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Abstra
tWe 
onsider the problem of the splitting of invariant hyperboli
 manifolds for 
lose to integrable,Hamiltonian systems and 
onsequently \ Arnold di�usion".Following Chier
hia- Gallavotti:Drift and di�usion in phase spa
e and Gallavotti: Twistless KAMtori, quasi 
at homo
lini
 interse
tions... we work on a Hamiltonian whi
h is a model for smallanalyti
 perturbations of stable, integrable Hamiltonian system near a simple resonan
e. We will 
allthe small perturbation parameter ".Roughly speaking the model Hamiltonian represents a set of n � 2 rotators and 
lo
ks, weakly ("Pwith P > 2) 
oupled to a generalized pendulum with Lyapunov exponent p".Namely if I;  2 Rn � Tn, p; q 2 R �T are pairs of 
onjugate a
tion-angle variables, a set of rotatorsand 
lo
ks is given by a quadrati
 Hamiltonian of the type: IA(")I+b(")I where A(") is semi-positivede�nite and lim"!0A(") = A.Finally a generalized pendulum is a two dimensional Hamiltonian system H(p; q) = 12p2+"F (q), withF (q) analyti
 on T, having p = q = 0 as the only unstable �xed point on the energy level E = 0.The initial data and the matri
es A("); b(") are suitably 
hosen so that there are are at least threerelevant time s
ales for the un
oupled system: namely there will be m 6= 0 order one (fast) frequen
ies,n�m slow frequen
ies of order " 12+a (with a � 12 ) and �nally the Lyapunov exponent of the pendulump".KAM-like results show that the presen
e of the small ("P with P > 2) 
oupling term preserves aset of n dimensional unstable tori together with their n + 1 dimensional lo
al stable and unstablemanifolds. In general su
h manifolds interse
t in a 
urve; proving su
h interse
tion and evaluatingthe transversality of the manifolds is the so 
alled problem of homo
lini
 splitting whi
h is the basisfor proving Arnold instability.The thesis is mostly dedi
ated to the study of upper and lower bounds for the determinant of thesplitting matrix, whi
h is a measure of the \angles " of the homo
lini
 splitting.We use perturbative theory and in parti
ular, following Gallavotti:Twistless KAM tori, quasi 
athomo
lini
 interse
tions..., and Gallavotti, Gentile, Mastropietro: Separatrix splitting for systemswith three time s
ales we 
onstru
t a suitable tree representation to eviden
e the 
an
ellations in theperturbative expansion of the splitting determinant.The main results are:1) We prove that the splitting determinant is exponentially small in ", for systems intera
ting throughan analyti
 fun
tion depending only on the angle variables.We present two alternative methods of proving the assertion, one is dire
t, using the 
an
ellations;while the se
ond (following the strategy of Berti, Bolle: A fun
tional analysis approa
h to Arnolddi�usion) 
onstru
ts perturbatively a suitable set of 
oordinates, where the generating fun
tion of thesplitting has a simpler form whi
h implies that the the splitting determinant (whi
h is the Hessian ofthe generating fun
tion at the interse
tion point) is smaller that any power of ".2) We give lower bounds for systems with one fast variable (m = 1) and satisfying a set of 
onditionswhi
h are suÆ
ient to prove that the �rst order of perturbation in the splitting determinant (theMelnikov term) dominates, thus providing a lower bound.3) We �nd lower and upper bounds on the splitting determinant for \D'Alembert like" Hamiltonianssimilar to those proposed in Gallavotti, Gentile, Mastropietro: Hamilton-Ja
obi equation and existen
eof hetero
lini
 
hains in three time s
ales systems. Su
h Hamiltonians 
arry a \large" (i.e. order ")unimodal perturbation.For 
ompleteness the last 
hapter is dedi
ated to showing the 
onstru
tion of the transition 
hainsfor systems where the Melnikov term dominates.
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Introdu
tionGeneralities and a 
lass of modelsThe problem of the stability under perturbations of dynami
al systems is a \funda-mental" problem of 
lassi
al me
hani
s (as formulated by Poin
ar�e in [P℄).For integrable Hamiltonian systems with n degrees of freedom, it was long believed(up to the 50'ies) that maximal (i.e. n dimensional) invariant tori were usually de-stroyed by most perturbations1. This was disproved for non-degenerate Hamiltonians2in the theorem by Kolmogorov, proved in full detail by Arnol'd for real-analyti
 
owsand for smooth maps by Moser. The Kolmogorov, Arnold, Moser (KAM for short)theorem states that those invariant tori with suÆ
iently in
ommensurate (diofantine3)frequen
ies !(I), persist for suÆ
iently small perturbations of a non-degenerate inte-grable system. Su
h tori form a set of positive measure in the phase spa
e, and asthe system approa
hes to integrable the measure of the 
omplementary set approa
heszero4.One expe
ts that the, dense but zero measure, set of maximal tori of the unperturbedsystem with 
ommensurate frequen
ies is not preserved, in general, under perturbationsno matter how small.Su
h sets of tori with 
ommensurate frequen
ies are 
alled \resonant". In parti
ular1Some standard de�nitions: An n degrees of freedom Hamiltonian system is 
hara
terizedby a Hamiltonian fun
tion h de�ned on a 2n�dimensional manifold M endowed with a symple
ti
stru
ture i.e. a 
losed alternate and non-degenerate two-form w. In lo
al 
oordinates (p; q) 2 R2nsu
h that the two form is dp ^ dq we 
all the 
ow �th(q0; p0)) 2 R2n the solution of:_q = �ph(p; q) ; _p = ��qh(p; q):The 
hange of 
oordinates whi
h preserve w are 
alled symple
ti
.A Hamiltonian system is 
alled integrable if there exists a symple
ti
 
hange of 
oordinates: p; q !I;  2 Rn � Tn, Tn being the n dimensional torus, where the Hamiltonian h(p(I;  ); q(I;  ) = H(I).In su
h 
ase the 
ow is 
on�ned on n dimensional tori:I(t) = I(0) ;  (t) =  (0) + (rIH)jI(0)t:The ve
tor !(I) = (rIH)jI is 
alled the frequen
y of the torus with initial datum I .2we say that H(I) is non degenerate in a domain D � Rn if det �2H(I) 6= 0 for all I 2 D.3A ve
tor ! 2 Rn is diofantine, with 
onstants C; � , if it satis�es a relation of the form jm � !j �C=jmj� for all integer ve
tors m 6= 0.4This means that the 
onstant C 
an be taken to be small with the perturbation parameter.



vi Introdu
tionif there there exists a k � n entire matrix N , of rank k, su
h thatN!(I) = 0 with N 2 Matk�n(Z) ; Rank (N) = k (0.1)we will 
all I an order k resonan
e.5.For iso-energeti
ally non-degenerate6 systems with two degrees of freedom the existen
eof a positive measure set of two-dimensional persistent tori for
es the behavior of thewhole system to be stable for purely topologi
al reasons as the two-dimensional toriseparate the three-dimensional energy surfa
e. The, possibly 
haoti
, behavior nearthe resonan
es is thus 
on�ned in the layers between persistent tori.On the other hand there is no a-priori obje
tion to the possibility of a
tion-unstablemotions for higher dimensional systems, as the 
omplementary set of the preserved toriis 
onne
ted.Arnold, for the �rst time in the appendix of [A1℄, formulates the problem and statesthe following 
onje
ture(see [Dy℄):\...A typi
al 
ase in many-dimensional problems of perturbation theory is topologi
alinstability: through an arbitrarily small neighborhood of any point there pass phasetraje
tories along whi
h the a
tion variables drift away from the original value by aquantity of order one..."Su
h topologi
al instability is known as Arnold Di�usion.In this thesis we shall 
onsider the n+ 1 degrees of freedom Hamiltonian:H(I; p;  ; q; "; �) = 12p2 + 12I � AI + b � I + "F (q) + �f( ; q); (*)where ((I; p) ; ( ; q)) 2 (U � (�1; 1))� (Tn � T) ; U � Rnare a set of 
onjugate a
tion-angle variables (Tn being the standard torus Rn=2�Zn), ",� are small parameters and the matrix A is semi positive de�nite (A and b 
an dependon " in a fashion we will spe
ify in the following). The fun
tions F (q) and f( ; q) arereal analyti
 and even. Moreover we 
hoose the fun
tion F (q) so that p2 = �2"F (q)is the graph of a separatrix having p = q = 0 as the only (unstable) �xed point.The basi
 problem addressed here is the study of homo/hetero
lini
 transversal interse
-tions and �nding upper and lower bounds on suitable measures for the transversality.It should be 
lear that su
h problems are mu
h simpler if one 
onsiders " > 0 and �� "an independent parameter; in su
h 
ase Hamiltonian (*) is 
alled a-priori unstable .5This means that the unperturbed motion with initial datum I(0) = I is on a n� k dimensionaltorus.6An Hamiltonian H(I) is 
alled iso-energeti
ally non degenerate ifdet� �2IH �IH�IH 0 � 6= 0on the energy surfa
e.



viiIn this thesis we will mainly 
onsider the a-priori stable 
ase, whi
h means setting� = "P for some P > 1 (in some spe
ial 
ase we will 
onsider also P = 1).To motivate the 
hoi
e of Hamiltonian (*) we brie
y review the properties of aniso-energeti
ally non degenerate Hamiltonian near an order k resonan
e. We will arguethat the a-priori stable Hamiltonian (*) is a \natural" model for iso-energeti
ally nondegenerate Hamiltonians near a simple, i.e. order one, resonan
e (k = 1 in relation(0.1)).Resonant HamiltoniansWe 
onsider a 
lose to integrable, analyti
 systemH(I;  ; ") = H0(I) + "F (I;  );in a
tion-angle variables I 2 U � Rd  2 Td. .Classi
al averaging theory (see for instan
e [Dy℄) shows that near an order kresonan
e des
ribed by the matrix N as in relation (0.1), H is modeled, in appropriatelo
al a
tion-angle 
oordinates, by a Hamiltonian:�H(I 0; ") + "gN(I 0;  0) + �f(I 0;  0); (0.2)with gN(I 0;  0) = Xk2�N gk(I 0)eik� 0;�N being the latti
e generated by the rows of N .The fun
tions gN(I 0;  0), f(I 0;  0) are analyti
 in some U 0 � Td (U 0 
lose to U) and� = "P with P > 1.As remarked for Hamiltonian (*), it is simpler to study Hamiltonian (0.2) 
onsid-ering � and " as independent parameters.For simple resonan
es, it is easily seen that the Hamiltonian (0.2) is still \analyti
allysoluble" for " > 0 and � = 0. Up to a linear symple
ti
 
hange of 
oordinates,I 0;  0 ! J; ', one 
an assume that gN depends only on one angle, say 'd:�H(J; ") + "gN(J; 'd) + �f(J; '): (0.3)Let us study Hamiltonian (0.3) for � = 0. The a
tions J1; : : : ; Jd�1 are still 
onstantsof motion; the time evolution of Jd; 'd does not depend on the 'i with i < d and so issoluble (by integrations and inversions).Noti
e that Hamiltonian (0.3) with � = 0 is not integrable, in the 
lassi
al sense(i.e. in the sense of footnote (1)), as the resonant variable 'd 
an have unstable �xedpoints and one 
annot de�ne a
tion-angle variables near the hyperboli
 traje
tories.A model for Hamiltonian (0.3) with � = 0 is:H(J; '1; ") = �H(J1; : : : ; Jn) + 12p2 + "(
os q � 1); (0.4)



viii Introdu
tionwith n = d� 1 and Jd;  d = p; q. Noti
e that Hamiltonian (*) with F (q) = 
os q � 1is of the type (0.4).On the other hand, if we 
onsider higher order resonan
es, the � independent Hamil-tonian �H(I 0; ") + "gN(I 0;  0);is generally not analyti
ally soluble so that, in 
onne
tion to the problem of Arnolddi�usion, most authors 
onsider only simple resonan
es (see [LMS℄ for an approa
hto general resonan
es).The dynami
s of Hamiltonian (0.4)The traje
tories of Hamiltonian (0.4) are the dire
t produ
t of an integrable motionon n = d� 1 dimensional tori and of the motion of the pendulum.In our notation the pendulum has a stable �xed point in q = �, p = 0 and an unstableone in q = p = 0. The stable and unstable manifolds of su
h �xed point 
oin
ide andare represented in phase spa
e by a 
urve, 
alled the separatrix p2 = 2"(
os q � 1):We have n dimensional unstable tori T (J) (dire
t produ
t of the motion of the '1; : : : ; 'nand q = p = 0) and their (n + 1 dimensional) stable/unstable manifolds W�(T (J))whi
h are the dire
t produ
t of the motion of the '1; : : : ; 'n with the motion on theseparatrix.If H(J; p; q; ") is iso-energeti
ally non degenerate for " 6= 0 a set of su
h unstable ndimensional tori T (J; �), survive (on �xed energy levels) the onset of the � depen-dent perturbation, together with their n + 1 dimensional stable-unstable manifoldsW�(T (J; �)). Su
h manifolds however may interse
t transversally in a 
urve, this isthe so 
alled \homo
lini
 splitting" and is known to be related to \
haoti
" behavior.General te
hniques for proving Arnol'd di�usionThe existen
e of Arnold di�usion is usually proved by following the me
hanism pro-posed by Arnold in [A2℄, where the author 
onsiders a model of an a-priori unstablealmost integrable system near a simple resonan
e. Interest on the subje
t was renewedin [CG℄, followed by several papers; see for instan
e [GGM3℄, [BB1℄ and referen
estherein.To illustrate the me
hanism used for proving Arnold di�usion, let us state somede�nitions taken from [C℄, where\Arnold di�usion" is named\Arnold instability".De�nition 0.1 (Hetero
lini
 
hains). A hetero
lini
 
hain is a set of N � 1 tra-je
tories z1(t); : : : ; zN (t) together with N + 1 di�erent minimal sets7 T0; : : : ; TN su
hthat for all 1 � i � Nlimt!�1 dist (zi(t); Ti�1) = 0 = limt!1 dist (zi(t); Ti):7A 
losed subset of the phase spa
e is 
alled minimal (with respe
t to a Hamiltonian 
ow �th) ifit is non-empty, invariant for �th and 
ontains a dense orbit. In our 
ase the minimal sets will beunstable tori T (I) with !(I) diofantine.



ixDe�nition 0.2 (Transition 
hains). A hetero
lini
 
hain is 
alled a transition 
hainif for any r > 0 there exists a traje
tory z(t) and a time T > 0 su
h thatdist (z(0); T0) � r ; dist (z(T ); TN ) � r ; sup0�t�T dist (z(t); Z) < rwhere Z is the 
losure of the union over i of the fzi(t) : t 2 Rg. The sets T0 and TNare said to be 
onne
ted by as transition 
hain.De�nition 0.3 (Arnold instability). Given E 2 R 
onsider an Hamiltonian h"(with Hamiltonian 
ow �th") su
h that h0 represents an integrable system.The system (�th; h�1" (E)) is 
alled Arnold unstable if there exist two positive numbers "0and d0 su
h that for all " 2 (�"0; "0) there exist (
losed) invariant sets T ("), T 0(") �h�1" (E) satisfying the following 
onditions:(i) T ("), T 0(") are 
ontinuous, at " = 0, in the Hausdor� metri
 and if �I denotes thenatural proje
tion over the a
tion variables then�IT (0) = fIg ; �IT 0(0) = fI 0g ; with jI 0 � Ij > d0 ;(ii) for ea
h 0 < j"j < "0 T (("), T 0(") are 
onne
ted by a transition 
hain.Finally the system is said uniformly Arnold unstable in a region V 2 Rn for anyE 2 [E1; E2℄ if the invariant sets T ("), T 0(") have the property:�IT (0);�IT 0(0) 2 Vand the 
onstants "0; d0 depend only on V and on E1; E2.Thus, to prove Arnold instability for system(*) one typi
ally pro
eeds in threesteps:1. Homo
lini
 interse
tion:- Prove that the systems (*) admit a set of unstable n dimensional tori togetherwith their n + 1 dimensional stable-unstable (Lagrangian) manifolds W�; forsystem (*) su
h manifolds are graphs on the angles:W� = fI�( ; q); p�( ; q);  2 Tn; q 2 (�a; a) with a 2 (0; �)g:- Prove that su
h manifolds interse
t transversally in a 
urve (as expe
ted). Inthe 
ase of Hamiltonian (*), the assumed parity 
onditions imply that  = 0q = � is a Homo
lini
 point, i.e. lies on the interse
tion 
urve.- Provide estimates on the measure of the transversality in appropriate (orderone) regions in the a
tion variables.



x Introdu
tion2. Prove the existen
e of hetero
lini
 
hains of n-dimensional tori by showing thatthe persistent tori are \
lose enough" with respe
t to the transversality measurein the pres
ribed regions.3. Prove that su
h hetero
lini
 
hains are transition 
hains for whi
h the a
tionvariables undergo an O"(1) variation in a �nite time8.A natural question that arises in this s
heme for proving Arnold instability is what isa good measure of transversality.For system (*) (in the 
oordinates (I;  )) one may 
onsider (as in [A2℄) the splittingdeterminant, i.e. the determinant of:� = � i(I+j ( ; �)� I�j ( ; �));whose eigenvalues estimate (in lo
al 
oordinates) the angles of the interse
tion of W +and W � at the Poin
ar�e se
tion q = �.Then, if the gaps on the persistent tori are smaller than j det�ja, one 
an use theImpli
it Fun
tion Theorem to prove hetero
lini
 interse
tions for persistent n dimen-sional tori at distan
es of order j det�jb (for suitable a; b > 0).Remark 0.4. This is a lo
al point of view. However, sin
e the symple
ti
 groupa
ts transitively on the 
ouples of transverse Lagrangian manifolds, estimates on the\Eu
lidean " angles of the interse
tion are expe
ted to be 
oordinate dependent9.Analyti
al proofs of Arnold instability rely strongly on the 
hoi
e of an appropriateregion of the initial data in the a
tion variables (and on the 
hara
teristi
 frequen
ies);to illustrate this let us return to Hamiltonian (*) whi
h we des
ribe in full detail.H(I; p;  ; q; "; �) = 12�p2 + I � A(")I�+ b(") � I + "F (q) + �f( ; q); (*)where, as we said before, A(") is an n� n semi positive de�nite matrix.The integrable part of Hamiltonian (*) (with � = 0) 
an model both 
ompletelyaniso
hronous systems of rotators (i.e. A(") is positive de�nite) and iso
hronous sys-tems of harmoni
 os
illators (A(") � 0); moreover by varying the "�dependen
e ofA("), b(") one 
an model both non-degenerate and degenerate Hamiltonians.To prove Arnol'd instability (following the s
heme proposed in page ix) in a region ofthe a
tion spa
e, one needs 
onditions on the order of magnitude of the frequen
ies!(I) = AI + b in su
h region. In parti
ular we require that the 
omponents !j(I)are \not too slow" by setting j!j(I)j � C" for some order one10 C. Moreover it is8Having performed these three steps one 
an rise the question of �nding (good) estimates on theinstability time9 [LMS℄ provides an intrinsi
 de�nition of the transversality measure (whi
h 
oin
ides with � inlo
al 
oordinates at the Poin
ar�e se
tion q = �) and its variation laws through symple
ti
 
hange of
oordinates and di�erent 
hoi
es of Poin
ar�e se
tions.10One 
ould prove Arnold instability under less restri
tive 
onditions j!j(I)j � C"b for some b > 1,we set b = 1 only for simpli
ity.



xiuseful to distinguish between fast (i.e. order one in ") and slow (going to zero with ")
omponents of the frequen
y ve
tor !(I); we will 
all Vm(E) � Rn a region (of a
tionspa
e) having \energy" E (i.e. IAI+bI = E) and m fast 
omponents for the frequen
yve
tors (often referred to as m fast frequen
ies or variables ) and 
onsequently n�mslow frequen
ies.The regions where there are at least two di�erent orders of magnitude for the frequen
iesare parti
ularly relevant in proving Arnol'd instability (in this thesis we will mainly
onsider su
h regions).Quantitatively we set the following (non minimal but already quite 
umbersome)
onditions on A("), b(") and Vm(E):Condition 0.5. � The fun
tions F (q) and f( ; q) are real analyti
 and even. Moreoverwe 
hoose the fun
tion F (q) so that p2 = �2"F (q) is the graph of a separatrix havingp = q = 0 as the only (unstable) �xed point.� A(") is diagonal.� The eigenvalues11 of A("), ai (where i = 1; : : : ; n)are either identi
ally zero or:ai = C"�i with 0 � �i � 1 ; and C non zero and "-independent:� Without loss of generality we will suppose that ai 6= 0 for all i � h for some 0 � h �n. The remaining n� h eigenvalues ai are zero.� b(") is an n-dimensional diofantine ve
tor b = (b1; : : : ; bn) su
h that b1 = � � � = bh =0 and the remaining bi have the form:bi = C"�i with 0 � �i � 1 ; and C = O"(1):� We 
onsider the system near a simple resonan
e for the variable p: p 2 Bp"(0).� Let !(I) = AI + b,we assume that the I variables are in a domainRn � Vm(E) := fI : O"(1) � jIjj � O"(") ; j = 1; : : : ; n ; AI � I + bI = Ethere exist i1; : : : ; im su
h that j!ij(I)j = O"(1)g;with m � n and E = O"(1); we will 
all Vm a domain with m fast frequen
ies!i1; : : : ; !im (or fast variables) as the orbits of Hamiltonian (*) with � = 0 are torirun with frequen
y !(I) = A(")I + b(").In the domains V0 where there are no fast variables (m = 0), the Hamiltonian (*)
an be written (via an appropriate 
hange of variables) as a-priori unstable and thensolved via 
lassi
al perturbation theory (see [CG℄ and [C℄). In fa
t, for small enough11Now and in the following we will say that C(") = O"(f(")) if lim"!0 C(")=f(") = l 6= 0:



xii Introdu
tion" the matrix � is well approximated by its �rst order perturbation in �, the so-
alledMelnikov integral: Mi;j = 1Z�1 (� i� jf)( 0(t); q0(t)): (0.5)Where  0(t); q0(t) is the motion on the separatrix for � = 0.The presen
e of m 6= 0 fast variables makes matters mu
h more diÆ
ult as the deter-minant of M is exponentially small in " while (if m 6= n) the higher order trun
ationsof � have generally only polynomially small entries so that one should 
onsider �exponentially small w.r.t " in order to have� �M:As we have said the natural value of � is "P for some P > 0. In su
h 
ase M isnot a good approximation of � and it is not a trivial matter to show that det� isexponentially small in " for m 6= 0.The �rst step in estimating det� is �nding exponentially small upper bounds forsystems with fast frequen
ies.Then one would like to prove that detM is large enough to dominate on the higherorder terms in the � expansion of det� and 
onsequently prove lower bounds on det�.Upper bounds, with � � "P , are derived in [G1℄ for m = n in [GGM1℄ for systemswith three degrees of freedom and three time s
ales and in [BB1℄ for iso
hronousHamiltonians and generi
 n;m.All the 
ited arti
les set F (q) = 
os q � 1 and require that the perturbating fun
tionf( ; q) is a trigonometri
 polynomial in q while we shall allow more general fun
tionsF (q) and analyti
 assumptions on f(q;  ) (see Condition 0.5). The 
ited arti
les pro-vide as well lower bounds on det� (see as well [GGM1℄- [GGM4℄) for systems withone fast time s
ale.The problem of upper bounds is 
onsidered as well in [LMS℄ for quite general (n + kdimensional) systems, in the presen
e of an order k resonan
e in a region 
hara
terizedby two time s
ales (m = n). The results of [LMS℄, applied to Hamiltonian (*) (so toa simple resonan
e) lead to the results of [G1℄, however the proof 
ontained in [LMS℄is 
oordinate independent so it would be interesting to see if it applies to three times
ale systems.A system with m = n = 2 is 
onsidered in [DGJS℄ providing upper and lower boundson the distan
e between stable and unstable manifolds, it is not however 
lear if thisestimates 
an be used to prove the existen
e of hetero
lini
 
hains (see the dis
ussionin [GGM2℄).In this thesis we generally follow the strategy proposed in [CG℄, [G1℄ and [GGM1℄.These arti
les use perturbation theory to 
onstru
t the \homo
lini
 traje
tories" (i.e.the traje
tories whi
h are bi-asymptoti
 to an n dimensional torus run with pres
ribedfrequen
y). This approa
h by series expansion in the parameter � (with �xed " > 0) isquite old; it is a generalization to the partially hyperboli
 setting of Hamiltonian (*),of the Lindstedt series proposed by Poin
ar�e, Lindstedt et al. in the 19'th 
entury.



xiiiProving the 
onvergen
e of su
h series is quite 
ompli
ated and was indeed an openproblem, even in the non hyperboli
 setting, up to the '80-ies when it was solved byEliasson [E℄, see as well [G1℄ and [CF℄ (moreover see [GGM4℄ for a proof of the 
on-vergen
e in the hyperboli
 setting). The main point is to �nd suÆ
ient 
ompensationsbetween \big" terms of the Lindstedt series in order to ensure the 
onvergen
e.While one 
an use KAM theory to prove the lo
al existen
e of the manifolds W �(and then extend them via the Hamiltonian 
ow), one 
annot use the KAM algorithmto estimate the splitting determinant as the 
omputations involved are unmanageable.The problem of 
onvergen
e of the perturbation series is avoided, in [CG℄ [G1℄, by
ombining Lindstedt series and KAM theory. Namely one 
onsiders suitable trun
a-tions of the Lindstedt series whose remainder is bounded via a KAM theorem (whi
hensures, under appropriate 
onditions, that the homo
lini
 traje
tories exist and areanalyti
 in � � �0). To study a large but �nite number of terms in the perturba-tion series it is natural to use a \graph theoreti
al" (tree) representation (see [GJ℄ forappli
ations of tree representations to Taylor series). The tree representation, whi
h
ontains information on the symmetries of the Taylor series, is well suited to show the
an
ellations whi
h are ne
essary to prove the exponential smallness of the splittingmatrix.Roughly speaking the exponentially small terms in the splitting matrix appear via thefollowing \shift of 
ontour" formula ( 
1 and 
2 are positive " independent parameters):j 1Z�1 e� 
1" tg(t)j � O"(e� 
2" ) ;for all the analyti
 g(t) 2 L1.This formula proves for instan
e that the Melnikov term (de�ned in (0.5))is exponen-tially small.The main problem is that the terms of order higher than one in the expansion of thehomo
lini
 traje
tories are in general not analyti
 in t (for t = 0 as they 
ome from thetime evolution of W + for t > 0 and W � for t < 0). so that, even if all the frequen
iesare fast (m = n), the splitting matrix apparently 
ontains \big" (i.e. polynomiallysmall in ") terms, arising from integrals of non analyti
 fun
tions. In [G1℄ the authorshows that su
h \big" terms 
an
el so that a suitable ( say order K(")) trun
ation ofthe splitting matrix is exponentially small in ". Bounds on the splitting matrix are thenderived by showing that one 
an 
hoose k � K(") so that the remainder (estimated viaKAM theory) at order k is small with respe
t to the bounds on the order k trun
ation.A di�erent approa
h is to prove dire
tly the 
onvergen
e of the Lindstedt series by prov-ing via the tree representation both 
an
ellations and 
ompensations (see [GGM4℄).Brief des
ription of the main results and of the te
hniques usedIn this thesis we 
onsider mainly the items 1) and 2) at page ix and we simply give abrief review of the 
onstru
tion of Arnold unstable orbits (taken from [CV℄). We will



xiv Introdu
tionnot attempt any estimate on the di�usion time. For su
h estimates see for instan
e[BB1℄, [Be℄, [BB2℄, [BCV℄ and referen
es therein.� We prove exponentially small upper bounds for det� for Hamiltonians in the
lass (*) in regions Vm with m 6= 0 fast variables.Theorem 0.6 (Upper bounds). Assume Conditions 0.5. The Hamiltonian (*) ,
onsidered in the domains Vm(E) with E = O"(1) m 6= 0 has an homo
lini
 point atq = �;  = 0. The determinant of the splitting matrix in su
h point isdet� � O"(e�
="b):where 
 and b depend on the domain Vm and on the analyti
 properties of the perturbingfun
tion f( ; q).This Theorem generalizes [GGM1℄ and [BB1℄ whi
h 
onsider respe
tively a partiallyiso
hronous and partially degenerate Hamiltonian (*) with three degrees of freedom,and a 
ompletely iso
hronous Hamiltonian (*) with n degrees of freedom. Both refer-en
es set F (q) = 
os q � 1 and f( ; q) a trigonometri
 polynomial (at least in the qvariables).� For systems with m = 1 fast variables (say  �{) we prove lower bounds for thesplitting determinant for the Hamiltonians (*) satisfying the following 
onditions:Condition 0.7. a) The fun
tion f( ; q) is a trigonometri
 polynomial in the  if( ; q) = Xj�j�N f�(q)ei�� ;and all the fun
tions f�(q(t)), where  (t); q(t) is the solution of Hamiltonian (*) for� = 0, are rational fun
tion of e�p"t. p"� > 0 is the Lyapunov exponent of thegeneralized pendulum (see next item).b) The Hamiltonian 12p2 + "F (q) has the following traje
tories:1. q = _q = 0 is an hyperboli
 �xed point and the separatrix_q22 + "F (q) = 0
ontains only this �xed point.2. On the separatrix, we 
an 
hose a sign for _q and the equation of motion on theseparatrix is: _q = �p2pF (q) = �G(q)where G(q) � 0 and G(q) = 0 if and only if q = 0; 2�. Noti
e that _q(t) is evenand q(t) is odd provided that we set q(0) = �.



xv3. The time evolution on the separatrix q(t) (on a pre�xed bran
h), satis�eseiq(t) = R(e��p"t) where R(y) is a rational fun
tion : (**)
) The fun
tion f( (t); q(t)) satis�es appropriate \non-degenera
y 
onditions", whi
hwe des
ribe later, here let us state simple suÆ
ient 
onditions:1. The fun
tions f�(q(t)) all have the same poles t1; : : : ; tM . The fun
tion q(t) haspoles �1; : : : ; �N and: D = mini=1;:::;M jIm tij � minj=1;:::;N jIm �jj:2. The Melnikov matrix de�ned in (0.5) is non degenerate and the fei(q) i = 1; : : : ; nare all di�erent from zero.A simple example of fun
tions F (q) satisfying Condition 0.7 b) are the following:F (q) = �12� sin2 q + a(
os q � 1)2�;with a 2 [1;1) (a = 1 is the standard pendulum).Under this 
onditions we prove the existen
e of hetero
lini
 interse
tions provided that� � "P where P depends on the poles of q(t) and of the fun
tions f�(q(t)).Theorem 0.8 (Lower bounds). Consider Hamiltonian (*) under 
onditions 0.7.Given 0 � � � 12 
onsider the domains W (E;�{; �) =fI 2 V1(E) ; j!�{(I)j = O"(1) ; O"(") � j!j(I)j � O"("�) ; j = 1; : : : ; n j 6= �{g:The determinant of the splitting matrix at the homo
lini
 point, q = �;  = 0, isbounded from below by a quantity of the order of the Melnikov integral:j det�j � C"�Qe�D=p";provided that � � "P ;where P = max(p+5; 4�+4) � being the diofantine exponent of the frequen
y ve
tor !.The parameters p;Q depend on the degree of the poles of the f�(q(t)) (p is the degreeof the pole 
losest to the real axis) and D is de�ned in Condition 0.7 
).After proving this Theorem we provide a Normal Form Theorem for Hamiltonian(*). Su
h theorem, restri
ted to systems with one fast frequen
y implies the existen
eof hetero
lini
 
hains.



xvi Introdu
tionTheorem 0.9 (Arnold instability). Given E 2 [E1; E2℄ with E1; E2 = O"(1), theHamiltonians (*), satisfying Conditions 0.7 and having at least one degenerate variable(namely one or more of the ai are of order "), are uniformly Arnold unstable in ea
hof the domains D(E;�{), for all values of � su
h that:� � "P ;where P depends on the 
onstants p and Q of the pre
eding theorem.The bounds on � proposed it this Theorems are not optimal, in parti
ular one 
anobtain better bounds by using the te
hniques proposed in [Ge℄. We illustrate this onexamples of three degrees of freedom systems12 where we prove Arnold instability for� � "p+5=2:� Finally we 
onsider some spe
ial systems with three degrees of freedom and threetime s
ales whi
h we 
all \D'Alembert-like" Hamiltonians as they are quite similar tothe Hamiltonian proposed in [CG℄ (see as well [GGM3℄) as a model for the D'Alembertproblem. Su
h problem, of interest in 
elestial me
hani
s, is 
hara
terized by thepresen
e of three relevant time s
ales and of a big (i.e. order ") uni-modal (i.e. thelatti
e generated by the frequen
ies of f( ; q) is one dimensional) perturbation. To beexpli
it let us write down the simpli�ed D'Alembert Hamiltonian proposed in [GGM3℄:12("J2 + p2) + I!1 + "[(
os q � 1) + �A(�+  )B(q))℄ + �f(�;  ; q); (0.6)where the fun
tions A(x), B(x) are trigonometri
 polynomials of degree N and � isa free (order one in ") parameter. The te
hni
ally diÆ
ult question is to prove lowerbounds on the splitting determinant (Melnikov dominan
e) when � is of order one in", and so 
learly does not satisfy the 
onditions of Theorem 0.8.The arti
le [GGM3℄ proves a semi-hyperboli
 KAM theorem and 
onsequently upperbounds on the splitting determinant for Hamiltonian (0.6). The problem of lowerbounds is left open as it requires proving appropriate 
an
ellations in the series rep-resentation of the splitting determinant. We prove su
h 
an
ellations (and so lowerbounds and Arnold instability) provided that f(�;  ; q) is NOT a trigonometri
 poly-nomial and respe
ts the following:Condition 0.10. the fun
tion f is a trigonometri
 polynomial in  ; � and rational ineiq with at least one pole for �nite values of Imq and Req 6= 0.Theorem 0.11. The Hamiltonian (0.6), respe
ting Condition 0.10, is uniformly Arnoldunstable in the domain:W (E) := fH(I; J;  ; �) = E ; O"(1) = b � jIj; jJ j � a = O"(1)gfor E 2 [E1; E2℄ with E1; E2 = O"(1), provided that � � "p+5=2 and � � 1 but stillO"(1).12This restri
tion is only to give expli
it examples, we show that one 
an apply the same pro
edureto systems with n degrees of freedom.



xviiBrief review of the te
hniquesFollowing [CG℄, [G1℄ and [C℄ we use perturbation theory to 
onstru
t the \homo
lini
traje
tories" (i.e. the traje
tories whi
h are bi-asymptoti
 to an n dimensional torusrun with pres
ribed frequen
y). This leads to re
ursive equations for the 
oeÆ
ientsof the Taylor expansion of the homo
lini
 traje
tories (in the parameter � with " > 0a �xed parameter).Then, still following [G1℄, we introdu
e a suitable \graph theoreti
al" representationof the homo
lini
 traje
tories useful to identify 
an
ellations. We use quite standardnotions on trees: mainly labeled rooted trees and their automorphisms groups. Withrespe
t to [G1℄, we use a di�erent grouping algorithm for the tree representation; inparti
ular we use the isomorphism groups of trees whi
h, we believe, make 
omputa-tions on trees more expli
it and we hope simpler. We assign quite a few labels to thetrees to represent dire
tly on the trees the relevant stru
ture of the homo
lini
 traje
-tory. As mentioned before, the terms of order higher than one in the expansion of thehomo
lini
 traje
tories are in general not analyti
 in t. Following [G1℄ we representthis by introdu
ing spe
ially labeled nodes (
alled fruits); su
h nodes are responsiblefor the appearan
e of the non analyti
 terms. An a

urate study of the tree repre-sentation (and some notions on asymptoti
 power series) enable us to prove Theorem0.6. One of the main tools is a formal linear equation for the splitting matrix (whi
hgeneralizes the one proposed in [GGM1℄). This formal linear equation dire
tly impliesexponential smallness and, we think, simpli�es signi�
antly the pro
edure of [GGM1℄(as wee as extending the results of [GGM1℄ to Hamiltonian*).We provide as well an alternative proof of Theorem 0.6, following the strategyof [BB1℄ adapted to perturbative series and tree representation (so we generalize theresults of [BB1℄ to aniso
hronous Hamiltonians although our bounds are less sharpthat those obtained in the 
ited arti
le).The proofs of Theorems 0.8 and 0.9 follow the general strategies proposed in[GGM1℄ and [GGM3℄ whi
h we re�ne and develop so to apply them to our moregeneral Hamiltonian (*)).To prove Theorem 0.8 we provide \a

urate enough" bounds on the 
oeÆ
ients of theseries representation of the homo
lini
 traje
tories. We expli
itly 
ompute the �rstorder term and use Cau
hy estimates to �nd upper bounds on the terms of orderhigher than one. The fa
t that f( ; q) is not taken to be a trigonometri
 polynomial
reates various te
hni
al problems. For instan
e one 
annot Fourier expand f( ; q)f( ; q) = Xn2Z;m2Zn fn;meiqnei �m;and bound it (and its derivatives) on annular domains Tn+1 � i(�r; r); instead onehas to 
hoose suitable (in general non annular) domains on whi
h to perform Cau
hyestimates.To prove Theorem 0.9 we provide a Normal Form Theorem (whi
h generalizes the
orresponding Theorem proposed in [GGM3℄).



xviii Introdu
tionFinally, in the proof of Theorem 0.11 we use the \improved" tree representationintrodu
ed in [Ge℄. The main idea is to apply the improved bounds 
oming from thistree representation to the \analyti
" terms (related to \fruitless" trees as said above),this is quite deli
ate and requires, for instan
e, an attentive use of the formal linearequation used for the proof of Theorem 0.6.The thesis is organized as follows:In Chapter 1 we provide some basi
 notions.In Se
tion 1.1 We 
onsider an aniso
hronous Hamiltonian of type (*), namely withA(") positive de�nite for " 6= 0 (
onsequently b(") = 0). Moreover we set F (q) =
os q � 1.For su
h system we state a KAM theorem; following [CG℄, we de�ne the homo
lini
traje
tories z('; !; t) := (I('; !; t) ;  ('; !; t) ; q('; !; t));running for positive (resp. negative) times t on the to unstable (resp. stable) manifoldsof the persistent torus of diofantine frequen
y ! 2 Rn .The initial data are  ('; !; 0) =' 2 Tn, q('; !; 0) = �. The value of I('; !; 0+) (resp. I('; !; 0�)) is �xed by requiringthat the homo
lini
 traje
tory is on the unstable manifold for positive times so thatthe homo
lini
 traje
tory is possibly dis
ontinuous for t = 0 and analyti
 in R� .We �nally de�ne the splitting ve
tor:�Ij('; !) = I('; !; 0�)� I('; !; 0+)and the splitting matrix whi
h is the Ja
obian of the splitting ve
tor at the interse
tionpoint ' = 0.The KAM theorem ensures that the S/U manifolds are analyti
 in � for small enough�. Then we �nd a re
ursive algorithm for 
omputing the Taylor expansion of themanifolds in �: z�('; !; t) = 1Xk=0 zk('; !; t):To do so, again following [CG℄, we introdu
e a suitable generalization of the improperintegration we 
all it the operator =t. This de�nitions are essentially taken from [G1℄and only slightly modi�ed in order to deal with non trigonometri
 perturbations.In Se
tion 1.2 we give some de�nitions of trees, labeled trees and their symmetrygroups. We then de�ne admissible trees, whi
h are a set of labeled trees whose labelssatisfy suitable 
onditions. Finally we de�ne the order of an admissible tree k > 0.Su
h trees 
arry quite a few labels (sometimes referred to as \de
orations"); they willbe used in Chapters 2 and 4 to prove 
an
ellations in the perturbation series of theS/U manifolds. The de
orations are ne
essary to infer the 
an
ellations dire
tly fromthe trees.In parti
ular, following [G1℄ we 
onsider spe
ial end-nodes, 
alled fruits, whi
h 
arrya di�erent set of labels from the ordinary nodes, 
alled free nodes. Su
h distin
tion is



xixuseful to eviden
e the holomorphi
 parts of the homo
lini
 traje
tory. We 
all the setof admissible trees T trees with fruits and 
all the subset of T of trees without fruitsA.In Chapter 2 we de�ne linear operators on fruitless trees A, 
alled the tree values,whi
h set the homo
lini
 traje
tories, splitting ve
tor and splitting matrix, in 
orre-sponden
e with parti
ular linear 
ombinations of trees.Consequently the tree values are appropriate (generally non analyti
) fun
tions of timeand of the initial data ('; !). We then de�ne suitable linear 
ombinations of trees oforder k whose values are in 
orresponden
e with the order k term in the expansion ofthe homo
lini
 traje
tory or of the splitting ve
tor...We repeat the same s
heme on the trees with fruits T , de�ning \holomorphi
 treevalues"; again su
h values set the homo
lini
 traje
tories, splitting ve
tor and splittingmatrix, in 
orresponden
e with parti
ular linear 
ombinations of trees with fruits.The \holomorphi
 tree values" are 
alled so as the value of all fruitless trees A isa real analyti
 fun
tion in t.The presen
e of the fruits generates the possibly non analyti
 terms whi
h are respon-sible for the 
omplexity of the problem of evaluating the splitting determinant.We are mainly interested in 
an
ellations for the splitting ve
tor and for the splittingmatrix. We view su
h 
an
ellations on the trees by setting two trees to be equivalentif they have the same value.In Chapter 3 we de�ne trees with pre�xed total frequen
y � 2 Zn, A(�) whereA 2 A and their values.Setting appropriate (non minimal) hypothesis on the fun
tion f( ; q), we providebounds for the 
ontribution to the splitting matrix of a tree A(�) of order k.Given a � 0 and d < �=2, 
onsider the domain:C(a; d) = ft 2 C : jRetj � a ; jImtj < dg [ ft 2 C : jRetj > a ; jImtj < 2�g;we 
onsider perturbing fun
tions f( ; q) su
h that:1) f( 0(t); q0(t)) is analyti
 inside a domain C(a;D) and has poles on the border.2) There exists p � 0 su
h that:maxt2C(2a;D�p") jf( 0(t); q0(t))j � Cp"�p: (0.7)For su
h systems we prove that, for � � "P , the 
ontribution to the splitting matrixof a tree A(�) of order k is bounded from above by(k!)
1(C �"
2 )k[e�Dj!��j=p"℄;with C, 
1 and 
2 are appropriate 
onstants not depending on the tree. P depends onthe meromorphi
 properties of f( 0(t); q0(t)) .



xx Introdu
tionIn Chapter 4 we use the bounds of Chapter 3 and the formalism of Chapter2 to prove exponentially small bounds on the splitting determinant. We follow thete
hniques proposed in [GGM2℄ whi
h we have generalized and, we hope, simpli�ed.In Se
tion 4.1 we 
onsider the 
ompletely aniso
hronous systems treated in the pre-vious Chapters. In Subse
tion 4.1.2 we prove that the splitting ve
tor is a Lagrangianmanifold generated by a fun
tion S(') 
alled the generating fun
tion of the splitting.Subse
tion 4.1.3 
ontains some te
hni
al identities on A1. Finally, in Subse
tion 4.1.4,we prove that the splitting matrix satis�es two formal linear non homogeneous equa-tions whi
h ensure the exponential smallness of the splitting determinant.In Se
tion4.2 we 
onsider Hamiltonian (*) with F (q) = 
os q � 1 and show thatwe 
an repeat the pro
edure proposed in the pre
eding se
tion and prove the sameexponentially small upper bounds.Finally we dis
uss (non optimal) exponentially small upper bounds for the splittingdeterminant of Hamiltonian (*) and prove Theorem 0.6.In Chapter 5 we give an alternative method for 
omputing the upper bounds onthe splitting determinant for the 
ompletely aniso
hronous 
ase. Following [BB1℄, we
onstru
t re
ursively a transformation # : Tns 3 '! � 2 Tns su
h that in the indu
edsymple
ti
 
oordinates the generating fun
tion of the splitting (whi
h we prove isS Æ #) is the integral = of an analyti
 fun
tion F (�; t) plus a remainder of order �Kwith K = O("�b) for an appropriate b depending on the number of fast variables. Thisimplies that the splitting determinant, i.e. the determinant of the Hessian of S, isO"(1). So this Chapter provides a possibly simpler proof of the upper bounds on thesplitting determinant. Moreover the existen
e of # implies a stronger 
ondition, whi
his useful to prove fast di�usion (see [BB2℄). For ea
h � 2 Tns the Hessian matrix ofS Æ # has the following blo
k stru
ture:M(�) = ������ MF NFN tF MS ������where MF is an m �m matrix whose entries are O"("1), NF is a n�m �m matrixwhose entries are O"("1) and MS 
ontains terms whi
h are polynomial in "; "�1.In Chapter 6 we �nd lower bounds on the splitting determinant and on the eigen-values of the splitting matrix, for systems with one fast frequen
y. This 
an be doneindependently by using the results of Chapter 4 or of Chapter 5.First we 
ompute the Melnikov integral for perturbations f( ; q) satisfying theCondition 0.7 with F (q) = 
os q� 1; then we use the upper bounds proved in Chapter3, restri
ted to systems with one fast frequen
y, to infer that the Melnikov integraldominates on the higher order remainder if � � "P . We obtain Theorem 0.9 for thependulum (i.e. for F (q) = 
os q � 1).In Se
tion 6.2 we 
onsider systems with three degrees of freedom and adapt the



xxite
hniques of [Ge℄ and [GGM4℄ to prove better bounds on P (whi
h depends on thepoles of the fun
tion f( 0(t); q0(t)).Finally in Se
tion 6.3 we apply our results to D'Alembert- like Hamiltonians thusobtaining Theorem 0.11.InChapter 7 we generalize the dependen
e of the q variable of the (�)-unperturbedpendulum. We 
an 
onsider the full Hamiltonian (*) with 
onditions 0.7.We �nd non perturbative 
onditions on F su
h that one 
an \shadow" the pro
edureused in the pre
eding 
hapters and prove lower and upper bounds on the splittingdeterminant (we show the pro
edure expli
itly on an example). The 
onditions on Fwill be quite te
hni
al but the fa
t that they require no 
loseness 
onditions with thependulum is, possibly, interesting.In Chapter 8 we prove the existen
e of hetero
lini
 
hains and we sket
h thepro
edure for proving that su
h 
hains are transition 
hains.The Appendi
es 
ontain parti
ularly te
hni
al proofs and some notions and de�-nitions whi
h are useful in the thesis.In Appendix A.1 we give examples of fun
tions with essential singularities whi
h sat-isfy the bounds (0.7). Moreover we prove that the only entire fun
tions f(q) satisfying(0.7) are trigonometri
 polynomials.InAppendix A.2 we provide some 
omputations on trees, useful in Chapter 3.In Appendix A.3 we provide some basi
 notions on latti
es in Zn.In Appendix A.4 we prove the Normal Form Theorem needed to solve the \gapbridging problem".In Appendix A.5 we report a proof (taken from [GGM3℄) of the 
onvergen
e of aKAM theorem for the D'Alambert-like Hamiltonian of Chapter 6.In Appendix A.6 we give the 
omplete proof of Theorem 0.6 extending the proof ofChapter 4 to general analyti
 fun
tions f( ; q).InAppendi
es A.7- A.8 we review some 
an
ellations on trees, whi
h are not stri
tlyneeded in the thesis but whi
h we �nd nonetheless interesting.A
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Chapter 1Preliminaries
1.1 Whiskered KAM tori for aniso
hronous Hamil-tonian systemsWe dis
uss a 
ompletely aniso
hronous version of Hamiltonian (*) and present a briefreview of known results on the problem of homo
lini
 splitting.In Subse
tion 1.1.1 we will �rst state a 
lassi
al KAM Theorem for partially hyper-boli
 systems (see [CG℄) whi
h ensures the existen
e of unstable tori and of their lo
alS/U manifolds and then prove the existen
e of fun
tionsI+� ( ; q; !) ; I�� ( ; q; !) (1.1)that parameterize respe
tively the unstable and stable manifolds for all  2 Tn andq 2 (�� + Æ; � � Æ). These are well known results whi
h 
an be found in most of thereferen
es so we will give no proofs of the KAM theorem.In Subse
tion 1.1.2 we dis
uss the perturbative 
onstru
tion of the manifolds (1.1),by studying the traje
tories that are asymptoti
ally quasi-periodi
 for t! �1. Theseare known results as well, we will brie
y report the proofs as they will be useful in thefollowing se
tions.Consider the model Hamiltonian:(I; A(")I)2 + p22 + "(
os(q)� 1) + �f( ; q) (1.2)the pairs I 2 Rn ;  2 Tn and p 2 R; q 2 T are 
onjugate a
tion-angle 
oordinates,", � are small parameters. For the moment we will 
onsider this parameters as in-dependent and �nally prove that we 
an take j�j < "P for some appropriate positiveP .As said in the introdu
tion A is a diagonal matrix, whose eigenvalues ai � O"(1). For" 6= 0 the matrix A is positive de�nite, and for " = 0 it 
an have some zero eigenvalues.We have in mind a matrix with eigenvalues of the type aj(") = "�j with 0 � �j � 1



2 Chapter 1. Preliminariesfor j = 1; : : : ; n. Some of the �j will be zero; in parti
ular we set �1; : : : ; �m = 0 for0 � m � n.We will 
onsider the system at energy E of order E = O"(1), " 6= 0 is a �xed parameter,and we will 
onstru
t a perturbation theory in �.The system (1.2) is integrable for " 6= 0, � = 0. It represents a list of n un
oupled rota-tors and a pendulum. We will denote the frequen
y of the rotators (whi
h determinesthe initial data I(0)) by ! so that:I(t) = I(0) = A�1! ;  (t) =  (0) + !t:The initial data are 
hosen in an appropriate domain Dm so that there are at leasttwo 
hara
teristi
 orders of magnitude for the frequen
ies of the unperturbed system.Given 0 � � � 12 and Æ 2 Rn su
h that:� � maxj=1;:::;n(�j� 12) ; Æ1; : : : ; Æm = 0 ; 12 +���j � Æj � 1��j ; for j = m+1; : : : ; nand there exists i 2 fm+1; : : : ; ng su
h that Æi = 1+���i, we 
onsider the domain:Dm(�; Æ) := fI : I � AI = 2E ; r"Æj < jIjj < R"Æj ;for all i = 0; : : : ; n and for some R; r = O"(1)g:This implies that the 
orresponding frequen
ies are in a domain
 � f! :Pni=1 !2i =ai = 2E ; ! = (!1; " 12+�!2) with j!ij � " ; !1 2 Rm ;r < j!1;ij < R and r < j!2j < R for some R; r = O"(1)g:Noti
e that, for n �m � 2 not all the 
omponents of !2 are ne
essarily of order onein ".There are at least three 
hara
teristi
 time s
ales O"(1), O"(" 12+�) and p" whi
h is theLyapunov exponent of the unperturbed pendulum.We will 
all  1; � � � ;  m the fast variables and we will sometimes denote them as  F 2Tm. Conversely we will 
all  m+1; � � � ;  n slow variables  S 2 Tn�m.Noti
e that we 
an 
onsider indi�erently systems that are degenerate or non-degeneratefor " = 0. The only (obvious) restri
tion is that if the system is degenerate in some of itsa
tion variables, for " = 0, then these are ne
essarily slow variables with 
hara
teristi
frequen
y !2;j � am+j.The perturbating fun
tion f( ; q) is a trigonometri
 polynomial of degree N in therotators  , it is analyti
 in q in a domain T � i(�R;R), for simpli
ity we take it evenand with zero mean value; this means that:f( ; q) = Xn;�2Zn+2;j�j�N fn;�ei(nq+�� )where f0;0 = 0, fn;� = f�n;�� and jfn;�j � C�e�Rjnj � Ce�Rjnj .



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 3These 
onditions are suÆ
ient to ensure the 
onvergen
e of the lo
al KAM theoremand to provide exponentially small upper bounds on m eigenvalues of the splittingmatrix. In the 
ase of one fast frequen
y (m = 1)we will restri
t our attention toperturbating fun
tions f(q;  ) that are rational in eiq (with no singularity on the unit
ir
le). In this 
ase we will give lower bounds on the eigenvalues of the splitting matrixand �nally 
onsider the problem of hetero
lini
 interse
tions.For ea
h ! 2 Rn the unperturbed system has an unstable �xed torus :p(t) = q(t) = 0 ; I(t) = I(0) = A�1!;  (t) =  (0) + !t:The stable and unstable manifolds of su
h tori 
oin
ide and 
an be expressed as graphson the angles: p = �p2"p1� 
os q ; q(t) = 4ar
tan e�p"t ;I = A�1! ;  (t) =  (0) + !t:It is known that for diofantine values of the frequen
ies the unstable tori, with theirS/U manifolds, survive the onset of a small perturbation (and so does the property ofbeing graphs over the angles) but generally the two manifolds will no longer 
oin
ideand one should expe
t a transversal interse
tion; evaluating the \interse
tion angle"will be the purpose of the following se
tions.1.1.1 The KAM 
onstru
tion, de�nitions of splitting ve
torand splitting matrix.De�nition 1.1. given any 
 2 R, 0 < 
 � O(" 12+�) and a �xed � > n� 1, we de�nethe set 

 � f! 2 
 : j! � nj > 
jnj� 8n 2 Zn=f0ggof 
; � diofantine ve
tors in 
. Now we 
onsider
�
 � 

 � (�12 ; 12)and for all (!; �) 2 
�
 we set !� = (1 + �)!.For all (!; �) 2 
�
 an for all n 2 Zn=f0g j!� � nj > 
2jnj� .! 2 

 implies that !1 and !2 are diofantine as well; we will 
all �F and �S theirexponents.Theorem 1.2. There exists1 �0("; 
) su
h that if j�j � �0 and if (!; �) 2 
�
, there1in the Appendix A.4, we will spe
ify �0("; 
); generally speaking, if we 
onsider only those ! 2
"(
) whi
h are as well in Bs : f! : j! � nj > CE2 8jnj < sg, one obtains, by 
ombining 
lassi
alperturbation theory and KAM te
hniques, that �0("; "m) = "L with L = max(2; 2(m+1)s ) . Thisestimates 
an be mu
h re�ned by using the existen
e of separate time s
ales, see for instan
e Theorem1.4 of [GGM4℄. In that arti
le the authors 
onsider a system with three degrees of freedom (and threetime s
ales 1;p"; " 12+�); they obtain �0("; 
) = "3 for all 
 < e� 1" 12 +� .



4 Chapter 1. Preliminariesexists one and only one n-dimensional H�-invariant torus T�(!; �) whose Hamiltonian
ow is analyti
ally 
onjugated to the 
ow Tn 3 #! # + !�t.The torus T (!; �) admits lo
al stable/unstable manifolds W��;lo
(!; �), des
ribed by afun
tion: Tn � B22r � B1�0 � 

 3 (#; (x+; x�); �; !�)! ��(#; x+; x�; !�) (1.3)C3 in all its arguments. For �xed (!; �) the fun
tion is analyti
 on Tnk�B̂22r�B̂1�0 ;wherek is some "-independent 
onstant and r = O"(" 14 ). In terms of the fun
tion (1.3) onehas: T�(!; �) � f��(#; 0; 0; !�)# 2 TngW+�;lo
(!; �) � f��(#; x+; 0; !�)# 2 Tn; jx+j < 2rgW��;lo
(!; �) � f��(#; 0; x�; !�)# 2 Tn; jx�j < 2rg (1.4)on the lo
al stable/unstable manifolds the 
ow is:��t� ��� (#; x+; x�; !�) = ��(#+ !�t; x+e��t; x�e�t; !�)where the Lyapunov exponent � � ��(#; x+; x�; !�) has the same regularity as �.The proof of this theorem 
an be found, for example in [CG℄.We have introdu
ed the variable � in order to �x the energy of the perturbed systemequal to2 E (for all ! 2 

).Proposition 1.3. There exists a fun
tion � = �(�; !), analyti
 in �, su
h that forE 2 [E1; E2℄: H�(��(0; 0; 0; !�(�;!)); "; �) = E:Proof. As H0(��(0; 0; 0; !0); "; 0) = 12! � A�1! = Eand ��H0(��(0; 0; 0; !�); "; 0)j�=0 = ���12! �A�1!(1 + �)2��=0 = 2E > 0we 
an apply the impli
it fun
tion theorem and obtain !�(�; !).Noti
e that Theorem 1.1 is lo
al in the hyperboli
 variables x+, x� (it holds in adomain jx�j � 2r = O(" 14 )),to �nd extended stable/unstable manifolds we \follow the
ow" i.e. we apply the Hamiltonian 
ow ��T� to the stable/unstable lo
al manifolds,where T is suÆ
iently large (positive for the unstable manifold and negative for thestable one).2The �nal goal is to �nd hetero
lini
 interse
tions on the �xed energy surfa
e, and so \Arnolddi�usion", but in the following se
tions we will dis
uss only homo
lini
 interse
tions and so we willdrop the parameter �



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 5The time T = "� 12 log "�1 is su
h that given a point �z 2 T�R inside the lo
al unstablemanifold of the pendulum, �T�=0(�z) = (2p"; �),Now the extended stable unstable manifolds are:��� (#; x+; x�; !) = ��T� ��� (#; x+; x�; !):And by the 
hoi
e of T :�qf��(#; x+; 0; !�) : jx+j < 2rg � [��; 0) 8#; (1.5)�qf��(#; 0; x�; !�) : jx�j < 2rg � (0; �℄ 8#: (1.6)Proposition 1.4. The bran
hes of the stable/unstable manifolds 
an be represented asgraphs on the rotator angles, for instan
e for p < 03:�+� (#; x+; 0; !) =  ; I+� ( ; q; !); q; p+� ( ; q; !); (1.7)��� (#; 0; x�; !) =  ; I�� ( ; q; !); q; p�� ( ; q; !): (1.8)A proof of this Proposition 
an be found, for example, in [C℄.De�nition 1.5. We will study the di�eren
e between the stable and unstable manifoldson an hyper-plane transverse to the 
ow (a Poin
ar�e se
tion). In the following Se
tionswe will use  = ' 2 Tn; q = � and 
all I�� ('; !) the graphs of the S/U manifolds atthe Poin
ar�e se
tion. We will 
all�I('; !) = I�('; !)� I+('; !)the splitting ve
tor. We will prove that �I(' = 0; !) = 0. We will 
allM : �'(I+� ('; !)� I�� ('; !)jthe splitting matrix and detM the splitting determinant.It is 
onvenient to re-s
ale the time and a
tion variables so that the Lyapunovexponent of the unperturbed pendulum is equal to one. Namely we will 
onsider thefollowing Hamiltonian:(~I; A(")~I)2 + ~p22 + (
os(~q)� 1) + �f(~�; ~q); (1.9)whi
h generates the same Hamilton equations as (1.2), provided that:~I(t) = I( tp")p" ; ~ (t) =  ( tp") ; � = �"~p(t) = p( tp")p" ; ~q(t) = q( tp") : (1.10)We re-s
ale the domains Dm and 
 
onsequently so obtaining a res
aled frequen
y~! = ( !1p" ; "a!2). In the following se
tions we will 
onsider the system after this 
hangeof variables, but we will omit the tilde (ex
ept in !).To retrieve the true size of I we must only remember to multiply by p", the inversefor the variable t, to have the 
orre
t estimates on the di�usion times.3noti
e that p+� ( ; q; !) is obtained via the energy 
onservation one we have �xed the sign of p.



6 Chapter 1. Preliminaries1.1.2 Perturbative 
onstru
tion of the homo
lini
 traje
toriesIn this Subse
tion we will use perturbation theory to �nd the (analyti
 for � � �0)traje
tories on the S/U manifolds of Hamiltonian4 (1.9)(z�� (�jtj; '; ~!) � ��jtj� (I�� ('; ~!); '; �) =Xk (�)kzk�(t; '; ~!):The basi
 ideas, whi
h go ba
k to Poin
ar�e, 
onsist mainly in determining the traje
-tories on the S/U manifolds by requiring boundedness as t! �1.Namely given the Hamilton equations of system (1.9):_Ij = �(�)f j ( ; q) ; _p = sin(q)� (�)fq( ; q) ;_ j = ajIj; _q = p; (1.11)an initial datum '; I�� ('; ~!); �; p�� ('; ~!) is on the stable (unstable) manifold if andonly if its 
ow approa
hes the invariant torus of frequen
y ~! for 5 t ! �1 . Thisrequirement is suÆ
ient to determine the initial datum as a power series in �.De�nition 1.6. To avoid the � apex we will set6:zj(t) = � z+(t) if t > 0z�(t) if t < 0 :Moreover as we will now 
onsider ~! as �xed we will omit ~! in the expansion 
oeÆ
ients.Inserting in the Hamilton equations the 
onvergent power series representation:I(t; '; �) =P1k=0(�)kIk(t; ') ;  (t; '; �) =P1k=0(�)k k(t; ') ;p(t; '; �) =P1k=0(�)kpk(t; ') ; q(t; '; �) = q0(t) +P1k=1(�)k k0(t; ')we obtain, for k > 0, the hierar
hy of linear non-homogeneous equations7:_Ikj =F kj (f hi gi=0;:::;nh<k ) ; _ kj = ajIkj ; for j = 1; : : : ; n ;_pk = 
os q0 k0 + F k0 (f hi gi=0;:::;nh<k ) ; _ k0 = pk ; (1.12)4Noti
e that the apex k on the fun
tions I;  represents the order in the expansion in � NOT anexponent. To avoid 
onfusio, when we need to exponentiate we always set the argument in parentheses.5and so tends, as t ! �1, to a quasi-periodi
 fun
tion with frequen
y ~! at an exponential rategiven by the Lyapunov exponent6note that the fun
tions so de�ned are possibly non 
ontinuous in t = 0 as ea
h boundedness
ondition (t! �1 determines uniquely the value in t = 07when it is not stri
tly ne
essary we will omit the pre�xed initial data of the angles ' = 1(0); � � � ;  n(0);  0(0) = �



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 7where the fun
tions F ki are de�ned as follows. Set:[�℄k = 1k! dkd�k ( � )j�=0;we have for j = 0; : : : ; nF kj (t) = �[fj(k�1Xh=1(�)h h(t))℄k�1 + Æj0[sin(k�1Xh=1(�)h h0 (t))℄k;where Æji denotes the Krone
ker delta and  h(t) is the ve
tor  h0 (t); : : : ;  hn(t). Fork = 0 we obtain the unperturbed homo
lini
 traje
tory:z0(t) = ('+ !p"t ; A�1 !p" ; q0(t) ; p0(t));(q0(t); p0(t)) is the lower bran
h of the pendulum separatrix starting at q = �:q0(t) =4 ar
tan e�t ; p0(t) = � 2
osh t ;
os q0 =1� 2(
osh t)2 ; sin q0 = 2 sinh t(
osh t)2 : (1.13)For k > 0 we have a linear non-homogeneous ODE that we solve by variation of
onstants.The fundamental solution of the linearized pendulum equation is given by:W (t) =  (1� !0(t)4 sinh t(
osh t)2 � sinh t(
osh t)2!0(t)4 1
osh t !!0(t) = 2t+ sinh 2t
osh t ;so that integrating equations (1.12) we have:pk(t) = w11(t)pk(0�) + w11(t) tZ0 w22(�)F k0 (�)d� � w12(t) tZ0 w21(�)F k0 (�)d�; k0 (t) = w21(t)pk(0�) + w21(t) tZ0 w22(�)F k0 (�)d� � w22(t) tZ0 w21(�)F k0 (�)d�Ikj (t) = Ik(0�) + tZ0 F kj (�)d� kj (t) = aj(Ik(0�)t+ tZ0 (t� �)F kj (�)d�);
(1.14)



8 Chapter 1. Preliminariesthe fun
tions wij are the entries of W (t) and we have used the fa
t that, for k > 0, ki = 0 for all i = 0; n.Remark 1.7. This pro
edure 
an be repeated for any generalized pendulum; see Se
tion7.2 for the 
onstru
tion of the Wronskian matrix. One obtains a matrix W 0(t) havingthe same qualitative properties a W .To give meaning to the t! �1 limit ,following [CG℄, in the following Subse
tionwe shall introdu
e a suitable generalization of the standard improper integration.1.1.3 Whisker 
al
ulusLet D be the 
lass of fun
tions f smooth for t 6= 0, su
h that for any k � 0, there exista > 0 > b for whi
h, given t 2 R the fun
tion:u! Fk(u; t) � tZ�(t)1 e�ujtjf (k)(�)d� where �(t) = sign(t) (1.15)is analyti
 on the 
omplex domain fu 2 C : <u > ag and admits an analyti
 
ontin-uation whi
h is meromorphi
 in fu 2 C : <u > bg and analyti
 in a neighborhood ofu = 0. If f 2 D we set =t = F0(0; t).Noti
e that if lim supt!�(t)1 erjtjjf (k)(t)j < 1 for some r > 0, then f 2 D and=t(f) = R t�(t)1 f .It is easy to 
he
k that f � tje
t 2 D for any j and any non-zero 
omplex number 
.Polynomials are 
learly not 
ontained in D. Nevertheless, we extend the operator =on ~D � ring of Polynomials in tby de�ning =t� j = tj+1j+1 .Now set ~H to be the largest subset of ~D whi
h is 
losed under produ
t, derivativeand integration = and ~M � ff 2 ~H : �Pf = 0gwhere �P is the natural proje
tion onto polynomials.On ~H one 
an set =tf = I du2i�u tZ�(t)1 e�uj� jf(�)d�; (1.16)where the integration in the u variable is performed on a suitably small juj � Æ 
ir
learound u = 0 It is easily seen that expression (1.22) works as well on polynomials in tthe only di�eren
e being that tZ�(t)1 e�uj� jf(�)d�;



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 9will no longer be analyti
 in u = 0.For all f 2 ~H, =tf is a primitive of f as:=tf � =sf = tZs f(�)d�; (1.17)for any f 2 ~H and any s; t su
h that �(t) = �(s).Let us 
onsider some interesting subspa
es of ~H.De�nition 1.8. (i) H is the ve
tor spa
e (on C ) generated by monomials of the form:m = �(t)a jtjjj! xhei('+!t)�� where h 2 Z ; � 2 Zn ; j 2 N ;x = e�jtj ; a = 0; 1 ; �(t) = sign(t): (1.18)(ii) Given two positive 
onstants b and d, H(b; d) is the subset of (
ouples of) fun
-tion(s) f(t) that admit a (unique) representation:f(t) = kXj=0 jtjjj! M�(t)j (x; '+ !t); (1.19)with Mj(x; ') trigonometri
 polynomials in '.The Fourier 
oeÆ
ients Mj �(x) are all holomorphi
 in the x-plane in an annulus 0 <jxj < e�b and satisfy the following properties.1) The Mj �(x) have possible singularitiesoutside the disk jxj < e�b and outside the
one j arg xj < d.2) The Mj �(x) have possible polar singu-larities at x = 0.If M�(t)k 6= 0 then k is 
alled the t degree off . In Figure 1.1 we have represented a pos-sible \
andy"shaped domain of analyti
ityfor the M� j
eb

d

Figure 1.1:Noti
e that H is 
ontained in all the spa
es H(b; d); moreover if jtj > b, f(t) 
anbe represented as an absolutely 
onvergent series of monomials of the type m.One 
an easily 
he
k that the integration = a
ts on monomialsm of the form (1.18)as:=t(m) = 8>>>><>>>>:��a+1xhei( +!t)�� jXp=0 jtjj�p(j � p)!(h� i�! � �)p+1 if jhj+ j�j 6= 0��a+1jtjj+1(j + 1)! if jhj+ j�j = 0 (1.20)



10 Chapter 1. PreliminariesThis and equation (1.17) show that =t a
ts on H(b; d) as (1.20) if jtj > b and ifjtj � b as =2�(t)b + tZ2�(t)b ; (1.21)obviously the 
hoi
e of 2b is arbitrary.On H(b; d) we 
an extend =t to 
omplex values of t su
h that t 2 C(b; d) where:C(b; d) := ft 2 C : j Im tj � d ; j Re tj � bg [ ft 2 C : j Im tj � 2� ; j Re tj > bg;is the domain in Figure 1.1 in the t variables.
i d

−i d

b−b

2 i π

− 2 iπTo extend =t simply 
onsider the de�nition 1.16, for t 2 C(b; d) so that if t = t1 + is,with t1; s 2 R, the integral is performed on the line Im� = s.=tf = I du2i�u tZ�(t)1+is e��(�)u�f(�)d�; (1.22)where �(t) = sign(Re t).This de�nition does not modify the expressions (1.18) (one simply sets t = t1 + is,x = x1ei�(t1)s). The following property holds:Lemma 1.9. H(b; d) is 
losed under the appli
ation of =t.Proof. Let us expand f as in (1.19) and 
onsider the single termtjei!��tM�(t)� j (x); (1.23)moreover, if jtj � b, we divide =t as in (1.21). For jtj > b we 
an expand M�(t)� j (x) in
onvergent power series of x and apply (1.18). The radius of 
onvergen
e is the sameand the degree of the pole in zero is the same. MoreovertZ2�(t)b+is � jei!���M�(t)� j (x0)



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 11is well de�ned and �nite provided that s < d and j Re tj < b.Finally as f is a �nite 
ombination of terms like (1.23) so =tf is still in H(b; d).De�nition 1.10. We de�ne as ~H0 the subspa
e of ~H of fun
tions that 
an be extendedto an analyti
 fun
tion in some strip around the real axis.H0(b; d) is the subspa
e of H(b; d) of fun
tions that 
an be extended to analyti
 fun
tionsin C(b; d).Noti
e that f is in H0(b; d) if it is in H(b; d) and f+(t) and f� join analyti
ally att = 0.Remark 1.11. Noti
e that if f 2 H0(b; d) then generally =f =2 H0(b; d) and has adis
ontinuity in t = 0. For instan
e if f 2 L1 is even, then:=(f) := =0� �=0+f = 1Z�1 f 6= 0:We 
an 
onstru
t operators whi
h preserve H0(b; d); let = = =0� �=0+ and=t+ = � =t if t � 0=t � = if t < 0 ;=t� = � =t if t � 0=t + = if t > 0 :The operator 12 X�=�1=t� = =t � 12�(t)= (1.24)preserves the analyti
ity.Now let us 
ite two important properties of H0(b; d), whose proofs are taken from[G1℄.Lemma 1.12. In H0(b; d) we have the following shift of 
ontour formulas:8f 2 H0(b; d) and for all d > s 2 R(i) =f(�) = =f(� + is) ;(ii) X�=�1=t+is� f(�) = I dR2i�R X�=�1 tZ�1 e�R�(�)(�+is)f(� + is)d� :The integrals in the right hand side have to be 
onsidered to be the analyti
 
ontin-uation on R from R positive and large.



12 Chapter 1. PreliminariesProof. (i) If f is a polynomial one 
an 
he
k by dire
t 
al
ulation that the relation is0 = 0.For R large and positive 0Z�1 eR�f(�)d� + 0Z1 e�R�f(�)d� (1.25)is well de�ned and 
an be shifted by is for all s < d. It is equal to0Z�1 eR(�+is)f(� + is)d� + 0Z1 e�R��isf(� + is)d� � i sZ0 (e�iR tau � eiR� )f(i�)d�:This di�ers from 0Z�1 eR�f(� + is)d� + 0Z1 e�R�f(� + is)d� (1.26)pre
isely by:(eiRs � 1) 0Z�1 eR(�)f(� + is)d� + (eiRs � 1) 0Z1 e�R�f(� + is)d�� (1.27)i sZ0 (e�iR� � eiR� )f(i�)d�:This implies (i) by taking the residues at R = 0.We 
onsider only f with no polynomial 
omponent, so the t-integrals are all analyti
in R for R = 0. This implies that the residue of (1.27) is zero.(ii) The two sides di�er by the residue at R = 0 of�i sZ0 (e�iR� � eiR� )f(i�)d�whi
h vanishes.1.1.4 Analyti
 expansions for the whiskersLet us 
onsider some (probably non minimal) 
onditions on the perturbing fun
tionf(q;  ). Namely we will 
onsider only those fun
tions f(q;  ) whi
h are trigonometri
polynomials in  and su
h that f(q(t);  (t)) 2 H0(b; d) for some b; d.



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 13Remember that q(t) and  (t) are the mo-tions on the unperturbed separatrix afterthe 
hange of variables (1.10).The traje
tory q(t) 
an be analyti
ally ex-tended to t 2 R�(��=2; �=2), in Figure 1.2we show some q(t+ id), t; d 2 R for variousvalues of jdj � �=2. -3 -2 -1 1 2 3

-6

-4

-2

2

4

6

Figure 1.2:We have in mind fun
tions f su
h thatf(q;  ) = X�<N ei�� F�(eiq)and there exist � < 1 < � and 
 su
h that the F�(y) are all analyti
 in the domain� < jyj < �; jy � 1j < 
:Given f we de�nea = infb2R+ fb : F�(eiq(t)) 2 H0(b; d) for some d and 8�gD = supd2R+ fd : F�(eiq(t)) 2 H(a; d) 8�g: (1.28)In Figure1.3 we have represented in light-blue the region 12 < jyj < 2 and in darkblue the image through eiq(t) of the regionC(3; �=16). if the F�(y) have no poles in-side this region and have a pole on the bor-der both of the 
ir
le around y = 1 and onthe \annulus" around S1 then a = 3 andD = �=16.
−1 1−0.5 0.5−2 2

2i

−2iFigure 1.3:We easily see that zk(t) and hen
e F k belong to ~H for all k > 0 so that:Ik(t)� =tF k = Ik(0�(t))�=0�(t)F k: (1.29)Remark 1.13. (i) The quasi-periodi
 average,limT!�1 1jT j TZ0 f� = (< f� >;< f+ >) �< f >;of an asymptoti
ally quasi-periodi
 (
ouple of) fun
tion(s) f �  + g, where g isexponentially de
reasing, 
oin
ides with the quasi-periodi
 average of  ;(ii) if f is asymptoti
ally quasi-periodi
 with < f >= 0 then both f and =tf belong to~H and < =f >= 0 as well.



14 Chapter 1. PreliminariesThus taking the quasi-periodi
 average in the �rst line of (1.11), one sees that bothF k and Ik , whi
h are asymptoti
ally quasi-periodi
, have vanishing quasi-periodi
average. Therefore taking the quasi periodi
 average in (1.29) we obtain Ikj (0) = =0F kjand so: Ikj (t) = =tF kj  kj = aj(=t[=�F kj ℄� =0[=�F kj ℄):With similar arguments (and keeping in mind the asymptoti
s of W (t), we �nd thatpk(0�) = 0Z�1 w22(�)F k0 (�)d�:Finally we summarize the equations for the stable/unstable manifolds as:Iki (t) = =t(F ki )  kj (t) = ajOtj(F kj ) (1.30)where i = 1; n and j = 0; n and a0 = 1.The operators Otj are de�ned in terms of =t:Otj = Qtj +R0 tj +R1 tjQtj(g) = 12P�=�=t�(wj(t; �)g(�))Ri tj (g) = �12x[i℄j (t)=(xij(�)g(�)) [i℄ = ji� 1jwj(t; �) = �(t)x1j(t)x0j(�)� �(�)x0j(t)x1j(�))x1j = 8<: jtj j 6= 0jtjxx2 + 1 � 14(x� x�1) j = 0 ; x0j = 8<: 1 j 6= 02xx2 + 1 j = 0 : (1.31)Noti
e that x0j belongs to H0(0; �=2) x1j belongs to H(0; �=2) and that w(t; �) is inH0(0; �=2)�H0(0; �=2). By our assumptions F 1j j = 0; n belongs to H0(a;D). ThusLemma 1.11 guarantees that H(a;D) is 
losed under the appli
ation of =t and Otj.Remark 1.14. If f( ; q) is a trigonometri
 polynomial then F 1j j = 0; n belongs toH(0; �=2) whi
h is 
losed under the a
tion of =t and Otj.In the following Se
tion we will work symboli
ally on I;  , so we will not note weatherwe are working in H(b; d) or in ~H. Then in Chapter 3 , where we estimate the integrals,we will need to keep tra
k of the a
tion of Qj on H(b; d).Remark 1.15. We have expressed the operators Oj in terms of Qj and Rij to keeptra
k of the o

urren
e of terms not in H0; a
tually we start with f(' + ~!t; q(t)) and
os(q(t)) whi
h are in H0, but the operators R0 tj produ
e x1j whi
h is 
learly not in H0.



1.1. Whiskered KAM tori for aniso
hronous Hamiltonian systems 15The following proposition 
ontains some important properties of the operators Qjall proved in [G1℄.Proposition 1.16 (Chier
hia). (i)The operators Qj and Oj are \symmetri
" on ~H:=(f Qjg) = =(g Qjf) ; =(f Ojg) = =(g Oj)f):(ii) H0(a;D) is 
losed under the appli
ation of Qtj.(iii) The operators Qj preserve parities and if f 2 ~H is odd then =f = 0(iv)If F;G 2 H are su
h that �PF �G has no 
onstant 
omponent, then:=0�G(�)d�F (�) = F (0�)G(0�)� =0�F (�)d�G(�)Proof. (i) Consider the bilinear forms:(Fe�R1jtj; QjGe�R2jtj) � 1Z�1 e�R1jtjdtX�=� tZ�1 wj(t; �)e�R2j� jG(�)d�:For suÆ
iently large values of R1, R2 the integrals are proper and the bilinear formis symmetri
 (as wj(t; �) is odd). So taking the residues at R1; R2 = 0 we obtain thesymmetry of the operators Qj on ~H.(ii) We are simply restating Lemma1.11 and remarking that the operators Qj preservethe analyti
ity in t = 0.(iii) The operator = 
hanges the time parity (it is the inverse of a derivative); moreoverwe remember that wj(t; �) = x0j(t)�(�)x1j(�)� �(t)x1j(t)x0j(�); ;where both the xij are even.(iv) We want to 
ompute:I du2�iu tZ�(t)1 e�ujt0jF (t0)dt0G(t0) = F (t)G(t)�I du2�iu tZ�(t)1 e�ujt0jG(t0)dt0F (t0) + I du2�i tZ�(t)1 e�ujt0jF (t0)G(t0)the third summand is 
learly zero if �PFG = 0 as in that 
asetZ�(t)1 e�ujt0jF (t0)G(t0)



16 Chapter 1. Preliminariesis analyti
 in u = 0. If FG is a polynomial a dire
t 
omputation on tk shows thatI du2�i tZ�(t)1 e�ujt0jtk = Æ(k; 0):
Corollary 1.17. For any even f; g 2 ~H:=f=twj(t; �)g = =x0jf=x1jg � =x1jf=x0jg + =g=twj(t; �)f:Proof. We simply substitute (1.24) in Proposition 1.16(i) and then use 1.16(iii) to sethe integrals of odd fun
tions to zero.1.2 TreesWe supply the ne
essary de�nitions of trees, labeled trees, rooted trees and introdu
e setsof trees (whi
h we will 
all admissible) having labels and grammati
al rules adapted toour dynami
s. We 
onstru
t a ve
tor spa
e V on Q generated by the sets of admissibletrees and de�ne on V linear and multi-linear fun
tions. The de�nitions are adaptedto the problem of des
ribing the homo
lini
 traje
tories with the aid of trees; thereforemany de�nitions 
ould be given in more general terms and maybe appear then morenatural (for a general presentation see for instan
e [GR℄).We hope however that the notation will be
ome more 
lear when we de�ne the
onne
tion with the dynami
s in Chapter 2.All the de�nitions of trees are standard, noti
e however that we are using a di�erentnotation from that of [G1℄ and the subsequent papers, whi
h use numbered trees. Thisminor modi�
ation enables us to follow the 
ombinatori
s more expli
itly.1.2.1 Trees, symmetry groups and admissible treesThe de�nitions 
ontained in this Subse
tions are all adapted from [GR℄.De�nition 1.18. A graph G 
onsists of two sets V (G) (verti
es), E(G) (edges) su
hthat E(G) is a subset of the unordered pairs of distin
t elements of G. We will always
onsider �nite graphs, i.e. graphs su
h that N(G) = jV (G)j is �nite. Two verti
esi; j 2 V (G) are said to be adja
ent if (i; j) 2 E(G). It is 
ustomary to write n 2 G inpla
e of n 2 V (G) and (i; j) 2 G in pla
e of (i; j) 2 E(G).Two graphs G1, G2 are equal if and only if they have the same vertex set and the sameedge set.De�nition 1.19. A path joining the verti
es i; j 2 G is a subset Pij of E(G) of theform Pij := f(i; v1); (v1; v2); � � � ; (vk; j)g:



1.2. Trees 17A graph G is 
onne
ted and without loops if for all i; j 2 G there exists one andonly one path that 
onne
ts them. Su
h graphs are 
alled trees. Their verti
es are
alled nodes and their edges are 
alled bran
hes.A tree T su
h that the set V (T ) = f1; 2; : : : ; N(T )g is 
alled a numbered tree.
1

2

3
4

5

6
7

8
9

10
11

12Figure 1.4: A numbered treeDe�nition 1.20. A labeled tree is a tree A plus a label LA(v) � 0 whi
h is generallya set of fun
tions f iA(v) de�ned on the nodes.When possible we will omit the subs
ript A in the fun
tions f i.De�nition 1.21. Two labeled trees X; Y are isomorphi
 if there is a bije
tion, hsay, from V (X) to V (Y ) su
h that for all a 2 V (X) , LX(a) � LY (h(a)), moreover(a; b) 2 E(X) if and only if (h(a); h(b)) 2 E(Y ).We say that h is an isomorphism from X to Y . Noti
e that sin
e h is a bije
tionh�1 is well de�ned and is an isomorphism from Y to X.We will 
all symmetries or automorphisms of X, the isomorphisms from X to X.It is often 
onvenient and more 
ompa
t to represent a tree by a diagram, withpoints for the nodes and lines for the bran
hes, as in Figure 1.5. In this diagrams thepositions of the points and lines do not matter - the only information it 
onveys iswhi
h pairs of nodes are joined by a bran
h. This means that the two diagrams inFigure 1.5are equal by de�nition.Stri
tly speaking these diagrams do not de-�ne graphs, sin
e the set V is not spe
i-�ed. However, if the diagram has N points,we may assign distin
t natural numbers1; 2; : : : ; N to the points (whi
h we still 
allnodes), so obtaining a labeled numberedtree.Then it is easily seen that the two trees inFigure 1.5 are isomorphi
. Figure 1.5:



18 Chapter 1. PreliminariesDe�nition 1.22. Formally we 
an de�ne su
h diagrams as the equivalen
e 
lasses oflabeled trees via the relation A �= B if and only if A and B are isomorphi
.An obvious 
onsequen
e of this de�nition is that, LA(v) and N(A) are well de�ned onthe equivalen
e 
lasses.We 
an 
hoose a representative A0 of the equivalen
e 
lass A by giving a numbering1; 2; � � � ; N(A) to the nodes of A.Remark 1.23. Given an equivalen
e 
lass of labeled trees A let A0 be a numbering,and let S(A0) be the group of automorphisms of A0.This means that S(A0) is the subgroup of the permutations � 2 SN(A) whi
h �x bothE(A) and the labels jA ; ÆA. Namely � 2 S(A)! �L = L and jA(v) = jA(�(v)); ÆA(v) =ÆA(�(v)).Given two isomorphi
 trees A0; A00 of A, let h be the bije
tion su
h that E(A0) = �E(A00).The groups S(A0) and S(A00) = h�1S(A0)h are isomorphi
. We will improperly 
all theequivalen
e 
lasses via this relation the symmetry group S(A) of the diagram A.Using standard notation (see for instan
e [L℄) we denote by a := (i1; i2; : : : ; im)with N 3 ij � N(A) the permutation su
h that a(ih) = ih+1, a(im) = i1, and a(n) = nfor all N 3 n � N(A) su
h that n =2 fi1; i2; : : : ; img. Moreover (i; j; k)(l; m) is the
omposition of a = (i; j; k) and b = (l; m).As an example in Figure 1.6 
onsider thenumbered tree A (N(A) = 6), its symme-tries are the identity and: a := (1; 4);b := (2; 3); 
 � a Æ b; d � (5; 6)(1; 2)(4; 3),e := (5; 6)(1; 3)(2; 4); f := (5; 6)(1; 2; 4; 3);g := f Æ a. Clearly any other numberingon A, would give an isomorphi
 symmetrygroup.
1

5 6

4 3

2

Figure 1.6:Given a node v 2 A ,we de�ne its orbit:[v℄ := fw 2 A : w = g(v) for some g 2 S(A);i.e. the list of nodes obtained by applyingthe whole group S(A) to v, noti
e that thisis an equivalen
e relation (a proof of thisstatement is in [GR℄). In the example ofFigure1.6 there are two orbits, whi
h in the
hosen numbering are:[1℄ � f1; 2; 3; 4g and [5℄ � f5; 6g:
L

L

L

L’

Figure 1.7:



1.2. Trees 19Remark 1.24. The orbits are well de�ned on the equivalen
e 
lasses of labeled trees,it should be 
lear , for instan
e, that the nodes signed in bla
k in the diagram of Figure1.7 are an orbitDe�nition 1.25. A rooted labeled tree is a labeled tree A plus one of its nodes 
alledthe �rst node (vA or v0); this gives a partial ordering to the tree, namely we say thati > j if Pv0j � Pv0i (see Figure1.8). Moreover 
hoosing a �rst node indu
es a naturalordering on the 
ouples of nodes representing the bran
hes namely (a; b) 2 E(A) impliesthat a < b.We re
all some de�nitions on rooted trees:a) the level of v l(v) is the 
ardinality of Pv0v;b) the nodes subsequent to v, s(v), are the nodes adja
ent to v and of higher level; thenode pre
eding v is the only node adja
ent to v and of lower level;
) given v node of A, we 
all A�v the rooted tree (with �rst node v) of the nodes w � v;we 
all Anv the remaining part of the tree A.An isomorphism between rooted trees (A; vA), (B; vB) is an isomorphism betweenA and B whi
h sends vA in vB.The symmetries of a rooted labeled tree (A; vA) ,whi
h we denote again by S(A; vA)are the subgroup of the symmetries of the 
orresponding unrooted tree, that �x the�rst node vA. As done for trees, we 
an represent the equivalen
e 
lasses of rootedtrees with diagrams, representing by 
onvention the �rst node on the left and all thenodes of the same level aligned verti
ally (it should be obvious that the de�nitionsv > w, Anv and A�v are well posed on the equivalen
e 
lasses).
0

v

v

1

v

wFigure 1.8: A rooted tree, l(v) = 1, l(v1) = 2, in this example the nodes subsequent tov, s(v) are the orbit of v1.jSv0(A)j = 6, the tree Anv is (v0; w)Remark 1.26. By the Lagrange theorem (see [L℄ or [GR℄) we have that:jS(A; vA)j = jS(A)jj[vA℄j ;where [vA℄ is the orbit of vA 
onsidered as a node in the unrooted tree A.



20 Chapter 1. PreliminariesS(A; vA) is a group, so we 
an de�ne its orbits on the nodes v whi
h we 
all again [v℄(see Figure1.8). Noti
e that now [vA℄ � fvAg. Moreover if v1 2 [v℄:l(v) = l(v1) and A�v1 = A�v � A�[v℄;We 
all [v℄l the 
osets of level l and m[v℄ = j[v℄j.Lemma 1.27. The order of the symmetry group jS(A; vA)j is:jS(A; vA)j =Y[v℄1 m[v℄!jS(A�[v℄; v)jm[v℄Proof. We apply the Lagrange theorem repeatedly: �rst we 
hoose a node v of levelone, and prove that the order of its stabilizer (in S(A; vA)) is the produ
t of jS(A�v; v)jand jS(Anv; vA)j;then in Anv 
hoose a node w 2 [v℄ and so on until all the nodes in [v℄are 
an
eled; one gets m[v℄!jSv(A�[v℄)jm[v℄jjS(An[v℄; vA)j;where (An[v℄; vA) is the rooted tree A deprived of all the subtrees A�w with w 2 [v℄. Soin An[v℄ we 
onsider another 
oset [v0℄ 6= [v℄ and repeat the pro
edure. A more detailedproof is in [GR℄.Now we will �x the label fun
tions and restri
t our attention to trees respe
tingsome rules (a grammar) whi
h re
e
t the properties of our perturbative expansion ofthe homo
lini
 traje
tory.De�nition 1.28. We 
onsider rooted labeled trees su
h that some nodes are distin-guished by having a di�erent set of labels 8. An admissible tree is a symbol:A; fvAg; fv1; : : : ; vmg; fw1; : : : ; whgsu
h that A is a tree, all the vi; wj and vA are nodes of A, the vi are all end-nodes,fvigmi=1 \ fwjghj=1 = ?and the vi are all di�erent.We 
all fvigmi=1 � F(A) the fruits of A, fwjghj=1 �M(A) the marked9 nodes of A andthe set 0A : fv =2 F(A)gthe free nodes of A.The labels are distributed in the following way:a) For ea
h node v 6= vA one angle label jv 2 f0; : : : ; ng (remember that we are 
onsid-ering a system with n + 1 degrees of freedom).8The dynami
al meaning of the labels will be 
lear when we will de�ne the \value" of a tree9a node v 
an appear many times in M(A) we will say it 
arries more than one marking.



1.2. Trees 21b) For ea
h node v one order label Æv = 0; 1 if v 2 0A and Æv 2 N otherwise.
) For ea
h node v 2 M(A) one angle-marking J = 0; : : : ; n and one fun
tion-markingh(t) 2 H.d) For ea
h node v 2 F(A) one type label i = 0; 1.We set a grammar on the so de�ned labeled rooted trees, namely:Æv = 0! fjv = Jv = 0; js(v)j � 2 ; jv0 = 0 8v0 2 s(v)g:To draw the diagrams without writing down the labels we give a 
olor to ea
h j = 1; n(whi
h for
es Æ = 1) and two di�erent 
olors for the 
ouples of labels j = 0; Æ = 1 andj = 0; Æ = 0.In all the pi
tures we will set n = 2 and 
hoose the 
olors blue, green, bla
k and white,see Figure1.9. The fruits F(A) will be represented as \bigger" end-nodes 
olored withthe 
olor 
orresponding to their 
omponent label and with their order and type writtenon a side. The marked nodes will be distinguished by a box of the 
olor 
orrespondingto their angle-marking and with their fun
tion-marking written on a side.If the fun
tionmarking is h(t) = 1 we will omit the fun
tion marking.
0

i, k

x
0
0

���
���
���
���
���

���
���
���
���
���Figure 1.9: Examples of trees in A5 and in 0T 5De�nition 1.29. 1) We will 
all fruitless trees the (labeled rooted trees) A su
h thatF(A) is empty. We will say that a fruit v stems from w if v 2 s(w).2)We will 
all T the set of equivalen
e 
lasses (as in de�nition 1.22) of admissibletrees, 0T the subset of T of trees with at least a free node and A the subset of 0T of\fruitless" trees.Finally we will 
all mA the subset of A of fruitless trees with no marking.3) We will 
all F ikj the \tree" 
omposed of one fruit of order k angle j and type i;
learly T � 0T [i=0;1j=0;:::;nk>0 F ikj :



22 Chapter 1. PreliminariesNotational Convention 1. Using standard notation we represent the equivalen
e
lasses by [A℄ where A is an admissible tree.Moreover givea a tree A we will write A 2 T if it is a representative of an equivalen
e
lass in T .De�nition 1.30. The order of an element [A℄ 2 T is:o(A) =Xv2A Æv:The order of a node v of A is o(v) = o(A�v).Given a tree A 2 0T and one of its nodes v we 
all A�v the tree 
omposed of thenodes greater or equal to v; if A�v is not a fruit then it is not admissible as it 
arriesa label j in the �rst node. In su
h 
ase, we 
onventionally set A�v 2 T by setting amark J(v) = jv, h(v; t) = 1 on v and subsequently \forgetting" the label jv.It is easily seen that o(A) > 0 for all A 2 T and thatT k � fA 2 T t.
. o(A) = kgis a �nite set (see also Proposition 1.37); 
learly the same is true in 0T and in ANotational Convention 2. in all our sets an apex k means we 
onsider the subsetof trees of order k.We list here all the subsets of T , 0T and A that we will need in the followingse
tions.De�nition 1.31. a) T� (resp 0T� and A�) is the subset of T (resp 0T , A) su
h that vAappears exa
tly on
e in M(A) and h(vA; t) = 1 or vA � F(A).b) 0Tj (Aj) is the subset of 0T� (A�) su
h that J(vA) = j and M(A) � fvAg;Tj = 0Tj [k2N;i=0;1 F ikj :
) A(j;f(t))is the subset of A su
h that M(A) � fvAg and J(vA) = j, h(vA; t) = f(t).d) A(i;h(t));(j;f(t)) is the subset of A su
h that M(A) � fvA; vg for some v 2 A moreoverJ(vA) = i, h(vA; t) = h(t), J(v) = j, h(v; t) = f(t).For ea
h of these sets we will 
onsider a ve
tor spa
e on Q generated by the set; ifS is the set we represent it by V(S).De�nition 1.32. V(S) is the ve
tor spa
e of linear 
ombinations of elements of S withrational 
oeÆ
ients.[A℄ 2 S ! [A℄ 2 V(S) ; [A℄; [B℄ 2 V(S) ! q1[A℄ + q2[B℄ 2 V(S) ; 8q1; q2 2 Q :



1.2. Trees 23V(S) is an in�nite dimensional ve
tor spa
eand 
an be expressed as dire
t sum of �-nite dimensional spa
es generated by thesets Sk (we 
all these spa
es Vk (S)). Forexample (remember that . n = 2) A31 isthe set in Figure1.10. The values of the la-bels ji of the nodes 1; : : : ; 4 are free: they
an be 0; 1; 2 while Æi is �xed to one be-
ause s(1) = 1 and the nodes 2; 3; 4 areend-nodes ; the dimension of V31 = V3(A1)is jA31j = 19.

j j

j

j

1 2

3

4

Figure 1.10:1.2.2 Fun
tions on admissible treesWe de�ne some fun
tions on the subspa
es of T whi
h will be useful in the followingse
tions. The de�nitions are very mu
h \ad ho
" so they will ne
essarily seem quiteunnatural.Su
h fun
tions will then be extended to linear fun
tions on the 
orresponding V.De�nition 1.33. Consider a rooted labeled marked tree A, with �rst node vA angle-marked J(vA) and fun
tion-marked h(t) = 1 (A is not ne
essarily in 0T�). We de�ne~A as the tree obtained from A by setting j(v ~A) = J(vA) and subsequently forgetting themarking J; h = 1 of vA so that the �rst node does not have a di�erent labeling from theother free nodes.Given a tree B 2 0T plus one of its nodes v 6= vB let w be the node pre
eding v, wede�ne: �gA(B; v) = E( ~A) [ fE(B) n (w; v)g [ (w; vA) [ (vA; v);and gA(B; v) = ( �gA(B; v) if �gA(B; v) 2 0T0 otherwise:Finally we 
an de�ne gA(B) = Pv2B gA(B; v), this is a fun
tion gA : 0T ! V( 0T ) sowe 
an extend it linearly on V( 0T ).De�nition 1.34. For all k 2 N we de�ne fun
tions on unordered k-ples of trees in T�.Let A be a labeled rooted marked tree with at least one free node, and fBigki=1 be anunordered set of trees Bi 2 T�.We 
all as usual vA the �rst node of A and vBi the �rst nodes of the Bi.If B 2 fBig is not a fruit and J(vB) is the marking of vB we 
all ~B the tree obtainedfrom B by setting jv ~B = J(vB) and forgetting the marking. Then we de�nefA(B1; : : : ; Bk) = ( [i(v ~A; v ~Bi) [ E( ~A) [i E( ~Bi) if it is in 0T0 otherwise:



24 Chapter 1. PreliminariesThis fun
tions as well 
an be extended to V(T�) by linearity.It should be 
lear that the de�nition is in-variant by permutations of the Bi. No-ti
e moreover that it is not ne
essary thatA 2 T� to obtain a (linear or multi-linear)fun
tion fA: T� ! T� (or gA). Considerfor instan
e the trees in Figure 1.11 respe
-tively for linear fun
tions gA(B) and formulti-linear fun
tions (k � 2). Figure 1.11:De�nition 1.35. We will use fun
tions whose arguments are in some spe
i�ed sub-spa
es10 Vk (Tj) (this means that the image is in some �xed Vh(Ti) as well):fAfphi gk : 
n ; ki=0h=1 T hi � � � � � T hi| {z }phi ! T k+o(A)j ;namely there is an ordering of the set fBig su
h that B1; : : : ; Bp10 2 T 10 then Bp10+1; : : : ;Bp10+p11 2 T 11 and so on, see Figure1.13.All this this fun
tions are well de�ned on the equivalen
e 
lasses, namely ifA �= A0 ; B �= B0 ! gA(B) �= gA0(B0) : : : ;this implies that the fun
tions 
an be represented graphi
ally on the diagrams. Fun
-tions gA(B) use the marking of the �rst node of A as angle label and substitute thebran
h w; v with A by joining the �rst node of A to v and w (we set the result to zeroif we obtain a tree not in T ).Fun
tions fA(fBig) use the marking of the �rst node of the Bi as an angle labeland join with a bran
h the �rst nodes of A and of the Bi. They have vA as �rst node.As an example if A1 and A2 are the two trees in Figure6.3.1,then fA1(A2) is the tree inFigure1.12(a) while fA2(A1) = 0 as all nodes with Æ(v) = 0 must be followed by nodeswith j = 0.Let us de�ne the multi-linear fun
tions:�Æfphi gk = f�(Æ)fphi gk where the tree �(Æ) 2 0T is δ;these fun
tions are used to 
onstru
t re
ursively the sets mAk.10remember that fphi gk is a weighted partition of k: a list of numbers in N0 su
h thatXi;h hphi = k:
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2Figure 1.12: Linear fun
tions on V; the diagrams A1 and A2 are those of Figure 1.9.
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1
1p  = 1     , p  =  2Figure 1.13: A multi-linear fun
tion f : A11 �A20 �A20 ! A71



26 Chapter 1. PreliminariesFor ea
h A 2 mAk, let vA be its �rst node and v1; : : : ; vm the nodes of level one. Nowfor ea
h l = 0; : : : n and h = 1; : : : ; k� 1 let phl (A) be the number of elements w of thelist s(v) su
h that A�w 2 Ahl ; noti
e thatn ; kXl=0h=1 h phl (A) = k � ÆvA.Remark 1.36. Given A 2 mAk:A = �ÆvAfphi (A)g(A�v1 ; : : : ; A�vm):Conversely the set Æ 2 (0; 1), fAlgKl=1 2 [nj=0Aj with K � 1, represents one and onlyone (non zero) tree: namely for any 0 � i � n, h � 1, set fphi gfAlg to be the numberof trees in the list fAlg belonging to Ahi , and 
onsider the treeA = �Æfphi gfAlg(fAlg): (1.32)Clearly there are many lists Æ 2 (0; 1), fAlgKl=1 su
h that expression (1.32) gives zero .This simple Remark leads to a 
onstru
tive algorithm for 
onstru
ting the sets mAkfrom the sets Ahj with h < k.Proposition 1.37 (Re
ursive 
onstru
tion of mAk). For all k 2 N:mAk = [Æ=0;1 ; ftihgk�ÆAhi (�)2Ahi �Æfthi g�A10(1); � � � ; A10(t10); A11(1); � � � ; Ak�1n (tk�1n )� (1.33)Proof. This follows dire
tly from Remark1.36 as expression (1.33) generates all thelists Æ 2 (0; 1); j 2 (0; : : : ; n), fAlgkl=1.Now to generate A (and in parti
ular the sets Ahj ) we 
onsider linear fun
tionswhi
h add extra markings to a tree; given A 2 0T the symbol:h(v; t)�vl Arepresents the appli
ation of an angle-marking J(v) = l and a fun
tion-marking h(v; t)in the node v; formallyA; fvAg; fvigmi=1; fwjghj=1 ! A; fvAg; fvigmi=1; ffwjghj=1 [ fvgg:We 
an de�ne the linear fun
tion:Dj(h(t))[A℄ :=Xv2 0A h(v; t)�vjA: (1.34)Lemma 1.38. The set A is obtained from mA by su

essive appli
ations of the mark-adding fun
tions. In parti
ular Aj is generated by�v0j �fphi g:



1.2. Trees 27To generate 0T we 
an 
onsider fun
tions whi
h add fruits to a tree: given A 2 0T Thefun
tion di;kj (v) adds a fruit F ikj to the node v by adding a node y labeled (i; k; j) tothe list F(A) and setting y 2 s(v). Then naturally we 
an de�ne the linear fun
tion:D(i;k)j [A℄ :=Xv2 0A di;kj (v)[A℄:This is not the only possible way of addingfruits namely if �i;k is the tree in Figure1.14 then we 
onsider the linear fun
tion:B(i;k)[A℄ := Xv2Ajv=0 g�i;k(A; v):
��
��
��
��

0

i h

Figure 1.14:Finally to generate all the possible trees with one fruit we 
onsider the fun
tion:F i;k[A℄ = f�i;k(A);de�ned on trees A 2 A0
= ][
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,Figure 1.15: The adding fruits fun
tions

Lemma 1.39. The set 0T is obtained from mA by su

essive appli
ations of the fruit-adding and mark-adding fun
tions; in parti
ular:[i=0;1j=0;:::;nk2N D(i;k)j [ mA℄[L(i;k)[ mA℄[F (i;k)[ mA℄ � mA(1F );where mA(1F ) are the trees without markings and with only one fruit.



28 Chapter 1. PreliminariesAnother way of manipulating trees is to 
hange the �rst node (whi
h is distinguish-able only as it does not have the label j). Generally one 
an obtain various trees in0T by simply 
hanging the un
olored node (for example one 
an shift the angle labelsdown along a path joining any node v to the un
olored one vA). However not all thetrees obtained in su
h a way are in TDe�nition 1.40. Given a tree A 2 0T let vA be the �rst node and v a free node; the
hange of �rst node P (A; v) : 0T ! 0T is so de�ned:let vA = v0; v1; : : : ; vm = v be the nodes of the path PvA;v. P (A; v) is obtained fromA; fvAg; fvigmi=1; fwjghj=1 by shifting only the j labels of the nodes of PvA;v in the dire
-tion of vA. This automati
ally implies that v is left j�un
olored and is the �rst nodeof P (A; v). If we obtain a tree not in T we set P (A; v) = 0.P : V(T )! V(T ) is the linear fun
tion su
h that 8A 2 T , P (A) = Pv2 0A P (A; v).
v

A P(A,v)= =Lemma 1.41. P (A; v) = 0 if and only if ÆvA = 0 , js(vA)j = 2 . This means that thepossibility of applying the 
hange of �rst node does not depend on the 
hosen v 6= vA.Proof. Consider the trees A and P (A; v) and the nodes vA = v0; v1; : : : ; vm = v of thepath PvA;v. For ea
h i = 0; m�1 vi pre
edes vi+1 in A and follows it in P (A; v). So forea
h node w 6= vA; v the number of following nodes s(w) is the same in A and P (A; v);s(vA) de
reases by one and s(v) 
onsequently in
reases by one. This implies that alltrees A with ÆvA = 0 and js(vA)j = 2 have P (A; v) = 0 for all v. Moreover if vi hasÆ = 0 then it has j = 0 as well as all the nodes (in
luding vi+1) following it. Thismeans that in P (A; v) it will still have Æ = j = 0, the same s(vi) � 2; moreover vi�1that follows vi in P (A; v) has j = 0.Notational Convention 3. We will 
all rT the subspa
e of 0T of trees whose �rst node
an be 
hanged. In general an apex r on a tree set S means that we 
onsider only treesin S whose �rst node 
an be 
hanged.De�nition 1.42 (
hange of nodes in T(i;h);(j;f)). Given a tree A 2 T(i;h);(j;f) letvA and v be respe
tively the �rst node and the other marked node. We de�ne P1 �P (A; v) : T(i;h);(j;f) ! T(j;f);(i;h); see Figure1.16.Remark 1.43. Noti
e that given a tree A 2 rT and one of its nodes v there exists aunique B su
h that P (A; v) = B. This means that for all i; j and for all the fun
tionsh; f 2 H: rT(i;h);(j;f) $ rT(j;f);(i;h):If i; j 6= 0 then rT(i;h);(j;f) � T(i;h);(j;f) and so T(i;h);(j;f) $ T(j;f);(i;h):
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Figure 1.16: Example of P1(A); we have eviden
ed the path joining the two markednodes.In T(0;f);(i;h) (i 6= 0) we have trees not in rT ; i.e. trees with Æv0 = 0 and js(v0)j = 2. CallT (0)(0;f);(i;h) su
h subset.Lemma 1.44. T (0)(0;f);(i;h) is the image of T(i;h) by a suitable linear fun
tion, (similar togA(B)).Proof. We 
hoose �f = f(y, t )where f 2 H(this is a marked rooted tree with one node y) and 
onsider the appli
ation �g�f (A; v). Then we apply the 
hange of �rst node in y. We have a \linear fun
tion":Lf(A) = Xv2Ajv=0P (�g�f (A; v); y)Consider a tree A 2 T(i;h), as �f has degree zero in k the degree of �g�f (A; v) is the sameas that of A. However the trees �g�f (A; v) are never in T . We then apply the 
hangeof �rst node and obtain the linear fun
tion T ! T Lf(A) whose �rst node is y markedzero and s(y) = 2; the node v (that follows y) is labeled j = 0 by the de�nition of g,while the node that pre
edes v in A (that now follows y) gets the label j = 0 from yby the shift of labels; the trees we obtain are in T . Noti
e that Lf is an inje
tive linearfun
tion T k(i;h) ! V(T k 0(0;f);(i;h)) and that ea
h tree B 2 T (0)k(0;f);(i;h) uniquely identi�es the
ouple A; v where A 2 T k(i;h) and v is one of its nodes.Corollary 1.45. Consider the set Â = mA \ rA;Â generates mA (and 
onsequently A and 0T ).



30 Chapter 1. PreliminariesProof. We simply 
onsider the linear fun
tion L(A) := P (�g�(A; v); v) where �= δ=0,and pro
eed as in Lemma 1.44.



Chapter 2Tree expansion for the homo
lini
traje
toryIn the pre
eding Chapter we have de�ned all the ne
essary spa
es of trees; now we�nally set the trees in 
orresponden
e with the dynami
s. In parti
ular we will de�netwo appli
ations V and W de�ned on A and two appli
ations V1 and W1 de�ned onT . Correspondingly we will de�ne two ve
tors0kj 2 V(Akj ) ; and �kj 2 V( 0T kj )this ve
tors will have the property:V(0kj ) = V1(�kj ) =  kj ; =W(0kj ) = =W1(�kj ) = �Ikj :Moreover V1(A);W1(A) 2 H0 for all A 2 A , while the presen
e of fruits introdu
esnon analyti
 terms.2.1 Holomorphi
 properties of tree representations2.1.1 Linear operators on trees,To establish a 
orresponden
e between ea
h fun
tion  kj (t) and a ve
tor of V(Aj ), letus �rst write the fun
tions F kj expli
itly (using well known formulas on the derivativesof 
omposite fun
tions):F kj = � X~m2Nn0 (r~m+ejf(t)) Xfphj g~m;k�1 n;k�1Yj=0h=1 1phj ! ( hj )phj�Æj0Xn�2(dn sin q(t)) Xfphgn;k k�1Yh=1 1th! ( h0 )ph



32 Chapter 2. Tree expansion for the homo
lini
 traje
torywhere fphj g~m;k is a list of numbers in N0 � N [ f0g and respe
t the relationXh phj = mj ; Xj;h hphj = k;similarly fphgn;k is a list of numbers in N0 su
h that Ph ph = n, Ph hph = k, �nallyr~mf(t) = [ nYj=0 �mj j f( )℄ i='+!it 0=q0(t) ; dng(q(t)) = dnd 0g( 0)j 0=q0(t):We have that: kj (t) = ajOtj(F kj ) = aj�Qj(F kj ) + 12 Xi=0;1(=(xijF kj )� ; �Ikj (t = 0) = =(F kj ):Given a list fphjg we set:Pfphj g =Y phj ! ; mi =Xh phi ; f 1 = f ; f 0 = 
os(q) ; M =Xi;h phi ;and de�ne the multi-linear fun
tions on xi 2 H:F Æ;jfphi g(x1; xM) = (�1)Ær~m+ejf ÆY xi:Noti
e that F Æ;jfphi g = 0 if Æ = 0 and j 6= 0 as in that 
ase �jf Æ = 0. We 
an write: kj = ajOj[XÆ=0;1 Xfphi gk�Æ 1P (fphi g)F Æ;jfphi g(�x1; � � � ; �xM)℄where �x1 = � � � = �xt10 =  10(t) ; �xt10+1 = � � � = �xt10+t11 =  11(t) � � � and the ordering isarbitrary.We now 
onstru
t the linear fun
tionsV' : V([nj=0Aj)! H ; W' : V(A) ! Hsu
h that for ea
h j 2 f0; 1; : : : ; ng and for ea
h k there is a unique 0kj 2 Vkj su
h that kj (t; ') = V'(0kj ) and �IkJ = =W'(0kj ).The fun
tion W is de�ned re
ursively on the the �nite sets mAh and then extended toA via the mark adding fun
tions and to V(A) by linearity. V is dire
tly de�ned on thesets Aj.First we de�ne the fun
tions on trees of order one W( mA1) and V(A1j).Remember that mA1 is the tree: 01 = δ=1 and A1j the tree 01j = �v0j 01W'(01) = �(�)(f 1(q(t); '+ ~!t)) ; V'(01j) = �(�)ajQj(rejf 1(q(t); '+ ~!t)) (2.1)



2.1. Holomorphi
 properties of tree representations 33Then, using Remark1.36, we see that by setting:V'��v0j �Æfphi g(fAlg)) = ajOj(��)Æ(r~m+ejf ÆYl V(Al)�;for ea
h list Æ = 0; 1 j = 0; n and fAlg 2 [jAj, we 
an de�ne V re
ursively on all theAkj . In the following we will omit the initial data ' whenever it is possible.Namely the value V of a tree A 2 Aj is found re
ursively from the value of its levelone subtrees1 A�v.We have seen in the pre
eding se
tion that we 
an obtain A from mA by su

essivelyadding marks, so given a tree with no marks on the �rst node we add the marksj1; : : : ; jl h1(v0; t); : : : ; hl(v0; t) and set:W( lYi=1 hi(v0; t)�v0ji 01) = (��)Yi hi(vA; t)rPi ejif 1;W( lYi=1 �v0ji hi(v0; t)A) � (��)Æv0 Yi hi(v0; t)(r~m(v0)+Pi ejif Æ) Yv2s(v0) ajvOjv [W(A�v)℄;where ~mi(v) is the number of nodes v0 2 s(v) having jv0 = i. This extends W to A.De�nition 2.1. We de�ne re
ursively the ve
tors 0kj that we will prove to be in 
or-responden
e with  kj :0k = XÆ=0;1 Xfphi gk�Æ 1Pfphi g�Æfphi g(010; : : : ;010| {z }p10 ;020; : : : ;0k�1n ); 0kj = �v0j 0k:noti
e that ea
h 0hj appears phj times.The de�nition immediately impliesV(0kj ) = (�)k kj :Proposition 2.2 (Determination of 0kj ). For ea
h j; k0kj = XA2Akj 1jS(A)jA � XA2Akj 
(A)A; (2.2)where the sum A 2 Akj means 
hoosing one representative from ea
h equivalen
e 
lass ofAkj (
learly this is well de�ned as jS(A)j does not depend on the 
hosen representative).1remember that, if v is a node of level one, we 
onsider A�v 2 A� and the angle label jv be
omesan angle-marking with fun
tion-marking h(v; t) = 1.



34 Chapter 2. Tree expansion for the homo
lini
 traje
toryProof. We pro
eed by indu
tion. The assertion is trivially true for 01j so we suppose ittrue for all i and 8h < k. By De�nition 2.1 and Proposition 1.37 0kj is the sum of allthe trees in Akj and we only have to prove that the 
oeÆ
ients are those of expression(2.2).Given a tree A 2 Akj let v1 vm be its level one nodes and A1; � � �Am its level onesubtrees; by the de�nition of 0 we have to prove that:1jS(A)j = N(A1; � � � ; Am)Pfphi (A)g mYi=1 1jS(Ai)jwhere fphi (A)g is the number of trees fAjg in Ahi and N(A1; � � � ; Am) is the numberof ways in whi
h one 
an 
hoose one summand form ea
h 010; : : : ;0k�1n and obtain theunordered list (A1; � � � ; Am).Now if m[vi℄ is the 
ardinality of the orbit of vi (so there are m[v1℄ subtrees equal toA1 ...), N(A1; � � � ; Am) = Pfphi (A)gQ[v℄1 m[v℄! and mYi=1 1jS(Ai)j =Y[v℄1 1jS(A�[v℄)m[v℄j :
2

= + Σ

= 1
2

+

1
2

+

1

2
+

1

2 +

j=0,1,2

i,j=0,1,2

3

Ω

Ω

j

ji

i

j

ΣFigure 2.1: the ve
tors 020 and 030, as in Figure1.10 some of the labels j are left free,they 
an be equal to (0; 1; 2), in any 
ase Æ = 1



2.1. Holomorphi
 properties of tree representations 35Noti
e that V'(A) = V'(B) if and only if A �= B;so we will always 
onsider isomorphi
 trees as equal and make no di�eren
e betweenthe tree and its diagram.To 
ompute the expansion of the a
tion variables we use Expression (1.30). It iseasily seen that the splitting ve
tor of order k (�)k�Ikj 
an be expressed as the value=W' of 0kj .2.1.2 Holomorphi
 and non holomorphi
 
ontributions (treeswith and without fruits)We have mentioned in Remark 1.15 that it 
an be useful to divide the series expansionof  (�; t; ') in an analyti
 part, due to su

essive appli
ations of Qj and a part not inH0 due to the appearan
e of the operators Rij. To represent this 
hoi
e we use the fullspa
e T . In parti
ular the fruits will represent the 
hoi
e of one of the Rij.We set: kj = ajOj(F kj ) = ajQjF kj + Xi=0;1 x[i℄j Gikj ; where Gikj = 12aj=xijF kj : (2.3)Then as in the pre
eding subse
tion we de�ne a ve
tor in V(T k) whi
h we want to setin 
orresponden
e with the angles  kj .De�nition 2.3. We de�ne re
ursively 0�1j = 01j ,0�jk = XÆ=1;0 Xfphj g~m;k�Æ 1Pfphj g�v0j �Æfphj g(�10; : : : ;�k�1n )and �nally �kj = Xi=0;1F ikj + 0�kj :Proposition 2.4. As in Proposition 2.2:0�kj = XA2 0T kj 1jS(A)jAProof. We pro
eed by indu
tion: �j1 = 01j + Xi=0;1F i;1j



36 Chapter 2. Tree expansion for the homo
lini
 traje
toryveri�es the Proposition, so we suppose it to be true 8 j = 0; n and 8 h < k. By theindu
tive hypothesis:0�jk = XÆ=1;0 Xfphj g~m;k�Æ 1Pfphj g�v0j �Æfphj g(�10; : : : ;�k�1n )where the �hi h � k � 1 are in V(T hi ), and we pro
eed as in Proposition2.2 .We now give a valueW1 to trees in T and the de�ne a fun
tion V1 so that V1(�kj ) = kj . As usual we pro
eed re
ursively on trees of in
reasing order and de
orations:given a tree in 0T with no marks on the �rst node we add the marks j1; : : : ; jl, h1(t);: : : ; hl(t) and set:W1( lYi=1 hi(vA; t)�vAji 01) =(��)Yi hi(vA; t)rPi ejif 1;W1( lYi=1 �vAji hi(vA; t)A) =(��)ÆvA Yi hi(vA; t)(r~m+Pi ejif Æ) Yv2s0(vA)ajvQjv [W1(A�v)℄Yv2F(vA)x[iv ℄jv (t)Giv;kvjv ;Gi;kj =12aj=xijW1( 0�kj );where ~mi is the number of nodes in s(v0) having jv = i and s0(v) is the number of freenodes following v. As seen in the previous Se
tion this de�nes W1 on 0T .Then we de�ne the values V1, re
ursively on [j 0Tj by setting:V1(A) � ajQj[W1(A)℄:for all A 2 0Tj. Finally we extend the de�nition to fruits by setting:V1(F i;kj ) = x[i℄j Gi;kj :By De�nition 2.3 the \value" of a fruit of order h label j and type i is as well :�12ajx[i℄j =fxijW[0hj ℄g:Noti
e that the fruits bring non analyti
 terms namelyV1(F0;kj ) =2 H0 ; and G1;kj = =x1jW1( 0�kj );with x1jW1( 0�kj ) =2 H0. In general, for trees in 0T , it is useful to 
onsider the followingfun
tion	'(A) =Yv2 0A(�12�)ÆvrPnj=0mv(j)ejf Æv Y�2F(v) x[i�℄j� Y�2M(v) h�(v; �v)w(�w; �v)Y�2F(A)Go(�);i(�)j(�) ;



2.2. Equivalent trees and 
an
ellations 37F(v) are the fruits stemming from v, M(v) is the list of markings of the node v and�nally mv(j) is the number of elements in fv; s0(v);F(v);M(v)g having angle label(or angle marking) equal to j. We write s0(v);F(v) instead of s(v) to remark that thefruits are not 
onsidered proper nodes. Noti
e that 	1'(A) 
ontains the kernels of theintegral operators Qj so that W is obtained by \integrating" on the times �v v > v0.W1'(A) = 2Yv>v0 =�w+ + =�w� 	'(A) � O Æ	'(A):Remark 2.5. For the splitting ve
tor we have j = 1; n and:�Ikj � 2a�1j G0kj = =W1[�kj ℄: (2.4)The angles  kj for j = 0; n are: kj � V1(�kj )) = aj(=t+ + =t�)wj(t; �v0)W1(�kj ) (2.5)2.2 Equivalent trees and 
an
ellationsIn this se
tion we use the tree expansion to prove properties of the homo
lini
 traje
toryand of the homo
lini
 splitting matrix.First let us de�ne some parti
ular ve
tors in V( 0T ).De�nition 2.6. For i; j = 0; n, and given f(t); h(t) 2 H, we de�ne for any k 2 N:V(T k(i;f)) 3 �k(i;f) = XA2 0T k 
(A)f(v0; t)�vAi A = XA2T k(i;f) 
(A)A;V(Ak(i;f)) 3 0k(i;f) = XA2A 
(A)f(v0; t)�vAi A = XA2A(i;f) 
(A)A;V(T k(i;f);(j;h)) 3 �k(i;f);(j;h) = XA2 0T k X[v℄2A 
(A; v)f(vA; t)�vAi h(v; t)�vjA = XA2T k(i;f);(j;h) 
(A)A;V(Ak(i;f);(j;h)) 3 0k(i;f);(j;h) = XA2Ak X[v℄2A 
(A; v)f(vA; t)�vAi h(v; t)�vjA = XA2Ak(i;f);(j;h) 
(A)A;where 
(A) = 1S(A) ; 
(A; v) = m[v℄S(A)for all labeled trees A. By 
onvention we will omit the marking fun
tion if it is equalto one.



38 Chapter 2. Tree expansion for the homo
lini
 traje
toryNoti
e that=W'(0kj ) = =W1'(�kj ) = �Ikj (') ; =W'(0kj;i) = =W1'(�kj;i) = �'i�Ikj ('):Moreover as we said before �Ikj = 2G0kj .Now we have set up all the ne
essary formalism to study the 
an
ellations in the seriesfor the ve
tor �Ikj (') and its Ja
obian matrix �'i�Ikj ('). The 
an
ellations o

urbe
ause the appli
ations =W1 or equivalently =W (de�ned on V(A)) are 
learly notinje
tive so that apparently di�erent trees 
an give the same 
ontribution.We have introdu
ed all this formalism on the trees to be able to identify 
an
ellationsdire
tly in the formal spa
e of trees V. We have 
onsidered trees modulo isomorphism,now we add identities due to the dynami
s.De�nition 2.7. Given two trees A,B in 0T we setA = B $ A�B 2 ker=W1;noti
e that isomorphi
 trees are equal.This equality 
an hold for all initial data ' or only for some spe
ial values in the latter
ase we will set A = B(' = �'). The same reasoning 
an be done with the operator=W in A.Remark 2.8. Noti
e that by our de�nition of equivalent trees adding a fruit of orderk type i and angle j in the free node v of a tree A 2 0T is equivalent to adding a markx[i℄j (t)�vj to the node v and multiplying by the � and ' dependent fun
tion Gikj .The 
an
ellations between trees are due to the symmetries of the Qj and Oj oper-ators that we eviden
ed in Proposition1.16, we will write them again s
hemati
ally:a) The operators Qj and Oj are symmetri
; given F and G 2 H=F (t)Qj(G(�)) = =G(t)Qj(F (�))=F (t)Oj(G(�)) = =G(t)Oj(F (�))b) The operator Qj preserves the parity; moreover =f = 0 if f 2 H is odd.
)Given two 
ontinuous fun
tions F;G 2 H if �PFG 6= 
 holds then:=TG(t)dtF (t) = F (T )G(T ))�=TF (t)dtG(t):d) By energy 
onservation the stable and unstable manifolds are on the same energylevel.Ea
h of these properties brings some 
an
ellations, we will �rst 
he
k those 
omingfrom property (b), as they are the simplest ones:Lemma 2.9. for ea
h j; k and for any even fun
tion f(t):V(Ak(j;f)) 2 ker=W'=0:In the same way V(T k(j;f)) 2 ker=W1'=0:



2.2. Equivalent trees and 
an
ellations 39Proof. By Proposition1.16 (b) we only need to prove that W'=0(A) is odd for allA 2 Ak(j;f).We pro
eed by indu
tionW(01(j;f)) = f(t)rejf 1(~!t; q0(t))whi
h is odd as f and f 1 are even. If k > 1 then 
all l(A) > 0 the number of subtreesof level one. W(A) is the produ
t of l(A) odd fun
tions times f 1 derived l(A)+1 timesso it is odd.Then, for ea
h j; k, the fun
tionGh�j�;k�( = 0) = =W(xij0kj ) = 0as it is the integral of an odd fun
tion. So in 0T all the trees with fruits have zero value.Finally if A 2 0T is fruitless then W1(A) is odd.Theorem 2.10. [homo
lini
 interse
tion℄ The stable and unstable manifold interse
tat q = �;  = 0.Proof. the distan
e between stable and unstable manifold at q = �;  = ' is:nXj=1 1Xk=1(�)kj�Ikj (')j = nXj=1 1Xk=1(�)kjaj=W1'(�kj )j:
Another important feature for identifying 
an
ellations is the symmetry with re-spe
t to 
hanges of the �rst node.Lemma 2.11. By Proposition1.16(a) we have:8A 2 rT ; 8v 2 A : P (A; v)� A 2 ker =W1'8A 2 rT(j;f)(i;h) : P1(A)� A 2 ker =W1' (2.6)for the same reasons:8A 2 rA ; 8v 2 A : P (A; v)� A 2 ker =W'8A 2 rA(j;f)(i;h) : P1(A)� A 2 ker =W': (2.7)Proof. Noti
e that given a tree A and one of its nodes v if w 2 P(vA; v) then:P (A; v) = P (P (A;w); v);



40 Chapter 2. Tree expansion for the homo
lini
 traje
toryso that we only need to prove the assertion for v 2 s(vA). Given A 2 rT and v 2 s(vA)su
h that jv = j we 
ompare: =W1(A) and =W1(B) with B = P (A; v), so B has �rstnode v (no label jv) and a node vA in s(v) with jvA = j.=W1(A) = (��)ÆvA=rPj mvA(j)ejf ÆvA Yw2s(vA)w 6=v Qjw [W1(A�w)℄Qj[(��)ÆvrPj mv(j)ejf Æv Yw12s(v)W1(A�w1)℄;whi
h by the symmetry of Qj is equal to=rPj mv(j)ej (��)Ævf Æv Yw12s(v)W1(A�w1)Qj[(��)ÆvArPj mvA (j)ejf ÆvA Yw2s(vA)w 6=v Qjw [W1(A�w)℄℄:This is the value of B, namely, both in A and in B, mv(i) with i 6= j is the number ofelements in (s(v);M(v); F(v)) having label i and mv(j)� 1 is the number of elementsin (s(v);M(v);F(v)) having label j.
v

A P(A,v)= =

Figure 2.2: An example of trees that are equivalent by 
hanging the �rst nodeExample 2.12. let A be the tree in Figure2.2:W1'(A) = re1+e2+e0f 1(�0)Q1(�0; �1)[re1f 1(�1)℄Q0(�0; �2)[re0f 1(�2)℄Q2(�0; �3)�re2+e0f 1(�3)Q0(�3; �4)[re0f 1(�4)℄�whileW1'(P (A; v)) = re0f 1(�0)Q0(�0; �1)hre2+e0f 1(�1)Q2(�1; �2)�re1+e2+e0f 1(�2)Q1(�2; �3)[re1f 1(�3)℄Q0(�2; �4)[re0f 1(�4)℄�iso we apply repeatedly the Proposition 1.16(b).



2.2. Equivalent trees and 
an
ellations 41We have seen that many trees in 0T are equivalent; we will 
on
entrate on relationsfor the ve
tors 0i;j and �i;j. Let us summarize some properties of the 
oeÆ
ients
(A; v).Consider A 2 0T and let A be the rootless tree asso
iated to A. By the Lagrangetheorem if vA is the �rst node of A and S(A; vA) is the stabilizer of vA in A thenjS(A)j = jS(A; vA)j = jS(A)jas vA is the only un
olored node of A.Lemma 2.13. � (i) let [v℄ be the 
osets of v by the a
tion of S(A) and m(v) = j[v℄j:Xv �vi 1S(A)A =X[v℄ m[v℄jS(A)j�vi Athe sum [v℄ means 
hoosing a term from ea
h 
oset to obtain summands that areall di�erent.The 
oeÆ
ient 
(A; v) � m[v℄jS(A)j is the 
ardinality of the subgroup S(vA; v) of S(A)that �xes vA and v;� (ii) This subgroup �xes all the nodes of the path P(vA; v) and so does not dependon the labels of the nodes on the path. So given a tree A and a node v
(A; v) = 
(P (A; v); vA)Proof. � (i) we group the identi
al terms in Pv 
(A)�vi A 
orresponding to nodesin the same 
oset [v℄ of A so we have m[v℄ terms for ea
h 
oset [v℄.� (ii) �rst we note that S(A) sends adjoint nodes in adjoint nodes so for ea
hpermutation � 2 x(vA; v) and for ea
h vi in the path PvA;v (that have length m)�(vi) = wi is adjoint to wi+1 = �(vi+1). Now as by de�nition � �xes w0 = v0 = vAand wm = vm = v the list of nodes fwigmi=0 is a path joining vA to v. In a treethe paths are unique so wi = vi for ea
h i � m.This Lemma and Remarks 1.43 imply the following identities on the ve
tors �i;jand 0i;j. we write them expli
itly only for �.Proposition 2.14. For i; j 6= 0, f; h 2 H and for ea
h k the following equality holds:�k(i;f) (j;h) = �k(j;h) (i;f).Proof. We have seen that Ak(i;f) (j;h) $ Ak(j;h) (i;f) and that the trees in 
orresponden
ehave the same value. We only need to prove that the 
orresponding summands in�k(i;f) (j;h) and �k(j;h) (i;f), have the same 
oeÆ
ient; this follows from Lemma2.13(ii).Namely given A in Ak(i;f) (j;h) then S(A) is the stabilizer of the two marked nodes of A,then 
(A) = 
(P1(A)).



42 Chapter 2. Tree expansion for the homo
lini
 traje
toryProposition 2.15. Given any two fun
tions in H: h(t) and f(t), for ea
h k and forea
h i = 1; n we have: �k(0;h) (i;f) = �k(i;f) (0;h) + Lh(�k(i;f))Proof. As in the pre
eding Proposition r�k(0;h) (i;f) = r�k(i;f) (0;h).To prove that �k0(0;h) (i;f) = Lh(�k(i;f)) we show that the 
oeÆ
ient of 
orresponding sum-mands are the same (we have seen that to ea
h element of Ak0(0;h);(i;f) there 
orrespondsan unique summand of Lh(�k(i;f))). Given a summand (tree A) of �k0(0;h) (i;f) markedin the node v, its 
oeÆ
ient 
(A) is the inverse of the 
ardinality of the stabilizer ofvA, v. If v1 is the only2 node following vA and not in P(vA; v) then jS(A)j is as wellthe 
ardinality of stabilizer of the the path joining v1 to v (whi
h passes by vA byde�nition). So it has the same 
oeÆ
ient as P1�g�h(B; v1) where B is the tree , having�rst node v, su
h that P1�g�h(B; v1) = A.

2it is unique as A 2 Ak00h (i;f)



Chapter 3Basi
 estimates on tree expansionsWe prove upper bounds on the value of trees of order k. In parti
ular our bounds onW1(A) are exponentially small for all A 2 A (we will 
all these the \analyti
 bounds").Upper bounds onW1(T ) for T 2 T are derived more or less in the same way as in [G1℄;noti
e however that we do not request that f( ; q is a trigonometri
 polynomial. Wealso 
onsider bounds on the values V1 of fruitless trees, whi
h will be useful in Chapter5. Moreover in Se
tion 3.2 we will prove some te
hni
al lemmas on asymptoti
 powerseries whi
h will be useful in Chapters 4 and 5.In Chapter 2 we have introdu
ed a tree representation for the series expansion of j('; �) and Ij('; �). The KAM theorem 1.2 guarantees the 
onvergen
e of this twoseries and of the splitting matrix. So we 
an 
onsider the series:�j =Xk�1 �kj ; and the fun
tions V1'(�j) and =W1'(�j);are well de�ned smooth fun
tions of � by the KAM theorem. We would like to 
onsiderseries of the type: X�2I 
(A�)A�;where I is a numerable set and the A� 2 T . For su
h series we have no guarantee of the
onvergen
e of the 
orresponding values. We will 
onsider them as formal series andwrite identities between the formal series whi
h are true term by term. Su
h identitieswill be written as A � B.In this 
hapter we prove that su
h formal series are polynomial asymptoti
 seriesin �; ".De�nition 3.1. A formal power seriesx =Xk (�)kxk(")



44 Chapter 3. Basi
 estimates on tree expansionsis polynomially asymptoti
 in �; " if there exists a neighborhood of " = 0 where for anyq 2 N there exists p(q) su
h that:xk(") � "�p(q)k ; 8k � "�q ; 8" 6= 0:3.1 Upper bounds on the values of treesGiven a fruitless tree A 2 mA of order k (so with at most 2k � 1 nodes), its valuethrough =W1' is of the form:2=Yv>v0(=�w+ + =�w� )(�12)N(A)(�)Æv0rPj mv0 (j)ejf Æv0Yv>v0(�)ÆvrPj mv(j)ejf Ævw(�w; �v) (a)Its value V1 is:Yv�v0(=�w+ + =�w� )(�)Æv(�12)N(A)rPj mv(j)ejf Ævw(�w; �v); (b)where w is the node pre
eding v and by 
onvention: �w0 = t.Remember that, setting x = e�jtjwj(t; �) = �(t)x1j(t)x0j(�)� �(�)x0j(t)x1j(�))x1j = � jtj j 6= 0jtjxx2+1 � 14(x� x�1) j = 0 x0j = � 1 j 6= 02xx2+1 j = 0: (3.1)And that the operators = and =t� are: = = =0� �=0+ and=t+ = � =t if t � 0=0+ �=0� + =t if t � 0 ;same for =t�.We expand f 1 in Fourier series in the rotator angles,f 1( ; q) = Xj�j�N ei�� f�(q);so that ea
h node has one more label �v 2 Zn. Be will represent as A(�) a tree A withlabels �v su
h that su
h that Xv2A �v = �:As A is fruitless V1(A) depends on the initial data via the fun
tion ei'��.



3.1. Upper bounds on the values of trees 45In ea
h node v with Æ = 1 we have as fa
tor the fun
tion dnvf�v(q(t)) where nv =mv(0). Moreover as q(t) = 4 ar
tan(et) then f�(q(t)) = F�(et) with F (y) analyti
 insome strip around y � 0.To �nd upper bounds on the trees one needs very few assumptions on the pertur-bating fun
tion f 1, we will 
onsider some ( not minimal) hypothesis that guaranteethat the value of an integral of type a) on fruitless trees of total frequen
y � and orderk, with initial data ' 2 Tns0 are bounded byes0j�j(k!)
1[P ("; "�1)℄ke� Dp" j!��j:Where D is de�ned in De�nition 1.28, P ("; "�1) is a polynomial and we will �x s0 oforder one.We prove t dependent bounds for the analyti
 integrals (b); this bounds will be useful inChapter 5. We 
onsider them here only be
ause the proof is parallel to that of integrals(a). Noti
e however that in this 
ontext there is no guarantee that the values V1 offruitless trees are bounded for t!1 as su
h trees have no dynami
al meaning. Thebounds on integral (a) assure that the formal tree series we will 
onsider in Chapter 4are all asymptoti
 series.The fun
tions f�(q) are su
h that F�(et) 2 H0(a;D) (remember that a;D are thoseof de�nition 1.28). Naturally by our analyti
ity assumptions f�(q(t)) is limited forjtj ! 1 in jIm tj < 2�.Noti
e that if D < �=2 the image of C(a;D) via q(t) is a 
ompa
t region and thatthere exists � su
h that F�(et) has singularities on the linesjIm tj = D and jRe tj = a:Moreover as the image of R � [��=2; �=2℄ through eiq(t) is the Riemann sphere theremust be a singularity j Re tj � �=2.De�nition 3.2. We 
onsider the subset of H0(a;D):B(a;D) := ff( (t); q(t)) 2 H0(a;D) : maxt2C(2a;D�p") jF�(et)j �Mp"�pg (3.2)for some p 2 N0 .In Appendix A.1 we will give various examples of fun
tions f(q;  ), with essentialsingularities in q and satisfying this 
ondition (even with p = 0).Proposition 3.3. (i)The fun
tions dkqf�(q(t)) = F k� (et) are all in H0(a;D) if f is somoreover if f is in B(a;D) then so are the F k� and:maxt2C(3a;D�2p") jF k� (et)j � k!Mp"�(p+k)1In Appendix A.6 we will prove non-optimal upper bounds for the tree expansion of the homo
lini
traje
tory for Hamiltonian (*)



46 Chapter 3. Basi
 estimates on tree expansionsProof. The assertion is equivalent to proving that for any �nite b and d 6= 0; �=2:mint;�2C(b;d)jtj;j� j<bIm (t��)=k�1 jq(t)� q(�)j � A(b; d)k:A dire
t 
omputation of the minimum givesA(b; d) � He�b (3.3)for any " independent d and big enough b. Then the image of C(3a;D� 2p") throughq(t) is 
ompa
t, 
ontained in the image of C(2a;D�p") and the distan
e between thefrontiers of the two sets is greater or equal to e�2ap". We 
an use Cau
hy estimateson the derivatives �k0f�(q(t)) = F k� (et).We 
an prove 3.3 geometri
ally by noti
ing that, provided that b is big enough, theminimum distan
e jq(t)� q(�)j is attained on the border jtj = j� j = b (whose image inthe variable q is a 
ir
le around q = 0, for large enough b).This is 
learly seen in Pi
ture3.1; to proveit one noti
es that q(t) is 
onvex, more-over if t(�q); �(�q) are su
h that Re q(t) =Re q(�) = �q 2 (0; �℄ then the fun
tionIm(q(t(�q)) � q(�(�q)) is stri
tly in
reasingin (0; �℄. By triangulation this implies thatthe minimum distan
e is on the border i.e.on the image inq spa
e of jtj = b whi
h forlarge enough b is a 
ir
le around q = 0.
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Figure 3.1:Analogous reasonings 
an be applied to a generalized pendulum.A more dire
t proof, valid only for fun
tions having D 6= �=2, is the following. Thefun
tions dkqf�(q(t)) are all limited, so we 
an bound them by k!Ck, with C = O"(1),in the "-independent domains j Im tj < 2�, j Re tj > 3a.In the re
tangles j Im tj < d� 2p" (d < �=2), j Re tj < 3a the appli
ation t! q(t) is
onformal, let us 
all the inverse T (q) = log tan(q=4). Then if2 g(t) = f(q(t)):dkqf�(q) = dkqg Æ T = Xfphgk 1Qh ph!dP pht g(t)jt=T (q)(dhqT (q)h! )ph;as T (q) is (in a limited " independent domain) not " 
lose to its singularities we setdhqT (q)h! � Ch for some order one C, then we bound dPh pht g(t) with "�(p+Ph ph)=2(Ph ph)!.Finally we bound the sum:"�p=2 Xfphgk (Ph ph)!"�(Ph ph)=2Qh ph! � "�(p+k)=2 Xfphgk (Ph ph)!Qh ph! � Ck"�(p+k)=22kk!2As in Chapter 1 the symbol fphgk is a list of non-negative numbers ph, h 2 N su
h thatPh�1 hph = k.



3.1. Upper bounds on the values of trees 47as the sum in the middle term is the order k derivative, 
omputed in zero, of f Æ fwhere f(x) = x1�x for x 2 R. Noti
e that this proof holds true allso for a generalizedpendulum3.If we restri
t our attention to rational fun
tions F�(et) and 
all ti� their poles injImtj � � (all with Imt 6= 0) then:D = Min �;i2[1;N(�)℄j Im (ti�)j; a = max�;i2[1;N(�)℄ j Re (ti�)j: (3.4)Moreover the following proposition holds.Corollary 3.4. (i) The fun
tions �k0f�(q(t)) = F k� (et) are all limited rational fun
tionsof et, whose poles are the same as those of F 0� (et). (ii) If the order of the pole yi� is pi�for F 0� then it is pi� + k for F k� (ex
ept for �i�2 where it is always pi�).Proof. (i) First we re
all that limited rational fun
tions 
an be de
omposed in \partialfra
tions"(see [RU℄) as: F�(y) = C + Xi=1;�;N� Pi( 1y � yi� );where the polynomials Pi have no 
onstant 
oeÆ
ient. Then as f�(q(t)) = F�(et), wehave dqf�(q(t)) � _q(t) = dtf�(q(t)) = dtF�(et);and so F 1� (y) = 1+y2y ydyF�(y). Now dyF (y) =Pi=1;�;N� P 0i ( 1y�yi� ) is a sum of polynomi-als of degree greater or equal to two, so (1 + y2)P 0i ( 1y�yi� ) is limited and F 1� (y) admitsthe same kind of representation as F (y) (it has obviously the same poles). For k > 1we pro
eed re
ursively. (ii) The order of the pole yi� is the degree of the 
orrespondingpolynomial.Having �xed � = Pv �v, in integral (a) we shift the integration to R + i�(!�)dwhere d < D, !� = !p" � � and �(x) is the sign of x . As the fun
tions are all analyti
in jIm(t) � d the integral (a) is un
hanged.In integral (b) we 
onsider 
omplex values of the time t + id with t; d 2 R. Then weuse Lemma 1.12 (ii) to shift the integration on the nodes.Noti
e that in integral (a) we 
annot 
hoose the sign of the shift in the single nodeintegrals and so we need to work in the (symmetri
) domains H(a;D) to guarantee theindi�eren
e of extending in the lower or upper half-plane. To simplify the notation weset �(!�) = + and de�ne E(d; �) = e�j!� jd:3In the Appendix A.1 we will show that the only fun
tions f(q(t);  (t))satisfying the bounds 3.2and having only isolated singularities onj Imtj = �=2 are rational fun
tions, whi
h obviously satisfyProposition 3.3.
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 estimates on tree expansionsIf A has k nodes with Æ = 1 let f�vgk� be the lists of k ve
tors �v 2 Zn su
h thatP �v = � . The value of A(�) (tree A 2 mA with total frequen
y �) in integral (a) is:(�12)N(A)ei��'E(d; �) Xf�vgk�[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)℄I dRv02i�Rv0 1Z�1 d�v0e��(�v0 )Rv0 [dnv0f Æv�v0 (q(�v0 + id))℄ei!v�v0Yv>v0 I dRv2i�Rv ( �wZ�1 d�v + �wZ1 d�v)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0[dnvf Æ�v(q(�v + id))℄ei!v�v ; (a)naturally f 0� = 0 for all non zero �.The same tree in integral (b), has value:e!�d(�12)N(A)ei��'ed!� Xf�vgk�[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)℄Yv�v0 I dRv2i�Rv( �wZ�1 d�v + �wZ1 d�v)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0[dnvf Æv�v (q(�v + id))℄ei!v�v : (b)As usual w is the node pre
eding v, mv(s) is the number of nodes in the list v; s(v)with label j = s, n(v) the number of those with label j = 0 and !v = !�v , �nally�w0 = t.The residues in R are introdu
ed following the de�nitions of =t for 
omplex values oft given in Subse
tion 1.1.3. The fa
tors (i�v s)msv 
ome only from nodes with Æv = 1so their produ
t is bounded by4 N2k. Now we want estimates on the integrals thatdepend only on the order k; we start by splitting the sums in monomials.1) Split wj(�w + id; �v + id) into 6 terms if j = 0 or 2 terms if j 6= 0: we obtain 63k�1terms. Ea
h of this terms is of the form�hv x�lv y(xv)�h0w x�l0w y0(xw);where xv = e�j�v j , 0 � h; h0; l0; l � 1 and both y(x), y0(x) are analyti
 in jxj � 1(we will 
all this the limited x dependent part of the Wronskian).4In Appendix A.6, we will deal with fun
tions f( ; q) whi
h are not trigonometri
 polynomials in , the same reasoning 
ould be applied in this Chapter, so removing the extra hypothesis on f , we
onsider only trigonometri
 polynomials only for simpli
ity.



3.1. Upper bounds on the values of trees 492) Separate R �w�1 d�v + R �w1 d�v, and =d�v0 in integral (a). We get other 2k terms like:Yv�v0 I dRv2i�Rv ( �wZ�v1 d�ve��(�v)Rv(�v+id)ei!v�v(�v)hvxlv js(v)j+2Yj=1 yjv(xv)):where 0 � lv; hv � js(v)j + 1. Noti
e that �v is not the sign of �v but an extra label.The fun
tions yjv are 
hosen in the following way:(i) one of the yjv is either 
os(q(�v + id)) , sin(q(�v + id)) or one of the F k�v .(ii) one is the limited xv dependent part of a term from the Wronskian at the node v.(iii) for ea
h node v0 following v there is one fun
tion yjv whi
h is the xv dependentpart of a term 
oming from the Wronskian w(�v; �v0).Noti
e that the fun
tions y are by de�nition all in H(a;D) and respe
t 
ondition 3.2.3) Given a node v 2 s(v0) split the integral R �v0�v1 d�v as R 0�v1 d�v� R 0�v01 d�v+ R �v0�v01 d�vand pro
eed re
ursively for all nodes (other 32k+1 terms). We 
onsider �rst the 
on-tributions from the term with R �w�v01 d�v for all nodes (the others will be expressed asprodu
ts of the same kind of integrals) .Set �v0 = �1, we want to estimate:I�(A) = Yv�v0 I dRv2i�Rv ( �wZ�1 d�veRv(�v+id)ei!v�v(�v)hvx�lvv js(v)j+2Yj=1 yvj (�v): (3.5)Finally for integral (a) we split the �rst integral R 0�1 = R �a0�1 + R 0�a0 . a0 > 0 is suitablylarge (a0 = 2a).In integral (b) we split R t�1 = R �a0�1 + R t�a0 for jtj � a0 and maintain R t�1 otherwise.We 
onsider the �rst term and expand the fun
tions yvj as Taylor series in xv = e�v(the sign plus 
omes from the fa
t that we are 
onsidering only t � �a0 < 0).Remark 3.5. The mapping t! et maps the regionfRe(t) < 0, 0 �Im(t) � 2�igin the unitary ball jxj � 1 and the half-lines t+ iy with t � 0 and 0 � y � 2� going to�1 in the radiuses , of angle y, going to zero. Conversely the mapping t! e�t mapsthe region f Re(t) > 0, 0 �Im(t) � 2�igin the unitary ball jxj � 1 and the half-lines t+ iy with t � 0 0 � y � 2� (going to 1)in the radiuses of angle �y(going to zero). Noti
e that by our symmetry assumptionsthe image of H(a;D) is the same in both mappings; moreover the yvj 
oming from thefk� are all analyti
 in x = 0, in the ball jxj < e�a and in all the se
tion Arg(x) < D.The yvj 
oming from f 0 have a double pole in �i and those 
oming from the Wronskianhave simple poles in �i.
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 estimates on tree expansionsWe set yvj (�v) =Pr=0 yv rj xr and Cfrvg =Qv yv rvj . The integral isIa0m = Res XfrvgCfrvgYv �nv�Ehvv Yv ( �wZ�1 d�veRv(�v+id)+Ev�vei!v�vxrvv d�v (3.6)with w0 = �a0. Starting from the end-nodes we now perform the integrals in d�v thenthe derivatives in Ev and �nally the residues in Rv, we do this �rst for all the end-nodesand then pro
eed to the inner nodes, hierar
hi
ally .Proposition 3.6. Integral (3.6) produ
es the boundsIa0m � "��m(m!)2�+2Ck1 Yv [js(v)j+2Yj=1 (Xh jyv hj jxh0)( tsy0 )2k;m is the number of nodes (� 2k� 1) ,js(v)j the number of nodes following v and C1 issome order one 
onstant.In integral a) y0 = e�a0 and s = 0 ; while in integral b) s = 0, y0 = e�a0 if jtj � a0and s = 1, y0 = e�jtj�d otherwise.Finally � � 12 is de�ned in Chapter 1 and � is the diofantine exponent of !p" up toorder K: "� 12 j! � nj > "�
jnj�� for some 
 = O"(1) and for all jnj < KN:If we 
hoose a0 > a the series are all 
onvergent (by the analyti
ity of the yj's in x0).We 
hoose x0 = e�a4 and estimate the 
oeÆ
ients of the Taylor series in the balljxj � e�a2 : 1Xk=0 jyv ;kj jxk0 � 2 maxjxj�2x0(yvj ):Proposition 3.6. The integral tZ�1 xKeiA�eB� = xKe(iA+B)tK +B + iAso the Ev derivatives in the end-node v give 2hv terms of the form:hv1!xrvw eidRve(i!v+Rv)�wrv +Rv + i!v (�w)hv2 hv1 + hv2 = hv: (3.7)The residue of R�1v times (3.7) is (3.7) if jrvj+ j!vj 6= 0 andhv2!(hv2 + 1)!(�w)hv1(�w + id)hv2+1 if jrvj+ j!vj = 0:



3.1. Upper bounds on the values of trees 51Developing the binomial we obtain other 2hv+1 terms all of the type:Ghv+1 �m!xrvw ei!v�w(�w)~hv :The 
onstant G is the maximum between one (rv 6= 0) , (minj�j�N j! � �j)�1 or (�2 )(we use that d < �2 ). After integrating all the end-nodes following a node w we 
anintegrate in d�w a sum of 22Pv2s(w) hv+1 terms of the type:G�h�h!x~rww ei
v�w(�w)ĥwhere ~rv =Pv2s(w) rv, 
v =Pv2s(w) !v and �h + ĥ �Pv2s(w) hv + 1. We have provedthat the integrals derivatives and residues 
orrespond to 
al
ulating the integrands in(3.6) at the limiting point (a0 or t), ignoring the os
illating fa
tors ei
a0 , substitutingthe Taylor 
oeÆ
ients with their moduli and multiplying by a fa
tor bounded by:26k�3(k!)4 max0<j�j<mN(j! � �j)�2�(2k�1) � Ck(k!)4�+4:x0 is equal to e�a0 in integral a) and is x0 = e�jtj in integral b). If jtj � a0 thenx0 � e�a0 . The fa
tor 1y2k0 
omes from the divergent terms x�Pv lv0 evaluated at thelimiting point. The term jtj2k in integral b) 
an be bounded by a02k if jtj � a0.We now 
onsider the \left out part" R t�a0 d�v0 (we will set t = 0 in integral (a)).Let v1 be a node of level one.We break the integral =�v0d�v1 as =�a0d�v1 + R �v0�a0 d�v1 . If we 
hoose the �rst term andm1 is the number of nodes of A�v1 , the integral on A�v1 
an be bounded by Ia0m1 andwe are left with the problem of bounding the \left out part" R t�a0 d�v0 on the remainingsubtree A=v1 . We repeat the pro
edure hierar
hi
ally and we end up with 2m terms ofthe form: Ia0m1 � � � Ia0mpYv2# �wZ�a0 d�vW1(#)where the subtree # has ~m nodes and ~m +Pmj = m. We bound the last integral bythe maximum of the integrand for integral (a) and for jtj < a0 in integral (b) we obtain(Ca0) ~m Yv2#;i max�v2[0;�a0℄ jyvj (�v)j:In integral (b) for jtj > a0 we obtain(Cejtjjtj) ~m Yv2#;i max�v2[0;�a0℄ jyvj (�v)j:Let us now examine the 3m�1 integrals left aside in the analysis of item 3). Startingfrom the end-nodes we 
ut o� all the subtrees # that 
ontribute a de�nite integral =0�.
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 estimates on tree expansionsSu
h integrals are of the type I�(#i) that we have already 
onsidered . We are left withan integral again of the type I�0(#0) where #0 is the tree deprived of the #i. The totalnumber of nodes of the #i i = 0; � � � ; h is m.Now we only have to 
ompute the maxima of the jyvj (�v)j that means the maxima ofthe moduli of G1 = 1
osh(t) , G2 = e�tsinh(t), G3 = 1 � 2
osh2(t) , G4 = sinh(t)
osh2(t) and of allthe F k� in the regions Re(t) > a+ 1, 0 �Im(t) � 2� and on Im(t) = d.To bound the fun
tions F k� we go ba
k to the variable q =ar
tg(et) so F k� ! dkqf�(q).The maxima are then taken in a 
ompa
t region � T � iR where the f� have nosingularities, and whi
h is 
ontained in the image of H(a; d) whi
h is 
ompa
t asd < D � �=2. Let us 
onsider the integral (a) and set d = D � p", this meansthat in some of the 
onsidered fun
tions we are going p" 
lose to the singularity withIm(ti�) = D 5. As we are not interested in optimality, we will estimate the maximumof G1 with 1p" that of G2 with a 
onstant , and G3; G4 by 1" .Lemma 3.7. The fun
tions Gi 
ontribute at most a fa
tor "�k�2k0+1 where k0 is thenumber of nodes with Æv = 0.Proof. There are k0 � k� 1 nodes with Æv = 0 
ontributing either G3 or G4, then ea
hof the k + k0 � 1 nodes v 6= v0, 
arries a summand ofmaxt2C(D�2p";2a)(jx0j j) maxt2H(2a;D�2p")(jx1j j)from the Wronskian so either G21 or G1G2.The fun
tions F n� appear exa
tly k times. Moreover Pki=1 nvi 
ounts ea
h nodewith Æv = 1 plus all its su

essive nodes. as ea
h node with Æv = 0 has s(v) � 2kXi=1 nvi �Xv nv � 3k0 = 2k � k0 � 1We 
an bound the maxima of the F n� in H(2a;D� 2p") via Proposition 3.3 so wehave a fa
tor p"�(p+2)k+k0Finally we noti
e that E(D � 2p"; �) � E(D; �) and we sum on all the trees oforder k. This implies the following proposition:Proposition 3.8. We obtain the following bound on the order k of fruitless trees withinitial data ' su
h that jIm 'j � s0:[ XA2A(0F ) 
(A)Yv nv!℄ Xj�j�kN es0j�jCk1 (k!)
1N2kE(D; �)p"�(p+5)k+5; (3.8)where C is an " independent 
onstant and 
1 = 2� + 2.5We approa
h all the singularities simultaneously only if D = i�2 . This fa
t 
an be used to givebetter bounds on integral (a); we will give some examples in Se
tion 6.2.



3.1. Upper bounds on the values of trees 53Integral (b) is bounded by:e!�de(2k+1)(jtj+d) Xj�j�kN es0j�jCk1 (k!)
1N2kp"�(p+5)k+3: (3.9)The extra fa
tor ejtj+d"�1 
omes from w(t; �v0).The bound (3.9) is mu
h overestimated (as explained in [GGM4℄). In parti
ularif jtj; d are of order �, as D is � independent, the maxima of F h� and of the Gi are nottaken in a region near their singularities and so are "- independent, for small enough". Moreover as !� � "�3=2 for all k � "�1 then if � < "3=2 the fa
tor e!�d is small. Inthis 
ase 
an use the following bound on analyti
 
ontributions to  kj (t) with t 2 Cand jtj = O(�): (kN)nes0kNCk1 (k!)
1N2k: (3.10)Remark 3.9. Consider for ea
h k a �nite sum of integrals of type (b) whi
h is knowna priori to be bounded in t. This is possible only if all the integrals 
arrying divergentterms th or ejtj 
an
el. Then we 
an bound su
h �nite sums bye!�d Xj�j�kN es0j�jCk1 (k!)
1N2k p"3p"(p+5)k :We will generally 
onsider formal power series on trees whose 
oeÆ
ients are the
(A) of the pre
eding se
tion. The following bound 
an be useful:Lemma 3.10. Given a tree A 2 A1 let S(A) be its symmetry group and n(v) be thenumber of nodes w in the list v; s(v) su
h that jw = 0. The following bounds hold:Ti(k) = XA2Aki 1jS(A)j � (4n)k:Ni(k) = XA2Aki 1jS(A)jYv2A n(v)! � (4n)k:A proof of this assertions is in Appendix A.2. Now let us see how one 
an applythe bounds (3.8) to trees with markings and with fruits.If we want to 
onsider formal power series on marked trees we only need to rememberthat for any h(t) 2 B(a;D) applying the linear fun
tionD(j;h)(A) �Xv2A h(�v)�vjA;is equivalent to multiplying by Nk maxt2C(2a;D�p") jh(t)j
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 estimates on tree expansionsif j 6= 0 and by kp" maxt2C(2a;D�p") jh(t)jif j = 0. If h(t) is not in H0 then we set d = D = 0 (we will 
all this non-analyti
bounds).As we have seen the value of a fruit isV1(F i;kj = 12x[i℄j (t)=W1(xij�v0j �k):Moreover by Remark 2.8 adding a fruit of order k type i and angle j in the free nodev of a tree A 2 0T is equivalent to adding a mark x[i℄j (t)�vj to the node v of A andmultiplying by the � and ' dependent fun
tion 12=W1'(xij�v0j �k). This is the sum of2nk values of trees with fruits (and with a marking xij�j in the �rst node), so we repeatthe pro
edure and 
ut away the fruits.So we have (2n)k lists of l (at most 2k � 1) marked trees without fruits. t The value=W1 of a list is the produ
t of the values =W1 of the trees and the value of a treewith fruits is the sum of the values of lists of trees obtained. As the tree values dependonly on the order the sum is (2n)k times the value of a list.We 
an apply the analyti
 bounds only to those trees whose markings are all analyti
( �jvlx0jvl ). All the trees with 
arry a mark �jvlx1jvl are bounded via the non-analyti
integrals (d = 0) Noti
e that ,in our bounds, ea
h marking with j = 0 gives a fa
torbounded by Np" and that there are exa
tly 2l markings.Lemma 3.11. The bound (3.8)implies the following bound for trees with fruits:[XA2Akj 
(A)Yv nv!℄ Xj�j�kN e Im 'j�j(2nC1)k(k!)
1N4kp"�(p+5)k+3: (3.11)Proof. We have de
omposed a tree with fruitsA in (2n)k lists of marked trees A1; : : : ;Alea
h of order ki su
h that Pli=1 ki = k and bearing a total of 2l markings. The valueof a list is: Yv2fAignv! Xj�j�kN es0j�j(2nC1)k(k!)
1N4kp"�(p+5)Pli=1 ki+5l�2l
.Theorem 3.12. The bounds (3.11) and (3.10) imply that the values of fruitless treepower series expansions of de�nition 2.6:0(j;f) =Xk�1 0k(j;f); 0(j;f);(i;h) =Xk�1 0k(j;f);(i;h); : : : ;



3.1. Upper bounds on the values of trees 55via =W and V1' , for j Im 'j � s0 and jtj = O(�), are asymptoti
 power series in �and ".Moreover, for k � "�1 and � < p"p+5+2
1, the value of trees of order k is bounded fromabove by 
k with 
� 1Proof. Let us �rst 
onsider the value of the fruitless tree power series expansion 0jthrough =W'6. In ea
h node, v 6= v0, we apply an operator Oj so we 
an divide Oj intree terms (applying a label i = 0; 1; b respe
tively for R0j ; R1j and Qj). Then we 
uto� the terms due to the operators Rij.We obtain the lists of trees des
ribed above and we 
an use the bound (3.11). Thisimplies that the series 0j are asymptoti
 moreover for k � "�1 k! � "�k and so if� < p"p+5+2
1 is small enough then (3.11) is bounded by 
k with 
� 1.Applying the bounds (3.10) is the same only easier as one 
onsiders dire
tly fruitlesstrees.If we want to 
onsider formal power series on marked trees we only need to rememberthat for any h(t) 2 B(a;D) applying the linear fun
tionD(j;h)(A) �Xv2A h(�v)�vjA;is equivalent to multiplying by Nk maxt2C(2a;D�p") jh(t)jif j 6= 0 and by kp" maxt2C(2a;D�p") jh(t)jif j = 0.Now we de�ne a generality 
riterium. From now on a Proposition is said to be true\in general " if it is true for (possibly �xed) fun
tions f and for all j�j � "p0; j"j � "0for some non zero "0.Corollary 3.13. (i)In general the values through =W1' of non analyti
 trees, or offruitless trees with total frequen
y � su
h that �F = 0, of order k � "�1, are of thetype: P ("; "�1)k where P is a polynomial.(ii) A formal power series of de�nition 2.6 whose summands are all fruitless trees with7�F 6= 0 is asymptoti
 under the same 
onditions of Theorem 3.12; moreover its termsof order8 k < (p")�( 1�F �2b) in � are all bounded from above by9:P ("; "�1)kO"(e� 
"b�F ):6Noti
e that we are not distinguishing between analyti
 and non analyti
 terms.7For instan
e 0i j with i or j � m.8remember that �F is the diofantine exponent of !1.9We will derive mu
h better bounds for systems with one fast frequen
y



56 Chapter 3. Basi
 estimates on tree expansionsProof. (i) We are not interested in shifting the integration in the 
omplex plane, so allthe integrands of integral a) 
an be bounded with " independent 
onstants. Then aswe 
onsider trees of order k � "�1, one 
an bound the fa
tors k! with "�k.(ii) We are simply using the bounds (3.8). Fixed k < (")�( 1�F �2b) (b < 12�F ) then thefrequen
ies that are a

essible at order k are su
h that j�j � Nk. Moreover !1 isdiofantine: j!1 � �1j � 
F j�1j��F ; with �1 2 Zmand so for � � kN : E(D; �) � e� j!1��1jp" ej!2jj�2j � Cke�( 
k��Fp" ):Consequently max��(")�( 1�F �2b) E(D; �) = O"(e� 1"b�F ):
3.2 Identities for asymptoti
 power series.We will prove some simple 
lassi
al identities, true for asymptoti
 power series, whi
hwill be useful in the following se
tions.Lemma 3.14. (i) The sum and produ
t of asymptoti
 power series is still an asymp-toti
 power series. The division by an asymptoti
 power series x(�; ") su
h that x(0; ") 6=0 is still asymptoti
. The integration and derivation of an asymptoti
 power series onthe parameter � is still an asymptoti
 power series.(ii) Consider two formal power series that satisfy the formal relation AB � C andsu
h that A = 1Xk=0(�)kAk with jAkj � ( 
�0 )k for all k � K,with 
 � 1 ; same for B and C. Then their order K trun
ations A�K, B�K satisfythe relation A�KB�K = C�K + o(
K);for all � � �0.(ii) Consider a fun
tion f(x) analyti
 in a domain D andx(�) = KXk=0(�)kxk with jxkj � ( 
�0 )k;for all k � K and for some 
 � 1, su
h that x(�) 2 D for all ketaj � �0. Thefollowing property holds:f(x)� KXk=0(�)k[f( kXh=0(�)hxh)℄k = o(
K);



3.2. Identities for asymptoti
 power series. 57for all j�j � �0=2.Proof. (i) 
onsider two asymptoti
 power seriesA = 1Xk=0(�)kak(") B = 1Xk=0(�)kbk(")with a0 6= 0 and su
h that max(jakj; jbkj) � "�pk for all k � K = "�q. Their produ
tand sum is obviously asymptoti
. Moreover:A�1 � 1Xk=0 rk(�)k � 1a0 11 + 1a0 P1h=1 ah(�)hthis is an analyti
 fun
tion of x = Aa0 �1 provided that jxj > 1. Now for any trun
ationof A of order K = "�q this 
ondition is veri�ed and we 
an �nd the 
oeÆ
ients rk(k � K) as �nite 
ombinations of the ai with i � k.(ii)This says simply that:A�KB�K = KXk=0(�)k kXh=0 AkBk�h + (�)K KXk=1 kXb=1 (�)bAkBK+b�k = C�K+(�)K KXk=1 kXb=1 (�)bAkBK+b�kwhere (�)K KXk=1 kXb=1 (�)bAkBK+b�k � 2K(
)K+1:(iii) f(�) = f(PKk=0(�)kxk) is an analyti
 fun
tion of � for � � �0 So its Taylorexpansion at order K has the property:f(�) = KXk=0 (�)kk! f (k) + f (K+1)(�0)(K + 1)! (�)K+1:Finally we apply Cau
hy estimates on f (K+1)(�0) in j�j � �0=2.Lemma 3.15. The equation A+B � C+D where A;B;C;D are formal power seriessu
h that jakj; 
k are at most polynomially small in " while bk; dk = O"("1) for allk � "�q is in general equivalent to the two equations:a � 
 b � d for all k � "�q:Proof. We are simply saying that in general it is not possible thatP ("; "�1) = f(") where f is a tran
endental fun
tion:
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 estimates on tree expansionsThis leads to the following relation for matrix formal series. Consider three matrixformal power series D 2 Mat n�n and X:Y 2 Mat n�h and let D(K), X(K), Y (K)be their trun
ations to order K = "�q:D(K) = KXk=0(�)kDk("); X(K) = KXk=0(�)kXk("); Y (K) = KXk=0(�)kYk("):Suppose that D(K) is symmetri
 and that for � � "p :set supi;j Dij;k = jDkj; and jDkjjXkj � ( 
� )k; jYkj � C(")( 
� )kfor some 
� 1 and C(") = O"("1). Moreover suppose that X0 has an h� h non zerominor and Xij 0 = O"(1).Lemma 3.16. (i) Suppose that the expansions of D and X admit a de
ompositionDk = D1 k +D2 k, Xk = X1 k +X2 k, all trun
ations of an asymptoti
 series; moreover(D1 k)ij and (X1 k)ij at most polynomially small in ", while (D2 k)ij (X2 k)ij are O"(C(")). Then the formal power series relation DX � Y is equivalent toD1X1 � 0 D1X2 +D2X1 +D2X2 � Y for all k � "�q:(ii) The formal power series relation DX � Y;implies that D(K) has in general at least h eigenvalues � � O"(C(")) for all j�j � "�p.If D1 0 +D2 0 is non singular, the eigenvalues are � = O"(C("))(iii) Moreover if D is a 
onvergent series in � with 
onvergen
e radius �0 = "p1 thenD as well has an eigenvalue � � O"(max(C("); (
)"�q) for all j�j < "max(p;p1).Proof. (i) Is a dire
t 
onsequen
e of Lemma 3.15.(ii) Lemma 3.14 (ii) implies that:D1(K)X1(K) = R1 ; with jR1j � o(
K)where K = "�q, D1 is (in general) symmetri
 and the 
olumns of X1 are independentand of order one. Let us set D1(K) in diagonal form �1(�); : : : �n(�); 
orrespondinglyX 01 still has independent and order one 
olumns. This means that for ea
h j = 1; : : : ; hthere exists i(j) su
h that (X1 0)i(j) j 6= 0. Then the equation �i(j)X1 i(j) j � 0 impliesthat �i(j) k = 0 for all k � K.AsD(K) is a C(")-small perturbation ofD1(K)+D2 0, 
lassi
al perturbation theoryguarantees the existen
e of at least h eigenvalues10 of order � O"(C("))(iii) We simply note that as D is 
onvergent then D = D(K) + o(( ��0 )K) with �0 ="p1.10The small eigenvalues are exa
tly h if for instan
eD1 0 +D2 0 = � Idn�h 00 C(")Idh � :



Chapter 4Upper bounds on homo
lini
splittings IWe prove that determinant of the splitting matrix is exponentially small in ". Thete
hniques are those of [GGM1℄ and we dis
uss them �rst for 
ompletely iso
hronoussystems and then we generalize to Hamiltonian (*) with F (q) = 
os q � 1.Noti
e that su
h bounds probably 
an be derived using the methods proposed in[LMS℄ (where the authors 
onsider the 
ase m = n). This would be a qui
k (and in-trinsi
) proof of the exponential smallness. Noti
e however that the bounds so obtainedare generally not optimal as one has to set the Hamiltonian system in normal form and
onsequently looses the information on the nature of the singularities of f . We haveseen in Chapter 3 that the singularities of f �x the parameter D of the bound (3.8), sothat the exponentially small term in the value of a fruitless tree of total frequen
y � isE(D; �). In Chapter 6 we will prove that, for fun
tions f( ; q) whi
h are trigonometri
polynomials in  and rational in eiq, the exponentially small term E(D; �) is optimalas the (
omputable) �rst order of the splitting matrix has (under some non degenera
yassumptions as dis
ussed in Lemma 3.16) exa
tly m exponentially small eigenvalues:�i = X��N Pi ;�("; "�1)E(D; �):4.1 Can
ellations and splitting determinantsWe use the tree formalism of Chapter 2 to �nd formal identities for the splitting ve
torand the splitting matrix. Then we apply the various Lemmas on asymptoti
 power seriesof Subse
tion 3.2 to prove O"("1) upper bounds on the splitting determinant. This is ageneralization of the strategy proposed in [GGM1℄ for partially aniso
hronous systemswith three degrees of freedom. It is based on the existen
e of linear formal power seriesrelations (like those of Lemma 3.16 for the splitting matrix.Su
h linear relations are dis
ussed in Subse
tions 4.1.2 and 4.1.3; Subse
tion 4.1.1is dedi
ated to proving that the stable-unstable manifolds are Lagrangian; we do not



60 Chapter 4. Upper bounds on homo
lini
 splittings Ineed this property to prove the exponentially small bounds we report the proof only for
ompleteness.4.1.1 The generating fun
tion of the splittingUsing Observation 1.43 and the Lemmata 2.13 we 
an verify that the n+1 dimensionalmanifold �Ij('; q; �) =Pk(�)k�Ikj ('; q) is Lagrangian. In parti
ular we have that:Theorem 4.1 (Eliasson, Gallavotti ). The splitting ve
tor �Ikj (') is the derivativewith respe
t to the angle 'j, j = 1; : : : ; n of a fun
tion S(') 
alled generating fun
tion.S(') is the value = ÆW of of the tree ve
tor:XB2Âk BN(B)jS(B)j :Proving the theorem is equivalent to proving for ea
h k; j the relation:0kj = XA2Akj AjS(A)j = XB2Âk Dj(B)N(B)jS(B)j (4.1)where N(B) is as usual the number of nodes in B and Dj = Dj(h(t) = 1) is de�ned in(1.34).The theorem is equivalent to this last relation ((4.1)) as�Ikj (t = 0) = = ÆW(0kj )and as we are 
onsidering fruitless trees:= ÆW'(XB2ÂkXv �vj BN(B)jS(B)j) = �'j= ÆW' XB2Âk BN(B)jS(B)j :We prove relation (4.1) simply by translating it in a relation between trees with twomarkings:Proof. For ea
h A 2 Akj we 
onsider N(A) 
opies Av of A, ea
h having an eviden
ednode v; now as j 6= 0 Akj � rAkj . For ea
h 
oset [v℄ we have m[v℄ identi
al 
opies, wewill name them A[v℄; we have:XA2Akj AjS(A)j = XA2Akj 1N(A) X[v℄ Æv=1 m[v℄A[v℄jS(A)j =XA2 rAkj 1N(P (A; v))X[v℄ m[v℄P (A; v)jS(A)j



4.1. Can
ellations and splitting determinants 61Then by Lemma2.13(ii): m[v℄P (A; v)jS(A)j = m[vA℄�vAj BjS(B)jwhere B 2 Â is the tree (�rst node v) su
h that �vAj B = P (A; v).Corollary 4.2. With the same te
hnique one 
an prove thatXA2Âk AN(A)jS(A)j = 1k XB2Âk :ÆvB=1 BjS(B)j ;this is the representation of the generating fun
tion given in [G2℄. This representationshows that the generating fun
tion is a fun
tion of the homo
lini
 traje
tories  j('; t).Proof. For ea
h tree in Âk we 
onsider k 
opies ea
h with one node Æv = 1 in eviden
e,
onversely for ea
h tree in B 2 Âk : ÆvB = 1 we 
onsider N(B) 
opies ea
h with onenode in eviden
e. The 
orresponding 
oeÆ
ients are two points stabilizers and so arethe same for 
orresponding trees on the left and right hand side. Now 
al
ulating thevalue of the generating fun
tion, and summing over k = 1;1, we obtain (simply viathe de�nitions of the values of trees):S('; �) = 1Xk=1 (�)kk =[f(Xh<k(�)h h(t; '))℄k�1 � �Z0 d~�=f( (t; ~�; ')):We will not be interested in proving that this is a true (not formal) relation. To doso one simply needs to show that all the involved fun
tions have dynami
al meaningand so their series expansion in � is a-priori 
onvergent.Remark 4.3. The generating fun
tion is a fun
tion on rootless trees; 
all A1 the 
osetsof Â with respe
t to the usual equivalen
e relation : A1 � A2 if there exists v in A2su
h that A1 = P (A2; v):Let K 2 A1 and 
onsider a representative A: then there are N(A) trees in the 
osetK all with N(A) nodes. As the trees in K have the same value the value of K is wellde�ned, the generating fun
tion is:S(') = = ÆW'(XK2A1C(K)K)and the 
oeÆ
ient C(K) =PA2K 1N(A)jS(A)j .Corollary 4.4. The fruits 
an be written in terms of the generating fun
tion (at leastas trees): Gij = aj= ÆW'[XB2Âk 1N(B)jS(B)j�Dj(xij)[B℄ + Æj0Lxi0(B))�



62 Chapter 4. Upper bounds on homo
lini
 splittings I4.1.2 Can
ellations due to energy 
onservationWe 
onsider the 
an
ellations due to energy 
onservation i.e. the fa
t that the S/Umanifolds are on the same energy level. These 
an
ellations are best seen dire
tlyon the values of trees an in a non-perturbative setting; then if needed they 
an betranslated in 
an
ellations on the trees. This 
an
ellations were �rst noti
ed in [G1℄.Let us set H�(I�(t; '); p�(t; ');  �(t; '); q�(t; ')) � E� �Xh (�)hEh;where by the KAM results reported in Subse
tion 1.1.1, E� is analyti
 in � near � = 0and is independent of �(t). Re
alling that  �(0�; ') = ' and q�(0�; ') = � we �nd:I�(0+; ') � AI�(0+; ') + (p�(0+; '))2 + 2�f('; �) = 2E� =(I�(0�; '))2 + (p�(0�; '))2 + 2�f('; �);now we derive in 'j with j = 1; : : : ; n and 
ompute at the homo
lini
 point1 I(0+; ' =0) = I(0�; ' = 0):A ��'j (�I�('))j'=0 � (2I�(0; ' = 0) = ��'j (�p�('))j'=0(2p�(0; ' = 0):Now let us write this perturbatively (i.e. in terms of trees); by the boundedness
ondition pk(0�; ') = =0� ÆW'0k(0;x00):We are on the lower bran
h of the separatrix so p0(�) = �2 and I0(') = A�1~!; now
all 0(j;h) =Pk�10k(j;h), let � be the splitting matrix and for j = 0; n set2:ajI(1)j = =0� ÆW'=00(j;x0j) = =0� ÆW1'=00(j;x0j );d0 = = ÆW'=00(0;x00) j(this is the ' gradient of �p�). Finally 
all I(1) = fI(1)j gnj=1.Proposition 4.5. The splitting matrix satis�es the following equation�(~! + AI(1)) = �d0(�2 + I(1)0 ):This means that we 
an tie the behavior of some fruits to that of the splitting matrix.1Clearly at the homo
lini
 point p+ and p� 
oin
ide as well2Note that as we are at the homo
lini
 point the only non zero 
ontributions 
ome from fruitlesstrees



4.1. Can
ellations and splitting determinants 63Remark 4.6. There are quite a few 
an
ellations 
an
ellations (on fruitless trees)
oming from the symmetry of = via integration by parts in the time variable. This
an
ellations are a simple generalization of the results in [GGM1℄. Nevertheless theyimply some heavy 
omputations and are only a
tually not needed to prove exponentialsmallness for the splitting determinant, therefore we will state this results in AppendixA.73.4.1.3 Relation between trees with and without fruitsWe have seen that trees with K fruits are homogeneous fun
tions of degree K in theGl hj with l = 0; 1, j = 0; n. We know as well that Gl hj (' = 0) = 0. We want to estimatethe matrix det(�) where �i;j = �jXk (�)k�Iki (' = 0))so it should be 
lear that it is useful to group trees by their degree in Gl hj rather thanin �. We then de
ompose 0T = A�A(1F )� � � � and add up the degrees in � (this arethe formal power series dis
ussed in Chapter 3):0j =Xk 0kj Glj =Xk Gl kj �(j;h) =Xk �k(j;h) Glj = =W1�(j;x[l℄j ) =Xk Gl kjet
... The 
an
ellations des
ribed in Chapter 2 are obviously still true in the sense offormal power series.Remark 4.7. To pass from A1(kF ) to A1((k + 1)F ) one 
an apply the fruit addinglinear fun
tions dis
ussed in Se
tion 1.2.The problem is that in general A 2 A(kF ) and PhDihj (A) (or PhBihj (A)) donot have the same symmetry group and so we 
annot translate this relation on the�kF ! �k+1F ex
ept in the 
ase of k = 0.We use Remark 2.8 to write a tree with one fruit in v as a tree with a mark xij timesthe fruit fun
tion Gij The fruit adding fun
tions be
ome spe
ial mark adding fun
tionsTDe�nition 4.8. Dj(xlj) = Dlj; Lxl0 = Ll; F l(A) = xl0(y)�y0f�(A)F lh(A) = h(y)xl0(y)�y00f�(A) F lxm0 = F lmwhere as usual � is δ=0.3Noti
e that the 
an
ellation me
hanism that we illustrate in the Appendix A.7 is exa
tly the sameused in [GGM1℄, the only di�eren
e is that here the 
an
ellations 
an be seen dire
tly on the treesand so the notation is more 
ompa
t.



64 Chapter 4. Upper bounds on homo
lini
 splittings ILemma 4.9. In A1F1 we have:�1F(j;h) = Xl=0;1 nXm=0Glm nD[l℄m(0(j;h)) + Æm0[L[l℄(0(j;h)) + Æj0F [l℄h (00)℄o (4.2)Proof. By Lemma 1.39 we only need to prove that the summands in the two sides ofthe relation have the same symmetry 
oeÆ
ient. This is true as the symmetry groupof trees with one fruit is the subgroup of the symmetries, of the 
orresponding fruitlesstree, that �xes the node where we will atta
h the fruit.As both Dlj and Ll a
t as sum on the nodes one 
an write them as sums on the
osets [v℄: Dlj =Xv xlj�vj =X[v℄ m[v℄xlj�vj ; � � �so that the summands of (4.2) are all di�erent.Consider a tree A in �1F(j;h) 
arrying a fruit of type l label r and order m in the nodev; we will 
all B the tree obtained by removing the fruit. If B 2 A (it respe
ts thegrammar) then A = Gl mr x[l℄r m[v℄�vrB and jS(A)j = jSa(B)jm[v℄ :If B =2 A, 
onsider again A. If v 6= v0, then r = 0, Æv = 0 and there is a unique nodefollowing v, 
all it y. Then A = Glm0 m[y℄g�x[l℄0 (B0; y)for some B0 2 A (B0 is simply A without the pie
e 0

l m

��
��
��
��

��
��
��
�� ).Again we have jS(A)j = jS(B0)jm[v℄ , namely as y is the only node following v then v is�xed by S(A).We now 
onsider v = v0, B =2 A, this means that:A = Gl m0 F [l℄h (B00)and there is an only node of level 1; by Remark1.27: jS(A)j = jS(B00)j.De�nition 4.10. In the following we will be interested in trees marked only with thefun
tions xij so we will 
ontra
t the notations:0lmi j = 0(i;xli) (j;xmj ) ; � � �4.1.4 Formal power series relations involving the splitting ma-trixProposition 4.11. The splitting matrix depends only on the trees with zero or onefruit.



4.1. Can
ellations and splitting determinants 65Proof. Using Lemma4.9 we write:�j�Ii(t = 0; ' = 0) = a�1i = ÆW10 (0i j) + �jf= ÆW10fXl=0;1 nXr=0 Glr[D[l℄r (0i)++Ær0(L[l℄(0i)℄g+ terms of order � 2 in Glrgso as Glj(' = 0) = 0 (see the proof of Lemma 2.9) the terms of order � 2 in Glj don'tgive 
ontributions to the derivative:�i j = = ÆW10 [0i j + Xl=0;1 nXr=0 �j(Glr)[D[l℄r (0i) + Ær0(L[l℄(0i)℄Similarly the value of �jGlr = 12ar�j= ÆW10 (�lr)with r = 0; : : : ; n and j = 1; : : : ; n depends on trees with at most one fruit:2Glr j = 2�jGlr = ar= ÆW10 [0li j + Xm=0;1 nXh=0Gmhj[0l [m℄r h + Æh0(L[m℄(0lr) + Æj0F l [m℄(00))℄:This is a linear relation that we 
an express in matrix form as:G = A(OMG+ J)where G is a 2n+ 2� n matrix with entries:Gi j = � �jG0i�1 if i = 1; : : : ; n+ 1�jG1i�n�2 if i = n + 2; : : : ; 2n+ 2 :The matrix J is again 2n+ 2� n with entries:Ji j = � = ÆW1000i�1; j if i = 1; : : : ; n + 1= ÆW1001i�n�2; j if i = n + 2; : : : ; 2n+ 2O and A are 2n+ 2� 2n+ 2 matri
es:O = ���� 0n+1 Idn+1Idn+1 0n+1 ���� A = 12 �������� 1 0A 10 A ��������where A is the diagonal matrix with eigenvalues aj j = 1; : : : ; n. Finally M is a2n+ 2� 2n+ 2 matrix with entries:



66 Chapter 4. Upper bounds on homo
lini
 splittings I
Mi j =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
= ÆW10 (01 1i�1; j�1+ Æj 1(L1(01i�1)+ Æi 1F 1 1(00)) if i = 1; : : : ; n+ 1j = 1; : : : ; n+ 1= ÆW1000 1i�n�2; j�1+ Æj 1(L1(00i�n�2)+ Æi n+2F 0 1(00)) if i = n+ 2; : : : ; 2n+ 2j = 1; : : : ; n+ 1= ÆW10 (00 0i�1; 0+ Æj n+2(L0(00i�n�2)+ Æi n+2F 0 0(00)) if i = n+ 2; : : : ; 2n+ 2j = n+ 2; : : : ; 2n+ 2= ÆW1001 0i�1; j�n�2+ Æj n+2(L0(01i�1)+ Æi 1F 0 1(00)) if i = 1; : : : ; n+ 1j = n+ 2; : : : ; 2n+ 2Proposition 4.12. The matrix M is symmetri
.Proof. If i; j 6= 1; n+ 1, then Mij =Mji is equivalent to Proposition2.14.Same if i; j = 1 or n+ 1, then the symmetry 
ondition is:00;10 0 + L0(010) = 01;00 0 + L1(000)and so equivalent to the symmetry of the operators Qj (see Propositions2.14,2.15).Lastly if i = 1; n+ 1 and j 6= 1; n+ 1 the 
ondition is:0l;m0 j = 0m;lj 0 + Ll(0mj )that is Proposition2.15 for trees without fruits.It 
an be useful to eviden
e the blo
k stru
ture of the matrix M:
M =

����������������
a00 ut00 a01 ut01u00 M00 v10 M t01a01 vt10 a11 ut11u01 M01 u11 M11

���������������� G[ J ℄ = ��������������
gt0G0gt1G1

��������������8i; j 2 [1; : : : ; n℄ (M11)ij = =ÆW10000i j ; (M00)ij = =ÆW10011i j ; (M01)ij = =ÆW10010i j ;(u11)j = =ÆW100000 j ; (u0)j = =ÆW100110 j ; (u01)j = =ÆW100100 j ; (v01)j = =ÆW100010 j :Remark 4.13. The de�nitions of M and J imply that J = OMT where T is the2n+ 2� n matrix : T = ���������� 0n+10Idn
����������



4.1. Can
ellations and splitting determinants 67Again from the de�nitions of � and G we have that A� = 2G0 = 2TOGIn the pre
eding Subse
tion we proved that2�(~! + AI(1)) � �g0(�2 + I(1)0 )where !+AI has norm of order O"("� 12 ) and (if there are slow frequen
ies) �g0(�2+I0)has norm O"("P ) for some P (see Chapter 3; remember that this are all 
onvergentseries). Independently in Appendix A.8 we have proven that M is degenerate andsatis�es the equation:MY1 = B where Y t1 = ( n+1z}|{0 ; 1z}|{2 ; nz}|{�~! )and Bt = 2( 1z }| {I(1)0 (t = 0); nz }| {I(1)(t = 0) ; n+1z}|{0 ). This relation gives a 
onstraint on G0 (as(O �M)G =MT ) that 
oin
ides with the one given by the energy 
onservation.Proposition 4.14. The matrix G0 = 12A� satis�es the relation:G0(A�1~! + I(1)) = �g0(�2 + I(1)0 );noti
e that g0 = 12d0.Proof. It is obvious from the energy 
onservation see Proposition4.5, now we derive itfrom the degenera
y of M. We use PropositionA.24 and the relations between M Jand G: (O �AM)G = AMT ! (A�1Y1)tOG� (Y t1M)G = Y t1MTthis implies that �!tA�1G0 + gt0(2� I(1)0 )� (I(1))tG0 = 0we have used O2 = I, Y t1M = Bt and BtT = 0.So one 
an see that the (hard) 
an
ellations due to the integration by parts areonly needed to 
he
k the 
onsisten
y of our equations.We want to estimate detG0; now for the �rst time we 
onsider the existen
e of afast time s
ale, we will say j 2 F if ~!j = !jp" is fast (resp. S). We 
on
entrate only onthe m fast variables  1;  m by applying the 2n+ 2�m matrix Y t2 = ( 0|{z}n+2 ; Idm; 0|{z}n�m).Then we set MY2 =MF = ��������������
mt0M0mt1M1

�������������� :



68 Chapter 4. Upper bounds on homo
lini
 splittings ILemma 4.15. The order k < C"� 12(1+�F ) trun
ations of the matrix M1 and the ve
torm1 are of order O"(e�
"� 12(1+�F ) ).Proof. The entries of this matri
es are all derivatives �jL, where j 2 F is a fastvariable, and L is the integral of a fun
tion in ~H0. We are 
onsidering the analyti
parts of M, u11 and M11, and M is a fun
tion on fruitless trees. So we only have
ontributions from fruitless trees with analyti
 markings and non-zero total frequen
yin the fast dire
tion �F 6= 0 and we 
an apply Corollary 3.13 (ii).Proposition 4.16. There exist two matrix formal power series X and Y , in Mat(n�m) su
h that their K � "� 12(�F+1) trun
ation is jXj = O"(1) and jY j = O"(e�
"� 12(1+�F ) ),for j�j � "P and " � "0 6= 0 (here we 
hoose P = (p + 5)=2 + 
1, following Theorem3.12, in Se
tion 4.2 we will use less restri
tive hyptheses on P). Moreover this seriessatisfy the formal equation: G0X � Y:Proof. We 
an prove this only formally, i.e. the 
onvergen
e of the ve
tors we de�neis not guaranteed; the bounds on the trun
ations are assured by the 
omputations ofChapter 3.Y t2 (O �AM)G � Y t2AMT ! �X tG0�m0 � gt0�AFM t0G0�m1gt1�AFM t1G1 = AFM t1where �X = (0; Idm) in an n�m matrix and AF is them�m diagonal matrix a1; : : : ; am.Substituting relation (4.14) we have:G0( �X �M0AF � 1�2 + I(1)0 (A�1~! + I(1)) �m0) � g1 �mt1 + (Idn +G1)M1AF :Noti
e that the problem in proving the 
onvergen
e is not so mu
h in the 
onvergen
eof G1 or g1 (that have dynami
al meaning) as in that of proving 
onvergen
e for the\bare" parts M0; M1; m0 and m1. This all is done, for systems with three degrees offreedom, in [GGM4℄4.Now we 
an apply Lemma 3.16 to G0 or equivalently to �; we have proven that thedeterminant of the splitting matrix is bounded from above by some 
onstant of orderO"(e�
=" 12(1+�F ) ) where 
 is a suitable 
onstant of order one. Consider the splittingmatrix trun
ated at some order k � C"� 12(1+�F ) 
all it ��k, we 
an write it as a sumof matri
es ��k = ��k1 + ��k2 where �2 
ontains all the exponentially small terms(
oming from analyti
 integrals with non-zero fast mode as dis
ussed in the end ofSe
tion 3.1). Both �1 and �2 are well de�ned as asymptoti
 series. We 
an divide X4We will dis
uss the arti
le [GGM4℄ in detail in Se
tion 6.2.



4.2. Extension to partially iso
hronous systems 69as well in analyti
 (X2) and non analyti
 (X1) terms, both asymptoti
 power series.So we apply Lemma 3.16(ii) whi
h states that:Corollary 4.17. In general, the matrix ��k1 has (at least) m zero eigenvalues o(�k)-
lose to Span(X�k1 ). Moreover the determinant of the splitting matrix is bounded fromabove by: j det�j � O"(e�
=" 12(1+�F ) );for some order one 
.Moreover in Se
tion 6.2 we will use the following statement:Corollary 4.18. The splitting matrix satis�es the following equation:G0(Idn � 1�2 + I(1)0 (A�1~! + I(1))ut01 +M t01A) = �u11g1ut11 �G1AM11 + AM11:Proof. We insert Proposition 4.14 in the last n lines of the linear equation: G =A(OMG+ J).4.2 Extension to partially iso
hronous systemsIn this Se
tion we will summarize the (few) modi�
ations that are ne
essary to applyour te
hniques to partially iso
hronous systems.We 
onsider the following Hamiltonian:(I; A(")I)2 + �! � J + p22 + "(
os(q)� 1) + �f( ; �; q): (4.3)As in Se
tion 1.1 I 2 Rn ;  2 Tn, p 2 R; q 2 T and we have 
oupled our systemswith N 
lo
ks of frequen
y �! 2 RN . The a
tion angle variables of the 
lo
ks areJ 2 RN ; � 2 TN .A is the diagonal matrix with eigenvalues ai des
ribed in Chapter 1.The system 4.3 is integrable for " 6= 0, � = 0. It represents a list of n un
oupledrotators, N 
lo
ks and a pendulum. We will denote the frequen
y of the rotators(whi
h determines the initial data I(0)) by ! so that:I(t) = I(0) = A�1! ;  (t) =  (0) + !tJ(t) = J(0) ; �(t) = �(0) + �!t:The 
lo
ks �j are not 
hanged by turning on the perturbation in �. As in the previousse
tions we will look for S/U traje
tories 
onverging exponentially to a quasi-periodi
fun
tion with diofantine frequen
y 
 = (!; �!). So we will �x the initial data of therotators as in Se
tion 1.1. As usual we divide our frequen
y ve
tor 
 = (!; �!) in slowand fast frequen
ies and 
allm the total number of fast frequen
ies in the n+N ve
tor
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lini
 splittings I
. Noti
e that the 
lo
k frequen
ies 
an be indi�erently slow or fast. It is well knownthat for diofantine values of 
 one 
an apply a lo
al KAM s
heme, equivalent to that ofTheorem 1.1, to 
onstru
t the lo
al S/U manifolds for the Hamiltonian 4.3. As usualwe apply the 
anoni
al 
hange of variables 1.10 and set the unperturbed Lyapunovexponent to one. Consequently the 
hara
teristi
 frequen
y is ~
 = "� 12
.We use the Hamiltonian 
ow to extend the lo
al manifolds. The extended S/U man-ifolds are graphs on the angles. As in the previous se
tion we 
onsider them at thePoin
ar�e se
tion q = �. To avoid using many variables we will set the initial data5 ; � = ' 2 Tn+N and set:J�i ('; �; �) = I�n+i('; �; �) for i = 1; : : : ; n:Now we 
onstru
t the S/U manifolds perturbatively exa
tly as in subse
tion 1.1.2. TheHamilton equations are_Ij = �(�)f j ( ; �; q); _ j = ajIj; for j = 1; : : : ; n;_Ji = �(�)f�i( ; �; q); _�i = �!i; for i = 1; : : : ; N;_p = sin(q)� (�)fq( ; q) ; _q = p; (4.4)We insert in the Hamilton equations the 
onvergent power series representation:Ij(t; '; �) = 1Xk=0(�)kIkj (t; ')  j(t; '; �) = 1Xk=0(�)k kj (t; ') for j = 1; : : : ; nJi(t; '; �) = 1Xk=0(�)kIkn+i(t; ') �i(t; '; �) = �i + �!p"t for i = 1; : : : ; n�nally p(t; '; �) = 1Xk=0 pk(t; ') q(t; '; �) = q0(t) + 1Xk=1(�)k k0 (t; ')we obtain, for k > 0, the hierar
hy of linear non-homogeneous equations:_Ikj =F kj (f hi gni=0h<k) ; for j = 1; : : : ; n+N_ ki =ajIki ; for i = 1; : : : ; n_pk =(
os q0) k0 + F k0 (f hi gni=0h<k) ; _ k0 = pkwith F kj = �[fj(k�1Xh=1(�)h h; �+ �!p"t)℄k�1 + Æj0[sin(k�1Xh=1(�)h h0 )℄k:Using the whisker 
al
ulus developed in subse
tion 1.1.3 we �nd:Iki (t) = =t(F ki )  kj (t) = ajOtj(F kj )with i = 1; : : : ; n+N and j = 0; : : : ; n.5Our 
onvention will be that the rotator angles are '1; : : : ; 'n and the 
lo
ks are 'n+1; : : : ; 'n+Nso the fast variables are not ordered sequentially but will be 'i1 ; : : : ; 'im .



4.2. Extension to partially iso
hronous systems 714.2.1 Tree representationPassing to tree representation is now easy (and identi
al to what done in Chapter 2).We have seen that �kj = 0 for k 6= 0 so the labels j of nodes v 6= v0 will still havevalues in 0; : : : ; n and the ve
tor spa
e V(Aj ) su
h that V(0kj ) =  kj for j = 0; n, isun
hanged.We have seen however that markings represent derivatives on the node fun
tionf Æv( 0; : : : ;  n+N so the set of trees adapted to this dynami
s is generated by mA viathe usual fruit adding fun
tions (with type label i = 0; 1, order label Æ 2 N and anglej = 0; n) and via mark adding fun
tions:h(t; v)�vJ with J = 0; n+N:We will improperly 
all this spa
es A and 0T as well. The fun
tion W is de�ned on Aexa
tly as in Se
tion 2.1.1, leading to the relation:�Ikj = = ÆW(�j0k) ; for j = 0; n+N:The same holds for V1 and W1. As an example we write down expli
itly the fun
tion	'(A) for A 2 0T :	'(A) = (�12)N(A)[(�)Æv0 Yv2 0Av 6=v0(�)Ævajv ℄rPn+Nj=0 nvA(j)ejf Æv0 Y�2F(vA)x[i�℄j� Y�2M(vA)h�(vA; �v0)Yv2 0Av>v0rPn+Nj=0 nv(j)ejf Æv Y�2F(v) x[i�℄j� Y�2M(v) h�(v; �v)wjv(�w; �v) � Y�2F(A)Go(�);i(�)j(�)where N(A) is the number of free nodes, F(v) are the fruits stemming from v, M(v)is the list of markings of the node v and �nally nv(j) is the number of elements infv; s0(v);F(v);M(v)g having angle label equal to j. Remember that jv, j� = 0; : : : ; n,while the angle-markings are Jv = 0; n+N .The energy 
onservation for the system ((4.3)) leads to the relation:�(~
 + A1I(1)) = �d0(�2 + I(1)0 );where as in subse
tion 4.1.2 , � is the n+N �n+N splitting matrix, d0 = r'�pj'=0,I(1)j =P1k=1 Ikj (t = 0; ' = 0) and A1 is an n+N � n +N matrix so de�ned:A1 = ���� A 00 0 ���� :Remark 4.19. We 
an repeat the pro
edure proposed in this Subse
tion for any Hamil-tonian ((*)) su
h that p2=2+F (q) = 0 is the separatrix of a generalized pendulum (seethe introdu
tion). We only have to use the Wronskian matrix of the generalized pen-dulum in equations (1.14) and 
onsequently 
hange the fun
tions xi0 in the de�nitionof O0. The qualitative behavior in un
hanged.



72 Chapter 4. Upper bounds on homo
lini
 splittings IWe 
an �nd bounds similar to those of Corollary 3.13 (ii) for the fruitless treesof the expansion of Hamiltonian (*). However if we do not impose Condition 3.2 tof( (t); q(t)) we do not �nd optimal bounds as we 
annot get near to the singularities.We set that F (q) is analyti
 in j Im qj � r1 and f( ; q) is analyti
 in j Im qj � r1, jIm  ij � r1. This means that:f( ; q) = X�;h2Zn+1 f�;hei(�� +hq) ; with jf�;hj � Ce�r1(j�j+jhj):Theorem 4.20. The 
ontribution of fruitless trees of total harmoni
 � is bounded by:e�r1j�jCk1 (k!)
1E(
2; �)(")�k;where C; 
2 are " independent 
onstants and 
1 = 2� + 2.Proof. The proof is identi
al to that of Proposition 3.8, if f( ; q) is trigonometri
 in . The only di�eren
e is that in the proper integrals we do not go "-
lose to thesingularities so su
h terms are not divergent in " (the fa
tor "�k 
omes from smalldenominators). The proof for general analyti
 fun
tions f( ; q) is not diÆ
ult butquite long; we will report it in the Appendix A.6.4.2.2 Formal power series relations involving the splitting ma-trixThe linear non-perturbative equation (4.2) is un
hanged ,so :�i j = =W10 [0i j + Xl=0;1 Xk=0;n �j(Glk)[D[l℄k (0i) + Æk0(L[l℄(0i)℄;and the derivatives of the fruits are (j 2 [0; : : : ; n+N ℄):Glk;j = �jGlk = 12aj=W10 [0lk;j + Xm=0;1 Xh=0;nGmhj[0l [m℄k;h + Æh0(L[m℄(0lk) + Æj0F l;[m℄(00))℄this are linear relations :G = A(OMG+ J) � = (N tG+ J1): (4.5)G is now a 2n+ 2� n +N matrix with entries:Gi j = � �jG0i�1 if i = 1; : : : ; n+ 1�jG1i�n�2 if i = n + 2; : : : ; 2n+ 2The matrix J is again 2n+ 2� n+N with entries:Ji j = � =W1000i�1 ;j if i = 1; : : : ; n+ 1=W1001i�n�2 ;j if i = n + 2; : : : ; 2n+ 2



4.2. Extension to partially iso
hronous systems 73O, A and M are the 2n+ 2� 2n+ 2 matri
es de�ned in the pre
eding subse
tion:O = ���� 0n+1 Idn+1Idn+1 0n+1 ���� A = �������� 1 0A 10 A ��������where A is the diagonal matrix with eigenvalues aj j = 1; : : : ; n.
M =

����������������
a00 ut00 a01 ut01u00 M00 v10 M t01a01 vt10 a11 ut11u01 M01 u11 M11

���������������� G[ J ℄ = ��������������
gt0G0gt1G1

��������������8i; j 2 [1; : : : ; n℄ (M11)ij = =W10000i;j ; (M00)ij = =W10011i;j ; (M01)ij = =W10010i;j ;(u11)j = =W100000;j ; (u0)j = =W100110;j ; (u01)j = =W100100;j ; (v01)j = =W100010;j:� is the n+N � n +N splitting matrix; J1 is again n +N � n+NJ1 i j = =W10000i;j�nally N is 2n+ 2� n+N , we represent it in blo
k stru
ture as:
N = ��������������

nt0N0nt1N1
��������������where:N1ij = =W10000i;j ; N0ij = =W10001i;j ; (n1)i = =W100000;i ; (u0)j = =W100100;i;with i 2 (1; : : : ; n+N); j 2 (1; : : : ; n).As in the previous Se
tion we 
onsider the n+N�m matrix YF su
h that Y tF is the
anoni
al proje
tion on the fast 
omponents; we apply this proje
tion to the se
ondrelation in ((4.5)); then we use the energy 
onservation and the relation:G0 = I� = ���� Idn 00 0 �����:



74 Chapter 4. Upper bounds on homo
lini
 splittings IWe obtain:Y tF� = (Y tFN t)G+ Y tFJ1 = (N1F )G1 + n1Fgt1 + (N0F )tG0 + n0Fgt0 + J1F == (N1F )tG1 + n1Fg1 + (N0F )tI�+ 1�2 + I(1)0 n0F (
 + A1I(1))t�+ J1F :We have again found m independent ve
tors X su
h that (at least formally) �X = Ywith jXj = O"(1) and jY j = O(e ap" ):X = YF + IN0F + 1�2 + I(1)0 (
 + A1I(1))n0FY = (J1;F + (N1F )tG1 + n1Fg1)t:This and Theorem 4.20 imply that:Theorem 4.21. The Hamiltonian (*) , 
onsidered in the domains Vm de�ned in theIntrodu
tion, has an homo
lini
 point at q = �;  = 0. The order k < C"�( 12(�F+1) )term of the splitting determinant in su
h point is bounded from above by:("C1)k(k!)
1"�ke�
2=" 12(1+�F ) ;where C; 
2 are " independent 
onstants and 
1 = 2� + 2.Proof. We 
an adapt Corollary 3.13 (ii) to �nd exponentially small upper bounds fordet�. Namely we setX�:j�F j6=0 e�r1j�jE(C2; �) � X�:j�F j6=0 exp(� nXj=m+1 j�jj(r1 � "�j!2j
2)e�(r1j�F j+ j!1jj�F j��Fp" ):Now if � > 0 then r1 � "�j!2j
2 > 0,while if � = 0 we 
onsider this a 
ondition on 
2.So we 
an sum on the slow frequen
ies �j with j > m. Finally we split the sum overthe fast frequen
ies in j�F j � "�( 12(�F+1) ) (where j!1jj�F j��Fp" dominates) plus a remainder(where jr1jj�F j dominates).Finally this implies Theorem 0.6 provided that � � "1+ �+1�F+1 As the splitting deter-minant is smaller than: Xk<K[det�℄k + (�7�0)K;and we 
an 
hoose K = C"�( 12(�F+1) ).



Chapter 5Upper bounds on homo
lini
splittings IIFollowing [BB1℄, we 
onstru
t re
ursively a transformation # : Tns 3 '! � 2 Tns su
hthat in the indu
ed symple
ti
 
oordinates the generating fun
tion of the splitting (whi
hwe prove is S Æ#) is the integral = of a fun
tion F (�; t) 2 H0 plus a remainder of order�K with K = O("�B) with B = � 1�F + b. This implies that the splitting determinant,i.e. the determinant of the Hessian of S, is O"("�b�F ). So this se
tion provides apossibly simpler proof of the upper bounds on the splitting determinant. Moreover theexisten
e of # implies a stronger 
ondition, whi
h is useful to prove \fast " di�usion1.For ea
h � 2 Tns the Hessian matrix of S Æ # has the following blo
k stru
ture:M(�) = ������ MF NFN tF MS ������ (5.1)where MF is an m�m matrix whose entries are O"("1), NF is a n�m�m matrixwhose entries are O"("1) and MS 
ontains terms whi
h are polynomial in "; "�1.As in the pre
eding se
tion we use tree te
hniques, so we will give 
onstru
tiveproofs of our assertions, nevertheless the strategy of this Chapter shadows quite faith-fully [BB1℄. Namely we will study an auxiliary problem:��i = Æi0 sin(�0)� (�)ai�if(�) + Ai(�)gi(t) (5.2)where the gi(t) are pre�xed fun
tions in H0. We will look for exponentially quasi-periodi
 \solutions" of this system. There are two main di�eren
es:1. As usual the tree te
hniques 
an be easily applied to aniso
hronous systems, so ourresults apply to Hamiltonian (4.3).1We will not prove fast Arnold di�usion in this thesis, so this Chapter should be seen as analternative (possibly more intrinsi
) way of proving exponentially small homo
lini
 splitting



76 Chapter 5. Upper bounds on homo
lini
 splittings II2. On the other hand it is quite diÆ
ult to prove the 
onvergen
e of Lindstedt series.The auxiliary problem is not Hamiltonian so there is no guarantee that the quasi-periodi
 \solutions" of this system exist. Although it should be possible to prove
onvergen
e using the te
hniques of [GGM4℄, the pro
edure is not easy.To avoid this we will 
onsider order (�)K trun
ations of the solutions, withK = "�b.In the next subse
tion we will use the results of Chapter 3 to explain why this issuÆ
ient. Let us �rst remind a simple variation property of the generating fun
tionthrough 
hanges of 
oordinates on Tn.Proposition 5.1. Given an analyti
 transformation # : Tn ! Tn, let #� be the 
or-responding symple
ti
 transformation lifted to the 
otangent bundle. The generatingfun
tion of the splitting in the 
oordinates I 0;  0 = #�(I;  ); p0 = p; q0 = q at thePoin
ar�e se
tion q0 = � is S 0 = S Æ #�1.Proof. Given # : Tn ! Tn we 
onsider the pres
ribed symple
ti
 transformation: 0 = #( ) I 0 = J(#)�tq0 = q p0 = pthis is the 
anoni
al lift to phase spa
e of #�1 : Tn+1 ! Tn+1. As the pendulum angleq is un
hanged and the Poin
ar�e se
tion is the same q = q0 = � the two 
oordinatesystems des
ribe the same S/U manifolds so:J�( 0; �) = �J(#)j#�1( 0)��tI�(#�1( 0); �)By the de�nition of the generating fun
tion we have�J( 0; �) = � 0jS 0( 0) = �J(#)j#�1( 0)��t� jS( )j =#�1 :
5.1 Moving Poin
ar�e se
tionsFollowing the ideas in [BB1℄ we will study an \auxiliary" system ofK(n+1) linear non-homogeneous ODE's whose solutions we will 
all �hj (t) with h � K and j = 0; : : : ; n.The idea is to 
hoose the \auxiliary" system and the initial data (depending on aparameter � 2 Tnd ) so that �j(�; t) 2 H0. Then we will de�ne a fun
tion ~S(�) and wewill �nd suÆ
ient 
onditions on the \auxiliary" system su
h that there exists a (real)analyti
 transformation # : Tnd ! Tnd with S = ~S Æ #.The \auxiliary system" is of the type (0 < h � K, j = 0; : : : ; n):�(0)j (t) =  (0)j (t)��(k)i = ai�F (k)i (f�(h)j gk�1;nh=0;j=0) + Aki gi(t)� i = 1; : : : ; n��(k)0 = 
os(q0(t))�(k)0 + F (k)0 (f�(h)j gk�1;nh=0;j=0) + Ak0g0(t)



5.1. Moving Poin
ar�e se
tions 77This is the order K Taylor expansion of the equation 5.2.We have modi�ed the for
ing terms by the fun
tions Ai(�)gi(t) where g(t) 2 H0 isan even fun
tion tending exponentially to a quasi-periodi
 fun
tion with zero averagefor jtj ! 1.The initial data on �(k)j are for the moment free and the only restri
tion is that thefun
tions �(k)j (t) tend exponentially to a quasi-periodi
 fun
tion as jtj ! 1. For� 2 Tn, we set �(h)j (t = 0) = �(h)j (�) for h > 0, while �(0)j (�) = � for j 6= 0 and�(0)0 (�) = � (the initial data are ��
lose to (�; �)). We 
an repeat the pro
edureused in Subse
tion 1.1.4 to determine the �kj (�; t) re
ursively (the required asymptoti
behavior is the same). The only di�eren
e is in the initial data; this implies that �(k)jhave the form:�kj (�; t) = x00(t)�(h)j (�) + ajO tj[F kj (f�(h)i (�; �)gk�1;nh=0;j=0) + Akjgj(�)℄ (5.3)Correspondingly: _�kj (t) = =t[F kj (f�(h)j gk�1;nh=0;j=0)) + Aki gi(t)℄Remember that we are using the formalism of subse
tion 1.1.4 where we did not needany 
onvergen
e property on the series Pk(�)k�kj to re
ursively establish the bound-edness of the �kj (�; t).Proposition 5.2. If the fun
tions gi repse
t the property:=x0i gi 6= 0;for ea
h � we 
an �x Akj (�) and �(k)j (�) so that �kj (�; t) 2 H0.Proof. We pro
eed by indu
tion using the fa
t that F 0j (�0i ) is in H0 and thatF kj (x1; � � � ; xm) 2 H0 if xi are in H0. Suppose that �(h)i (�; �) 2 H0, for all i = 0; : : : ; nand h < k:�(k)j (�; t) = x0j(t)�(k)j (�) + ajhQtj�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)�+12x0j(t)=�x1j(�)�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)��+12x1j(t)=�x0j(�)�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)��i:If we 
hoose Akj (�) = �=[x0j (�)(F kj (f�(h)i (�; �)gk�1;nh=0;i=0)℄=x0jgj(�) (5.4)and �(h)j (�) = �=�x1j(�)�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akj (�)gj(�)�� (5.5)



78 Chapter 5. Upper bounds on homo
lini
 splittings IIthe non analyti
 terms 
an
el and we have that:�(k)j (�; t) = Qtj[F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)℄so �(k)j (�; t) is in H0 as F kj (f�(h)i (�; �)g) 2 H0 e Q : H0 ! H0.Noti
e that Ahj (�) is now the integral of a fun
tion in H0 and that (obviously) _�hj (t)is in H0 as well. For simpli
ity we will normalize the gi setting=x0i gi = 1:In this Chapter we will always 
onsider trun
ated series:Ai(�) = KXk=1(�)kAki (�);�i(t; �) = KXk=0(�)k�ki (t; �) : : : : : : ;with K = "� 12�F � "�q. However the relations we will �nd are all formal series relationson the 
orresponding 
omplete series. We will express the Akj and �ki (t; �) as values of�nite sums of fruitless trees (see the next subse
tion).This means that we 
an use the bounds on fruitless trees dis
ussed in Chapter 3.Lemma 5.3. Provided that f( ; q) is analyti
 in some H(a;D) and respe
ts the bounds3.2 then:(i) �kj 2 H0 respe
ts the bounds of Remark 3.9. Moreover if jtj = O(�) it respe
ts thebound 3.10.(ii) Aj (and all the values =W1 of the trees we will des
ribe in the following subse
tion)is the trun
ation of an asymptoti
 power series in �; ".Proof. (i) To apply Remark 3.9 we only need to remember that �kj 2 H0 is boundedby 
onstru
tion. We will see in the next subse
tion that �kj is a �nite sum of values ofanalyti
 trees.(ii) The Akj are the integral = of fun
tions in H0 so their tree representation will bethrough analyti
 trees whi
h 
an be bounded by 3.8.We will repeatedly use Lemma 3.14 to write formal power series identities as identitiesbetween the order K trun
ations plus a known (smooth in � and �) remainder of ordero(e�K). We will say that the identity is true up to order O(�K).As seen for system (1) the energy 
onservation implies that (Subse
tion 4.1.2) thevalue of Ak0(�) is related to the Akj (�) with j 6= 0. For 
ompa
tness we will state thisrelation in terms of the sumAi(�) = KXk=1(�)kAki (�);�i(t; �) = KXk=0(�)k�ki (t; �) : : :Proposition 5.4. For ea
h value of � we de�neki = (�12)Æi 0= _gi(t)(�i(�; t)� �0i (�; t)) = O(�);



5.1. Moving Poin
ar�e se
tions 79for i = 0; : : : ; n. We have:2A0(�) = 11 + k0 nXj=1 Aj(�)(!j + kj) (5.6)up to order O(�K).Proof. Our auxiliary system is the order K trun
ation of the expansion of system 5.2.This means that, by Lemma 3.14, for small enough �, ", the fun
tion �j(�; t) 2 H0solves the equation 5.2 up to order O(�K):��i = Æi0 sin(�0)� (�)ai�if(�) + Ai(�)gi(t) + (�)KFR(�; t): (5.7)The fun
tion FR is analyti
 and bounded in t 2 R � (�id; id), j Im �j � s0. Remark3.9 and Lemma 3.14 (iii) ensure that jFR(�; t)j � CK"�pK for some p 2 N . The energy
onservation for system 5.2 leads to:Xj=0;:::;n _�2j(�; t)2 +
os(�0(�; t))�(�)f(�(�; t))�Xj Aj(�)=t _�j(�; t)gj+GR(�; t) = 
ost;the fun
tion GR has the same properties as FR. _�j(t) is 
ontinuous and _�0j = !j forj 6= 0 , _�0j = �2x00, so we obtain:Pnj=0Aj= _�jgj = 0 =PKk=0(�)k�Pni=1 �!iAki=(gi) +Ph<k Ahi= _gi�k�hi ��2Ak0(�) � =(x00g0) +Ph<k Ah0= _g0�k�h0 	:This is a formal power series relation:nXi=1 !iAi=(gi)� 2A0=(x00g0) � nXi=1 Ai= _gi(�i � �0i ) + A0= _g0(�0 � �00):We use the normalization =gix0i = 1. By the boundedness of the �ki theki = (12)Æ0i= _gi(�i � �0i )are smooth fun
tions of � and are of order �, so (1+k0)�1 is a well de�ned asymptoti
series for small enough �. Passing to the order K trun
ation we obtain the desiredequality. Noti
e that the remainder is a known smooth fun
tion of � and � by Lemma3.14(ii).
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lini
 splittings II5.2 Tree representations of the auxiliary dynami
sIn des
ribing the tree representation of �(h)j (�) we will use the fa
t that the stru
tureis the same as in the tree representation of system (1). Therefore we will not repeatthe proofs (whi
h are identi
al) but simply 
ite the Theorems we are adapting.De�nition 5.5. Let T be the set (of equivalen
e 
lasses) of marked rooted labeled treeswith fruits su
h that:a) ea
h node 
arries the labels j = 0; : : : ; n Æ = 0; 1 and k � 0.b) The labels respe
t the following grammar:Æv = 0 ; kv = 0 implies that jv = 0 ; s(v) � 2;kv > 0 implies that Æv = 0 s(v) = 0:By de�nition we will 
all fruits the nodes with kv > 0. The markings are the same as inSe
tion 1.2 (i.e. an angle marking Jv = 0; : : : ; n and a fun
tion marking h(t; v) 2 H0).As usual we will 
onsider the ve
tor spa
e V(T ) generated by T on Q . We 
an rede�neall the subspa
es of De�nition 1.31.The order of a tree is now: o(A) =Pv Æv+kv and we 
an express V(T ) as a dire
tsum of �nite dimensional spa
es of pres
ribed order. As in the pre
eding Se
tion wewill 
all S(B) the symmetry group of a tree B 2 T .Given these de�nition we 
an set (see identity 2.1) �(Æ; k) =j  , δ , k, �v0j �(Æ; k) 2 Tjand: V1(�v0j �(Æ; k)) = 8<: (�)ajQj(rejf 1)℄ if k = 0; Æ = 1aj(�)kAkjQj(gj)℄ if k 6= 0; Æ = 0We 
an repeat what done in subse
tion 2.1.1 and set �kj in 
orresponden
e with ele-ments �kj of V( 0T kj j). Then we 
an restate Proposition 2.2:Proposition 5.6. For ea
h j; k V1(�kj ) = �kj (�; t) where:�kj = XA2 0T kj 1jS(A)jA � XA2 0T kj 
(A)Now, as in Subse
tion 2.1.2, to ea
h tree A 2 0T (possibly marked) we asso
iate avalue W1.Given a tree in with no marks on the �rst node we add the marks j1; : : : ; jl, h1(t);
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s 81: : : ; hl(t) and set:W1( lYi=1 hi(vA; t)�vAji �(1; 0)) =Yi hi(vA; t)rPi ejif 1;W1( lYi=1 �vAji hi(vA; t)A) =Yi hi(vA; t)(r~m+Pi ejif Æ)Yv2s(vA)\ 0AajvQjv [W1(A�v)℄Yv2F(vA)ajvQjv [gjv ℄Akvjv ;Akj = �=x0jW1( 0�kj );where ~mi is the number of nodes in s(v0) having jv = i. As in Se
tion 2.1.2 0�j is�j � Fj.In 0T we 
an de�ne the 
hange of �rst node. Noti
e that Proposition 2.11 is still true.Remark 5.7. A tree with a fruit kv 6= 0 jv is equivalent to the tree deprived of thefruit, marked Qjv [gjv ℄ on the node w pre
eding v, and multiplied by ajvAkvjv . Noti
e thatthe dependen
e on the initial data is 
ontained only in Akvjv (�) and that this markingsare always in H0.This means that we 
an use the analyti
 bounds 3.8 to bound the values of trees in 0T(even those with \ fruits" i.e. nodes with kv > 0). On the other hand as hj(t) = Qtj(gj)we 
an apply proposition 1.16 (i) and the 
hange of �rst node also to the nodes withkv > 0 ex
ept that we never obtain trees 2 0T .Remark 5.8. The Akj and �kj are trigonometri
 polynomials in �.Lemma 5.9. We 
an restate Propositions2.14 and 2.15, if we 
onsider,1) For i; j 6= 0, for all k and for any f; h 2 H0 we have the identity:�k(i;f) (j;h) = �k(j;h) (i;f):2) If i 6= 0, for all k and for any f; h 2 H0 we have the identity:�k(i;f) (0;h) + Lh(�k(i;f)) = �k(0;h) (i;f):the linear operator Lh is de�ned in Se
tion1.2.2.De�nition 5.10. We 
all rT the subset of 0T of trees that stay in 0T by applying the
hange of �rst node2.2our 
onvention is not to 
onsider trees with only one node kv > 0 in T r as these are not propernodes
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lini
 splittings IIDe�nition 5.11. We 
onsider a fun
tion ~S(�) that is similar to the generating fun
-tion S('). We 
all T̂ the set of trees in rT having no markings; re
all that for any B 2 0T, N(B) is the number of free nodes of B (i.e. su
h that kv = 0) and 
(B) = 1SvB (B) :~S(�) = =W1�fXB2T̂ 
(B)N(B)Bgas usual restri
ted to trees of order � K.Lemma 5.12. The following identity holds:Aj(�) = =W1�XB2T̂ 
(B)N(B)Xv2B �vjBProof. The proof is identi
al to that of Theorem4.1.Clearly this is di�erent from Aj(�) = �j ~S(�), whi
h is generally false as we are
onsidering trees with � dependent fruits. Nevertheless the Aj(�) are linear fun
tionsof �� ~S(�) as we will see in the following proposition. Let us �rst prove a te
hni
alLemma.Lemma 5.13. Let T̂ k be the subspa
e of rT of trees of order k:=W1�[XB2T̂ k 
(B)N(B) Xv:kv>0 d�jAkvjvAkvjv B℄ = Xi;h<k d�jAhi=gi(�k�hi � AiQigi)Proof. We �x our attention on the nodes v of B with kv > 0; we haveXB2T̂ k 
(B)N(B) Xv:kv>0 d�jAkvjvAkvjv B = XB2T̂ k 
(B)N(B) X[v℄:kv>0m[v℄d�jAkvjvAkvjv B: (5.8)Now we shift the �rst node in v ( a representative of the 
oset [v℄ ), we obtain A(v) =2 Bwhose �rst node v has kv > 0, moreover in A(v): s(v) = v1 e jv1 = jv3; we 
all the setof trees of this form Dk ;kv . Noti
e that any tree in B 2 T k�kvj with at least a nodev : kv = 0 is equal to A�v1 for some tree A(v) 2 Dk ;kv ; moreover the value of A(v) is:=gjvajvQtjvW1[A�v1 ℄:Now 4 �k�hj � ajAk�hj Qjgj, is a sum of trees in T k�hj with at least one node v : kv = 0,and we have: Xi;h<k=gi(�k�hi � aiAk�hi Qigi) = =W1�( XA2Dk ;h 
(A)A) (5.9)3remember that P(A; v) shifts the labels jw of the nodes in the path vA; v towards the �rst nodevA, see De�nition 1.404we subtra
t the only tree with all the node labels kv > 0
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s 83as in Dk ;h 
(A) = 
(A�v1).In the right hand side of relation 5.9 we 
onsider N(A) 
opies of ea
h tree A in ea
hwe eviden
e a node v with kv = 0XA2Dk ;h 
(A)A = XA2Dk ;h 
(A)N(A) X[v℄:kv=0m[v℄A:
Proposition 5.14. for ea
h � we have:��j ~Sk(�) = Akj + Xh<k;i=0;:::;nMhj i=(gi�k�hi )� Xh<k;i=0;:::;nMhj iAk�hi =(giQi(gi))where Mi j = �iAj(�) is an n� n+ 1 matrix.Proof. To prove this assertion we �rst 
onsider the relation��j ~Sk(�) = =W1�[XB2T̂ 
(B)N(B)Xv2B �vjB℄ + =W1�[XB2T̂ 
(B)N(B) Xv:kv>0 ��jAkvjvAkvjv B℄: (5.10)Then by Lemma5.12 the �rst sum is =gjAkj , in the se
ond sum we set Mkvj jv = ��jAkvjvand apply Lemma 5.13.Now we want an homogeneous linear equation relating r ~S to A = fAjgnj=1 of the typeA = (1�M)�1r ~S(�);where M is an n � n matrix of order �. In order to have su
h an identity we haveto impose 
onditions on the fun
tions gj. There are (at least) two possible and nearlyequivalent 
hoi
es. One has a 
learer dynami
al meaning (and is the 
ondition proposedin [BB1℄) and leads to possibly more expli
it formulas; the se
ond on the other hand
an be easily implemented by a 
omputer, moreover it is obvious that there existfun
tions gi 2 H0 satisfying the latter 
ondition so one does not have to verify theexisten
e. We will des
ribe both 
onditions and use the se
ond one.(a) =[gi(�i(�)� �0�)℄ = 0 for ea
h i = 0; : : : ; n: (5.11)With this restri
tion Proposition 5.14 states that:��j ~S(�) = Aj � Xi=1;:::;nMj iAi=(giQi(gi))�12 Mj 01 + k0 Xi=1;:::;n(!i + ki)Ai=(g0Q0(g0))
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lini
 splittings IIup to order (�)K. We write this relation 
ompa
tly as:r ~S(�) = (1�M)A whereMi j =Mi j + Mi 01 + k0 (!j + kj):Noti
e that jMj = O(�) so that 1�M is invertible.The se
ond 
ondition (whi
h is easier to verify) is the following, as usual we 
all A theset of fruitless trees, 0ki = XB2Aki 
(B)B;the value of this sum does not depend on the 
hoi
e of the gi and we ask that5:(b) =[gi(t)V1( KXk=1(�)k0ki ℄ = 0 for ea
h i: (5.12)This means that =gi(�i(�; t)��0i (�; t)) depends only on trees with at least one nodekv > 0 and so: =gi(�i(�; t)� �0i (�; t)) = Xj=1;:::;nAj(�; �)Cij(�; �)up to order (�)K.We de�ne Cij(�; �) = Æijai=giQi(gi) + KXh=1(�)h=giC(h)ij (�; t):The fun
tions C(h)ij are V1� applied to 0�hi deprived of one \fruit" with label j6. Wesubstitute in Proposition 5.14 and �nd��j ~S(�) = Aj � Xi=1;:::;nl=0;:::;n Mj lCliAi � 12(1 + k0) Xl=0;:::;nMj lCl0 nXi=1 Ai(!i + ki)whi
h is the required linear relation; in this 
ase:Mij = Xl=0;:::;nMilClj � 12(1 + k0) Xl=0;:::;nMi lCl0(!j + kj):Proposition 5.15. The generating fun
tion 
an be written in 
ompa
t notation as:~S(�; �) = �Z0 f=f(�(�; t)) + Xi=0;:::;n ��0(Ai)[=(gi(�i(�; t)� �0i (�; t))℄d�05for any non zero " this is a �nite set of orthogonality 
onditions6We dis
ussed in Lemma 4.9 the problem of taking away a fruit from a tree without 
hanging its
ombinatorial 
oeÆ
ient, for trees with more than one fruit it is not easy to des
ribe the needed linearfun
tion, but it is 
lear that it is well de�ned , so we will not go in any details.
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s 85� Xi=0;:::;nA2i=(giQigi); (5.13)up to order O(�K).Proof. The proof is identi
al to that of Corollary 4.2; In ~Sk, for ea
h tree A 
onsiderk 
opies:~Sk = XB2T̂ k 
(B)BN(B) = 1kXB2T̂ k( X[v℄:kv=0Æv=1 
(B)m[v℄BN(B) + X[v℄:kv>0 
(B)m[v℄kvBN(B) )The �rst sum in the right hand side is equivalent to the �rst term in the right handside of 5.13, as in Corollary 4.2. Finally we 
an apply Lemma 5.13 to the se
ond term:=W1� X[v℄:kv>0 
(B)m[v℄kvBN(B) � = k�1Xh=1 nXi=0 hAhi=(gi(�k�hi � Ak�hQigi)):Now we 
onsider two formal power series:A = 1Xh=1(�)hA(h) B = 1Xh=1(�)hB(h);the following equality holds:�Z0 d�0B��A � 1Xk=2 (�)kk k�1Xh=1 hAhBk�h:Finally if we 
hose A = B we obtain that:12A2 � 1Xk=2 (�)kk k�1Xh=1 hAhBk�h:Noti
e that 
ondition (a) would give a 
leaner expression for the generating fun
tion.As usual the remainder is a known smooth fun
tion of �; �.We 
an gather the results in the following Theorem:Theorem 5.16. Given n+ 1 fun
tions gj(t) respe
ting 
ondition 5.12, We 
an �x theinitial data and the fun
tions Aj(�) so that for ea
h � 2 Tn: (1) The order K solutionof equation 5.2, �(�; t) 2 H0, it is a polynomial in � and a trigonometri
 fun
tion in�.(2) There exists an order K generating fun
tion ~S(�), again polynomial in � andtrigonometri
 fun
tion in �. This fun
tion is of order O(�) together with its � deriva-tives; moreover it respe
ts Proposition 5.15 (always to order (�)K) and is the integral
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lini
 splittings II= of a fun
tion in H0. (3) The 
oeÆ
ients Aj(�) again polynomial in � and trigono-metri
 fun
tions in � are related to ea
h other and to the generating fun
tion by theidentities (valid up to order K):2A0(�) = 11 + k0 nXj=1 Aj(�)(!j + kj)A = (1 +M)�1r ~S5.3 Conne
tion between the auxiliary dynami
s andthe splittingTheorem 5.17. There exists an analyti
 
hange of 
oordinates7 # : Tns1 ! Tns1 su
hthat ~S(#(')) = S(') + o(�K).We follow 
losely the strategy of [BB1℄. First we move along the traje
tory for atime t� su
h that �0(t�) = �.Lemma 5.18. For ea
h � 2 Tns1 there exists t�;� analyti
 in � 2 Tns1 and j�j � �0 su
hthat: �0(�; t(�; �); �) = � t(�; 0) = 0Proof. We apply the impli
it fun
tion theorem knowing that�0(�; 0; 0) = � _�0(�; 0; 0) = �2:By our bounds 3.10 we have thatsupj�j��0�2Tns j�0(�; 0; �)� �j � �0C;so jt(�; �)j � C�0. Then we verify:supj�j��0jtj��0C ; �2Tns j1 + 2 _�0(�; t; �)j = KXk=1(�)k supj�j��0jtj��0C ; �2Tns j�k0(�; t)j � 12 :Noti
e that r�t(�; 0) = 0 so r�t(�; �) = O(�).Lemma 5.19. Now 
onsider the appli
ation Tns1 ! Tns1 :'j = �j(�; t(�; �); �) (5.14)for suÆ
iently small values of � this is a di�eomorphism of Tns1 , � 
lose to the identity.7remember that for � 2 Tns we mean the thi
kening of the torus of length s: Tns = Tn � (�is; is)



5.3. Conne
tion between the auxiliary dynami
s and the splitting 87Proof. Let us write relation 5.14 as: 'j(�; �) = �+#1(�; �) with #1(�; 0) = 0; pre
isely:#1(�; �) = !t(�; �) + KXk=1(�)k�kj (�; t(�; �)):The relation is invertible lo
ally as:'j(�; 0) = �j �i�j(�; 0; 0) = Æij:The fun
tion we obtain is a di�eomorphism of Tnd provided thatsupj�j��0�2Tns j!jr�t(�; �)�1 + KXk=1(�)k _�kj (�; t(�; �))�+r� KXk=1(�)k�kj (�; t(�; �))j < 12 :This holds true as jr�t(�; �)j = O(�). Moreover j _�kj (�; t)j and jr��kj (�; t)j arebounded by 3.10 for jtj � C�.Now we invert the relation 'j(�; �) = � + #1(�; �) we 
all the inverse #2(') andt(#2('); �) � t'.Consider the equation:�	j(t) = fj(	(t)) + Æj0 sin(	0(t)) + Aj(#2('))g(t+ t') + (�)KFR(#2('); t+ t') (5.15)with initial data 	j(0) = ' if j 6= 0 and 	0(0) = �. The fun
tion FR is de�ned in5.7. This equation admits an order (�)K solution (we 
all it 	j('; t)) whi
h is thetrun
ation of an asymptoti
 power series in �; ". So for � � "p the solution is � 
loseto the separatrix of the pendulum and exponentially quasi-periodi
.We 
an solve equations 5.15 perturbatively and, as the initial data are now � indepen-dent, we obtain: 	kj (t) = Oj[F kj (	h) + Akjgj℄:Lemma 5.20. The asymptoti
 
onditions determine the solution uniquely so 	('; t) =�(#2('); t+ t') up to order (�)K.Proof. �j(#2('); t+ t') and 	j(t) 
oin
ide at t = 0 by de�nition. Moreover they solvethe same equation up to order O(�K). Namely as seen in expression 5.7 there existsGR(�; t) su
h that�	j(t) = fj(	(t)) + Æj0 sin(	0(t)) + Aj(#2('))g(t+ t') + (�)KGR(#2('); t+ t')where GR is bounded and exponentially quasi-periodi
 with < GR >= 0. So H('; t) =�j(#2'; t+ t')� 	j(t) is a bounded and exponentially quasi periodi
 solution of�H('; t) = (�)KGR(#2('); t+ t'):By the results of Subse
tions 1.1.3 and 1.1.4 H('; t) = O(�K) for t 2 R � (�id; id), jIm �j � s0. Remark 3.9 and Lemma 3.14 (iii) ensure that jHR(�; t)j � (CK"�pK forsome p 2 N . Moreover H(�; t) is analyti
 in � for j Im �j � 12s0



88 Chapter 5. Upper bounds on homo
lini
 splittings IIWe 
an represent the series expansion in term of trees; in this 
ase we have thenon analyti
 operators Oj and so we do not think of the nodes kv > 0 as fruits andapply the operators V and W. Noti
e that the nodes with kv > 0 now have valueajAkj (#2('))Otj(g(t+ t').Lemma 5.21. The generating fun
tion�S(') = =W'fXB2 rT 
(B)N(B)Bg; (5.16)satis�es the relation:�S(') = ~S(#2(')) + nXi=1 A2i=[gi[Qt+t'i (gi)� Oi(gi)℄℄ +O(�K):Proof. We use Proposition 5.15 whi
h 
an be obviously restated for 	j as:�S('; �) = �Z0 f=f(	('; t)) + nXi=0 (��0Ai)[=(gi(	i('; t)� 	0i ('; t))℄d�0� nXi=0 A2i=(giOigi);then we apply Lemma 5.20 and 	0i = �0i obtaining�Z0 f=f(�(#2('); t)) + (��0Ai)[=(gi(�i(#2('); t)� �0i (#2('); t))℄d�0�A2i=(giQigi)℄ + nXi=0 A2i=(gi(Qigi �Oigi)) + LR(');where LR is analyti
 in ' for j Im 'j � s04 .To avoid 
onfusion with the 
omplex norm, jvj = pPi vi�vi, we will de�ne for allv 2 C n q(v) =Pni=1 v2i .Lemma 5.22. Following [BB1℄ we prove that for all ' 2 Tns0 :j ~S(#2('))� S(') + o(�K)j � Cjq(r ~S)j: (5.17)Proof. By our de�nitions �S(') � S(') is the (value =W of the) sum of trees A withat least one node v : kv > 0, weighted by 
(A)N(A) , so it is at least linear in the Ahj forj = 1; : : : ; n, h = 1; K � 1; as usual we 
all fruitless trees the trees of order zero in Ajet
.. The linear term in the Ahj is sum of trees with only one fruit j; h:
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tion between the auxiliary dynami
s and the splitting 89Lin = XB2T̂ 1F 
(B)B:As there is only one fruit (node v1) the 
oeÆ
ient 
(B) = 1S(B) is the order of thestabilizer of the path vB v1. We 
an shift the �rst node to v1 without 
hanging the
ombinatorial 
oeÆ
ient and apply 5.13)=W1(Lin) = Xj=0;:::;nAj=gj(t+ l')	0Fj (t) = Aj(=g(�)V1(0j(�)) + Aj(=g(�)V1(�1Fj (�))plus higher order terms in Aj. By 
ondition 5.12 the linear part is zero. Then�S(')� S(') = Xk=3;K nXi=1 nXj=1 k�2Xl=1 k�l�1Xh=1 AliAhj ~Ck�l�hijwhere ~Ckij is a sum of trees, deprived of two fruits with labels i; j, and whose orderwithout these fruits is k. Now we substitute �S with ~S using Lemma 5.21. Finally wesubstitute (=g �M)�1r ~S = A+ o(�K).As usual in equation 5.17 we 
an expli
itly 
ompute the remainder whi
h is ananalyti
 fun
tion of � and ' for ' 2 Tns1 with for instan
e s1 = 14s0.Now �nally we 
an prove the theorem and 
onstru
t the transformation # : Tnd ! Tnd(d < s0=4) sending x in ~S. This is almost identi
al to the proof of Theorem 4.1 in [BB1℄.Proof of Theorem 5.17. We want to �nd # su
h that~S(#2(') + #('))� S(') = fR(�; ') = o(�K); (5.18)for some fun
tion fR(�; ') analyti
 in � � �0 and ' 2 Tnd . Note that if r ~S(�) = 0then the equation is solved by # = 0. In general we look for a solution of the form#(') = r ~S(�)j�=#2(')y (5.19)where y is a s
alar parameter and from now on we will write r ~S(#2(')) instead ofr ~S(�)j�=#2('). Then we 
an write8:~S(#2(') + v) = ~S(#2(')) +r ~S(#2('))v + (v; R('; �; v)v (5.20)where the matrix R('; �; v) is su
h that:�v; R('; �; v)v� = ~S(#1(') + v)� ~S(#1('))�r ~S(#1('))v:8The operator (a; b) with a; b 2 C n is the real s
alar produ
t(a; b) = nXi=1 aibi



90 Chapter 5. Upper bounds on homo
lini
 splittings IISubstituting 5.19 in 5.20, we �nd that 5.18 is equivalent to:�S(')� S(') + q�r ~S(#2('))�y+(r ~S(#2(')); R('; �;r ~S(#1('))y)r ~S(#1(')))y2 = o(�K);and �nally to �S(')� S(') + o(�K)q�r ~S(#2('))� = y +R1('; �;r ~S(#2('))y)y2 (5.21)where R1('; �;r ~S(#2('))y) = �r ~S(#2(')); R('; �;r ~S(#2('))y)r ~S(#2('))�q�r ~S(#2('))�is smooth and satis�es R1('; �; y) = O(�) and �yR1('; �; y) = O( �jyj) for all ' 2 Tns .Now we �x the o(�K term fR to be equal to the remainder (whi
h is a known analyti
fun
tion of � and ' ) of expression 5.17 so that the norm of the left hand side of relation5.21 is bounded from above by C.By the 
ontra
tion mapping theorem, for � small enough, for all u 2 R su
h thatjuj < 2C, there exists a unique solution y = g(�; '; u) of the equationu = y +R1('; �;r ~S(#2('))y)y2;su
h that jyj < 3C. Moreover, The fun
tion g(�; '; u) so de�ned is smooth and analyti
in ' 2 Tnd , j� � �0 as r ~S(#2(')) is so.Setting #0(') := g(�; '; ~S(#2('))� S(') + o(�K)jr ~S(#2('))j2 )r ~S(#1(')) (5.22)if r ~S(#1(')) 6= 0 and #0(') = 0 if r ~S(#2(')) = 0, we get a 
ontinuous fun
tion #0(')whi
h satis�es 5.18 and su
h that j#0(')j � 3Cjr ~S(#2('))j = O(�) and r#0(') =O(�).To 
omplete the proof, we remark that if f; g : U ! C are analyti
 in U open subsetof C m and g is not identi
ally zero and f = O(g) lo
ally in U , then fg (whi
h a-prioriis de�ned only where g 6= 0) has an analyti
 extension de�ned in the whole set U .Namely on ea
h lo
ally irredu
ible hyper-surfa
e on whi
h g is zero, also f is zero withvanishing order al least equal to that of g. So applying standard results of 
omplexanalysis (see for instan
e [R℄) we obtain our 
laim.Hen
e ~S(#2('))� S(') + o(�K)jr ~S(#2('))j2 ;( whi
h is bounded by C in Tnd ) is



5.3. Conne
tion between the auxiliary dynami
s and the splitting 91analyti
 in Tnd , so is g and �nally #. Moreover The transformation#(') = #2(') + #0(') = '+ �L(');is a di�eomorphism in Tnd , with d < s04 su
h that:supj�j��0�;'2Tns (2jr�#1j+ j#0(')j) = O(�) � C� < 12 : (5.23)
Theorem 5.23. (i) The splitting matrix �, whi
h is the Hessian of S(') at ' = 0,satis�es the relation: � = (1 + �O)t ~�(1 + �O) + o(�K) (5.24)where ~� is the Hessian of ~S(�) at � = 0.(ii) ~� has the blo
k stru
ture des
ribed in equation5.1.Proof. Relation 5.24 is a dire
t 
onsequen
e of Theorem 5.17. Namely as ' = 0 impliesthat also #(') = 0 we have9 (by the parity of f):r� ~Sj�=0 = r' ~Sj'=0 = 0and 
onsequently J'#j'=0H( ~S)j�=0J'#j'=0 = H(S)j'=0:Finally using relation 5.23 and the fa
t that # is �-
lose to identity we obtain relation5.24.(ii) We use the analyti
 bounds 3.8, for ~S. ~� = H( ~S)j�=0 where ~S is a trigonometri
polynomial in � and the = integral of a fun
tion in H0 let us 
onsider the Fourier seriesof H( ~S): H( ~S)ij = X��KN �i�jei��'S(�);where S(�) is the sum of the values through the analyti
 integrals (a) of trees in 0Tof order � K and total frequen
y �. By The bounds 3.8 all the S(�) with non zerofast 
omponent �F are O"("1) while those with zero fast 
omponent are polynomial in"; "�1.

9Given f : Rn 2 Rn we will 
all Jf the Ja
obian and H(f) the Hessian.





Chapter 6Lower bounds on the splitting forsystems with one fast frequen
yWe �nd lower bounds on the splitting determinant and on the eigenvalues of the split-ting matrix, for systems with one fast frequen
y, su
h that f( ; q) is a rational fun
tionof eiq and satis�es suitable non degenera
y 
onditions. This 
an be done independentlyby using the results of Chapter 4 or of Chapter 5.6.1 Basi
 lower estimatesIn Se
tion 4 we have proved that the splitting matrix � at the interse
tion point�;  = 0; q = � 
an be written for any K � "� 12�F as:� = ��K1 +��K2 +(�)K�R =Pk�K(�)k(�1 k+�2 k)+ (�)K�R. We are interestedin systems with one fast frequen
y so �F = 0; we 
hoose K = Cp" with C � 1.All the entries of ��K2 are exponentially small by de�nition, they will 
ontain a fa
torthat is the integral of some fun
tion analyti
 in a domain H(b; d) with total fast mode�1 6= 0 . Moreover det(��K1 ) = 0 by Lemma 3.16. The remainder (�)K�R is boundedby: j(�)K�Rijj � ( ��0 )K < C2(���10 )K):(with �0 = "3=2 as seen in Appendix A.4).Similarly in Chapter 5 We have proved that the splitting determinant is equal tothe determinant of ~� times the determinant of (1 + �O)2. And that ~� has the blo
kstru
ture 5.1.We know from KAM theory that the series expansion for � is absolutely 
onvergentfor j�j < �0. This means that the series expansion of the determinant:det� = �nXk<KQk�k +RKis absolutely 
onvergent as well, and that ea
h summand of Qk 
ontains at least afa
tor (�2 k)ij for some i; j and h < k.



94 Chapter 6. Lower bounds on the splittingWe know that X�K1 = O"(1) is O((�=�0)K) 
lose to the eigenve
tor of ��K1 witho((�=�0)K) eigenvalue. Now we set ��k1 in blo
k form via an orthonormal 
hange ofvariables: ��k1 = �������� �R 00 �01 �������� with �R = o((�=�0)K):We are 
onsidering a system with one fast frequen
y so �01 is an n� 1� n� 1 matrix.Proposition 6.1. (i) If det�01 6= 0 and ��K2 11 6= 0, the splitting determinant is givenby the determinant of �01 times the size of ��K2 . Pre
isely the bounds:a"p � det�01 � b"�p ; a"pe� 
p" � j��K2 11j � b"�pe� 
p"j��K2 ij j � b"�pe� 
p" (6.1)imply that a2"2pe� 
p" � det� � b2"�2pe� 
p" :(ii) If the eigenvalues of �01 are bounded by:a0"p0 � j�ij � b0"�p0 for i = 1; : : : ; n� 1then so are n� 1 eigenvalues of �. The remaining eigenvalue is bounded by:a00"p0e� 
p" � j�ij � b00"�p0e� 
p" :Proof. ��K2 +�R respe
ts the same bounds (with possibly di�erent 
onstants a; b) as��K2 as the remainder (���10 )K < 12 min(a; b)"pe� 
p"for small enough values of ".Moreover the bounds 6.1 imply that det� is:det� = det�01��K2 11 +Qwhere Q 
ontains at least two entries of ��K2 .(ii) This is simply the fa
t that the determinant is the produ
t of the eigenvalues.This de
ouples the problem in a polynomial and an exponentially small part. Wewill pro
eed in two steps:1. Compute the �rst order of �2, with the purpose of �nding general lower bounds.Then use the upper bounds on analyti
 and non analyti
 integrals of order k � 2of Chapter 3 to extend the lower bounds on all ��k2 . This gives us the size of theexponentially small eigenvalue.2. Compute the non zero eigenvalues of ��k1 , via 
lassi
al perturbation theory.



6.1. Basi
 lower estimates 956.1.1 Lower bounds on the Melnikov integralIn this subse
tion we will use for the �rst time the restri
tion that f( ; q) is a rationalfun
tion of 
os(q); sin(q) .Let f(q;  ) := Tn+1 ! R have the usual Fourier expansion in the rotator angles:f(q;  ) = Xj�j�N f�(q)ei�� where all the fun
tions f�(q) are rational fun
tions of x = eiq with no poles on the unit
ir
le (f�(q) = H�(x)).The parity of f leads to f�(�q) = f��(q) while the reality of f implies that �f�(q) =f��(q). Moreover f has zero mean value.We are 
onsidering lower bounds on the �rst order of the expansion of the splittingmatrix (these are all analyti
 integrals) so at �rst we will make no di�eren
e betweenslow and fast variables. Mij = =f i  j (q(t); !p"t);M is the Melnikov term for the splitting matrix.We substitute x = ( et�iet+i)2 (noti
e for ea
h value of x there are two solutions et and�e�t) in the H�(x) and we obtain for ea
h value of � a rational fun
tion of et (we
all it F�(et)). The parity 
ondition is F�(y) = F��(�y) = F��( 1y ) the reality is1�F�(y) = F��(y) and so we have �F�(y) = F�(�y) = F�( 1y ). Noti
e that F has all thepoles of f as fun
tion of x plus possibly poles at et = �i. The absen
e of poles onthe unit 
ir
le jxj = 1 implies that there are no poles for real values of t; this and thefa
t that x ! 1 (exponentially) for t ! �1 imply that all the F�(et) are the sum ofa 
onstant fun
tion and a fun
tion G�(et) that is exponentially de
reasing to zero fort! �1. The Melnikov integral depends only on G:=(�i�j)ei�� !p" tF�(et) = (�i�j) 1Z�1 G�(et) = (�i�j)I�as purely os
illating fun
tions give no 
ontribution to = and G� is 
learly L1.Now if the fun
tions f�(x) are not all polynomials (and so the fun
tion f is atrigonometri
 polynomial) then some of them must have poles for �nite values of x. Letus 
all the poles xj� j = 1; : : : ; n� and the the 
orresponding values of t (in jIm(t)j � 2�and via the relation x = ( et�iet+i)2 ) ti� 2 C i = 1; 2N� ea
h with degree pi�. The poles ofF (et) are the ti� plus possibly �i�2 + 2ik�.Lemma 6.2. The poles of G� in jIm(t)j � � 
ome in groups of four, namely if the
omplex number ti� = ai� + ibi� is a pole for G� then so are ��ti� = �ai� + ibi� , �ti� + i� =�ai� � ibi� + i� and ��ti� + i�; 
orrespondingly G��(et) has poles �ti� ; �ti� et
...1By �F (y) we mean the fun
tion having as 
oeÆ
ients the 
omplex 
onjugates of the 
oeÆ
ients ofF , so �F (y) = F (�y).



96 Chapter 6. Lower bounds on the splittingProof. Ea
h xj� has two preimages tj� and �tj� + i�; moreover by the reality 
onditionF�(y) = �F (�y), if y = etj� is a pole so is ��y.We noti
e that jzjF (ez)! 0 uniformly for z = t+ id with d 2 R �xed and R 3 t!1;moreover F (et) = F (et+2i�) so we 
onsider the integral 6.1.1 plus the same shifted by2i� and apply Jordan's lemma. Pre
isely if !� = !p" � � > 0 we shift by 2i� and if it isnegative by �2i� , we will 
all �� the sign of !�. If �� = + we will 
onsider the polesin the prin
ipal domain 0 � Im t � 2� instead of �� � Im t � � and vi
e versa for�� = �. I�(1� e�2j!� j�) = 2�i�� 2N�Xi=1 Res �� (ei!� tG�(et); t�i ) (6.2)The apex �� = � on the Residue indi
ates that the poles are set in the upper or lowerhalf-plane. Let Xk=�pi� ;1 gi ;k� (t� ti�)kbe the Laurent expansion of G� near the poles ti� = ai� + ibi� :Res (ei!�tG�(et); t�i ) = e�!�bi�ei!�ai� Xk=1;pi� (i!�)k�1k � 1! gi ;�k� (6.3)For ea
h value of � su
h that !� > 0 we 
onsider a pole ti� su
h that Ret � 0 2 and the
orresponding pole �ti� of G��. The 
ontribution to the integral is2�i( Res +(ei!� tG�(et); t�i )� Res �(e�i!�tG��(et);�t�i ) (6.4)and as G�(et) = G��(e�t) the Laurent expansion of G�� near the pole isXk=�pi� ;1(�1)kgi ;k� (t + ti�)k:The sum 6.4 is: e�j!� jjbi� jeij!� jjai� j2 Xk=1;pi� (ij!�j)k�1k � 1! gi ;�k� :Now we 
onsider the poles ��ti� and �ti� of G� and G��; the relation G(y) = G( 1�y )implies that the Laurent series of G� in the point ��ti� is:Xk=�pi�;1(�1)k�gi ;k� (t+ �ti�)k2by the symmetry relations there must be su
h a pole.
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 lower estimates 97( gi ;k� are the 
oeÆ
ients of the expansion near ti�). So �nally for ea
h � su
h that!� > 0 and ea
h 
ouple of poles ti� and ��ti� of F� (and �ti�, �ti� of �� )in the upperhalf-plane (resp. lower half-plane) we obtain the real value:(I� + I��)(1� e�2j!� j�) =4�ie�j!� jjbi� j Xk=1;pi� (i!�)k�1k � 1! (eij!� jjai� jgi k� + (�1)ke�ij!� jjai� j�gi ;k� ) (6.5)One should noti
e that this formula holds also for fun
tions with some non polarsingularity for �nite t 2 C ; in the latter 
ase we always obtain exponentially de
reasingfun
tions of !� (as predi
ted by the Paley Wiener theorem) but we 
annot give generalformulas for the de
reasing rate as the residues are no longer �nite sums k = 1; pi�.Consider a � su
h that �F 6= 0 then if all the pj� are �nite the frequen
y � 
ontributesa term of order either zero or e�
=p".6.1.2 Systems with one fast frequen
yLet us go ba
k to systems with one fast frequen
y:!1 = O"(1) j!2j = O"("( 12+�));with 0 � � � 12 . On su
h systems we 
an give \general" lower bounds on the determi-nant of the splitting matrix provided that we impose some non-degenera
y 
onditionson the frequen
ies of f so that the hypothesis of Proposition 6.1 are veri�ed.Proposition 6.3. The sum of the exponentially small terms of order 2 � k � K arebounded from above by: C4e�!1d1 Dp" X1<k�K(�)k(Cp"3p"P )k) (6.6)d1 is the divisor of the frequen
ies of f in the fast 
omponent (j = 1)(it is di�erentfrom one only for fun
tions f(q;  ) whose fast frequen
ies are not 
oprime see AppendixA.3) and P = max(p+ 5; 4�S + 4)Proof. We apply Corollary 3.8 dis
ussed in Se
tion 3.1. Namely, a tree with fruits
arrying an analyti
 integral of total frequen
y � is bounded from above by:Jk(�) = [XA2A 
(A)℄e Im 'j�jCk1 (k!)
1N2kE(D; �) p"3p"(p+5)k ;restri
ted to frequen
ies � with non-zero fast 
omponent, �F 2 Z. We are 
onsideringsystems with one fast frequen
y so, if K < "� 12+�, �F = 0 and 
1 = 4 + 4�S.We 
hoose K = 
=p", bound E(D; �) with 2e�j!1�F j Dp" e"�j!2jjmj, the sum on fruitlesstrees of order k by (2n)k and �nally k! with C2p"k. Now we sum on the frequen
ies



98 Chapter 6. Lower bounds on the splittingj�j � kN with non zero fast 
omponent a

essible at order k. First we �x the valueof �F and sum on the slow modes (e"�j!2 = O"(1) even for � = 0), we obtain a fa
torbounded by Ck for some order one C. Then if �kF is the minimum non zero fast modea

essible at order k�2 k � X�F��kF Jk(�F ) = p"3( Cp"p+7+4�S )k X�F��kF e�j!1�F j Dp" �C4p"3( Cp"p+7+2�S )ke�j!1�kF j Dp" : (6.7)as the 
ontributions to �2 k are by de�nition all of the form J(�). Finally by thede�nition of the divisor in the fast dire
tion d1 � �kF for all k. This leads to theproposed bound with P = p + 5 + 4�S + 4 the better bound proposed rises from theobserving that in ea
h node we 
an have either a small denominator 
oming from theimproper integrals (so "2�S+2 or a term from the proper integral "(p+5)=2.If we �x j�j � jp"jP , we 
an add up the terms 2 � k � K:��K2 � �M2 � C"3=2( �jp"jP )2[e� j!1d1jDp" ℄;where M2 is the fast (exponentially small) part of the matrix M .Finally we 
onsider the Melnikov term M2; to have a simpler expression we 
onsiderat �rst only fun
tions f(q;  ) su
h that the fast and slow variables  F are partiallyde
oupled3 f(q;  ) = g1(q;  F ) + g2(q;  S) +G( ; q).Lemma 6.4. The size of the �rst order of �2 is (generally) greater than:M2 � C3"�
3e�j!1jhMp"where hM = min�;ti� �F bi� evaluated on the frequen
ies �F 6= 0 ( �F is the fast 
ompo-nent) and 
3 = pM2 where pM is the order of the pole bi� whi
h realizes the minimum.Proof. We use the results of Subse
tion6.1.1. The trees of order one are all analyti
so M2 ij is zero if i; j are both slow. In parti
ular in equation 6.5 there are only
ontributions from frequen
ies � su
h that �F 6= 0. We write !� = !1p"�F + B whereB � CO"(1). We substitute all the os
illating terms and the e�Bbi� in 6.5 with orderone 
onstants : jM2 ijj = 4� X� : �F 6=0j�j�N j�i�jj Xl=1;:::;n� e� j!1�F jjbi� jp"1� e�2 j!1�F jp" �Ci�(")�pi� :3This is 
alled a non-degenera
y 
ondition in [BB1℄; in this way r1 = 1 and the �rst order matrix�M1 has a n� 1� n� 1 minor whose entries are of order one in ".
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 lower estimates 99Moreover setting bM = min�;ti� �F bi� ;all the summands are smaller or equal to e�j!1jnMbMp" (")�pM=2.Proposition 6.3 and Lemma 6.4 imply immediately the following.Theorem 6.5. The Melnikov integral M2 dominates in the expansion of ��K2 , for� < min("P�
3�3=2; "(P )=2, provided that the perturbing fun
tion veri�es the 
onditiond1D � hM . In this 
ase the entries �2i;j su
h that M2 ij 6= 0 are bounded from belowby 12M2 ij.For example if the fast 
omponent of the frequen
ies of f(q;  ) 
ontains the divisord1 (see Appendix A.3) and all the G�(et) have the same poles then the 
onditiond1D � hM is automati
ally satis�ed.Even if these 
onditions are not veri�ed one 
an give rules to determine the (" independent ) \possible" dominating order, by simple 
onsiderations on the modeve
tors � 2 Zn. In general, our 
andidate will be the �rst analyti
 integral (fruitlesstree) whose total fast mode is d1 and 
ontaining a node v su
h that F�v has a pole withimaginary part equal to D. The value of this integral is still the Fourier transform ofan exponentially de
reasing fun
tion with known singularities (the same as those ofG(et)) but the singularities are not (generally) polar any more and we 
annot use thesame estimates as for the Melnikov term.Remark 6.6. \Hopefully" the size of the exponentially small eigenvalue is O[e� j!1d1jDp" ℄for j�j � j"jP .Proof. A term of order [e� j!1d1jDp" ℄ appears for the �rst time in a fruitless tree of orderk = m1 (m1 is the minimal length in the fast dire
tion, Appendix A.3) 
ontaining anode v su
h that F�v has a pole with imaginary part equal to D.The problem is that, as we have said in subse
tion 6.1.1, if m1 6= 1 then it isnot ne
essarily true that the value of the tree is greater than CP (1")[e� j!1d1jDp" ℄ as thesingularities are generally not polar. If the last inequality holds we 
an add up thetrees of higher order using the upper bounds and the assertion is true. If the value iszero or not of the 
orre
t order then we 
onsider the 
ontributions to fruits of orderk = m1 
oming from the same fruitless tree, if this is again zero (or not of the 
orre
torder) we pass to a higher order fruitless tree with the same fast mode 4 and so on.This ends the analysis of step 1. Now we 
ompute the polynomial eigenvalues:Lemma 6.7. The matrix �1 is of order �r1 ; the leading order has 
ontributions onlyfrom analyti
 integrals (with zero total fast mode) and so has the �rst line and 
olumn(
orresponding to the fast variable) equal to zero. So the non zero eigenvalues of ��K1are of the size of the eigenvalues of ��K1;r1 if this matrix has rank n� 1.4in the Appendix A.3 we have proven that ea
h divisor is a

essible for in�nite k



100 Chapter 6. Lower bounds on the splittingProof. By LemmaA.12 r1 is the �rst order su
h that in the generating fun
tion thereis an analyti
 integral with total zero fast 
omponent. The value of su
h integralis generally NOT exponentially small in " as seen in Corollary5 3.13. The leadingorder of ��K1 is the Hessian of Sr1(') at zero. So it is 
lear that su
h integral gives
ontributions only to the slow 
omponents of the matrix. Finally 
lassi
al perturbationtheory ensures that the eigenvalues of ��K1 are �r1+1 
lose to those of ��K1;r1 . Thisprovides upper and lower bounds on the non-zero eigenvalues.This �nally leads to the following theorem on the splitting determinant for pertur-bating fun
tions f rational in eiq that 
ontain their divisor in the fast dire
tion andsu
h that the F� have all the same poles :Proposition 6.8. For " suÆ
iently small and for all � < min("P�
3�3=2; "(P )=2 thesplitting determinant is bounded (from above and below) by expression of the typeC(")e� j!1d1jDp" where C(") is a rational fun
tion of ".6.2 Examples of Melnikov dominan
eIn this se
tion we will use a simpli�ed version of [GGM4℄ and [Ge℄ to �nd improvedlower bounds on the splitting determinant. We work on examples with three time s
alesand three degrees of freedom, it should be 
lear however that the te
hnique is general(for systems with one fast frequen
y) so we point out the ne
essary generalizations. We�rst review the te
hniques of [Ge℄ whi
h enable us to pre�x the Lyapunov exponent,thus simplifying the expression of the �kj ('; t). The arti
le [GGM4℄ then proves the
onvergen
e of the Lindstedt series by showing the existen
e of 
ompensations betweenseemingly divergent terms due to the small denominators. We will not go into thedetails of this (very interesting ) te
hnique as we only want to �nd better upper boundsfor the terms of the series expansion of the splitting determinant of order k � "� 12+�.In Subse
tion 6.2.1 we des
ribe (an adapted version of) the te
hniques of [GGM4℄;then in Subse
tion 6.2.2 we �nd appropriate bounds, similar to those of Chapter 3.Noti
e that the proofs would be simpler if we 
ould assume that the splitting determinantis exponentially small wherever it is 
onvergent by KAM theory.6.2.1 Systems with pre�xed Lyapunov exponentAs in [Ge℄ and in [GGM4℄ we 
onsider the following Hamiltonian:12(I2 + "J2 + p2) + (g + �G(�; g))(
os(q)� 1) + �F ( ; �; q); (6.8)I;  , J; � and p; q are 
onjugate a
tion angle variables. The 
hara
teristi
 frequen
ywill be a diofantine ve
tor: !1p" ; " 12!2. G(�; g) is an, a priori unknown, analyti
 fun
tion5Clearly it is possible that for some perturbating fun
tion the integral is zero or arbitrarily small,but this implies giving a relation between f and "



6.2. Examples of Melnikov dominan
e 101of its arguments for j�j � �0 and jgj � g0. We will prove that G 
an be determineduniquely by imposing that the Lyapunov exponent of the separatrix is g (at least toorder k = "�1). Finally the parameter g will be �xed (as a fun
tion of �) so thatg(�) + �G(�; g(�)) = 1. Under su
h 
onditions the system 6.8 is of the type des
ribedin Se
tion 1.1.We 
an apply the theory developed in Se
tion 1.1 to the Hamiltonian 6.8 so we willnot repeat the pro
edure but simply write the equations for the time evolution on theseparatrix.First we will expand G in Taylor series in �:G(�; g) = "�1X�0 (�)kgk+1;the equations for the separatrix are:Ik(t) = =F k1 ;  k = O1F k1 ; Jk(t) = =F k2 ; �k = "O1F k2 � O2F 2k ;qk = O0(F k0 +Pkh=1 gh[
os(Pj�k�h(�)jqj)℄k�h) ;for k � 1 while q0(t) = ar
tan(egt) and  0(t); �0(t) = ' + !t ( and we will 
all' =  (t = 0); �(t = 0) the � independent initial data of the rotators). As in Subse
tion1.1.2 : F kj = [�jf( (�); �(�); q(�))℄k�1 + gÆj0[sin(Xh<k(�)hqh)℄k;where �1 = � �2 = ��; �0 = �q:In the following we will write the operators Oj with j = 0; 1 as:Oj(G) = =twj(t; �)G(�) + x0j=0�(�)x1jG; (6.9)it is easily seen that this is equivalent to 1.31.We 
an represent the series expansion in terms of trees as in Chapter 2. The nodesv 6= v0 will 
arry the labels: jv = 0; 1; 2, �v 2 N0 , Æv = 0; 1, �v = 0; 1, with the usualgrammar:Æv = 1! �v = 0 ; Æv = �v = 0! s(v) � 2; Æv = 0! j(v) = 0 ; j(v0) = 0 8v0 2 s(v)The �v = h represents the appli
ation of a \
ounter-term" gh. As the gh have degreeh in � we rede�ne the order of a tree as:O(A) =Xv2A Æv + �v:Finally the label �v = 0; 1 represents the appli
ation respe
tively of the �rst and se
ondsummand in 6.9.



102 Chapter 6. Lower bounds on the splittingWe expand the fun
tion f(' + !t; q0(t) in its harmoni
s and apply an extra label�v 2 Z2 su
h that j�vj � N .Following [GGM4℄ we will 
all leafs the subtrees stemming form a node v with �v = 1,this terms (just like the fruits in Subse
tion 2.1.2 ) 
ontribute by a �xed fun
tion x0j, times a 
oeÆ
ient depending on the subtree A�v. So one 
an fa
torize the valueof a tree as a produ
t of values of marked lea
ess trees whi
h in [GGM4℄ are 
alledamputated trees. Graphi
ally we represent the leafs by drawing a line on their stalkand do not 
onsider the nodes inside the leaf as nodes of the amputated tree; we will
all L(v) the list of nodes v0 with s(v0 = 0) atta
hed to the node v .Noti
e that with this notation all the nodes v > v0 of an amputated tree have�v = 1 so we 
an remove this label from all the nodes ex
ept the �rst.Using the notations of Se
tion 1.2 we will 
onsider the set T of marked trees withleafs, A of trees without leafs, and the subsets of De�nition 1.31. In parti
ular we willbe interested in : �kj = XA2T kJ 1jS(A)jA and 0j = XA2Akj 1jS(A)jA:noti
e that now 0 represents the lea
ess 
ontributions to the series expansion.The value W(A) of a tree with a marking h(t)�l in v0 and leafs L(v0) is de�nedre
ursively: W(h(v0; t)�v0l 01; t) = �h(vA; t)relf 1W((h(vA; t)�vAl A; t) = �gÆv0�v0ajv0h(�v0)(r~mv0f Æv0 ) Yv2s(v0)V(A�v); (6.10)where mv(j) is the number of nodes v0 in the list s(v);M(v) having label jv0 = j;a0 = a1 = 1, a2 = ", g10 = 1 and g0�v = g�v . Finally for A 2 T�:V(A) = =t(�v0 )wjv0 (t(�v0); �v0)W(A); with t(x) = 8<: 0 if x = 0t if x = 1Remember that wj(t; �) = (t� �) if j = 1; 2w0(t; �) = t� �
osh(gt) 
osh(g�) + sinh(gt)
osh(g�) � sinh(g�)
osh(gt) :This de�nition 
an be extended to V(T ) by linearity, as seen in Subse
tion 2.1.2, thisimplies that:  k(t) = V(�k1) �k(t) = V(�k2);similar identities 
an be found for the a
tions, however for the moment we will 
on-
entrate on the angles. Noti
e that if �v = 0 the valueV(A�v) = x0jv(t)=x1jv(�)W(A�v; �):



6.2. Examples of Melnikov dominan
e 103As for trees with fruits, a tree with a leaf in v is equivalent to the tree without theleaf (amputated), marked x0jv and multiplied by the value of the leaf (whi
h is time-independent); we 
an write:W(A; t) = gÆv0�v0ajv0 (r~mv0f Æv0 ) Yv2s0(v0)V(A�v) Yv02L(v0) x0jv0 (�v0)=x1jv0W(A�v0); (6.11)Remark 6.9. Noti
e that in an amputated tree the integrals are all ordered: namelythe �v have all the same sign and j�vj � j�wj:De�nition 6.10. Given an amputated (marked ) tree A and a node v in A we will
onsider the total rotator harmoni
 of the subtree A�v:�T (v) =Xw�v �w;remember that the nodes inside a leaf are not nodes of the amputated tree.Noti
e that in a lea
ess tree the total rotation �T (v0) gives the dependen
e on theinitial data '. If the tree has leafs ea
h with total rotation �LT (i) the dependen
e onthe initial data is ei(�T (v0)+Pi �LT (i))�':Lemma 6.11. (i) Given a fun
tion F (t) su
h thatF (t) = Xj�j�M 1Xk=0 f�;kei!��te�kgjtj ; with f~0;0 = 0then the integral=t(t� �)F (�)d� = =t=�F (� 0) = Xj�j�M 1Xk=0 f�;k(i! � � + �(t)kg)2 ei!��te�kgjtj (6.12)(ii) Given a fun
tion G(t) su
h thatG(t) = Xj�j�M 1Xk=0 g�;kei!��te�kgjtj ; with g~0;1 = 0then =t(sinh(gt)G(�)
osh(g�) � G(�) sinh(g�)
osh(gt) ) ==t(
osh(g�)=� G(� 0)
osh(g� 0) �=t sinh(g�)
osh2(g�)=� sinh(g� 0)G(� 0) = H(t)moreover the fun
tion H(t) has the same properties as F :H(t) = Xj�j�M 1Xk=0 h�;kei!��te�kgjtj ; with h~0;0 = 0:



104 Chapter 6. Lower bounds on the splittingProof. (i) We are simply using the identity:�PH = 0! H = =t _H:(ii) Same as (i) we have to prove that�P=t(sinh(gt)G(�)
osh(g�) � G(�) sinh(g�)
osh(gt) ) = �P sinh(gt)G = 0:The last identity is obvious as �P sinh(gt)G = 12g~0;1. in the left hand side, we noti
ethat the only 
onstant terms 
an 
ome from the 
onstant terms of G so:�P=t(sinh(gt)G(�)
osh(g�) � G(�) sinh(g�)
osh(gt) ) = g~0;0=t( egjtje�gj� j � egj� je�gjtj ) = 0:Proposition 6.12. The value of a tree with �v0 = 1 is a limited fun
tion of t; moreoverwe 
an �x re
ursively the 
oeÆ
ients gh h � k (independently from the initial data ')so that the value of a tree of order k with sv0 = 1 
an be expanded as:V(A)[t℄ = Xj�j�kN 1Xh=0 a�;h(A)ei!��te�hgjtj ; with XA2Akj 
(A)a~0;0(A) = 0:So as we are interested only in V(�j) we 
an set a~0;0(A) = 0.Proof. If jv0 = 1; 2 the proof is obvious as k = =t=�F k1 + =0=�F k1 ;where F k1 (and 
onsequently =�F k1 ) has no polynomial 
omponent as proven in Sub-se
tion 1.1.4.For jv0 = 0 we obtain the 
onditions:�P 1
osh(gt)(F k0 + kXh=1 gh[sin(k�hXj=0 qj)℄k�h = 0�P sinh(gt)(F k0 + kXh=1 gh[sin(k�hXj=0 qj)℄k�h = 0 (6.13)The �rst 
ondition is always veri�ed as the fun
tions  k; �k; qk and x00 = 1
osh(gt) areall limited and x00 tends exponentially to zero. The se
ond 
ondition �xes the ghre
ursively: gk�P (tanh2 t) = 2gk = ��P (egjtj(F k0 + k�1Xh=1 gh[sin(k�hXj=0 qj)℄k�h)): (6.14)
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e 105The latter identity makes sense only if the right hand side is ' and t independent:�P (egjtj(F k0 + k�1Xh=1 gh[sin(k�hXj=0 qj)℄k�h)) = �P egjtjW(0k0) = 
Let us pro
eed by indu
tion: W(t; A) is a produ
t of (Qj �n(j)+l(j)f Æ and V(A�v) withv 2 s(v0) so it is a limited fun
tion whi
h 
an be expanded as:W(A; t) = Xj�j�kN 1Xh=0 w�;h(A)ei!��te�hgjtjnaturally we 
annot expe
t that w~0;0 = 0.As seen in Lemma 6.11(ii) the 
onstant part of egjtjW(A; t) depends only on w~0;1;moreover W(0k0) is limited and adding leafs with jL = 0 means multiplying by 1
osh(gt)whi
h is exponentially de
reasing. Therefore the only 
ontributions to 6.14 
ome fromtrees with at most one leaf L with jL = 0.Let us now 
onsider leafs with jL = 1; 2. Given a tree A let us 
hoose a leaf L anddeta
h from the tree all the leafs identi
al to L; we will 
all B the 
orresponding treewithout the leafs L and B the set of trees with no leafs identi
al to L. Adding k leafs Lto the tree B is equivalent to applying k derivatives �jL to the nodes of B. Thereforeif the total rotation of B is zero su
h derivative is zero as well.The total zero momentum 
ontributions from trees with one leaf L with jL = 0
an
el with the 
orresponding 
ounter-terms. To illustrate this 
an
ellation let usFourier expand f( ; q) fully obtaining a \frequen
y" label �v; nv. Now let us 
omparethe zero momentum 
ontributions of a tree A with a node v 
arrying a leaf and the
orresponding tree A without the leaf (whi
h appears in the 
ounter-term. In the �rst
ase we 
onsider the zero order (in egt) terms of the expansioneinq(t) = ((egt + i)2e2gt + 1 )2nin all the nodes and have a j = 0 derivative in v. In the se
ond we 
onsider the orderone term in egt in the node v and order zero term in all the others. The order one termis 4inv so the ratio of two values is two (in the �rst tree there is a fa
tor two 
omingfrom the egt expansion of 
osh�1(gt)). This implies that the 
onstant term of all treesA of order h 
arrying a leaf jL = 0 are 
an
eled by the tree with only one node �v = hand the same leaf.This means that we 
an apply Lemma 6.11 to all the nodes so that=twj(t; �)W(A; �) = "j�1=t=�W(A; � 0) if j = 1; 2 (6.15)=tw0(t; �)W(A; �) = =t=�W(A; � 0)
osh(g� 0) + =t(
osh(g�)=�W(A; � 0)
osh(g� 0)+



106 Chapter 6. Lower bounds on the splitting=t sinh(g�)
osh2(g�)=� sinh(g� 0)W(A; � 0);in ea
h node with jv = 0 we 
hoose one of the three terms and denote it with an extralabel pv = 1; 2; 3 in the nodes with jv = 1; 2 we set pv = 1.This Proposition and the relation 6.14 show that the 
oeÆ
ients gh are �xeduniquely; a dire
t 
onsequen
e is that the value of the splitting ve
tor and splittingmatrix 
an be expressed via amputated trees su
h that for ea
h node v the integrations=t are always on fun
tions F with no 
onstant 
omponent f~0;0. This is true for v0 aswell as �I = =F k1 and F k1 has no 
onstant 
omponent. To 
omplete this brief review ofthe arti
les [Ge℄ and [GGM4℄ let us 
on
lude by stating the following property (provedin [Ge℄ and [GGM4℄):Corollary 6.13. Fixing the gh as in relation 6.14 implies that the Lyapunov exponentof the separatrix is g.Noti
e that all we have done in this Subse
tion does not depend on the number ofdegrees of freedom (and on the 
hoi
e of the matrix A).Remark 6.14. To prove the 
onvergen
e of the Lindstedt series it is ne
essary toshow 
ompensations between the \ resonan
es" whi
h are subtrees stemming from vhaving a purely os
illating term in W(A�v), su
h terms generate small denominators(! � �)�1. In our approximation however (k � "�1) we 
an approximate all the smalldenominators with "� so we will ignore the 
ompensations.6.2.2 Improved bounds for three dimensional systemsIn this subse
tion we will adapt Se
tion 3.1 to the Hamiltonian:12(I2 + "J2 + p2) + (g + �G(�; g)) 
os q + �f(q;  ; �);Where f is a trigonometri
 polynomial in  ; �. To �x a 
lass of examples we will
onsider f( ; �; q) = (
os( ) + 
os(�))f(q)su
h that f(q0(t)) is a rational fun
tion in egt tending to zero for jtj ! 1 and with atleast one pole with gjIm tj < �=2.We will perform the 
omputations forf(q) = 2
os(q) + 3 ;whi
h has one simple pole in gjtj = i�=4.Moreover we will 
onsider an example where f(q) is a trigonometri
 polynomial and�nd better bounds that those proposed in Se
tion 3.1 and in [GGM3℄.f( ; �; q) = (
os( ) + 
os(�))(
os(q)� 1)
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e 107In this subse
tion we will return to the resummation tree notation as we needto eviden
e the analyti
 and non analyti
 parts in the splitting determinant. Theresummated trees will however 
arry the extra labels �v (
ounter-term label) and �v(rotation label).Moreover we will use the fa
t that the 2� 2 splitting matrix � satis�es Corollary4.18: �U � V; (6.16)where U; V are 2� 2 matri
es and U is invertible. This means thatdet� = det(U�K)�1 detV �K + o(�K):The matri
es U; V are those de�ned in Subse
tion 4.1.4; it is easily seen however thatfor systems with three degrees of freedom one 
an 
hoose U and V in the followingway6 (Ui; Vi are the 
olumns of U and V ):U1 = ���� 1 00 "�1 ����! + ���� I1(t = 0; ' = 0)J1(t = 0; ' = 0) ���� U2 = ���� 10 �����M0 � m0�2 + P 10 U1and V1 = g0(�2 + P0) ; V2 = g1m1 + (���� 1 00 1 ����+G1)M1:U1 is the value of the a
tions of the rotators at the homo
lini
 point and 
orrespondingly�2 + P 10 is the value of p at the homo
lini
 point.G0 and G1 are the gradients in ' of the values of fruits respe
tively of type 0; 1 andlabel j = 1; : : : ; n .g0 and g1 are the gradients of of the values of fruits respe
tively of type 0; 1 and labelj = 0. This matri
es 
an be 
omputed using the te
hniques of the pre
eding subse
tion,for instan
e: (G1)i j = =x0i (t)W(�i;j; t) with i; j 6= 0 : : :Remark 6.15. For systems with n degrees of freedom we 
onsider the equationG0(Idn � 1�2 + I(1)0 (A�1~! + I(1))ut01 +M t01A) = �g1ut11 �G1AM11 + AM11;where the �rst 
olumn of M11 and of ut11 are exponentially small.Proposition 6.16. The Gi and gi 
an be bounded from above (up to order k = "� 12)by: j(Gk1)ijj; j(gk1)ij; j(gk0)ij � (�)kCk"�k:The following lemma will be useful in the proof.Lemma 6.17. A tree of order k with m nodes Æv = 0 
an have at most k �m smalldenominators "�1 and 2m denominators "� 12 .6We are simply using Propositions 4.14 and 4.16 instead of Corollary 4.18



108 Chapter 6. Lower bounds on the splittingProof. Ea
h node with jv = 1; 2 
an 
arry a small denominator "�1 
oming from thepurely os
illating terms of W(A; t)=t=� Xj�j�Nkw�;0ei!��the result is again a purely os
illating term. If we have m nodes with Æv = 0 then atleast m+ 1 of the k nodes with Æ = 1 have j = 0 so we have at most k �m� 1 smalldenominators due to nodes with j = 1; 2.By the boundedness of W(A; t) the only purely os
illating terms for a node withjv = 0 appear in =t sinh(g�)W(A; �)if w�;1 6= 0 and 
ontribute w�;1i(! � �) 1Xh=1 ei!��tx2h�12h� 1 + i! � � (6.17)whi
h is a fun
tion with no purely os
illating term. The purely os
illating 
ontributionfrom the =t integral in=t sinh(g�)
osh(g�)2=� sinh(g� 0)W(A; � 0)� =t 
osh(�)=�W(A; � 0)
osh(� 0) ;has again only one small denominator. So, even if ea
h node 
arries two integrals(and thus two potentially small denominators), there 
an be only one fa
tor "� 12 forea
h node with j = 0. The (remaining) nodes with j = 0 are 2m + 1 so the smalldenominators produ
e a fa
tor bounded by "�k.Proof of Proposition 6.16. We pro
eed in two steps:1) Given a tree A, split the integral = on the �rst node in three terms:= = =�2a � =2a + 2aZ�2a ;if we 
hoose the third term we 
onsider the nodes following v0 and repeat the pro
edureon the external integral (ea
h node 
arries two integrals as seen in 6.15):=t = =2�(t)a + tZ�(t)a : (6.18)Ea
h time we apply the �rst term of 6.18 we are 
utting o� the subtree A�v.Let us
all #i with i = 1; : : : ; H the list of su
h trees and #0 what remains of A. We have atmost 9k terms of the type:Yi=0;H V(#i; 2�(t)a) 2aZ�2a Yv2#0 �wZ�(t)a Apv;jv(�v)=�vBpv ;jv�0(#j):
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e 109where �'(#) = (�1)N(#)[Yv2# ajv(�)Æv ℄Yv�v0r~mvf Æv ; (6.19)
Ap;j(t) = 8>>>><>>>>: 1 if p = 1
osh(gt) if p = 2sinh(gt)
osh2(gt) if p = 3Bp;j(t) = 8>>>><>>>>: 1 if p = 1; j = 1; 21
osh(gt) if p = 1; 2 ; j = 0sinh(gt) if p = 3:2) Given a tree of order k we 
ompute V(A; 2�(t)a) using Lemma 6.11, we expand allthe fun
tions f 1
osh(gt) et
. in series in x = ejgjt and remember that=te�t = e�t� ; � 2 C :The small denominators 
an be bounded byj�j = jk + i! � �T (v)j � � 1 if k 6= 0p" if k = 0 (6.20)so " small terms o

ur only in integrals of purely os
illating fun
tions.We apply proposition 3.6 bounding the denominators with "�k as seen in Lemma6.17.We bound the de�nite integrals with the maximum of the integrand and aj(") withone: Yv2# ajv(�)Æv maxt2(�2a;2a)(jApv;jv jjBpv ;jv jjYv�v0 �jv Yv02s(v) �jv0f Æv j);this are all " independent 
onstants (we are not shifting the integration to 
omplext's). We obtain the following bounds on the Giand gi:jGk1j; jgk1 j; jGk0j; jgk0 j � (�)kCk"�k;whi
h 
omes from the small denominators.The fa
tor detU has an � independent part equal to !2" 12 plus a �-dependent 
orre
-tion whi
h 
an be bounded byC2max(jI1j; jJ1j; j(M0)ij) = O�(�):



110 Chapter 6. Lower bounds on the splittingM0 and m0 are values of fruitless trees with two markings7, one analyti
 whi
h 
an beapplied on any node and one non analyti
 on the �rst node; M1 and m1 (whi
h areexponentially small) are values of fruitless trees with two analyti
 markings, moreoverone of the markings has j = 1:(M1)i = =W1000 0i;1 ; (m1) = =W1000 01;0:As we are now 
onsidering resummated trees, their value is obtained through theoperator =W1' and thus by applying =�w+ + =�w� in ea
h node. Given a tree with totalrotation �T we shift the integration for the analyti
 trees to R + i�(�T �!)d, as seen inSe
tion 3.1. We are 
onsidering integrals of the type:A1(�) = (�12)N(A)E(d; �) Xf�vgm� [ Ys=1;:::;n v�v0(i�v s)msv ℄(i�y j)I dRv02i�Rv0 1Z�1 d�v0e��(�v0 )Rv0xli(�v0+id)dn(v0)f�v0 (q(�v0 + id))ei!v�v0Yv>v0 I dRv2i�Rv ( �wZ�1 d�v + �wZ1 d�v)x0j(�y)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0 dn(v)f�v(q(�v + id))ei!v�v ;with two markings i; xli in the node v0 and j; x0j in the node y. Clearly in the nonanalyti
 integrals (l = 1) we set d = 0.To re-obtain the nested integrals Qv�v0 =�w we remember that=t+ + =t� = =t + 12�(t)=: (6.21)Moreover, as seen in 2.5 the value of a subtree stemming form a node v is(=�w+ + =�w� )w(�v + id; �w + id)W1'(A�v; �v + id);if we �x the initial data at the homo
lini
 point ' = 0 we 
an group the value as sumof three 
ontributions=�w+idw(�w + id; �v + id)W1'=0(A�v; �v + id)+12x1j(�w + id)=x0j(�v + id)W1'=0(A�v; �v + id)+7Noti
e that, for systems with n degrees of freedom, we still should 
onsider values of fruitlesstrees with two markings, one of whi
h analyti
.



6.2. Examples of Melnikov dominan
e 11112�(�w)x0j(�w + id)=�(�v)x1j(�v + id)O1W1'=0(A�v; �v + id);so that the se
ond and third summand are di�erent from zero respe
tively ifW1'=0(A�v; t)is even or odd. Moreover the se
ond and third summand a
t like fruits, namely the
ontribution of A�v to the value of A is a �xed fun
tion (resp. x1j and �(t)x0j) times at-independent fa
tor: (E(�T (A�v); d))�1=x0j(�)O1 �	1'=0(A�v; �)or (E(�T (A�v); d))�1=�(�)x1j (�)O1 �	1'=0(A�v; �):The fa
tor (E(�T (A�v); d))�1 is there as we have shifted ba
k the integration on thereal axis (remember that �(t)x1j(t) is analyti
 ).We will represent the 
hoi
e of one of the summands by applying the type labelshv = b; 0; 1.Lemma 6.18. Given a fruitless tree A 2 Ai;j let v0 and v be its marked nodes; theonly 
ontributions to the Ml and ml , l = 0; 1 are from trees su
h thatw 2 P(v0; v)! hw = b; 0 w =2 P(v0; v)! hw = b; 1:Proof. Given a node w =2 P(v0; v) suppose that hw = 0 and that we don't give the hlabel to the other nodes.The 
ontribution of A�w is =x0jW1'=0(A�w) and A�w is fruitless and with one marking�jw in the �rst node w. This is the integral of an odd fun
tion and so it is zero. In thesame way if w 2 P(v0; v) then A�w) has two markings and so W1'=0(A�w) is even and=�(�)x1jW1'=0(A�v) = 0.We have obtained a tree with \leafs" (i.e. markings x0j), it should be noti
ed thata label hv = 1 a
ts just like a leaf as it 
ontributes x0j(�w)C(A�v), whereas the labelhv = 1 is a proper marking on Anv. Now starting from the end-nodes we 
ut awaythe subtrees with labels hv = 0; 1; the value of a tree A is then a produ
t of values ofamputated trees with leafs and with two markings (i.e. any number of markings x0j(leafs) and at most two markings x1j). If we are 
onsidering M1 and m1 there is onlyone marking x1j .Remember that, in M1 and m1, we have shifted the integration before dividing Qjusing 6.21. In the previous Subse
tion we imposed that the value W' of a tree withleafs A will have no 
ontributions from the 
onstant part of V(A�v) for all v 2 A.Lemma 6.19. (ii) Given a tree A with at most two non-analyti
 marking x1j in the�rst node v0 and in a node v, the value of the tree is given by trees su
h that for ea
hv 2 A v =2 P(v0; v) then V(A�v) has no 
onstant part.Proof. For any w =2 P(v0; v), the 
ontribution of A�w to the value of A is V(A�w; t+id),where V(A�w; t) has no 
onstant 
omponent. On the other hand if v is marked x1j andw 2 P(v0; v) then A�w is 
arries a marking whi
h is not a leaf.



112 Chapter 6. Lower bounds on the splittingRemark 6.20. If we work dire
tly on the exponentially small pie
es of the splittingmatrix D we 
an assume that no node 
arries 
onstant 
omponents. Su
h 
omponentsmust 
an
el out after summing on all the possible 
ontributions.Proposition 6.21. (i) The 
ontributions to M0 and m0 of order k are bounded byk!Ck"�3k=2.(ii)The 
ontributions to M1 and m1 of order k � "� 12 and total rotation � are boundedfrom above by: E(D; �)Ckmax(p"�(p+2)k+1; k!"�3k=2):Proof. (i) We want to evaluate an integral of the type:Xf�vgm� [ Ys=1;:::;n v�v0(i�v s)msv ℄(i�y j)=0xli(�v0)dn(v0)f�v0 (q(�v0))ei!v�v0Yv>v0 =�wx0j(�y)e��(�v)Rv(�v)wjv(�w; �v)Yv�v0 dn(v)f�v(q(�v))ei!v�v ;�rst we apply Lemma 6.19 to evaluate the 
ontributions of trees A�w su
h that w =2P(v0; v) and w follows a node v0 2 P(v0; v). As we are 
onsidering trees of orderk � "� 12 the small denominators are 
ontrolled by Lemma 6.17 so we have a fa
torbounded by "�k ("� 12k for partially iso
hronous systems).We repeat the pro
edure of Proposition 6.16 and split the integration as in expression6.188 . As we are not shifting the integration near a 
omplex singularity of f(q(t)) we
an bound all the jdn(v)f j by an " independent 
onstant.Having rea
hed the nodes v 2 P(v0; v) we 
an have 
ontributions from trees with zerototal momentum. As jP(v0; v)j � k we still have to perform at most k integrations, kbeing rea
hed only if v is an end-node.This kind of bounds were dis
ussed in Chapter 3, but the existen
e of 
ounter termswill give us better bounds than the expe
ted (k!)2"k.let us �rst dis
uss x1j = t.The integrand at the �rst node of the path 
an have no 
onstant 
omponent as it is ttimes a fun
tion with no 
onstant 
omponent. So we 
an use double integrals:=tA(�)=�B(� 0)e�� 0where the fun
tions A;B are de�ned in (6.19). We remind that=te��=�� 0e�� 0 = te(�+�)t�(�+ �) � ( 1�(�+ �)2 + 1�2(� + �))e(�+�)t:Let us 
onsider three adja
ent nodes v1 < v2 < v3. The integrand in v3 is te�t withnon zero � 2 C . So we 
an apply the double integral above and obtain three terms
ontributing to the integrand in v2. The linear term in t 
annot produ
e 
onstant8noti
e that, as we 
annot have subtrees A�v su
h that �PV(A�v) 6= 0, we do not have the fa
tor(k!)2 of Proposition 3.6



6.2. Examples of Melnikov dominan
e 113terms9 The remaining, purely exponential, terms 
an instead produ
e 
onstant fa
tors.The integration of su
h 
onstant fa
tors produ
es a fa
tor t2 times some term with no
onstant fa
tor as integrand of v1. So re
ursively we 
an have a small denominator(p")�l after passing l nodes with zero total momentum and so with no divisor. Noti
ethatthe presen
e of the 
ounter-terms implies that it is not possible to have two adja
entnodes both having zero total momentum.One 
an pro
eed in the same way forx10 = t
osh gt + sinh gt;namely we have the integrals (applied to W(A�v; t)):1
osh gt=t sinh2 g� ; =t(t� �) sinh g� ; sinh gt=t sinh g�
osh g� ; =t (t� �) sinh g�
osh gt 
osh g� ;1
osh gt=t � sinh g�
osh g� ; sinh gt=t �
osh2 g� ; =t �(t� �)
osh g� ; =t �(t� �)
osh gt 
osh g� :Only the �rst �ve terms have 
onstant terms as integrands, 
oming from purely os
il-lating fa
tors of all the nodes A�v. The result of su
h integrations however is either:t2
osh gt ; t
osh gt t sinh gt ; t2and all (but the third) 
annot have again 
onstant terms if applied to a node J = 1; 2.Moreover t sinh gt 
an only produ
e a t3 whi
h we have already dis
ussed. So we 
anhave zero total momentum 
ontributions from a 
hain of single nodes but in ea
h stepwe 
an rise the t exponent only by one.The only ex
eption is a possibleth sinh gt! th+1 sinh gt! th+2but this 
an only happen on
e in the whole path and then lead to a known purelypolynomial term. In all the parts with no 
onstant 
omponents (and 
arrying (t� �))we 
an pass to double integrals so the t degree does not grow.Finally this implies that we produ
e at most a fa
tor (k)!"�k=2 ( see the proof10 ofProposition 6.16). Finally we 
onsider the j�mjvj f j, and the proper integral parts whi
hare " independent and so 
an be ignored.(ii) We want to evaluate an integral of the type:E(�; d) Xf�vgm� [ Ys=1;:::;n v�v0(i�v s)msv ℄(i�y j)=0xli(�v0 + id)dn(v0)f�v0 (q(�v0 + id))ei!v�v09It is simply t times the result of the integration of e�t, so the eventual 
onstant terms in v2 are
an
eled by the 
ounter-terms.10noti
e that we have shown that the sum of the non zero t exponents hv is bounded by k=2 as thet exponent 
annot grow (ex
ept on
e in the whole path) on a single node having the fa
tor (t � �).so the (m!)2 be
omes k!.



114 Chapter 6. Lower bounds on the splittingYv>v0 =�wx0j(�y + id)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0 dn(v)f�v(q(�v + id))ei!v�v ;we have small denominators 
ontributing at most "�3k=2 and the fa
tor k! as in point(i). Finally we bound j�nv(0)0 f(z)jjRezj>2a;jImzj�2� � nv!Cwhere C = jf(z)jjRezj>2a;jImzj�2� is an " independent 
onstant.In evaluating the proper integrals, we noti
e that we do not get " 
lose to g�=2 whi
his the singularity of 
os(q(t)) and of the Wronskian. So we 
an bound these fun
tionswith " independent 
onstants in C(D �p"; 2a). We obtain:E(D; �)Ck XA2Akj N2kS(A) Yv2A;Æv=1 2jajZ0 dtjdnvf(q(t+ id))jto get better bounds on the integral we have to spe
ify the fun
tion f(q) so that we
an bound the derivatives in q with some fun
tion whose primitive we 
an estimatemore eÆ
iently.In general we 
an use the same bounds as in Se
tion 3.1, bounding the integral withthe maximum of the integrand, we obtain:Yv:Æv=1nv!"Pv:Æv=1(p+nv) = Yv:Æv=1nv!"(p+2)k=2; (6.22)as Pv:Æv=1 nv = 2(k +m)� 1� 2m if m is the number of nodes with Æ = 0.Remember that (see Appendix A.2):N(k; j) = XA2Akj 
(A)Yv2Anv! � (4n)k:
Let us perform the 
omputations forf(q) = 1
os q + 3 ;we 
an bound the absolute value of the order n derivative of this fun
tion by:n!Cnj(
os q + 3)n+1j ;then in the de�nite integrals we ignore the possible 
onstant terms (leading to polyno-mial 
ontributions), the fun
tions 
oming from the Wronskian whi
h are bounded by" independent 
onstants and obtain:0Z�2a dt=tj�n0 f(q(� + i�=4� ip"))j � n!Cn 0Z�2a dt=t� q(1 + 2p") 
osh( 2g�)qsinh2(2g�) + 4" 
osh2(2�)�n+1:
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e 115We bound the numerator with an " independent 
onstant and multiply and divide by
osh(2�) whi
h does not vanish for t 2 [0; 2a℄. We obtain the integral:0Z� sinh(2a) dx xZ�1 dy( 1py2 + 4")n+1 = "�(n�1)=2 0Z�1 dx xZ�1 dy( 1py2 + 1)n+1;if the integrals 
onverge i.e. for n > 1. For n = 0; 1 we 
ompute the primitive =t whi
his respe
tively :ar
sinh (x=p") � x=p" ; for "� 1 ; and p"�1 ar
tan(x=p");both fun
tions are not divergent in x = 0 and so we 
an bound the de�nite integral inx by C=p". Now, as in 6.22, Pmv:Æv=1 n(v) � 1 � k. So the worst bounds 
ome fromthe small denominator terms.Let us now 
onsider the example 2) whi
h is a trigonometri
 polynomial. In this
ase we have to 
onsider the divergen
e of the Wronskian and of the nodes with Æ = 0in t = ig�=2. However we have an important simpli�
ation in the evaluation of theproper integrals R 10 (we 
hose a = 1). Let us set g0 = 
os(q0(t)) and g1 = sin(q0(t)) thederivatives �nv(0)f Æ are either g0 or g1 so we remove the label Æ and 
onsider a newlabel d = 0; 1. The de�nite integrals are then:Yv 1Z0 dt(=t jgdv(� + id)jj 
osh(g� + igd)j + j 
osh(gt+ igd)j=t jgdv(� + id)jj 
osh(g� + igd)j+ (6.23)j sinh(gt+ igd)jj 
osh2(gt+ igd)j=tjgdv(� + id)j sinh(g� + igd)):Setting d = i�=2�p", it is quite easy to �nd bounds on this integrals; for instan
e:1Z0 =t j sin(q0(� + id))jj 
osh(g� + igd)j = p2 1Z0 =t p
os(2p") + 
osh(2t)(� 
os(2p") + 
osh(2t))3=2 �C 1Z0 =t 1(� 
os(2p") + 
osh(2t))3=2 = Cs
(p")2 1Z0 dt sinh(t)q1 + 2 sinh2(t)� 
os(2p") � C"�1We 
an bound all the summands in expression 6.23 with C"�1. As there are at most2k � 1 nodes the following proposition holds.Proposition 6.22. We 
an bound the terms of order k and total harmoni
 � in M1and m1 of example 1) and 2) respe
tively by:E(D; �)Ckk!"�3=2k ; E(D; �)Ck"�2k+1:



116 Chapter 6. Lower bounds on the splittingThis implies Melnikov dominan
e in the examples 1),2)for respe
tively:� � "2 ; � � "3:Proof. The proposed bounds are obvious form what dis
ussed above.This proves that the formal power series involved in equation (6.16) are asymptoti
for � � "2. To prove Melnikov dominan
e one 
an work dire
tly on the splitting matrix(see Remark 6.20) so this removes a fa
tor (k � 1)j"�k=2 in the bounds of example 1).Now we pro
eed as in Proposition 6.3, summing on the slow modes and on the termsof order higher than one (resp for � � "2 and � � "3. In example 1) we have a simplepole and in 2) a double one:�"� 12 > p"�2"�2 ; �"�1 > "�2"�4:
6.3 D'Alembert-like problemsIn the previous se
tion we have re�ned the bounds on � that imply Melnikov dominan
e;we have found � < "2 for example (1) and � < "3 for example (2). Both values of �imply the 
onvergen
e of the KAM 
onstru
tion as dis
ussed in Appendix A.4. Inthis subse
tion we obtain still better bounds for Hamiltonians having a big uni-modal(quasi-mono
hromati
) perturbation, we work on the following 
lass of examples:12("J2 + p2) + I !1p" + 
os q � 1 + �A(�+  )B(q) + �f(�;  ; q): (6.24)The fun
tions A(x), B(x) are trigonometri
 polynomials of degree N ; the fun
tion fis a trigonometri
 polynomial in  ; � and rational in eiq with at least one pole for�nite values of Imq. Finally � is a free parameter. Hamiltonians of the form 6.24are interesting as they provide a \model" for the D'Alambert problem (see [CG℄ for adis
ussion of the D'Alambert problem). An Hamiltonian of the form6.24 (but where fis a trigonometri
 polynomial) is proposed in [GGM3℄.The 
ited arti
le 
ontains a proof of the existen
e of stable/unstable manifolds pro-vided that �"� 12 � 1; moreover the gaps between persistent unstable tori are proved tobe smaller than e�C=p" for any order one C. The proof relies on the mono
hromati
ityof A(� +  ) whi
h permits us to perform a Poin
ar�e Bir
ho� transformation on theHamiltonian whi
h redu
es the � dependent part of 6.24 to size �p". We report thedetails in Appendix A.5.To prove lower bounds on the splitting determinant for system6.24 we must prove \Melnikov" dominan
e, whi
h means 
omputing the Melnikov inte-gral and �nding appropriate upper bounds on the terms of order h in � and k in � withh + k > 1. The results of the previous se
tion enable us to �nd su
h bounds providedthat f is not a trigonometri
 polynomial in q.



6.3. D'Alembert-like problems 1176.3.1 Big uni-modal perturbationsFollowing the strategy proposed in the previous se
tion we 
onsider the Hamiltonian:12("J2 + p2) + I !1p" + (G(�; �; g))(
os q � 1) + �A(�+  )B(q) + �f(�;  ; q); (6.25)we will �rst �x the fun
tion G(�; al; g) by Proposition 6.12 and then �x g = g(�; �) sothat: g(�; �) + �G(�; �; g(�; �)) = 1:Naturally the perturbation series of the homo
lini
 traje
tory: �(�; �; '; t), q(�; �; '; t)will now be expanded both in � and �:�(�; �; '; t) = 1Xh;k=0�h(�)k�h;k('; t) : : :and this holds for G(�; �; g) as wellG(�; �; g) = g + Xh+k�1 gh;k:The tree expansion of the homo
lini
 traje
tory 
arries the following labels: the usualjv = 0 or 2 �v = 0; 1 then Æv = 0; 1; 2 and kv; hv 2 N0 . The grammar is:Æv = kv = hv = 0! fjs(v)j � 2 ; jv = jv0 = 0 8v0 2 s(v)gÆv = 1! fkv = 1 ; hv = 0g ; Æv = 2! fkv = 0 ; hv = 1g:Now we brie
y repeat the pro
edure des
ribed in Subse
tion 6.2.1.The order of a tree will now be given by two numbers (resp. the order in � and � ofthe 
orresponding values):o1(A) =Xv2A hv ; o2(A) =Xv2A kv:We de�ne the ve
tor spa
e of \a

eptable" trees of pre�xed order Vh;k by de�ningits generators the set Ah;k of equivalen
e 
lasses of \a

eptable" trees of order (h; k).Now we pro
eed exa
tly as in Subse
tion 6.2.1, namely we add two labels: �v = 0; 1and �v and we have the so-
alled trees with leafs. Then we 
onsider marked trees(where leafs are parti
ular markings) and de�ne the valueW of a tree, with a markingh(t)�l in v0 and some leafs L(v0), as:W(A)[t℄ = �hv(�)kvgÆvhv;kvh(�v0)r~mvf Æv('+ !t; q0(t)) Yv2s(v0)V(A�v);V(A) = =t(�v0 )wjv0 (t(�v0); �v0)W(A) ; for all A 2 A�. (6.26)



118 Chapter 6. Lower bounds on the splittingAs usual mv(j) is the number of nodes v0 2 s(v);M(v) having jv0 = j, g21;0 = g10;1 = 1,g0h;k = gh;k and mv(j) is the number of nodes in the list v; s(v) having label jv = j.Moreover f 1( ; �; q) = f( ; �; q), f (2)( ; �; q) = A(� +  )B(q) and f 0(q) = 
os q.Finally we de�ne the ve
tors: �k;h = XA2Ah;k 
(A)A;su
h that �h;k = V(�v02 �k;h) ; qh;k = V(�v00 �k;h):As in Proposition 6.12 we �x the values of the parameters gh;k:gh;k = �P egjtjW(�00h;k � �h;k)where �h;k is the tree with only one node v Æv = 0, hv = h, kv = k.This ensures that V(A) is a limited fun
tion of t with no 
onstant term:V(A) = Xj�j�o(A)N 1Xl=0 vl ;�(A) exp �� gljtj+ i('+ !1p"�1t+p"!2�2t)�;and v0;~0(A) = 0 for all A.We have shown that we 
an extend Subse
tion 6.2.1 to systems whose perturbationseries involves two parameters. Therefore we 
an improve the bounds of Subse
tion6.2.2 using the parti
ular stru
ture of the � perturbation. Noti
e that a na��f use ofSubse
tion 6.2.2 produ
es the bounds:jGk;hi j; jgk;hi j � (�)k�h( Cp")k+h jMh;k0 j; jmh;k0 j � (�)k�h(k + h� 1)!(C" )3=2(k+h)jMh;k1 j; jmh;k1 j � E(D; �)(�)k�hCk+hmax(p"�(p+2)k+1; (k + h� 1)!"�3=2(k+h));where D depends only of the fun
tion f and is de�ned in 1.28. Clearly this boundsdo not imply Melnikov dominan
e for order one values of �.Lemma 6.23. All the divergent terms in h (i.e. h!(p")�3h) 
ome from the estimates6.20 of the small divisors namely in the estimates of V(A; 2�(t)a) where a is de�nedin 1.28.Proof. The only divergent terms from the de�nite integrals are in M1 and m1. Wehave imposed that B(x) be trigonometri
 polynomial and f(�;  ; q) non trigonometri
in q with D < �=2. So in estimating the de�nite integrals in M1 and m1 we neverrea
h the poles (��=2) of B(q(t)) and we 
an estimatemaxt2C(D;a) jB(q(t))j � C = O"(1):



6.3. D'Alembert-like problems 119The estimate 6.20 is 
learly not optimal, namely given a tree A with total harmoni
�T = (�1; �2) at the homo
lini
 point ' = 0 , thenW(A) = 1Xl=0 wl ;�(A) exp �� gljtj+ i( !1p"�1t +p"!2�2t)�;and w0;~0(A) = 0. If we 
onsider the term of order l in e�gjtj the small denominator is:�(l; �T ) = j � �(t)gl + i(!1�1p" +p"!2�2)j � 8><>: 1=p" if �1 6= 01 if �1 = 0 ; l 6= 0p" if �1 = l = 0:So, in ea
h node v the denominator is big (O"("� 12 )) provided that �T (A�v) = �1(v); �2(v)has non zero fast 
omponent, �1(v) 6= 0. Moreover ea
h node (having non zero totalmomentum) having a non zero fast 
omponent produ
es a denominator of order " whilesmall denominators are at most p" as seen in the proof of Lemma 6.17.Proposition 6.24. For all k � "� 12 ; h � "�1 following bounds hold:jGk;hi j; jgk;hi j � (�)k�hCh( Cp")k jMh;k0 j; jmh;k0 j � (�)k�hCh(C" )kjMh;k1 j; jmh;k1 j � E(D; �)(�)k�hCk+hp"�(p+2)k+1: (6.27)Proof. We pro
eed in two steps:1) Consider a tree A having no nodes with possible 
onstant 
omponents. Startingfrom the end-nodes, let us \
ut away" all the trees A�w su
h that �1(w) = 0. We areleft with a set of amputated trees A su
h that �1(vA) = 0 and �1(v) 6= 0 for all theother nodes in A. The integration in ea
h node produ
es a fa
tor ��2(l; �T (v)) and �is big for all the nodes v > v0.We 
an suppose that jv0 = 0 as the jv = 1 have an extrasmall fa
tor " and so no small denominators. The node v0 produ
es (in any 
ase) atmost a fa
tor "� 12 . Given an amputated tree with k nodes Æ = 1, h nodes Æ = 2 andm( � 2(k + h)� 1) nodes with Æ = 0 the small denominator term is at most:"(h+k+m�1)"� 12 = "k+h+m�3=2:In A( + �) the only frequen
ies a

essible at order one are (n; n) with jnj � N soan amputated tree with only one node v and Æ = 2, then �1(v) 6= 0. This impliesthat if h 6= 0 then k + h + m � 2. So the trees whose nodes do not 
arry 
onstantterms and with h 6= 0 nodes Æ = 2 
an 
arry at most a fa
tor " 12 there are no smalldenominators. 2) In Proposition 6.21 we noti
ed that ea
h tree A 
an have a path P(of length � k+ h+m) of nodes whi
h 
an have zero total momentum �T = 0; lT = 0.As su
h terms give rise at most to a fa
tor "�k (for k � "� 12 ), we 
an ignore the nodeswith j = 1 as ea
h 
arries a small fa
tor ".



120 Chapter 6. Lower bounds on the splittingGiven a tree A (of order � "� 12 )with thenodes 
arrying momentum labels, we evi-den
e the nodes in P and in parti
ular wedash the bran
hes going in the nodes withzero total momentum and 
all the subtreesobtained �Ai with i = 1; : : : ; R � 1. We signon the �rst and last node of the eviden
ednodes in ea
h subtree the initial and �nal tdegree; the initial t degree P1(i) is smalleror equal to the number of 
uts and is equalto the degree of the �nal node above it plusone. The �nal degree is P2(i) � P1(i).
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Figure 6.1:If the path 
onne
ting the �rst and the last node of a subtree has length l > 1 andP1 � P2 = r then the subtree produ
es a small denominator:(p")�(l�1+r) l!(l � r)!supposing that all the internal nodes have �1 = 0 (and �2 6= 0 by 
onstru
tion). Then,if an internal node has Æ = 2, one of its followers (either in P or not in P), must befast and so produ
e a term ". As we are interested only 
an
eling divergent terms fornodes with Æ = 2 we 
an suppose that all the l nodes have Æ = 2. Let us 
all Ai thesubtree we have generated , we have a small denominator fa
tor bounded by:XAi ("l(i)(p")�(l(i)�1+2r(i))) � "k=2�R � O"(1)as R � k=2. if we 
onsider x1j = t. If we 
onsider a marking sinh gt there 
an beH subtrees of length 1 and zero total momentum. Ea
h of these produ
es a fa
tor "(if Æv = 2 and �T = 0 then there must be a fast node atta
hed to v); so the smalldenominator term is bounded by:"Hp"k�H�2R � O"(1);as now R � H + (k �H)=2.Theorem 6.25. The Hamiltonian (6.24) is uniformly Arnold unstable in the domain:W (E) := fH(I; J;  ; �) = E ; O"(1) = b � jIj; jJ j � a = O"(1)gfor E 2 [E1; E2℄ with E1; E2 = O"(1), provided that:1) �p" � "p+2 and � � 1 but still O"(1). 2) f( ; �; q) is suÆ
iently non degenerate;for instan
e we will suppose that fe1(q); fe2(q) are not identi
ally zero.



6.3. D'Alembert-like problems 121Proof. The bounds (6.27) imply that the 
ontribution, to the entries of the splittingmatrix, of a tree with fruits (of order k; h < C"� 12 ) 
arrying an analyti
 integral offrequen
y � is bounded from above by:E(D; �)(�)k�hCk+hp"�(p+2)k+1;Moreover we know that det�(�; � = 0) = 0 as the � perturbation is uni-modal. Sowe 
an expli
itly 
ompute the �rst relevant order of det� whi
h is either of �rst orderin � and � or se
ond order in �. Then we sum up the remainders in � and � usingProposition 6.3





Chapter 7Systems with more generalunperturbed separatri
esIn Se
tion 6.2 we have given suÆ
ient 
onditions for Melnikov dominan
e for systemswith one fast time s
ale whose Hamiltonian is of the type 4.3. Now we would like togeneralize the dependen
e of the q variable of the (�)-unperturbed pendulum. i.e. asystem whose Hamiltonian is:(I; A(")I)2 + p22 � F (q) + �f(�; q) (7.1)after the s
aling 
hange of variables of Remark1.10.Naturally, in equation 7.1, we 
onsider only periodi
 fun
tions F (q) whi
h are analyti
in a strip jIm q � d and that do not modify the qualitative behavior of the unperturbedseparatrix. We will impose the following 
onditions.Condition 7.1. F (q) is even and analyti
 for q 2 Td; moreover F (q) veri�es:1. q = _q = 0 is an hyperboli
 �xed point and the separatrix_q22 � F (q) = 0
ontains only this �xed point. This holds true if:F (0) = F (2�) = 0; Fq(0) = 0; Fqq(0) = � > 0; F (q) > 0 for q 6= 0; 2�:2. Moreover, on the separatrix, we 
an 
hose a sign for _q and the equation of motionon the separatrix is: _q = �p2pF (q) = G(q)where G(q) � 0 and G(q) = 0 if and only if q = 0; 2�. We will 
onsider initialdata q(0) = �.



124 Chapter 7. Systems with more general unperturbed separatri
esNoti
e that the evenness of F (q) implies that _q(t) is an even fun
tion of t. Thisqualitative requests on F ensure the existen
e of a lo
al Hyperboli
 normal form for the\ pendulum" near q; p = 0 and the 
onvergen
e of the lo
al KAM theorem 1.2. In thepre
eding Chapter we have 
onsidered \ perturbative" examples whi
h did not modifyMelnikov dominan
e. In this Chapter we pro
eed in a 
ompletely non perturbativeway; namely we give 
onditions on G(q) suÆ
ient to guarantee that the Melnikovintegral dominates in equation 7.1 provided that f satis�es suitable non degenera
y
onditions.We look for fun
tions F (q) su
h that the time evolution on the separatrix q(t) on apre�xed bran
h satis�esCondition 7.2. eiq(t) = R(e�t) where R(y) is a rational fun
tion : (7.2)Automati
ally the other bran
h of the separatrix satis�es:eiq(t) = R(et):We will not try to 
lassify the fun
tions F (q) satisfying Condition 7.2 but only give
lasses of examples. Then, in Se
tions 7.2 and 7.3, we will show that if G(q) satis-�es the 
ondition 7.2 then one 
an prove for Hamiltonian 7.1 the same results as forHamiltonian 4.3 (with the same te
hniques of Chapters 4 and 6).7.1 A

eptable fun
tions F (q)Let us 
all S1 the unitary 
ir
le in C eiq(t) = y 2 S1, and let us 
all P the real axisplus the point at in�nity. Both S1 and P are 
ir
les on the Riemann sphere.Lemma 7.3. The only rational fun
tions w : P ! S1 su
h that R(1) = 1 are of thetype R(z) = P (z)�P (z) ; where P (z) is a polynomial with 
oeÆ
ents in C ;�P is the polynomial whose 
oeÆ
ients are the 
omplex 
onjugate of the 
oeÆ
ients ofP . The 
ondition R(1) = 1 implies that the leading 
oeÆ
ient of P is real and so 
anbe set to one both in P and in �P .Proof. Our request is that for all z 2 P , jR(z)j = 1 so we write that R(z) = P (z)Q(z)with P and Q of the same degree, with no 
ommon zeros and with the same leading
oeÆ
ient. Then, without loss of generality, we 
an suppose both P and Q to bemoni
1.Then if �P ( �Q) is the polynomial whose 
oeÆ
ients are the 
omplex 
onjugateof the 
oeÆ
ients of P (Q) we have thatP (z)Q(z) = �Q(z)�P (z)1we remind that a moni
 polynomial is a polynomial whose leading 
oeÆ
ient is one.



7.1. A

eptable fun
tions F (q) 125for all z 2 P and therefore for all z 2 C . All the polynomials involved are moni
 and thede
omposition of rational fun
tions in moni
 polynomials is unique soQ(z) = �P (z).In parti
ular this implies that there 
an be no real zeros of P .Let us 
onsider only polynomials P (z) with zeros ai having jaij = 1, with Im ai 6= 0and i = 1; � � �h. We set z = e�t andeiq(t) = hYi=1 (e�t � ai)(e�t � �ai)then modulo 2�q(t) = �i hXi=1 log((e�t � ai)(e�t � �ai)) = 2 hXi=1 ar
tan[ 1Imai (e�t � Re ai): (7.3)We derive the se
ond term of relation 7.3 and obtain:_q(t) = �2e�t hXi=1 Im ai(e�t � Re ai)2 + ( Im ai)2 : (7.4)We want to �nd 
onditions on R(z) so that 
alling D(z) the fun
tion su
h thatD(e�t) = 12 _q2(t), D(z) 
an be expressed as an analyti
 fun
tion of y = R(z) in somestrip S1d (as usual S1d is an annular domain of width d around S1).Before stating a general proposition let us study a simpler (but still interesting)
lass of fun
tions su
h that D(z(y)) 
an be expli
itly 
omputed.Condition 7.4. Consider the set of rational fun
tions R(z) su
h that:1. P (z) is moni
 and has degree two in z with zeros a1 and a2 su
h that jaij = 1..2. R(z) = R(�1z ) and Im ai > 0.This implies that the two zeros of P (z) are a and ��a for some a with jaj = 1. Moreoverit 
an be easily veri�ed that equation 7.3 parameterizes [0; 2�) inje
tively and that_q(t) < 0 for all real t.Remark 7.5. (i) Systems satisfying Condition7.4 have q(0) = � and _q(t) an evenfun
tion of t.(ii) For systems satisfying Condition7.4 eiq(t) has poles for purely imaginary values oft.Proposition 7.6. For all fun
tions R(z), satisfying Conditions7.4, there exists aunique fun
tion H(y) whi
h is a rational fun
tion of y with poles not in S1 and su
hthat H(R(z)) = D(z).



126 Chapter 7. Systems with more general unperturbed separatri
esProof. We will prove it by dire
tly 
omputing the fun
tion H(y). The relation:y = R(z) = (z � a)(z + �a)(z � �a)(z + a) ;implies that (1� y)(z2 � 1)� ibz(1 + y) = 0 where ib = a� �a: (7.5)We 
ompute the fun
tion _q(t) = i�zdz(logR(z))�z=e�t; by di�erentiating equation 7.5with y = R(z). y0(1� z2 � ibz) = ib(1 + y)� 2z(1� y); (7.6)we obtain that: iz y0y = izy ib(1 + y)� 2z(1� y)(1� z2 � ibz) :We use relation 7.5 to simplify the denominator so we obtain:zy ib(1 + y)� 2z(1� y)�bz(1+y1�y + 1) = 1� yy ib(1 + y)� 2z(1� y)�2b :The fun
tion we want to 
ompute is 12 _q2 so we square the last relation:(y � 12by )2(�b2(1 + y)2 + 4(1� y)[(1� y)z2 � bz(1 + y)℄and we substitute again relation 7.5. As we said we obtain that H(y) is a rationalfun
tion of y: 12�y � 12by �2(�b2(1 + y)2 + 4(1� y)2):
H(eiq) is a trigonometri
 polynomial; Set-ting b = 2Im a = 2� an easy 
omputationleads toH(eiq) = 12( 1�2 (
os q � 1)2 + sin2 q):In Figure 7.1 We show the graph of the sep-aratrix 12p2 = H(eiq) 1 2 3 4 5 6

0.5

1

1.5

2

Figure 7.1:in the phase plane p; q for various values of 0 � � � 1. The limit value � = 1 is thependulum, while the limit � = 0 is not in our 
lass of fun
tions as F (�) = 0. Noti
ethat for all values of � the system has a 
riti
al point in q = �.
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eptable fun
tions F (q) 127We have imposed that the zeros of P (z) a and ��a have positive imaginary part; thisautomati
ally for
es _q(t) � 0.Naturally this hypothesis is only for notational 
onvention, to ensure that we areparameterizing the lower bran
h of the separatrix. If a and ��a have negative imaginarypart we only need to set z = et in relation 7.3 to be on the lower bran
h of theseparatrix.Example 7.7. We 
on
lude this simple example of fun
tions F (q) satisfying the 
ondi-tions 7.2 by representing the phase 
urves of the Hamiltonian:12p2 � (
os q � 1)2 � 12 sin2 qwhere F (q) = H(eiq) with �2 = 12 .

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

Figure 7.2: The separatrix is the line in red; noti
e that there are two stable �xedpoints and one unstable one (di�erent from zero)We will now 
onsider the more diÆ
ult question of fun
tions R(z) su
h that P (z) is ofdegree higher that two.Condition 7.8. We will restri
t our attention to those fun
tions R(z) su
h that:1. R(z) = R(�1z ) so the zeros of P (z) 
ome in 
ouples ai, ��ai.2. Let fa; � �aigi=1;h be the list of zeros of P (z) then:hXi=1 �(i) = 1 where �(i) = �( Im ai): (7.7)3. The di�erential of R(z) is di�erent from zero on P .
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esLemma 7.9. The Conditions 7.8 imply that the image of P through R(z) is S1 
overedtwi
e and pre
isely the preimage of ea
h y 2 S1 is the 
ouple z;�1z .Proof. Let us fa
torize the appli
ation R(z) as2R(z) = Yj=1;2hRj = Yj=1;2h z � bjz � �bjThe image of P through ea
h of the Rj is S1 
overed on
e. The winding number of aprodu
t is the algebrai
 sum of the winding numbers; it is easily seen that the windingnumber of ea
h of the Rj is�( Im bi) = �( Im bi+h) = �( Im ai):Finally as the di�erential of R in non zero on P then S1 is 
overed by the image ofP . Standard theorems on 
ompa
t Riemann surfa
es extend Lemma 7.9 to an annulusS1d .Proposition 7.10. There exists an annulus S1d su
h that if we 
all V the 
onne
ted
omponent of R�1(S1d) whi
h 
ontains P , the following properties hold:(i) R : V ! S1d is a double 
overing of S1d.(ii) V is invariant trough the appli
ation of z ! �1z ; moreover if p; q 2 VR(p) = R(q) , q = �1p:To prove this statement we 
an use for instan
e in [F℄, Theorem 4.22:it Suppose X and Y are lo
ally 
ompa
t spa
es and p : X ! Y is a proper3 lo
alhomeomorphism. Then p is a 
overing map.The mapR : V ! S1d is 
learly a proper lo
al homeomorphism if we 
hoose d suÆ
ientlysmall.Corollary 7.11. Given a fun
tion D(z) holomorphi
 in a strip V 0 around P and su
hthat: D(z) = D(�1z )then there exists a fun
tion H(y) holomorphi
 in a strip S1d0 su
h that in V 0 [ VH(R(z)) = D(z).2
learly bi = ai, bi+h = ��ai for i = 1; : : : ; h.3we remind that a map is proper if the preimage of ea
h 
ompa
t is 
ompa
t



7.1. A

eptable fun
tions F (q) 129Proof. We �x d0 so that the 
onne
ted 
omponent of R�1(S1d) whi
h 
ontains P is
ontained in V 0.For any y 2 S1d0 there exists an open set A 2 S1d0 su
h there are two open sets B1, B2that represent it in V 0; moreover for all z 2 B1 �1=z is in B2 and vi
e-versa. Thisimplies that the fun
tion D(z) assumes the same values on the Bi and so 
an be liftedto A. Moreover the appli
ation B1 ! A is an isomorphism and so the lifted fun
tionis analyti
.Finally we 
an state the main theorem of this Se
tion:Theorem 7.12. Given any fun
tion R(z) satisfying Conditions 7.8 there exists aunique Hamiltonian 12p2 � F (q)satisfying the Conditions 7.1 and 7.2, su
h that R(e�t is the motion on the lower bran
hof the separatrix with initial data q(0) = �. The fun
tion _q(t) on the separatrix is even.Proof. Given R(z) we only have to prove that the fun
tionD(z) su
h thatD(R(e�t)) =_q2=2 respe
ts the pres
ribed symmetry. We know by expression 7.4 thatD(z) = 2z2� hXi=1 ( Im ai(z � Re ai)2 + ( Im ai)2 + Im ai(z + Re ai)2 + ( Im ai)2 )�2;so we 
an dire
tly 
ompute D(�1=z) and 
he
k the identity. In the same way we 
he
kthat ea
h summand of _q(t)�2e�t hXi=1 Im ai(e�t � Re ai)2 + ( Im ai)2 ;is even in t as jaij = 1 for all i.Let us show some examples of fun
tions R(z) satisfying all the 
onditions 7.8.Lemma 7.13. The fun
tionR0(z) = �z � iz + i�4 (z � a)(z + �a)(z � �a)(z + a) ; P , S1;with jaj = 1 and �12 < Im a < 0, has non zero di�erential on P .Proof. As we have seen in the proof of Lemma 7.9 the winding number of R0(z) is two;moreover R0(z) = R0(�1=z).We 
ompute the logarithmi
 di�erential4 :dz log(R0(z)) = 8iz2 + 1 + (a� �a)( 1z2 � (a+ �a)z + 1 + 1z2 + (a+ �a)z + 1):4we should 
ompute it as well in a neighborhood of the point at in�nity; it should be obvioushowever that as R(z�1) = 1R(z) and the orientation is reversed then the logarithmi
 di�erential ina neighborhood of the point at in�nity is equal to the logarithmi
 di�erential in a neighborhood ofz = 0.
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esNow we set a = � + i� with � < 0 and �2 + �2 = 1 and impose that the logarithmi
derivative is non zero, this leads to:8 �2 z2 + 2 ��1 + z2�2 + � �1 + z2�2 6= 0whi
h is equivalent to �1� 2 � + �2 + 2 �3 < 0:This holds provided that: �12 < � < 0:
7.2 Computation of the Wronskian matrixConsider an Hamiltonian of the type 7.1 with F (q) satisfying the 
ondition 5.11 andf(q;  ) a trigonometri
 polynomial in  and a rational fun
tion of eiq.We 
an repeat the pro
edure of the pre
eding Chapters to evaluate theMelnikov approximation of the splitting matrix and prove Melnikov dominan
efor systems with one fast variable.We want to be able to repeat all the formal tree expansions and the bounds of se
tion3.1, to do this we have to 
ompute a solution of the equation:_M = ���� 0 Fq(q(t))1 0 ����M where q(t) solves _q =p2F (q) ; q(0) = �; (7.8)M(t) is a 2� 2 matrix and M(0) = Id.This is the fundamental solution of the linearized \pendulum" and has the role of thematrix W in subse
tion 1.1.2. We have to 
he
k that M(t) is in H0(b; d) for some b; d;if this is true one 
an use the operator = de�ned in subse
tion 1.1.3 to extend theintegration. Then one 
an re-obtain the equations 1.30 for the perturbative expansionof the whiskers only with di�erent fun
tions xi0 whi
h nevertheless are x00 2 H0(b; d)x01 2 H(b; d) and with the same parity properties.There are 
lassi
al methods to �nd the solution of the linearized equation equation7.8. First we 
onsider the solution p(E; t); q(E; t) of the equations:� _p = Fq(q)_q = p 12p2 + F (q) = E;naturally p(E; t) = _q(E; t) and q(0; t) = q(t).By simple substitution we see that the 
ouples_p(0; t) ; _q(0; t) and �Ep(E; t)jE=0 ; �Eq(E; t)jE=0



7.2. Computation of the Wronskian matrix 131are solutions of 7.8. Let us �rst 
onsider _q(t) = G(y(z)); having �xed a dynami
seiq(t) = y = R(z) we know by equation 7.4 that_q(t) = �2e�t hXi=1 Im ai(e�t � Re ai)2 + ( Im ai)2 :Moreover by Proposition 7.6 _q(t) is even5 and has poles in z = ai; �ai; _q is bounded forjtj ! 1 and jIm(t)j � 2�. So _q is in H0(0; �d) with �d = mini ar

os(j Re(ai)j) We knowthat q(t) 6= 0 for all t 2 R so the ve
torm1(t) = � _q(t)= _q(0)�q(t)= _q(0) � satisfyes the 
ondition m1(0) = � 10 � :To 
ompute �Eq(E; t) we derive the energy 
onservation relation and obtain:_q(0; t)�E _q(E; t)jE=0 � �q(0; t)�Eq(E; t)jE=0 = 1;by variation of 
onstants we obtain:qE(t) = �Eq(E; t)jE=0 = _q(0; t) tZ0 d�_q2(0; �) (7.9)whi
h is well de�nes as _q(t) 6= 0 for all real t; moreover it is an odd fun
tion soqE(0) = 0.Its derivative: _qE(t) = �q(0; t) tZ0 d�_q2(0; �) + 1_q(t)is di�erent from zero for t = 0; _qE(0) = 1_q(0) . We noti
e that 1_q(t) is a fun
tion inH0(b; d) for some b; d as it depends only on z = e�t. So qE(t) 2 H0(b;D) for someb; d as the integration 
an be written as R t0 = =t � =0�(t) whi
h is 
losed on H0(b; d).Naturally qE(t) will not, in general, be a fun
tion only of e�t and it will have non-polarsingularities. This means that, to re obtain bounds like those of se
tion3.1 ,one hasto prove that qE(t) respe
ts a 
ondition like 3.26. Naturally as we have seen qE(t) isnot bounded (not even for the standard pendulum). We bound it exa
tly like we didin se
tion3.1 to bound analyti
 trees. The term =0 is a 
onstant so we ignore it. Theeven fun
tion Q = 1_q(t)2 has a double pole at z = 0 and at z ! 1; moreover it haspoles for �nite values of z, 
oming in 
onjugated 
ouples that we 
all bl;�bl =2 R. If_q has 2j poles (the ai; �ai) then l = 1; 2(j � 1). Naturally we have no guarantee thatjblj = 1 so in general the poles are not purely imaginary when written in the t variable.5and so naturally �q(t) is odd.6remember that the 
ondition 3.2 is satis�ed by all rational fun
tions of et times polynomial in t.
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esFor jtj > maxl j log jbljj = ~b we 
an write Q(t) as fun
tion of x = e�jtj(
all it ~Q(x)) andexpand it in a Laurent series around x = 0.~Q(x) = 1Xk=�2Qkxk
onverges in the annulus 0 < jxj < e�~b. When we apply the formal integration 1.18to the expansion we obtain a purely polynomial term tQ0. So for jRe tj > ~b and jImtj � 2� the fun
tion qE(t) is(=0[ ~Q(x)℄�Q0t) _q(t) + _q(t) � =t[ ~Q(x)�Q0℄;noti
e that the se
ond summand is fun
tion only of x and has a simple pole in x = 0.In the domain M(~b; ~d) :=,jRe tj � ~b and j Im tj < ~d = mini ar

os(j Re(bi)j) wesimply bound the integral with the maximum of the integrand and obtain that:maxt2D(~b; ~d) qE(t) � 2~b _q(0) maxt2D(~b; ~d) _q(t) maxt2D(~b; ~d) 1_q2(t) :We have found a matrix M with all the properties of W de�ned in subse
tion1.1.2,namely it has the same parity and regularity properties, and the same qualitativeasymptoti
 behavior. So we simply substitutex00(t) = _q(t)= _q(0) x10(t) = �(t) _q(0)qE(t)in the de�nitions of the operators Qj and we 
an perform all the symboli
 tree expan-sions of Se
tion1.2. We have to prove again proposition 1.16, to ensure the possibilityof 
hanging the �rst node. Then we use the bounds on xij to re-derive the boundson trees of Se
tion 3.1. The 
an
ellations of Chapter 4 depend only on the parity
onditions and on the symmetry of the operators Qj so they still hold true.Finally we have to 
ompute the Melnikov integral whi
h implies the same 
om-putations of subse
tion6.1.1,provided that f is a trigonometri
 polynomial in  andrational in eiq.Example 7.14. Naturally it is pleasant to have an expli
it expression for x10 and a
tuallyit is not diÆ
ult to perform the integral 7.9. If we e 
onsider the fun
tions satisfyingCondition 7.4, we 
an 
ompute the xi0 expli
itly (we have used Mathemati
a to do the
omputations).x00 = _q(t)_q(0) = �2 (�1 + �) (1 + �) et (1 + e2 t)1 + (2� 4�2) e2 t + e4 t�(t)x10 =� e�t4(�2 � 1)��1 + e6 t + e4 t (1 + 8�4 + 4 t� 16�2 t)1 + (2� 4�2) e2 t + e4 t) �e2t(1 + 8�4 � 4 t+ 16�2 t)1 + (2� 4�2) e2 t + e4 t �; (7.10)
as usual � = Re a.



7.3. Homo
lini
 splitting for the generalized pendulum 1337.3 Homo
lini
 splitting for the generalized pendu-lumWe show on an example the pro
edure for proving lower and upper bounds for systemswith generalized pendulum. We 
onsider the Hamiltonian:12(I21 + I22 + p2) + (
os q � 1)2 + 12 sin2 q + �(
os( 1) + 
os( 2)) 
os(2q);this is a 
ompletely aniso
hronous system with three degrees of freedom. For � = 0 thehyperboli
 variables p; q are on a pendulum-like separatrix and pre
isely the dynami
sis the one des
ribed in Example 7.7.q(t) = 2 ar
tan(p2e�t + 1) + 2 ar
tan(p2e�t � 1):For � 6= 0 we have the perturbative equations:_Iki = F ki ; _ ki = Iki_pki = [�12 sin(2q0(t)) + 2 sin(q0(t))℄qk + F k0 ; _qk = pk: (7.11)Where as usual we set  0 = q andF ki = [� if(Xh<k(�)h ~ h)℄k�1 + Æi0[�12 sin(2Xh<k(�)h h0 ) + 2 sin(Xh<k(�)h h0 )℄k:We have 
omputed the Wronskian matrix of su
h dynami
s in the previous subse
tion,see Equation 7.10 �x00 �(t)x10_x00 _�(t)x10;�where x00 = et(1 + e2t)1 + e4t ; x10 = 2 (et + e3 t) t1 + e4 t + e�t + 3 et � 3 e3 t � e5 t2 (1 + e4 t)noti
e that this matrix has the same parity, analyti
ity and asymptoti
 propertiesas the Wronskian of the linearized pendulum, studied in Subse
tion 1.1.2, so that theboundedness 
onditions on the solutions of 7.11 lead to the re
ursive equations:Ikj = =tF kj ;  kj = OjF kj ;in the operator O0 the fun
tions x00 and x10 
ome from the Wronskian of the generalizedpendulum.Now we 
onsider the spa
es V(A) and V( 0T ) and asso
iate to trees the values V;Wand V1;W1 exa
tly as in Subse
tion 2.1.1 and 2.1.2. The only di�eren
e is the expli
itexpression of the fun
tions xi0, whi
h is irrelevant to the tree 
onstru
tion.
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esThe upper bounds we derived in Chapter 3 depend only on the degree of the polesof the fun
tions xi0 and of the q dependent part of the perturbing fun
tion, in our 
ase
os(2q). The xi0 have simple poles in ei�=4+k�=2 and
os(2q(t)) = �16 e2 t (�1 + e2 t)2(1 + e4 t)2has double poles in ei�=4+k�=2. As we are 
onsidering a system with three degrees offreedom we 
ould use the improved bounds of Se
tion 6.2, to do this, however, weshould reformulate Proposition 6.12, whi
h depends on the expli
it expression of theWronskian (not only on parity and analyti
ity properties). This is straightforward butlengthly so we will use the (mu
h worst) bounds of Chapter 3.Proposition 7.15. The sum of terms of order higher than one and � "� 12 in thesplitting determinant are bounded from above by7:Cp"3( �jp"jp+7 )2[e� j!1�j4p" ℄;provided that j�j � jp"jp+7. p is the degree of the pole of f( (t); q(t)) nearest to thereal axis, so in this example p = 2.Proof. It is a 
onsequen
e of the upper bounds of Chapter 3 and of Propositions 6.3and 6.1.The Melnikov integral for the splitting matrix is:f11 = 1Z�1 16 e2 t (�1 + e2 t)2(1 + e4 t)2 
os(t !1p" )dt =4�p"
s
h( � !12p") �2p" sinh( � !14p")� 
osh( � !14p")!1�whi
h, for " suÆ
iently small is dominated by e� !14p" .fi;j = 0 ; for i 6= j; and f2;2 = p"C("; !2) 6= 0;for some order one C("; !2).Finally the splitting determinant is bounded from below by:Ce� !14p" ; if �"3=2 < "9:7we 
onsider a three time s
ale system so �S = 0



Chapter 8Arnold di�usionIn this 
hapter we present a brief review of the pro
edure ne
essary to prove di�usionof the a
tion variables, on
e given lower bounds on the splitting determinant. Thereare essentially three steps:1) Prove the existen
e of hetero
lini
 interse
tions namely that for � � "P and given!; !0 2 

 su
h that j! � !0j � F (")there exists ��(!; !0; �) su
h that1I�� (��(!; !0; �); !; �(!)) = I+� (��(!; !0; �); !0; �(!0)):Then the point z�(!; !0) = I�� (��(!; !0; �); !; �(!)); ��(!; !0; �); �lies in2 W�� (!; �(!)) \W+� (!0; �(!0)) \ fq = �g:2)Compare the maximum distan
e for ! and !0 F (") with the size of the gaps ofpreserved tori, given by the Normal form theorem dis
ussed in Appendix A.4.3) Prove the existen
e of a traje
tory whi
h \shadows" a 
hain of hetero
lini
 
onne
-tions and has order one drift in the a
tions. We will not give any proof of this thirdstep, but only 
ite some arti
les that 
ontain the proofs of our 
laims.Let us repeat some de�nitions (taken from [C℄) already 
ited in the introdu
tion.De�nition 8.1 (Hetero
lini
 
hains). A hetero
lini
 
hain is a set of N � 1 tra-je
tories z1(t); : : : ; zN (t) together with N + 1 di�erent minimal sets3 T0; : : : ; TN su
hthat for all 1 � i � Nlimt!�1 dist (zi(t); Ti�1) = 0 = limt!1 dist (zi(t); Ti):1See Se
tion 1.1 for the de�nition of �(!)2see Theorem 1.1.1 for the de�nitions of W�� (!; rho)3A 
losed subset of the phase spa
e is 
alled minimal (with respe
t to a Hamiltonian 
ow �th) ifit is non-empty, invariant for �th and 
ontains a dense orbit. In our 
ase the minimal sets will beunstable tori T (!i) with !i 2 

 .



136 Chapter 8. Arnold di�usionDe�nition 8.2 (Transition 
hains). A hetero
lini
 
hain is 
alled a transition 
hainif for any r > 0 there exists a traje
tory z(t) and a time T > 0 su
h thatdist (z(0); T0) � r ; dist (z(T ); TN ) � r ; sup0�t�T dist (z(t); Z) < rwhere Z is the 
losure of the union over i of the fzi(t) : t 2 Rg. The sets T0 and TNare said to be 
onne
ted by as transition 
hain.De�nition 8.3 (Arnold instability). Given E 2 R 
onsider an Hamiltonian h(")(with Hamiltonian 
ow �th) su
h that h(0) represents an integrable system.The system (�th; h�1(E)) is 
alled Arnold unstable if there exist two positive numbers "0and d0 su
h that for all " 2 (�"0; "0) there exist (
losed) invariant sets T ("), T 0(") �h�1(E) satisfying the following 
onditions:(i) T ("), T 0(") are 
ontinuous, at " = 0, in the Hausdor� metri
 and if �I denotes thenatural proje
tion over the a
tion variables then�IT (0) = fIg ; �IT 0(0) = fI 0g ; with jI 0 � Ij > d0 ;(ii) for ea
h 0 < j"j < "0 T (("), T 0(") are 
onne
ted by a transition 
hain.8.1 Hetero
lini
 
hainsIn this se
tion we deal with the �rst two steps of the proof of Arnold instability, namelythe 
onstru
tion of hetero
lini
 
hains.8.1.1 Hetero
lini
 interse
tion for systems with one fast fre-quen
yIn the following we will 
onsider systems with one fast frequen
y and in the a-prioristable variables of Hamiltonian (1.10). We 
an �x � = "P and ensure Melnikov domi-nan
e, as dis
ussed in the previous Se
tions. This means that we have lower and upperbounds on the splitting determinant (and on the eigenvalues of the splitting matrix)of the type: a"pe�
"� 12 � det�0(!) � b"�pe�
"� 12 :The 
oeÆ
ients p; a; b; 
 depend on the perturbing fun
tion f .We 
onsider the fun
tion:F ('; !0; !) = ~I�� ('; !; �(!))�~I+� ('; !0; �(!0)) � 
p"�I�� ('; !; �(!))�I+� ('; !0; �(!0))�where !; !0 2 

 . Noti
e thatF (0; !0; !0) = 0 ; det �F�' (0; !0; !0) = 2n"n=2 det�0(!0):
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lini
 
hains 137Hen
e from the impli
it fun
tion theorem there exists a fun
tion '(!; !0; ") for whi
hF�('(!; !0; "); !; !0) � 0;provided j!�!0j is small enough. Fixed !0 standard 
omputations (see [C℄) show thatthe smallness 
ondition is: j! � !0j � C"�2pe�2
"� 12 :To prove the existen
e of hetero
lini
 interse
tions we have to prove the existen
e ofa 
hain of KAM tori at distan
es of order B = O"(e�C"� 12 ) for some C > 2
, namelywe have to adapt to our anisotropi
 setting (one fast and many slow time s
ales) the
lassi
al te
hniques dis
ussed in detail in [C℄ or [CG℄.Proposition 8.4. There exists a list of Diophantine frequen
ies !1; : : : ; !h 2 

 su
hthat: (i) p"j!i � !i+1j � e�C1"� 12 (ii) "� 12 j�n(!1 � !h)j � O"(1); (8.1)where �n is the proje
tion on the n-th 
omponent. To ea
h of the frequen
ies !i isasso
iated a preserved unstable invariant torus of Hamiltonian 1.10, T (!i; �i) (with�i 2 [�12 ; 12 ℄) of frequen
y p"�i!i. The s
aling fa
tor �i is 
hosen so that all theinvariant tori are on the same energy surfa
e, as explained in Remark??.To prove the Proposition we pro
eed in two steps:1. De�ne an appropriate set �
 of Diophantine frequen
ies respe
ting 
ondition 8.1.2. Prove the existen
e of unstable KAM tori of frequen
y: p"�! for � 2 [�12 ; 12 ℄and ! 2 �
. We will only sket
h the proof of this se
ond point.De�nition 8.5. Given an order one C1 > 2
, set A1 = e�C1"� 12 and 
onsider the set:�
 := n! 2 
 : 8>><>>: (a) p"j! � lj � A1jlj� 8l 2 Zn=f0g : l1 6= 0(b) p"j! � lj � "2jlj� 8l 2 Zn=f0g : l1 = 0 o:As there is only one fast time s
ale the 
ondition ! 2 
 
an be given only on theslow variables, while the fast variable is obtained by \ energy 
onservation" ! 2 � (�is the ellipsoid of De�nition??), namely we 
onsider a fun
tion F : Rn�1 ! �:F (x) := fvuut2E � n�1Xi=2 x2i � "�1x2n; x2; : : : ; xng;so that given � = 12+a (12 � � � 1) and R; r; R1; r1; r2, appropriate order one 
onstants4and de�ning: ~
 := f~! 2 Rn : ~!"� 12 2 
g we have ~
 = F (B(R; r) \M)4This 
onditions automati
ally imply �r � p"!1 � �R, noti
e that we are not using the samenotation as in ??, here !i is always the i'th 
omponent of !.



138 Chapter 8. Arnold di�usionwhere B(R; r) � Rn�1 is the spheri
al shell5 of radiuses "�R; "�r andM := f! 2 Rn�1 : "r1 � !n � "R1 ; !i > r2"� ; i = 2; : : : ; n� 1g:As we always deal with ~! = p"! we will omit the tilde res
aling all the relations. TheJa
obian of F in B(R; r)\M is bounded from above and below by order one 
onstantsso that given a measurable set6 S � 
 meas(F�1(S)) � meas(S).Condition (b) naturally de�nes subsets of B(R; r) \M , moreover we 
an proje
tthe set respe
ting 
ondition (a) on the subspa
e of the slow variables, 
all this set�
4 � B(R; r) \M .Let us 
all S(x) the n� 2 dimensional sphere 
entered in the origin and of radius "�x.We take , 2r < R and 
onsider �R so thatR1=2 < �R < R1 ; rR > r1�R (8.2)De�nition 8.6. Consider the setsS2 :=�! 2 S(R) : "(R1 � (R1 � �R)=4) � !n � "( �R + (R1 � �R)=4); !i � r2"� ; 8i 6= n	;S3 :=�! 2 S(R) : "R1 � !n � " �R ; !i � r2"� ; 8i 6= n	:M \ S(R) � S3 � S2; and the sets all have measure of order "(n�3)�+1.Given a set X 2 S(R) its 
one C(X) is the set of semilines stemming from the originand rea
hing points of X. We 
onsider trun
ated 
ones T (X) := C(X)\B(R; r), and,for any r < a < b < R, Ta;b(X) = T (X) \ B(b; a).Noti
e that by 8.2 if X 2 S3 then T (X) 2M \B(R; r).Remark 8.7. Re
all that given a measurable set X 2 S(R), the 
one of X is measur-able and meas T (X) � "� meas (X), meas Ta;b(X) � "�(b� a) meas (X).De�nition 8.8. Given A2 = e�C2"� 12 with 2
 < C2 < C1 and for all s 2 R, 1 < s <4R=r, we 
onsider the sets:�
2(s) =f! 2 B(R; r) : j! � lj � s"2jlj� 8l 2 Zn�1=f0g jlj � A�12 g;�
3(s) =f! 2 B(R; r) : j! � lj � s"2jlj� 8l 2 Zn�1=f0ggRemark 8.9. Standard measure theoreti
 arguments imply that the sets (�
i(s) \S(R))C \ S(R) all have measure of order "(n�3)�+2; this implies as well that (�
i(s) \S2)C \ S2 has measure of the same order and the same holds for interse
tions with S3and for (�
2(s) \ �
3(s) \ S2)C \ S2. We will repeatedly use su
h relations.5We 
all spheri
al shell of radiuses b; a the n� 1 dimensional domain fx 2 Rn�1 : a � jxj � bg.6The symbol � means that the two measures are of the same order in ".
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lini
 
hains 139Lemma 8.10. (i) Given a point ! 2 �
2(2R=r)\S2 the whole solid ball B�(!) of 
enter! and radius � = "2A1+�2 is 
ontained in �
2(R=r) and its interse
tion with S(R) is
ontained in S3.(ii) The whole trun
ated 
one T (�
2(R=r) \ S3) is in �
2(1), same for �
3.Proof. (i) First noti
e that any n� 2 dimensional \ball" B�(x) \ S(R) 2 S3 if x 2 S2.Now 
onsider ! 2 
2(2R=r) \ S2 and a ve
tor x 2 Rn�1 on the unit sphere:j(! + �x) � lj � jj! � lj � jlj�j � j! � lj(j1� � jljj! � lj j); as jljj! � lj � rjlj�+12R"2and jlj � A2, setting � = "2A1+�2 we have 0 < � jljj!�lj j)12 .(ii) Given a point x 2 
3(R=r)\S(R) (or in x 2 
2(R=r)\S(R)) then rx=R 2 S(r)moreover for r=R � t � 1:jtx � lj = tjx � lj � r=RR"2rjlj� = "2jlj�Lemma 8.11. The set �
2(R=r) \ S(R) is union of a �nite number of disjoint 
onvexdomains. Ea
h domain is 
ontained in a n � 2 dimensional \ball" of radius C3"�A2for an appropriately �xed order one C3.Proof. (�
2(R=r) \ S(R)) �S(R) \l2Zn�1jlj�A2 �fx 2 Rn�1 : (x � l) > R"2rjlj� g [ fx 2 Rn�1 : (x � l) < �R"2rjlj� g�;now the interse
tion of sets su
h that ea
h 
onne
ted 
omponent is 
onvex has the sameproperty. Suppose, by 
ontradi
tion, that there are points x1; x2 2 
2(R=r) \ S(R)su
h that the ar
 x_1x2 is all in 
2(R=r)\S(R) and has length grater than 2R�1pn"�A2.Let hx1; x2i be the plane generated by the ve
tors x1; x2, and on it 
onsider the se
torS of unit ve
tors orthogonal to x_1x2, this se
tor has angle # = 2pnA2. The produ
tspa
e of hx1; x2i? with the se
tor S is a multi-
ylinder in whi
h there 
annot be entireve
tors l 2 Zn�1 with jlj � A�12 .Now we 
onsider the interse
tion of the multi 
ylinder with the sphere jxj = A�12 �2pn,on hx1; x2i it is an ar
 of length greater than 2pn so that a ball of radiuspn is 
ontainedin the multi-
ylinder. Now in ea
h ball of radius pn there is at least one entire ve
tor.Namely let x be the 
enter of the ball then [x℄ (entire part of ea
h 
omponent) is entireand jx� [x℄j1 � 1.Let N be the number of 
onne
ted domains of �
2(R=r) \ S(R) 
ontained in S3.Ea
h domain 
ontains an n � 2 dimensional \ball" of radius � = "2A1+�2 , so thatN � A�(n�2)(�+1)2 "�(n�2)�2n+5.



140 Chapter 8. Arnold di�usionLet us now 
onsider the Cantor set �
3(R=r) \ S3, by Remark 8.9 we have that(�
3(R=r) \ S3)C \ S3 has measure of order "(n�3)�+2. This implies that �
3(R=r) \S3 \ �
2(R=r) is not empty and the measure of (�
3(R=r) \ S3 \ �
2(R=r))C \ S3 is oforder "(n�3)�+2.Lemma 8.12. There exists a 
onne
ted domain D of 
2(R=r) \ S3 su
h thatmeas (D \ �
3(R=r)) � A(n�2)(�+1)+12 :Proof. Suppose the assertion to be false, then 
alling Di i = 1; : : : ; N the 
onne
teddomains:meas S3 � meas (�
2(R=r) \ S3 \ �
3(R=r)) = NXi=1 meas (Di \ �
3) � A(n�2)(�+1)+12 Nwhi
h is absurd.Then we 
an use Lemma 8.10 (ii) and 
onsider the trun
ated 
one T (D) � �
2(1),by Lemma 8.12 P = T (D) \ �
3(1) has measure of order A(1+�)(n�2)+12 "�; namely thethe Cantor set P 
ontains all radial segments having an endpoint in D \ �
3(R=r) andthe other on S(r).Consider an n� 1 dimensional ball of radius � � "�A2 
entered on a point x 2 Dand whi
h 
ontains D (su
h ball exists by Lemma 8.12). Given h = [2(R�r)3�R ℄, 
onsiderthe points xi = tix with ti = 1� 3=2i� h � i 2 N0 and let us 
over T (D) with a �nitenumber of balls Bi of radius � and 
entered on points xi.Setting � = 2C3"�A2 we have that Bi \ Bj is empty if ji� jj > 1 and ea
h Bi \ Bi+1
ontains a trun
ated 
one Tai;bi(D) with bi � ai � �=4. We 
onsider the sets Pi =Tai;bi(D) \ 
3(1), by Lemma 8.12 ea
h Pi has measure of order "�A(1+�)(n�2)+22 .Now we 
onsider the Cantor set �
4 whose 
omplementary set in M \ B(R; r)has measure of order "(n�2)�+1A1. Its interse
tion with Pi has measure of order"�A(1+�)(n�2)+22 , provided that A1 < A(�+1)(n�2)+32 . Consider a list !i 2 Pi \ �
4; forea
h i we have that !i; !i+1 2 Bi+1 so the list respe
ts 
ondition 8.1(i) moreoverminy2B0 yn � �R� 2C"�A2 and maxy2Bh yn � rRR1 + 2C"�A2for some order one C so the list respe
ts 
ondition 8.1(ii).In the Appendix A.4 we have proved, generalizing similar results of [GGM3℄, thatthere exists a symple
ti
 transformation, well de�ned in a regionW of the phase spa
e(~I;  ), whi
h sends Hamiltonian 1.10 in the lo
al normal form:12(J;AJ) +p"G1(PQ;p") + �g1(�S; J; P;Q) + �f1(�; J; P;Q) (8.3)where � = O"(e�C"�12 ) for any order one C. W is of order one in the a
tions both inthe fast dire
tion J1 and in the degenerate one Jn, namely there exists points w1; w2 2
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hains 141W su
h that j�Jn(w1 � w2)j = O"(1). We 
an then prove a KAM theorem for theHamiltonian 8.3 for � < "4 with the frequen
ies ! in �
 by 
hoosing (A1)2 � �.Roughly speaking KAM theorems are proved by performing an in�nite sequen
e ofsymple
ti
 transformations de�ned in a set of nested domains whose interse
tion is nottrivial. Ea
h approximation step redu
es the order of the perturbation quadrati
allyand is well de�ned provided an appropriate smallness 
ondition is veri�ed. Roughlyspeaking su
h 
ondition is of the type:�
�2 � 1 where � is the small parameter and
 is the Diophantine 
onstant of the frequen
y ! of the preserved torus. To apply thiss
heme to Hamiltonian 8.3 we �rst perform a �nite number of approximation stepson the slow variables with J1 as a parameter; the small denominators involved arej!S � lj on whi
h we have the stronger Diophantine 
ondition so that the approximations
heme works provided that �"�4 � 1. Eventually we will redu
e the � perturbationto order � and then 
ontinue with the 
lassi
al KAM s
heme on all the variables nowthe smallness 
ondition is �A�21 � 1.Remark 8.13. One 
ould try as well to formulate a quantitative version of the im-pli
it fun
tion theorem on re
tangular domains like those ??. A
tually this is quitestraightforward for iso
hronous systems and using the results of se
tion 5.This wouldbe a �rst step in proving fast Arnold di�usion for iso
hronous systems with three times
ales, whi
h is treated in detail in [BB2℄.8.2 Transition 
hainsIn the pre
eding se
tion we have proved that for � � "P any two tori T (!; �(!)),T (!0; �(!0)) with !; !0 2 �

 whose distan
e respe
ts ?? are 
onne
ted by a hetero
lini
interse
tion. Then any two tori T (�!; �(�!)), T (!0; �(!0)) with !0; �! 2 �

 are 
onne
tedby a hetero
lini
 
hain 
omposed ofn � j�! � !0jeC"�12invariant tori.Proposition 8.14. The hetero
lini
 
hain 
onne
ting two tori T (�!; �(�!)), T (!0; �(!0))with !0; �! 2 �

 is a transition 
hain.The Hamiltonian 1.1.1 having one fast frequen
y and � � "P is Arnold unstable.This proposition is the adaptation to Hamiltonian * of [CV℄. In parti
ular it followsfrom the following Proposition of [CV℄.Given the hetero
lini
 
hain T i, zi we 
all Ui a neighborhood of T i where one
an apply the Normal Form Theorem and then Theorem 1.2, we 
all W s=ui lo
 the lo
alstable/unstable manifolds and wi an interse
tion pointwi 2 W ui \W si+1 \ Ui:Finally we denote, for i = 1; : : : ; N � 1, by �si a 
onne
ted n+1 sub-manifold of W si+1
ontained in Ui and interse
ting transversally W ui lo
 on the energy surfa
e at wi 2 Ui.



142 Chapter 8. Arnold di�usionProposition 1. of [CV℄ Given a neighborhood Bi�1 of some7 �i�1 2 �si�1\ (W ui�1 lo
)
one 
an �nd �i 2 �si \ (W ui lo
)
, a neighborhood Bi of �i and a time Ti > 0 su
h that��TiBi � Bi�1.

7The supers
ript 
 denotes the 
omplementary set



Appendix A
A.1 Examples of fun
tions in B(b; d)We give examples of fun
tions F (et) having non polar singularities and respe
tinghowever 
ondition 3.2 in the domains C(b;D�p") where D is the (by hypothesis nonpolar) singularity nearest to the real axis.We will not 
onsider the 
lassi�
ation of su
h fun
tions but only prove the existen
e ofa 
lass of fun
tions f( ; q) trigonometri
 in  and su
h that1 f('+!t; q(t)) has a nonpolar singularity in D respe
ting 
ondition 3.2. Noti
e that the only entire fun
tionsof q in this 
lass are the trigonometri
 polynomials.Let us �rst state an obvious property of the exponential fun
tion (whi
h 
an beveri�ed by dire
t 
omputation):Lemma A.1. The fun
tion f(z) = e az�z0 with a; z; z0 2 C has an essential singularityin z0 and is bounded in the region:Re (z � z0) Re a+ Im (z � z0) Im a = Re (�a(z � z0)) � 0:Now let us 
onsider analyti
 fun
tions f( ; q) = f( )g(q) where f( ) is a trigono-metri
 polynomial and g is even in q. Then g(q) = G(
os(q)) with G(x) real analyti
for x 2 (�1; 1) and bounded. We want to �nd fun
tions G(x) su
h that G(
os(q(t)) isbounded in some C(b; d).Let C1 be C deprived of the half line Im z = 0, Re z � �1.Theorem A.2. For any z0 2 C1 there exists a fun
tion G(z) su
h that G(z) hassingularities only in z0; �z0 and G(
os(q(t)) is limited in C(b; d(z0) for some b.To prove the Theorem let us study the mapt! z = 
os(q(t)) = 1� 2
osh2(t)1in this Appendix we will restri
t our attention to q(t) being the separatrix of the standard pen-dulum. We do this only to write down simple formulas but naturally the same reasoning hold for anyq(t) dis
ussed in Chapter 7.



144 Appendi
eswhi
h is analyti
 for t 2 R � (�i�=2; i�=2). Moreover as the map is even we will
onsider only the domain t 2 R � [0; i�=2) whose image through 
os(q(t)) is C minusthe half line Im z = 0 Re z > 1.We will study the 
urves zd(s) in C for �xed d 2 (�i�=2; i�=2) whi
h are the image ofthe lines t = s+ id with s 2 R.The following statements 
an be easily veri�ed by dire
t 
omputation.Lemma A.3. For ea
h z0 2 C1 there exists a unique �=2 > d(z0) 2 R+ su
h that the
urve z(s; z0) � zd(z0)(s);passes through z0.The zd(s) are all 
losed 
urves whose 
urvature is di�erent from zero for all s 2 R.The 
urves zd(s) are all symmetri
 with respe
t to the real axis and zd(s) = �zd(�s).For all z0 2 C1 su
h that Im z0 � 0 let L(z0) L(�z0) be the lines tangent to the
urve z(s; z0) in the points z; �z. The symmetry of the zd(s) implies that the equationsof L(z0) L(�z0) are respe
tively:Re(�(z � z0)) = 0 ; Re(��(z � z0)) = 0:Moreover let z�(s; z0) be the interse
tions of the 
urve respe
tively with the half planesIm z � 0 and Im z � 0.Standard 
onsiderations on smooth 
urves with non zero 
urvature ensure that thefollowing Lemma holds.Lemma A.4. The 
urve z+(s; z0) (resp. z+(s; z0)) and a ball2 Br(1) with r suÆ
ientlysmall, are both all one one side of L(z0) (resp. L(�z0)) and tou
h the line only in z = z0(resp. z = �z0)).Proof of Theorem A.2. Given z0 2 C1 let us suppose thatz+(s; z0) � Re ((�(z � z0)) � 0 ; z�(s; z0) � Re ((��(z � �z0)) � 0;This implies that the fun
tion:G(z) = e ��(z�z0) + e �(z��z0) ; (A.1)is bounded inside z(s; z0). Moreover for any x 2 R G(z) is real. Clearly if z0 2 C1 issu
h thatz+(s; z0) � Re ((�(z � z0)) � 0 ; z�(s; z0) � Re ((��(z � �z0)) � 0;we will 
hoose G(z) = e� ��(z�z0) + e� �(z��z0) :2Br(z0) is the ball of radius r 
entered in z0.



A.1. Examples of fun
tions in B(b; d) 145Theorem A.2 shows that the 
ondition f 2 B(a; d) does not imply that f is rationalif d 6= �=2 on the other hand if d = �=2 then the following Proposition holds:Proposition A.5. Consider an analyti
 fun
tion f(q) (q 2 T) su
h that f(q(t)) 2B(a; �=2) and f(qt) has isolated singularities. f(q) is a rational fun
tion of eiq.The image of Imt = �=2 through t! z = eiq(t) is the half line Re z � 0, Im z = 0and in general the image of t+ id with t 2 R is plotted in Figures A.1and A.2.
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Figure A.2:So the Proposition is equivalent to the following:Proposition A.6. Consider a single valued fun
tion g(z) with z 2 C analyti
 inB=f0g where B is some ball 
entered in zero. Moreover suppose that for some (nonzero) k: jg(z)jj Imzjk � Cin B=f0g then g(z) 
annot have an essential singularity in z = 0.Proof. The proof of this Proposition is due to Prof. D'An
onaThe proposed bounds have polar growth inthe se
tors jImzj � jRe(z)j, now if we in-tegrate g(z) k+1 times and 
all G�(z) thek+1 primitive obtained by 
utting away Ret = 0, Im t � 0 and starting from a pointz0 with Im z0 = 0 Re z0 far from the origin(but still in B) jG(z)j � C 0:To prove this let us perform one integrationon the path proposed in FigureA.3
z z0 w

Figure A.3:The part that is not 
lose to the singularity is bounded by some 
onstant while theintegral on the line parallel to the imaginary axis gives the boundj Z g(z)j � ( Im z)k�1:
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esThe primitive G+ obtained by 
hoosing the 
ut Re t = 0, Im t � 0 di�ers from G� bya polynomial of degree k. Now given a point w in jImzj < jRe(z)j we 
onsider a 
ir
leC of radius jwj=2 
entered in w; the 
ir
le does not interse
t the imaginary axis so:jf(w)j = j ZC G(z)(w � z)k+1 j � C1jwjk+1 ;independently of the 
hosen primitive.A.2 Evaluation of the 
oeÆ
ients T (k); N(k)We will prove that: Tj(k) = XA2Akj 1jS(A)j � (4n)k;Nj(k) = XA2Akj Qv2A: Æv=1 nv!jS(A)j � (4n)k (A.2)where nv is the number of nodes in the list v; s(v) that have label j = 0.This are standard 
omputations on trees and 
an be found for instan
e in [Bo℄ fortrees without grammar. However here we present an easy and self 
ontained proof ofthis statement for our set Akj . We will rely some adaptations of the results of Se
tion1.2 whi
h we will not prove again.Given a real parameter � and two real analyti
 fun
tions f(x; y); g(y) with x 2 Rn andy 2 R, su
h that g(0) = 0 rf(0) = 1; dyg(0) = 1;
onsider the equations:xi = ��xif(x; y) for i = 1; : : : ; n g(y) = ��yf(x; y): (A.3)This relation is invertible in some j�j � �0 where the solution x(�); y(�) is analyti
 in�. We determine the series expansionxj(�) = 1Xh=1 x(h)j �h where x0 � y;re
ursively like in Subse
tion 1.1.4:xkj = F kj with F kj = [�xj�xjf(k�1Xh=1 �hx(h))℄k�1 � Æj0[g(k�1Xh=1 �hx(h)0 )℄k:



A.3. Notions on latti
es in Zn 147The theory we have developed in Chapter 1 implies that the series expansion 
an berepresented by labeled trees and pre
isely:xkj = XA2Akj 1jS(A)j�(A);where the value of a tree �(A) is:Yv2A � Yv02s(v) �jv0�(�jv)Ævf Æv jx=0;y=0;with f 1 = f and f 0 = �g. Noti
e that f 0 appears only through its derivatives of ordergreater or equal than two.To bound Tj(k) we 
hoosef(x; y) = ePni=1 xi+y ; g(y) = 1 + 2y � ey;so that the value of any tree is one and Tj(k) = xkj . Now A.2 
an be 
omputed byestimates on the Taylor 
oeÆ
ients of x(�). An easy dire
t 
omputation shows thatrelations A.3 
an be inverted forj�j � 14n whi
h implies A.2.To bound Nj(k) we 
hoose :f(x; y) = ePni=1 xi1� y ; g(y) = 1 + 2y � ey:Again easy 
omputations show that the relations A.3 
an be inverted for j�j � 14n .A.3 Notions on latti
es in ZnWe brie
y review some useful properties of latti
es in Zn.Let v1; � � � ; vh be ve
tors in Zn; we will 
all V the n�h matrix whose 
olumns are thevj's and K(V ) the latti
e spanned by the vj's with 
oeÆ
ients in Z.Two ve
tors vi vj 2 Zn are independent if avi+ bvj 6= 0 for all a; b 2 Zn; 
learly in anylist of ve
tors in Zn there are at most n independent ones, our ve
tors vi will not be,in general, independent.Nevertheless, for all w 2 K(V ) we de�ne the \
oordinate sets":Aw = fa 2 Zh : V a = wgthese are the 
osets of Zh modulo the relations between the vi.
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esOn K(V ) we introdu
e the fun
tion3jwj = mina2Aw hXi=1 jaij:We will then use as 
oordinates of w any ve
tor a 2 Aw that realizes the minimum ofjwj.De�nition A.7. The n positive numbers d1; � � � ; dn su
h that4dj = M
d (v1 j; � � � ; vh j)are the divisors of the lines of V .Noti
e that the latti
e K(V ) � Zn even if h > n.Lemma A.8. K(V ) � Zn if and only if the determinants of the n � n minors are
oprime. Given w 2 K(V ) wj � dj for ea
h j = 1; : : : ; n; moreover for h > 2 for ea
hj there exist in�nite ve
tors w 2 K(V ) su
h that wj = dj. Let us 
allWj = fw 2 K(V ) : wj = djg:Proof. The �rst assertion is obvious: it is suÆ
ient that one divisor di 6= 1 and the i
oordinates of all the ve
tors in K(V ) are divided by di so that ei is not in K(V ).The se
ond assertion is a standard theorem on latti
es in Zn, it is not immediate sowe will not prove it. The third is almost the de�nition of M
d: any linear 
ombination(in Z) of numbers all having a 
ommon divisor has the same divisor. If we 
onsiderk 
oprime numbers then there will be at least two having M
d equal to one. Thisimplies that there exists a unique linear 
ombination of this two numbers that givesone. The required linear 
ombination of all the numbers is obtained by adding anylinear 
ombination of all the numbers that gives zero.De�nition A.9. For ea
h j = 1; : : : ; n we de�ne the proje
tion mj of K(V ) in thedire
tion j as mj = minw2Wj jwj:Let us now 
onsider the lines of the matrix V ( 
all them vt )Proposition A.10. For ea
h j = 1; : : : ; n there exist ve
tors u 2 K(V ) su
h thatuj = 0 and ui 6= 0 for all the i su
h that vti 6= �vtj with � 2 Q . We 
all the set of su
hve
tors Uj3It is easily seen that this is a well de�ned norm on K(V ):4M
d is the maximum 
ommon divisor.
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es in Zn 149Proof. Consider the sub-latti
e orthogonal to vtj:U1j = fy : vtjy = 0g;now suppose that there exists vti orthogonal to U1j and whi
h is not parallel to vtj in Q .This is a 
ontradi
tion as v?? = v.De�nition A.11. For ea
h j = 1; : : : ; n we de�ne the proje
tion rj of K(V ) orthogonalto the dire
tion j as rj = minu2Uj juj:If we have a perturbating fun
tion with frequen
ies ��1; � � � � �k, the latti
e K(V )where vi = �i, gives all the possible frequen
ies rea
hed in the perturbation series. Weare interested in how the various possible frequen
ies are rea
hed and parti
ularly atwhat order of the perturbation. Consider the following dis
rete-time dynami
al systemon Zn:� At time one we have the list of ve
tors V (1) � fvi(1)g = f��ig� At time l we have the list of ve
tors V (l) � fvi(l)g = Pj=1;l vij (1) (sum of lve
tors of fvi(1)g ).The ve
tors fvi(l)g are the possible values of the total frequen
y (Pv �v)of a treeof order l.This dynami
al system never enters inside the re
tangle 
entered in zero of length2di in ea
h dire
tion i; nevertheless it tou
hes ea
h side of the re
tangle in�nite times.Lemma A.12. Let �l(j) be the �rst time su
h that one of the ve
tors fvi(l)g has the j
omponent equal to the divisor dj and �o(j) be the �rst time su
h thatV (o(j)) \ Uj 6= f0g;then , �l(j) = mj and �o(j) = rj.Proof. The two proofs are identi
al so we will 
onsider only �l(j).The time �l(j) exists and is �nite, so 
onsider the elements �v of V (�l(j)) that have thej 
omponent equal to the divisor dj.�l(j) is minimal, so if the sum expressing �v 
ontains �i then it does not 
ontain ��i andvi
e-versa. This means that:�v = Xj=1;�l vij (1) = kXi=1 ki�i with ki 2 Z and Xi jkij = �l(j):Now the ve
tor k 2 Zh is in A�v, if there existed k0 2 A�v su
h that Pi jhij < �l(j) thiswould 
ontradi
t the minimality of �l(j).
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esA.4 Normal form theoremTo obtain bounds on the 
onvergen
e radius �0 of the KAM theorem 1.1 we perform asymple
ti
 
hange of variables that brings Hamiltonian (*) in lo
al \normal form". Wewill use the standard notations (see [P�o℄, [BG℄, or [CG℄, [GGM1℄) and the existen
eof the fast time s
ale. For systems with one fast time s
ale this provides a symple
ti

hange of variables de�ned in a region W su
h that �IW = O"(1), that sends theperturbating terms depending on the fast angle to order e� 1"B for some B(n) < 1. Thiswill be the basis for proving Arnold di�usion for systems with one fast variable. For
ompleteness we state the theorem for m fast variables. The �rst step is to set thependulum in lo
al hyperboli
 normal form (see [CG℄), we obtain the lo
al Hamiltonian:12(I; AI) +p"G(pq;p") + �f(p; q;  ); (A.4)where the fun
tion G(J;p") is analyti
 for jJ j < ~k20 � p" and will be written as Taylorseries: G(J) =Pk�1 JkGk:The perturbating term f(p; q;  ) is a trigonometri
 polynomial of degree N in therotator angles and an analyti
 fun
tion of p; q � k0. So we 
onsider the domain:W (k0; s0) � W0 := fjpj; jqj � k0; I 2 V0(") � C n 2 Tn � (�is0; is0)g;where V0(") is some n-re
tangle 
ontained in D(�; Æ) (i.e. su
h that �IjV0(") = O(!jaj ),see Chapter 1 for the de�nition of the sets D(�; Æ)).We write f in Taylor series:f(p; q;  ) =X f�;k;hpkqhei�� :For all s < s0, k < k0 we use the weighted norm:jf jk;s � jf jW (k;s) =X esj�jjf�;l;hjk2(l+h)ei�� :De�nition A.13. Given a sub-latti
e � 2 Zn and a point set D 2 V0(") we say thatD is K � � non-resonant modulo � if for all I 2 D:j!(I) � �j � � 8� : � =2 � \ j�j � K:If �0 is the latti
e generated by the N frequen
ies (�i 2 Zn) of f , we set � 2 �0 tobe the sub-latti
e orthogonal to the fast 
omponents.We 
hoose a point set D in the following manner:let P be the set of ve
tors ! 2 
 (see Se
tion 1.1) su
h that j!1 � �F j � 
j�F j�F for anorder one 
.Given r0 2 R+ , the domain D(r0) is a thi
kening of P su
h that 8I 2 D(r0) thereexists ! 2 P su
h that : jAI � !j � "�+ 12 r0



A.4. Normal form theorem 151for r0 < R; in the following we will set b = 12 + �.Lemma A.14. D0 � D(r0) is � �K non-resonant modulo � withK = � 
4R"�b� 11+�F ; � = (
) 11+�F (4R"b) �F1+�F :Proof. Given I 2 D(r0) !(I) = AI is "br0-
lose to an ! 2 P soj!(I) � �j � j!1 � �F j � ("bj!2jj�j+ "br0j�j)with r < j!2j < R so we set:"bj!2j
�1j�j�F+1 ; "br0j�j
�1j�j�F+1 < 14 :We 
onstru
t an analyti
 symple
ti
 transformation (�-
lose to identity) of theform: Id + �S(I 0; p0;  ; q) = Id+ X1<l�KN �l j�j�lNX� 6=� S(l)�;k;hp0kqhei�� ;that brings the Hamiltonian A.4 in the normal form5(I 0; AI 0) +p"G1(pq;p") + �g1( 0S; I 0; p0; q0; "; �) + �KN f1( 0; I 0; "; �);in a suitable domain D0(r1)� Tns1 � B2k1, whereD0(r) = D(r) \ fI : 9! 2 P su
h that jajI � j � !jj � r0"Æj��jg:The Hamilton-Ja
obi equations are:�AI 0 � S + 12�2jAS j2 +p"G(qp0 + �qSq)) = p"G1(p0q + p0Sp0; �)+�g1( S + �SI0; I 0; p0; q + �Sp0; "; �)� �f(p0 + Sq; q;  ) + o(�K) (A.5)and we assume that we 
an �nd some domain D0(r)�Tns �B2k su
h that the fun
tionsin A.5 are evaluated inside their domain of analyti
ity. We will 
all �� the naturalproje
tion on fun
tions NOT depending on the fast angles: ��f( ; p; q) = g( S; p; q)and �J the natural proje
tion on fun
tions depending only on J = pq:F =XF�;k;hpkqhei��� �JF =XF0;h;h(pq)h:5The separation between the integrable G1 and the non integrable g1 is kept only be
ause wewill eventually set up a KAM s
heme for the slow variables, so we need to estimate the size of theintegrable part.
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esWe are looking for a symple
ti
 transformation su
h that (��)S = 0, we will solvethe Hamilton-Ja
obi equations re
ursively and determine the fun
tions G1(J; �) =Pi�0 �iG1(J ; i) and �g1( S; I; p; q; �) = Pi�1 �ig1( S; I; p; q; i). The �rst order leadsto6: G1(J; 0) = G(J) ; G1(J; 1) = 1p"�Jf ; g1( 1S ; I 0; p0; q0; 1) = (�� � �J)f ;S(1)�;k;h = � f�;k;hi[I 0 � �℄ + (k � h)p"GJ(p0q) :The term i[I 0 � �℄+ (k�h)p"GJ(0) = D(�; k; h) is the \small denominator" that inour 
ase ( i.e. up to order KN ) admits the lower bound D(�; k; h) � � provided that I 0 2D0(r0). The higher order terms are determined re
ursively; we set �S<l =Pl�1h=1 �hS(h)and [f(�)℄l = 1l!�l�f j�=0.G1(J; l) = 1p"�J [(�2 12 jAS<l j2 +p"G(qp0 + �qS<lq ))�p"G1(p0q + p0S<lp0 ; �)���g1( S + �S<lI0 ; I 0; p; q + �S<lp0 ; "; �) + �f(p0 + S<lq ; q;  )℄l)the remaining resonant terms are in �g1 =P1m=1 �mg1( s; I 0; p0; q;m):g1( S; I 0; p0; q; l) = (�� � �J)[(12�2jAS<l j2 +p"G(qp0 + �qS<lq ))�p"G1(p0q + p0S<lp0 ; �)���g1( S + �S<lI0 ; I 0; p; q + �S<lp0 ; "; �) + �f(p0 + S<lq ; q;  )℄l)the terms of order �l and su
h that � 6= � �x the value of S(l)�;k;h. We expand the Taylorseries only in this expression. The symbol fkigrk means the set of ve
tors in Nr su
hthat Pri=1 ki = k, while f�igr� is the set of r ve
tors in Zn su
h that Pri=1 �i = �.S(l)�;k;h = � 1D(�; k; h)[ X�(1)+�(2)=� 12S(m)�(1);k1;h1S(l�m)�(2);k�k1;h�h1(�(1); A�(2))++p" lXr�2 Xfkigrk;fhigrh;fligrl ;f�igr� ( 1r!�rJG(p0q)�ri=1S(li)�i;ki;hihi+Xr�1 Xfkigrk+r;fhigrh;fligrl�1;f�igr�1 1r!�rp0f(p0; q;	)�ri=1kiS(li)�i;ki;hi�p" l�2Xm=0 l�mXr�2 Xfkigrk;fhigrh;fligrl�m;f�igr� ( 1r!�rJG1(p0q;m)�ri=1S(li)�i;ki;hiki�6Noti
e that the pendulum and rotator terms 
annot 
an
el ea
h other, this is a 
onsequen
e ofthe lo
ality of our analysis.



A.4. Normal form theorem 153l�1Xm=1 Xka+kb=k;ha+hb=h Xla+lb=l�m;�a+�b=� l�mXr�0 l�m�rXs�0;r+s�1 Xfkigrka+r;fhigrha ;fligrla ;f�igr�a Xfkjgskb ;fhjgshb ;fligslb ;f�igs�b( 1r!s!�rq�s Sg1( S; I 0; p0; q;m)�ri=1ki(S(li)�i;ki;hi�sj=1rIS(li)�j ;kj ;hjTo avoid proliferation of symbols we will set:max(jf j0; jGj0) = E0 and 
hoose r0 > 1 so that r0"Æi��i � r0" � �0 > k20: Finally wewill 
all bj = max(b; Æj � �j).Proposition A.15. Consider the nested domains: Dl � D0(rl) � Tnsl � B2kl whererl = 12r0e�l�, sl = s0(1 + l�) and kl = 12k0e�l�; the following bounds hold7:jS(l)�;k;hjl � C1(l � 1)!Bl�1 jG1(J; l)jl � C2(l � 1)!Bl�1jg1( S ; I 0; p0; q; l)jl � C3(l � 1)!Bl�1with C1 = E0� , C2 = C3 = E0 and B = 
 E20�2k40�2 for some small enough order one 
.Moreover the so de�ned transformation is a biholomorphism: DK ! D0 providedthat � = s04K , �BK < 1. Thus the system 
an be written in normal form for� < �2k40�2K3 (A.6)in the domain D(r)� T ns �B2k, with r = 12r0e�s0=4,k = 12k0e�s0=4 s=s0=4.Remark A.16. Noti
e that for systems with one fast time s
ale the domain P 
oin
ideswith the whole W (k; s0=2) as all one dimensional ve
tors of norm one are diofantinewith order one 
. Moreover in this 
ase � = O(1) as well so if we 
hoose K = 
p" , thebound on � is � � " 52 .Remark A.17. Noti
e that if we 
hoose K = O"(1) we 
an perform some steps of thenormal form theorem for � < " so for order one � = �=".Proof. We pro
eed by indu
tion, using the analyti
ity assumptions on G and f .We will assume that the desired bounds hold for all l < m and that G1(J; l) andg1( S; I 0; p0; q; l) are analyti
 in Dm�1. This implies that the transformationI = I 0 + �S<m ;  0 =  + �S<mI0 ;p = p0 + �S<mq ; q0 = q + �S<mp0is well de�ned and Dm ! D0 ifmax(j�S<mq jm; �S<mp0 jm) � 14km ; j�S<m j jm � 14rm"bj ;j�S<mI0 js � 14s0 ; j�S<m ;I0jm < 1:7By jf jl we mean jf jDl .
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esSubstituting the bounds in this inequalities (and using Cau
hy estimates for the deriva-tives) we obtain the 
onstraint �max(8C1k20� ; 8C1�0�2 ) < 1 provided that �KB � 12 . Havingveri�ed the analyti
ity of the transformation up to order m we use analyti
 bounds onG, G1 and g1 and the assumed bounds on the lower orders to bound G1(J ;m) S(m)and g1( S ; I 0; p0; q;m). We repeatedly use the inequality:Xfki�1gai=1:Pi ki=k aYi=1(ki � 1)! � (k � 1)!:Let us �rst 
onsider S(m), it is 
omposed of �ve sums. In ea
h we substitute the Cau
hyestimates and the bounds 
oming from the indu
tive hypothesis.(1) The sum of quadrati
 terms is bounded by (k � 1)!Bk�1 C21s20�2�B .(2) The terms due to G are bounded by:p"E0� (m� 1)!BmXr�2( 4C1k20�B )r � 8p"E0C21k40�2�B (m� 1)!Bm�1provided that 4C1k20�B < 12 .(3) The terms due to f are bounded by:E0� (m� 1)!Bm�1Xr�1( 2C1k20�B )r � 4E0C1k20��B (m� 1)!Bm�1:provided that 2C1k20�B < 12 .(4) The terms due to G1 has the same bound as (2) if we �x C2 = E0.(5) If we �x C3 = E0 as well, the terms due to g1 are bounded by:E0� (m� 1)!Bm�1Xr�0 Xs�0;r+s�1( 2C1k20�B )r( 2C1�0�B )s � 4C1E0�k20�B (m� 1)!Bm�1provided that 2C1�0�B � 2C1k00�B < 12 .This �ve bounds must be all set < 15C1. It is easily seen that, as b � 1 and �0 � k20,all the desired bounds are implied by max( 8C1�0�2 ; 8p"E0C1k40�2�B � 15 . Now we dis
uss thebounds on G1 and g1. There are always the same �ve terms times a fa
tor �p" for G1and � for g1. So all the bounds are veri�ed if , E0C1k40�2�B � 
 << 1. We �x C1 = E0� asthis 
omes from the �rst order and B = 
 E20k40�2�2 .



A.5. Fast averaging Theorem for uni-modal perturbations 155A.5 Fast averaging Theorem for uni-modal pertur-bationsIn this Appendix we report Paragraph {7 of [GGM3℄. We 
onsider the Hamiltonian:H = 12("J2 + p2) + I !1p" + 
os q � 1 + �A(�+  )B(q) + �f(�;  ; q);for � = 0. A(x) is a trigonometri
 polynomial with zero mean value:A(x) = X0<jnj�N Aneinx:The symple
ti
 
hange of 
oordinates with generating fun
tion:J 0�+ I 0 + p0q � �p"B(q)X X0<jnj�N Anin ei(�+ )n;is globally de�ned for �p" � 1 (on a domain slightly smaller that the domain ofH) and in the new 
oordinates the size of the perturbation is �p". Moreover theperturbation is still a mono
hromati
 trigonometri
 polynomial with zero mean value8.Now we pass to lo
al hyperboli
 
oordinates for the pendulum, let us 
all then x; y.The Hamiltonian is: "2J2 +p"G(xy;p") +p"�F (�+  ; x; y);moreover, as F is uni-modal then the latti
e generated by its frequen
ies K(V )is one-dimensional,so the sub-latti
e � of frequen
ies � 2 K(V ) orthogonal to the fast dire
-tion is f0g.Now, following Remark A.17, for �p" < 1, we 
an apply an " independent numberof steps of the Normal Form Theorem of Appendix A.4 so that the Hamiltonian isof the form A.4 with a perturbation of order � < "3=2. Finally for � 6= 0 we applythe 
hange of 
oordinates just des
ribed. We obtain a Hamiltonian of the type A.4but with a perturbing fun
tion f( ; �; x; y) whi
h is not a trigonometri
 polynomial.So we trun
ate the Fourier series of the perturbating fun
tion at j�j < N with N =12"� 12plog "�1. Finally in the normal form theorem we set K = "� 12p(log "�1)�1.A.6 Proof of Theorem 4.20We 
onsider a tree A 2 mA with total frequen
y � and 
onsider in ea
h node v 2 A theFourier expansion of dnvf Æv�v (q):f( ; q) = X�;l2Zn+1 f�;lei( ��+l q) ; jf�;lj � Ce�r1(j�j+jlj):8However it does not depend only on the angle variables any more
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esSo the integral a) of Se
tion 3.1, (evaluated at ' = 0, be
omes:(�12)N(A)E(d; �) Xf�vgk� ;flvg[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)f�v ;lv ℄Yv�v0(ilv)nvI dRv02i�Rv0 1Z�1 d�v0e��(�v0 )Rv0eilv0q(�v0+id)ei!v0�v0Yv>v0 I dRv2i�Rv ( �wZ�1 d�v + �wZ1 d�v)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0eilvq(�v+id) ei!v�v : (a)As usual w is the node pre
eding v, mv(s) is the number of nodes in the list v; s(v)with label j = s, n(v) the number of those with label j = 0, lv 2 N0 and !v = !�v =(! � �)"� 12 .Now we pro
eed exa
tly as in Se
tion 3.1 and we apply Proposition 3.6; �nally, inbounding the proper integrals we noti
e that we do not approa
h any singularity. Weobtain the following bound9:Ck(k!)2�+2E(d; �) Xf�vgk� ;flvg[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)℄(ilv)nv jf�v;lv j( maxt2H(a0;d) jmax(eiq(t); e�iq(t))j)jlvj:Now we 
hoose a0 and d = 
1 so thatmaxt2H(a0;
1) jmax(eiq(t); e�iq(t))j � er1=2(see Figure 1.3 for an example). Finally we apply the bounds on the Fourier 
oeÆ-
ients10 of f( ; q), we obtain:Ck(k!)2�+2E(d; �)( nYj=1 � Yv�v0Æv=1 dmv(j)r1 1Xh=�1xhe�r1jhj��j )Yv�v0Æv=1 dnvr1 1Xh=�1 e�r1jhj=2; (A.7)all 
omputed in x = 1. As in Chapter 1 [f(x)℄n denotes the term of order n in theTaylor expansion of f(x) around x = 0. The series in expression A.7:1Xh=�1xhe�r1jhj9we are ignoring the nodes with Æ = 0 as they are 
learly irrelevant10Remember that we are 
onsidering a tree with total rotation �
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ellations due to integration by parts 157are absolutely 
onvergent for e�r1 < jxj < er1 and so we 
an bound the term of order�j by: Ck Yv:Æv=1mv(j)!e�r1j�j j:Finally one 
an pro
eed as in Appendix A.2 To prove that:XA2Akj 
(A) Yv:Æv=1 nYj=0mv(j) � (Cn)k;we simply 
hoose f(x0; : : : ; xn) = nYj=0 11� xj ; g(x0) = 1 + 2y � ey:
A.7 Can
ellations due to integration by partsThis is a simple generalization of the results in [GGM1℄.given A 2 A(i;h) 
onsider a 
ontinuous fun
tion h(t), remember that:W1(A) = � �jv0h(�v0)| {z }marking r~m(v)f Æv0 (�v0) Yvi2s(v0)Qjvi [W1(A�vi)℄is a fun
tion of the time �v0 .Lemma A.18. Consider a fun
tion h in H0 and a fruitless tree A , the fun
tionh(�0)O01 Æ �	1'(A) 
an be extended to a homomorphi
 fun
tion on a prede�ned striparound the real axis �0 2 R. Moreover if h(t) 2 H is o 
ontinuous then:=�th(t)W1�0(A; t) = 0Proof. The �rst assertion is simply the 
losure of H0 under the a
tion of Qj (see Propo-sition 1.16(ii)); the se
ond is equivalent to proving that for the 
ontinuous fun
tionh(�0)W1'(A) one has =(��0�Ph(�0)W1'(A) = 0 (�P is the proje
tion on polynomials).This is obvious as =P = 0 for any polynomial.Remark A.19. As f Æ(t) = F ( i(0) + ~!it;  0(t) e _ 0(t) = �2x00(t) we have that:�tf Æ(t) = Xj=1;:::;n ~!i� i � 2x00� 0Lemma A.20. Given an odd fun
tion G 2 H0 the following relation holds:��Qj(G) = Qj[��yG(�y) + 2Æj0x00(�y)�30f 0(�y)Q0(G)℄



158 Appendi
esProof. if j 6= 0 one 
an verify the Lemma dire
tly integrating by parts (noti
e that F kjhas no 
onstant 
omponents so that �PxijG 6= 
 for any summand G 
oming from F kj ),this is a heavy 
omputation so we give an alternative proof.We 
onsider the ve
tor V = � Oj(G)�t(Oj(G) �, by the de�nition of Oj it is a solution of_V = LjV +G where Lj is the 2� 2 blo
k of the matrix L (de�ned in Subse
tion 1.1.4)
oming from the a
tion-angle variables Ij;  j (remember that I0 = p;  0 = q):Lj = ���� 0 1Æj0
os(q0) 0 ���� :We derive with respe
t to t: �V =W0 _V + ( _W0V + _G)the �rst line of the solution _V is�t(O0(G)) = O0(� _q(t)�30f 0(t)O0(G) + _G)plus the �rst 
omponent of a solution of the homogeneous equation t ! W (t)X thatwe determine via the initial data. Otj(F ) is zero for t = 0, and we have seen inSubse
tion 1.1.3 that the initial datum is determined by the boundedness 
ondition�t(Oj(G))jt=0 = =0(x0jG) so:�t(Oj(G)) = Oj(2Æj0x00(t)�30f 0(t)O0(G) + _G) + x0j(t)=0(x0jG)and as G is odd we 
an substitute Qj(G) = Oj(G).Next we noti
e that the ve
tors W i = � x00(t)_x00(t) �, � �(t)x10(t)�(t) _x10(t) � are solutions of thesystem _W = L0W so we apply the time derivative and obtain11:_xi0 = 2Q0(xi0x00�30f 0(t)) + Æi1�(t)x00 (A.8)the last term is added to have the right behavior in t = 0 (dt�(t)x10j0 = 1).Oj(2Æj0x00(t)�30f 0(t)O0(G) + _G) + x0j(t)=0(x0jG) = Qj(2Æj0x00(t)�30f 0(t)O0(G) + _G)++12Xi (xij=x[i℄j (2Æj0x00(t)�30f 0(t)O0(G) + _G) + x0j(t)=0(x0jG)The last two sums 
an
el ea
h other via relationA.8, for j = 0, and using the fa
t thatif j 6= 0 then _x0j = 0 and _x1j = �(t).11we are using the fa
t that O0(�(�)F ) = �(t)O0(F )
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ellations due to integration by parts 159Proposition A.21. Consider A 2 A(i;h) with h(t) 2 H 
ontinuous for t 2 R (as h isin H it is analyti
 separately in R+ and R�):� Xj=1;:::;n(~!jXv2A �vjA) = 2Xv2A x00(v)�v0A+ 2Lx00(A)� _h(t) �A)�'=0_h(t) �A is simply the tree A marked _h(�0) instead of h(�0).Proof. Let �A = Ah(v0) namely the tree A, marked with the fun
tion h = 1 we need toprove that:=�tW10 (A) = =W10 ( Xj=1;:::;n(~!jXv2A �vjA)� 2Xv2A x00(v)�v0A� 2Lx00(A) + _h(t) �A):We know that: =��0W10 (A) = = _h(�0)W10 ( �A) + =h(�0)���0 �W10 ( �A)�	where the term in fg parentheses is:�(��0r~m(v0)f Æv0 ) Yvi2S(v0)Qjvi [W1(A�vi)℄++r~m(v0)f Æv0 Xvi2S(v0)W10 (A=vi)��0 [QjviW10 (A�vi)℄) (A.9)Now we setW10 (A�vi) = F (whi
h is odd as ' = 0) and apply Lemma A.20 to F 2 H0:��0Qjvi (F ) = Qjvi (��viF ) + 2Æj0Q0(x00(�y)�30f 0(�y)Q0(F ))and ��viF = ��vi [W10 (A�vi)℄this is the same expression treated in A.9 
al
ulated on trees of lower order. So wepro
eed re
ursively and obtain:0 = =f _h(�0)W10 ( �A) +Xv2AW10�v�v(A)+2Æjv0(W10 [Anv℄)Q0[x00(�y)�30f 0(�y)Q0(W1(A�v))℄gThe symbol �v�v means a �v derivative applied to f Æv(�v) so we 
an apply LemmaA.19.The third sum is �2W10 (Lx00(A)) (by the de�nition of Lx00(A) ).Corollary A.22. In parti
ular PropositionA.21 holds for 0k(j;h):Xi=1;:::;n ~!i0k(j;h) i = 20k(j;h) (0;x00) + 2Lx00(0k(j;h)) + _h(t; v0)�v0j 0k



160 Appendi
esA.8 Properties of the matrix M due to 
an
ella-tionsLemma A.23. The relation_xl0 = 2Q0(x00xl0�30f 0) + Æl1�(t)x00implies that: F l 0(00) = 12( _xl000 � �(t)x00)Proof. In F l 0(00) we 
hange the �rst node to the only node v1 of level one; then wesubstitute the leaf Q0(x00xl0�30f 0) = 12( _xl0 � Æl1�(t)x00)Proposition A.24. The matrix M veri�es:MY1 = A where Y t1 = ( n+1z}|{0 ; 1z}|{2 ; nz}|{�~! )e At = ( 1z }| {I+0 (t = 0) nz }| {I+(t = 0) ; n+1z}|{0 ); remember that I+j (t = 0; ' = 0) (j = 0; : : : ; n)is the initial datum in the a
tions at the homo
lini
 point ' = 0; �0 = �.Proof. This is a 
onsequen
e of Corollary A.22. let us the relation in 
omponents:2Mk n+2 =Xi !iMk n+2+i + (n+1Xj=1 Æk;n+1+j)I+k�n�2Translated in trees this is:20l 0k 0 + 2L0(0lk) + 2Æk 0F l 0(00) =Xi ~!i0l 0k i � Æl;1( nXj=0 Ækj)�(t)00k (A.10)here we simply used the de�nition of M and the identity:I+j = 12(I+j + I�j ) = �=Wx0j�(�0)00j :Expression A.10 
an be derived from Proposition A.21 by setting hlk = xlk forl = 0; 1 and k = 0; : : : ; n. as by Lemma A.23:_hlk(�)0k = 8<: �2F 0l(0 0 ) + �(t)000 k = 00 l = 0k = 1; : : : ; n�(�)00k l = 1 k = 1; : : : ; n :
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