B)m|v]k,B k=l
Cx 1 ’— Ahc\ (‘I)k h Ak h
N [[v}:%ZU N(B) ;;h (]7( Qv(]?))

Now we consider two formal power series:
A= "()"A" B =Y ("B,
h=

=1 h=1

the following equality holds:

00 k k—
dif Bo,A~Y ”T Z AhBE-h,
k=2 h=1

Finally if we chose A = B we obtain that:

o'\d

oo )k k—1
Z 77 hAh,kah.
k
k=2 h=1
Notice that condition (a) would give a cleaner expression for the generating function.
As usual the remainder is a known smooth function of 7, a. O

We can gather the results in the following Theorem:

Theorem 5.16. Given n+ 1 functions g;(t) respecting condition 5.12, We can fix the
initial data and the functions A;j(a) so that for each o € T": (1) The order K solution
of equation 5.2, ®(«,t) € Hy, it is a polynomial in 1 and a trigonometric function in
.

(2) There exists an order K generating function S(a), again polynomial in n and
trigonometric function in . This function is of order O(n) together with its o deriva-
tives; moreover it respects Proposition 5.15 (always to order (n)") and is the integral
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x

S of a function in Hy. (3) The coefficients A;(a) again polynomial in 1 and trigono-
metric functions in o are related to each other and to the generating function by the
identities (valid up to order K):

214(] —

Ldj + I{IJ)
A=(1+M)'VS

5.3 Connection between the auxiliary dynamics and
the splitting
Theorem 5.17. There exists an analytic change of coordinates’ ¥ : T — T, such

that S(9(¢)) = S(¢) + o(n™).

We follow closely the strategy of [BB1]. First we move along the trajectory for a
time t, such that ®q(t,) = 7.

Lemma 5.18. For each a € T}, there exists t,, analytic in o € T and |n| < ny such
that:
Oo(a, t(a,n),n) =7 t(a,0) =0

Proof. We apply the implicit function theorem knowing that
Do, 0,0) =7 Py(r,0,0) = —2.
By our bounds 3.10 we have that

sup |Po(a,0,m) — | < nC,

Inl<ng
a€eT?

so |t(a,n)| < Cng. Then we verify:

K
1
sup |14 2®y(a, t, )| = Z sup @ (a,t)| < <.
[n[<mng —1 [nl<ng 2
[t|<ngC , a€TR [t|[<ngC , a€TY
Notice that V,t(a,0) = 0 so V,t(a,n) = O(n). O

Lemma 5.19. Now consider the application Ty — T7 :

Yi = (I)j(avt(aan)an) (514)

for sufficiently small values o, 18 18 a diffeomorphism o, , ) close to the identity.
entl Il val 7 this is a di hi T?% , n close to the identit

"remember that for « € T? we mean the thickening of the torus of length s: T? = T" x (—is, is)
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Proof. Let us write relation 5.14 as: ¢;(a,n) = a+9; (a, n) with ¥, (a, 0) = 0; precisely:

K
Y1 (a,n) = wt(a,n) +Z @k(yfozn))
k=1

The relation is invertible locally as:
QOj(Oé, 0) = aj 6,;<I>j(a, 0, 0) = (57]

The function we obtain is a diffeomorphism of T}, provided that

In1<ng
a€Ty

sup |w; Vat(a,n) (1 + () @5 (a,t(a,n))) + Va Y () (e, t(a,n))| < %

This holds true as [Vat(a,n)] = O(n). Moreover |®¥(a,t)| and |V,®%(a,t)| are
bounded by 3.10 for |t| < Cn. O

Now we invert the relation ¢;(a,n) = a + ¥ (a,n) we call the inverse J,(¢) and

t(Da2(p), m) =ty

Consider the equation:
V(1) = f5(W(1) + Gjosin(Wo(t) + A; (D2(0))g(t + ) + (1) Fr(Ds(p), t +1,) (5.15)

with initial data ¥;(0) = ¢ if j # 0 and ¥y(0) = 7. The function Fy is defined in
5.7. This equation admits an order (1)* solution (we call it W;(p,#)) which is the
truncation of an asymptotic power series in 7,e. So for n < P the solution is 1 close
to the separatrix of the pendulum and exponentially quasi-periodic.

We can solve equations 5.15 perturbatively and, as the initial data are now 7 indepen-
dent, we obtain:

W3 (1) = O;[FF(T") + Ajg).

Lemma 5.20. The asymptotic conditions determine the solution uniquely so W(p,t) =
O (92(p),t +t,) up to order (n)*.

Proof. ®;(V2(p),t+1,) and W;(t) coincide at ¢ = 0 by definition. Moreover they solve
the same equation up to order O(n™). Namely as seen in expression 5.7 there exists
GR(a, t) such that

(1) = fi(U (1)) + Gjosin(Wo(t)) + A;(D2())g(t +1,) + (M) Gr(Da(p). t +1,)

where G is bounded and exponentially quasi-periodic with < Ggr >= 0. So H(p,t) =
P, (Jyp,t +t,) — W,;(t) is a bounded and exponentially quasi periodic solution of

H(p,t) = ()" Gr(Vap). t + t,).

By the results of Subsections 1.1.3 and 1.1.4 H(p,t) = O(n®) for t € R x (—id, id), |
Im af < sg. Remark 3.9 and Lemma 3.14 (iii) ensure that |[Hp(a,t)| < (CKe PK for
some p € N. Moreover H(a,t) is analytic in « for | Im af < 3s¢ O
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We can represent the series expansion in term of trees; in this case we have the
non analytic operators O; and so we do not think of the nodes £, > 0 as fruits and
apply the operators ¥V and W. Notice that the nodes with k£, > 0 now have value

a; A% (92(0)) O (g(t + t,).
Lemma 5.21. The generating function

S(p) = IW,{) %B}, (5.16)

r
BeT

satisfies the relation:

5(6) = S(a()) + 3 A6l Q™ (g1) — Oslgn)]) + O™ ).

i=1

Proof. We use Proposition 5.15 which can be obviously restated for ¥; as:

Stem) = [187(W(e.1) + Y (0 A4) Blas(Wi(ior) — W20

~ 3 AZS(:0ig);

i=0
then we apply Lemma 5.20 and Y = ®Y obtaining

n

/{%f(@(l%(w), t)) + (O A)[S(9:(Pi(Va(), t) — @ (Va(p). 1)) ]dn'—

0

A7 (9:Qigi)] + ZAZQ%(Q7(Q1(}1 — 0igi)) + Lr(p),
i=0
where Lp is analytic in ¢ for | Im ¢| < 2.

0

To avoid confusion with the complex norm, |v| = /). v;v;, we will define for all
veC qglv)=>" vi

i=1"i

Lemma 5.22. Following [BB1] we prove that for all p € T} :
[S(92(¢)) = S(p) + 0(n)| < Cla(VS)]. (5.17)

Proof. By our definitions S(p) — S(y) is the (value SW of the) sum of trees A with
at least one node v : k, > 0, weighted by ]%((AA)), so it is at least linear in the A? for
j=1,....n, h=1,K — 1; as usual we call fruitless trees the trees of order zero in A;

etc.. The linear term in the A’j" is sum of trees with only one fruit j, h:
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Lin= Y ¢(B)B.

BeT'F

As there is only one fruit (node v;) the coefficient ¢(B) = ﬁ is the order of the

stabilizer of the path v v;. We can shift the first node to v; without changing the
combinatorial coefficient and apply 5.13)

SW!(Lin) = ) A;Sg;(t+ 1) 857 (1) = A;(Sg(r) V' (B5(7) + 45 (Sg()V' (A} (7))
J=0,..,n
plus higher order terms in A;. By condition 5.12 the linear part is zero. Then

n k—2k—1-1

S(%) -y YYY 2 O

k=3,K i=1 j=1 =1 h=

where C’ikj is a sum of trees, deprived of two fruits with labels 7, 7, and whose order

without these fruits is k. Now we substitute S with S using Lemma 5.21. Finally we
substitute (Sg — M)~'VS = A+ o(n™).
As usual in equation 5.17 we can explicitly compute the remainder which is an

analytic function of n and ¢ for ¢ € T; with for instance s; = %sg. O

Now finally we can prove the theorem and construct the transformationd : Tg — Tj
(d < s¢/4) sending § in S. This is almost identical to the proof of Theorem 4.1 in [BB1].

Proof of Theorem 5.17. We want to find 9 such that
S(W2(0) +9(9)) = S(¢) = frln, ) = o(n"), (5.18)

for some function fr(1, @) analytic in < 79 and ¢ € T%. Note that if V.S(a) =
then the equation is solved by 9 = 0. In general we look for a solution of the form

9(@) = VS() laia(e)y (5.19)

where 7 is a scalar parameter and from now on we will write V.S(195(¢)) instead of
VS()|a=s(p)- Then we can write®:

S(Wy(@) +v) = SWa(p)) + VSWa(0))v + (v, R(p,n,v)v (5.20)

where the matrix R(p,n,v) is such that:

(7), R(p,n, 7))1)) = 5’(191 () +v)— 5’(19] (p)) — VS’(Q% (p))v.

8The operator (a,b) with a,b € C" is the real scalar product

n
=> aib;
i1
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Substituting 5.19 in 5.20, we find that 5.18 is equivalent to:

S() — S(p) + a(VS(Wa())) y+

(VS(@a(0)), R, 1, VS(01(9))y) VS(W1(9)))y* = o(n"),
and finally to

S(e) = S(p) +o(n”)
Q(VSWQ(SO)))

=y + Ri(, 1, VS(92(9))y)y” (5.21)

where

(V8Wa(e)). Rl 0. V3 (0a())p) VS (s (9)) )
4(VS(9a(0)))

is smooth and satisfies Ry (p,n,y) = O(n) and 0, R (¢, n,y) = O(\%\) for all ¢ € T

Now we fix the o(n® term fg to be equal to the remainder (which is a known analytic
function of 7 and ¢ ) of expression 5.17 so that the norm of the left hand side of relation
5.21 is bounded from above by C.

By the contraction mapping theorem, for n small enough, for all u € R such that
|u| < 2C, there exists a unique solution y = ¢(n, ¢, u) of the equation

Ri(0,1, VS(0a())y) =

u=y+ Ri(p,n, VS0a(9))y)y?

such that |y| < 3C. Moreover, The function g(n, ¢, u) so defined is smooth and analytic
ingeT), [n<mn as VS(2(y)) is so.
Setting

S(Wa(p)) = S(p) +o(n™) o ¢
VS (Ba() P )VS(9:1()) (5.22)

if VS(¥1(¢)) # 0 and 9 (@) = 0 if VS(95(p)) = 0, we get a continuous function ' ()
which satisfies 5.18 and such that [¢'(¢)| < 3C|VS(da(¢))| = O(n) and V' (p) =
O(n).

To complete the proof, we remark that if f,¢g : U — C are analytic in U open subset
of C™ and g is not identically zero and f = O(g) locally in U, then 5 (which a-priori

(@) = g(n, ¢,

is defined only where g # 0) has an analytic extension defined in the whole set U.
Namely on each locally irreducible hyper-surface on which g is zero, also f is zero with
vanishing order al least equal to that of g. So applying standard results of complex
analysis (see for instance [R]) we obtain our claim.

Hence

S(02(¢)) — S(p) + o(n™)
VS (02(¢))?

Y

( which is bounded by C in T7) is
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analytic in T, so is g and finally ¥). Moreover The transformation

I(p) = Da(@) + ' (@) = ¢ +nL(yp),

is a diffeomorphism in Ty, with d < % such that:

, 1
Sup 2IVadi| + [T (p))) = O(n) < On < 5. (5.23)
arperh

0

Theorem 5.23. (i) The splitting matriz A, which is the Hessian of S(¢) at ¢ = 0,
satisfies the relation: )
A = (1+70)'A(14+10) + o(n™) (5.24)

where A is the Hessian of S(a) at oo = 0.
(ii) A has the block structure described in equationd. 1.

Proof. Relation 5.24 is a direct consequence of Theorem 5.17. Namely as ¢ = 0 implies
that also J(p) = 0 we have? (by the parity of f):

vag‘a:() = V<p5’|<p:0 = 0

and consequently

JM%@ZUH(S’)‘&:OJ@Q?L;J:O = H(S)|p=0-

Finally using relation 5.23 and the fact that ¢ is n-close to identity we obtain relation
5.24.

(ii) We use the analytic bounds 3.8, for S. A = H(S)|4—o where S is a trigonometric
polynomial in « and the & integral of a function in Hy let us consider the Fourier series

of H(S):

0

where S(v) is the sum of the values through the analytic integrals (a) of trees in T

of order < K and total frequency v. By The bounds 3.8 all the S(v) with non zero

fast component v are O. (%) while those with zero fast component are polynomial in
-1

€, . ]

9Given f: R" € R® we will call Jf the Jacobian and H(f) the Hessian.






Chapter 6

Lower bounds on the splitting for
systems with one fast frequency

We find lower bounds on the splitting determinant and on the eigenvalues of the split-
ting matriz, for systems with one fast frequency, such that f (1, q) is a rational function
of € and satisfies suitable non degeneracy conditions. This can be done independently
by using the results of Chapter 4 or of Chapter 5.

6.1 Basic lower estimates

In Section 4 we have proved that the splitting matrix A at the intersection point
1

¢, = 0,q = m can be written for any K <& ?r as:

A=A L ASE L () KAR = D ke (M (A1k+Agp) + () A We are interested

in systems with one fast frequency so 7= = 0; we choose K = % with C' > 1.

All the entries of AQSK are exponentially small by definition, they will contain a factor
that is the integral of some function analytic in a domain H (b, d) with total fast mode
v1 # 0. Moreover det(AT") = 0 by Lemma 3.16. The remainder (1)¥ A" is bounded
by:
n _
(m*Af] < (%)K < Co(mmy ")"™).

(with 19 = £3/2 as seen in Appendix A.4).

Similarly in Chapter 5 We have proved that the splitting determinant is equal to
the determinant of A times the determinant of (1 + 7O)2 And that A has the block
structure 5.1.

We know from KAM theory that the series expansion for A is absolutely convergent
for |n| < np. This means that the series expansion of the determinant:

det A =n" Z Qin" + Ri
k<K

is absolutely convergent as well, and that each summand of () contains at least a
factor (Ayy);; for some i, j and h < k.
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We know that X% = O.(1) is O((n/m)") close to the eigenvector of AT™ with
o((n/no)*) eigenvalue. Now we set A in block form via an orthonormal change of
variables:

AFF = with Ag = o((n/m)").

We are considering a system with one fast frequency so A} is an n — 1 x n — 1 matrix.

Proposition 6.1. (i) If det A} # 0 and A5y # 0, the splitting determinant is given
by the determinant of A\ times the size of AQSK. Precisely the bounds:

ag? < det A} < bs P, agPe vF < |AFK| < beve vE
(6.1)
<K Ly
‘Afij‘ S be Pe V=
imply that
a’ce Ve < det A < b’e e Ve,

(ii) If the eigenvalues of A are bounded by:
a'e? < |N| <V for i=1,...,n—1

then so are n — 1 eigenvalues of A. The remaining eigenvalue is bounded by:

a"eVe VF < I\i| < Ve e VE
Proof. A5™ + AR respects the same bounds (with possibly different constants a, b) as
A" as the remainder

1 e
") < 5 min(a, b)ere v

for small enough values of €.
Moreover the bounds 6.1 imply that det A is:

det A = det AYASE +Q

where () contains at least two entries of A5

(ii) This is simply the fact that the determinant is the product of the eigenvalues. [J

This decouples the problem in a polynomial and an exponentially small part. We
will proceed in two steps:

1. Compute the first order of Ay, with the purpose of finding general lower bounds.
Then use the upper bounds on analytic and non analytic integrals of order k£ > 2
of Chapter 3 to extend the lower bounds on all A5*. This gives us the size of the
exponentially small eigenvalue.

2. Compute the non zero eigenvalues of Algk, via classical perturbation theory.
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6.1.1 Lower bounds on the Melnikov integral

In this subsection we will use for the first time the restriction that f(1,¢q) is a rational
function of cos(q), sin(q) .
Let f(q,%) := T**" — R have the usual Fourier expansion in the rotator angles:

Fla, ) =Y folg)e™?

lvI<N

where all the functions f,(q) are rational functions of x = €% with no poles on the unit
circle (f,(q) = H,(x)).

The parity of f leads to f,(—¢) = f_,(¢q) while the reality of f implies that f,(q) =
f-.(q). Moreover f has zero mean value.

We are considering lower bounds on the first order of the expansion of the splitting
matrix (these are all analytic integrals) so at first we will make no difference between

slow and fast variables. o

Mij - %fd), »j (q(f), %f)a

M is the Melnikov term for the splitting matrix.

We substitute z = (j:)Q (notice for each value of x there are two solutions e’ and
—e ') in the H,(z) and we obtain for each value of v a rational function of e’ (we
call it F,(e')). The parity condition is F,(y) = F.,(~y) = F.,(;) the reality is'
F,(y) = F_,(y) and so we have F,(y) = F,(—y) = Fy(%) Notice that F has all the
poles of f as function of x plus possibly poles at e! = +i. The absence of poles on
the unit circle |z| = 1 implies that there are no poles for real values of ¢; this and the
fact that z — 1 (exponentially) for ¢ — 4o0o imply that all the F,(e') are the sum of
a constant function and a function G,(e") that is exponentially decreasing to zero for
t — +o0o. The Melnikov integral depends only on G:

o0

(i) ) = () [ Gule!) = (i),

as purely oscillating functions give no contribution to & and G, is clearly L;.

Now if the functions f,(z) are not all polynomials (and so the function f is a
trigonometric polynomial) then some of them must have poles for finite values of z. Let
us call the poles 7, j = 1,...,n, and the the corresponding values of ¢ (in [Im(t)| < 27
and via the relation = = (i::)2 ) tt € Ci=1,2N, each with degree p’. The poles of
F(€') are the #, plus possibly +i5 + 2ikm.

Lemma 6.2. The poles of G, in |Im(t)| < m come in groups of four, namely if the
complex number t', = a’, +ib’, is a pole for G, then so are —t', = —a! +ibl, —t' +im =
—a’, — b’ +im and —t! + in; correspondingly G_,(e') has poles —t, t etc...

]ByiF’(y) we mean the function having as coefficients the complex conjugates of the coefficients of
F,so F(y) = F(y).
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Proof. Each 27 has two preimages I and —#) + im; moreover by the reality condition
E,(y) = F(—y), if y = € is a pole so is —7. O

We notice that |z|F(e*) — 0 uniformly for z = t+id with d € R fixed and R 3 ¢ — oc;
moreover F'(e') = F(e!7) so we consider the integral 6.1.1 plus the same shifted by
2im and apply Jordan’s lemma. Precisely if w, = % -v > 0 we shift by 2im and if it is
negative by —2i7 , we will call g, the sign of w,. If 0, = + we will consider the poles
in the principal domain 0 < Im ¢ < 27 instead of —7 < Im ¢ < 7 and vice versa for

o, = —.
2N,

I(1 — e 29™y = 97ig, Z Res 7 (e™'G,, ('), t¥) (6.2)
The apex 0, = 4+ on the Residue indicates that the poles are set in the upper or lower
half-plane. Let
S gttt

szpfu

be the Laurent expansion of G, near the poles ¢, = a! + ib’:

twyt t v —wybl, iw,al, (iwl/)kil i,—k
Res (e""'G,(€"),t7) = e “ve'r Z R (6.3)

k=1,p},

For each value of v such that w, > 0 we consider a pole f’y such that Ret > 0 2 and the
corresponding pole —#!, of G_,. The contribution to the integral is

2mi( Res 1 (e™'G, ("), /) — Res (e ™“'G_v(e'), —t¥) (6.4)
and as G, (e') = G_,(e ") the Laurent expansion of G_, near the pole is
Y DRt
k=—pi,,00
The sum 6.4 is:

ol Bkl 3 ‘Wv‘ sz.

k=1,pi,

Now we consider the poles —f}, and #;, of G, and G,; the relation G(y) = G(;)
implies that the Laurent series of GG, in the point —#! is

Yo Vgt )t

ki*pfuoo

2by the symmetry relations there must be such a pole.
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( gi* are the coefficients of the expansion near t.). So finally for each v such that
w, > 0 and each couple of poles #, and —t! of F, (and —t!, # of —v )in the upper
half-plane (resp. lower half-plane) we obtain the real value:

(I + 1)(1 = e7217) =
drrie” 0§ kau_p (eilovllabl gik 4 (_qykeilwnllablgiky (g 5)
k=1,p}

One should notice that this formula holds also for functions with some non polar
singularity for finite ¢ € C; in the latter case we always obtain exponentially decreasing
functions of w, (as predicted by the Paley Wiener theorem) but we cannot give general
formulas for the decreasing rate as the residues are no longer finite sums k = 1, p’,.
Consider a v such that vp # 0 then if all the p/ are finite the frequency v contributes
a term of order either zero or e ¢/VZ,

6.1.2 Systems with one fast frequency

Let us go back to systems with one fast frequency:
w = 0.(1) |wy| = 0. (s5+),

with 0 < a < % On such systems we can give “general” lower bounds on the determi-
nant of the splitting matrix provided that we impose some non-degeneracy conditions
on the frequencies of f so that the hypothesis of Proposition 6.1 are verified.

Proposition 6.3. The sum of the exponentially small terms of order 2 < k < K are
bounded from above by:

‘%

’“) (6.6)

46 w1d1\/_ j :
1<k<K \/_

dy is the divisor of the frequencies of f in the fast component (j = 1)(it is different
from one only for functions f(q, ) whose fast frequencies are not coprime see Appendiz
A.3) and P = max(p + 5,471s + 4)

Proof. We apply Corollary 3.8 discussed in Section 3.1. Namely, a tree with fruits
carrying an analytic integral of total frequency v is bounded from above by:

3
Je(v) = [Z c(A)le Im eCk (kN N*E(D, V)%,
AcA €
restricted to frequencies v with non-zero fast Component, vp € 7. We are considering
systems with one fast frequency so, if K < ¢ 2+(’ 77 =0 and ¢; = 4 + 475.
We choose K = ¢/\/g, bound E(D,v) with 2¢" ‘wwﬂ%efa“””m‘, the sum on fruitless

trees of order k by (2n)* and finally k! with %k Now we sum on the frequencies
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|v| < kN with non zero fast component accessible at order k. First we fix the value
of v and sum on the slow modes (e*"“2 = O,(1) even for a = 0), we obtain a factor
bounded by C* for some order one C. Then if % is the minimum non zero fast mode
accessible at order k

C Clwrvp| 2
Bop € D Trlvr) = VE (—gma) D € V<
ve ve2vp (6.7)

3 C k 7‘&]11/’”%
Ch\/g (:7;51715;;) & Flye

VpZV%

as the contributions to Ay are by definition all of the form .J(v). Finally by the
definition of the divisor in the fast direction d; < V}? for all k. This leads to the
proposed bound with P = p 4+ 5 + 479 + 4 the better bound proposed rises from the
observing that in each node we can have either a small denominator coming from the
improper integrals (so 27572 or a term from the proper integral g(P+5)/2, ]

If we fix |n| < |/2|” , we can add up the terms 2 < k < K:

( N g lerdD
AFE > My = O (—=5)le v ],
[Vzl”
where M, is the fast (exponentially small) part of the matrix M.
Finally we consider the Melnikov term My; to have a simpler expression we consider
at first only functions f(g, ) such that the fast and slow variables ¢ are partially

decoupled® f(q, ) = g1(q, ¥r) + 92(q. ¥s) + G(¢, q).
Lemma 6.4. The size of the first order of A, is (generally) greater than:

by

My > Cye e 11102

where hy, = miny, ;i vib' evaluated on the frequencies vy # 0 vy is the fast compo-

nent) and cg = B where pyy is the order of the pole bl which realizes the minimum.

Proof. We use the results of Subsection6.1.1. The trees of order one are all analytic
so My;; is zero if 7,j are both slow. In particular in equation 6.5 there are only

contributions from frequencies v such that vp # 0. We write w, = %l/}? + B where

B < CO.(1). We substitute all the oscillating terms and the e B%in 6.5 with order
one constants :

levﬁwbi\

e E N

|Msy;;| = 4n E |vivj] E T e Cy(e) P
v:vp#0 l:],---,ny 1 - 672 Ve T

[v|<N

3This is called a non-degeneracy condition in [BB1]; in this way 71 = 1 and the first order matrix
AM has an — 1 x n — 1 minor whose entries are of order one in ¢.
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Moreover setting
. i
byr = minvpbh,),

vt
—|wilnprbas
all the summands are smaller or equal to e~ ve  (g)7PM/2, O
Proposition 6.3 and Lemma 6.4 imply immediately the following.

Theorem 6.5. The Melnikov integral My dominates in the expansion of AQSK , for
n < min(eP=73/2 (P2 provided that the perturbing function verifies the condition
diD > hy. In this case the entries Ay, j such that My;; # 0 are bounded from below
by %MQ ij -

For example if the fast component of the frequencies of f(q,1) contains the divisor
d; (see Appendix A.3) and all the G,(e") have the same poles then the condition
diD > hy, is automatically satisfied.

Even if these conditions are not verified one can give rules to determine the (
¢ independent ) “possible” dominating order, by simple considerations on the mode
vectors v € Z™. In general, our candidate will be the first analytic integral (fruitless
tree) whose total fast mode is d; and containing a node v such that F,, has a pole with
imaginary part equal to . The value of this integral is still the Fourier transform of
an exponentially decreasing function with known singularities (the same as those of
G(e')) but the singularities are not (generally) polar any more and we cannot use the
same estimates as for the Melnikov term.

|wydq|D
Remark 6.6. “Hopefully” the size of the exponentially small eigenvalue is Ole Ve

for [n| < [e|”.

_|w1d4|D
Proof. A term of order [e- v | appears for the first time in a fruitless tree of order
k = my (m; is the minimal length in the fast direction, Appendix A.3) containing a
node v such that F,, has a pole with imaginary part equal to D.

The problem is that, as we have said in subsection 6.1.1, if m; # 1 then it is
7\10 dy|D
not necessarily true that the value of the tree is greater than CP(1)[e v ] as the

singularities are generally not polar. If the last inequality holds we can add up the
trees of higher order using the upper bounds and the assertion is true. If the value is
zero or not of the correct order then we consider the contributions to fruits of order
k = m; coming from the same fruitless tree, if this is again zero (or not of the correct
order) we pass to a higher order fruitless tree with the same fast mode * and so on. [J

This ends the analysis of step 1. Now we compute the polynomial eigenvalues:

Lemma 6.7. The matriz Ay is of order n"'; the leading order has contributions only
from analytic integrals (with zero total fast mode) and so has the first line and column
(corresponding to the fast variable) equal to zero. So the non zero eigenvalues of AISK
are of the size of the eigenvalues of A?:ﬁ if this matriz has rank n — 1.

4in the Appendix A.3 we have proven that each divisor is accessible for infinite &
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Proof. By LemmaA.12 r; is the first order such that in the generating function there
is an analytic integral with total zero fast component. The value of such integral
is generally NOT exponentially small in ¢ as seen in Corollary® 3.13. The leading
order of AS¥ is the Hessian of S™ (y) at zero. So it is clear that such integral gives
contributions only to the slow components of the matrix. Finally classical perturbation
theory ensures that the eigenvalues of A?K are 7"t ! close to those of Alsff This
provides upper and lower bounds on the non-zero eigenvalues. ]

This finally leads to the following theorem on the splitting determinant for pertur-
bating functions f rational in € that contain their divisor in the fast direction and
such that the F, have all the same poles :

Proposition 6.8. For ¢ sufficiently small and for all n < min(e"=73/2 ¢(P)/2 the

splitting determinant is bounded (from above and below) by expression of the type
|wydq|D
Cle)e Ve where C(e) is a rational function of €.

6.2 Examples of Melnikov dominance

In this section we will use a simplified version of [GGM4] and [Ge] to find improved
lower bounds on the splitting determinant. We work on examples with three time scales
and three degrees of freedom, it should be clear however that the technique is general
(for systems with one fast frequency) so we point out the necessary generalizations. We
first review the techniques of [Ge] which enable us to prefix the Lyapunov exponent,
thus simplifying the expression of the @’;(gp,t). The article [GGM4] then proves the
convergence of the Lindstedt series by showing the existence of compensations between
seemingly divergent terms due to the small denominators. We will not go into the
details of this (very interesting ) technique as we only want to find better upper bounds
for the terms of the series expansion of the splitting determinant of order k < e ste,

In Subsection 6.2.1 we describe (an adapted version of ) the techniques of [GGM4J;
then in Subsection 6.2.2 we find appropriate bounds, similar to those of Chapter 3.
Notice that the proofs would be simpler if we could assume that the splitting determinant
15 exponentially small wherever it is convergent by KAM theory.

6.2.1 Systems with prefixed Lyapunov exponent

As in [Ge] and in [GGM4] we consider the following Hamiltonian:

SU7 +el 1) + (g4 0G0, ) eos(a) = 1) +nF (. 6,0), (69

I1,v, J,¢ and p, q are conjugate action angle variables. The characteristic frequency

will be a diofantine vector: %, £2wy. G(n,g) is an, a priori unknown, analytic function

5(Clearly it is possible that for some perturbating function the integral is zero or arbitrarily small,
but this implies giving a relation between f and e
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of its arguments for || < 1y and |g| < go. We will prove that G can be determined
uniquely by imposing that the Lyapunov exponent of the separatrix is g (at least to
order k = 1), Finally the parameter g will be fixed (as a function of 1) so that
g(n) +nG(n,g(n)) = 1. Under such conditions the system 6.8 is of the type described
in Section 1.1.

We can apply the theory developed in Section 1.1 to the Hamiltonian 6.8 so we will
not repeat the procedure but simply write the equations for the time evolution on the
separatrix.

First we will expand G in Taylor series in 7:

e~ 1

G(n,g) = Z(n)kgzm,

770
the equations for the separatrix are:

I(t) = SFF, oy =OFF, J(t) =SFY, ¢ =cOFy = OoF7,

gk = Oo(Fy + 22:1 gh[COS(ngkfh(n)jqj)]k*h) ,

for k& > 1 while qy(t) = arctan(e?") and (1), ¢o(t) = ¢ + wt ( and we will call
@ =1(t =0),¢(t = 0) the n independent initial data of the rotators). As in Subsection

Ff =10, £(¥(n), (n). a(m)]e—1 + g850[sin (> _ (1)"an)]x.

h<k

where

81 = &/, 82 - 8¢, 80 - Bq.
In the following we will write the operators O; with j7 = 0,1 as:
0;(G) = S'w;(t, 7)G (1) + 233% () 2;G, (6.9)

it is easily seen that this is equivalent to 1.31.

We can represent the series expansion in terms of trees as in Chapter 2. The nodes
v # vg will carry the labels: j, =0,1,2, 0, € Ny, 6, = 0,1, p, = 0,1, with the usual
grammar:

bp=1—20,=0, §,=0,=0—5(w)>2, §,=0—jv)=0, j(v')=0% € s(v)

The o, = h represents the application of a “counter-term” ¢,. As the g, have degree
h in 1 we redefine the order of a tree as:

O(A) => 6, + 0,

Finally the label p, = 0, 1 represents the application respectively of the first and second
summand in 6.9.
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We expand the function f(p + wt, qo(t) in its harmonics and apply an extra label
v, € Z* such that |v,| < N.
Following [GGM4| we will call leafs the subtrees stemming form a node v with p, = 1,
this terms (just like the fruits in Subsection 2.1.2 ) contribute by a fixed function z}
, times a coefficient depending on the subtree AZ”. So one can factorize the value
of a tree as a product of values of marked leafless trees which in [GGM4] are called
amputated trees. Graphically we represent the leafs by drawing a line on their stalk
and do not consider the nodes inside the leaf as nodes of the amputated tree; we will
call L(v) the list of nodes v" with s(v" = 0) attached to the node v .

Notice that with this notation all the nodes v > vy of an amputated tree have
p» = 1 so we can remove this label from all the nodes except the first.

Using the notations of Section 1.2 we will consider the set T of marked trees with
leafs, A of trees without leafs, and the subsets of Definition 1.31. In particular we will
be interested in :

Z|S A and G; Z|S

AETF AcA¥

notice that now U represents the leafless contributions to the series expansion.
The value W(A) of a tree with a marking h(#)0, in vy and leafs L(wv) is defined
recursively:

W(h(vo, )00, 1) = —h(va, t)V 1
W((h(va, 0O A t) = —go g h(m,) (V70 fio) T v(A7"), 610
veEs(vg)

where m,(j) is the number of nodes v' in the list s(v), M(v) having label j, = j;
a=a=1,a =¢, gy =1and g) =g, Finally for A € T,:

0 if =0
V(A) = %t(p“O)ijO (t(pug)s Twg)W(A), with  t(z) =
t if x=1

Remember that
witr) = (t—7) it j=1.2
t—1r sinh(gt)  sinh(g7)
cosh(gt) cosh(g7) = cosh(gr)  cosh(gt)’

This definition can be extended to V(7) by linearity, as seen in Subsection 2.1.2, this
implies that:

wo(t, ) =

Ur(t) = V(AY) ¢i(t) = V(AS),

similar identities can be found for the actions, however for the moment we will con-
centrate on the angles. Notice that if p, = 0 the value

V(AZY) =) (t)Sx; (T)W(AZY, 7).

Jv
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As for trees with fruits, a tree with a leaf in v is equivalent to the tree without the
leaf (amputated), marked 2% and multiplied by the value of the leaf (which is time-
independent); we can write:

WA 1) = goaj, (Vo fo) T v(A>) [ 2% (r)Sal WA=, (6.11)

vEsq(vo) v’ €L(vo)

Remark 6.9. Notice that in an amputated tree the integrals are all ordered: namely
the 1, have all the same sign and

|7—v‘ < ‘Tw|-

Definition 6.10. Given an amputated (marked ) tree A and a node v in A we will
consider the total rotator harmonic of the subtree AZ":

vr(v) = Z Vs

w>v

remember that the nodes inside a leaf are not nodes of the amputated tree.

Notice that in a leafless tree the total rotation vy (vg) gives the dependence on the
initial data . If the tree has leafs each with total rotation v(i) the dependence on

the initial data is
e (vr (vo)+32; v ()¢

Lemma 6.11. (i) Given a function F(t) such that

=) Zf e e R with  f5, =0

lv|<M k=0

then the integral

SHt — 7)F(r)dr = SIS"F(7') = Z Juk elwvtehdtl(6.12)

Bty w-v+o(t)kg)?

(ii) Given a function G(t) such that

Z Z g Zw l/t kq‘t‘ s 'U)Zth gﬁ] = O

V| <M k=0

then
i Sinh(gt)G(r)  G(7)sinh(g7)
R

cosh(gT) cosh(gt)
/
inh(,
cosh(g7')  cosh (q7')

) =

T

' (cosh(g7)S Q7 sinh(g7")G (") = H(t)

moreover the function H(t) has the same properties as F':

=) Zh e e M with  hg, = 0.

lv|<M k=0
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Proof. (i) We are simply using the identity:
IIpH=0— H=S"H.
(ii) Same as (i) we have to prove that

i, Sinh(gt)G(7) B G(7)sinh(g7), . _
P cosh(g7) cosh(g?) )= Hpsinh{gn@ =0

The last identity is obvious as I1p sinh(gt)G = %961- in the left hand side, we notice
that the only constant terms can come from the constant terms of GG so:
sinh(gt)G(7)  G(7)sinh(gT) edltl 9!

H(\t . - . :*N———:O.
a cosh(gr) cosh(gt) ) = 9503 (e*g\ﬂ efg\t\)

0

Proposition 6.12. The value of a tree with p,, = 1 is a limited function of t; moreover
we can fix recursively the coefficients g, h < k (independently from the initial data @)
so that the value of a tree of order k with s,, =1 can be expanded as:

Z Za,,h e vte=haltl - ith Z )=0.

VI<kN h=0 AcAr
So as we are interested only in V(A;) we can set ag,(A) = 0.
Proof. It j,, = 1,2 the proof is obvious as

vy = S'STFF 4+ QST FY,

where FF (and consequently ™ FF) has no polynomial component as proven in Sub-
section 1.1.4.
For j,, = 0 we obtain the conditions:

(6.13)
k—h
I1p sinh(gt) Fk+2qh sin Zq] =0
h=1 7=0
The first condition is always verified as the functions ¢y, ¢, ¢ and z) = Cosh]w are

all limited and zj) tends exponentially to zero. The second condition fixes the gy,
recursively:

k—1

gillp(tanh?t) = 2g, = M p(ed(FE + Zgh[sin(z 4))k—n))- (6.14)
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The latter identity makes sense only if the right hand side is ¢ and ¢t independent:

(@ (B + 3 (3 a)ls ) = Tt WD) = ¢

h=1 7=0

Let us proceed by induction: W(t, A) is a product of (], 8"D+0) f and V(A=) with
v € s(vg) so it is a limited function which can be expanded as:

WA = 33w, u(A)e e ol

|v|<kN h=0

naturally we cannot expect that wg, = 0.
As seen in Lemma 6.11(ii) the constant part of e9“W(A,t) depends only on W1
moreover W(UE) is limited and adding leafs with j; = 0 means multiplying by COS}}W
which is exponentially decreasing. Therefore the only contributions to 6.14 come from
trees with at most one leaf L with j; = 0.

Let us now consider leafs with j;, = 1,2. Given a tree A let us choose a leaf L and
detach from the tree all the leafs identical to L; we will call B the corresponding tree
without the leafs L and B the set of trees with no leafs identical to L. Adding k leafs L
to the tree B is equivalent to applying k derivatives 0;, to the nodes of B. Therefore
if the total rotation of B is zero such derivative is zero as well.

The total zero momentum contributions from trees with one leaf L with j;, = 0
cancel with the corresponding counter-terms. To illustrate this cancellation let us
Fourier expand f(1), q) fully obtaining a “frequency” label v,, n,. Now let us compare
the zero momentum contributions of a tree A with a node v carrying a leaf and the
corresponding tree A without the leaf (which appears in the counter-term. In the first
case we consider the zero order (in e9") terms of the expansion

(egt + 7)2 )Qn

einq(t) - ( e29t + 1

in all the nodes and have a j = 0 derivative in ». In the second we consider the order
one term in €' in the node v and order zero term in all the others. The order one term
is 4in, so the ratio of two values is two (in the first tree there is a factor two coming
from the e9 expansion of cosh™'(gt)). This implies that the constant term of all trees
A of order h carrying a leaf j;, = 0 are canceled by the tree with only one node o, = h
and the same leaf. O

This means that we can apply Lemma 6.11 to all the nodes so that
Shw;(t, YW(A, 1) = 2 ISISTW(A, ) if j=1,2 (6.15)

AT AT
St V(A7) = $9 2L cosh(g7) %



106 Chapter 6. Lower bounds on the splitting

%tisth(gT) Q7 sinh (g7 )W(A, '),
cosh”(gT)
in each node with j, = 0 we choose one of the three terms and denote it with an extra
label p, = 1,2, 3 in the nodes with j, = 1,2 we set p, = 1.

This Proposition and the relation 6.14 show that the coefficients g, are fixed
uniquely; a direct consequence is that the value of the splitting vector and splitting
matrix can be expressed via amputated trees such that for each node v the integrations
3t are always on functions F' with no constant component [f5- This is true for vy as
well as AI = SFF and F¥ has no constant component. To complete this brief review of
the articles [Ge] and [GGM4] let us conclude by stating the following property (proved
in [Ge] and [GGMA4]):

Corollary 6.13. Fizing the gy, as in relation 6.14 implies that the Lyapunov exponent
of the separatriz is g.

Notice that all we have done in this Subsection does not depend on the number of
degrees of freedom (and on the choice of the matrix A).

Remark 6.14. To prove the convergence of the Lindstedt series it is necessary to
show compensations between the “ resonances” which are subtrees stemming from v
having a purely oscillating term in W(AZ"), such terms generate small denominators
(w-v)~". In our approzimation however (k < e~') we can approzimate all the small
denominators with € so we will ignore the compensations.

6.2.2 TImproved bounds for three dimensional systems

In this subsection we will adapt Section 3.1 to the Hamiltonian:

%(12 +eJ?+p°) + (g +nG(n. g9)) cosq + nf(q, v, d),

Where f is a trigonometric polynomial in ¢, ¢. To fix a class of examples we will
consider

f(h, ¢.q) = (cos(¢p) + cos(#)) f(q)

such that f(go(t)) is a rational function in e tending to zero for || — oo and with at
least one pole with ¢g|Im ¢| < 7/2.
We will perform the computations for

2

flq) = W’

which has one simple pole in g|t| = in /4.
Moreover we will consider an example where f(g) is a trigonometric polynomial and
find better bounds that those proposed in Section 3.1 and in [GGM3].

f(, ¢,q) = (cos(h) + cos(@))(cos(q) — 1)
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In this subsection we will return to the resummation tree notation as we need
to evidence the analytic and non analytic parts in the splitting determinant. The
resummated trees will however carry the extra labels o, (counter-term label) and v,
(rotation label).

Moreover we will use the fact that the 2 x 2 splitting matrix A satisfies Corollary
4.18:

AU ~V, (6.16)

where U,V are 2 x 2 matrices and U is invertible. This means that
det A = det(US") "' det V=K + o(n™).

The matrices U, V' are those defined in Subsection 4.1.4; it is easily seen however that
for systems with three degrees of freedom one can choose U and V in the following
wayS (U;, V; are the columns of U and V):

I'(t=0,¢0=0) U
- J](t:O,(,O:O) ]

U]_‘ e

Q)—F‘ ‘ UQZ

1 )
M. —
‘0 " 24+

el

and

o 1 FGOM:.

U, is the value of the actions of the rotators at the homoclinic point and correspondingly
—2 + Py is the value of p at the homoclinic point.

Gy and (G are the gradients in ¢ of the values of fruits respectively of type 0,1 and
label j=1,...,n.

go and g, are the gradients of of the values of fruits respectively of type 0,1 and label
j = 0. This matrices can be computed using the techniques of the preceding subsection,
for instance:

1 0
Vi=go(—2+ F), V2_91ml+(‘

i
Remark 6.15. For systems with n degrees of freedom we consider the equation

1
Go(Id, — ————— (A0 + IMYub, + ML A) = —giut, — GyAMy, + AMy,,

241"
where the first column of My, and of u}, are exponentially small.

Proposition 6.16. The G; and g; can be bounded from above (up to order k = £ 2
by k k k k vk _—k
(Gl [(g7)il, [(go)il < (m)"CPe™".

The following lemma will be useful in the proof.

Lemma 6.17. A tree of order k with m nodes 6, = 0 can have at most k — m small
‘ _ ‘ 1
denominators e and 2m denominators e 2.

6We are simply using Propositions 4.14 and 4.16 instead of Corollary 4.18



108 Chapter 6. Lower bounds on the splitting

1

Proof. Each node with j, 2 can carry a small denominator €' coming from the

=1,
purely oscillating terms of W(A, t)

Uy 5 wy e

WI<Nk

the result is again a purely oscillating term. If we have m nodes with ¢, = 0 then at
least m + 1 of the £ nodes with § = 1 have 7 = 0 so we have at most £k — m — 1 small
denominators due to nodes with j =1,2.

By the boundedness of W(A,t) the only purely oscillating terms for a node with
Jj» = 0 appear in

S sinh(gr)W(A, T)
if w,1 # 0 and contribute

o iw-uthhfl

Wy,1 (&
i(w-u)})Z_}Qh—l—l—iw-y

(6.17)

which is a function with no purely oscillating term. The purely oscillating contribution
from the 3 integral in

W(A, ")

cosh(7")’

has again only one small denominator. So, even if each node carries two integrals
. . 1

(and thus two potentially small denominators), there can be only one factor e 2 for

each node with j = 0. The (remaining) nodes with j = 0 are 2m + 1 so the small
denominators produce a factor bounded by 7%, O

o sinh(g7)

h )Q%T sinh(g7")W(A, ') — S cosh(7)S”
cosh(gr

Proof of Proposition 6.16. We proceed in two steps:
1) Given a tree A, split the integral & on the first node in three terms:

2a
%:%20—%2“+/
—2a
if we choose the third term we consider the nodes following v, and repeat the procedure
on the external integral (each node carries two integrals as seen in 6.15):
t
= g2Me 4 / : (6.18)
U(t)a
Each time we apply the first term of 6.18 we are cutting off the subtree A”?.Let us

call ¥; with 7 = 1,..., H the list of such trees and 9" what remains of A. We have at
most 9% terms of the type:

2a Tw

I V. 20 ()a) / 11 / Ay ()37 By, Bo(0).

7 . )
i=0,H _9q VEY o(t)a
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where

O, (0) = (=D [as. ™1 T V™, (6.19)

veED v>vg

(1 if p=1

A, () = { cosh(gt) if p=2

SinhQ(g;z if p= 3
(1 ifp=1j=1,2

Bpaj(t) = 9 cosll(gt) if p= 1727 ] =0

| sinh(gt) if p=3.

2) Given a tree of order k we compute V(A,20(t)a) using Lemma 6.11, we expand all

the functions f Cosh osh(gD) etc. in series in # = €9 and remember that

%teozt —

P—, a e C
a
b

The small denominators can be bounded

1 if k#0
Ve o ifk=0

so ¢ small terms occur only in integrals of purely oscillating functions.

a|l = |k +iw - vr(v)| > { (6.20)

We apply proposition 3.6 bounding the denominators with e* as seen in Lemma6.17.
We bound the definite integrals with the maximum of the integrand and a;(¢) with

one:
[T max (4., o T a.7").

te(~2a,2a) pq, Jv
vEY v>v0 v'€s(v)

this are all £ independent constants (we are not shifting the integration to complex
t’s). We obtain the following bounds on the G;and g;:

G191, |G, Lgg | < (m)FCheh,
which comes from the small denominators. 0

The factor det U has an n independent part equal to pluq a n-dependent correc-
tion which can be bounded by

Coymax(|I'], [, |(Mo)s]) = Oy(n).



110 Chapter 6. Lower bounds on the splitting

My and my are values of fruitless trees with two markings’, one analytic which can be
applied on any node and one non analytic on the first node; M; and m; (which are
exponentially small) are values of fruitless trees with two analytic markings, moreover
one of the markings has 7 = 1:

(M])Z = \SW Ul] s (m1) = %WSU?,%

As we are now considering resummated trees, their value is obtained through the
operator \SWI and thus by applying 37 + 3™ in each node. Given a tree with total
rotation v; we shift the integration for the analytic trees to R+ io(vy - w)d, as seen in
Section 3.1. We are considering integrals of the type:

AW = CoMWEBY) ST T ()™ (i)

2
{vo}7 s=1,...,nv>vg

dRU i —0o(T zk(r i n(v . W T
% 27:7TR[;0 / dTy,e (709) Rug i (g +id) g O)vag (q(Tyy + id))e™ ™o

Tw

dR, o L
H %QWR /dﬂ,+ /dTv) (Ty)p (70) Ro (7o + d)w] (T + id, 7y + id)

H dn('”) fVﬂ (q(T’U + id))eiqu—v ’

V>0

with two markings 4, 2! in the node vy and j,2% in the node y. Clearly in the non
analytic integrals (I = 1) we set d = 0.

Y

To re-obtain the nested integrals [ S7, we remember that

V>V
L+ 3L =8+ o (h)S. (6.21)
Moreover, as seen in 2.5 the value of a subtree stemming form a node v is
(ST + S™)w(r, + id, 7y + id)W;(AZ”, T, +id),

if we fix the initial data at the homoclinic point ¢ = 0 we can group the value as sum
of three contributions

STt (1 + id, 7, + id)W)_ (A2, 7, + id)+

1
_:E; (T’IU + Zd)%x;] (7—7; + Zd)W;:[] (AZ’”, T'l) + Zd)+

"Notice that, for systems with n degrees of freedom, we still should consider values of fruitless
trees with two markings, one of which analytic.
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1
ia(Tw)mg(Tw +id)So (1) 3 (1, + id) OyW,_ (A7, 7, + id),

so that the second and third summand are different from zero respectively if WéZO(AZ”, t)
is even or odd. Moreover the second and third summand act like fruits, namely the
contribution of AZ" to the value of A is a fixed function (resp. zj and o(t)z}) times a
t-independent factor:

(E(vp(AZY), d))*lgx'? (7)01@;:0(142", )

or

(E(vp(AZY),d)) %U(T)x} (7)01@;:0(142”, 7).

The factor (F(vr(A="),d)) " is there as we have shifted back the integration on the
real axis (remember that o(t)xj(t) is analytic ).
We will represent the choice of one of the summands by applying the type labels
hy = b,0, 1.

Lemma 6.18. Guwen a fruitless tree A € A, ; let vy and v be its marked nodes; the
only contributions to the M, and m; , | = 0,1 are from trees such that

w € P(vg,v) = hy = 0,0 w ¢ Plvg,v) = hy = b, 1.

Proof. Given a node w ¢ P(vg,v) suppose that h, = 0 and that we don’t give the h
label to the other nodes.

The contribution of A”" is %x?W&D:O(AZ“’) and A”" is fruitless and with one marking
0;,, in the first node w. This is the integral of an odd function and so it is zero. In the
same way if w € P(vg,v) then A=*) has two markings and so W, _,(A=") is even and
So(T)zjW,_o(A") = 0. O

We have obtained a tree with “leafs” (i.e. markings T?), it should be noticed that

a label h, = 1 acts just like a leaf as it contributes .Z‘.(;(T,,,.,)C(AZU), whereas the label
h, = 1 is a proper marking on A\". Now starting from the end-nodes we cut away
the subtrees with labels h, = 0, 1; the value of a tree A is then a product of values of
amputated trees with leafs and with two markings (i.e. any number of markings x?
(leafs) and at most two markings T;) If we are considering M; and m, there is only
one marking T%

Remember that, in M; and m,, we have shifted the integration before dividing @),
using 6.21. In the previous Subsection we imposed that the value W, of a tree with

leafs A will have no contributions from the constant part of V(A=") for all v € A.

Lemma 6.19. (ii) Given a tree A with at most two non-analytic marking T} in the
first node vy and in a node v, the value of the tree is given by trees such that for each

veE Av¢ P(vg,v) then V(AZY) has no constant part.

Proof. For any w ¢ P (v, v), the contribution of A= to the value of A is V(A=Y t+id),
where V(A>" t) has no constant component. On the other hand if v is marked T% and
w € P(vg,v) then AZ" is carries a marking which is not a leaf. O
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Remark 6.20. If we work directly on the exponentially small pieces of the splitting
matriz D we can assume that no node carries constant components. Such components
must cancel out after summing on all the possible contributions.

Proposition 6.21. (i) The contributions to My and mq of order k are bounded by
k\Cke—3k/12,

(ii) The contributions to My and my of order k < £~ and total rotation v are bounded
from above by:

E(D,v)C* max(\/gf(pw)k“ ke 38/2)

Proof. (i) We want to evaluate an integral of the type:

Z [ H (i S)mi](iyyj)%oxi(%n)dn(vo)fum (q(7y,) )€ ™o

{vo} s=1,...,nv>vg

[T $7a2(m)e 7, (ry,7,) TT &0 i la(m))e ™,

V>0 v>vg

first we apply Lemma 6.19 to evaluate the contributions of trees A”* such that w ¢
P(vy,v) and w follows a node v' € P(vg,v). As we are considering trees of order
k < 72 the small denominators are controlled by Lemma 6.17 so we have a factor
bounded by ¢~* (5’%’C for partially isochronous systems).

We repeat the procedure of Proposition 6.16 and split the integration as in expression
6.18% . As we are not shifting the integration near a complex singularity of f(q(t)) we
can bound all the |d"") f| by an ¢ independent constant.

Having reached the nodes v € P(vy,v) we can have contributions from trees with zero
total momentum. As |P (v, v)| < k we still have to perform at most & integrations, k
being reached only if v is an end-node.

This kind of bounds were discussed in Chapter 3, but the existence of counter terms
will give us better bounds than the expected (k!)%e*.let us first discuss T; = t.

The integrand at the first node of the path can have no constant component as it is ¢
times a function with no constant component. So we can use double integrals:

SA(T)S™ B(1')e™
where the functions A, B are defined in (6.19). We remind that

teloth)t 1 1
PP R Y P AR prayzy

t 1 at
c\feﬁﬂ'%ﬂ' at’ __

R T'e® = )e((“'ﬁ)t.

Let us consider three adjacent nodes v; < v, < w3. The integrand in vz is te® with
non zero o« € C. So we can apply the double integral above and obtain three terms
contributing to the integrand in vy. The linear term in ¢ cannot produce constant

8notice that, as we cannot have subtrees AZ? such that IIpV(AZY) # 0, we do not have the factor
(k!)? of Proposition 3.6
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terms” The remaining, purely exponential, terms can instead produce constant factors.
The integration of such constant factors produces a factor #? times some term with no
constant factor as integrand of v;. So recursively we can have a small denominator
(v€) ! after passing | nodes with zero total momentum and so with no divisor. Notice
thatthe presence of the counter-terms implies that it is not possible to have two adjacent
nodes both having zero total momentum.

One can proceed in the same way for

7

Ty = + sinh ¢t,

cosh gt
namely we have the integrals (applied to W(AZ",1)):

~ Sinh g7 , (t — 7) sinh g7

S'sinh? g7, S'(t — 7)sinhgr, sinh gt

&l

cosh gt cosh g7’ cosh gt cosh g7’

1, 7sinhgr MT(t —7) ot T(t —7)

cosh? g7’ cosh g7’ cosh gt cosh g7’

3 . sinh gtQ’
cosh gt = cosh g7 g

Only the first five terms have constant terms as integrands, coming from purely oscil-
lating factors of all the nodes AZ”. The result of such integrations however is either:
t? t
coshgt’  cosh gt

tsinh gt , t?

and all (but the third) cannot have again constant terms if applied to a node J = 1,2.
Moreover tsinh gt can only produce a #* which we have already discussed. So we can
have zero total momentum contributions from a chain of single nodes but in each step
we can rise the ¢ exponent only by one.The only exception is a possible

t" sinh gt — ¢t"*!sinh gt — t"*?

but this can only happen once in the whole path and then lead to a known purely
polynomial term. In all the parts with no constant components (and carrying (¢t — 7))
we can pass to double integrals so the ¢ degree does not grow.

Finally this implies that we produce at most a factor (k)!e=%/2 ( see the proof'® of

Proposition 6.16). Finally we consider the |8;"’7’f|, and the proper integral parts which
are ¢ independent and so can be ignored.
(ii) We want to evaluate an integral of the type:

E(w,d) Y 1 I ()™ 1)S% (1, +id)d" " £, (a(7, + id))e T

{vo}7 s=1,...,nv>vg

Tt is simply ¢ times the result of the integration of e®*

canceled by the counter-terms.

Onotice that we have shown that the sum of the non zero ¢ exponents h, is bounded by k/2 as the
t exponent cannot grow (except once in the whole path) on a single node having the factor (¢t — 7).
so the (m!)? becomes k!.

, so the eventual constant terms in vy are
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H ST (Ty +id)e 7 (7o R”(T’J“d)w]v (Tw + id, T, + id) H d"v) fo, (q(Ty + id))ei“’””,

V>0 V>0

we have small denominators contributing at most £ 2%/? and the factor k! as in point
(i). Finally we bound

10 (0
‘ag ( )f(z)|\Rez\>2a,\Tmz\§27r < n'u!C
where C' = | f(2)||rez|>2a,/1mz|<2x 1S an € independent constant.
In evaluating the proper integrals, we notice that we do not get £ close to gm/2 which

is the singularity of cos(¢(¢)) and of the Wronskian. So we can bound these functions
with € independent constants in C'(D — /g, 2a). We obtain:

2|al
N2 k
E(D,v)C* Z 11 /df|d"” (q(t + id))]
AeA" veAé =17

to get better bounds on the integral we have to specify the function f(q) so that we
can bound the derivatives in ¢ with some function whose primitive we can estimate
more efficiently.

In general we can use the same bounds as in Section 3.1, bounding the integral with
the maximum of the integrand, we obtain:

[T noteXvm=@tm) = T n,le®@ k2, (6.22)

v:dy=1 v:0y=1

as ZMUZI n, = 2(k+m) — 1 — 2m if m is the number of nodes with 6 = 0.
Remember that (see Appendix A.2):

Nk, j) =Y c(A) ] n! < (4n)*

AE.A’; vEA

Let us perform the computations for

flg) =

we can bound the absolute value of the order n derivative of this function by:

n!C"
[(cosq + 3)nt!|

1
cosq+ 3’

then in the definite integrals we ignore the possible constant terms (leading to polyno-
mial contributions), the functions coming from the Wronskian which are bounded by
¢ independent constants and obtain:

0

0
(14 2y/&) cosh' 2g7) | n+1
/dt%t|8(’}f(q(7+i7r/4i\/5))| < nlC" /dt%t \/ ) :
24 g \/sinhQ(QQT) + 4e cosh?(27)
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We bound the numerator with an ¢ independent constant and multiply and divide by
cosh(27) which does not vanish for ¢ € [0,2a]. We obtain the integral:

0 T
1
dr /(]y )n :67(7171)/2 /(]T /dy(i)n+l’
h/2 y? +45 K K Vi 41

if the integrals converge i.e. for n > 1. For n = 0, 1 we compute the primitive 3’ which
is respectively :

arcsinh (x//e) < x/v/e, fore <1, and NZE arctan(z/v/z),

both functions are not divergent in x = 0 and so we can bound the definite integral in
z by C/\/e. Now, as in 6.22, 3" _ n(v) —1 < k. So the worst bounds come from
the small denominator terms.

Let us now consider the example 2) which is a trigonometric polynomial. In this
case we have to consider the divergence of the Wronskian and of the nodes with § = 0
in ¢t = igm/2. However we have an important simplification in the evaluation of the
proper integrals fol (we chose a = 1). Let us set go = cos(qo(t)) and g, = sin(qo(¢)) the
derivatives 0™ f9 are either gy or ¢; so we remove the label § and consider a new
label d = 0, 1. The definite integrals are then:

t ‘qdﬂ T + Zd)‘ : t |g{lv (T + Zd)|
:osh(gt + igd)|S 6.23
H/ Teosh(gr gy oSt Higd) S e T (62

| sinh(gt + igd)|

ot . . .
+ud h(gr + igd)).
| cosh” (gt + igd) ‘ 5 ‘,(]dq, (T t )‘ St (.(]T g ))

Setting d = im/2 — /e, it is quite easy to find bounds on this integrals; for instance:

1

/\s ¢ sin(go(7 +id))| \/—/N V/cos(2y/€) + cosh(2t)

| cosh(g7 + igd)| — cos(2y/2) + cosh(2t))3/2 —

1

~ 1 s / sinh(?)
C/\S (— cos(2y/€) + cosh(2t))3/2 Coclvey /dt\/l + 2sinh?(t) — cos(2/€)

0

<Ce!

1

We can bound all the summands in expression 6.23 with Ce~'. As there are at most

2k — 1 nodes the following proposition holds.

Proposition 6.22. We can bound the terms of order k and total harmonic v in M,
and my of example 1) and 2) respectively by:

E(D,v)C*Kle™3/?  B(D,v)Che=2k+1,
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This implies Melnikov dominance in the examples 1),2)for respectively:
3
n<e, n<en

Proof. The proposed bounds are obvious form what discussed above.

This proves that the formal power series involved in equation (6.16) are asymptotic
for n < 2. To prove Melnikov dominance one can work directly on the splitting matrix
(see Remark 6.20) so this removes a factor (k — 1)[e~#/2 in the bounds of example 1).
Now we proceed as in Proposition 6.3, summing on the slow modes and on the terms
of order higher than one (resp for n < % and n < £3. In example 1) we have a simple
pole and in 2) a double one:

1
pe 2 > \feplet, pe ' >ep’e

6.3 D’Alembert-like problems

In the previous section we have refined the bounds on n that imply Melnikov dominance;
we have found n < &% for example (1) and n < €* for ezample (2). Both values of n
imply the convergence of the KAM construction as discussed in Appendiz A.J. In
this subsection we obtain still better bounds for Hamiltonians having a big uni-modal
(quasi-monochromatic) perturbation, we work on the following class of examples:

% +cosg — 1+ aA(p + ) Blq) + nf(é ¥, q). (6.24)

The functions A(x), B(zx) are trigonometric polynomials of degree N; the function f
is a trigonometric polynomial in 1, ¢ and rational in € with at least one pole for
finite values of Imq. Finally o is a free parameter. Hamiltonians of the form 6.24
are interesting as they provide a “model” for the D’Alambert problem (see [CG] for a
discussion of the D’Alambert problem). An Hamiltonian of the form6.24 (but where f
is a trigonometric polynomial) is proposed in [GGM3].

The cited article contains a proof of the existence of stable/unstable manifolds pro-

1
5(5J2 +p°) + 1

vided that ae 3 < 1; moreover the gaps between persistent unstable tori are proved to
be smaller than e /Y% for any order one C. The proof relies on the monochromaticity
of A(¢p + 1) which permits us to perform a Poincaré Birchoff transformation on the
Hamiltonian which reduces the o dependent part of 6.2/ to size a/e. We report the
details in Appendiz A.5.To prove lower bounds on the splitting determinant for system
6.2/ we must prove “Melnikov” dominance, which means computing the Melnikov inte-
gral and finding appropriate upper bounds on the terms of order h in o and k in n with
h+k > 1. The results of the previous section enable us to find such bounds provided
that f is not a trigonometric polynomial in q.
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6.3.1 Big uni-modal perturbations

Following the strategy proposed in the previous section we consider the Hamiltonian:

ST+ 1)+ 15 4 (G, 0,9) (cosq — 1) + aA(9 + ) Bla) +nf(6,0.0); (629

NG

we will first fix the function G(n, al, g) by Proposition 6.12 and then fix g = g(n, @) so
that:

9(n. @) +nG(n, o, g(n, @) = 1.
Naturally the perturbation series of the homoclinic trajectory: ¢(n, a, p,t), q(n, a, p, t)
will now be expanded both in 1 and «:

o

¢(777 «, @, t) = Z ah(n)k(bh,k(gﬁ, t) R

h,k=0

and this holds for G(n, a, g) as well

Gnog) =g+ Y gn

h4k>1

The tree expansion of the homoclinic trajectory carries the following labels: the usual
jy=0or2p,=0,1then §, =0,1,2 and k,, h, € Ny. The grammar is:

Oy =ky =hy =0—={[s(v)] > 2,4, =J» =0¥0 € s(v)}

6y =1—={k,=1,h, =0}, 6,=2—{k,=0,h, =1}.

Now we briefly repeat the procedure described in Subsection 6.2.1.
The order of a tree will now be given by two numbers (resp. the order in 1 and « of
the corresponding values):

01(A) =) hy, 0y(A) = k.

vEA vEA

We define the vector space of “acceptable” trees of prefixed order V** by defining
its generators the set A™F of equivalence classes of “acceptable” trees of order (h, k).
Now we proceed exactly as in Subsection 6.2.1, namely we add two labels: p, = 0,1
and v, and we have the so-called trees with leafs. Then we consider marked trees
(where leafs are particular markings) and define the value W of a tree, with a marking
h(t)0, in vy and some leafs L(vy), as:

W(A)[t] = o ()" gy

vy

e h(T) V™ f (o + wt qo(t)) [ VA=),

veEs(vg)

V(A) = %t(pvo)wjvn (t(puo)s Tog)W(A), forall A e A,.. (6.26)
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As usual m,(j) is the number of nodes v' € s(v), M(v) having j,» = j, g7 = g5, = 1,
gg’k = gnx and m,(j) is the number of nodes in the list v, s(v) having label j, = j.

Moreover f'(1,¢,q) = f(¢,0,9), P, ¢,q9) = A(p + ¢)B(q) and f°(q) = cosq.

Finally we define the vectors:

such that
Snk = V(03" Nen) s qng = V(03" Agp).

As in Proposition 6.12 we fix the values of the parameters gy 4:
9hk = HPeg‘t‘W(aOUh,k - th,k)

where «y, , is the tree with only one node v 6, =0, h, = h, k, = k.
This ensures that V(A) is a limited function of ¢ with no constant term:

o

. w
VA = D0 D mlA)exp (= gllt]+ilo+ —zmt + Vewat)),
|v|<o(A)N 1=0 €

and v, 5(A) = 0 for all A.

We have shown that we can extend Subsection 6.2.1 to systems whose perturbation
series involves two parameters. Therefore we can improve the bounds of Subsection
6.2.2 using the particular structure of the o perturbation. Notice that a naif use of
Subsection 6.2.2 produces the bounds:

C C
GE | g < ()Fat (=) [ My img | < (m)Fal (k4 b — 1))(=)P P

VE £
h.k k_ hk+h —(p+2)k+1 1.—3/2(k+h)
m{ < B(D,v)(n)"a"CH+* max(y/z (k+h—1)e ),

hk
M,

where D depends only of the function f and is defined in 1.28. Clearly this bounds
do not imply Melnikov dominance for order one values of a.

Lemma 6.23. All the divergent terms in h (i.e. h!(\/€) 3") come from the estimates
6.20 of the small divisors namely in the estimates of V(A,20(t)a) where a is defined
i 1.28.

Proof. The only divergent terms from the definite integrals are in M; and m;. We
have imposed that B(z) be trigonometric polynomial and f(¢, v, ¢) non trigonometric
in ¢ with D < 7/2. So in estimating the definite integrals in M; and m; we never
reach the poles (£7/2) of B(q(t)) and we can estimate

max |B(g(t))] < C = O.(1).

teC(D,a)
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The estimate 6.20 is clearly not optimal, namely given a tree A with total harmonic
vr = (11, 15) at the homoclinic point ¢ = 0, then

o

.oW1
W(A) = wy ,(A)exp (— glit] +i(—=
()= 3wl dyenn (gl +i0 2

V]t + \/gu)gl/gt)),

and w, 5(A) = 0. If we consider the term of order / in 9 the small denominator is:

1/ve if ) #0
+VEwary)| > ¢ 1 ifvry =0,1#0
\/{;_‘ lfylzl:(]

Wil

NG

all,vr) = | —o(t)gl +i(

So, in each node v the denominator is big (O, (¢~ 2)) provided that v (A=) = vy (v), v(v)
has non zero fast component, v (v) # 0. Moreover each node (having non zero total
momentum) having a non zero fast component produces a denominator of order € while
small denominators are at most /2 as seen in the proof of Lemma 6.17.

Proposition 6.24. For all k < 8’%, h < e ' following bounds hold:

caren( Sy 2
< (n)Fa"C (\/E) | My g) (6.27)

miE| < B(D,v)(n)Fat O T

G [ mik| < (n)kalch(

‘ k,h
) g7

h.k
| M,

Proof. We proceed in two steps:

1) Consider a tree A having no nodes with possible constant components. Starting
from the end-nodes, let us “cut away” all the trees A=* such that v;(w) = 0. We are
left with a set of amputated trees A such that v4(v4) = 0 and v;(v) # 0 for all the
other nodes in A. The integration in each node produces a factor o 2(l, vp(v)) and «
is big for all the nodes v > vy.We can suppose that j,, = 0 as the j, = 1 have an extra
small factor £ and so no small denominators. The node vy produces (in any case) at
most a factor £ 2. Given an amputated tree with £ nodes § = 1, h nodes § = 2 and
m( < 2(k+ h) —1) nodes with § = 0 the small denominator term is at most:

_ _1
€(h+k+m ])6 : —¢

kth+m-3/2

In A1) + ¢) the only frequencies accessible at order one are (n,n) with |n| < N so
an amputated tree with only one node v and 0 = 2, then v4(v) # 0. This implies
that if h # 0 then £ + h +m > 2. So the trees whose nodes do not carry constant
terms and with A # 0 nodes § = 2 can carry at most a factor £2 there are no small
denominators. 2) In Proposition 6.21 we noticed that each tree A can have a path P
(of length < k + h 4+ m) of nodes which can have zero total momentum vy = 0, Iy = 0.
As such terms give rise at most to a factor e % (for k < 5’%), we can ignore the nodes
with 7 = 1 as each carries a small factor ¢.
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nodes carrying momentum labels, we evi-
dence the nodes in P and in particular we
dash the branches going in the nodes with t
zero total momentum and call the subtrees )
obtained A; withi =1,..., R > 1. We sign t
on the first and last node of the evidenced 3 t2
nodes in each subtree the initial and final ¢
degree; the initial ¢ degree P (i) is smaller V\'

or equal to the number of cuts and is equal t

to the degree of the final node above it plus

one. The final degree is P (i) < P (i). Figure 6.1:

Given a tree A (of order < e 2)with the I i
I t2

If the path connecting the first and the last node of a subtree has length [ > 1 and
P, — P, = r then the subtree produces a small denominator:

Al
(I —r)!

supposing that all the internal nodes have v; = 0 (and vy # 0 by construction). Then,
if an internal node has § = 2, one of its followers (either in P or not in P), must be
fast and so produce a term €. As we are interested only canceling divergent terms for
nodes with 4 = 2 we can suppose that all the [ nodes have § = 2. Let us call A; the
subtree we have generated , we have a small denominator factor bounded by:

Z(gl(i)(\/g)f(l(z')71+2r(z'))) < 6k/27R < 08(1)

A;

(Ve) )

as R < k/2. if we consider T} = t. If we consider a marking sinh gt there can be
H subtrees of length 1 and zero total momentum. Each of these produces a factor ¢
(if 6, = 2 and vy = 0 then there must be a fast node attached to v); so the small
denominator term is bounded by:

EH\/gk7H72R <0.(1),

asnow R< H+ (k— H)/2. O

Theorem 6.25. The Hamiltonian (6.24) is uniformly Arnold unstable in the domain:
W(E):={H(I,J,¢,¢)=FE, O, (1)=b<|I|,|J|<a=0.1)}

for E € [Ey, Ey] with Ey, Ey = O.(1), provided that:
1) % < &Pt and o < 1 but still O.(1). 2) f(¢¥,d,q) is sufficiently non degenerate;
for instance we will suppose that fe,(q), fe,(q) are not identically zero.
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Proof. The bounds (6.27) imply that the contribution, to the entries of the splitting
matrix, of a tree with fruits (of order k,h < C’a’%) carrying an analytic integral of
frequency v is bounded from above by:

B(D,w)(n)a CHeh /e T

Moreover we know that det A(a, p = 0) = 0 as the a perturbation is uni-modal. So
we can explicitly compute the first relevant order of det A which is either of first order
in 7 and « or second order in 7. Then we sum up the remainders in 1 and « using
Proposition 6.3 ]






Chapter 7

Systems with more general
unperturbed separatrices

In Section 6.2 we have given sufficient conditions for Melnikov dominance for systems
with one fast time scale whose Hamiltonian is of the type 4.3. Now we would like to
generalize the dependence of the q variable of the (n)-unperturbed pendulum. i.e. a
system whose Hamiltonian is:

% + p; — F(q) +nf(6,q) (7.1)

after the scaling change of variables of Remark1.10.
Naturally, in equation 7.1, we consider only periodic functions F(q) which are analytic
in a strip [Im q < d and that do not modify the qualitative behavior of the unperturbed
separatriz. We will impose the following conditions.

Condition 7.1. F(q) is even and analytic for g € Tyq; moreover F(q) verifies:

1. ¢g = q =0 is an hyperbolic fized point and the separatriz

contains only this fixed point. This holds true if:

F(0)=F(@2r) =0, F,(0)=0, F,0)=A>0, F(q) >0 for q¢#0,27.

2. Moreover, on the separatriz, we can chose a sign for ¢ and the equation of motion
on the separatrix is:

¢ = +V2y/F(q) = G(q)
where G(q) > 0 and G(q) = 0 if and only if ¢ = 0,2r. We will consider initial
data q(0) = 7.
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Notice that the evenness of F(¢q) implies that ¢(¢) is an even function of ¢. This
qualitative requests on F' ensure the existence of a local Hyperbolic normal form for the
“ pendulum” near ¢,p = 0 and the convergence of the local KAM theorem 1.2. In the
preceding Chapter we have considered “ perturbative” examples which did not modify
Melnikov dominance. In this Chapter we proceed in a completely non perturbative
way; namely we give conditions on G(q) sufficient to guarantee that the Melnikov
integral dominates in equation 7.1 provided that f satisfies suitable non degeneracy
conditions.

We look for functions F'(¢g) such that the time evolution on the separatrix ¢(¢) on a
prefixed branch satisfies

Condition 7.2.
e = R(e™!) where R(y) is a rational function . (7.2)
Automatically the other branch of the separatriz satisfies:
et = R(e").

We will not try to classify the functions F(q) satisfying Condition 7.2 but only give
classes of examples. Then, in Sections 7.2 and 7.3, we will show that if G(q) satis-
fies the condition 7.2 then one can prove for Hamiltonian 7.1 the same results as for
Hamiltonian 4.3 (with the same techniques of Chapters 4 and 6).

7.1 Acceptable functions F(q)

Let us call S* the unitary circle in C' € = y € S', and let us call P the real axis
plus the point at infinity. Both S' and P are circles on the Riemann sphere.

Lemma 7.3. The only rational functions w : P — S such that R(c0) = 1 are of the

type
P(z)

D, Y
P(z)
P is the polynomial whose coefficients are the complex conjugate of the coefficients of

P. The condition R(oc) = 1 implies that the leading coefficient of P is real and so can
be set to one both in P and in P.

R(z) =

where P(z) is a polynomial with coefficents in C,

Proof. Our request is that for all z € P, |R(z)| = 1 so we write that R(z) = 28

with P and @) of the same degree, with no common zeros and with the same leading
coefficient. Then, without loss of generality, we can suppose both P and @ to be
monic'. Then if P (Q) is the polynomial whose coefficients are the complex conjugate
of the coefficients of P ()) we have that

P(z) _ Q)
Q) ~ P(2)

we remind that a monic polynomial is a polynomial whose leading coefficient is one.

1
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for all z € P and therefore for all z € C. All the polynomials involved are monic and the
decomposition of rational functions in monic polynomials is unique so Q(z) = P(z). O

In particular this implies that there can be no real zeros of P.
Let us consider only polynomials P(z) with zeros a; having |a;| = 1, with Im a; # 0
andi=1,---h. Weset z=¢" ! and

then modulo 27

q(t) = —i Z log(Ezzi_Zg) =2 Z arctan|

1
Tma, (e7" — Re a;). (7.3)
We derive the second term of relation 7.3 and obtain:

h

Q) =21y — Im g, (7.4)

—~ (e ' — Rea;)? + (Im a;)*

We want to find conditions on R(z) so that calling D(z) the function such that
D(e ") = 3¢*(t), D(2) can be expressed as an analytic function of y = R(z) in some
strip S} (as usual S} is an annular domain of width d around S").

Before stating a general proposition let us study a simpler (but still interesting)
class of functions such that D(z(y)) can be explicitly computed.

Condition 7.4. Consider the set of rational functions R(z) such that:
1. P(z) is monic and has degree two in z with zeros a, and ay such that |a;| = 1..
2. R(z) = R(—1) and Im a; > 0.

This implies that the two zeros of P(z) are a and —a for some a with |a| = 1. Moreover
it can be easily verified that equation 7.3 parameterizes [0,27) injectively and that
q(t) < 0 for all real ¢.

Remark 7.5. (i) Systems satisfying Condition7.4 have q(0) = m and ¢(t) an even
function of t.

(ii) For systems satisfying Condition7.4 €) has poles for purely imaginary values of
t.

Proposition 7.6. For all functions R(z), satisfying Conditions7.4, there exists a
unique function H(y) which is a rational function of y with poles not in S* and such

that H(R(2)) = D(z2).
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Proof. We will prove it by directly computing the function H(y). The relation:

z—a)(z+a
)y oot
(z—a)(z+a)
implies that
(1—y)(2* —1) —ibz(1 +y) =0 where ib=a — a. (7.5)

We compute the function ¢(¢) = i[zd. (log R(Z))]z:e—w by differentiating equation 7.5
with y = R(z).
y'(1— 2% —ib2) = ib(1 +y) — 2z(1 — y), (7.6)

we obtain that:
Yy zib(l+y) —22(1 —y)
iz =i—
Y y (1 — 22— ibz)

We use relation 7.5 to simplify the denominator so we obtain:

zib(l+y) —2:(1—y) 1—yib(l+y)—2z(1 —y)
y o b+ 1) y —2b

The function we want to compute is %QQ so we square the last relation:

y—1
(W)Q(*’F(l +y)" + 401 )1~ y)2” — bz(1 +y)]
and we substitute again relation 7.5. As we said we obtain that H(y) is a rational

function of y:

1/y—1\2
—(=—) (-v’(Q+y)*+4(1 —y)*).
5 (g5 ) (P04 + 401 y))
O
H(e') is a trigonometric polynomial; Set- 2
ting b = 2Im a = 28 an easy computation
1.5
leads to
H(e') = 1(i(('oqq —1)” + sin*q) 1
’ 2 324 ' 0.5
In Figure 7.1 We show the graph of the sep- T 5~ i 5 ¢
aratrix .
2 i : .
2 = H(eM Figure 7.1:
5P (€")

in the phase plane p, ¢ for various values of 0 < # < 1. The limit value § = 1 is the
pendulum, while the limit f = 0 is not in our class of functions as F(w) = 0. Notice
that for all values of 8 the system has a critical point in ¢ = 7.
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We have imposed that the zeros of P(z) a and —a have positive imaginary part; this
automatically forces ¢(t) < 0.

Naturally this hypothesis is only for notational convention, to ensure that we are
parameterizing the lower branch of the separatrix. If @ and —a have negative imaginary
part we only need to set z = e! in relation 7.3 to be on the lower branch of the

separatrix.

Ezample 7.7. We conclude this simple example of functions F'(q) satisfying the condi-
tions 7.2 by representing the phase curves of the Hamiltonian:

1 1
§p2 — (cosq —1)* — 5 sin? ¢

where F(q) = H(e') with g% = 1.

©c o o ©
N D O O kN

(A

1 2 3 4 5 6

Figure 7.2: The separatrix is the line in red; notice that there are two stable fixed
points and one unstable one (different from zero)

We will now consider the more difficult question of functions R(z) such that P(z) is of
degree higher that two.

Condition 7.8. We will restrict our attention to those functions R(z) such that:
1. R(z) = R(—1) so the zeros of P(z) come in couples a;, —a;.

2. Let {a — a;}i—1, be the list of zeros of P(z) then:

D oli)=1 where o(i) = o Im a;). (7.7)

=1

3. The differential of R(z) is different from zero on P.
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Lemma 7.9. The Conditions 7.8 imply that the image of P through R(z) is S' covered
twice and precisely the preimage of each y € S* is the couple z, —%.

Proof. Let us factorize the application R(z) as?

ne =11 n= 1 =

j=1.2h j=1.2h

The image of P through each of the R; is S; covered once. The winding number of a
product is the algebraic sum of the winding numbers; it is easily seen that the winding
number of each of the R; is

o(Imb;) =o(Im biyp) =0(Im a;).

Finally as the differential of R in non zero on P then S; is covered by the image of
P. O

Standard theorems on compact Riemann surfaces extend Lemma 7.9 to an annulus

st

Proposition 7.10. There exists an annulus S} such that if we call V the connected
component of R~'(S}) which contains P, the following properties hold:
(i) R:V — S} is a double covering of S.

(i1) V' is invariant trough the application of z — —%; moreover if p,q € V.

To prove this statement we can use for instance in [F|, Theorem 4.22:

it Suppose X and Y are locally compact spaces and p : X — Y is a proper® local
homeomorphism. Then p is a covering map.

The map R : V — S} is clearly a proper local homeomorphism if we choose d sufficiently
small.

Corollary 7.11. Given a function D(z) holomorphic in a strip V' around P and such
that:

then there erists a function H(y) holomorphic in a strip Sk such that in V' UV
H(R(z)) = D(z).

Zclearly b; = ag, biyp, = —a; fori =1,...,h.
3we remind that a map is proper if the preimage of each compact is compact
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Proof. We fix d' so that the connected component of R~'(S]) which contains P is
contained in V.

For any y € S, there exists an open set A € Sé, such there are two open sets By, By
that represent it in V'; moreover for all z € B; —1/z is in By and vice-versa. This
implies that the function D(z) assumes the same values on the B; and so can be lifted
to A. Moreover the application B; — A is an isomorphism and so the lifted function
is analytic. O

Finally we can state the main theorem of this Section:

Theorem 7.12. Given any function R(z) satisfying Conditions 7.8 there exists a

unique Hamiltonian

L
—p°— F
P — Fla)
satisfying the Conditions 7.1 and 7.2, such that R(e”" is the motion on the lower branch

of the separatriz with initial data q¢(0) = w. The function ¢(t) on the separatriz is even.
Proof. Given R(z) we only have to prove that the function D(z) such that D(R(e ) =
G?/2 respects the prescribed symmetry. We know by expression 7.4 that

h

D(z) = QZQ(Z( Im a; n Im a; )2))27

~'(2— Req;)?+(Ima;)*  (2+ Rea)’+ (Ima

so we can directly compute D(—1/2) and check the identity. In the same way we check
that each summand of ¢(¢)

Im q,
—9¢t !
‘ Z (et — Re @;)%? + ( Im a;)?’
is even in t as |q;| = 1 for all i. O

Let us show some examples of functions R(z) satisfying all the conditions 7.8.

Lemma 7.13. The function

(z — i)4(z —a)(z+a)

Rol2) = z+i’ (z—a)(z+a)

P S

with |a| =1 and — < Im a < 0, has non zero differential on P.

Proof. As we have seen in the proof of Lemma 7.9 the winding number of Ry(z) is two;
moreover Ry(z) = Ry(—1/z).
We compute the logarithmic differential? :
8t +(a— a)( 1 N 1
——+(a—a
2241 22— (a+a)z+1 224 (a+a)z+1

d,log(Ry(z)) = ).

4we should compute it as well in a neighborhood of the point at infinity; it should be obvious

however that as R(z~') = ﬁ and the orientation is reversed then the logarithmic differential in
a neighborhood of the point at infinity is equal to the logarithmic differential in a neighborhood of
z=0.
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Now we set @ = a + i3 with 8 < 0 and o + 2 = 1 and impose that the logarithmic
derivative is non zero, this leads to:

83222 +2(—14+22) "+ B (1+22)°#0
which is equivalent to

—1-28+p+2p <0,

This holds provided that:

1
—— < B <.
5 B

7.2 Computation of the Wronskian matrix

Consider an Hamiltonian of the type 7.1 with F(q) satisfying the condition 5.11 and
f(q, ) a trigonometric polynomial in ¢ and a rational function of €.

We can repeat the procedure of the preceding Chapters to evaluate the
Melnikov approximation of the splitting matrix and prove Melnikov dominance
for systems with one fast variable.

We want to be able to repeat all the formal tree expansions and the bounds of section
3.1, to do this we have to compute a solution of the equation:

0 Fq(q

M = ‘ ] O(t)) M where q(t) solves ¢ = \/2F(q), ¢q(0) =, (7.8)
M(t) is a 2 x 2 matrix and M (0) = Id.

This is the fundamental solution of the linearized “pendulum” and has the role of the
matrix W in subsection 1.1.2. We have to check that M (t) is in Hy(b, d) for some b, d;
if this is true one can use the operator & defined in subsection 1.1.3 to extend the
integration. Then one can re-obtain the equations 1.30 for the perturbative expansion
of the whiskers only with different functions z which nevertheless are xJ € Hy(b, d)

2% € H(b,d) and with the same parity properties.

There are classical methods to find the solution of the linearized equation equation
7.8. First we consider the solution p(E,t),q(E,t) of the equations:

naturally p(E,t) = ¢(E,t) and ¢(0,t) = q(t).
By simple substitution we see that the couples

p(oaf)a q(oaf) and an(Eaf”F':Oa aF‘Q(EafHF:O
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are solutions of 7.8. Let us first consider ¢(t) = G(y(z)); having fixed a dynamics
") =y = R(z) we know by equation 7.4 that

h
Im a;
() — 9t ! .

i=1

Moreover by Proposition 7.6 ¢(t) is even® and has poles in z = a;, a;; ¢ is bounded for
|t| = oo and |Im(t)| < 27. So ¢ is in Hy(0, d) with d = min; arccos(| Re(a;)|) We know
that ¢(t) # 0 for all ¢ € R so the vector

m (1) = < ?(f)/ 4(0) ) satisfyes the condition my(0) = < (1] ) .

To compute dgq(E,t) we derive the energy conservation relation and obtain:

by variation of constants we obtain:

(7.9)

t
_ dr
qr(t) = Opq(E,t)[p=0 = ¢(0,1) 0/ (0, 7)

which is well defines as ¢(t) # 0 for all real #; moreover it is an odd function so
qr(0) = 0.Its derivative:

¢
dr 1
=109 [ 07 " e
is different from zero for ¢t = 0; ¢r(0) = ﬁ We notice that ﬁ is a function in

Hy(b,d) for some b,d as it depends only on z = e '. So qg(t) € Hy(b, D) for some
b, d as the integration can be written as f(: = ' — 3% which is closed on Hy(b,d).
Naturally gz (¢) will not, in general, be a function only of e * and it will have non-polar
singularities. This means that, to re obtain bounds like those of section3.1 ,one has
to prove that ¢ (t) respects a condition like 3.2°. Naturally as we have seen qp(t) is
not bounded (not even for the standard pendulum). We bound it exactly like we did

in section3.1 to bound analytic trees. The term S is a constant so we ignore it. The

even function () = d(]w has a double pole at z = 0 and at z — oo; moreover it has
poles for finite values of 2, coming in conjugated couples that we call b, b, ¢ R. If
q has 2j poles (the a;,a;) then [ = 1,2(j — 1). Naturally we have no guarantee that

|b)] = 1 so in general the poles are not purely imaginary when written in the ¢ variable.

and so naturally ¢(t) is odd.
6remember that the condition 3.2 is satisfied by all rational functions of e’ times polynomial in t.
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For |t| > max; | log|b|| = b we can write Q(t) as function of z = e~ !/(call it Q(x)) and
expand it in a Laurent series around x = 0.

Q(z) = Z Qpz”
p—

converges in the annulus 0 < |z| < e ®. When we apply the formal integration 1.18
to the expansion we obtain a purely polynomial term #Q),. So for |Re ¢| > b and |[Im
t| < 27 the function qg(t) is

(S°[Q(x)] — Qot)d(t) + d(t) - S'[Q(z) — Qul;

notice that the second summand is function only of z and has a simple pole in z = 0.
In the domain M (b,d) :=,|Re t| < b and | Im #| < d = min; arccos(] Re(b;)|) we
simply bound the integral with the maximum of the integrand and obtain that:

~ 1
max_qp(t) < 2bG(0) max ¢(t) max

te€ D(b,d) teD(b,d)  teD(hd) 42 (t)

We have found a matrix M with all the properties of W defined in subsection1.1.2,
namely it has the same parity and regularity properties, and the same qualitative
asymptotic behavior. So we simply substitute

wo(t) = 4(t)/4(0) zo(t) = o (t)q(0)qr(t)

in the definitions of the operators ; and we can perform all the symbolic tree expan-
sions of Section1.2. We have to prove again proposition 1.16, to ensure the possibility
of changing the first node. Then we use the bounds on x; to re-derive the bounds
on trees of Section 3.1. The cancellations of Chapter 4 depend only on the parity
conditions and on the symmetry of the operators (); so they still hold true.

Finally we have to compute the Melnikov integral which implies the same com-
putations of subsection6.1.1,provided that f is a trigonometric polynomial in ¢ and
rational in €.

Ezample 7.14. Naturally it is pleasant to have an explicit expression for zj and actually
it is not difficult to perform the integral 7.9. If we e consider the functions satisfying
Condition 7.4, we can compute the z explicitly (we have used Mathematica to do the
computations).

20 _Cj(t) . —2 (—1 —i—a) (1_|_a) et (1_|_€2t)
0 g0) 1+ (2 —402) et + et
148 et (1480 4411601
O P [ + et et (1+8a + o’t) 7.10)
4(&2_1) 1_|_(2_4a2) €2t+€4t)

th(1+8a4—4t+16&2t)}
1+ (2—4a?) et ettt &7

as usual a = Re a.
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7.3 Homoclinic splitting for the generalized pendu-
lum

We show on an example the procedure for proving lower and upper bounds for systems
with generalized pendulum. We consider the Hamiltonian:

1 1
5(112 + I +p*) + (cosq — 1) + 3 sin® g + n(cos() + cos(1y)) cos(2q),

this is a completely anisochronous system with three degrees of freedom. For n = 0 the
hyperbolic variables p, ¢ are on a pendulum-like separatrix and precisely the dynamics
is the one described in Example 7.7.

q(t) = 2arctan(v/2e~ + 1) + 2 arctan(v/2e ! — 1).
For n # 0 we have the perturbative equations:

Ik — p* .
-k 1 . . k k -k k (711)
pi =[5 sin2ao(1)) + 2sin(go(t))la" + Fy', - ¢ =p"

Where as usual we set 1y = ¢ and

FE = 00 (0" e+ Bl sin(2 3 )" 0) + 2sin (3 1))

h<k h<k h<k

We have computed the Wronskian matrix of such dynamics in the previous subsection,

see Equation 7.10
i o(t)al,

o e(+ey | 2(+et)t e+ 3e—3ett — et
Ty = — ‘2 1=
0 T4ett 770 1+ ett 2 (1+ett)

where

notice that this matrix has the same parity, analyticity and asymptotic properties
as the Wronskian of the linearized pendulum, studied in Subsection 1.1.2, so that the
boundedness conditions on the solutions of 7.11 lead to the recursive equations:
k otk kE_ Ak
I; =SF7, ;) = O;F;,

in the operator Oy the functions z{ and x§ come from the Wronskian of the generalized

pendulum.
0

Now we consider the spaces V(A) and V(7) and associate to trees the values V, W
and V;, W, exactly as in Subsection 2.1.1 and 2.1.2. The only difference is the explicit
expression of the functions z), which is irrelevant to the tree construction.
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The upper bounds we derived in Chapter 3 depend only on the degree of the poles
of the functions =, and of the ¢ dependent part of the perturbing function, in our case
cos(2q). The z} have simple poles in ¢'™/4+k7/2 and

~16¢?! (—1 + ¢2!)”
(1+ ett)?

cos(2q(1)) =

has double poles in e™/*t#7/2 As we are considering a system with three degrees of

freedom we could use the improved bounds of Section 6.2, to do this, however, we
should reformulate Proposition 6.12, which depends on the explicit expression of the
Wronskian (not only on parity and analyticity properties). This is straightforward but
lengthly so we will use the (much worst) bounds of Chapter 3.

Proposition 7.15. The sum of terms of order higher than one and < £7% in the

splitting determinant are bounded from above by’ :

OVE (—m=)le 7 ],

I\f [+

provided that || < |\/E[P*7. p is the degree of the pole of f(1)(t),q(t)) nearest to the
real axis, so in this example p = 2.

Proof. 1t is a consequence of the upper bounds of Chapter 3 and of Propositions 6.3
and 6.1. ]

The Melnikov integral for the splitting matrix is:

[ 1662 (—1 4 €21)’ tw
fin = / ( Y ) cos(—=)dt =
(1+ett) Ve

T W

IVe

W]

which, for e sufficiently small is dominated by e4v=.

fi; =0, fori#j; and fop =eCl(e,wy) #0,

) (2 /7 sink( :

) co(F2L) )

B

for some order one C'(g,wy).
Finally the splitting determinant is bounded from below by:

W]

Ceive, if nel? < &

"we consider a three time scale system so g = 0



Chapter 8

Arnold diffusion

In this chapter we present a brief review of the procedure necessary to prove diffusion
of the action variables, once given lower bounds on the splitting determinant. There
are essentially three steps:
1) Prove the existence of heteroclinic intersections namely that for n < e and given
w,wy € §2y such that

lw — wo| < F(e)

there exists ¢(w,wy,n) such that!

I;(qg(waw()an)ﬂva(w)) (QB(W wo, 1), Wo, p(wo))-
Then the point

Zﬂ(wvwﬂ) (é(w Wo, 7 ) ( )) é(w Wo, 1 ),71'

lies in?

W, (w, p(w)) N W, (wo, plwo)) N {g = 7}
2)Compare the mazimum distance for w and wy F(e) with the size of the gaps of
preserved tori, given by the Normal form theorem discussed in Appendiz A.4.
3) Prove the existence of a trajectory which “shadows” a chain of heteroclinic connec-
tions and has order one drift in the actions. We will not give any proof of this third
step, but only cite some articles that contain the proofs of our claims.
Let us repeat some definitions (taken from [C]) already cited in the introduction.

Definition 8.1 (Heteroclinic chains). A heteroclinic chain is a set of N > 1 tra-
jectories 2'(t), ..., 2N (t) together with N + 1 different minimal sets® Ty, ..., Tn such
that for all1 <i < N

lim dist (2'(t), ;1) = 0= lim dist (2'(t), T;).

t——oc t—o00

1See Section 1.1 for the definition of p(w)

?see Theorem 1.1.1 for the definitions of W (w, rho)

3A closed subset of the phase space is called minimal (with respect to a Hamiltonian flow ¢} ) if
it is non-empty, invariant for ® and contains a dense orbit. In our case the minimal sets will be
unstable tori T'(w;) with w; € Q,.
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Definition 8.2 (Transition chains). A heteroclinic chain is called a transition chain
if for any r > 0 there exists a trajectory z(t) and a time T > 0 such that

dist (2(0),Ty) <r, dist (2(T),Tn) <71, sup dist (2(t),Z) <r
0<t<T

where 7 is the closure of the union over i of the {2'(t) : t € R}. The sets Ty and Ty
are said to be connected by as transition chain.

Definition 8.3 (Arnold instability). Given E € R consider an Hamiltonian h(e)
(with Hamiltonian flow ¢, ) such that h(0) represents an integrable system.

The system (¢}, h='(E)) is called Arnold unstable if there exist two positive numbers &g
and dy such that for all € € (—eg,e0) there exist (closed) invariant sets T'(€), T'(e) C
h~=Y(E) satisfying the following conditions:

(i) T'(e), T'(e) are continuous, at € = 0, in the Hausdorff metric and if I1; denotes the
natural projection over the action variables then

IL,T(0) = {1}, TL,T'(0)={I'Y, with |I'—1I|>dy;

(ii) for each 0 < |e| < ey T((g), T'(¢) are connected by a transition chain.

8.1 Heteroclinic chains

In this section we deal with the first two steps of the proof of Arnold instability, namely
the construction of heteroclinic chains.

8.1.1 Heteroclinic intersection for systems with one fast fre-
quency

In the following we will consider systems with one fast frequency and in the a-priori
stable variables of Hamiltonian (1.10). We can fix u = £ and ensure Melnikov domi-
nance, as discussed in the previous Sections. This means that we have lower and upper
bounds on the splitting determinant (and on the eigenvalues of the splitting matrix)
of the type:

_1

agPe”“ * < det A’(w) < be Pe

=

The coefficients p, a, b, ¢ depend on the perturbing function f.
We consider the function:

F(p,wo,w) =1, (¢,w, p(w))—L} (¢, wq, plwo)) = ev/e (I, (0, w, p(w))—L} (¢, wo, p(wp)))
where w, wy € €),. Notice that

OF
F(0,wp,wg) =0, det a—(O,wg, wo) = 2"e™? det A% (wyp).
¥
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Hence from the implicit function theorem there exists a function ¢(w, wy, ) for which
Fu(@(wa Wo, 6)’ w, C‘)U) = 07

provided |w — wy| is small enough. Fixed wy standard computations (see [C]) show that
the smallness condition is:

_1
w — wo| < Ce e 2 2,

To prove the existence of heteroclinic intersections we have to prove the existence of

_1
a chain of KAM tori at distances of order B = O.(e”“® ) for some C' > 2¢, namely
we have to adapt to our anisotropic setting (one fast and many slow time scales) the
classical techniques discussed in detail in [C] or [CG].

Proposition 8.4. There exists a list of Diophantine frequencies wy, ... ,wy, € Q such
that: 1
. G 1
(1) VE|ws — wipa| <e 97 (i) e 2|, (wi — wp)| ~ O(1), (8.1)
where 11, is the projection on the n-th component. To each of the frequencies w; is
associafed a preserved unstable invariant torus of Hamiltonian 1.10, T (w;, p;) (with
pi € [=%,1]) of frequency \/Epw;. The scaling factor p; is chosen so that all the
invariant tori are on the same enerqy surface, as explained in Remark??.
To prove the Proposition we proceed in two steps:
1. Define an appropriate set €2 of Diophantine frequencies respecting condition 8.1.
2. Prove the existence of unstable KAM tori of frequency: /epw for p € [—3. 3]
and w € ). We will only sketch the proof of this second point.

_1 .
Definition 8.5. Given an order one C; > 2c, set Ay = e ©* 7 and consider the set:

A

(a) Velw 1| > W

Q= {w e Q: 5
€

(b) Velw-1 > W

As there is only one fast time scale the condition w € €2 can be given only on the

slow variables, while the fast variable is obtained by “ energy conservation” w € ¥ (X

is the ellipsoid of Definition??), namely we consider a function F: R* ! — ¥:

VieZ" {0} i1 #£0

Vi€ zZ"/{0} i1, =0

2 1,2
Ti—e T2, Toy ..., Tnt,

% < B<1)and R,r, Ry, 1,15, appropriate order one constants’

so that given g = —+a
and defining:

Q:={0eR" @2 €cQ} wehave Q=F(B(R,r)NM)

4This conditions automatically imply 7 < y/zw; < R, notice that we are not using the same
notation as in 77, here w; is always the i'th component of w.
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where B(R,7) C R*! is the spherical shell® of radiuses PR, ePr and
M:={weR" " er; <w,<eRy, w; >re?, i=2,...,n—1}

As we always deal with @ = \/ew we will omit the tilde rescaling all the relations. The
Jacobian of F'in B(R,r)N M is bounded from above and below by order one constants
so that given a measurable set® S C Q meas(F~'(S)) ~ meas(9).

Condition (b) naturally defines subsets of B(R,r) N M, moreover we can project
the set respecting condition (a) on the subspace of the slow variables, call this set
Q4 C B(R,r)N M.

Let us call S(z) the n — 2 dimensional sphere centered in the origin and of radius £°x.
We take , 2r < R and consider R so that

>

R1/2<R<R], % (82)

==

Definition 8.6. Consider the sets

SQ ::{w € S(R) . 8(R1 — (Rl —}?)/4) §wn S 8(}?4— (Rl —}?)/4), W Z T286, Vi %n},
Ss ::{w € S(R) :eR) <w, <eR, w; > roe? W#n}.

M N S(R) D S5 D Sy; and the sets all have measure of order ("=3)8+1,

Given a set X € S(R) its cone C(X) is the set of semilines stemming from the origin
and reaching points of X. We consider truncated cones T'(X) :=C(X)NB(R,r), and,
foranyr <a<b< R, T,,(X)=T(X)NB(b,a).

Notice that by 8.2 if X € Sy then T(X) € M N B(R,r).

Remark 8.7. Recall that given a measurable set X € S(R), the cone of X is measur-
able and meas T(X) ~ &% meas (X), meas T, ,(X) ~ (b — a) meas (X).

I
Definition 8.8. Given Ay = e~ * with 2c < Cy < C, and for alls € R, 1 < 5 <
AR/r, we consider the sets:

Qa(s) ={w e B(R,7): |w-1| > VieZ" {0} || < Ay},

i

Q3(s) ={w e B(R,7): |w-1| > gli; vie 7" '/{0}}

Remark 8.9. Standard measure theoretic arguments imply that the sets (S;(s) N
S(R))¢ N S(R) all have measure of order e™=38+2; this implies as well that (€;(s) N
S2)¢ N Sy has measure of the same order and the same holds for intersections with Ss
and for (Qy(s) N Q3(s) N S2)° N Sy. We will repeatedly use such relations.

®We call spherical shell of radiuses b,a the n — 1 dimensional domain {z € R"~! : a < |z| < b}.
6The symbol ~ means that the two measures are of the same order in «.
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Lemma 8.10. (i) Given a point w € Qy(2R/r)N Sy the whole solid ball B,(w) of center
w and radius p = e2Ay"7 is contained in Qo(R/7) and its intersection with S(R) is
contained in Ss.

(ii) The whole truncated cone T(Q2(R/1) N S3) is in Qy(1), same for Qs.

Proof. (i) First notice that any n — 2 dimensional “ball” B,(z) N S(R) € Sy if z € Ss.
Now consider w € Qy(2R/r) N Sy and a vector z € R"~! on the unit sphere:
]

(W +pz) - 1] = [lw - 1] = |llpl = |w-](J1 TPl ),

il
as
w-1] = 2Re?

and || < Ay, setting p = £2A5"" we have 0 < ph‘%m)%

(i) Given a point = € Q3(R/r)NS(R) (orinz € Qo(R/r)NS(R)) then rz/R € S(r)
moreover for r/R <t < 1:

Re? g2

tr-l| =tz -l|>r/R— = —
el i

O

Lemma 8.11. The set Qy(R/r) N S(R) is union of a finite number of disjoint convex
domains. Each domain is contained in a n — 2 dimensional “ball” of radius CseP A,
for an appropriately fixed order one Cs.

Proof. (Q(R/r) N S(R)) =

Re? Re?
U R (@ D) < 2 y),
r|l] r|l]

S(R) N ({m ER: (z-1) >
tezn—1
[1]<As
now the intersection of sets such that each connected component is convex has the same
property. Suppose, by contradiction, that there are points zy, 29 € Qy(R/r) N S(R)
such that the arc ;1 is all in Qy(R/7)NS(R) and has length grater than 2R~ 1/ne’ A,.
Let (x1,x9) be the plane generated by the vectors z1, z9, and on it consider the sector
S of unit vectors orthogonal to x,z9, this sector has angle ¥ = 2y/nA,. The product
space of (x1, 7o) with the sector S is a multi-cylinder in which there cannot be entire
vectors | € Z" ! with |I| < A,
Now we consider the intersection of the multi cylinder with the sphere |z| = A,' —2/n,
on (1, xs) it is an arc of length greater than 2,/n so that a ball of radius y/n is contained
in the multi-cylinder. Now in each ball of radius /n there is at least one entire vector.
Namely let = be the center of the ball then [z] (entire part of each component) is entire
and |z — [7]|s < 1. O

Let N be the number of connected domains of Qy(R/r) N S(R) contained in Ss.
FEach domain contains an n — 2 dimensional “ball” of radius p = £2A3%", so that
N < A;(”*Q)(T+])56(n72)72n+5.
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Let us now consider the Cantor set Q3(R/r) N Ss;, by Remark 8.9 we have that
(Q3(R/7r) N S3)¢ N S has measure of order e™~9%+2 This implies that Q3(R/r) N
S3 N Qy(R/r) is not empty and the measure of (Q3(R/r) N Ss N Qu(R/7))° N Ss is of
order g(n=3)5+2,

Lemma 8.12. There ezists a connected domain D of Qq(R/r) N Sy such that
meas (DN Q3(R/T)) > Aé””)(””“.

Proof. Suppose the assertion to be false, then calling D; + = 1,..., N the connected
domains:

N
meas Sy ~ meas (Qz(1/r) N S3 N Q3(R/1)) = Z meas (D; N Q) < AP0y

i=1
which is absurd. O

Then we can use Lemma 8.10 (ii) and consider the truncated cone T'(D) C (1),
by Lemma 8.12 P = T(D) N Q3(1) has measure of order AJ'™™ 2F128: namely the

the Cantor set P contains all radial segments having an endpoint in DN Q3(R/r) and
the other on S(r).

Consider an n — 1 dimensional ball of radius p ~ %A, centered on a point x € D
and which contains D (such ball exists by Lemma 8.12). Given h = [2(:5;)]’ consider
the points z; = t;z with t; =1 — 3/2ip h > 1 € Ny and let us cover T'(D) with a finite
number of balls B; of radius p and centered on points x;.

Setting p = 2C3e° Ay we have that B; N B; is empty if |i — j| > 1 and each B; N B;yy
contains a truncated cone T,, , (D) with b, —a; > p/4. We consider the sets P, =

T, 0, (D) N Q3(1), by Lemma 8.12 each P; has measure of order sﬂAQ“)("*Q”Q.

Now we consider the Cantor set €0, whose complementary set in M N B(R,r)
has measure of order e™ 28+1 4, Its intersection with P, has measure of order
551451”)("72)”, provided that 4; < AgTH)("*QHB. Consider a list w; € P, N €y; for
each ¢ we have that w;,w; 11 € B;;1 so the list respects condition 8.1(i) moreover

_ r
miny, > R — 20e% A, and max Yn < =R; + 208 A,
y€Bo yEBy R

for some order one C so the list respects condition 8.1(ii).

In the Appendix A.4 we have proved, generalizing similar results of [GGM3], that
there exists a symplectic transformation, well defined in a region W of the phase space
(I,), which sends Hamiltonian 1.10 in the local normal form:

1
5(']7 AJ) + \/EGI(PQJ \/g) + /’L.ql((ﬁsa ']7 PJ Q) + afl(¢7 ']7 PJ Q) (83)
where o = Og(e’cgf%) for any order one C. W is of order one in the actions both in

the fast direction J; and in the degenerate one .J,,, namely there exists points wy, ws €
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W such that |II;, (wq — we)| = O:(1). We can then prove a KAM theorem for the
Hamiltonian 8.3 for u < &? with the frequencies w in Q by choosing (4,)? < a.
Roughly speaking KAM theorems are proved by performing an infinite sequence of
symplectic transformations defined in a set of nested domains whose intersection is not
trivial. Each approximation step reduces the order of the perturbation quadratically
and is well defined provided an appropriate smallness condition is verified. Roughly
speaking such condition is of the type:puy 2 < 1 where p is the small parameter and
v is the Diophantine constant of the frequency w of the preserved torus. To apply this
scheme to Hamiltonian 8.3 we first perform a finite number of approximation steps
on the slow variables with .J; as a parameter; the small denominators involved are
|ws - 1| on which we have the stronger Diophantine condition so that the approximation
scheme works provided that ue~* < 1. Eventually we will reduce the p perturbation
to order av and then continue with the classical KAM scheme on all the variables now
the smallness condition is a4, ? < 1.

Remark 8.13. One could try as well to formulate a quantitative version of the im-
plicit function theorem on rectangular domains like those ?7. Actually this is quite
straightforward for isochronous systems and using the results of section 5.This would
be a first step in proving fast Arnold diffusion for isochronous systems with three time
scales, which is treated in detail in [BB2).

8.2 Transition chains

In the preceding section we have proved that for n < & any two tori T(w, p(w)),
T (wo, p(wy)) With w,wy € Q. whose distance respects ?? are connected by a heteroclinic
intersection. Then any two tori T'(w, p(@)), T'(wo, p(wp)) with wy, @ € Q, are connected
by a heteroclinic chain composed of

_ TeT T
n o~ |w— wle
invariant tori.

Proposition 8.14. The heteroclinic chain connecting two tori T'(w, p(w)), T (wy, p(wo))
with wy, 0 € €1, s a transition chain.
The Hamiltonian 1.1.1 having one fast frequency and p < ¥ is Arnold unstable.

This proposition is the adaptation to Hamiltonian * of [CV]. In particular it follows
from the following Proposition of [CV].

Given the heteroclinic chain 77, z; we call U; a neighborhood of 7* where one
can apply the Normal Form Theorem and then Theorem 1.2, we call W;I{)Z the local
stable/unstable manifolds and w; an intersection point

Finally we denote, for i =1,..., N — 1, by Aj a connected n + 1 sub-manifold of W},
contained in U; and intersecting transversally on the energy surface at w; € Uj.

u
iloc
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Proposition 1. of [CV] Given a neighborhood B; 1 of some” & 1 € AZ  N(W™,,..)°
one can find & € A N (W, )¢, a neighborhood B; of & and a time T; > 0 such that

iloc
¢o1iB; C Bi_,.

"The superscript ¢ denotes the complementary set



Appendix A

A.1 Examples of functions in B(b,d)

We give examples of functions F(e') having non polar singularities and respecting
however condition 3.2 in the domains C'(b, D — /) where D is the (by hypothesis non
polar) singularity nearest to the real axis.
We will not consider the classification of such functions but only prove the existence of
a class of functions f (1, ) trigonometric in ¢ and such that' f(¢ + wt, ¢(¢)) has a non
polar singularity in D respecting condition 3.2. Notice that the only entire functions
of ¢ in this class are the trigonometric polynomials.

Let us first state an obvious property of the exponential function (which can be
verified by direct computation):

Lemma A.1. The function f(z) = e* 0 with a, z, 29 € C has an essential singularity
i 2y and is bounded in the region:

Re (z — z9) Rea+ Im (z — z) Ima= Re (a(z — z)) < 0.

Now let us consider analytic functions f(v¢,q) = f(v)g(q) where f(¢) is a trigono-
metric polynomial and ¢ is even in ¢. Then g(q) = G(cos(q)) with G(z) real analytic
for x € (—=1,1) and bounded. We want to find functions G(x) such that G(cos(q(t)) is
bounded in some C(b, d).

Let C be C deprived of the half line Im z =0, Re z > —1.

Theorem A.2. For any zy € Cy there exists a function G(z) such that G(z) has
singularities only in 2o, 29 and G(cos(q(t)) is limited in C(b,d(zo) for some b.

To prove the Theorem let us study the map

2

t — z = cos(q(t)) :l_m

lin this Appendix we will restrict our attention to ¢(t) being the separatrix of the standard pen-
dulum. We do this only to write down simple formulas but naturally the same reasoning hold for any
q(t) discussed in Chapter 7.
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which is analytic for t € R x (—in/2,im/2). Moreover as the map is even we will
consider only the domain ¢ € R x [0,47/2) whose image through cos(¢(t)) is C minus
the half line Im 2z =0 Re z > 1.

We will study the curves z4(s) in C for fixed d € (—in/2,iw/2) which are the image of
the lines ¢ = s + id with s € R.

The following statements can be easily verified by direct computation.

Lemma A.3. For each 2y € C; there exists a unique /2 > d(zy) € R" such that the
curve

Z(S, ZO) = Zd(zo)(s)a

passes through 2.
The z4(s) are all closed curves whose curvature is different from zero for all s € R.
The curves zq(s) are all symmetric with respect to the real azis and z4(s) = Z4(—s).

For all zo € C; such that Im 2y > 0 let L(z9) L(Zp) be the lines tangent to the
curve z(s, zg) in the points z, z. The symmetry of the z4(s) implies that the equations
of L(zy) L(2o) are respectively:

Re(a(z — z9)) =0, Re(a(z — 2)) =0.

Moreover let 2%(s, z9) be the intersections of the curve respectively with the half planes
Imz>0and Im z <0.
Standard considerations on smooth curves with non zero curvature ensure that the
following Lemma holds.

Lemma A.4. The curve 2 (s, 29) (resp. 27 (s, 20)) and a balP B, (1) with r sufficiently
small, are both all one one side of L(zg) (resp. L(Zo)) and touch the line only in z = 2

(resp. z = %) ).
Proof of Theorem A.2. Given zy € C let us suppose that
27 (s,20) € Re ((a(z — 20)) <0, 2 (s,20) C Re ((a(z — z)) >0,
This implies that the function:
G(z) = e + eGm (A1)

is bounded inside z(s, z9). Moreover for any x € R G(z) is real. Clearly if 2y € C is
such that

2% (s,20) C Re ((a(z — 20)) >0, 27 (s,20) C Re ((a(z — 2)) <0,

we will choose
G(z) —=¢ G20 4 ¢ G20,

2B, (z0) is the ball of radius r centered in z.
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Theorem A.2 shows that the condition f € B(a, d) does not imply that f is rational
if d # m/2 on the other hand if d = 7 /2 then the following Proposition holds:

Proposition A.5. Consider an analytic function f(q) (¢ € T) such that f(q(t)) €
B(a,7/2) and f(qt) has isolated singularities. f(q) is a rational function of .

The image of Imt = 7/2 through ¢t — z = €'?®) is the half line Re z > 0, Im z = 0
and in general the image of ¢ + id with ¢ € R is plotted in Figures A.land A.2.

2i

A

Figure A.1: Figure A.2:

So the Proposition is equivalent to the following:

Proposition A.6. Consider a single valued function g(z) with z € C analytic in
B/{0} where B is some ball centered in zero. Moreover suppose that for some (non

zero) k:
lg(2)|l Imz|* < C

in B/{0} then g(z) cannot have an essential singularity in z = 0.

Proof. The proof of this Proposition is due to Prof. D’Ancona

The proposed bounds have polar growth in
the sectors |[Imz| > |Re(z)|, now if we in-
tegrate g(z) k+1 times and call G_(z) the
k-+1 primitive obtained by cutting away Re
t =0, Imt <0 and starting from a point
zo with Im zy = 0 Re 2y far from the origin
(but still in B) °

G(2)| < C".

To prove this let us perform one integration
on the path proposed in FigureA.3 Figure A.3:

The part that is not close to the singularity is bounded by some constant while the
integral on the line parallel to the imaginary axis gives the bound

|/g(z> < (Imz)*".
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The primitive Gy obtained by choosing the cut Re t = 0, Im ¢ > 0 differs from G _ by
a polynomial of degree k. Now given a point w in [Imz| < |Re(2)| we consider a circle
C of radius |w|/2 centered in w; the circle does not intersect the imaginary axis so:

G(Z) C]
o)l = |/ (w — z)kt! < |w|k+1
c

independently of the chosen primitive.

0
A.2 Evaluation of the coefficients T'(k), N (k)
We will prove that:
T = 3 5oy < ()
AcAk
e (A.2)
Nik) =D =g < Un)”

k
AeA]-

where n, is the number of nodes in the list v, s(v) that have label j = 0.

This are standard computations on trees and can be found for instance in [Bo] for
trees without grammar. However here we present an easy and self contained proof of
this statement for our set A’;. We will rely some adaptations of the results of Section
1.2 which we will not prove again.

Given a real parameter a and two real analytic functions f(x,y), g(y) with z € R* and
y € R, such that

9(0) =0 Vf(0) =1, d,g(0) = 1.

consider the equations:

z; = iy, f(z,y) for i=1,....n g(y) = ad,f(z,y). (A.3)

This relation is invertible in some |a| < o where the solution z(«), y(«) is analytic in
.
We determine the series expansion

(o) = ngh)(xh where xy =y,
h=1

o

recursively like in Subsection 1.1.4:

k—1

k—1
xl; = ij with Fy‘k = (04,04, f(z Oéhx(h))]kfl — (5]-0[.(1(2 ah‘xéh'))]k.
h—1

h=1
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The theory we have developed in Chapter 1 implies that the series expansion can be
represented by labeled trees and precisely:

ko 1
PP

AcAk

where the value of a tree ®(A) is:

TTC TT 200" FLe-oyes:

vEA  v'eEs(v)

with f' = f and f = —g. Notice that fY appears only through its derivatives of order
greater or equal than two.
To bound Tj(k) we choose

fla,y) = e=="4 0 g(y) =142y — ¢,

so that the value of any tree is one and 7}(k) = xf Now A.2 can be computed by

estimates on the Taylor coefficients of z(«). An easy direct computation shows that
relations A.3 can be inverted for

1
o] < —  which implies A.2.
4n

To bound N;(k) we choose :

62?:1 xg

I—y

f(x,y): ) .G(y)=1+2y—ey.

Again easy computations show that the relations A.3 can be inverted for |a| < £

A.3 Notions on lattices in Z"

We briefly review some useful properties of lattices in Z".

Let vy, - -+, v, be vectors in Z"; we will call V' the n x h matrix whose columns are the
v,;’s and K (V) the lattice spanned by the v;’s with coefficients in Z.

Two vectors v; v; € Z" are independent if av; +bv; # 0 for all a,b € Z"; clearly in any
list of vectors in Z" there are at most n independent ones, our vectors v; will not be,
in general, independent.

Nevertheless, for all w € K (V') we define the “coordinate sets”:

Ay ={a€Z": Va=w}

these are the cosets of Z" modulo the relations between the v;.
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On K (V) we introduce the function®

h
lw| = min Z a;)|.
(LGAw

i=1

We will then use as coordinates of w any vector a € A, that realizes the minimum of
|w.

Definition A.7. The n positive numbers d,, - -- ,d, such that*

d] — M(Jd ('U]ja e 71)hj)

are the divisors of the lines of V.
Notice that the lattice K(V)) C Z™ even if h > n.

Lemma A.8. K(V) = Z" if and only if the determinants of the n X n minors are
coprime. Given w € K(V) w; > d; for each j =1,...,n; moreover for h > 2 for each
j there exist infinite vectors w € K (V') such that w; = d;. Let us call

W;={we K(V): w; =d;}.

Proof. The first assertion is obvious: it is sufficient that one divisor d; # 1 and the i
coordinates of all the vectors in K (V') are divided by d; so that e; is not in K (V).

The second assertion is a standard theorem on lattices in Z", it is not immediate so
we will not prove it. The third is almost the definition of Mcd: any linear combination
(in Z) of numbers all having a common divisor has the same divisor. If we consider
k coprime numbers then there will be at least two having Mcd equal to one. This
implies that there exists a unique linear combination of this two numbers that gives
one. The required linear combination of all the numbers is obtained by adding any
linear combination of all the numbers that gives zero. O

Definition A.9. For each j = 1,....n we define the projection m; of K(V') in the
direction j as

m; = min |w|.
’ weW;

Let us now consider the lines of the matrix V' ( call them v" )

Proposition A.10. For each j = 1,...,n there exist vectors u € K(V) such that
u; =0 and u; # 0 for all the i such that v} # cw; with o € Q. We call the set of such
vectors U;

3Tt is easily seen that this is a well defined norm on K (V).
4Mecd is the maximum common divisor.
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Proof. Consider the sub-lattice orthogonal to 7)}

T _ vty —
Uj ={y : vjy =0},

now suppose that there exists v} orthogonal to U; and which is not parallel to 1); in Q.
This is a contradiction as v+ = v. O

Definition A.11. Foreach j = 1,...,n we define the projection r; of K(V') orthogonal
to the direction j as
r; = min |u.
uEUJ‘
If we have a perturbating function with frequencies +uy, - - - & 14, the lattice K (V)
where v; = v;, gives all the possible frequencies reached in the perturbation series. We
are interested in how the various possible frequencies are reached and particularly at

what order of the perturbation. Consider the following discrete-time dynamical system
on Z":

e At time one we have the list of vectors V(1) = {v;(1)} = {£w;}

e At time [ we have the list of vectors V(1) = {v;()} = >2,_,,v;;(1) (sum of |
vectors of {v;(1)} ). '

The vectors {v;(l)} are the possible values of the total frequency (), v,)of a tree
of order [.

This dynamical system never enters inside the rectangle centered in zero of length
2d; in each direction 7; nevertheless it touches each side of the rectangle infinite times.

Lemma A.12. Let [(j) be the first time such that one of the vectors {v;(1)} has the j
component equal to the divisor d; and o(j) be the first time such that

Vi(o(7)) NU; # {0},
then , I(§) = m; and o(j) = r;.

Proof. The two proofs are identical so we will consider only /(3).

The time [(j) exists and is finite, so consider the elements v of V(I(j)) that have the
J component equal to the divisor d;.

I(j) is minimal, so if the sum expressing v contains v; then it does not contain —; and
vice-versa. This means that:

k
0= v (1) => kv with k; € Z and Y [k;| = 1(j).
1=1 i

Now the vector k € Z" is in Ay, if there existed k' € A, such that Y, |hs| < I(j) this
would contradict the minimality of /(7).
U



150 Appendices

A.4 Normal form theorem

To obtain bounds on the convergence radius py of the KAM theorem 1.1 we perform a
symplectic change of variables that brings Hamiltonian (*) in local “normal form”. We
will use the standard notations (see [Pd], [BG], or [CG], [GGMI1]) and the existence
of the fast time scale. For systems with one fast time scale this provides a symplectic
change of variables defined in a region W such that II; W O.(1), that sends the

perturbating terms depending on the fast angle to order e 7 for some B(n) < 1. This
will be the basis for proving Arnold diffusion for systems with one fast variable. For
completeness we state the theorem for m fast variables. The first step is to set the
pendulum in local hyperbolic normal form (see [CG]J), we obtain the local Hamiltonian:

LU AT+ VEG(pa, VE) + 1 (0, 0,1) (A4

where the function G(.J, \/€) is analytic for |J| < k2 ~ /2 and will be written as Taylor

series: G(J) = > ,o, J*Gy.
The perturbating term f(p,q,) is a trigonometric polynomial of degree N in the
rotator angles and an analytic function of p,q < ky. So we consider the domain:

W(ko, SU) =W, := {|p‘, ‘q| <k I€ ‘/[](8) CcC'eT" x (—7:8(],7:8[])},

where V{(¢) is some n-rectangle contained in D(a, ) (i.e. such that II; Vy(e) = O(32),

a;
see Chapter 1 for the definition of the sets D(a, 9)).
We write f in Taylor series:

F(p.a, %) =Y fornptae™ .

For all s < s9, k < kg we use the weighted norm:

s = | flws) = Z €S‘V‘|fu,z,h,

Definition A.13. Given a sub-lattice A € Z™ and a point set D € Vi(e) we say that
D is K — 8 non-resonant modulo A if for all I € D:

k2(l+h)eiu-1/1.

w()-v|>8 Y :v¢g AN v <K.

If Ag is the lattice generated by the N frequencies (v; € Z") of f, we set A € A to
be the sub-lattice orthogonal to the fast components.
We choose a point set D in the following manner:
let P be the set of vectors w € Q (see Section 1.1) such that |w; - vp| > == for an
order one 7.
Given o € R*, the domain D(rg) is a thickening of P such that VI € D(rg) there
exists w € P such that :

Al —w| < e arg
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for 1y < R; in the following we will set b = % + a.
Lemma A.14. Dy = D(ry) is B — K non-resonant modulo A with

K= (-1 1

e )T B = ()T (4R T

Proof. Given I € D(ry) w(I) = AI is e’r¢-close to an w € P so
w(I) - v| > |wr - vp] = (¥]wellv| +&"rolv])

with 7 < |ws| < R so we set:

1
,8bTU‘V"}/71‘V‘TF+1 < 1

"z |y~ [

O

We construct an analytic symplectic transformation (p-close to identity) of the

form:
v|<IN

|
1d+pS(Ip' ) = Td+ Yt 0 Sy whe" e,

<i<E  vFA
that brings the Hamiltonian A.4 in the normal form?®
(I' AT') + VEG (pa, V/E) + jugr (V5. T'. 01 1) + 0> o0 T' 2. o),
in a suitable domain D'(ry) x T}, x B; , where
D'(r)=D(r)N{I: 3w € P such that |a;] —j — w;| < ree” ¥ }.
The Hamilton-Jacobi equations are:

PAL - Sy + SpP|ASy|? + VEG(ap' + 14S,)) = VEG (P'q + p'Sy, 1)+
(A.5)

pg1 (Vs + pSp I 0l q + Sy, e, ) — uf (' + S, g, ¥) + o(p™)

and we assume that we can find some domain D'(r) x T? x B} such that the functions
in A.5 are evaluated inside their domain of analyticity. We will call [T, the natural
projection on functions NOT depending on the fast angles: I, f(¢,p, q) = g(¢s,p, q)
and II; the natural projection on functions depending only on J = pg:

F = Z Fypnptqe™® 1, F = Z Fopn(pg)".

5The separation between the integrable G; and the non integrable g; is kept only because we
will eventually set up a KAM scheme for the slow variables, so we need to estimate the size of the
integrable part.
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We are looking for a symplectic transformation such that (II5)S = 0, we will solve
the Hamilton-Jacobi equations recursively and determine the functions G (J, pu) =

Siso WG (T3 i) and pgi (s, I,p,q, 1) = > ;o1 1'91(Ys, I, p,q;i). The first order leads
tof: -

G1(J70):G(J)’ G](Jal)_%r[]fa gl("/)LS'aI’ap,aqla]-):(H/\*HJ)fa
(1) Jvken
PR v+ (k= h)VEG, ()

The term i[I"-v]+ (k— h)\/eG;(0) = D(v, k, h) is the “small denominator” that in
our case (i.e. up to order %) admits the lower bound D(v, k, h) > 8 provided that I' €
D'(rg). The higher order terms are determined recursively; we set zS<! = S0 hS®")

and [f (1)) = §0,.f lu=o-

Gi(J, 1) = ZIL[(? 5 ASS ) + VEG(ap' + naSy")) — VEG (Vg + 'Sy, 1) —

—pgr (Vs + pS5 T p,q+ Syt e, p) + pnf (0" + S5 g, ¥)))

the remaining resonant terms are in gy = > -, u™ g1 (s, I', p', q; m):
g1 (s, I, 9, q; 1) = Ty = TL)[(5p2ASSH? + VEG(qp' + pgSyh)) — VG (p'g + 9/ Syt 1) —

— g1 (s + pSEL I p g + pSyte, w) + nf (0 + S5 q,9)))

the terms of order u! and such that v # A fix the value of S% - We expand the Taylor
series only in this expression. The symbol {k;}} means the set of vectors in N such
that Y. | k; = k, while {1;} is the set of r vectors in Z" such that > ., v; = v.

o _ 1 L (m) (1-m)
Sk = - D(vk h)[ > 3200 k1 P00 e (v, Av®)+

y(U-{—y(Z) v

+\/_Z Z G(p'gli_ 1Su, in it

r>2 (k7 ARl
ity Avily

1 r r i
Z Z Fap’ f(p’; q, \I])Hvzlk7S£l“3€uhz_

r>1 kg, {hidy,
Y {vidd,
-2 I-m 1
r r (1)
Ve E (ﬁalG 1(p'q; m)TT 1S ki i i —

m=0 r>2 {k;}}.{hi}},
{tiy)_ o Avite

6Notice that the pendulum and rotator terms cannot cancel each other, this is a consequence of
the locality of our analysis.
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I-ml—-m-—r

Y Y ¥y % 2

m=1 katkp=k, latlp=l-m, r>0 20, {ki¥p o Ahid], o {kidg k)5,

hg+hp=h vg+vy=v - r+s>1
a+thy a+tvp i3] Avidia {li}ﬂg{”i}ﬁb

(r's' 0 &’SQIWS" Pgm )szlki(s( ;c = 1V15uj,k

To avoid proliferation of symbols we will set:
max(| f|o, |Glo) = Eo and choose 1y > 1 so that rge% =% > roge = Ay > k2. Finally we
will call b; = max(b, §; — «;).

Proposition A.15. Consider the nested domains: Dy = D'(r)) x T} x B where
r = %Tge*lf, s; = so(1+1&) and ky = %k‘ge*lf; the following bounds hold':

]’hJ

Shial < CLI=1)IB (G D))< Gyl = 1)IB!

91 (s, I 0 D)1 < Gyl — 1)1 B

with Cy = E ,Cy=0C3=FEy and B = Cg;/:‘lgz for some small enough order one c.

Moreover the so defined transformation is a biholomorphism: Dy — Dq provided
that £ = 7%, pBK < 1. Thus the system can be written in normal form for

62k4€2
K3
in the domain D(r) x T" x B}, with r = trge */* |k = Lkge *0/* s=5,/4.

(A.6)

Remark A.16. Notice that for systems with one fast time scale the domain P coincides
with the whole W (k, s9/2) as all one dimensional vectors of norm one are diofantine
with order one ~y. Moreover in this case f = O(1) as well so if we choose K = ﬁ, the

bound on s p < £3 .

Remark A.17. Notice that if we choose K = O.(1) we can perform some steps of the
normal form theorem for p < e so for order one n = u/e.

Proof. We proceed by induction, using the analyticity assumptions on G and f.
We will assume that the desired bounds hold for all | < m and that G,(.J,[) and
g1(Vs, I',p', q,1) are analytic in D,, 1. This implies that the transformation
I=T+pS;™, ¢'= ¢+ uSp",
p:p'+u5q<m, qJ = q—l—,qum
is well defined and D,, — D, if

1 1
max ([ Sy m, Sy m) < —km |,uSwm|m_4rm6b-7,

m 1
|MS[<’ s S ZSO’ |MS¢ ["m <L

B

"By |f|; we mean |f|p,.
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Substituting the bounds in this inequalities (and using Cauchy estimates for the deriva-
tives) we obtain the constraint umax(%, )?0(’22) < 1 provided that pKB < 3. Having
verified the analyticity of the transformation up to order m we use analytic bounds on
G, G, and g; and the assumed bounds on the lower orders to bound G,(.J;m) S™

and g1 (s, I',p', ¢; m). We repeatedly use the inequality:

2. fﬂh1ﬂ<w1n

(k1) 5, hi=k i=1

Let us first consider SU™ it is composed of five sums. In each we substitute the Cauchy
estimates and the bounds coming from the inductive hypothesis.

(1) The sum of quadratic terms is bounded by (k — 1)!B*"! 25/2%53'
(2) The terms due to G are bounded by:

\/EEO 40] 8\/EE0012 1
Bm T —1)B™
5 Z een) < ess MY

. ac 1
provided that k?)g]B < 3

(3) The terms due to f are bounded by:

E[] m—1 2611 r 4EUCI m—1
Tl B S < B

provided that k22(£}3 < %
0
(4) The terms due to G; has the same bound as (2) if we fix Cy = Fj

(5) If we fix C3 = Ej as well, the terms due to g; are bounded by:

E, 201 204 4CL Ey _
—(m —1)!B™! )"( s < —1)!Bm™!
B( 2 2. wzen) Ooen) S g™ Y

r>0 s>0,r+s>1

provided that /\2?3 < ;0(;% < %

This five bounds must be all set < %CH. It is easily seen that, as b < 1 and A\g > k%,

8C, 8veEpC 1 .
e RTEGH < z. Now we discuss the

bounds on GG; and ¢g;. There are always the same five terms times a factor % for G,

and [ for g;. So all the bounds are verified if =k4E£2(;B <ec<< 1. We fix () = % as

O

all the desired bounds are implied by max(

this comes from the first order and B = cHEzﬁ2
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A.5 Fast averaging Theorem for uni-modal pertur-
bations

In this Appendix we report Paragraph §7 of [GGM3]. We consider the Hamiltonian:

H = %(5J2 +p?) +I% +cosq — 1+ aA(p+¢)B(q) +nf(e, . q),

for n = 0. A(x) is a trigonometric polynomial with zero mean value:

Z Aneinm’

0<|n|<N

The symplectic change of coordinates with generating function:

Jo+Iy+pq— aveBl@)) > An oy

0<|n|<N i

is globally defined for /e < 1 (on a domain slightly smaller that the domain of
H) and in the new coordinates the size of the perturbation is ay/z. Moreover the
perturbation is still a monochromatic trigonometric polynomial with zero mean value®.
Now we pass to local hyperbolic coordinates for the pendulum, let us call then x,y.
The Hamiltonian is:

£ 4 VEG(ay,VB) + VEaF (9 + .a.1),

moreover, as F' is uni-modal then the lattice generated by its frequencies K (V')is one-
dimensional,so the sub-lattice A of frequencies v € K (V') orthogonal to the fast direc-
tion is {0}.

Now, following Remark A.17, for ay/z < 1, we can apply an ¢ independent number
of steps of the Normal Form Theorem of Appendix A.4 so that the Hamiltonian is
of the form A.4 with a perturbation of order n < ¢%2. Finally for  # 0 we apply
the change of coordinates just described. We obtain a Hamiltonian of the type A.4
but with a perturbing function f(¢, ¢, x,y) which is not a trigonometric polynomial.
So we truncate the Fourier series of the perturbating function at |v| < N with N =

1

55’%\/10g e~!. Finally in the normal form theorem we set K = ¢ 24/(loge=")"!

A.6 Proof of Theorem 4.20

We consider a tree A € A with total frequency v and consider in each node v € A the
Fourier expansion of d™ i’j (q):

Z fy i(Y-v+lq) : ‘ful‘ < Ce*?"](\u\-l-m)_

v,leZntl

8However it does not depend only on the angle variables any more
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So the integral a) of Section 3.1, (evaluated at ¢ = 0, becomes:

CNAE@Y S T TT )™ ) TT 1

vy bk {1 s=1,...,n V>0
{v i {lo} P
oo
deO dT 67(7'(7—1)0 )Rvo e’/:lvg q(TvO +7d) e’/:UJUO Tog
. v
2T Ry,

v, f o F 4 | |
H % : (/ dr, + /dﬂ,)e U(TU)RU(Terzd)wjﬂ (7-w + Zd, T, + Zd)
o 2 R, s J

H 67:0-71) To . (a)

v>wgettv q(Ty+id)

As usual w is the node preceding v, m,(s) is the number of nodes in the list v, s(v)
with label j = s, n(v) the number of those with label j =0, [, € Ny and w, = w,, =
(w-v)ee.

Now we proceed exactly as in Section 3.1 and we apply Proposition 3.6; finally, in
bounding the proper integrals we notice that we do not approach any singularity. We
obtain the following bound?:

CHENEdv) > [ [ Gre)™WG6,)™

{3k {lu} 65:1 eyl

v=1,0>v9

(g, | maxe®, e )

f Vyylo

Now we choose ag and d = ¢; so that

max | max(e ) 74| < /2
teH(ap,c1)

(see Figure 1.3 for an example). Finally we apply the bounds on the Fourier coeffi-
cients'® of f(1, q), we obtain:

CHENT 2 E(d, y)(f[ T det f: ahe " IM] , H dr f: e M2 (A7)
J=1 wv2wg h=—oc v>ug h=—0c0
dy=1 0y =1

all computed in x = 1. As in Chapter 1 [f(z)], denotes the term of order n in the
Taylor expansion of f(z) around x = 0. The series in expression A.7:

o
E $h€7r1‘h‘

h=—0c

Ywe are ignoring the nodes with 6 = 0 as they are clearly irrelevant

10Remember that we are considering a tree with total rotation v
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are absolutely convergent for e < |z| < €’ and so we can bound the term of order

T mai)te 0,

v:0,=1

vj by:

Finally one can proceed as in Appendix A.2 To prove that:

> e T] [Imt < @n,

AeAf v:dy=1 j=0

we simply choose

n

1
f(xg,...,xn)znliqn‘, g(zo) =142y — €.
=0 ]

]'7

A.7 Cancellations due to integration by parts

This is a simple generalization of the results in [GGM1].
given A € A(; ») consider a continuous function h(%), remember that:

WH(A) = — 8, h(r) VO fou () T @ V(A7)

v;€5(vo)
marking

is a function of the time 7,,.

Lemma A.18. Consider a function h in Hy and a fruitless tree A, the function
h(19)O} o \IIJP(A) can be extended to a homomorphic function on a predefined strip
around the real azis 1oy € R. Moreover if h(t) € H is o continuous then:

SOh(t)Wj, (A1) =0

Proof. The first assertion is simply the closure of H, under the action of ); (see Propo-
sition 1.16(ii)); the second is equivalent to proving that for the continuous function
h(1e)W,(A) one has I(dr,mph(19)W,(A) = 0 (7p is the projection on polynomials).
This is obvious as P = 0 for any polynomial. O

Remark A.19. As fO(t) = F(1;(0) 4 @it, tho(t) e to(t) = —223(t) we have that:

017 (t) = Y @idy, — 2200y,

7j=1,...,n

Lemma A.20. Giwen an odd function G € Hy the following relation holds:

aTQj(G) = Q) [aTyG(Ty) + 25j0xg(7y)agf0 (Ty)QU (G)]
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Proof. if j # 0 one can verify the Lemma directly integrating by parts (notice that ij
has no constant components so that me’;-G # ¢ for any summand G coming from Ff),
this is a heavy computation so we give an alternative proof.

We consider the vector V' = ( 0;(G) )7 by the definition of O; it is a solution of
2,(0,(G)

V = L;V 4 G where L; is the 2 x 2 block of the matrix L (defined in Subsection 1.1.4)
coming from the action-angle variables /;,1; (remember that Iy = p, ¢y = q):

o 0 1
7| djocos(qe) O |

We derive with respect to t:
the first line of the solution V is
h(0(G)) = Oo(—a(1)33 f*(H)O0(G) + G)

plus the first component of a solution of the homogeneous equation ¢ — W (#)X that
we determine via the initial data. O}(F) is zero for ¢ = 0, and we have seen in
Subsection 1.1.3 that the initial datum is determined by the boundedness condition
9(0,(G)) 10 = S (aG) so:

20,(G)) = 032056231 (D 0s(G) + G) + 22 (DS (2G)
and as G is odd we can substitute Q;(G) = O;(G).

0 1
Next we notice that the vectors Wi = ( 3.78(t) ), ( U(f)T?(f) ) are solutions of the
ao(t) o(t)ay(t)

system W = LoW so we apply the time derivative and obtain®!:
i = 2Qo(x4w905 f° () + 6o (1) (A.8)
the last term is added to have the right behavior in ¢t = 0 (d;o(t)x}]o = 1).

0;(28j013(1)35 °(£)00(G) + G) + a3 (1)3° (+5G) = Q;(28j073(£) 35 (1) Oo(G) + G)+

J
1 o .
+3 > (@ Sal (265020 (1) 33 £ (1) O (G) + G) + 20(1)S" (22G)

The last two sums cancel each other via relationA.8, for j = 0, and using the fact that
if j # 0 then & = 0 and @} = o(2). O

Hwe are using the fact that Og(o(7)F) = o(t)Oo(F)
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Proposition A.21. Consider A € Ay with h(t) € H continuous for t € R (as h is
in H it is analytic separately in RT and R™):

( S (@ 004) =23 ad(0) a5 A + 2L, (A) h(t)A))

=0
ji=1,...,n vEA vEA v

h(t)A is simply the tree A marked h(ry) instead of h(r).

Proof. Let A = ﬁ namely the tree A, marked with the function h = 1 we need to
prove that:

SOW (A) = SWe( ) (@ ) 0VA) =2 2 (v)9 A — 2L,0(A) + h(t) A).

7j=1,..,n vEA vEA

We know that:
S0, WE(A) = Sh(m)WE(A) + Sh(n) {0 [We(A)]}

where the term in {} parentheses is:

7(670vﬁ1(v0)f6v0 H va A>vl)]

v; €S (vo)

V) o WA, Q) WE(AZ)]) (A.9)

v; €S(vg)

Now we set W, (A2%) = F (which is odd as ¢ = 0) and apply Lemma A.20 to F' € Hy:

0, Qi,, (F) = Qi (0r, F') + 2050Qu(w5(7) 95 £ (7,) Qo (F))

and

0., F =0, Wy (A=)

this is the same expression treated in A.9 calculated on trees of lower order. So we
proceed recursively and obtain:

O — \S{h ) WO +ZWU 7'1)

vEA

285,0 Wo[AV]) Qul ()05 7 (7)) Qo(W' (A=)}

The symbol 97 means a 7, derivative applied to fo(7,) so we can apply LemmaA.19.
The third sum is —2W;(L,g(A)) (by the definition of L, (A) ). O

Corollary A.22. In particular PropositionA.21 holds for U?j’h) :
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A.8 Properties of the matrix M due to cancella-
tions

Lemma A.23. The relation

b = 2Qo (2003 ) + po(t) )
implies that:

1 .
FO(0y) = 5 (#00 — o (1))

Proof. In F'°(05) we change the first node to the only node v; of level one; then we
substitute the leaf

QulrbahdR ") = 5 — duo(r)2))

Proposition A.24. The matriz M verifies:

n—+1 1 n
MY, =A where Y/ =( 0, 2, -3)

1 n n+1
e Al = (Iy(t=0) I*(t=0), 0); remember that I (t = 0,90 =0) (j =0,...,n)
15 the wnitial datum in the actions at the homoclinic point ¢ = 0, ¢y = 7.

Proof. This is a consequence of Corollary A.22. let us the relation in components:

n+1
2Mynio = ZW7MI¢ n+2+i T (Z Oknt143) s

Translated in trees this is:

204, + 2L (B}) + 26,0 ' (U) = Zw,zsk, — 1 ( Z Sry) o (102 (A.10)

here we simply used the definition of M and the identity:

1 _
I = 5(];' + 1) = =SWalo(n) ).
Expression A.10 can be derived from Proposition A.21 by setting hf = zf for
[=0,1Tand £ =0,...,n. as by Lemma A.23:

. —2F%(Up) + o () U k=0
hi (7O = 0 [=0k=1,...,n
()U l=1k=1,...,n
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