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In this thesis we establish some properties of complete symmetric varieties.
Let G be an adjoint semisimple group over C and let θ be an involution of G. We
define H as the subgroup of the elements fixed by θ and we will say that G/H is
a homogeneous symmetric variety. De Concini and Procesi [CSV I] have defined
a wonderful completion of G/H and this is the unique wonderful completion of
G/H. They [CSV II] have also classified the complete symmetric varieties, i.e.
the G-varieties with a dense open orbit isomorphic to G/H and a G-equivariant
map Y → X extending the identity of G/H. Indeed they showed that there is an
equivalence of categories between the category of complete symmetric varieties
and the category of toric varieties over an affine space Al considered as a (C∗)l

variety in the obvious way, where l is the rank of G/H. Moreover there is a
one-to-one correspondence between the completion Y of G/H which lie over X
and the elements of a special class of complete toric varieties. One can show that
the complete toric variety Zc corresponding to a complete symmetric variety Y
is a subvariety of Y and the open toric variety Z corresponding to Y is open
subvariety of Zc.

In this thesis, unless explicitly stated, we shall always assume that the com-
plete symmetric variety Y is smooth. Recall that by [CSV II] it then follows
that: 1) any orbit closure in Y is also smooth; 2) the associated toric varieties
Z and Zc are both smooth. Our first result is a classification of the projec-
tive complete symmetric varieties. In particular we will prove that a complete
symmetric variety is projective if and only if the corresponding complete toric
variety is projective. Therefore we can use results for the classification of the
projective toric varieties.

Next we will study the projective normality of the complete symmetric vari-
eties. Chiriv̀ı and Maffei [CM II] have proved that, given any two line bundles,
say L1 and L2, generated by global sections on the wonderful complete sym-
metric variety X, the product of sections

H0(X, L1)⊗H0(X, L1) −→ H0(X,L1 ⊗ L2)

is surjective. This result implies easily the projective normality of X with
respect to any projective embedding by a complete linear system. We will try
to generalize this results to any complete symmetric variety. First we will prove
that the surjectivity of the product of sections of two ample line bundles on a
complete symmetric variety is equivalent to the surjectivity of the product of
sections of the restrictions of the line bundles to the corresponding complete toric
variety. Thus we will have reduced the problem to a problem on toric varieties.
But it is very difficult to verify the surjectivity of the product of sections of
any two ample line bundles on a generic complete toric variety. However, we
can simplify the problem for the special class of complete toric varieties which
we are considering. Indeed we will prove that the surjectivity of the product
of sections of two ample line bundle on Zc, say L1 and L2, is equivalent to the
surjectivity of the product of sections of the restrictions of the line bundles to
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Z. This problem is much simpler, because H0(Z, L1|Z) and H0(Z,L2|Z) are
infinite dimensional vector spaces and it is sufficient to prove that the a suitable
finite dimensional subspace of H0(Z, (L1 ⊗ L2)|Z) is contained in the image of
the product of sections. Indeed we will prove that, given any ample line bundle
L on Zc, H0(Z,L|Z) is generated by H0(Zc, L|Zc) as an OZ(Z)-module. Next
we will find a infinite number of varieties of every dimension such that, for any
ample line bundle L on a such variety Z, the product of sections of L

H0(Z, L)⊗H0(Z, L) −→ H0(Z,L⊗ L)

is surjective. In particular we will prove that all the smooth toric varieties
proper over A2 have this property.

In the last part of this work we will study the Fano complete symmetric
varieties. A variety is called a Fano variety if its anticanonical bundle is ample.
It easy to show that the anticanonical bundle of the wonderful symmetric va-
riety is always generated by global sections. We will classify the homogeneous
symmetric varieties G/H whose wonderful completion is a Fano variety. In par-
ticular we will show that the wonderful completion of G/H is usually Fano, for
example if the involution on the root system is different from −id, but there are
cases for which the wonderful completion of G/H is not Fano, for example the
homogeneous symmetric varieties associated to the involutions of type CI.

More generally, we want to know which complete symmetric varieties are
Fano varieties. Bifet [Bi] has shown that there is a deep relation between the
line bundles on a complete symmetric variety and the line bundles on the cor-
responding toric variety. It is known that there are only a finite number of
complete toric Fano varieties of every fixed dimension (see [VK]), up to isomor-
phisms, and they are classified in low dimension. Thus we can expect that the
same facts are true for the complete symmetric varieties. We will prove that
there are only a finite number of Fano complete symmetric varieties for every
G/H. We will classify them for every G/H whose rank is 2. More generally
we will classify, for every G/H, the Fano complete varieties obtainable through
a sequence of blow-ups along closed orbits from the wonderful variety. We will
show that there are at most two Fano complete symmetric varieties with such
property. Unluckily, if the rank of G/H is strictly greater than 2, this condition
is very restrictive. If the rank of G/H is 3 we can say a bit more. In this case
we will classify the Fano complete symmetric varieties obtainable from the won-
derful variety through a sequence of blow-ups along G stable subvarieties. This
condition is not much restrictive. Indeed it is easy to construct example of vari-
eties that does not satisfy these hypothesis, but usually they are not projective,
so a fortiori they are not Fano varieties. We will prove that there are at most
eleven Fano complete symmetric varieties with such property. The most impor-
tant part of the proof of the previous classifications will be the classifications of
the corresponding open toric varieties with ample anticanonical bundle.

We will also classify the complete symmetric varieties of rank 2 whose anti-
canonical bundle is generated by global sections. We will show that there is only
a finite number of complete symmetric varieties with such property for every
G/H of rank 2, but this number is arbitrarily large.
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Part I

Introduction

1 Homogeneous symmetric varieties

First of all, we will describe some preliminary results and we will fix the nota-
tions. In this section we want to describe some properties of the homogeneous
symmetric varieties. For details on the homogeneous symmetric varieties see
[He], [A], [Bu], [K] or [W]. Let G be a connected and simply-connected semi-
simple algebraic group over C and let θ be an involution of G, we define H as
the normalizer of the subgroup of invariants Gθ.

Definition 1.1 We will say that G/H is a (homogeneous) symmetric variety.

Sometimes we will say that G/H is the symmetric variety associated to
(G, θ). We shall denote by G the adjoint group associated to G, i.e. the quo-
tient of G by the center Z(G). One can show that there is an one-to-one
correspondence between the involutions of G and the involutions of G. More-
over an involution of G and the corresponding involution of G induce the same
involution of the Lie algebra g of G (and G). One can show that G/H is isomor-
phic to the quotient of G by the subgroup G

θ
of invariants with respect to the

involution associated to θ. Observe that there is an one-to-one correspondence
between the involutions of G and the involutions of g because G is connected
and simply-connected. By abuse of notation, we call θ also the involution on g
associated to θ.

As example of a symmetric variety we can consider any adjoint group G
considered as a G × G homogeneous space. Here the involution is (G × G, θ)
with θ((x, y)) = (y, x) for each x, y ∈ G.

Definition 1.2 We will say that G/H is simple if either G is a simple semi-
simple group or G/H is a simple adjoint group.

If G/H is not simple then there are two connected and simply-connected
semi-simple group G1 and G2 such that G = G1 × G2. Moreover there are an
involution θ1 on G1 and an involution θ2 on G2 such that θ((x, y)) = (θ(x), θ(y)),
so G/H = G1/H1×G2/H2. In this case we will write (G, θ) = (G1, θ1)×(G2, θ2).

θ acts diagonally on g and it has two eigenvalues, namely 1 and −1. The
1-eigenspace h is the Lie algebra of H. Observe that h is also the Lie algebra
of the subgroup of θ fix-points. Moreover H is the largest subgroup of G whose
Lie algebra is h. Notice that the (-1)-eigenspace is isomorphic to the tangent
space of the symmetric variety G/H at H. We want to describe it explicitly,
but first we have to choose a suitable maximal torus of G and a suitable Borel
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subgroup of G. We will say that a stable torus is split if θ(t) = t−1 for each
element t of the torus.

Definition 1.3 Let T 1 ⊂ G be a split torus of maximal dimension l. We will
say that l is the rank of the symmetric variety G/H.

Choose any maximal torus T which contains T 1, one can show that T is
θ-stable.

Notation 1 Let T 0 be the identity component of the subgroup T ∩Gθ of invari-
ants of T , we will define S as the quotient T 1/(T 1∩T 0) of T 1 by the intersection
of T 1 with T 0.

Observe that T 1 ∩ T 0 consists of elements of order two, namely elements t
such that t = t−1. The Lie algebra t of T is θ-stable, so we can write t = t0⊕ t1
where t0 is the 1-eigenspace and t1 is the (-1)-eigenspace. t0 is the Lie algebra
of T 0 and t1 is the Lie algebra of T 1. Since t is θ stable, θ induces an involution
on t∗ that we call again θ. Moreover this involution of t∗ stabilizes the root
system φ of G and it preserves the Killing form. Observe that we can identify
t∗ with the complexification χ∗(T )⊗Z C of the group of characters χ∗(T ) of T .
Moreover χ∗(T ) is the lattice of integral weights of the root system of g and it
is stabilized by θ. We have the maps

T

T 1
?Â

OO

// // S,

where the vertical map is the inclusion and the horizontal one is the quotient
map. These maps induce maps on the corresponding groups of characters.

χ∗(T )

²²
χ∗(S) Â Ä // χ∗(T 1).

If we extend by linearity these maps to maps of real vector spaces, then
the map χ∗(S) Â Ä // χ∗(T 1) becomes an isomorphism, so we have a surjec-

tive map χ∗(T )R // // χ∗(S)R . Moreover the restriction of this map to the
(-1)-eigenspace is an isomorphism, so we can identify χ∗(S) with a lattice M
contained in χ∗(T )R. (Given an abelian group A we set AR := A⊗R).

Definition 1.4 Let N be the dual Hom(M,Z) of M , where M is identified to
the group of characters of S. Thus N is the group of 1-parameter subgroups of
S.

Notice that S = N ⊗Z C∗.
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Notation 2 We call φ0 the subset {α ∈ φ | θ(α) = α} of φ formed by the roots
fixed by θ. Moreover we set φ1 = φ− φ0.

One can show that the maximality of dim (T 1) is equivalent to the fact that
θ|gα = idgα

for each α ∈ φ0 (here gα is the root space corresponding to α). We
can choose a Borel subgroup such that the associated set φ+ of positive roots
has the following property: if we set φ+

1 = φ1 ∩ φ+ and φ+
0 = φ0 ∩ φ+ then

θ(φ+
1 ) = −φ+

1 , namely the image of any positive root α by θ is either α itself or
is a negative root. Finally we can give an explicitly description of h.

Proposition 1.1 h = t0⊕
⊕

α∈φ0
gα⊕

⊕
α∈φ+

1
C(xα + θ(xα)), where xα is any

fixed not zero element of gα.

This proposition implies the Iwasawa decomposition: the (-1)-eigenspace of
g is isomorphic to t1⊕

⊕
α∈φ+

1
gα. Indeed this space is isomorphically projected

onto the tangent space of G/H at H. In particular the dimension of G/H
is dim t1 + 1/2|φ1|. Observe that BH ⊂ G is dense in G because Lie(B) ⊃
t1 ⊕

⊕
α∈φ+

1
Cxα. Thus G/H has a dense B orbit, namely G/H is a spherical

variety.
We can associate a possibly non reduced root system to the involution θ.

This root system is usually called the restricted root system of (G, θ) (or the
relative root system of (G, θ)). φ is sometimes called the absolute root system of
(G, θ). Let Γ be the set of simple roots of φ, we set Γ0 = Γ∩φ0 and Γ1 = Γ∩φ1.
For any root α we set αs = α − θ(α). If αs is not zero, we say that it is a
restricted root. Observe that αs is not zero if and only if α belongs to φ1.

Proposition 1.2 The set φ̃ = {αs|α ∈ φ1} is a possibly not reduced root system
of rank l in MR. We call it the restricted root system.

Sometimes the restricted root system is defined as {αs/2 |α ∈ φ1}, because
(αs/2)(t) = (α)(t) for each t ∈ t1. Moreover (αs/2)(t) = (αs)(t) = 0 for each
t ∈ t0. A basis of the restricted root system is the set Γ̃ = {αs |α ∈ Γ1} (notice
that Γ1 ⊂ φ1 so αs 6= 0 for each α ∈ Γ1). Moreover we can choose an order of
the simple roots such that Γ1 = {α1, ..., αl, αl+1, ..., αr} and the αs

i are distinct
for i = 1, ..., l, so Γ̃ = {αs

1, ..., α
s
l }.

Now we want to describe the Weyl group of φ̃ and the lattice of integral
weights of φ̃.

Proposition 1.3 (See proposition 1.1.3.3 in [W]) One can identify the Weyl
group W 1 of the restricted root system with the group {w ∈ W : w · t1 ⊂ t1}/W0,
where W is the Weyl group of φ and W0 is the Weyl group of the root system
φ0 (in χ∗(T 0)R).

Notation 3 By Λ we denote the lattice of integral weights of φ and by Λ+ the
set of dominant weights.
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Let ωα be the fundamental weight corresponding to the simple root α and
let < , > be the scalar product of ΛR. Observe that < , > induces the scalar
product of MR, so we denote this last scalar product again by < , >. Given
a dominant weight λ, let Vλ be the irreducible representation of G of highest
weight λ.

Definition 1.5 We will say that a dominant weight λ is a spherical weight if
there is a not zero vector k ∈ Vλ fixed by h, namely h · k = 0 for each h ∈ h.

If λ is a spherical weight then k is unique up to a scalar and we call it kλ.

Definition 1.6 We will say that a dominant weight λ is special if θ(λ) = −λ.

Observe that if λ is a special weight then it belongs to MR. One can show
that the spherical weights are special. Viceversa given a special weight λ then
2λ is spherical. One can show:

Proposition 1.4 (Lemma 2.1 in [CM I]) Let Ω+ be the set of spherical
weights and let Ω be the lattice generated by the spherical weights, then Ω∩Λ+ =
Ω+.

Notice that Ω contains M . We want to describe more explicitly the relation
between spherical weights and special weights. The involution θ induce an
involution θ of the set Γ1 of the simple roots not fixed by θ. Indeed, given
any α ∈ Γ1 there is an (unique) θ(α) in Γ1 such that θ(α) = −θ(α) − βα,
where βα is a positive linear combination of simple roots fixed by θ. Moreover
θ(ωα) = −ωθ(α) for each α in Γ1. Observe that, given a weight λ, θ(λ) = −λ if
and only if λ =

∑
α∈Γ1

nαωα with nθ(α) = nα for each α in Γ1. Let ω̃i = ωαi

if θ(αi) = αi and let ω̃i = ωαi + ωθ(αi)
if θ(αi) 6= αi. Thus a dominant weight

λ is special if and only λ =
∑l

i=1 niω̃i for suitable positive integers n1, ..., nl.
Moreover ω̃1, ..., ω̃l are free generators of the lattice generated by the special
weights, namely {λ ∈ Λ : θ(λ) = −λ}. We will say that a special weight λ is
regular if ni > 0 for each i = 1, ..., l. Now we can describe Ω explicitly.

Proposition 1.5 (Theorem 2.3 in [CM I]) Ω =
⊕l

i=1 Zaiω̃i where ai ∈
{1, 2} for each i. ai is equal to 2 if θ(αi) = −αi, while it is equal to 1 if
θ(αi) 6= −αi. In particular ai = 1 if θ(αi) 6= αi. Moreover, for each i and j
we have < aiω̃i, (αs

j)
∨ >= biδi,j where (αs

j)
∨ is the coroot associated to αs

j and
bi ∈ {1, 2}. bj = 2 if and only if 2αs

j ∈ φ̃. In particular, if φ̃ is reduced then
a1ω̃1, ..., alω̃l are the fundamental weights dual to (αs

1)
∨, ..., (αs

l )
∨.

Given a weight λ we define the Ω-support of λ as the set suppΩ(λ) = {αs ∈
Γ̃ | (λ, αs) 6= 0}. Observe that a special weight λ is regular if and only if
suppΩ(λ) = Γ̃.

Notation 4 Let C+ be the positive Weyl chamber of the restricted root system.

Observe that C+ = Λ+
R ∩MR.
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2 The wonderful symmetric variety

Now we want to describe the wonderful compactification of G/H. Let λ be
a spherical weight such that suppΩ(λ) = Γ̃ and let V be a finite dimensional
representation of g such that V = Vλ ⊕ V ′ for a suitable representation V ′. Let
kV ′ ∈ V ′ be a vector fixed by h, so also k = kλ + kV ′ is fixed by h. Suppose
that each weight of kV ′ has the form λ −∑l

i=1 niα
s
i where the ni are positive

integers and they are not all zero. Let [k] be the class of k in P(V ), we define
X as the closure of G[k] in P(V ). The maps g → g[k] induce an embedding
G/H ↪→ X that is called the ”minimal compactification” of G/H. Moreover
this construction is independent from the choice of the weight λ and of the
representation V ′.

We can give another description of the minimal compactification of X. Let
λ1, ..., λm be spherical weights whose Ω-supports are disjoint and such that
suppΩ(λ1) ∪ ... ∪ suppΩ(λm) = Γ̃. If we define x0 as the point

([hλ1 ], ..., [hλm
]) ∈ P(Vλ1)× ...×P(Vλm

),

then we can extend the map G/H 3 gH → gx0 ∈ P(Vλ1)× ...×P(Vλm) to an
isomorphism X → Gx0.

We will need a local description of X. Let V be as before and choose a
basis of weight vectors. We define Ã as the affine open set of P(V ) where the
coordinate corresponding to the highest weight vλ is not zero. Let A = Ã ∩X
and observe that A is U− stable, where U− is the unipotent group associated
to −φ+

1 , namely U− =
∏
−α∈φ+

1
Uα as a variety. One can show that the closure

of T [k] in Ã is an affine space Al with coordinates −αs
1, ...,−αs

l . Moreover the
map ϕ : U− × Al → A given by ϕ(g, v) = g · v is an isomorphism. For each
i, let X−αs

i
be the divisor of X whose intersection with U− × Al is the locus

of zeroes of −αs
i . Notice that there is an unique closed orbit in P(V ) and it

is contained in X. This implies that X is covered by the G-translates open
sets of A. Let P be the parabolic subgroup of G associated to Γ0, namely the
parabolic subgroup whose Lie algebra is t⊕⊕

α∈φΓ0∪φ+ gα, where φΓ0 is the root
system generated by Γ0. The previous observations allow ourselves to prove the
following theorem.

Theorem 2.1 (Theorem 3.1 in [CSV I]) Let X be the minimal compactifi-
cation G/H, then:

1. X is a smooth projective G-variety;

2. X\(G · [k]) is a divisor with normal crossings. It has irreducible compo-
nents X−αs

1
, ..., X−αs

l
and they are smooth subvarieties of X.

3. the G-orbits of X correspond to the subset of {1, 2, ..., l} so that the orbit
closures are the intersections X−αs

i1
∩ ... ∩X−αs

ik
.

4. there is an unique closed orbit
⋂l

i=1 X−αs
i

and it is isomorphic to G/P .
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This proposition shows that X is a wonderful variety according to the defini-
tion of Luna [L]. Moreover it is the unique wonderful compactification of G/H,
so we will often call it the wonderful symmetric variety.

3 Line bundles on the wonderful symmetric va-
riety

We want to study the Picard group of X. First of all we consider some properties
which are valid on a much more general class of varieties.

Proposition 3.1 Let G be a connected and simply-connected semi-simple al-
gebraic group and let V be a smooth complete G-variety. Suppose that G acts
trivially on Pic(V ). Then, given any line bundle L on V , there is a (canonical)
linearization of L and Hi(V, L) is a G representation for each i. Thus Pic(V )
is isomorphic to the group PicG(V ) of the G-linearized line bundles.

It easy to see that if V is a spherical G-variety then our assumption are
satisfied and we can say more.

Proposition 3.2 Let G̃ a connected reductive group and let V be a spherical
G̃-variety, namely a (smooth) G̃-variety with a dense orbit with respect to a fixed
Borel subgroup of G̃. If L is any linearized line bundle on V then H0(V,L) is
a multiplicity-free G̃-representation, namely every G̃ irreducible representation
appears in H0(V, L) with multiplicity at most 1.

The following proposition implies that we can identify Pic(X) with a sub-
lattice ΛX of the lattice of weights.

Proposition 3.3 (Proposition 8.1 in [CSV I]) The map Pic(X) → Pic(G/P )
induced by the canonical inclusion is injective.

Remember that we can identify Pic(G/P ) with a sublattice of the lattice
of weights. Indeed Pic(G/P ) ≡ PicG(G/P ) because G/P is a spherical variety
and a linearized line bundle L ∈ PicG(G/P ) corresponds to the opposite λ of
the character −λ with which T acts on the fibre over P ∈ G/P . Explicitly we
can define L as follows. We can extent λ to a one-dimensional representation
V of P . We define L as the quotient of of G × V by the action of P defined
as follows: p(g, v) = (gp−1, λ(p)v) for each p ∈ P and (g, v) ∈ G × V . The
projection L → G/P is induced by the projection G × V → G → G/P and G
acts on L by h[(g, v)] = [(hg, v)] for each h, g ∈ G and v ∈ V .

Because of the previous proposition, we denote a line bundle on X with
Lλ if its image is the weight λ. Let λ be a dominant weight such that P(Vλ)
contains a line r fixed by H, for example λ ∈ Ω+. One can show that the map
G/H 3 gH → gr can be extended to a morphism ψλ : X → P(Vλ). The line
bundle ψ∗λO(1) is Lλ. Indeed if we restrict ψ∗λO(1) to G/P we obtain the line
bundle that correspond to λ (in the previous correspondence between Pic(G/P )
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and a sublattice of Λ). If Lµ is a line bundle on X such that µ is dominant,
then there is a sub-representation of H0(X,Lµ) isomorphic to V ∗

µ , obtained
by pullback of H0(P(Vµ),O(1)) to X. Moreover this representation is unique
because H0(X, Lµ) is multiplicity free. So we can call it V ∗

µ without ambiguity.
Moreover

Lemma 3.1 (Lemma 4.6 in [CS]) Pic(X) is the lattice generated by the dom-
inant weights λ such that P(Vλ)H is not trivial. Moreover if P(Vλ)H is not
trivial then it is a point.

We want give a more explicit description of Pic(X). Remember that there
is an involution θ of Γ1.

Definition 3.1 We will say that a root α ∈ Γ1 is an exceptional root if θ(α) 6= α
and < α, θ(α) >6= 0. Moreover we will say that G/H is exceptional if there is
an exceptional root. We will say that a compactification of G/H is exceptional
if G/H is exceptional.

Observe that θ(α) is exceptional if and only if α is. Moreover one can show
that, if G/H is exceptional, then the restricted root system φ̃ is not reduced.

Theorem 3.1 (Theorem 4.8 in [CS]) Pic(X) is generated by the spherical
weights and by the fundamental weights corresponding to the exceptional roots.

Notice that, given an exceptional root α ∈ Γ1, θ(ωα) = −ωθ(α) and ωα+ωθ(α)

is a spherical weight. We will need the following lemma on the line bundles
corresponding to the opposite of the simple restricted roots.

Proposition 3.4 (Corollary 8.2 in [CSV I]) There is a G-invariant section
s−αs

i
∈ H0(X, O(X−αs

i
)) whose divisor is X−αs

i
. Moreover this section is unique

up to a non zero scalar.

In the first part of this work we want to generalize the following theorem.

Theorem 3.2 (Theorem A in [CM II]) Let Lλ and Lµ be two line bundles
generated by global sections on X. Then the product of sections

Mλ,µ : H0(X, Lλ)×H0(X,Lµ) → H0(X,Lλ+µ)

is surjective.

In [CM II] the previous theorem is stated with the hypothesis that λ and µ
are dominants. But we will prove that a line bundle Lλ is generated by global
sections if and only if λ is dominant, so our assumptions are equivalent to those
ones in [CM II]. As a consequence of the previous theorem we have (see for
example [Ha] Exercise II.5.14):

Corollary 3.1 Let L be a line bundle on X generated by global sections and
consider the map X → P(H0(X, L)∗) defined by L. Then the cone over the
image of X is normal.
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4 Toric varieties

In this section we want to collect some results about toric varieties. For details
on toric varieties see [F], [O] or [Da]. See [G] for more results about polytopes
and see [R] for more results about convex functions.

It is known that there is an equivalence of categories between the category
of embeddings of G/H over X and the the category of embeddings of S over Al.
This suggests to describe the toric varieties before describing the embeddings
of G/H over X. Moreover this description will be useful to understand the
combinatorial constructions that we will do on the embeddings of G/H over
X. Indeed these constructions are very similar to the ones used in the theory of
toric varieties, but are more difficult to describe geometrically. For these reasons
we will be very detailed in this section.

4.1 First definitions

Let S be the torus N ⊗Z C∗ = Spec(C[M ]) where M is a finitely generated
free abelian group and N is the dual Hom(M,Z) of M . We can identify M
with the character group of S and N with group of 1-parameter subgroups of
S. Given m ∈ M we call χm the associated function on S, so χm+m′

= χm ·χm′

for all m,m′ ∈ M . The χm form a basis of semi-invariant vectors for the S-
representation C[M ]. We want to remark that we define the action of the torus
on his ring of coordinate as follows: (t · f)(t′) = f(t−1 · t) for each f ∈ C[M ]
and t, t′ ∈ T . Thus χm is a seminvariant function with weight −m. Usually the
action is defined as follows: (t · f)(t′) = f(t · t); so that χm is a seminvariant
function with weight m. This is possible because T is an abelian group, but
we will need to study torus which are subgroup of not abelian group, so we do
not use the second definition. We want to describe the S-toric varieties. These
are the normal S-varieties which contain an open orbit isomorphic to S. Every
toric varieties is associated to a fan in N , so we have to define fans. First of all
we introduce the notion of a convex rational polyhedral cone.

Definition 4.1 σ is a convex rational polyhedral cone in NR if there are vec-
tors v1, ..., vn in N such that σ is the cone generated by v1, ..., vn, namely
σ =

∑n
i=1 R+vi. We will denote σ by σ(v1, ..., vn). σ is a strongly convex

rational polyhedral cone if, moreover, it contains no line.

In what follows we are going to tacitly assume that all cones contained in
NR are strongly convex rational polyhedral cones.

Definition 4.2 The cone σ∨ = {x ∈ MR | x(y) ≥ 0 ∀y ∈ σ} in MR is called
the dual cone of σ. Let σ⊥ = {x ∈ MR |x(y) = 0 ∀y ∈ σ} be the subspace of
MR of vectors vanishing on σ.

Observe that σ∨ is a convex rational polyhedral cone and that σ∨+(−σ∨) =
MR, but it may be not strongly convex. Indeed σ⊥ is the largest vector space
contained in σ∨. The dimension of σ is the dimension of smallest subspace of
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NR containing σ, namely σ + (−σ). A not empty subset τ of σ is a face of σ if
there is a m ∈ σ∨ such that τ = σ ∩ {m}⊥ = {y ∈ σ |m(y) = 0}. This means
that there is semi-space V = {x ∈ NR : m(x) ≥ 0} such that σ is contained
in V and τ is the intersection of σ and of the border {x ∈ NR : m(x) = 0}
of V . Notice that {0} is a face of every cone, so we usually do not mention it.
Indeed {0} corresponds to any vector m in σ∨\σ⊥ (this is true because we have
assumed that σ is strongly convex). If σ = σ(v1, ..., vn) then its faces are the
cones σ(vi1 , ..., vik

). A face τ of σ is a strongly convex rational polyhedral cone.
Moreover, given v and v′ in σ, v + v′ belongs to τ if and only if both v and v′

belong to τ .

Definition 4.3 A fan ∆ in N is a set of (strongly convex rational polyhedral)
cones with the following two properties:

• 1) if σ ∈ ∆ and τ is a face of σ then τ ∈ ∆;

• 2) if σ, σ′ ∈ ∆ then the intersection σ ∩ σ′ is a face both of σ and σ′.

The union |∆| =
⋃

σ∈∆ σ is called the support of ∆. Let ∆(i) be the subset of
∆ formed by the cones of dimension i.

Usually we will not mention the cone 0 that belongs to each fan. Observe
that a fan is uniquely determined by its maximal elements. Now we will de-
scribe the toric variety Z associated to a fan ∆. Z has an open cover {Uσ}σ∈∆

formed by open sets stabilized by the action of S. The open set Uσ is iso-
morphic to SpecC[M ∩ σ∨] and the intersection of two of these open sets,
say Uσ and Uσ′ , is the open set Uσ∩σ′ associated to the intersection of the
associated cones. In particular, if σ′ ⊂ σ then Uσ′ ⊂ Uσ. Notice that S cor-
responds to the cone {0}. For example Cn is the toric variety associated to
the fan formed by the faces of σ(v1, ..., vl), where {v1, ..., vl} is a basis of N .
We can identify S with (C∗)n and it acts on Cn by (t1, ..., tl) · (x1, ..., xl) =
(t1x1, ..., tlx1) for each (t1, ..., tl) ∈ (C∗)n and (x1, ..., xl) ∈ Cn. The stable
open sets of Cn are the sets {(x1, ..., xl) : xi1 6= 0, ..., xir 6= 0} for each subset
of {1, ..., l}. Let {m1, ...,ml} be the basis of M dual to {v1, ..., vl}. We have
C[M ] = C[χm1 , χ−m1 , ..., χml , χ−ml ] and OCn(Cn) = C[χm1 , ..., χml ]. Observe
that σ(v1, ..., vl)∨ = σ(m1, ...,ml). The ring of coordinates of {(x1, ..., xl) :
xi1 6= 0, ..., xir 6= 0} is C[χm1 , ..., χml , χ−mi1 , ..., χ−mir ], so this is the open
set associated to σ(v1, ..., v̂i1 , ..., v̂ir , ..., vl). The action of S on C[M ] is such
that t · χm = −m(t)χm for each t ∈ S and m ∈ M , so C[M ∩ σ∨] is a sub-
representation. Thus S acts on Uσ. Moreover the Uσ are the only S-stable open
sets of Z. Observe that the dimension of the variety Z is equal to the rank of
N .

Now we give some example of geometric properties of a toric variety and of
the equivalent conditions on the associated fan: 1) a toric variety Z is affine if
and only if its fan consists of all the faces of a single cone; 2) a toric variety Z is
complete if and only if the support of the associated fan is the whole of space,
namely |∆| = NR; 3) Z is smooth if and only if for each σ ∈ ∆ there is a subset
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{v1, ..., vr} of a basis of N such that σ = σ(v1, ..., vr). These facts imply that
the only affine smooth toric variety associated to a cone of maximal dimension
is the affine space.

Let S1 = N1 ⊗Z C∗ and S2 = N2 ⊗Z C∗ be two tori, then every map
S1 → S2 corresponds to a map ϕ : N1 → N2. We call ϕ also the extension of
ϕ by linearity to a map N1 ⊗Z R → N2 ⊗Z R. Let Zi be a Si-toric variety for
each i and let ∆i be the fan of Zi for each i. There is at most one map Z1 → Z2

extending ϕ. It exists if and only if for each σ ∈ ∆1 there is a cone σ′ ∈ ∆2

such that ϕ(σ) ⊂ σ′. Suppose that there is a such map, then it is proper if and
only if for each σ′ ∈ ∆2 we have ϕ−1(σ′) =

⋃
σ∈∆1:ϕ(σ)⊂σ′ σ. In particular if

S1 = S2 and ϕ is the identity then Z1 → Z2 is proper if and only if |∆1| = |∆2|.
Let Z be a S-toric variety and let ∆ be its fan. We want to describe the

bijective correspondence between the orbits of Z and the cones in ∆. Before
we need to describe the quotients of S. Observe that S = HomZ(M,C∗) and
Uσ = Homsg(M ∩ σ∨,C∗) for each σ ∈ ∆ (here Homsg( , ) means morphisms
of semigroups). Let σ be a cone in NR, then the torus S′ = HomZ(M ∩σ⊥,C∗)
is a quotient of S, where the quotient map

S = HomZ(M,C∗) // // S′ = Homsg(M ∩ σ⊥,C∗)

is given by restriction and it is associated to the inclusion C[M ∩σ⊥] ↪→ C[M ].
Let Nσ be the sublattice of N generated by σ (as a group) and let N(σ) = N/Nσ,
then S′ = N(σ)⊗Z C∗ and the quotient map S // // S′ is obtained tensoring

the quotient map N // // N(σ) by C∗.

Proposition 4.1 (See proposition 1.6 in [O] or page 54 in [F]) For each
σ ∈ ∆ we can regard the quotient algebraic torus oσ := HomZ(M ∩ σ⊥,C∗) of
S as a S-orbit in Z. Every S-orbit is of this form and, in this way, ∆ is in
one-to-one correspondence with the set of S-orbits in Z. Moreover the following
holds:

1. o{0} = U{0} = S.

2. for each σ ∈ ∆, the dimension of oσ is equal to the codimension l−dim (σ)
of σ in NR.

3. For σ, τ ∈ ∆, τ is a face of σ if and only if oσ is contained in the closure
of oτ .

4. For σ ∈ ∆, oσ is the unique closed S-orbit in Uσ and we have Uσ =⋃
τ⊂σ oτ (observe that oσ may not be closed in Z).

5. There is a one-to-one correspondence between ∆ and the closed subvari-
eties of Z stabilized by the action of S: every σ ∈ ∆ correspond to closure
Zσ of oσ. Moreover Zσ =

⋃
τ⊃σ oτ .

6. Let n ∈ N and let σ ∈ ∆. Then we have n ∈ σ if and only if the one-
parameter subgroup γn corresponding to n has the property that limt→0γn(t)
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exists in Uσ. In this case, the limit coincides with the identity element of
oτ regarded as an algebraic torus, where τ is the face of σ which contains
n in its relative interior.

For example if Z = Cl then the orbit oσ(vi1 ,...,vir ) associated to σ(vi1 , ..., vir
)

is the set {(x1, ..., xl) : xi = 0 if and only if i ∈ {i1, ..., ir}}. Its closure is
the set {(x1, ..., xl) : xi = 0 if i ∈ {i1, ..., ir}}. The ring of coordinates of
oσ(vi1 ,...,vir ) is C[χmi , χ−mi ]

i∈/{i1,...,ir}, while the ring of coordinates of its closure
is C[χmi ]

i∈/{i1,...,ir}. If σ has dimension equal to dim N , then oσ is a S stable
point which we call xσ.

The inclusion oσ = HomZ(M ∩ σ⊥,C∗) ↪→ Uσ = HomZ(M ∩ σ∨,C∗) is
given by extension by zero. The extension by zero of a group homomorphism
is a semigroup homomorphism because σ⊥ is a face of σ∨, so given u, u′ ∈ σ∨,
u + u′ belongs to σ⊥ if and only if both u and u′ belong to σ⊥.

We want to describe the stable closed subvarieties of Z more closely. For
each τ ∈ ∆, Zτ is a toric variety with respect to the torus oτ . The fan of
Zτ in N(τ) is {σ + Nτ ⊗Z R/Nτ ⊗Z R : σ ∈ ∆ and τ ⊂ σ}. Observe that
Zτ intersects Uσ if and only if σ ⊃ τ . In this case Zτ ∩ Uσ is isomorphic to
SpecC[M ∩τ⊥∩σ∨] = Homsg(M ∩τ⊥∩σ∨,C). We want to describe the closed
immersion Zτ ↪→ Z. Zτ is covered by the Uσ with σ ⊃ τ . The closed immersion
Zτ ∩ Uσ = Homsg(M ∩ τ⊥ ∩ σ∨,C) ↪→ Uσ = Homsg(M ∩ σ∨,C) is given
by extension by zero. The extension by zero of a semigroup homomorphism
is a semigroup homomorphism because τ⊥ ∩ σ∨ is a face of σ∨. The closed
immersion Zτ ∩ Uσ = Homsg(M ∩ τ⊥ ∩ σ∨,C) ↪→ Uσ = Homsg(M ∩ σ∨,C)
corresponds to the projection C[M ∩ σ∨] // // C[M ∩ τ⊥ ∩ σ∨] that takes m

to m if m ∈ M ∩τ⊥∩σ∨ and it takes m to 0 otherwise. This projection is a ring
homomorphism because τ⊥ ∩ σ∨ is a face of σ∨. These maps are compatible,
namely if τ ⊂ σ ⊂ σ′, then the following diagram commutes

Zτ ∩ Uσ
Â Ä //

Ä _

²²

Zτ ∩ Uσ′Ä _

²²
Uσ

Â Ä // Uσ′ .

Indeed we can rewrite this diagram as

Homsg(M ∩ τ⊥ ∩ σ∨,C) Â Ä //
Ä _

²²

Homsg(M ∩ τ⊥ ∩ (σ′)∨,C)Ä _

²²
Homsg(M ∩ σ∨,C) Â Ä // Homsg(M ∩ (σ′)∨,C)

where the vertical maps are extensions by zero and the horizontal ones are
restrictions. Notice that σ ⊂ σ′ implies σ∨ ⊃ (σ′)∨.
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4.2 Line bundles

In the following we will consider only smooth toric varieties such that the maxi-
mal cones of the associated fan have all dimension equal to dim S. Moreover we
call l the dimension of S. In this case Z is covered by the open sets associated
to the l-dimensional cones, namely Z =

⋃
σ∈∆(l) Uσ. Moreover Uσ is isomorphic

to Cn for each σ ∈ ∆(l). Observe that this hypotheses are satisfied by every
smooth complete toric variety.

Now we want to study the line bundles on Z, but it is easier to describe
the equivariant line bundles. We want to observe that, without the previous
hypothesis on the maximal cones of ∆, most of the following facts are false.

Definition 4.4 A real valued function h : |∆| → R on the support of ∆ is called
a (∆,M)-linear function if it is Z-valued on N ∩ |∆| and it is linear on each
σ ∈ ∆. Let SF (∆,M) be the additive group of the (∆,M)-linear functions.

Remark. We can think h as function h : NR → R∪ {−∞} such that h(x) is
finite if and only if x ∈ |∆|.

Definition 4.5 Let h be a (∆,M)-linear function and let σ be a cone in ∆(l).
We set h|σ as the unique linear function which coincides with h on σ.

Notice that h|σ ∈ M for each h and σ.

Definition 4.6 Let h : NR → R∪{−∞}. We say that h is M -piecewise linear
if there is a fan ∆ for which h is (∆,M)-linear.

We have a natural map M
Â Ä // SF (∆,M) that takes m ∈ M to the

restriction of m to |∆|. This map is injective, so we can think M as a subset of
SF (∆, M). An equivariant line bundle on Z is a line bundle π : L → V with
an algebraic action of S on L such that π is equivariant (namely π(tz) = tπ(z)
for each t ∈ S and z ∈ L) and the action of each t ∈ S on L induces a
linear map from π−1(x) to π−1(tx) for each x ∈ V . Let PicS(V ) be the set
of isomorphism classes of equivariant line bundles on V . Let DivS(V ) be the
subgroup of Div(V ) generated by the S-stable divisors. By proposition 4.1 we
have DivS(V ) =

⊕
τ∈∆(1) ZZτ . The following theorem relates the previous

groups. We will say that a vector v ∈ M is primitive if there is no v′ ∈ M such
that v = av′ for a suitable integer a > 1. Given a cone τ ∈ ∆(1) there is an
unique primitive vector %(τ) contained in τ . Moreover, given any cone σ ∈ ∆,
σ =

∑
τ∈∆(1),τ⊂σ R+%(τ).

Theorem 4.1 (See proposition 2.1 and proposition 2.4 in [O] or pages
63ff in [F])

1. We have an isomorphism SF (∆,M)
∼= // PicS(Z) which associates an

equivariant line bundle Lh to each ∆-linear function h.
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2. Suppose that h ∈ SF (∆,M). If m ∈ M satisfies

m(n) ≥ h(n) for all n ∈ |∆|,

then we have a semi-invariant section ϕ : Z → Lh of Lh of weight −m,
namely ϕ(tx) = m(t)(tϕ(x)) for each x ∈ Z.

3. We have an isomorphism SF (∆,M)
∼= // DivS(Z) which takes h to the

divisor

Dh :=
∑

τ∈∆(1)

−h(%(τ))Zτ .

In particular Dm is the principal divisor associated to the rational function
χ−m on Z.

4. For h ∈ SF (∆,M) the sheaf of germs of sections of Lh coincides with
the invertible sheaf OZ(Zh) associated to the S-invariant divisor Zh. This
sheaf has an action of S and it can be regarded naturally as a S-stable
OZ-submodule of the direct image j∗OS with respect to the embedding j :
S → Z.

5. We have the short exact sequence:

0 → M → PicS(Z) → Pic(Z) → 0

Moreover Pic(Z) is free abelian.

The map M → PicS(Z) is the composition of the injection M → SF (∆,M)
and the isomorphism SF (∆,M) → PicS(Z). We want to give some ideas
of the proof. Let σ and γ be two cones in ∆(l). Observe that (h|σ)(n) =
(h|γ)(n) = h(n) for each n ∈ σ ∩ γ, so h|σ− h|γ is contained in M ∩ (σ ∩ γ)⊥ ⊂
M ∩ (σ ∩ γ)∨. Thus h|σ − h|γ and h|γ − h|σ are regular functions on Uσ∩γ .
Remember that Z is covered by the open sets Uσ associated to the maximal
cones σ ∈ ∆(l). Hence we can define a line bundle Lh =

⋃
σ∈∆(l)(Uσ × C)

over Z by gluing Uσ × C and Uγ × C along Uσ∩γ × C by the isomorphism

ϕγ,σ : Uσ ×C ⊃ Uσ∩γ ×C
∼= // Uσ∩γ ×C ⊂ Uγ ×C defined by ϕγ,σ(x, c) =

(x, χh|σ−h|γ(x)c) for (x, c) ∈ Uσ∩γ × C. The projections to the first factors
glue themselves together to give a map Lh → Z. S acts on Lh by t(x, c) =
(tx, χ−h|σ(t)c) for each t ∈ S and each (x, c) ∈ Uσ ×C.

If h is linear and equal to m then obviously Lm is the trivial bundle Z ×C,
because m|σ = m|γ for each σ and γ in ∆(l). In this case S acts on Lm by
t(x, c) = (tx, χ−m(t)c).

Let m ∈ M be such that m(n) ≥ h(n) for all n ∈ |∆|, then m − h|σ ∈
M ∩ σ∨ for each σ ∈ ∆(l) and χm−h|σ is a regular function on Uσ. Hence there
is a section ϕ : Z → Lh whose restriction ϕ|Uσ : Uσ → Uσ × C is defined
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by (ϕ|Uσ)(x) = (x, χm−h|σ(x)). This section is obviously semi-invariant with
weight −m.

For the third point observe that h is determined by his values on the primitive
vectors %(τ) with τ ∈ ∆(1), because σ =

∑
τ∈∆(1),%⊂σ R+%(τ) for each σ ∈ ∆.

Notice that, for each σ ∈ ∆(l), the restriction of OZ(Dh) to the open set Uσ

is Oσ · χh|σ and −h|σ is the character with which S acts on the fibre over the
S-stable point xσ associated to σ. It is easily seen that OZ(Dh) is the sheaf of
germs of sections of Lh and that it is a S-stable OZ-submodule of j∗OS . Notice
that Lh is uniquely determined by the characters h|σ. This fact will be true
also for the complete symmetric varieties.

We now want to describe the canonical bundle of a smooth toric variety.

Proposition 4.2 (see page 70 in [O]) Let Z be any smooth toric variety with
fan ∆ and let k be the (∆,M) linear function such that k(%(τ) = 1 for each
τ ∈ ∆(1). Then Dh is a canonical divisor.

Now we want to describe the space of the sections of Lh as an S-module.

Proposition 4.3 (See lemma 2.3 in [O] or page 66 in [F] ) For each h ∈
SF (∆, M),

Qh = {m ∈ MR : m(n) ≥ h(n) ∀ n ∈ |∆|}
is a (possibly empty) convex polyhedron. Moreover

H0(Z; Lh) =
⊕

m∈Qh∩M

Cχm,

where χm is a semi-invariant section of weight −m.

Proof. Observe that H0(Uσ, j∗OS) = H0(S,OS) = C[M ]. Moreover
H0(Uσ, Lh) = H0(Uσ,OZ(Dh)) is a subspace of H0(Uσ, j∗OS) for each σ ∈ ∆(l)
and {χm : m ∈ (h|σ) + M ∩ σ∨} is a basis of semi-invariant sections because
OZ(Dh)|Uσ = Oσ · χh|σ. Moreover H0(Z, Lh) =

⋂
σ∈∆(l) H0(Uσ, Lh). The

proposition follows because (h|σ) + M ∩ σ∨ = {m ∈ M : m(n) ≥ (h|σ)(n) =
h(n) ∀ n ∈ σ}. ¤

We will see that we can recover Lh from Qh if Lh is generated by global
sections. We can consider also higher cohomology groups. In this case we
suppose that Z is complete for simplicity.

Proposition 4.4 (See theorem 2.6 in [O] or lemma on page 75 in [F])
Let Z be a complete variety. For each h ∈ SF (∆, M) and each positive integer
q, S acts on the cohomology group Hq(Z, Lh). For each m ∈ M , the eigenspace
Hq(Z,Lh)m with respect to the character m is Hq(NR, NR\Z(h,m),C) where
Z(h,m) = {n ∈ NR : m(n) ≥ h(n)}. Thus we have a direct sum decomposition

Hq(Z,Lh) =
⊕

m∈M

Hq(NR, NR\Z(h, m),C)χm.
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Now we want to describe the line bundles generated by global sections, re-
spectively the ample line bundles. To do this we need the definition of a convex
function.

Definition 4.7 Let h be a M -piecewise linear function. We will say that h is
(upper) convex if h(n) + h(n′) ≤ h(n + n′) for all n, n′ ∈ NR.

If h is ∆-linear, then it is convex if and only if h(n)+h(n′) ≤ h(n+n′) for all
n, n′ ∈ |∆| (this definition is the reason why we have chosen −∞ instead of ∞).
The convexity of h means that the graph of h lies under the graph of h|σ for
each σ ∈ ∆(l). Sometimes the function identically equal to −∞ is considered a
convex function, but we prefer to exclude it because it does not correspond to
any line bundle on a toric variety.

Definition 4.8 Given a convex h ∈ SF (∆,M) we will say that h is strictly
convex on ∆ if h|σ 6= h|γ for each σ ∈ ∆(l) and γ ∈ ∆(l) distinct.

This condition means that, for each σ ∈ ∆(l), the graph of h on the com-
plement of σ lies strictly under the graph of h|σ. Observe that this condition
depends on the fan ∆, while the convexity is a condition that depends only on
h. We will use the fact that these definitions can be stated without assuming
that h has integral values on N ∩ |∆|.

Proposition 4.5 (See theorem 2.7 in [O] or lemma on page 68 in [F])
Let h ∈ SF (∆, M). Lh is generated by global sections if and only if h is convex.

The necessity of the condition is easy to show. Let σ ∈ ∆(l) then Uσ is an
affine space and xσ is the unique S-stable point in Uσ. We have O(Lh)|Uσ =
C[M ∩ σ∨]χh|σ, so χh|σ is the unique section, up to a not zero scalar, which
does not vanish on xσ. Thus, if Lh is generated by global sections, then h|σ ≥ h
for each σ ∈ ∆(l). This means that h is convex.

Proposition 4.6 (See corollary 2.4 in [O] or pages 70ff in [F]) Let Z be
a (possibly singular) complete toric variety and let h ∈ SF (∆,M). Then Lh is
ample if and only if h is strictly convex on ∆.

Proposition 4.7 (Demazure) (See corollary 2.5 in [O] or [De]) Let Z
be a smooth complete toric variety and let h ∈ SF (∆,M). Then Lh is ample if
and only if it is very ample. In particular Lh is very ample if and only if h is
strictly convex on ∆.

We will extend the last two theorems to the case of toric varieties proper on
the affine space.

Proposition 4.8 Suppose that Z is a (possibly singular) toric variety proper
over Al and let h ∈ SF (∆, M). Then Lh is ample if and only if h is strictly
convex on ∆. If Z is smooth, then Lh is ample if and only if it is very ample.
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Let Lh be a very ample line bundle on a smooth toric variety Z. Given
σ ∈ ∆(l), the description following the theorem 4.1 implies that the only sem-
invariant section which does not vanish on xσ is the seminvariant section with
weight h|σ. Thus there are not cones σ, σ′ ∈ ∆(l) such that σ 6= σ′ and
h|σ = h|σ′, otherwise xσ and xσ′ would have the same image through any
immersion ϕ : Z → P(V ) such that Lh = ϕ∗(O(1)). This is in particular true
if Z is as in proposition 4.8. The fact the Lh is ample if h is strictly convex on
∆ will be a consequence of a more precise statement. More precisely we will
define a complete toric variety Zc and an ample line bundle L on Zc such that
Z is an open subvariety of Zc and Lh is the restriction of L to Z.

We now mention some properties of convex functions and convex sets. Re-
member that a set Q is convex if, for each p, p′ ∈ Q, Q contains the segment
with endpoints p and p′. Moreover Q is a polyhedron, or polyhedral convex set,
if it is the intersection of a finite number of semi-spaces (in general a convex
set is the intersection of an infinite number of semi-spaces). If a polyhedron is
compact then it is the convex hull of a finite number of points and we will say
that it is a polytope. We will say that a polyhedron is rational if all its vertices
belong to M .

Theorem 4.2 (See theorem 13.2 in [R] or theorem A.18 in [O])
Let C(MR) be the set of not-empty convex sets in MR and let SF (NR) be the set
of functions h : MR → R ∪ {−∞} which are positively homogeneous and upper
convex, namely h(av) = ah(v) and h(v + v′) ≥ h(v) + h(v′) for each a ∈ R+

and v, v′ ∈ NR.

1. We have mutually inverse maps C(MR) → SF (NR) and SF (NR) →
C(MR), which respectively send Q to hQ and h to Qh, defined as follows:

hQ(v) = inf{m(v); m ∈ Q} for v ∈ NR

Qh = {m ∈ MR : m(v) ≥ h(v), ∀ v ∈ NR.}

2. Under the map above, the sum Q + Q′ and a positive multiple aQ cor-
respond respectively to the sum function h + h′ and the positive multiple
ah.

3. Q is compact if and only if hQ has finite value everywhere.

This theorem implies that, given a line bundle Lh generated by global sec-
tions, we can recover h from the polyhedron Qh, so we can recover Lh from Qh.
hK is called the support function for K.

Proposition 4.9 (See theorem A.18 in [O]) The following conditions are
equivalent:

• h ∈ SF (NR) is the support function for a convex polyhedral set under the
correspondence of the theorem 4.2;
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• there exists a finite decomposition of h−1(R) into a union of convex poly-
hedral cones, such that the restriction of h to each convex polyhedral cone
in the decomposition is a linear function. These cones do not intersect in
their relative interiors.

Moreover for any given polyhedron Q, there exists the coarsest such decom-
position ∆, which satisfies the following properties:

• Define
P † = {v ∈ NR : m(v) = h(v) ∀v ∈ P}

for each nonempty face P of Q. Then the map sending P to P † gives rise
to a bijection {nonempty faces of Q} → ∆

• dimP + dimP † = dimNR for each nonempty face P of Q

• if P1 ⊃ P2 for nonempty faces P1 and P2, then P †1 ⊂ P †2

• If γ ∈ ∆ and γ = P †, then

P = {m ∈ Q : m(v) = h(v) ∀ m ∈ γ} ∈ {nonempty faces of Q}

Notice that h is a M -piecewise linear function if and only if Qh is a rational
polyhedron. Indeed the vertices of Qh are the h|σ with σ in ∆(l). We want to
remark that the cones in the previous proposition may be not strongly convex.
Indeed, they are all strongly convex if and only if Qh has dimension equal to
the dimension of NR. In this case the set of the previous cones and their faces
is a fan ∆ in N . If moreover |∆| = NR, then h is the piecewise linear function
associated to an ample line bundle on the complete toric variety corresponding
to ∆.

This proposition implies easily the following corollaries.

Corollary 4.1 Let Z be a complete toric variety and let Lh be a line bundle on
Z generated by global sections. Suppose that Qh has dimension equal to the rank
of N , then there is a complete (possibly singular) toric variety Z ′ dominated by
Z and an ample line bundle L′ on Z ′ such that Lh is the pullback of L′.

Corollary 4.2 Let Z be a toric variety proper over Al and let Lh be a line
bundle on Z generated by global sections. Then there is a (possibly singular)
toric variety Z ′ dominated by Z and an ample line bundle L′ on Z ′ such that
Lh is the pullback of L′. Moreover Z ′ is proper over Al.

Now we want to describe the projective toric varieties. Before we need to
define the polar convex set and the gauge function of a convex set containing 0.

Definition 4.9 Let Q be a convex set in MR containing 0, then the set Q◦ :=
{n ∈ NR : m(n) ≥ −1 ∀m ∈ Q} is called the polar convex set of Q. Let
h : MR → R ∪ {−∞} be the function such that h(0) = 0 and h(u) = −inf{r ∈
R+ : u ∈ rQ} if u 6= 0. h is called the gauge function of Q.
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Proposition 4.10 (see p. 28, 125, 174 on [R]) Let Q be a convex set in
MR containing 0, then Q◦ is a convex set. Moreover:

• Q◦ contains 0 and (Q◦)◦ = Q;

• Q is a polyhedral convex set if and only if Q◦ is a polyhedral convex set;

• Q is limited if and only if 0 is contained in the interior of Q◦. Dually, 0
is contained in the interior of Q if and only if Q◦ is limited;

• the gauge function h of Q is the support function of Q◦ and Q = {m ∈
MR : h(m) ≥ −1}.

One can show the following proposition using the proposition 4.6, the theo-
rem 4.2, the proposition 4.9 and the proposition 4.10.

Proposition 4.11 Let ∆ be the fan of a complete toric variety and let h be a
(∆, M) linear function. The following conditions are equivalent:

• h is strictly convex on ∆;

• Qh is a rational polytope in MR with vertices {h|σ : σ ∈ ∆(l)}. Moreover
h|σ 6= h|σ′ for each σ, σ′ ∈ ∆(l) different, i.e. the number of vertices of
Qh is equal to the cardinality of ∆(l);

• Q◦h is a rational polytope in NR with vertices {− 1
h(%(τ))ρ(τ) : τ ∈ ∆(1)}.

If one of this condition is verified then the cones of ∆ are generated by the faces
of Q◦h.

Corollary 4.3 Let ∆ be the fan of a complete toric variety Z. Then Z is
projective if and only if there is rational polytope P in NR containing 0 as an
internal point and such that the faces of ∆ are generated by the faces of P .

We have similar properties for the smooth toric varieties Z proper over Al.

Proposition 4.12 Let Z a smooth toric variety proper over Al, let ∆ be the
fan of Z and let Lh be a linearized line bundle on Z. Lh is ample if and only if
Q◦

h is a rational polytope in NR with vertices {− 1
h(%(τ))ρ(τ) : τ ∈ ∆(1)} ∪ {0}.

In this case the cones of ∆ are generated by the faces of Q◦h not containing 0.

Recall that there is a basis {v1, ...vl} of N such that the fan of Al is formed
by the faces of σ(v1, ...vl).

Corollary 4.4 Z is quasiprojective if and only if there is a rational polytope Q
in NR with the following properties: 1) Q is contained in σ(v1, ...vl); 2) there
are positive constants a1, ..., al such that 0, a1v1, ..., alvl are vertices of Q and 3)
the cones of ∆ are generated by the faces of Q◦

h not containing 0.

Observe that Q may have other vertices besides 0, a1v1, ..., alvl.
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4.3 S-toric varieties and étale coverings of S

Let S′ be a torus and suppose that it is an étale covering of S, i.e. there is
a morphism of algebraic group π : S′ → S with finite kernel and such that S
is the quotient group of S′ by ker π. If Z is a S-toric variety then we have a
canonical action of S′ on Z. Indeed, for each t ∈ S′ and z ∈ Z we can set
t · z := π(t) · z. We want to study the S′ linearized line bundles on Z. In the
following we recollect some results which are easily implied by the results of the
previous section about the S linearized line bundles. Recall that we consider
only smooth toric varieties such that all the maximal cones of the associated
fan have dimension equal to dim S.

Let L be a line bundle on Z. First of all, a S-linearization of L induces
canonically a S′-linearization of L. This action is defined as follows: t · x :=
π(t) · x for each t ∈ S′ and x ∈ L. Notice that there are S′-linearized line
bundles whose linearization is not induced by a S-linearization. We now define
some examples. Let M ′ be the character group of S′, we have an injective
map π∗ : M ↪→ M ′. For each m ∈ M ′ we can define a S′-linearization of the
trivial bundle Z × C as follows: t · (z, c) = (t · z,−m(t)c) for each t ∈ S′ and
(z, c) ∈ Z × C. We call Lm the S′-linearized line bundle given by the trivial
bundle with the previous S′ linearization. Observe that if m does not belong to
M then the S′ linearization of Lm is not induced by a S linearization.

The following proposition is implied by the proposition 4.1

Proposition 4.13 We have the following commutative diagram with exact rows
and injective columns

0 // M ′ // PicS′(Z) // Pic(Z) // 0

0 // M //?Â

π∗

OO

PicS(Z) //
?Â

OO

Pic(Z) //

id

OO

0.

In particular PicS′(Z) = PicS(Z) + M ′.

We want to remark that one can prove that ker(PicS′(Z) // Pic(Z)) is
isomorphic to M ′ using the fact that the character group of S′ is discrete. We
want to define a group similar to SF (∆,M). Notice that M has finite index
in M ′, so we can think M ′ as a lattice in MR containing M . Moreover given
any lattice with such properties, say M̃ , there is a étale covering of S, namely
Spec[M̃ ], whose character group is the given lattice.

Definition 4.10 A real valued function h : |∆| → R on the support of ∆ is
called a (∆,M ′)-linear function if h is linear on each σ ∈ ∆. Let h|σ be the
unique linear function which coincide with h on σ. We request moreover that
h|σ belongs to M ′ and that h|σ1 − h|σ2 belongs to M for each σ, σ1 and σ2 in
∆(l). Let SF (∆,M ′) be the additive group of the (M ′, ∆)-linear functions.

23



Sometimes we say that an element h of SF (∆,M ′) is a ∆ linear function. We
can again think a ∆-linear function as a function h : NR → R∪{−∞}. As before
we say that a (∆,M ′) linear function h is convex if h(v + v′) ≥ h(v) + h(v′) for
each v, v′ ∈ |∆|. We say that h is strictly convex on ∆ if moreover h|σ 6= h|σ′ for
each σ, σ′ ∈ ∆(l). Observe that, given any h ∈ SF (∆,M ′), there is a positive
integer n such that nh is (∆,M)-linear function.

Definition 4.11 Let h : NR → R ∪ {−∞}. We say that h is piecewise linear
if there is a fan ∆ and a lattice M ′ for which h is a (∆,M ′)-linear function.

We can associate a S′-linearized line bundle Lh on Z to each h ∈ SF (∆, M ′)
in a similar way to the S-linearized line bundles associated to an elements of
SF (∆, M) (see theorem 4.1). The line bundle Lh is associated to the Cartier
divisor {Uσ, χ−h|σ}σ∈∆(l) and the S′-linearization is defined as follows: t·(x, c) =
(t · x, χ−h|σ(t)c) for each t ∈ S′ and (x, c) ∈ Uσ ×C.

Notation 5 Suppose that we have fixed a lattice M ′ and a fan ∆ associated to
a S-toric variety Z. Let σ be an arbitrarily fixed cone in ∆(l). For each (∆, M ′)
linear function h we denote with vh the linear function h|σ.

Given two (∆,M ′)-piecewise linear function, say h and k, we have vh+k =
vh + vk. The definitions immediately imply that, given any (∆,M ′) linear
function h, the function h′ = h − vh is a (∆,M) linear function. Moreover h
is strictly convex on ∆ (respectively convex) if and only h is. Given a (∆, M ′)
linear function h, the S′-linearized line bundle Lh on Z is the product of Lh−vh

and of Lvh
. Observe that the S′-linearization of Lh−vh

is induced by a S-
linearization and that Lvh

is trivial as a line bundle. The following proposition
is immediately implied by the theorem 4.1 and by the propositions 4.5, 4.7, 4.8
and 4.13.

Proposition 4.14 The map SF (∆,M ′) → PicS′(Z) the takes h in Lh is an
isomorphism. Moreover:

• Lh is generated by global sections if and only if h is convex;

• Suppose that |∆| is NR or σ(v1, ..., vl). Then Lh is ample if and only if
h is strictly convex on ∆. Moreover Lh is very ample if and only if it is
ample.

Given any h ∈ SF (∆, M ′), H0(Z, Lh) is a S′ representation. Moreover this
representation has a basis of seminvariant sections because S′ is a torus. The
set of the weights of these sections is obviously contained in M ′. If we change
the linearization of Lh, i.e. if we multiply Lh by a linearized line bundle Lm,
then this set of weights is translated with respect to the vector m. Because
of the proposition 4.3 there is an one-to-one correspondence between a basis of
seminvariant sections of H0(Z, Lh) and the set of the rational points of Qh−vh

.
Hence, we have the following proposition:
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Proposition 4.15 For each h ∈ SF (∆,M ′),

H0(Z; Lh) =
⊕

m∈Qh∩(M+vh)

Cχm,

where χm is a semi-invariant section of weight −m.

Notice that any piecewise linear function h corresponds to a translate of
a suitable rational polyhedron under the correspondence of the theorem 4.2.
Indeed Qh − vh is the rational polyhedron Qh−vh

.

5 Complete symmetric varieties

A G/H embedding is a complete irreducible G-variety with a G-equivariant
open embedding ϕ : G/H → Y . We say that Y is a smooth G/H-embedding if
Y is a smooth variety.

Definition 5.1 Let Y be a G/H-embedding. We will say that Y is a complete
symmetric variety if there is a commutative diagram

G/H Â Ä //

id

²²

Y

π

²²
G/H

Â Ä // X,

where π : Y → X is a G-equivariant proper map.

First of all, we want to describe the relation between the complete symmetric
varieties and the toric varieties proper over Al. Let P be the S-principal fibre
bundle on X associated to the vector bundle

⊕l
i=1 O(X−αs

i
). Remember that

the X−αs
i

are the stable divisors of X and that for each i there is a G-invariant
section si ∈ H0(X,O(X−αs

i
)) with divisor X−αs

i
. Moreover si is unique up to

a not zero scalar. The section
⊕l

i=1 si of
⊕l

i=1 O(X−αs
i
) defines an embedding

X → P ×S Al because P ×S Al is isomorphic to
⊕l

i=1 O(X−αs
i
). If Z → Al is

a toric variety over Al, we define Y = XZ as the fibre product of

P ×S Z

²²
X

Â Ä // P ×S Al.

Theorem 5.1 (Proposition 5.1, theorem 5.2 and theorem 5.3 in [CSV II])
Let Z be any toric variety over Al, and let XZ be as before.

1. G acts on Y and the projection π : Y → X is equivariant.
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2. If Z1 → Z2 is an S-equivariant map then the induced map XZ1 → XZ2 is
G-equivariant.

3. The G orbits of Y are in one-to-one correspondence with the S-orbits of Z.
Moreover the codimension of an orbit O in Y is equal to the codimension
of corresponding orbit o in Z, so it is equal to the dimension of the cone
associated to o.

4. π−1(Al) is the closure in π−1(U− ×Al) of the open S-orbit in π−1(Al).

5. π−1(U− ×Al) ∼= U− × π−1(Al) in a U− × T equivariant way.

6. The map Y → π−1(Al) is an equivalence between the category of complete
symmetric varieties and the category of toric varieties proper over Al.
Moreover Y is smooth if and only if π−1(Al) is smooth.

7. The closure of S in X is the toric variety Zc
0 associated to the fan formed

by the Weyl chambers and their faces.

8. There is an one to one correspondence between complete symmetric vari-
eties and complete toric S-varieties over Zc

0 whose fan is W 1 invariant.

In this thesis, unless explicitly stated, we shall always assume that the com-
plete symmetric variety Y is smooth. In this case it follows that: 1) any orbit
closure in Y is also smooth; 2) the complete toric variety corresponding to Y is
smooth. We now introduce some notations that we will often use.

Notation 6 Let X be the wonderful complete variety and let Y be the complete
symmetric variety over X associated to a toric variety Z over Al. We will
denote by Zc the closure of Z in Y . Observe that Zc is the closure of S in Y .
We will call ∆ the fan of Z and ∆c the fan of Zc. We shall denote the fan of
Z0 := Al by ∆0 and the fan of Zc

0 by ∆c
0. Remember that oγ is the S-orbit of

Z associated to γ ∈ ∆. We will call Oτ the G-orbit of Y corresponding to oτ .
We shall denote by Zγ the stable subvariety of Z associated to γ ∈ ∆, by Zc

γ the
stable subvariety of Zc associated to γ ∈ ∆c and by Yγ the stable subvariety of
Y associated to γ ∈ ∆.

Observe that, given γ ∈ ∆, Zγ may be properly included in Zc
γ .

Definition 5.2 We define {f1, ..., fl} as the basis of M such that fi = −αs
i

for each i. Moreover we define {e1, ..., el} as the basis of N dual to the basis
{f1, ..., fl}.

Observe that ei is a negative multiple of w̃i, so it is a negative multiple of
the i-th fundamental weight of the restricted root system.
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6 Line bundles on a complete symmetric variety

Now we want to describe the Picard group of Y following [Bi]. Remember that
the closed orbits Oσ of Y are in one-to-one correspondence with the maximal
cones of ∆. Moreover they are all isomorphic to the unique closed orbit of
X through the restriction of the projection, so we can identify Pic(Oσ) with
Pic(G/P ) for each σ ∈ ∆(l). Remember that we can identify Pic(X) with a sub-
lattice ΛX of the lattice Λ of integral weights. One can easily show that Cl(Z)
is freely generated by the divisors Zτ associated to the cones τ ∈ ∆(1)\∆0(1).
Remember that Cl(Z) is the divisor class group of Z, i.e. the quotient of the
divisor group of Z by the group of principal divisors. Notice that Cl(Z) is
isomorphic to Pic(Z). The following theorem gives a complete description of
Pic(Y ).

Theorem 6.1 (Theorem 2.4 in [Bi]) Let Y = XZ be a complete symmetric
variety. Then

1. The maps Z
Â Ä i // Y

π // X induce the split exact sequence

0 // Pic(X) π∗ // Pic(Y ) i∗ // Pic(Z) // 0,

so Pic(Y ) is (not canonically) isomorphic to Pic(X)⊕ Pic(Z).

2. A section Cl(Z) → Cl(Y ) of the split short exact sequence

0 // Cl(X) // Cl(Y ) // Cl(Z) // 0

is given by sending the free generators [Zτ ], with τ ∈ ∆(1)\∆0(1), to [Yτ ].
Thus

Cl(Y ) = π∗Cl(X)⊕
⊕

τ∈∆(1)\∆0(1)

Z [Yτ ].

3. The morphism given by the restriction to the closed orbits

cG
1 : Pic(Y ) →

∏

σ∈∆(l)

Pic(Oσ)

is injective and its image can be identified with the lattice

ΛY = {h = (h|σ) ∈
∏

σ∈∆(l)

ΛX ⊂
∏

σ∈∆(l)

Λ : h|σ − h|σ′ ∈ M ∩ (σ ∩ σ′)⊥

∀ σ, σ′ ∈ ∆(l).}
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We will indicate with Lh the line bundle whose image is h. Using the propo-
sition 3.1, we get that Pic(Y ) is isomorphic to the group of equivariant line
bundles PicG(Y ). Given a line bundle Lh, −hσ is the character of the action of
T on the fibre over the T -stable point Oσ ∩ Z.

Definition 6.1 Let h be in ΛY . We will say that h is almost spherical if h|σ ∈ Ω
for each σ ∈ ∆(l). Moreover we will say that h is spherical if h|σ is a spherical
weight for each σ ∈ ∆(l).

Remember that h|σ is spherical if and only if it is dominant and it belongs to
Ω.

We define also hc as the set (h|σ) where σ varies in ∆c(l) and −h|σ is the
character of the action of T on the fibre over the T -stable point xσ ∈ Zc. We
say that hc is (almost) spherical if h is. Notice that hc is almost spherical if
and only if h|σ ∈ Ω for each σ ∈ ∆c(l). The proof of the following proposition
is trivial.

Proposition 6.1 If h is almost spherical, then we can think h as a (∆,ΛX) lin-
ear function and hc as a (∆c,ΛX) linear function. Moreover hc is W 1 invariant,
thus, if w ∈ W 1 and v ∈ |∆|, then hc(w · v) = h(v).

Now we want to do some remarks on the h that are not almost spherical. Let
l+s be the rank of Pic(X), we can order the simple roots of φ so that α1, ..., αs

are exceptional roots and Pic(X) is generated by the spherical weights and
by the fundamental weights ωα1 , ..., ωαs corresponding respectively to α1, ..., αs.
Thus Pic(Y ) ∼= Pic(Z)⊕Ω⊕⊕s

i=1 Zωαi . Therefore, given any dominant weight
µ in ΛX , there are integers ai and a spherical weight µ′ such that µ = µ′ +∑

aiωαi . Observe that ωαi − θ(ωαi) = ωαi + ωθ̄(αi) is a spherical weight. Thus
we can suppose that the ai are positive up to exchange some αi with θ(αi).
We will say that µ is regular if µ′ is regular or, equivalently, if the restriction
of the line bundle Lµ to the closed orbit of X is ample. Given any h ∈ ΛY

there are integers ai and an almost spherical ∆-linear function h′ such that
h = h′ +

∑
aiωαi (given two maximal cones σ and σ′, h|σ − h|σ′ is a integral

combination of restricted simple roots). If h|σ is dominant (respectively regular)
for each σ ∈ ∆(l) then we can assume that the h′|σ are dominant (respectively
regular). Moreover we can assume that the ai are positive up to exchange some
αi with θ(αi). We will say that h is convex, respectively strictly convex on
∆, if h′ is. Moreover, given any h ∈ ΛY and σ ∈ ∆(l), h − h|σ is a (∆, ΛX)
linear function and hc−h|σ is a (∆c, ΛX) linear function. We will say by abuse
of notation that h is a (∆, ΛX)-linear function and hc is a (∆c, ΛX)-linear
function.

Let L be any line bundle on Y . We want to describe the space of sections
of L on Y . We will describe also the space of sections of the restriction of
L to Z, respectively to Zc. Remember that H0(Y, L) is a multiplicity free
representation of G, because Y is a spherical variety (see proposition 3.2). In the
same way H0(Z, L|Z) and H0(Zc, L|Zc) are multiplicity-free T -representations
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because Z and Zc have a dense T -orbit. We need a proposition that generalizes
proposition 3.4. Remember that Yτ is the divisor associated to τ ∈ ∆(1).

Lemma 6.1 (Lemma 2.7 in [Bi]) Let dτ be the ∆-linear function cG
1 (Yτ ) as-

sociated to Yτ . Then dτ (%(τ ′)) = −δτ,τ ′ , in particular dτ is Z-valued on |∆|∩N .
Moreover there is a unique, up to scalar, G-invariant section sτ in H(Y, Ldτ )
whose divisor is Yτ .

Now we want to define sets in bijective correspondence with bases respec-
tively of H0(Y, L), H0(Z, L|Z) and H0(Zc, L|Zc).

Definition 6.2 Given h ∈ ΛY let

Π(Z, h) = {µ ∈
⋂

σ∈∆(l)

(h|σ + (M ∩ σ̌))},

Π(Zc, h) = {µ ∈
⋂

σ∈∆c(l)

(h|σ + (M ∩ σ̌))

and
Π(Y, h) = Π(Z, h) ∩ Λ+.

Before we describe the sections of Lh, we want to rewrite the conditions for
a weight to belongs to Π(Z, h), respectively to Π(Zc, h).

Lemma 6.2 Let λ be a weight in ΛX and let h be in ΛY . Then the following
conditions are equivalent:

1. λ ∈ Π(Z, h)

2. λ ≥ h as functions on |∆|
3. h = λ +

∑
τ∈∆(1) aτdτ where aτ is a positive integer for each τ ∈ ∆(1).

Lemma 6.3 Let λ be a weight in ΛX and let h be in ΓY . Then the following
conditions are equivalent:

1. λ ∈ Π(Zc, h)

2. λ ≥ hc as functions on NR

Notice that Π(Y, h) is contained in ΛX .

Theorem 6.2 (Theorem 3.4 in [Bi]) Let Lh be a line bundle on Y . Then

H0(Y,Lh) =
⊕

µ∈Π(Y,h)

V ∗
µ .

In particular H0(Y,Lh) 6= 0 if and only if Π(Y, h) is not empty.
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We want to give an idea of one build of H0(Y, Lh). Let λ ∈ Π(Y, h). Re-
member that H0(X, Lλ) contains V ∗

λ . Moreover H0(X, Lλ) ⊂ H0(Y, π∗Lλ),
so H0(Y, π∗Lλ) contains a lowest weight vector v−λ of weight −λ. There
are positive constants aτ such that h − λ =

∑
τ∈∆(1) aτdτ because of the

lemma 6.2. Thus v−λ ·
∏

saτ
τ is a not-zero section of H0(Y, Lh) with weight

−λ because the sections sτ are G-invariant. Moreover v−λ ·
∏

saτ
τ is invari-

ant by the unipotent part of the opposite B− of the fixed Borel group of G.
Thus H0(Y, Lh) ⊇ ⊕

µ∈Π(Y,h) V ∗
µ . Because of the previous theorem we give the

following definition:

Definition 6.3 Given h in ΛY and λ in Π(Y, h), we write h = λ+
∑

τ∈∆(1) aτdτ

for suitable aτ ∈ Z+. We define sh−λ as the section
∏

saτ
τ of H0(Y,Lh−λ).

More generally, let Lh and Lh′ be two line bundles on Y such that h′ ≥ h,
namely h − h′ =

∑
τ∈∆(1) aτdτ for positive aτ . Then the product by the G-

invariant section
∏

saτ
τ of Lh−h′ defines an injective G-equivariant linear map

from H0(Y,Lh′) to H0(Y,Lh).
The following proposition is immediately implied by the proposition 4.15.

Indeed the T linearization of Lh induces a T 1 linearization of Lh.

Proposition 6.2 Let Lh be a line bundle on Y . Then

•
H0(Z, Lh|Z) =

⊕

µ∈Π(Z,h)

Cχµ,

where χµ is a T -seminvariant section of weight −µ. In particular H0(Z,Lh|Z)
6= 0 if and only if Π(Z, h) is not empty.

•
H0(Zc, Lh|Zc) =

⊕

µ∈Π(Zc,h)

Cχµ.

In particular H0(Zc, Lh|Zc) 6= 0 if and only if Π(Zc, h) is not empty.

Remark. Let π : Y → Y ′ be an G-equivariant morphism between two
complete symmetric varieties and let Lh be a line bundle on Y ′. Then the
pullback π∗(Lh) is the line bundle on Y associated to h because of the last
point of the theorem 6.1. Moreover H0(Y, π∗(Lh)) = H0(Y ′, Lh) because of the
lemma 6.2.

Now we want to explain some relations between the previous sets.

Corollary 6.1 (Corollary 4.1 in [Bi]) Given h ∈ ΓY , we have the equality

Π(Y, h) = Π(Zc, h) ∩ Λ+.

In particular the sections of Lh over Zc (or over Z) determine the sections
of Lh over Y .
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Proof. Remember that Π(Y, h) = Π(Z, h) ∩ Λ+, so it is sufficient to prove
that Π(Y, h) ⊂ Π(Zc, h). Let µ ∈ Π(Y, h), then there is a lowest weight section
s−µ ∈ H0(Y, Lh) of weight −µ. It is U− invariant, so it cannot vanish on Zc,
for otherwise it would vanish on the dense open set U− × Zc, thus on Y . ¤

If h is almost spherical, we can say more.

Proposition 6.3 (Proposition 4.2 and theorem 4.2 in [Bi]) If h ∈ ΛY is
almost spherical, then

Π(Zc, h) =
⋃

w∈W 1

w ·Π(Y, h).

Moreover the restriction map H0(Y, Lh) → H0(Zc, Lh|Zc) is surjective.

We prove only the second part of the proposition. Let w ·µ ∈ Π(Zc, h) with
µ ∈ Π(Y, h). Let s ∈ V ∗

µ ⊂ H0(Y, Lh) be a section of weight −w ·µ, then we can
choose another basis of the root system such that s is a lowest weight vector.
Observe that we have already proved that a such section cannot vanish on Zc.

Remember that there is a polyhedron associated to every linearized line
bundle on a toric variety. We want to do the same with the line bundles on a
complete symmetric variety.

Definition 6.4 Let Y be a complete symmetric variety and let Lh be a line
bundle on Y such that h is almost spherical i.e. h|σ ∈ Ω for each σ ∈ ∆(l). We
define the polytope associated to h (and Lh) as the polytope

Ph = {m ∈ MR : m(v) ≥ hc(v) ∀v ∈ |∆c|}.
Moreover we define the polyhedron associated to h as the polyhedral convex

set

Qh = {m ∈ MR : m(v) ≥ h(v) ∀v ∈ |∆|}.

Observe that Ph = {m ∈ MR : m(%(τ)) ≥ hc(%(τ)) ∀ τ ∈ ∆c(1)} and
Qh = {m ∈ MR : m(%(τ)) ≥ h(%(τ)) ∀τ ∈ ∆(1)}. Ph is the polytope associated
to hc in the correspondence of the theorem 4.2. Under such correspondence,
Qh is associated to h (here we think h as a function h : NR → R ∪ {−∞} such
that it has finite value exactly on |∆|). Notice that Π(Zc, h) = Ph ∩ (M + vh),
Π(Z, h) = Qh ∩ (M + vh) and Π(Y, h) = Ph ∩C+ ∩ (M + vh). (In the figure we
draw an example for the wonderful variety corresponding to an involution such
that the restricted root system has type A2).
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We now study an example. Take the wonderful symmetric variety X and
let Lλ be a line bundle on X. In this case µ ∈ Π(X, λ) if and only if λ is
greater than µ in the dominant order, i.e. λ− µ is a linear combination of the
roots with positive integral coefficients (theorem 8.3 in [CSV I]). Remember
that µ ∈ Π(X, λ) if and only if µ ≥ λ as functions on σ(e1, ..., el) (lemma 6.2).
Observe that in this case Qh is the polyhedron {m ∈ MR : m(ei) ≥ λ(ei)}. If
we write m =

∑
miα

s
i and λ =

∑
λiα

s
i then the inequalities of Qh are mi ≤ λi.

The proof of the following lemma is trivial.

Lemma 6.4 Let λ and µ be two weights in Ω. Then the following conditions
are equivalent.

1. µ ≥ λ as functions σ(e1, ..., el) → R;

2. λ < µ in the dominant order, i.e. λ − µ =
∑

aiα
s
i where ai is a positive

integer for each i.

Thus we have shown that for the wonderful variety X the theorem 6.2 is a
restatement of the theorem 8.3 in [CSV I]. Given two weights λ and µ (in Ω)
we will say that λ ≥ µ if λ− µ has positive values everywhere on σ(e1, ..., el).

Part II

Multiplication of sections

7 Ample line bundles and line bundles gener-
ated by global sections

Brion [Br] has found a characterization of the ample line bundles (respectively
the line bundles generated by global sections) on a spherical variety. Now we
want to find different conditions for a line bundle on a complete symmetric
variety to be generated by global sections, respectively to be ample.

Proposition 7.1 Let Lh be a line bundle on Y . Then
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1. Lh is generated by global sections if and only if h is convex and h|σ is
dominant for each σ ∈ ∆(l).

2. Lh is very ample if and only if h is strictly convex on ∆ and h|σ is a
regular weight for each σ ∈ ∆(l).

3. Lh is ample if and only if it is very ample.

Proof. The necessity of the conditions in the first two points is easy to show.
Indeed, if Lh is generated by global sections, then also the restriction of Lh to Z
is generated by global sections, so h is convex. Moreover, Lh|Oσ is generated by
global sections for each closed orbit Oσ, so h|σ is dominant for each σ ∈ ∆(l).
One can show the necessity of the condition in the second point in the same
way.

We want prove the sufficiency of the condition in the first point, but before
we will prove a lemma.

Lemma 7.1 If h is convex and h|σ is dominant then the restriction map to the
closed orbit Oσ

H0(Y, Lh) → H0(Oσ, Lh|Oσ)

is surjective.

Proof. Since h|σ is dominant, Lh|Oσ is generated by global sections and
H0(Oσ, Lh|Oσ) is the irreducible G-representation V ∗

h|σ. Moreover h|σ belongs
to Π(Y, h) because of the convexity of h. Thus there is a lowest weight vector
ϕ ∈ H0(Y, Lh) of weight −h|σ. Hence, because of the reductivity of G, it
is sufficient to prove that the restriction of ϕ to Oσ is not zero. Observe that
ϕ = ϕ′ ·∏ sai

τi
where ϕ′ is a lowest weight vector of V ∗

λσ
⊂ H0(Y, Lh|σ) and ai > 0

only if τi is not contained in σ. Remember that the line bundle on Y associated
to h|σ is the pull-back of the line bundle on X associated to h|σ and that
H0(Y, Lh|σ) = H0(X,Lh|σ). Moreover ϕ′|Oσ 6= 0 because of the observations
following the proposition 3.3. Hence ϕ|Oσ 6= 0 because sτi vanishes exactly on
Yτi for each τi. ¤

Now we can prove the sufficiency of the condition in the first point. Observe
that the locus of base points is closed and stable for the action of G. So, either
it is empty or it contains a closed orbit Oσ. Since h|σ is dominant, Lh|Oσ

is generated by global sections. Hence, given any y ∈ Oσ there is a section
s̃ ∈ H0(Oσ, Lh|Oσ) such that s̃(y) 6= 0. Thus, because of the previous lemma,
there is a section s ∈ H0(Y, Lh) such that its restriction to Oσ is s̃, so s(y) 6= 0.
This is a contradiction.

Now we want to show the sufficiency of the condition in the second point
if h|σ is a spherical weight for each σ ∈ ∆(l). First of all we want to show
that Lh|Z is very ample. We will prove a stronger result, namely that Lh|Zc is
very ample. This fact is equivalent to the strictly convexity of hc on ∆c. hc is
convex because of the first point of the proposition. Suppose by contradiction
that there are two distinct maximal cones σ and σ′ such that h|σ = h|σ′. We
can suppose that σ belongs to ∆ because of the symmetry of ∆c with respect to
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the Weyl group. Thus σ′ cannot belong to ∆ because h is strictly convex on ∆.
Let γ be the locus of the points v such that h(v) = (h|σ)(v). We know that γ is
a convex cone by the corollary 4.9. By hypothesis there is an hyperplane H such
that it is secant to γ and its intersection with σ(e1, ..., el) is a face of σ(e1, ..., el).
There is an unique i such that ei does not belong to this hyperplane. For each j
let sj be the orthogonal reflection with respect to the hyperplane generated by
e1, ..., êj , ..., el. There is a vector v ∈ γ ∩ |∆| such that also siv belongs to γ and
we can suppose that v belongs to the interior of |∆|. Indeed there is a vector v′

that belongs to γ ∩ |∆| ∩H because of the convexity of γ (there is a vector of γ
in the interior of σ, a fortiori in the interior of |∆| and there is another vector
of γ in the interior of σ′ and a fortiori outside of |∆|). So we can choose v in a
suitable neighborhood of v′.
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By hypothesis we know that hc(v) = h(v) = (h|σ)(v) and that hc(siv) =
(h|σ)(siv) = (si · (h|σ))(v), so (h|σ)(v) = (si(h|σ))(v) because of the invariance
of hc by W 1. Observe that h|σ − si · h|σ is a multiple of αs

i because of the
definition of si. It is a strictly positive multiple of αs

i because h|σ is a regular
weight (this implies that h|σ is a strongly dominant weight with respect to the
restricted root system). Thus ((h|σ)− si(h|σ))(v) is strictly positive because v
is in the interior of |∆|; this is a contradiction. Observe that we have proved a
more general statement. Let Z be a possibly singular toric variety proper over
Al and let Lhc be a line bundle on Zc such that hc is invariant for the action
of W 1. If hc|σ is a regular weight for each σ ∈ ∆(l), hc is a convex function
and h is strictly convex on the fan of Z, then Lhc is ample. Moreover one can
easily prove that hc is convex if its restriction to σ(e1, ..., el) is convex and hc|σ
is a dominant weight for each σ ∈ ∆(l). Indeed hc defines a line bundle on the
completion (Z

′
)c of a resolution of singularities Z ′ of Z and this line bundle is

generated by global sections by the first part of the proposition. We will use
this facts to prove the proposition 4.8.

Since Lh is generated by global sections, we have an equivariant morphism
ϕ : Y → P(V ) with V = H0(Y,L)∗. Let U be the locus where ϕ is not an
immersion. We could try to prove this point like the previous one, namely
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using the fact that the restriction of Lh to Z, respectively to any closed orbit is
very ample. Instead we will use the stronger fact that Lh|Zc is ample and the
proposition 6.3, namely the surjectivity of the restriction of the sections from Y
to Zc. Observe that the restriction of the sections to Z is clearly not surjective.

Now we want to show that U is stable and closed in the Euclidean topology.
U is the union of two loci: the locus U1 of the points where the differential of ϕ
is not injective and the locus U2 of the points where ϕ is not injective. U1 and
U2 are G-stable because ϕ is equivariant. U1 is closed because it is the locus of
the zeroes of the jacobian of ϕ. Now we want to prove that the closure of U2 is
contained in U . Let {xn} be any sequence in U2 and suppose that it converges
to x ∈ Y . We have to show that x belongs to U . By hypothesis there is a
sequence {yn} in U2 such that xn 6= yn and ϕ(xn) = ϕ(yn) for each n. Since
Y is compact, we can suppose, up to take sub-sequences, that {yn} has limit
y in Y . Moreover we have ϕ(x) = limn→∞(ϕ(xn)) = limn→∞(ϕ(yn)) = ϕ(y)
because of the continuity of ϕ. If x 6= y then x ∈ U2. Hence we can suppose
that x = y. Suppose by contradiction that x does not belong to U , so it does
not belong to U1. Because of the Dini theorem there is a open neighborhood
W of x such that ϕ|W is a diffeomorphism onto the image ϕ(W ). This is a
contradiction because there is an integer n0 such that xn and yn belong to W
for each n > n0. Observe that if U1 is empty then x must be different from y.

Suppose that U is not empty. First suppose that U1 is not empty, so it
contains a closed orbit Oσ. Let xσ be the intersection of Z and Oσ, so xσ is
a point fixed by T . The map H0(Zc, Lh|Zc)∗ // H0(Y, Lh)∗ dual to the
restriction map is injective because of the proposition 6.3. Thus we have a
commutative diagram

Y
ϕ // P(H0(Y,Lh)∗)

Zc

OO

ϕ′ // P(H0(Zc, Lh|Zc)∗) .

OO

ϕ′ is an immersion because hc is strictly convex on ∆c, so ϕ(Zc) is isomorphic
to Zc. Let [h] be the image ϕ(H) of H ∈ G/H and let [vh|σ] be the image of xσ.
Observe that [vh|σ] is the class of a highest weight vector of Vh|σ ⊂ H0(Y,Lh)∗.
We can write H0(Y,Lh)∗ = Vh|σ ⊕ V ′ for a suitable representation V ′. We can
choose h = vh|σ +

∑
vi where the vi are weight vectors with weights contained

in h|σ + M . Indeed the weights of the highest weight vectors of H0(Y, Lh)∗

are contained in h|σ + M because of the theorem 6.2. The other weight are
contained in h|σ + M because they are contained in Π(Y, h) +

⊕
α∈φ Z+(−α)

and they are special (t · vi = vi for each t ∈ T 0). Let Ã be the affine open set
of P(H0(Y, Lh)∗) where a lowest weight vector s ∈ H0(Y,Lh) of weight −h|σ is
not zero, i.e. Ã = vh|σ +V ′

h|σ⊕V ′ where Vh|σ = Cvh|σ⊕V ′
h|σ in a T -equivariant

way. The intersection A of Ã and ϕ(Y ) is B− stable. Moreover the intersection
of ϕ(Zc) and A is ϕ(Uσ), in particular ϕ(xσ) belongs to A. Indeed the set of
points {x ∈ Zc : s(x) = 0} is the union of the divisor Zc

τ for τ * σ.
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We want to study the restriction of ϕ to U− · Uσ, where U− is the unipo-
tent group whose Lie algebra is

⊕
α∈−φ+

1
gα. Every irreducible component of

H0(Y, Lh)∗ is isomorphic to its dual in a θ linear way (see lemma 1.6 [CSV I]),
so H0(Y, Lh)∗ is isomorphic to its dual in a θ linear way. Thus there is a
not degenerate bilinear form ( , ) on H0(Y, Lh)∗ with following properties: 1)
given any two distinct irreducible component V1 and V2 of H0(Y, Lh)∗, they
are orthogonal; 2) (gu, v) = (u, θ(g−1)v) for each g ∈ G, u, v ∈ H0(Y, Lh)∗; 3)
(xu, v) = (u,−θ(x)v) for each x ∈ g, u, v ∈ H0(Y,Lh)∗. Let Υ′ be the tangent
space in vh|σ to the orbit U− ·vh|σ and let Υ the space generated by Υ′ and vh|σ.
One can show that the restriction of ( , ) to Υ is non-degenerate, Υ is stable
under P and the orthogonal Υ⊥ is stable under θ(P ) (see lemma 2.4 [CSV I]).
A fundamental part of the proof is the following lemma:

Lemma 7.2 (see lemma 2.5 in [CSV I]) Uσ ⊂ vh|σ + Υ⊥.

Proof. Remember that h = vh|σ +
∑

vi where the weight of vi belongs
to h|σ + M for each i. We have to show that each vi belongs to Υ⊥. Given
weight vectors v1, v2 ∈ H0(Y,Lh)∗ with weights respectively λ1 and λ2, we have
λ1(t)(v1, v2) = (tv1, v2) = (v1, θ(t−1)v2) = −θ(λ2)(t)(v1, v2). Thus λ1 = −θ(λ2)
if (v1, v2) 6= 0. So it is sufficient to study the vi contained in Vh|σ and with
weight h|σ−∑

niα
s
i equal to h|σ−α for a suitable a ∈ φ+

1 . Notice that in this
case the ni are all positive. Let h′ be the orthogonal projection of h to Vh|σ
and let vi0 a such vector, we have (xα + θ(xα))h′ = 0 because h is H stable.
(xα + θ(xα))h′ − xαvi0 is a sum of weight vectors with weights different from
h|σ, so xαvi0 = 0. Given weight vectors v1, v2 ∈ Vh|σ with weights respectively
λ1 and λ2, we have λ1(t)(v1, v2) = −θ(λ2)(t)(v1, v2). Thus λ1 = −θ(λ2) if
(v1, v2) 6= 0, so the only possibly non zero scalar product between vi0 and
a vector of the basis of Υ is the one with xθ(α)vh|σ. In this case we have
(xθ(α)vh|σ, vi0) = −(vh|σ, θ(xθ(α))vi0) = 0. Indeed θ(xθ(α)) is a multiple of xα.
¤

Let π be the projection of H0(Zc, Lh|Zc)∗ onto H0(Zc, Lh|Zc)∗/Υ⊥. U− ⊂
θ(P ), so U− acts on H0(Zc, Lh|Zc)∗/Υ⊥ and the projection is equivariant. The
affine hyperplane π(Ã) in H0(Zc, Lh|Zc)∗/Υ⊥ is stable by the action of U−.
We have the following lemma.

Lemma 7.3 (see lemma 2.6 in [CSV I]) The map j : U− → π(Ã) defined
by j(u) = π(uvh|σ) is an U− equivariant isomorphism.

Proof. Υ′ is the tangent space of U−vh|σ at vh|σ, so j is smooth at the iden-
tity. Thus j is everywhere smooth because it is U− equivariant. j is an open
immersion because dimU− = dimπ(Ã) and U− has not finite subgroups. Now
it is sufficient to observe that an open immersion between two affine space of
the same dimension is an isomorphism. ¤

Thus the tangent space to Uσ at vh|σ is orthogonal to Υ and the differential
of ϕ is injective in xσ. Hence we have proved that U1 = ∅, so U2 is equal to U
and it is closed.
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Now suppose that U2 is not empty, so it contains a closed orbit Oσ. Given
x ∈ Oσ, there is y 6= x such that ϕ(x) = ϕ(y). We want to show that we can
choose x and y such that also y belongs to a closed orbit Oσ′ . First of all, we
can suppose that y belongs to Z. Indeed there is g ∈ G such that gy belongs
to Z. Moreover gx ∈ Oσ, gx 6= gy and ϕ(gx) = ϕ(gy) = gϕ(x). Now observe
that there is an one parameter subgroup γ of T such that y2 = limt→0γ(t)gy
is a point of Z fixed by T , so y2 belongs to a closed orbit (see the last point of
the proposition 4.1). Moreover x2 = limt→0γ(t)gx belongs to Oσ and ϕ(x2) =
ϕ(y2). By the previous part of the proof x2 is different by y2.

The closed orbits Oσ and Oσ′ are different because the restriction of L to Oσ

is very ample. We known that H0(Oσ, L|Oσ) = V ∗
h|σ. Because of the lemma 7.1

there is a global section s, lowest weight vector of weight −h|σ, which does not
vanish on Oσ. Up to a translation we can suppose that s(x) 6= 0. Because h is
strictly convex on ∆, s vanishes on the divisor Zτ of Z associated to a cone τ
contained in σ′ (h|σ′−h|σ ∈ σ̌−σ⊥). Therefore s vanishes on the divisor Yτ of
Y because s is U− invariant. In particular s vanishes on Oσ′ , so ϕ(x) 6= ϕ(y),
a contradiction.

Finally we can consider the exceptional case. First of all we want to recall
some facts. Let Y be a complete exceptional symmetric variety and let X be
the corresponding wonderful variety. We have chosen an order of the simple
roots of φ such that α1, ..., αs are exceptional roots with the following property:
Pic(X) is generated by the spherical weights and by the fundamental weights
ωα1 , ..., ωαs corresponding respectively to α1, ..., αs. Moreover, given a piecewise
function h in ΛY such that h|σ is dominant for each σ ∈ ∆(l), there are integers
ai and a spherical piecewise linear function h′ such that h = h′ +

∑
aiωαi . We

can suppose that ai is positive up to exchange αi with θ(αi).
If Lh satisfies the hypotheses of the second point, then Lh′ is very ample

because h′ is spherical. Moreover, Lh−h′ is generated by global sections because
h − h′ =

∑
aiωαi . Thus Lh is the product of a very ample bundle Lh′ and a

bundle Lh−h1 generated by global sections, so it is very ample.
The third point is obvious. ¤
Now, we can prove that a S-linearizated line bundle Lh on Z is ample if and

only if h is strictly convex on ∆.
Proposition 4.8 Suppose that Z is a (possibly singular) toric variety proper

over Al and let h ∈ SF (∆, M). Then Lh is ample if and only if h is strictly
convex on ∆. If Z is smooth then Lh is ample if and only if it is very ample.

Proof. Suppose that Lh is ample, then there is an integer n such that Lnh

is very ample, so Lnh is generated by global sections and nh is convex. Hence
Lnh is the pullback of a line bundle generated by global sections on a variety
Z ′ dominated by Z with the property that the fan ∆′ of Z ′ has the same
support of the fan of Z and nh is strictly convex on ∆′. (Notice that if a cone
is contained in σ(e1, ..., el) then it contains no line). Let ϕ : Z → P(V ) be
an immersion such that Lnh = ϕ∗O(1), then ϕ factorizes through Z ′ because
H0(Z ′, Lh) = H0(Z,Lh). Since ϕ is an immersion, Z ′ must be Z and nh is
strictly convex on ∆, so h is strictly convex on ∆. To prove the viceversa will
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be sufficient to prove the following lemma.

Lemma 7.4 Let Z be is a (possibly singular) toric variety proper over Al and
let L be a line bundle on Z generated by global sections. Given any homogeneous
symmetric variety G/H of rank l, let Zc be the complete toric variety associated
to Z. Then there is a linearized line bundle Lhc on Zc generated by global
sections and such that the restriction of Lhc to Z is L as line bundle. Moreover
we can suppose that: 1) hc is invariant by W 1; 2) hc|σ is a regular weight for
each σ ∈ ∆(l).

We can suppose that Z is smooth. Otherwise there is a resolution of singu-
larities Z ′ of Z. Moreover if L′hc is a linearized line bundle on (Z ′)c such that
hc is W 1 invariant and L′hc |Z ′ is the pullback of L, then L′hc is the pullback of
the line bundle Lhc on Zc. Now it is sufficient to prove the following lemma.

Lemma 7.5 Let Z be any smooth toric variety proper over Al and let L be
any line bundle on Z generated by global sections (respectively any ample line
bundle on Z). Given any homogeneous symmetric variety G/H of rank l, let Y
be the complete symmetric variety associated to Z. Then there is a line bundle
L′ on Y generated by global sections (respectively an ample line bundle L′ on
Y ) whose restriction to Z is L. Moreover we can suppose that the restriction of
L′ to any closed orbit Oσ of Y is ample even if L is not ample.

Proof. By theorem 6.1 there is a line bundle Lh on Y whose restriction to Z
is L, but it may have base points. Moreover, we can suppose that h is almost
spherical. Let λ be a regular spherical weight. Observe that the restriction of
Lλ to Z is trivial. Moreover there is a positive integer n such that (h + nλ)|σ
is a regular weight for each σ ∈ ∆(l), so L′ = Lh+nλ satisfies ours requests. ¤.

Observe that the line bundle L′ is not unique unless Z is a point. We now
can conclude the proof the proposition 4.8. Let h be a strictly convex function
on ∆, we can suppose, up to exchange the linearization of Lh, that Lhc is ample
on Zc. Indeed we can suppose by the lemma 7.4 that hc is W 1 invariant and
that hc|σ is a regular weight for each σ ∈ ∆(l). Thus hc is strictly convex on ∆c

by the proof of the proposition 7.1. The last point of the proposition is implied
by the Demazure theorem. ¤

Remark. We have proved that the line bundle Lhc of the lemma 7.4 is ample
if L is ample.

Theorem 7.1 Let Y be a complete symmetric variety. The following conditions
are equivalent:

1. Y is projective;

2. Zc is projective;

3. Z is quasiprojective.
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Proof. It is sufficient to prove that the third condition implies the first one.
If Z is quasiprojective then there is ample line bundle L on Z. Moreover L is
the restriction of an ample line bundle on Y because of the lemma 7.5, so Y is
projective. ¤

Now we want to reformulate the proposition 7.1 using hc instead of h. It
is immediately implied from proposition 1.5 that a spherical weight is regular
if and only if it is a strongly dominant weight for the restricted root system.
Given a spherical ∆-linear function h we can easily show that h is convex if and
only if hc is convex. Indeed if h is convex then the corresponding line bundle
Lh on Y is generated by global sections. In particular its restriction to Zc is
generated by global sections, thus hc is convex. The viceversa is trivial. We
have already proved that, given h such that h|σ is a regular spherical weight
for each σ ∈ ∆(l), h is strictly convex on ∆ if and only if hc is strictly convex
on ∆c. We want to show that if hc is an almost spherical convex ∆c linear
function then h is a spherical ∆-linear function. If hc is also strictly convex on
∆c, then h|σ is regular for each σ ∈ ∆(l). Given σ ∈ ∆(l), there is an element
w ∈ W 1 such that w · h|σ is a dominant weight. Observe that h|σ−w · h|σ is a
function with positive values on |∆|. Moreover w · h|σ is the restriction of hc to
w−1 · σ. Let v be a vector in the interior of σ, so it is a fortiori in the interior
of |∆|. Because of the convexity of hc, we have (w · h|σ)(v) ≥ h(v) = (h|σ)(v),
so (w · h|σ)(v) = (h|σ)(v). We have w · h|σ = h|σ because v is a vector inside
the Weyl chamber |∆|. Thus h|σ is dominant. If hc is strictly dominant on ∆c,
then h|σ is different from w · h|σ for each w ∈ W 1, so h|σ is regular. We have
proved the following proposition.

Proposition 7.2 Let h be an almost spherical ∆-linear function, then

1. hc is convex on ∆c if and only if h is convex on ∆ and h|σ is dominant
for each σ ∈ ∆(l).

2. hc is strictly convex on ∆c if and only if h is strictly convex on ∆ and h|σ
is a regular weight for each σ ∈ ∆(l).

8 Reduction to the complete toric variety

In the following we will always suppose that h is an almost spherical (∆, ΛX)
linear function, unless we will explicitly say otherwise. We start to study the
multiplication of sections of two line bundles on Y . First of all, we want to
show that this problem is equivalent to the similar problem on the complete
toric variety Zc associated to Y . Let Lh and Lk be any two line bundles on Y
generated by global sections. Let

Mh,k : H0(Y, Lh)⊗H0(Y, Lk) −→ H0(Y,Lh+k)

be the product of sections on Y and let

mc
h,k : H0(Zc, Lh|Zc)⊗H0(Zc, Lk|Zc) −→ H0(Zc, Lh+k|Zc)
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be the product of sections of the restrictions to Zc of these line bundles.

Theorem 8.1 Suppose that h and k are two convex spherical ∆-linear function.
Then Mh,k is surjective if and only if mc

h,k is surjective.

Proof. The necessity of the condition is implied by the surjectivity of the
restriction maps from Y to Zc. Indeed if i : Zc → Y is the canonic inclusion
then mc

h,k ◦ (i∗ ⊗ i∗) = i∗ ◦Mh,k.

H0(Y, Lh)⊗H0(Y,Lk)
Mh,k

−→ H0(Y, Lh+k)

↓ i∗ ⊗ i∗ ↓ i∗

H0(Zc, Lh|Zc)⊗H0(Zc, Lk|Zc)
mc

h,k

−→ H0(Zc, Lh+k|Zc)

Now suppose that mc
h,k is surjective. It is sufficient to show that the image

of Mh,k contains a basis of semi-invariant sections. If h and k are linear then
they are the pullbacks of two line bundles generated by global sections on the
wonderful variety X, so Mh,k is surjective by the theorem 3.2. In general,
given ν ∈ Π(Y, h + k) there are λ ∈ Π(Zc, h) and µ ∈ Π(Zc, k) such that
ν = λ + µ. Moreover there are elements w1 and w2 in the Weyl group W 1 such
that w1 · λ and w2 · µ are dominant weights. Observe that ν ≥ w1 · λ + w2 · µ
on |∆|. Moreover w1 · λ ≥ h and w2 · µ ≥ k because hc and kc are convex
and invariant for the action of W 1. Thus sh−w1·λH0(Y, Lw1·λ) ⊂ H0(Y, Lh) and
sk−w2·µH0(Y, Lw2·µ) ⊂ H0(Y, Lk) (remember that if h−w1 · λ =

∑
τ∈∆(1) aτdτ

then sh−w1·λ ∈ H0(Y, Lh−w1·λ) is the section
∏

saτ
τ , where the sτ ∈ H(Y, Ldτ )

are the sections of the lemma 6.1). Let ϕ ∈ H0(Y,Lw1·λ+w2·µ) be a lowest
weight vector of weight −ν. We know that ϕ is contained in Im Mw1·λ,w2·µ.
Thus sh+k−w1·λ−w2·µϕ is contained in sh+k−w1·λ−w2·µIm Mw1·λ,w2·µ ⊂ Im Mh,k

and it is not zero. ¤
We can prove the following proposition without assuming the surjectivity of

mc
h,k. Given two convex spherical ∆-linear function, say h and k, let Π(Y, h, k)

be the set of the weights of the lowest weight vectors contained in ImMh,k.

Proposition 8.1 Π(Y, h, k) is saturated with respect to the dominant order of
the roots in φ̃.

Proof. Π(Y, h + k) is saturated because −αs
i has positive values on |∆| for

each i = 1, ..., l. Indeed, given a spherical weight µ dominated by a spherical
weight λ in Π(Y, h + k) then µ = λ −∑

aiα
s
i where ai is a positive integer for

each i. So µ ≥ λ ≥ h and µ belongs to Π(Y, h + k).
Given ν ∈ Π(Y, h, k) there are two weights λ ∈ Π(Y, h) and µ ∈ Π(Y, k) such

that ν = λ + µ. (By hypothesis there are sections si
1 ∈ H0(Y, Lh) and sections

si
2 ∈ H0(Y, Lk) such that sν := Mh,k(

∑
si
1 ⊗ si

2) is a semi-invariant section
of weight ν. We define λ as the weight of sj

1 and µ as the weight of sj
2 for a
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suitable j). Moreover there are element w1, w2 in the Weyl group W 1 such that
w1 · λ and w2 · µ are dominant weights. Observe that ν ≥ w1 · λ + w2 · µ on
|∆|, so ν ∈ ∏

(Y,w1 · λ + w2 · µ). Let ν′ be a spherical weight dominated by ν,
then ν′ ∈ Π(Y, w1 · λ + w2 · µ) because this set is saturated. Let ϕ be a lowest
weight vector of weight ν′. Because of the surjectivity of Mw1·λ,w2·µ we have
ϕ ∈ sh+k−w1·λ−w2·µImMw1·λ,w2·µ ⊂ ImMh,k. ¤

9 Reduction to the open toric variety

In this section we want to show that, given two ample line bundles, the product
of sections on Zc is surjective if and only if the product of sections on Z is
surjective. Moreover we will study the relation between the sections of L|Z and
the sections of L|Zc for any ample line bundle L on Y . Remember that we have
fixed a σ ∈ ∆(l) and we have set vh = h|σ for each h ∈ SF (∆, ΛX). Moreover∏

(Z, h) = Qh ∩ (M + vh) and Π(Zc, h) = Ph ∩ (M + vh).
Now we want to prove some relations between Ph and Qh, but before we

have to define some notations. Recall that {e1, ..., el} is the basis of NR dual
to the basis {f1, ..., fl} of MR. We have to define a second basis {g1, ..., gl} of
MR because the fundamental Weyl chamber C+ is more easily defined using
the basis the fundamental weights than the basis of the simple roots. gi is a
positive multiple of −ω̃i. Remember that there are positive constants ai such
aiω̃i is the i-th fundamental weight of φ̃. If φ̃ is reduced we define gi as −aiω̃i,
while if the type of φ̃ is BCl then −gi is the i-th fundamental weight of the
root system of type Bl contained in φ̃. In general −gi is the i-th fundamental
weight of the unique reduced root system contained in φ̃ which share a basis
with φ̃. g1, ..., gl generate a lattice which contains M . Let {ǧ1, ..., ǧl} be the
dual basis of {g1, ..., gl}. We will seldom use this last basis. Given a point p
in MR we will use the following notations: p =

∑
xifi =

∑
ẋigi, using the

”normal” coordinates for the basis {f1, ..., fl} and the ”dotted” coordinates for
the basis {g1, ..., gl}. (In the following figures we consider the case in which the
restricted root system is of type A2 and Z is A2).
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Observe that C+ = {∑ ẋigi : ẋi ≤ 0 ∀ i}, namely C+ = σ(−g1, ...,−gl).
The equations of Qh are of the form

∑
bixi ≥ b where the bi are positive

constants. So, given any m ∈ Qh, we have m +
⊕

R+(fi) ⊂ Qh, i.e. Qh is
stable by translation with respect to vectors in σ(f1, ..., fl).
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Let Hj be the hyperplane of MR generated by g1, ..., ĝj , ..., gl, so the inter-
section of Hj and C+ is a Weyl wall. Let sj be the orthogonal reflection with
respect to Hj . Observe that, if Ph contains a point p, then it contains all the
translates of p by W 1. Moreover, given any point p ∈ Ph, Ph contains the
orthogonal projection 1

2 (p + sjp) of p to Hj for each j. Because hc is strictly
convex on ∆c, there is no vertex of Ph contained in Hj . Indeed, given a vertex
h|σ of Ph, then sj · h|σ is different from h|σ.
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Proposition 9.1 Let h be a spherical ∆-linear function such that hc is strictly
convex on ∆c. Then Qh ∩ C+ = Ph ∩ C+ and Qh = Ph ∩ C+ + σ(f1, ..., fl).
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Ph ∩ C+

Remember that the function associated to a polyhedron K is the piecewise
linear function hK such that hk(n) := inf{m(n); m ∈ K} for each n ∈ NR, so
hK has values in R∪−∞. Moreover it has always finite values if and only if K is
compact. There is a decomposition in convex cones of the convex set {n ∈ NR :
hK(n) ∈ R} such that there is an one-to-one correspondence between the cones
of such decomposition and the faces of K. In particular there is an one-to-one
correspondence between the 1-dimensional cones of such decomposition and the
(l−1)-dimensional faces of K. This faces are in one-to-one correspondence with
the semi-spaces that define K. Given a such cone τ the associated semi-space
is {m ∈ MR : m(%(τ)) ≥ hK(%(τ))}.

First of all we will show that Ph ∩ C+ = Qh ∩ C+. The function hQh

associated to Qh is equal to h on |∆| and it has value −∞ on the complementary
set. The semi-spaces defining Qh ∩ C+ are {m ∈ MR : m(%(τ)) ≥ h(%(τ))} for
each τ ∈ ∆(1) and {m ∈ MR : m(ǧi) ≤ 0} for each i. It is evident that
Ph ∩ C+ ⊆ Qh ∩ C+, so it is sufficient to show that Qh ∩ C+ ⊆ Ph. As a
matter of fact it is sufficient to show that Qh ∩ C+ ∩ MQ ⊆ Ph because Ph

is closed. The semi-spaces defining Ph are {m ∈ MR : m(%(τ)) ≥ hc(%(τ))}
for each τ ∈ ∆c(1). Given any m ∈ Qh ∩ C+ ∪ MQ and any τ ∈ ∆c(1)
we have to show that m(%(τ)) ≥ hc(%(τ)). Because of the symmetry of ∆c,
there are w ∈ W 1 and τ ′ ∈ ∆(1) such that %(τ) = w · %(τ ′). Observe that
w−1 ·m−m is a linear combination

∑
cifi of the fi with positive coefficients,

so m(%(τ)) = m(w · %(τ ′)) = (w−1 · m)(%(τ ′)) = m(%(τ ′)) +
∑

cifi(%(τ ′)) ≥
m(%(τ ′)) ≥ h(%(τ ′)) = hc(%(τ)).

Now we want to show that Qh = Ph ∩C+ +σ(f1, ..., fl). The decomposition
in cones of NR associated to hPh∩C+ has 1-dimensional cones {σ(ǧ1), ..., σ(ǧl)}∪
∆(1). hPh∩C+ has finite values on all NR, it is equal to h on |∆| and vanishes
on the vectors ǧ1, ..., ǧl. The function associated to σ(f1, ..., fl) vanishes on |∆|
and has value −∞ on the complementary set. Thus their sum is the function
associated to Qh. So the claim follows by the theorem 4.2, namely by the fact
that hQ + hQ′ = hQ+Q′ for each polyhedrons Q and Q′.
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¤
We can prove a stronger statement on the ”rational” points of Qh and Ph.

Proposition 9.2 Let h be a spherical ∆-linear function such that hc is strictly
convex on ∆c. Then Qh ∩ (vh + M) = Ph ∩ C+ ∩ (vh + M) +

∑l
i=1 Z+fi.

Remark Observe that H0(Z, L|Z) is a OZc(Zc)-module through the restric-
tion map OZc(Zc) → OZ(Z) and H0(Zc, L|Zc) is a OZc(Zc)-submodule of
H0(Z,L|Z). This proposition imply that H0(Z, L|Z) is generated by H0(Zc, L|Zc)
as an OZ(Z)-module.

Proof. We need some lemmas. Recall that sj is the orthogonal reflection
with respect to Hj . Observe that fj is orthogonal to Hj and let f̃i = 1

2 (fi+sifj)
for each i 6= j. Observe that f̃i ∈ Hj for each i 6= j. Moreover {f̃i}i 6=j is a basis
of Hj . −fi and −fj are distinct simple restricted roots, so they form an obtuse
angle. Hence f̃i = fi + difj for a suitable positive integer di. We have the
following easy consequence of the proposition 9.1.

Lemma 9.1 Qh ∩Hj = Ph ∩Hj ∩ C+ +
⊕

i 6=j R+f̃i.

Proof. Let p = p′ +
∑

rifi ∈ Qh ∩ Hj with p′ ∈ Ph ∩ C+ and ri positive
constants. Then p = 1

2 (p′ + sjp
′) +

∑
ri

1
2 (fj + sjfi). Hence is sufficient to

observe that 1
2 (p′ + sjp

′) belongs to Ph ∩Hj ∩ C+ (it is the projection of p′ to
Hj). ¤

Let Rj = {p + afi | p ∈ Qh ∩ Hi and −1/2 ≤ a ≤ 1/2}. First of all we
want to describe the conditions for a point m ∈ MR to belong to Rj . Fixed
any j, we define another basis u1, ..., ul of MR such that uj = fj and ui = gi if
i 6= j. The conditions for a point p =

∑
yiui to belong to Qh ∩Hj are yj = 0

plus conditions of the form
∑

i 6=j niyi ≥ n. Thus the conditions for a point
p =

∑
yiui to belong to Rj are the inequalities of the form

∑
i 6=j niyi ≥ n that

define Qh ∩Hj plus the inequalities −1/2 ≤ yj ≤ 1/2. A fundamental part of
the proof is the following lemma on the Rj . This lemma is the unique part of
the proof in which we will use the strictly convexity of hc.

Lemma 9.2 Rj is contained in Q for each j.
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Proof. Observe that it is sufficient to show that Ph∩Hj∩C++[−1/2, 1/2]fj ⊂
Qh because of the previous lemma.
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f2

Because of the convexity of Qh it is sufficient to show that Qh contains the
points p′ ± (1/2)fj for each vertex p′ of Ph ∩Hj .
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Ph ∩H2 + [− 1
2 , 1

2 ]f2

Observe that the vertices of Ph ∩ Hj are orthogonal projections to Hj of
suitable vertices of Ph. Indeed let p′ a vertex of Ph ∩ Hj and let p be the
endpoint different by p′ of the segment intersection of Ph with the semi-line
outgoing from p′ and parallel to fj . If p is not a vertex of Ph then p is an
interior point of a segment I contained in Ph. Thus p′ is an interior point of the
projection of I to Hj and this segment is contained in Ph by the symmetry of
Ph, a contradiction.

If q′+afj with q′ ∈ Qh∩Hj belongs to M +vh, then sj(q′+afj) = q′−afj ,
so 2a ∈ Z. Observe that if q is a vertex of Ph ∩Hj , then there is a constant a
such that q+afj is a vertex of Ph, so it is sufficient to show that the intersection
of Ph with the line parallel to fj and passing through any vertex of Ph ∩ Hj

is not a point. If there is a vertex p of Ph ∩ Hj without such property, then
p is vertex of Ph belonging to Hj , a contradiction. Indeed there is no segment
contained in Ph that contains p as an internal point. (If I is a such segment
then the projection to Hj of I would be contained in Ph∩Hj and would contain
p, so it has to be p because p is a vertex of Ph ∩Hj . Hence I is parallel to fj).
¤

Now, we can conclude the proof of the proposition 9.2 (look to the following
figure). Let p be a point contained in Qh ∩ (M + vh) and suppose that p =∑

xifi =
∑

ẋigi. If ẋi ≤ 0 for each i, then p ∈ Ph ∩ C+. Otherwise there is an
index j such that ẋj > 0. We know that p = p′+

∑
aifi where p′ ∈ P ∩C+ and

the ai are positive constants, but the ai may not be integers. If ẋj ≥ 2 then aj ≥
1. Indeed the j-th coordinate of fi with respect to {g1, ..., gl} is 2 if i = j and it
is negative otherwise. Thus the point p− [aj ]fj = p′ + (aj − [aj ])fj +

∑
i6=j aifi
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belongs to Qh ∩ (M + vh) and it has j-th coordinate with respect to {g1, ..., gl}
strictly less than 2 ([aj ] is the integral part of aj). Moreover, this coordinate
can be at most 1 because p − [aj ]fj is a weight. We can suppose that it is
exactly 1, so p− [aj ]fj − (1/2)fj belongs to Qh ∩Hj and it is the projection of
p − [aj ]fj to Hj . Thus p − [aj ]fj belong to Rj , so also p − [aj ]fj − fj belongs
to Rj and its j-th coordinate with respect to {g1, ..., gl} is negative. Moreover
p− (p− [aj ]fj − fj) = ([aj ]+ 1)fj is a linear combination of the fi with positive
integral coefficients. If there is an index k such that p− [aj ]fj − fj has negative
k-th coordinate with respect to {g1, ..., gl}, then we reiterate the process. The
process has to end in a finite number of steps because Qh is contained in the
semi-space {∑xi ≥ h(e1 + ... + el)}. ¤
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Now we want to show a combinatorial condition equivalent to the suriectivity
of the product of sections.

Lemma 9.3 Let h and k be two spherical ∆-linear functions such that hc and
kc are strictly convex on ∆c. Then mh,k is surjective if and only

Qh ∩ (vh + M) + Qk ∩ (vk + M) = Qh+k ∩ (vh+k + M).

Moreover mc
h,k is surjective if and only

Ph ∩ (vh + M) + Pk ∩ (vk + M) = Ph+k ∩ (vh+k + M).

Proof. We prove only the first part of lemma because the proof of the second
one is very similar. Suppose that mh,k is surjective and let ν ∈ Qh+k ∩ (vh+k +
M). Hence there is a seminvariant section s ∈ H0(Z,Lh+k|Z) of weight ν and
there are seminvariant sections ti ∈ H0(Z, Lh|Z) and ui ∈ H0(Z,Lk|Z) such
that mh,k(

∑
ti ⊗ ui) = s. Let λi be the weight of ti and let µi be the weight
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of ui, we can suppose that λ1 + µ1 = ν up to exchange the indices. Moreover
λ1 ∈ Qh ∩ (vh + M) and µ1 ∈ Qk ∩ (vk + M). Viceversa suppose that

Qh ∩ (vh + M) + Qk ∩ (vk + M) = Qh+k ∩ (vh+k + M).

It sufficient to prove that the image of mh,k contains a basis of seminvariant
sections. Given any seminvariant section s of weight ν, there are λ ∈ Qh∩ (vh +
M) and µ ∈ Qk ∩ (vk + M) such that λ + µ = ν. Let t ∈ H0(Z, Lh|Z) be a
seminvariant section of weight λ and let u ∈ H0(Z,Lh|Z) be a seminvariant
section of weight µ, we known that mh,k(t⊗ u) is a not zero multiple of s. ¤

Now we can prove the most important theorem on the product of sections.

Theorem 9.1 Let h and k be two spherical ∆-linear functions such that hc

and kc are strictly convex on ∆c. Then mh,k is surjective if and only if mc
h,k is

surjective.

We have shown that the theorem is equivalent to the following more combi-
natorial statement:

Qh ∩ (vh + M) + Qk ∩ (vk + M) = Qh+k ∩ (vh+k + M)

if and only if

Ph ∩ (vh + M) + Pk ∩ (vk + M) = Ph+k ∩ (vh+k + M).

Proof. The sufficiency of the condition is easy. Given a point p ∈ Qh+k ∩
(M + vh+k) we know that p = p′ +

∑
cifi where p′ ∈ Ph+k ∩C+ ∩ (M + vh+k)

and the ci are positive integers. Moreover there are ph ∈ Ph ∩ (M + vh) and
pk ∈ Pk ∩ (M + vk) such that p′ = ph + pk. Thus p = (ph +

∑
cifi) + pk and

ph +
∑

cifi belongs to Qh ∩ (M + vh).
Suppose now that Qh∩ (vh +M)+Qk∩ (vk +M) = Qh+k∩ (vh+k +M). Let

m =
∑

zifi =
∑

żigi be a point in Ph+k ∩ (M + vh+k). We can suppose that
m belongs to C+ by the symmetry of the polytopes Ph and Pk. By hypothesis
there are two points p′0 ∈ Qh ∩ (M + vh) and q′0 ∈ Qk ∩ (M + vk) such that
p′0 + q′0 = m. First, we will show that we can choose p′0 and q′0 such that p′0
belongs to Ph. Indeed we know that p′0 = p0 +w where p′0 ∈ Ph∩C+∩ (M +vh)
and w ∈ ⊕

Z+fi, so m = p0 + q0 where q0 := q′0 + w belongs to Qk ∩ (M + vk).
Proceeding as in the proposition 9.2, we can define a sequence of pairs of

points {(pi, qi)}i=0,...,r with the following properties: 1) pi ∈ Qh ∩ (M + vh)
for each i; 2) qi ∈ Qk ∩ (M + vh) for each i; 3) m = pi + qi for each i; 4)
(p0, q0) is as before; 5) (pi+1, qi+1) = (pi + fji , qi − fji) for a suitable ji and 6)
qr ∈ Pk. Indeed we can define the {qi} as in the proposition 9.2 and then we
set pi = m − qi. Now it is sufficient to show by induction that we can choose
the indices ji so that pi belongs to Ph for each i. We known that p0 ∈ Ph.
Now suppose that pn belongs to Ph by inductive hypothesis. Suppose that
pn =

∑
xifi =

∑
ẋigi and qn =

∑
yifi =

∑
ẏigi. If qn ∈ Pk we define

r = n and there is nothing to prove. Otherwise there is an index jn such that
ẏjn > 0 and it is sufficient to prove that pn + fjn belongs to Ph. Observe that
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−ẋij = −(ẋij + ẏij ) + ẏij > 0, so −ẋij ≥ 1 because it is an integer. Moreover
sjn

pn = pn− (2 < pn, fjn
> / < fjn

, fjn
>)fjn

= pn− ẋjn
fjn

belongs to Ph. Ph

is convex and it contains the points pn and sjn
pn, so it contains pn + fjn

. Thus
we can choose pn+1 = pn + fjn . ¤

Remark. 1) The previous theorem is valid with the weaker hypotheses that h,
k are convex and that h|σ, k|σ are regular spherical weights for each σ ∈ ∆(l).
Indeed these hypotheses implies that no vertex of Ph (respectively of Pk) is
contained in a Weyl wall.

2) Suppose that h = k is convex and that h|σ is a regular spherical weights
for each σ ∈ ∆(l). By the corollary 4.2 we have reduced ourselves to study the
product of sections of an ample line bundle on a possibly singular toric variety
Z ′ over Al. This suggests to consider only ample line bundles.

3) It is sufficient to consider the case in which h|σ and k|σ belongs to the
lattice of roots for each σ ∈ ∆(l). Indeed if f is any spherical convex ∆-linear
function, then the weights f |σ are all contained in the orbit vf + M of the
lattice Ω with respect to the action of M . For each f ∈ SF (∆, ΛX) let af be a
positive integer such that (af + 1)vf belongs to the lattice M generated by the
restricted roots. Recall that h|σ and k|σ are regular for each σ ∈ ∆(l). Then
h′ = h+ahvh and k′ = k+akvk are convex spherical ∆-linear function such that
h′|σ and k′|σ are regular weights contained in M for each σ ∈ ∆(l). Moreover
h′ (respectively k′) is strictly convex on ∆ if and only if h (respectively k) is
strictly convex on ∆. Because of the previous theorem, the surjectivity of Mh,k

is equivalent to the surjectivity of Mh′,k′ . Indeed the restriction of Lvf
to Z is

trivial for each f .
4) Because of the previous proposition we can reduce ourselves to consider

only completions of
∏

PSL(2).

10 Stable subvarieties

In some case we can reduce the study of the product of sections of two ample
line bundles Lh and Lk on Z to the study of the product of sections of the
restrictions of these line bundles to stable closed subvarieties. Indeed we will
prove the following fact. Let s be a global section of Lh+k which does not vanish
on a divisor Zτ . If s|Zτ is in the image of the product of sections of Lh|Zτ and
Lk|Zτ , then s is in the image of the product of sections of Lh and Lk. Before
we will prove a proposition of independent importance, namely the surjectivity
of the restriction of sections from a smooth complete toric variety Zc to any
closed S-stable subvariety. In this sections we will allow Zc to be any smooth
complete toric variety, unless we say otherwise.

Proposition 10.1 Let Zc any smooth complete S-toric variety and let L be
any ample line bundle on Zc. Given two cones γ ⊂ γ′ in ∆c, the restriction

H0(Zc
γ , L|Zc

γ) −→ H0(Zc
γ′ , L|Zc

γ′)

is surjective.
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Proof. The fundamental part of the proof is the following lemma.

Lemma 10.1 Let γ be a cone in ∆c and let Lk be any linearizated ample line
bundle on Zc, then Hi(Zc

γ , Lk−∑
τ∈I dτ |Zc

γ) = 0 for each i > 0 and each subset
I of {τ : τ ∈ ∆c(1), τ ⊂/ γ and τ + γ ∈ ∆c}.

Proof. dτ is the ∆c-linear function such that dτ (τ ′) = −δτ,τ ′ for each τ ′ ∈
∆c(1). Observe that the lemma does not depend by the linearization of the line
bundle Lk. Let Jγ = {τ : τ ∈ ∆c(1), τ ⊂/ γ and τ + γ ∈ ∆c}. Notice that
there is an one-to-one correspondence between Jγ and the S-stable divisors of
Zc

γ . If x belongs to the open orbit of Zc
γ , namely Zc

γ = S · x, then Zc
γ is a toric

variety with respect to the torus S′ = S/Stab(x). Observe that Stab(x) does
not depend on the choice of x because S is abelian. Let Nγ be the sublattice of
N generated by γ, then N(γ) = N/Nγ is the group of one parameter subgroups
of S′ and M ∩ γ⊥ is the character group of S′. Moreover the fan of Zc

γ in N(γ)
is composed of the cones (σ+Nγ⊗R)/Nγ⊗R where σ varies in the set of cones
in ∆c which contain γ. We can choose a S-linearization of Lk such that the
induced S-linearization of Lk|Zc

γ is compatible with a unique S′-linearization of
Lk|Zc

γ through the quotient map S 7→ S′. This is equivalent to choose k that
vanishes on γ. Indeed the character k|σ, with which S acts on any S-fixed point
xσ, is induced by a character of S′ if and only if k|σ vanishes on γ, namely
k|σ ∈ M ∩ γ⊥ = χ∗(S′). In this case k induces a piecewise linear function on
N(γ) ⊗R, which is associated to the previous S′-linearization of Lk|Zc

γ , so we
call it k by abuse of notation. Let r be the dimension of Zc

γ or, equivalently,
the dimension of N(γ)⊗R. Observe that dim γ = l − r.

We want to show the lemma by decreasing induction on the dimension of
γ and on the cardinality |I| of I. If dim γ = l then Zc

γ is a point and the
proposition is trivial. In the following we will suppose that dim γ < l. Let K =
(L−Στ∈Jγ dτ )|Zc

γ be the canonical bundle of Zc
γ and let L′ = (Lk−Στ∈Jγ dτ )|Zc

γ . By
the Serre duality we have Hi(Zc

γ , L′) = 0 for each i > 0 if Hi(Zc
γ ,(L′)−1 ⊗K) =

0 for each i < dim Zc
γ . ((L′)−1 ⊗K)−1 = Lk|Zc

γ
is very ample, so the Kodaira

vanishing theorem implies that Hi(Zc
γ ,(L′)−1 ⊗K) = 0 for each i < dim Zc

γ .
Thus we have showed the basis of induction. Finally we can suppose that

there is ς ∈ Jγ − I, so we have the following short exact sequence

0 // Lk−Σdτ−dς |Zc
γ

sς // Lk−Σdτ |Zc
γ

// Lk−Σdτ |Zc
γ+υ

// 0

where the second map is the restriction and the first one is the product by
an invariant section sς of Ldς (observe that 0 ≥ dς over NR, so there is a
seminvariant section of weight 0, namely an invariant section). The proposition
is true on the first term by induction on |I| and is true on the third one by
induction on the dimension of γ, so it is true also on the second term. ¤

Now we can prove the proposition. By induction we can suppose that
dim Zc

γ = dim Zc
γ′ + 1, so there is τ ∈ ∆c(1) such that γ′ = γ + τ . We
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choose a linearization associated to a function k. There is the following short
exact sequence

0 // Lk−dτ |Zc
γ

sτ // Lk|Zc
γ

// Lk|Zc
γ′

// 0

The proposition is implied by H1(Zc
γ , Lk−dτ ) = 0. ¤

Now we want to prove a corollary about complete symmetric varieties, but
we do not need it in the following sections.

Corollary 10.1 Let Lh be an ample line bundle on Y such that h is spherical.
Given two cones γ ⊂ γ′ in ∆, the restriction

H0(Yγ , Lh|Yγ) −→ H0(Yγ′ , Lh|Yγ′)

is surjective.

Proof. It is sufficient to show that all the lowest weight vectors belong to the
image. Let v′ ∈ H0(Yγ′ , Lh|Yγ′) be any lowest weight vector and let −µ be the
weight of v′. Let Zc be the complete toric variety associate to Y . We know that
v′ does not vanish on Zc

γ′ because Yγ′ has a dense U− × T orbit. Thus there
is a seminvariant section s ∈ H0(Zc

γ , Lh|Zc
γ) whose restriction to Zc

γ′ is v′|Zc
γ′ .

Because µ is dominant, there is a lowest weight vector v ∈ H0(Yγ , Lh|Yγ) whose
restriction to Zc

γ is equal to s. Thus the restriction of v to Zc
γ′ coincides with

the restriction of v′ to Zc
γ′ , so the restriction of v to Yγ′ is v′ because we are

studying multiplicity-free representations. ¤
Now we want to prove a proposition that in some case allows ourselves to

reduce the study of the product of sections of two lines bundles on Z to the
study of the product of sections of the restrictions of the previous lines bundles
to a suitable divisor. Before we prove a similar proposition on any complete
smooth toric variety Zc.

Proposition 10.2 Let Zc be a smooth complete toric variety and let Lh and
Lk be two ample linearizated line bundles on Zc. Let τ be a cone in ∆c(1) and
let s be a global section of Lh+k which does not vanish on Zc

τ . If s|Zc
τ belongs

to the image of the product mc
τ of sections of the restrictions of Lh and Lk to

Zc
τ , then s belongs to the image of the product mc of sections of Lh and Lk.

Proof. We can suppose that s is a semi-invariant section because there
is a basis of semi-invariant sections. Indeed we can write s =

∑
sνi where

sνi is a semi-invariant section of weight νi for each i. Suppose that s|Zc
τ =

mc
τ (

∑
tλj ⊗ rµj ) where tλj is a semi-invariant section of weight λj for each j

and rµj is a semi-invariant section of weight µj for each j. Then sνi |Zc =
mc

τ (
∑

j:λj+µj=νi
tλj ⊗ rµj ), so sνi |Zc belongs to the image of mc

τ for each i.
Moreover, if sνi belongs to the image of mc for each i, then s belongs to the
image of m.

Let s be a semi-invariant section of weight µ that does not vanish on Zc
τ , so

µ(%(τ)) = (h+k)(%(τ)). Suppose that s|Zc
τ belongs to the image of mc

τ . Because
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of the previous proposition, there are sections s′i ∈ Γ(Zc, Lh) and s′′i ∈ Γ(Zc, Lk)
such that mc

τ (
∑

s′i|Zc
τ ⊗ s′′i |Zc

τ ) is the restriction of s to Zc
τ . Thus mc

τ (
∑

s′i ⊗
s′′i ) = s because the space of sections is a multiplicity-free representation. ¤

Now we can prove the proposition on Z.

Proposition 10.3 Let Z be a smooth toric variety over Al. Let Lh and Lk be
any two ample line bundles on Z. Let τ ∈ ∆(1) and let s be a section of Lh+k

that does not vanish on Zτ . If s|Zτ belongs to the image of the product mτ
h,k of

sections of Lh|Zτ and Lk|Zτ , then s belongs to the image of the product mh,k

of sections of Lh and Lk.

Proof. We can proceed as in the previous proposition if we show that the
restriction map is surjective.

Proposition 10.4 Let Z be a smooth toric variety over Al and let L be an
ample line bundles on Z. Given any two cones γ, γ′ in ∆ with γ′ ⊂ γ, then the
restriction map

H0(Zγ′ , L|Zγ′) → H0(Zγ , L|Zγ)

is surjective.

Proof. It is clearly sufficient to consider the case in which γ′ = {0}, i.e.
Z = Zγ′ . We want to use the proposition 10.1, so we will define a completion
Zc of Z and an ample line bundle on Zc whose restriction to Z is L. We
can think Al as an open subvariety of

∏l
i=1 P1. We define a scalar product

on NR such that {e1, ..., el} is an orthonormal basis. Let W 1 be the group
generated by the reflections with respect to the coordinate hyperplanes; it is
isomorphic to

∏l
i=1 Z/2Z. The fan ∆c

0 of
∏l

i=1 P1 is invariant by W 1 and we
can suppose that the fan ∆0 of Al is the intersection ∆c

0 ∩ σ(e1, ..., el) := {σ ∈
∆c

0 : σ ⊂ σ(e1, ..., el)}. Let Zc be the toric variety over
∏l

i=1 P1 whose fan ∆c

is W 1 ·∆ = {w · γ : w ∈ W 1, γ ∈ ∆} (here ∆ is the fan of Z). Notice that W 1

acts on M by duality.
Let h be the ∆-linear function associated to a linearization of L and let hc

be the ∆c linear function defined as follows: hc(w · v) = h(v) for each w ∈ W 1

and v ∈ σ(e1, ..., el). Because of the lemma 7.4 we can choose h such that the
line bundle Lhc is ample on Zc.

We need a lemma that relates the sections over Zγ with the sections over Zc
γ .

Before we will introduce some notations and we will do some observations on the
fans corresponding respectively to Zc

γ and Zγ . Let ∆c(τ) (respectively ∆(γ))
be the set of cones in ∆c (respectively in ∆) which contain γ and let ∆c(n)(γ)
(respectively ∆(n)(γ)) be the set of n-dimensional cones in ∆c (respectively in
∆) which contain γ. Write γ =

∑m
i=1 Z+%(τi), where the τi are opportune cones

in ∆(1).
Zγ and Zc

γ are toric varieties with respect to the torus S′ associated to⊕l
i=1 Zei/

∑m
i=1 Z%(τi). The fan of Zγ is {σ + Rγ/Rγ : σ ∈ ∆(τ)} and the

fan of Zc
τ is {σ + Rγ/Rγ : σ ∈ ∆c(τ)}. Up to reordering the indices we can
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suppose that γ is contained in σ(er+1, ..., el), but it is not contained in any
face of σ(er+1, ..., el). Thus, for each i, we can write %(τi) =

∑l
j=r+1 aj

iej

where the aj
i are positive integers. For each i let ẽi be the class of ei mod-

ulo Rγ. Up to exchange the indices, we can suppose that {ẽ1, ..., ẽl−m} is a
basis of

⊕l
i=1 Rei/Rγ and that the support of the fan corresponding to Zτ is

σ(ẽ1, ..., ẽl−m,−ẽr+1, ...,−ẽl−m).
For each j let sj ∈ W 1 be the orthogonal reflection corresponding to ej . Let

W̃ 1 be the subgroup of W 1 generated by s1, ..., sr. W̃ 1 fixes %(τi) for each i, so it
acts on

⊕l
i=1 Zei/

∑m
i=1 Z%(τi). We have ∆(γ) = ∆c(γ)∩σ(ẽ1, ..., ẽl−m, −ẽr+1,

...,−ẽl−m) := {σ ∈ ∆c(γ) : σ + Rγ/Rγ ⊂ σ(ẽ1, ..., ẽl−m,−ẽr+1, ...,−ẽl−m)}
and we will prove that ∆c(γ) = W̃ 1 ·∆(γ). Indeed for each σ in ∆c(l)(γ) there is
w ∈ W 1 such that w ·σ belong to ∆(l)(γ). Moreover sjσ contains sj%(τi) = %(τi)
for each j ≤ r and for each i; instead, given w ∈ W 1 − spanW 1(s1, ..., sr), there
is i such that w%(τi) is not contained in σ(e1, ..., er), so w · σ does not contain
%(τi) because Zc dominates

∏l
i= P1.

One can show that H0(Zγ , Lh|Zγ) has a basis of semi-invariant sections for
the action of S. The weights of such sections are opposite to the elements of
Π(Zγ , h) := {m ∈ ⋂

σ∈∆(l)(γ) h|σ+M∩γ⊥∩σ̌}. Also H0(Zc
γ , Lhc |Zc

γ) has a basis
of semi-invariant sections for the action of S and the weights of such sections
are opposite to the elements of Π(Zc

γ , h) := {m ∈ ⋂
σ∈∆c(l)(γ) h|σ+M ∩γ⊥∩ σ̌}.

Up to change hc by an element of
⊕l

i=r+1 Zfi, we can suppose that hc(%(τi))
= 0 for each i, so that there is an action of S′ on Lhc |Zc

τ compatible with the
action of S through the quotient map. In this case hc induces a piecewise
linear function h̃c on (

⊕
Rei)/Rγ and h induces a piecewise linear function h̃

on σ(ẽ1, ..., ẽl−m,−ẽr+1, ...,−ẽl−m). hc is W̃ invariant, so h̃c is W̃ invariant.
Observe that now hc may be not W 1 invariant. Moreover the restriction of h̃c

to σ(ẽ1, ..., ẽl−m,−ẽe+r, ...,−ẽl−m) is equal to h̃. Let Q̃h be the polyhedron in
(M ∩ γ⊥)⊗R corresponding to h̃ and let P̃h be the polytope in (M ∩ γ⊥)⊗R
corresponding to h̃c. Notice that Π(Zγ , h) = Q̃h ∩ M ∩ γ⊥ and Π(Zc

γ , h) =
P̃h ∩M ∩ γ⊥.

We now want to prove some relations like the ones stated in the propo-
sitions 9.1 and 9.2. The proof will be much simpler because {e1, ..., el} is
an orthonormal basis. For each j in {r + 1, ..., l − m} there is f̃j in fj +
σ(−fl−m+1, ...,−fl) such that {f1, ..., fr, f̃r+1, ..., f̃l−m} is a basis of (M ∩γ⊥)⊗
R. Let C̃+ = σ(−f1, ...,−fr,−f̃r+1, ..,−f̃l−m, f̃r+1, ..., f̃l−m).

Lemma 10.2 1. Q̃h = P̃h ∩ C̃+ + σ(f1, ..., fr);

2. Π(Zγ , h) = Π(Zc
γ , h) ∩ C̃+ +

⊕r
i=1 Z+fi.

Proof. Notice that, if r is equal to 0, then Zτ is equal to Zc
τ and there is

nothing to prove. Thus we can suppose that r ≥ 1.
For each j ≤ r let Hj be the hyperplane of (M ∩ γ⊥) ⊗ R generated by

f1, ..., f̂j , ..., fr, f̃r+1, ..., f̃l−m and notice that the border of C̃+ is the union of
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the Hj . sj acts on (M ∩ γ⊥) ⊗R as the orthogonal reflection with respect to
Hj . Observe that, if P̃h contains a point p, then it contains all the translates
of p by W̃ 1 because h̃c is W̃ 1 invariant. Moreover, given any point p ∈ P̃h, P̃h

contains the orthogonal projection 1
2 (p + sjp) of p to Hj for each j. Since hc is

strictly convex on ∆c, there is no vertex of P̃h contained in Hj . Indeed, given
a vertex h̃c|σ of P̃h, then sj · h̃c|σ is different from h̃c|σ.

The equations of Q̃h are of the form
∑l−m

i=1 dixi ≥ d where the di with i ≤ r

are positive constants. So, given any m ∈ Q̃h, we have m + σ(f1, ..., fr) ⊂ Q̃h,
i.e. Q̃h is stable by translation with respect to vectors in σ(f1, ..., fr).

We now show that P̃h∩C̃+ = Q̃h∩C̃+. It is evident that P̃h∩C̃+ ⊆ Q̃h∩C̃+,
so it is sufficient to show that Q̃h ∩ C̃+ ⊆ P̃h. As a matter of fact it is sufficient
to show that Q̃h∩C̃+∩(M∩γ⊥)⊗Q ⊆ P̃h because P̃h is closed. The semi-spaces
defining P̃h are {p ∈ (M ∩ γ⊥) ⊗R : p(%(τ) + Rγ) ≥ h̃c(%(τ) + Rγ)} for each
τ ∈ ∆c(γ)(1). Thus, given any p ∈ Q̃h∩ C̃+∩ (M ∩γ⊥)Q and any τ ∈ ∆c(γ)(1),
we have to show that p(%(τ)+Rγ) ≥ h̃c(%(τ)+Rγ). Because of the symmetry of
∆c(γ), there are w ∈ W̃ 1 and τ ′ ∈ ∆(1)(γ) such that %(τ) = w · %(τ ′). Observe
that w · p − p belongs to σ(f1, ..., fr). Write w · p − p =

∑
cifi, so we have

p(%(τ) + Rγ) = p(w · %(τ ′) + Rγ) = (w · p)(%(τ ′) + Rγ) = p(%(τ ′) + Rγ) +∑
cifi(%(τ ′) + Rγ) ≥ p(%(τ ′) + Rγ) ≥ h̃(%(τ ′) + Rγ) = h̃c(%(τ) + Rγ).
We can now show the first point of the lemma. The decomposition in cones

of (N(γ))R associated to hP̃h∩C̃+ has 1-dimensional cones {σ(−ẽ1), ..., σ(−ẽr)}∪
∆(1)(γ). hP̃h∩C̃+ has finite values on all (N(γ))R, it is equal to h̃ on σ(ẽ1, ...,
ẽl−m, −ẽr+1, ...,−ẽl−m) and vanishes on the vectors −ẽ1, ...,−ẽr. The function
associated to σ(f1, ..., fr) vanishes on σ(ẽ1, ..., ẽl−1,−ẽr+1, ...,−ẽl−1) and has
value −∞ on the complementary set. Thus their sum is the function associated
to Q̃h, so the claim follows by the theorem 4.2.

Now, we can conclude the proof of the lemma. Let p be a point contained
in Π(Zγ , h). We know that p = p′ +

∑r
i=1 aifi where p′ ∈ P̃h ∩ C̃+ and the ai

are positive constants, but the ai may be not integers. Now it is sufficient to
observe that p′ +

∑r
i=1(ai − [ai])fi belongs to Π(Zc

γ , h) ∩ C̃+ (here [ai] is the
integral part of ai). Indeed, for each j ≤ r, the j-th coordinate of p′ is negative,
(aj − [aj ]) < 1 and p′ +

∑r
i=1(ai − [ai])fi = p−∑r

i=1[ai]fi is a rational point.
¤

Now we can conclude the proof of the propositions 10.4 and thus also the
proof of the proposition 10.3. Clearly it is sufficient to show that the image of the
restriction contains all the semi-invariant sections. Let s be any semi-invariant
section of L on Zγ and let p be its weight; we can write p = p′+

∑r
i=1 aifi where

p′ is the weight of a section s′ of L on Zc
γ and the ai are positive integers. Observe

that p(%(τi) + Rγ) = h̃(%(τi) + Rγ) = h(%(τi)) for each i, so p′(%(τi) + Rγ) =
h̃(%(τi)+Rγ) = h(%(τi)) for each i. There is a section s′′ on Zc whose restriction
on Zc

τ is s′ by the proposition 10.1. Thus p′ ∈ Qhc ∩M , so p ∈ Qh ∩M and
there is a semi-invariant section ϕ of Lh on Z with weight p. This section does
not vanish on Zτ because p(%(τ)) = h(%(τ)), so ϕ|Zτ is a not zero multiple of
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s. ¤

11 Line bundles on an exceptional complete sym-
metric variety

Let Y be an exceptional complete symmetric variety, let Z be the associated
open toric variety and let ∆ be the fan of Z. Let h be a spherical strictly convex
(∆, ΛX)-linear function such that h|σ is regular for each σ ∈ ∆(l). We know
that the multiplication Mh,h of sections on Y is surjective if and only if the
multiplication mh,h of sections on Z is surjective. In this section we want to
generalize this fact to the h which are not spherical.

Remember that Pic(X) is generated by the spherical weights and by the fun-
damental weights ωα1 , ..., ωαs corresponding to the exceptional roots α1, ..., αs.

Proposition 11.1 Let Lh′ be an ample line bundle on Y such that Mh′,h′ is
surjective and let a1, ..., al be positive integers. If we define h = h′ +

∑
aiωαi

then the product Mh,h of sections of Lh over Y is surjective.

Proof. Observe that Lh is an ample bundle on Y . We will prove the propo-
sition by induction on

∑
ai. Mh,h is trivially surjective if

∑
ai = 0. We need a

lemma on the maps Mh,ωαi
.

Lemma 11.1 Let Lh be an ample line bundle on Y and let ω ∈ {ωα1 , ..., ωαs}.
Then Mh,ω is surjective.

Proof. In the following V ∗
λ is the unique subrepresentation of H0(Y, Lλ)

which contains a lowest weight vector vλ of weight −λ. We have H0(Y,Lh) =⊕
λ∈Π(Y,h) sh−λV ∗

λ , H0(Y, Lh+ω) =
⊕

µ∈Π(Y,h+ω) sh+ω−µV ∗
µ =

⊕
λ∈Π(Y,h)

sh−λV ∗
ω+λ and H0(Y, Lω) = V ∗

ω . The last equality is implied by the fact that
ω is a minuscule weight i.e. it is non zero and there is no dominant weight
λ such ω − λ ∈ Λ+ (see lemma 4.3 in [CS], proposition 1.12 in [S], pages 532
and following ones in [He]). The lemma is implied by the fact that, for each
λ ∈ Π(Y, h), Mh,ω(sh−λvλ ⊗ vω) is a lowest weight vector of weight −λ− ω. ¤

We now go back to the proposition. Let j be an index such that aj > 0 and
define h̃ = h− ωj . We have the following commutative diagram

H0(Y, Lh̃)⊗H0(Y,Lh̃)⊗H0(Y, Lωj )⊗H0(Y,Lωj ) //

m1

²²

H0(Y,Lh)⊗H0(Y, Lh)

Mh,h

²²

H0(Y, L2h̃)⊗H0(Y, Lωj )⊗H0(Y, Lωj )

m2

²²
H0(Y, L2h̃+ωj

)⊗H0(Y, Lωj )
M2h̃+wj,wj // H0(Y,L2h).
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m1 is surjective by induction, m2 and M2h̃+wj ,wj
are surjective because of the

previous lemma, so Mh,h is surjective. ¤

Theorem 11.1 Let Lh be an ample line bundle on Y . If mh,h is surjective
then Mh,h is surjective.

Proof. We know that, up to exchange αi with θ(αi) for some i in {1, ..., l},
there are positive integers a1, ..., al such that h′ = h − ∑

aiwi is a spherical
piecewise linear function and Lh′ is ample. The restriction of Lh to Z is iso-
morphic to the restriction of Lh′ to Z, so mh′,h′ is surjective. Thus Mh′,h′ is
surjective because of the theorem 9.1. Hence Mh,h is surjective by the previous
proposition. ¤

12 Open projectively normal toric varieties

Now we want to describe some families of open toric varieties such that, if Lh

is an ample line bundle on a such variety, then the product mh,h of sections
is surjective. One family is formed by all the varieties of dimension 2 proper
over A2. Moreover we will find an infinite number of varieties that have such
property for every given dimension. In some cases we will prove that, given any
two ample line bundles Lh and Lk on a fixed variety, then the product mh,k is
surjective. In the following we will identify M with Zl.

12.1 Blow-ups of Al

Now we study the class of varieties that are blow-ups of Al along a stable closed
subvariety. This is the unique case in which we will prove that given any two
line bundles Lh and Lk generated by global sections then the product of sections
is surjective.

Proposition 12.1 Let Z be the blow-up of Al along the stable closed subvariety
associated to σ(e1, ..., er). Let Lh and Lk be two line bundles generated by global
sections on Z, then the product of sections mh,k is surjective.

The inequalities for Qh are zi ≥ ai for each i = 1, .., l and z1+...+zr ≥ b. The
inequalities for Qk are zi ≥ ci for each i = 1, .., l and z1 + ...+zr ≥ d. Here ai, b,
ci and d are suitable integers. Let m be any point in Qh+k ∩M , then there are
m̃1 ∈ Qh and m̃2 ∈ Qk such that m̃1 + m̃2 = m, but they may have not integral
coordinates. We want to move m̃1 and m̃2 a little, so that we will obtain two
points with integral coordinates that belong respectively to Qh and to Qk. More
precisely we will move m̃1 by a vector v whose coordinates have values between
−1 and 1, so we will have to move m̃2 by the vector −v whose coordinates have
again values between −1 and 1. If m̃1 = (x1, ..., xl) then xi ≥ ai. Let [xi] be
the integral part of xi and let εi = −[([xi]− xi)] (εi is 0 if xi is an integer and
it is 1 otherwise). [xi] + εi ≥ [xi] ≥ ai because the ai are integers. Likewise,
if m̃2 = (y1, ..., yl) then [yi] + εi ≥ [yi] ≥ di (observe that εi = −[([yi] − yi)]).
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If ([y1], ..., [yl]) belongs to Qk, then we define m1 = ([x1] + ε1, ..., [xl] + εl) and
m2 = ([y1], ..., [yl]). Clearly these points satisfy our requests. In the same
way, if ([x1], ..., [xl]) belongs to Qh, then we define m1 = ([x1], ..., [xl]) and
m2 = ([y1] + ε1, ..., [yl] + εl). Thus we can suppose that

∑r
i=1[xi] ≤ b and∑r

i=1[yi] ≤ d. We define m1 = ([x1] + ε1, ..., [xs] + εs, [xs+1], ..., [xl]) for an
index s lesser than r and such that b = h(e1 + ... + er) =

∑r
i=1[xi] +

∑s
i=1 εi =

m1(e1 + ... + er). There is a such s because
∑r

i=1[xi]− b is a negative integer,∑r
i=1([xi] + εi) ≥ b + d −∑r

i=1([yi]) ≥ b and εi ∈ {0, 1} for each i. Moreover
we define m2 = m − m1 = ([y1], ..., [ys], [ys+1] + εs+1, ..., [yl] + εl). To verify
that m2 ∈ Qk it is sufficient to show that

∑s
i=1[yi] +

∑r
i=s+1([yi] + εi) ≥

d = k(e1 + ... + er). This is implied by the inequality m2(e1 + ... + er) =
(m−m1)(e1 + ... + er) ≥ (h + k)(e1 + ... + er)− h(e1 + ... + er). ¤

Now we study a similar family of varieties, but we require that the two line
bundles Lh and Lk are equal.

Corollary 12.1 Let Z be the open toric variety obtained from Al through the
sequence of blow-ups along the subvarieties associated respectively to σ(e1, e2),
σ(e2, e3),..., σ(er−1, er). Let Lh be any line bundle generated by global sections
on Z, then the product of sections mh,h is surjective.

Proof. The inequalities for Qh are: zi ≥ ai for each i = 1, .., l and zi−1 +zi ≥
bi for each i = 2, ..., r, where the ai and the bi are suitable integers. Let m =
(x1, ..., xl) ∈ Q2h∩M = 2Qh∩M . Observe that m′ = (x1/2, ..., xl/2) ∈ Qh and
m′+m′ = m. We define εi = −[([xi/2]−xi/2)], m1 = ([x1/2]+ε1, [x2/2], [x3/2]+
ε3, ..., [xs/2] + εs, [xs+1/2], ..., [xl/2]) and m2 = m −m1 for a suitable s. If r is
odd then we choose s = r, otherwise we define s = r − 1. These points belong
to Qh ∩M because [xi−1/2] + [xi/2] + (εi−1 + εi)/2 ≥ bi for each i. ¤

12.2 Open toric varieties of dimension 2 and a singular
family in dimension 3

Now we consider the family of smooth toric varieties proper over A2.

Theorem 12.1 Let Z be any smooth toric variety proper over A2. Let Lh1

and Lh2 be two linearized line bundles generated by global sections and suppose
that h1 and h2 are strictly convex on the same fan, then the product of sections
mh1,h2 is surjective.

The hypotheses mean that there is a variety Z ′ and two ample line bundle
L′h and L′k over Z ′ such that Lh is the pullback of L′h and Lk is the pullback of
L′k. We want to remark that Z ′ may be singular.

Proof. Let h3 = h1 +h2 and let ∆ be the fan of Z. It is obviously sufficient
to prove that the image of mh1,h2 contains a basis of semi-invariant sections, so
it is sufficient to prove that

Qh3 ∩M = Qh1 ∩M + Qh2 ∩M.
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We want to decompose each Qhi in more simple polyhedrons. More precisely
we will decompose each Qhi

in two types of polyhedrons with vertices in M : 1)
cones of form p+σ(f1, f2) for a suitable point p and 2) triangles. These triangles
will have a very particular form, indeed we require that the fan associated to
any such triangle T̃ has 1-dimensional cones generated respectively by −v1,−v2

and v1 + v2. Moreover we require that {v1, v2} is a basis of M and that v1

and v2 are contained in σ(e1, e2). This mean that T̃ is a rectangular isosceles
triangle with respect to the scalar product for which {v1, v2} is an orthonormal
basis. Observe that in general the other triangles are not rectangular isosceles
triangles with respect to this scalar product.

Let m = (x1, x2) be any point in Qh3 ∩ M . If there is a vertex p3 of Qh3

whose coordinates are both lesser than the corresponding coordinates of m then
m is contained in the polyhedron p3 + σ(f1, f2), so we are reduce ourselves to
study two polyhedrons associated to the pullbacks of two line bundles on A2.
Indeed there is a maximal cone σ ∈ ∆ such that p3 = h3|σ, so p3 = h1|σ + h2|σ
where h1|σ is a vertex of Qh1 and h2|σ is a vertex of Qh2 . Thus p3 +σ(f1, f2) =
(h1|σ + σ(f1, f2)) + (h2|σ + σ(f1, f2)) where hj |σ + σ(f1, f2) is the polyhedron
associated to the linearized line bundle Lhj |σ. Observe that Lhj |σ is the pullback
of a linearized line bundle on A2 because hj |σ is linear.
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44
44p3

1

p3
2

p3
3

m

Qh3

Otherwise for each j there are vertices pj
1, pj

2 of Qhj with the following
properties. Write pj

i = (zi,j
1 , zi,j

2 ) for each i and j and define pj
3 = (y2,j

1 , y1,j
2 )

for each j. m belongs to the triangle T 3 with vertices p3
1, p3

2 and p3
3. Moreover

T 3 = T 1 + T 2 where T j is the triangle with vertices pj
1, pj

2 and pj
3 for each j.

Indeed we can define p3
1, p3

2 as the two vertices (z1,3
1 , z1,3

2 ), (z2,3
1 , z2,3

2 ) of a side
of Qh3 such that z1,3

1 ≤ x1 ≤ z2,3
1 , so x2 ≤ z1,3

2 because otherwise m belongs

to (z1,3
1 , z1,3

2 ) + σ(f1, f2). If p3
1 = h3|σ1 and p3

2 = h3|σ2 then we set pj
1 = hj |σ1

and pj
2 = hj |σ2 for each j. Observe that pj

3 belongs to Qhj for each j, so T j is
contained in Qhj for each j. Moreover the fans associated to these triangles are
equal to the fan with 1-dimensional cones σ(−e1), σ(−e1) and σ(a1e1+a2e2) for
suitable integers a1 and a2. This means that, given i and j in {1, 2, 3}, for each
side of T i there is a side of T j parallel to the previous one. We remark that this
last fact is true because we have supposed that h1 and h2 are strictly convex on
the same fan. (In the pictures we consider the case in which h1 = h2).
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We need the following easy consequence of the proposition 12.1. Define a
scalar product ( , ) such that {f1, f2} is a orthonormal basis. In this proof, when
we will say that a side L of a polytope P is orthogonal to a vector v, we will
always suppose that (p, v) ≥ 0 for each p ∈ P (and (x, v) = 0 for each x ∈ L).
Notice that a plane H is the locus of zeroes of x1e1 + x2e2 ∈ N if and only if it
is orthogonal to x1f1 + x2f2.

Lemma 12.1 Let T 1 and T 2 be two triangles with sides orthogonal respectively
to −v1, −v2 and v1 + v2. If {v1, v2} is a bases of M then

(T 1 + σ(v1, v2)) ∩M + (T 2 + σ(v1, v2)) ∩M = (T 1 + T 2 + σ(v1, v2)) ∩M

Proof. It is sufficient to observe that, for each j, T j + σ(v1, v2) is the poly-
hedron associated to a linearized ample line bundle on the blow-up of A2 in the
stable point. (Here we think A2 as the toric variety associated to σ(v1, v2)). ¤

In general, we want decompose the triangles T j in triangles that satisfy
the hypothesis of the lemma. Moreover we require that, if T and σ(v1, v2) are
as in the lemma, then σ(v1, v2) is contained in σ(f1, f2). Thus if T ⊂ T j then
T +σ(v1, v2) is contained in T j+σ(f1, f2). Notice that T j+σ(f1, f2) is contained
in Qhj . Thus it is sufficient to define such decompositions.

We will define a sequence of open toric varieties Zr → Zr−1 → ... → Z0 such
that: 1) they are toric varieties with respect to the torus SpecC[N ], 2) Zi is the
blow-up of Zi−1 in a stable point, 3) Z0 = A2 and 4) Zr dominates the toric
variety whose fan is {σ(f1, a1f1+a2f2), σ(f2, a1f1+a2f2), σ(f1), σ(f2), σ(a1f1+
a2f2)}. We need these varieties only to define some triangles, but we are not
interested to study line bundles on such varieties. Let ∆i be the fan of Zi and
suppose that we have already defined Zi−1. We can assume that there is an
unique maximal cone σi−1 ∈ ∆i−1 which contains a1f1 + a2f2 (otherwise we
define r = i−1). Let Zi be the blow-up of Zi−1 in the stable point associated to
σi−1. For each i let ui−1 and wi−1 be the two primitive vectors that generated
σi−1. If a1f1 + a2f2 = ai−1ui−1 + bi−1wi−1, then we claim that ai ≤ ai−1,
bi ≤ bi−1 and 0 < ai +bi < ai−1 +bi−1. Hence the process has to stop in a finite
number of steps and ar + br = 1. Now we prove the claim. We can suppose,up
to exchange ui and wi, that a1f1 + a2f2 ∈ σ(ui−1, ui−1 + wi−1). We define
ui = ui−1 and wi = ui−1 + wi−1, so ai = ai−1 − bi−1 < ai−1 and bi = bi−1.
Observe that ai ≥ 0 because a1f1 + a2f2 ∈ σ(ui−1, ui−1 + wi−1).
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II ui−1 + wi−1

ae1 + be2

wi−1ui−1

We want to decompose the triangles T j in r triangles T j
i with integral ver-

tices. T j
i will have sides orthogonal respectively to −ui−1, −wi−1 and ui−1 +

wi−1. For each j we define T j
0 = T j . We define recursively T j

−i−1 as the set
T j
−i−T j

i+1. We will prove inductively that T j
−i is a triangle with sides orthogonal

respectively to −ui, −wi and a1f1 + a2f2. For each j and for each i < r− 2 we
decompose T j

−i in the two triangles T j
i+1 and T j

−i−1. Moreover, for each j we
decompose T j

−r+2 in the two triangles T j
r−1 and T j

r . We want that T 3
i = T 1

i +T 2
i

for each i. Moreover T 1
i , T 2

i and T 3
i will be associated to the same fan for each

i. Let pj
1,i, pj

2,i and pj
3,i be the vertices of T j

−i. We suppose that pj
3,i does not

belong to the side of T j
−i orthogonal to a1f1 + a2f2. (In the figure we consider

the case in which h1 = h2, so T3 = 2T1 = 2T2).
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i

We decompose T j
−i in two triangles by intersecting T j

−i with a line rj
i orthog-

onal to vi +wi and passing for a vertex pj
k,i for a suitable k ∈ {1, 2} independent

by j. Let T̃ j
i+1 be the triangle that contains pj

3,i and let T̃ j
−i−1 be the other tri-

angle. Observe that r1
i , r2

i and r3
i are parallel, so the fans associated to T̃ 1

i+1,
T̃ 2

i+1 and T̃ 3
i+1 (respectively to T̃ 1

−i−1, T̃ 2
−i−1 and T̃ 3

−i−1) are equal. Observe that
the convex function associated to T̃ j

i+1 is uniquely determined by the knowledge
of the fan associated to T̃ j

i+1 and by the knowledge of any two vertices of T̃ j
i+1

(indeed the three 1-dimensional cones of the fan associated to T̃ j
i+1 are contained

in the union of any two different two-dimensional cones of the fan associated to
T̃ j

i+1). Thus T̃ 3
i+1 = T̃ 1

i+1 + T̃ 2
i+1 because each T̃ j

i+1 share two vertices with T j
−i.

In the same way we can prove that T̃ 3
−i−1 = T̃ 1

−i−1 + T̃ 2
−i−1. We have to prove

that T̃ j
i+1 = T j

i+1 for each i and j.
We can suppose that a1f1 + a2f2 ∈ σ(ui + wi, ui) up to exchange ui and

wi. Let pj
1,i = (xj

1, x
j
2) be the vertex T j

−i not contained in the side orthogonal
to ui, let pj

2,i be the vertex of T j
−i not contained in the side orthogonal to −wi

and let pj
3 = (zj

1, z
j
2) be the vertex of T j

−i not contained in the side orthogonal
to a1f1 + a2f2. Let rj

i be the line orthogonal to ui + wi and passing along pj
1,i.

Observe that rj
i intersects the side orthogonal to −ui in the point qj

i = (zj
1, z

j
2 +

xj
1−zj

1) and this point has integral coordinates. We have decomposed T j
−i in two

triangles: 1) the triangle T j
i+1 with sides orthogonal respectively to −ui, −wi,
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ui + wi and with vertices pj
1, pj

3, qj ; 2) the triangle T j
−i−1 with sides orthogonal

respectively to −ui, −ui −wi, a1f1 + a2f2 and with vertices pj
1, qj , pj

2. For the
case of T j

r−2 it is sufficient to observe that a1f1 + a2f2 = ur−1 + (ur−1 + wr−1),
up to exchange ur−1 and wr−1. ¤

Now we consider a class of line bundles on varieties of dimension 3. This line
bundles are the pullbacks of ample lines bundles on varieties which are usually
singular.

Proposition 12.2 Let h be a piecewise linear function which is strictly convex
on the fan ∆ with maximal cones σ(e1, e2, ae1+ae2+e3), σ(e1, e3, ae1+ae2+e3)
and σ(e2, e3, ae1+ae2+e3). Here a is a strictly positive integer. Then Q2h∩M =
Qh ∩M + Qh ∩M .

Remember that h defines a line bundle generated by global sections on every
toric variety proper over the toric variety associated to ∆. Moreover the toric
variety associated to ∆ is proper over A3 and it is smooth if and only if a = 1.
(Look to the figure for an example of Qh).
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Qh

Proof. We want to proceed as in the previous theorem. We can again
decompose Q2h in a simplex P and some cones p + σ(f1, f2, f3). So we can
reduce ourselves to prove that (2P +σ(f1, f2, f3))∩M = (P +σ(f1, f2, f3))∩M+
(P + σ(f1, f2, f3)) ∩M . We again define a scalar product such that {f1, f2, f3}
is an orthonormal basis.
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P has three faces parallel to the coordinate planes and the fourth is orthogo-
nal to af1+af2+f3. We can suppose, up to a translation, that the origin 0 is the
vertex of P which does not belong to the face orthogonal to ae1 + ae2 + e3. Let
(−b, 0, 0), (0,−b, 0) and (0, 0,−c) be the other vertices of P . We have c = ba,
so c ≥ b. We want to decompose P in simplices with rational vertices. Let
R be a such simplex. We suppose that there is a basis {v1, v2, v3} of M such
that R is intersection of the semispaces {x | (x, vi) ≤ bi} with i = 1, 2, 3 and
{x | (x, v1 + v2 + v3) ≥ b} where b1, b2, b3, b are opportune integers. Moreover
we require that σ(v1, v2, v3) is contained in σ(f1, f2, f3). It is again sufficient
to define such decomposition because of the proposition 12.1. For simplicity we
consider only the first step of the decomposition of P .
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We decompose P intersecting it with the plane orthogonal to f1 + f2 + f3

and passing through the vertices (−b, 0, 0) and (0,−b, 0). This plane intersects
the side of P parallel to Rf3 in (0, 0,−b). We obtain two simplices with integral
vertices. The first one has faces orthogonal respectively to −f1, −f2, −f3 and
f1+f2+f3. This simplex has vertices (0, 0, 0), (−b, 0, 0), (0,−b, 0) and (0, 0,−b).
The second simplex has faces orthogonal respectively to −f1, −f2, −f1−f2−f3

and af1 + af2 + f3. This simplex T has vertices (−b, 0, 0), (0,−b, 0), (0, 0,−b)
and (0, 0,−c). Observe that σ(f1, f2, f1+f2+f3) is contained in σ(f1, f2, f3), so
T +σ(f1, f2, f1+f2+f3) is contained in P +σ(f1, f2, f3). Moreover T is a simplex
of the same type of P and af1 +af2 +f3 = (a−1)f1 +(a−1)f2 +(f1 +f2 +f3),
i.e. the coordinate with respect to the new basis are decreased. We will reiterate
the process until we obtain a basis with respect to which af1 + af2 + f3 has all
coordinate equal to 1, so that we can use the proposition 12.1. ¤

12.3 Two families of open toric varieties of dimension at
least 3

Now we want to show that there is an infinite number of open toric varieties of
any fixed dimension (greater than 2) such that the product of sections of any two
ample line bundles is surjective. The principal instrument in what follows is the
proposition 10.3. We will consider a very special class of varieties. Let Lh and
Lk be any two ample line bundles on a variety of this family. Let s be a semi-
invariant section of the product Lh+k such that its weight p has the following
property: there is not a weight p′ in

∏
(Z, h + k) such that p ∈ p′ + σ(f1, ..., fl).

Then s does not vanish on a suitable divisor. This means that H0(Z, Lh+k) is
generated as a OZ(Z) module by the seminvariant sections that do not vanish
on a suitable divisor.

Proposition 12.3 Let Z be the open toric variety obtained from Al through
the sequence of blow-ups along the stable subvarieties associated respectively to
σ(e1, ..., el), σ(e1, ..., el−1, (

∑l−1
i=1 ei)+el), σ(e1, ..., el−1, 2(

∑l−1
i=1 ei)+el),...,σ(e1,

..., el−1, i(
∑l−1

i=1 ei)+el),...,σ(e1, ..., el−1, (n−1)(
∑l−1

i=1 ei)+el). Let Lh and Lk be
any two ample line bundles on Z, then the product of sections mh,k is surjective.

Let ∆ be the fan of Z. The l-dimensional cones in ∆ are the following:
σ(e1, ..., êj , ..., el,

∑l
i=1 ei) with j = 1, ..., l−1; σ(e1, ..., êj , ..., el−1, (i− 1)(

∑l−1
i=1 ei)

+el, i(
∑l−1

i=1 ei)+el) with j = 1, ..., l−1 and i = 2, ...n; σ(e1, ..., el−1, n(
∑l−1

i=1 ei)+
el). (In the figure we have drawn the 3-dimensional variety with n = 3).
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e1 + e2 + e3

2e1 + 2e2 + e3

3e1 + 3e2 + e3

Proof. Observe that we have already considered the case n = 1 in propo-
sition 12.1, so we can suppose n ≥ 2. Up to changing the linearizations of
the line bundles we can suppose that h(ej) = k(ej) = 0 for each j. Observe
that, if (Qh ∩M) + (Qk ∩M) contains a weight p, then it contains any weight
p+

∑
aifi where the ai are positive integers. So we can consider only the ”min-

imal” weights. Let p ∈ Qh+k∩M be any ”minimal” weight, we claim that there
is a cone τ ∈ ∆(1) such that p(%(τ)) = (h + k)(%(τ)). This means that any
semi-invariant section of weight p does not vanish on the divisor of Z associated
to τ . This claim will allows ourselves to use the proposition 10.3. Thus will be
sufficient to prove the surjectivity of the product of sections of the restrictions
of Lh and Lk to any divisor of Z.

Claim 12.1 Let p be any weight in Qh+k ∩M and suppose that there is not a
weight p′ in Qh+k ∩ M such that p ∈ p′ + σ(f1, ..., fl). Then there is a cone
τ ∈ ∆(1) such that p(%(τ)) = (h + k)(%(τ)).

Proof. The hypotheses imply that p − fl does not belong to Qh+k. Hence
there is an i such that (p − fl)(i(

∑l−1
i=1 ei) + el) = p(i(

∑l−1
i=1 ei) + el) − 1 <

(h + k)(i(
∑l−1

i=1 ei) + el) because (p − fl)(ej) = p(ej) ≥ (h + k)(ej) for each
j = 1, ..., l − 1. So p(i(

∑l−1
i=1 ei) + el) = (h + k)(i(

∑l−1
i=1 ei) + el) and we have

proved the claim. ¤
Now it is sufficient to prove the surjectivity of the product of sections of

the restrictions of Lh and Lk to the divisor Zi associated to σ(i(
∑l−1

i=j ej) + el)
for each i = 0, ..., n. Zi is a toric variety with respect to the torus whose
group of 1-parameter subgroups is (

⊕l
j=1 Zej)/Z(i

∑l−1
j=1 ej + el). Observe that

(
⊕l

j=1 Zej)/Z(i
∑l−1

j=1 ej+el) is freely generated by ẽ1, ..., ẽl−1, where, for each j,

ẽj is the class of ej modulo i
∑l−1

j=1 ej +el. We have three possibilities: i) if i = 0
then the fan associated to Z0 has 1-dimensional cones σ(ẽ1), ..., σ(ẽl−1), σ(

∑
ẽi)

and Z0 is the blow-up of Al−1 in the stable point; ii) if i = n then the fan
associated to Zn has 1-dimensional cones σ(ẽ1), ..., σ(ẽl−1), σ(−∑

ẽi) and Zn is
the projective space of dimension l− 1; iii) if 0 < i < n then the fan associated
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to Z0 has 1-dimensional cones σ(ẽ1), ..., σ(ẽl−1), σ(
∑

ẽi), σ(−∑
ẽi) and Zi is

the blow-up of the (l − 1)-dimensional projective space in a stable point. We
want to do some remark. Observe that we have already considered the variety
Z0 in proposition 12.1. The varieties Zi with 0 < i < n are all isomorphic.
Because Z1 dominates Zn it is sufficient to study the product of sections of any
two line bundles Lh′ and Lk′ generated by global sections on Z1.

Lemma 12.2 Let Lh′ and Lk′ be any two line bundles on Z1 generated by global
sections. Then the multiplication of sections is surjective.

Proof. We can suppose that h′(ẽi) = k′(ẽi) = 0 for each i, thus Lh′ is
the pullback of a line bundle on Zn if and only if h′(

∑l−1
i=1 ẽi) = 0. In the

following we identify Zl−1 with the character group of the torus contained in
Z1. We proceed as in the proof of the proposition 12.1. Let m be any point in
Qh′+k′ with integral coordinates. There are m̃1 ∈ Qh′ and m̃2 ∈ Qk′ such that
m̃1 + m̃2 = m but they may not have integral coordinates. Let a = h′(

∑l−1
i=1 ẽi),

b = −h′(−∑l−1
i=1 ẽi), c = k′(

∑l−1
i=1 ẽi) and d = −k′(−∑l−1

i=1 ẽi). The inequalities
for Qh′ are ui ≥ 0 for each i = 1..., l−1 and a ≤ ∑

ui ≤ b, while the inequalities
for Qk′ are ui ≥ 0 for each i = 1..., l − 1 and c ≤ ∑

ui ≤ d. Suppose that
m̃1 = (x1, ..., xl−1), m̃2 = (y1, ..., yl−1) and m = (z1, ..., zl−1), so xi ≥ 0, a ≤∑

xi ≤ b, yi ≥ 0 and c ≤ ∑
yi ≤ d. Let [xi] be the integral part of xi and let

εi = −[([xi] − xi)] (εi is 0 if xi is an integer and it is 1 otherwise). Because 0
is an integer we have [xi] + εi ≥ [xi] ≥ 0 for each i = 1, ..., l; likewise we have
[yi] + εi ≥ [yi] ≥ 0 for each i = 1, ..., l.

We define m1 = ([x1] + ε1, ..., [xr̄] + εr̄, [xr̄+1], ..., [xl−1]) and m2 = ([y1], ...,
[yr̄], [yr̄+1] + εr̄+1, ..., [yl−1] + εl−1) for a suitable r̄. Now we want to simplify
the notation. In particular we will be evident that the problem does not depend
on the dimension. Let t =

∑l−1
i=1 εi, r =

∑r̄
i=1 εi, [x] =

∑l−1
i=1[xi], x =

∑l−1
i=1 xi,

[y] =
∑l−1

i=1[yi] and y =
∑l−1

i=1 yi. We known the following inequalities: i)
[x] ≤ x ≤ [x] + t, [y] ≤ y ≤ [y] + t and 0 ≤ r ≤ t; ii) a ≤ x ≤ b and c ≤ y ≤ d;
iii) a + c ≤ [x] + [y] + t = x + y ≤ b + d. Observe that m̃1(

∑l−1
i=1 ẽi) = x,

m1(
∑l−1

i=1 ẽi) = [x] + r, m̃2(
∑l−1

i=1 ẽi) = y and m2(
∑l−1

i=1 ẽi) = [y] + t − r. It is
sufficient to show that there is r such that 0 ≤ r ≤ t, a ≤ [x] + r ≤ b and
c ≤ [y] + t− r ≤ d. Observe that r takes all the value between 0 and t when r̄
varies between 0 and l − 1.

1) If t + [x] ≤ b we define r as min{[y] + t − c, t}. If [y] ≥ c then r = t, so
b ≥ [x] + t = [x] + r ≥ x ≥ a and c ≤ [y] ≤ y ≤ d. If c ≥ [y] then b ≥ [x] + t ≥
[x]+r = [x]+[y]+t−c ≥ a+c−c = a and c = [y]+t−([y]+t−c) = [y]+t−r ≤ d.

2) Suppose now that [y] + [x] + t ≤ b + c. If c − [y] is positive then we
define r = t + [y] − c, so t − r = c − [y] (t + [y] ≥ y ≥ c so r ≥ 0). In
this case c = [y] + t − r ≤ d and a ≤ [x] + [y] + t − c = [x] + r ≤ b. If
c − [y] is negative then we define r = t, so c ≤ [y] = [y] + t − r ≤ d and
a ≤ x ≤ [x] + t = [x] + r ≤ c + b− [y] ≤ b.

3) Finally suppose that t + [x] > b and [y] + [x] + t > b + c. We define
r = b− [x], so a ≤ [x] + r = b and d ≥ [y] + [x] + t− b = [y] + t− r ≥ c. ¤
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We have proved that the ”minimal” weights of
∏

(Z, h+k) come from semi-
invariant sections that do not vanish on a suitable divisor. Moreover we have
not explicitly used the strictly convexity of Lh and Lk, indeed we have used
it only to prove proposition 10.3. This fact are no longer true if we consider
varieties whose fan is a little less symmetric. Notice that the fans of the varieties
considered in this proposition are invariant for any automorphism of N which
permutes the vectors of the basis, fixing el. In the following we define a class
of varieties without such symmetry and obtained by blow-ups from varieties of
the previous family.

Theorem 12.2 Let Z be the open toric variety obtained from Al through the
sequence of blow-ups along the stable subvarieties associated respectively to
σ(e1, ..., el), σ(e1, ..., el−1, (

∑l−1
i=1 ei) + el),..., σ(e1, ..., el−1, i(

∑l−1
i=1 ei) + el),....,

σ(e1, ..., el−1, (n − 1)(
∑l−1

i=1 ei) + el) and σ(
∑l

j=1 ej , e2, ..., el). Let Lh be any
ample line bundles on Z, then the product of sections mh,h is surjective.

The fan of Z has maximal cones: σ(e1, ..., êj , ..., el,
∑l

i=1 ei) for each j =
2, ..., l−1; σ(e1, ..., êj , ..., el−1, (i−1)(

∑l−1
i=1 ei)+ el, i(

∑l−1
i=1 ei)+ el) for each j =

1, ..., l−1 and i = 2, ...n; σ(e1, ..., el−1, n(
∑l−1

i=1 ei)+el); σ(e2, ..., êj , ..., el,
∑l

i=1 ei,

e1 + 2
∑l

j=2 ej) for each j = 2, ..., l; σ(e2, ..., el, e1 + 2
∑l

j=2 ej) (In the figure
we have drawn the case in which l = 3 and n = 3).
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e1 e2

e3

∑l
i=1 ei

2(
∑l−1

i=1 ei) + el

3(
∑l−1

i=1 ei) + el

e1 + 2
∑l

j=2 ej

Proof. Observe that Z is the blow-up of a variety Z ′ of the previous propo-
sition. Z ′ is obtained from Al through the sequence of blow-ups along the sta-
ble subvarieties associated respectively to σ(e1, ..., el), σ(e1, ..., el−1, (

∑l−1
i=1 ei)+

el),..., σ(e1, ..., el−1, i(
∑l−1

i=1 ei) + el),...., σ(e1, ..., el−1, (n− 1)(
∑l−1

i=1 ei) + el). Z

is the blow-up of Z ′ along the subvariety associated to σ(
∑l

i=1 ei, e2, ..., el).
We introduce some notation to simplify the counts: w := e1 +2

∑l
j=2 ej and

vi := i(
∑l−1

i=1 ei) + el for each i. In the proof we allow Lh to be the pullback of
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an ample linearized line bundle on Z ′. In this case h(w) = h(v1) +
∑l

i=2 h(ei),
while if Lh is ample on Z then h(w) > h(v1) +

∑l
i=2 h(ei). We want to prove

the proposition by induction on h(w) and on the dimension of Z. Observe that
if h(w) = h(v1) +

∑l
i=2 h(ei) then mh,h is surjective because of the previous

proposition. If the dimension of Z is 2, then mh,h is surjective because of
the theorem 12.1, so the basis of the induction is proved. Suppose now that
h(w) > h(v1)+

∑l
i=2 h(ei). We want to proceed in a similar way to the previous

proposition. We can suppose that h(ej) = 0 for each j. Let ai = h(vi) and
b = h(w). It is sufficient to show that any m ∈ Q2h ∩M belongs to (Qh ∩M) +
(Qh ∩M). As before, if p belongs to (Qh ∩M) + (Qh ∩M) then p +

⊕
Z+fi

is contained in (Qh ∩ M) + (Qh ∩ M). Thus we can suppose that m − fl

does not belong to (Q2h ∩M), so either there is an i such that m(vi) = ai or
m(w)− 2h(w) ∈ {0, 1}.

In the first case we have reduced ourselves to study a divisor because of
proposition 10.3. If m(w) = 2b we again have to study a divisor. We have the
following possibilities for the divisor Zτ associated to a cone τ : i) if %(τ) = vi

with 1 < i < n, then Zτ is isomorphic to a divisor of Z ′, more precisely it is the
blow-up of the projective space in a stable point; ii) if %(τ) is equal to w or to
vn, then Zτ is the projective space; iii) if %(τ) is equal to e1 or to el, then Zτ

is a variety considered in the previous proposition; iv) if %(τ) = ei with i 6= 1, l,
then Zτ is variety as in the hypotheses of this proposition, but with dimension
l − 1; v) if %(τ) = v1, then Zτ is the blow-up of the projective space in two S-
stable points. If the fan of the projective space has maximal cones σ(u1, ..., ul−1)
and σ(−∑

ui, u1, ..., ûi, ..., ul−1) for each i = 1, ..., l − 1, then {u1, ..., ul−1} is a
basis of the lattice and Zσ(v1) is the blow-up centered in the points associated
respectively to σ(u1, ..., ul−1) and σ(−∑

ui, u2, ..., ul−1). The 1-dimensional
cones of the fan of Zσ(v1) are generated respectively by u1, ..., ul−1,

∑
ui,−

∑
ui

and −u1. The unique case which we have not already examined is the last one.
Let M ′ be the character group of the torus contained in Zσ(v1) and let P be
the polytope associated to any ample linearized line bundle on Zσ(v1), we have
to show that 2P ∩ M ′ = P ∩ M ′ + P ∩ M ′. P has inequalities: 0 ≤ z1 ≤ a;
0 ≤ zj for each j; b ≤ ∑

zj ≤ c (a, b and c are suitable integers). Let m =
(x1, ..., xl−1) be an integral point in 2P . We can proceed as done in the previous
proposition for the divisor Z ′σ(v1)

of the varieties Z ′. Indeed m = m/2 + m/2,
m/2 = (x1/2, ..., xl−1/2) is in P and 0 ≤ [x1/2] ≤ x1/2 ≤ [x1/2] + ε1 ≤ a. Let
P ′ be the polytope with equations 0 ≤ zj for each j and b ≤ ∑

zj ≤ c, then
m ∈ 2P ′ and m/2 ∈ P ′. Notice that P ′ is the polytope corresponding to an
ample line bundle on the divisor Z ′σ(v1)

of Z ′, thus we can use the lemma 12.2.
Moreover any point (x1/2 + ε1, ..., xr/2 + εr, xr+1/2, ..., xl−1/2) belongs to P if
and only if it belongs to P ′ ([x1/2] + ε1 is the least integer greater of x1/2).

Thus we can suppose that m(w) = 2b + 1. We now want to write some
necessary conditions to the strictly convexity of h on the fan ∆ associated to Z.
The condition (h|σ(v1, w, e2, ..., el−1))(vi) > h(vi) implies

ai + (i− 1)b < (2i− 1)a1
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for each i > 1. The conditions h|σ(w, e2, ..., el)(v1) > h(v1), h|σ(v1, e1, e3, ..., el)
(e2) > h(e2), h|σ(v1, e1, e3, ..., el)(w) > h(w) and h|σ(v1, e1, e3, ..., el)(vi) >
h(vi) imply:

b > a1 > 0, 2a1 > b

and
ia1 > ai

(Indeed vi = (2i− 1)v1− (i− 1)w +(i− 1)(e2 + ...+ el−1), v1 = w− e2− ...− el,
e2 = v1 − e1 − e3 − ... − el, w = 2v1 − e1 and vi = iv1 − (i − 1)el). These
inequalities imply b > 1 and ib > ai.

Let ∆′ be the fan of Z ′ and let h′ be the piecewise linear function on ∆ such
that h′(ei) = 0, h′(vi) = h(vi) and h′(w) = h(w) − 1. We need the following
lemma on h′.

Lemma 12.3 h′ is convex on ∆ and is strictly convex either on ∆ or on ∆′.

Proof. Observe that h ≥ h′.
i) Let σ be a l-dimensional cone which does not contain w and let τ be

an 1-dimensional cone not contained in σ, then (h′|σ)(%(τ)) = (h|σ)(%(τ)) >
h(%(τ)) ≥ h′(%(τ)).

We now consider the maximal cones that contain w.
ii) Consider σ(e2, ..., el, w). We have h′|σ(e2, ..., el, w) = (b−1)f1, so (h′|σ(e2,

..., el, w)) (vi) = i(b − 1) ≥ ia1 > ai for each i > 1, (h′|σ(e2, ..., el, w))(v1) =
b− 1 ≥ a1 and (h′|σ(e2, ..., el, w))(e1) = b− 1 > 0.

iii) Consider the cone σ(e2, ..., el−1, v1, w). We have h′|σ(e2, ..., el−1, v1, w) =
h|σ(e2, ..., el−1, v1, w) − ϕ where ϕ is the linear function such that ϕ(w) = 1
and ϕ(ej) = ϕ(v1) = 0 for each j = 2, ..., l − 1, namely ϕ = fl − f1. Thus
(h′|σ(e2, ..., el−1, v1, w))(vi) = (h|σ(e2, ..., el−1, v1, w))(vi)− ϕ(vi) = (h|σ(e2, ...,
el−1, v1, w)) (vi) + i − 1 > h(vi) + i − 1 > h′(vi) for each i > 1. Moreover
(h′|σ(e2, ..., el−1, v1, w))(e1) = (h|σ(e2, ..., el−1, v1, vi))(e1)−ϕ(e1) = (h|σ(e2, ...,
el−1, v1, w))(e1) + 1 > 0 and (h′|σ(e2, ..., el−1, v1, w)) (el) = (h|σ(e2, ..., el−1, v1,
w)) (el)− ϕ(el) = (h|σ(e2, ..., el−1, v1, w)) (el)− 1 ≥ 0.

iv) Finally we have to consider the cones σj = σ(e2, ..., êj , ..., el−1, v1, el, w)
for each j = 2, ..., l − 1. We have h′|σj = h|σj − ψj where ψj is the linear
function such that ψj(w) = 1 and ψ(ei) = ψ(v1) = 0 for each i 6= 1, j, namely
ψj = fj − f1. For each i > 1 we have (h′|σj)(vi) = (h|σj)(vi) − ψj(vi) =
(h|σj)(vi) > h(vi) = h′(vi). Moreover (h′|σj)(e1) = (h|σj)(e1) + 1 > 0 and
(h|σj)(ej) = (h′|σj)(ej)− 1 ≥ 0. ¤

By induction we can suppose that mh′,h′ is surjective, so we can suppose that
there are two points m1 ∈ Qh ∩M and m2 ∈ Qh′ ∩M such that m1 + m2 = m
(at least one point must belongs to Qh because otherwise m does not belong
to Q2h). If m2 belong to Qh then m ∈ Qh ∩M + Qh ∩M . Otherwise we have
m2(w) = b− 1 and m1(w) = b + 2. Write m1 = (x1, ..., xl) and m2 = (y1, ..., yl)
(we have identified M with Zl).

We can suppose that m1 − fl ∈/ Qh because m2 + fl ∈ Qh. Thus there is i
such that m1(vi) = ai. Moreover we can suppose that (m1+f1−fj , m2−f1+fj)
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does not belong to Qh × Qh′ for any j = 2, ..., l − 1, so xj = 0 or y1 = 0. If
y1 = 0 then 2a1 − 1 ≥ b − 1 = m2(w) = 2

∑
yj = 2m2(v1) ≥ 2a1, so we have

obtained a contradiction. Hence y1 6= 0 and xj = 0 for each j = 2, ..., l − 1.
Suppose that there is i > 1 such that m1(vi) = ix1 + xl = ai, then we have

(2i− 1)a1 ≤ (2i− 1)(x1 + xl) = m1(vi) + (i− 1)m1(w) =

= ai + (i− 1)(b + 2) ≤ (2i− 1)a1 + 2i− 2,

so 0 ≤ (2i− 1)(x1 +xl−a1) ≤ 2i− 2 (remember that ai +(i− 1)b < (2i− 1)a1).
We have x1 + xl = a1 because x1 + xl − a1 is an integer. Observe that we have
showed that m1(v1) = x1 +xl = a1 or m1(el) = xl = 0. In the last case we have
x2 = ... = xl = 0 and x1 = b + 2. We can suppose that (m1 − f1, m2 + f1) does
not belong to Qh × Qh′ , so there is s > 0 such that m1(vs) − as < s. Observe
that m1(vs) = sx1 = sb + 2s, so as ≤ sb = m1(vs) − 2s < as − s < as, so we
have obtained a contradiction. (The inequality as ≤ sb is one of the inequalities
that we have obtained by the strictly convexity of h).

Finally we can suppose that xj = 0 for each j = 2, ..., l − 1, x1 + xl = a1

and x1 + 2xl = b + 2, so x1 = 2a1 − b − 2 and xl = b + 2 − a1. Moreover we
can suppose that (m1 + f1 − fl,m2 − f1 + fl) does not belong to Qh ×Qh′ , so
xl = 0, y1 = 0 or there is i > 1 such that ε := m2(vi)− ai < i. Observe that we
have already considered the first two cases.

We have ai ≤ m1(vi) = ix1 + xl = (2i − 1)a1 − (i − 1)b − 2(i − 1), so
(2i− 1)a1 ≥ ai + (i− 1)b + 2(i− 1). Finally

(2i− 1)a1 ≤ (2i− 1)(
∑

yj) ≤ (2i− 1)y1 + (3i− 2)
∑

j 6=1,l

yj + (2i− 1)yl =

= m2(vi) + (i− 1)m2(w) = (i− 1)(b− 1) + ai + ε =

= (i− 1)b + ai + 2(i− 1)− 3(i− 1) + ε ≤ (2i− 1)a1 − 3(i− 1) + ε,

so 3(i− 1) ≤ ε ≤ i− 1, a contradiction. ¤

Part III

Fano varieties
Now we want to study the Fano complete symmetric variety. The Fano toric
variety are already studied. See [VK] for a finiteness theorem of smooth toric va-
riety of arbitrarily fixed dimension. See [Ba2] and [WW] for the classification of
Fano toric variety of dimension at most 3. See [Ba3] and [Sa] for a classification
of Fano toric 4-folds. See also [Ba1], [Bo], [Re], [Ca1] and [Ca2].
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13 Wonderful Fano symmetric varieties

We will say that a variety whose anticanonical bundle is generated by global
sections is an almost Fano variety. We now want to show that the wonderful
symmetric varieties are almost Fano varieties. Moreover we will classify the
Fano wonderful symmetric varieties. Before we will explain the combinatorial
conditions implying that a complete symmetric variety is an (almost) Fano
variety. Let Y be a complete symmetric variety and let LkY

be the anticanonical
bundle of Y , i.e. L−kY

is the maximal exterior power of the tangent bundle of
Y . Let Z and Zc be respectively the open toric variety and the complete toric
variety associated to Y . If there is no confusion we will use the notation k
instead of kY . We want to write k as a sum of two functions ”associated”
respectively to the anticanonical bundle of Z and to the anticanonical bundles
of the closed orbits.

Lemma 13.1 Let k1 =
∑

α∈φ+
1

α and let k2 = k − k1, then k2 is the unique
∆-linear function such that k2(ρ(τ)) = −1 for each cone τ ∈ ∆(1).

Proof. Let k′ be the unique ∆-linear function such that k′(ρ(τ)) = 1 for
each cones τ ∈ ∆(1). For example, if Y is wonderful then k′ is the restriction
of −∑l

i=1 αs
i to |∆|. We want to show that k2 = −k′. We observe that the

restriction of Lk′ to Zc is the canonical bundle of Zc (see page 70 in [O]) and the
restriction of L−k1 to any closed orbit O is the canonical bundle of O. Moreover
k′ and k1 are characterized by such proprieties. For k1 it follows because of the
theorem 6.1. For k′ it is true because k′ is the unique ∆ linear function such
that the associated ∆c-linear function (k′)c is, up to a linear function, the ∆c

function with value 1 on ρ(τ) for each τ ∈ ∆c(1) (actually (k′)c is exactly equal
to such function). Moreover, given a T -fixed point xσ in Z, the restriction of
Lk′ to U−×xσ is the normal bundle of U−×xσ in U−×Z. Remember that the
T -fixed points of Zc are the translates of the T -fixed points of Z by the action
of NH0(T ), so Lk′ is characterized by this property. It follows that k′ = −k2

because the restriction of L−k2 to any closed G-orbit O is the normal bundle of
O. ¤

Remark. 1) Observe that we can write k1 = 2δ − 2δ0 where δ =
∑

α∈Γ ωα is
the sum of all the positive roots of φ and δ0 is the sum of the roots in φ+

0 i.e. it
is the sum of all the positive roots of the root system φ0 in

⊕
α∈Γ0

Rα (recall
that φ0 is the set of the roots fixed by θ).

2) We want to point out that k1 depends only on the open orbit G/H of
Y , while k2 depends only on the (open) toric variety Z. Moreover k is always
almost spherical.

3) The restriction of Lk to Z is the anticanonical bundle of Z, indeed the
restriction of Lk1 to Z is trivial. Instead the restriction of Lk to Zc is not the
anticanonical bundle of Zc, except in the case in which the involution is trivial,
i.e. Y is a point. Indeed, this is the unique case in which k1 = 0.

Usually one asks that a Fano variety should be complete, but in order to use
the following proposition (whose proof is trivial), we shall also consider the not
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complete case extending the definition in the obvious way.

Proposition 13.1 If Y is a Fano variety, then Z is a Fano variety.

We now can consider the wonderful symmetric varieties. In this case the as-
sociated open toric variety is Al, so k is linear and strictly convex on σ(e1, ..., el).
Therefore we have only to verify if the weight 2δ − 2δ0 +

∑l
i=1 αs

i is (strongly)
dominant. We can suppose that the variety is simple, because the product of
two complete symmetric varieties is an (almost) Fano variety if and only if each
factor is an (almost) Fano variety.

Remember that the lattice Ω generated by the spherical weights is the lattice
of the integral weights of the root system φ̃. Moreover, the fundamental weights
ω̃′i of φ̃ are such that ω̃′i = ai(wαi

+ wθ̄(αi)) where ai ∈ {0, 1} for any i. More
precisely ω̃′i = (wαi

+ wθ̄(αi)) if θ(αi) 6= −αi and ω̃′i = 2(wαi
+ wθ̄(αi)) if

θ(αi) = −αi. Observe that k is a special weight, so < k, β >= 0 for any simple
root β fixed by θ. For each i ∈ {1, ...l} we want to show that < k, αs

i > ≥ 0.
Notice that < k, αs

i >= 2 < k, αi >= 2 < k, αθ(i) >. We can write k1 as the

sum of the two spherical weights 2δ̃ = 2
∑

αj∈Γ1
ωαj and −2δ̃0 = 2

∑
αj∈Γ0

ωαj−
2δ0. Observe that < −2δ̃0, α

s
i >= 2 < 2

∑
αj∈Γ0

ωαj −2δ0, αi >= 4 < −δ0, αi >
≥ 0 because δ0 is a positive sum of simple roots fixed by θ and < β, αi >≤ 0 for
any simple root β fixed by θ. Moreover we can prove that 2 <

∑l
j=1 αs

j , α
s
i > / <

αs
i , α

s
i >≥ −1 by looking to the Cartan matrix of φ̃. Therefore, if θ(αi) 6= −αi

we have 2 < k, αs
i > / < αs

i , α
s
i >≥ 2+0−1 = 1. Suppose now that θ(αi) = −αi,

so αs
i = 2αi and ω̃′i = 2wi. In this case 2 < 2δ̃ − 2δ̃0, α

s
i > / < αs

i , α
s
i >= 1 +

2 < −2δ̃0, α
s
i > / < αs

i , α
s
i >≥ 1, so (2 < k, αs

i > / < αs
i , α

s
i >) ≥ 0. Therefore

the anticanonical bundle of any wonderful symmetric variety is without base
points. Moreover if the anticanonical bundle of a wonderful symmetric variety X
is not ample, then there is an (unique) j such that θ(αj) = −αj , < δ̃0, α

s
j >= 0

and <
∑l

i=1 αs
i , α

s
j >= −1. This implies that < β,αs

j >= 0 for any simple
root β fixed by θ and that the restricted root system is reduced and different
from An and Bn. We have three possibilities: 1) there are i1 e i2 such that
αs

i1
, αs

j , α
s
i2

generate a root system of type C3; 2) there are i1, i2 e i3 such that
αs

i1
, αs

j , α
s
i2

, αs
i3

generate a root system of type D4 and 3) there is i1 such that
αs

i1
, αs

j generate a root system of type G2. Moreover G is simple, i.e. the
wonderful symmetric variety is not the completion of a group. Studying the
Satake diagram we obtain the following theorem.

Theorem 13.1 Let X be a wonderful symmetric variety. Then:

• The anticanonical bundle of X is generated by global sections.

• X is a Fano variety if and only if its simple factors are Fano varieties.

• A simple wonderful symmetric variety is not a Fano variety if and only if
the involution induced on MR is −id and the (restricted) root system is
different from An and Bn.
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• Explicitly, the simple wonderful symmetric varieties whose anticanonical
bundle is not ample are associated to:

1. the involution of type CI;

2. the involution of type DI, such the rank of the restricted root system
φ̃ is equal to the rank of the root system φ;

3. the involution of type EI;

4. the involution of type EV ;

5. the involution of type EV III;

6. the involution of type FI;

7. the involution of type G.

14 A finiteness theorem for Fano complete sym-
metric varieties

Now we want to show that there is only a finite number of Fano complete
symmetric varieties for each homogeneous symmetric variety.

Theorem 14.1 For each G/H there is only a finite number of Fano complete
symmetric varieties whose open orbit is isomorphic to G/H.

Proof. Let Y be a Fano complete symmetric variety and let k be the ∆
linear function associated to the anticanonical bundle of Y , then k is strictly
convex on ∆ and Z is a Fano variety. Thus the polar polyhedron Q◦k of Qk is
the convex hull of the points {%(τ) : τ ∈ ∆(1)} ∪ {0} and ∆ consists of the
cones generated by the faces of Q◦

k which does not contain 0.
First of all, we want to show that there is an upper bound C to the number

of l-cones in ∆ and this bound depends only on G/H. Because k2 is strictly
convex on ∆, there is a injective map ∆(l) → ΛX that takes σ to k2|σ. Thus
it is sufficient to show that there are only a finite number of possibilities for
these weights. Because k2 is strictly convex on ∆, we have the inequality
(k2|σ)(ei) ≥ −1 for each i. Moreover k|σ is dominant, so (k|σ)(−ei) ≥ 0 for
each i. Thus (k2|σ)(ei) ≤ (2δ − 2δ0)(−ei) for each i. Therefore the k2|σ belong
to the intersection of a fixed polytope and a lattice, so there is only a finite
number of them.

Now we want to prove that the volume of Q0
k is bounded. (We can define a

measure such that , given a basis {v1, ..., vl} of M , the parallelepiped {∑xivi :
0 ≤ xi ≤ 1 ∀i} has volume one). Q0

k has at most C faces of codimension 1
not containing 0, so the volume of Q0

k is at most C/l!. Indeed a simplex with
vertices {v1, ..., vl, 0} has volume 1/l! if {v1, ..., vl} is a basis of M .

Now we can prove that there is only a finite number of possible 1-dimensional
cones. Let P be the convex hull of 0, e1, ..., el. Let τ be any such 1-cone, then
the convex hull of P and ρ(τ) is contained in Q0

k, so its volume is smaller than
C/l′. The set of the vectors v, such that the volume of the convex hull of
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P and v is smaller than C/l′, is a bounded set. Since the ρ(τ) belong to N ,
the number of the possible τ is finite. Hence there is only a finite number of
complete symmetric varieties. ¤

Remark 1) We have not proved that there is a finite number of open Fano
toric varieties.

2) We have proved that the rank of the Picard group of a Fano complete
symmetric variety is lesser than l+ s+ l

∏l
1((2δ−2δ0)(−ei)+2) where 2s is the

number of exceptional roots. Thus we have proved the following proposition.

Proposition 14.1 Let G/H be a (homogeneous) symmetric variety, then there
is a constant C such that the rank of Pic(Y ) is lesser of C for each Fano
complete symmetric variety Y whose open orbit is isomorphic to G/H.

15 (Almost) Fano open toric varieties of dimen-
sion 2

Now we want to classify the toric varieties proper over A2 with anticanonical
bundle ample, respectively without base points. We start with a lemma which
is false in higher dimension.

Lemma 15.1 Let Z and Z ′ be any two (smooth) toric varieties of dimension
2. Suppose that the maximal cones of the fan Z are 2-dimensional and that Z ′

is proper over Z. If Z is not a Fano variety, then Z ′ is not a Fano variety.

Proof. Let ∆ and ∆′ be the fans respectively of Z and Z ′. Let k and k′ be
the functions associated to the anticanonical bundles respectively of Z and Z ′.
k is not strictly convex on ∆, so there are cones τ ∈ ∆(1) and σ ∈ ∆(2) such
that (k|σ)(ρ(τ)) ≤ k(ρ(τ)) = −1 and τ is not contained in σ. We know that Z ′

is obtained from Z through a sequence of blow-ups (see theorem 1.28 in [O]),
thus we can suppose, by the inductive hypothesis, that Z ′ is the blow-up of Z
along the fixed point associated to a cone σ′ ∈ ∆(2). Observe that τ belongs
to the fan ∆′ of Z ′. If σ′ 6= σ then σ ∈ ∆′ and (k′|σ)(ρ(τ)) = (k|σ)(ρ(τ)) ≤
−1 = k′(ρ(τ)). Suppose now that σ′ = σ = σ(v1, v2) and let σ̌ = (ϕ1, ϕ2)
be the dual cone, so ϕi(vj) = δi,j and k|σ = −(ϕ1 + ϕ2). We know that
∆′(2) = (∆(2)\{σ})∪{σ(v1, v1+v2), σ(v2, v1+v2)}. If k′ is strictly convex on ∆′

then (k′|σ(v1, v1 + v2))(ρ(τ)) = (−ϕ1)(ρ(τ)) ≥ 0 and (k′|σ(v2, v1 + v2))(ρ(τ)) =
(−ϕ2)(ρ(τ)) ≥ 0, so (k|σ)(ρ(τ)) = (−ϕ1 − ϕ2)(ρ(τ)) ≥ 0, a contradiction. ¤.

Now we can classify the Fano toric varieties proper over A2.

Proposition 15.1 Let Z be a Fano toric variety proper over A2, then Z is A2

or it is the blow-up of A2 in the unique fixed point.

Proof. A2 is clearly a Fano variety. Let Z1 be the blow-up of A2 in the
unique fixed point, let ∆1 be its fan and let k1 be the function associated to its
anticanonical bundle.
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• //

OO ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??

R+e1

R+e2 R+(e1 + e2)

∆1 :

We have ∆1(2) = {σ(e1, e1+e2), σ(e2, e1+e2)}. Thus k1|σ(e1, e1+e2) = −f1

and k1|σ(e2, e1 + e2) = −f2, so (k1|σ(e1, e1 + e2))(e2) = −f1(e2) = 0 and
(k1|σ(e2, e1 + e2))(e1) = −f2(e1) = 0. Therefore Z1 is a Fano variety.

Now we show that these are the only Fano varieties using the previous lemma.
Let Z2 be a blow-up of Z1. We can suppose, up to isomorphisms, that Z2 is the
blow-up of Z1 in the point associated to σ(e2, e1 + e2).

• //

OO ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??²²²²²²²²²²²²²²²²²²²²²²²

GG

R+e1

R+e2 R+(e1 + e2)
R+(e1 + 2e2)

∆2 :

Let ∆2 be the fan of Z2, so ∆2(2) = {σ(e1, e1+e2), σ(e1+e2, e1+2e2), σ(e1+
2e2, e2)}. Let k2 be the function associated to the anticanonical bundle of Z2,
we have k2|σ(e1, e1 + e2) = k2|σ(e1 + e2, e1 + 2e2) = −f1, so k2 is not strictly
convex on ∆2 and Z2 is not a Fano variety. The proposition is implied by the
previous lemma. ¤

Now we want to classify the almost Fano toric varieties proper over A2.

Proposition 15.2 The almost-Fano toric varieties proper over A2 are, up to
isomorphisms, A2 and the varieties Zn, whose fan ∆n is such that ∆n(2) =
{σ(e1, e1 +e2), σ(e1 +e2, e1 +2e2), ..., σ(e1 +(n−1)e2, e1 +ne2), σ(e1 +ne2, e2)}.
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• //

OO ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²

GGºººººººººººººººººººººººººººººººººººººººººº

KK¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

MM

e1

e2
e1 + e2e1 + 2e2e1 + 3e2

e1 + 4e2

∆4 :

Proof. First of all we will show that the varieties Zn are almost-Fano. Let
kn be the function associated to the anticanonical bundle of Zn. kn is linear
on σ(e1, e1 + ne2) and kn|σ(e1, e1 + ne2) = −f1; indeed (−f1)(e1 + me2) =
−1 for any m (observe that σ(e1, e1 + ne2) does not belong to ∆n if n > 1).
Moreover (−f1)(e2) = 0 > −1. We have kn|σ(e1 +ne2, e2) = (n− 1)f1− f2 and
(kn|σ(e1 + ne2, e2))(e1 + re2) = ((n− 1)f1 − f2)(e1 + re2) = n− 1− r > −1 if
r < n. Therefore k is convex and Zn is almost-Fano.

Now we want to show the viceversa. Let Z be an almost-Fano toric variety
proper over A2 and let ∆ be its fan. (Recall that Z is obtained from A2

through a sequence of blow-ups). We can suppose that Z is different from A2

and Z1, so τ = R+(e1 + e2) belongs to the fan ∆. We want to show that, up
to isomorphisms, ∆ contains the cones σ(e1, e1 + e2) and σ(e1 + e2, e1 + 2e2).
First of all we will determine the restrictions of k to the cones containing τ and
afterwards we will determine the cones themselves. Let σ ∈ ∆(2) be a maximal
cone containing τ and write k|σ = a1f1 +a2f2, so (k|σ)(e1 +e2) = a1 +a2 = −1,
(k|σ)(e1) = a1 ≥ −1 and (k|σ)(e2) = a2 ≥ −1. This implies that the unique
possibilities for k|σ are −f1 and −f2. If k|σ = −f1 and σ = σ(e1 + e2, b1e1 +
b2e2), then −1 = (k|σ)(b1e1 + b2e2) = −b1 and σ = σ(e1 + e2, e1 + b2e2). In the
same way, if λ = −f2 then we have σ = σ(e1+e2, b1e1+e2). Because of the non-
singularity of σ the only possibilities for σ are σ(e1+e2, e1), σ(e1+e2, e2), σ(e1+
e2, e1 +2e2) and σ(e1 +e2, 2e1 +e2). (b1−b2 is the determinant of the matrix of
the change of basis from the basis {e1+e2, b1e1+b2e2} to the basis {e1, e2}). We
have to show that ∆ cannot contain both σ(e1+e2, e1+2e2) and σ(e1+e2, 2e1+
e2). This would imply that (k|σ(e1+e2, e1+2e2))(2e1+e2) = (−f1)(2e1+e2) =
−2 > −1, a contradiction. Observe that if ∆ contains σ(e1 + e2, 2e1 + e2), then
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Z is isomorphic to a variety whose fan contains σ(e1 + e2, e1 + 2e2) through the
isomorphism induced by the automorphism of N that exchanges e1 and e2. So
we can suppose that ∆ contains σ(e1 + e2, e1) and σ(e1 + e2, e1 + 2e2). Notice
that ∆ contains either σ(e1 + e2, e1 + 2e2) or σ(e1 + e2, 2e1 + e2) because Z is
not Z1.

Because of the non-singularity of Z, ∆ contains a cone σ = σ(e1 + ne2, e2)
for a suitable integer n; we want to show that Z is Zn. (In the following figures
we have drawn the rest of the proof in the case n = 4).

• //

OO ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²
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º
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µ
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µ
µ
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µ

µ
µ

µ
µ

µ
µ

II¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

MM

e1

e2 e1 + e2e1 + 2e2

?

e1 + 4e2

∆ :

Let Z ′ be the open subvariety of Z whose fan ∆′ is ∆\{σ(e1+ne2, e2), σ(e2)}.
Z is an almost-Fano variety, so also Z ′ is an almost Fano variety.

• //

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
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µ
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µ

µ
µ

µ
µ

µ
µ

µ
µ

II¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

MM

e1

e1 + e2e1 + 2e2

?

e1 + 4e2

∆′ :

We claim that, for all m > 1, there is an unique variety Z̃ ′m with the two
following properties: 1) the fan ∆̃′

m of Z̃ ′m has support σ(e1, e1 + me2); 2) Z̃ ′m
is an open subvariety of an almost Fano variety Z̃m whose fan ∆̃m has support
σ(e1, e2). Notice that the hypotheses imply that Z̃ ′m is an almost-Fano variety.
The open subvariety Z ′m of Zm whose fan is ∆m\{σ(e1 +me2, e2), σ(e2)}, satis-
fies these properties. Observe that also Z ′ satisfies such properties with m = n,
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so it is sufficient to prove the claim. Indeed if the claim is true then Z ′ = Z ′n
and ∆′ = ∆n\{σ(e1 + ne2, e2), σ(e2)}. Therefore ∆ = ∆n, so Z is Zn.

We show the claim for induction on m. We have already verified the basis
of induction. Let Z̃ ′m be a variety that satisfies the hypotheses of the claim and
let σ′ be the unique cone in ∆̃′

m(2) which contains e1 + me2. Because of the
inductive hypothesis it is sufficient to show that σ′ = σ(e1+me2, e1+(m−1)e2).
In this case the fan ∆̃′

m\{σ(e1 +me2, e1 +(m− 1)e2), σ(e1 +me2)} has support
σ(e1, e1 +(m− 1)e2) and the corresponding variety is an open subvariety of the
almost-Fano toric variety Z̃m, so it is Z̃ ′m−1 by the inductive hypothesis. There-
fore ∆̃′

m\{σ(e1+me2, e1+(m−1)e2), σ(e1+me2)} = ∆m\{σ(e1+me2, e2), σ(e1+
me2, e1 +(m−1)e2), σ(e2), σ(e1 +me2)}, so ∆̃′

m = ∆m\{σ(e1 +me2e2), σ(e2))}.

• •//

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??²²²²²²²²²²²²²²²²²²²²²²²²²²²²

GGºººººººººººººººººººººººººº
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⊂
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?

Let k be the function associated to the anticanonical bundle of a fixed Z̃m.
Notice that the restriction of k to the support of the fan ∆̃′

m of Z̃ ′m is the function
associated to the anticanonical bundle of Z̃ ′m. Let (k|σ′) = a1f1 +a2f2, we have
−1 = (k|σ′)(e1 + me2) = a1 + ma2, (k|σ′)(e1) = a1 ≥ −1 and (k|σ′)(e2) =
a2 ≥ −1, so the unique possibilities for (k|σ′) are −f1 and (m − 1)f1 − f2.
We have to determine the constants c and d such that σ′ = σ(e1 + me2, ce1 +
de2). Suppose that (k|σ′) = −f1, then c = −(k|σ′)(ce1 + de2) = 1. Because
of the smoothness of σ′ we have d − m = ±1 (d − m is the determinant of
the matrix of change of basis from {e1 + me2, e1 + de2} to {e1, e2}). Thus
we have two possibilities: either σ′ = σ(e1 + me2, e1 + (m − 1)e2) or σ′ =
σ(e1 + me2, e1 + (m + 1)e2). We exclude the last one because e1 + (m + 1)e2

does not belong to σ(e1 + me2, e1) = |∆̃′
m|. If (k|σ′) = (m − 1)f1 − f2, then

d = (m − 1)c + 1 because ((m − 1)f1 − f2)(ce1 + de2) = −1. Because of the
non-singularity of σ′ we have c − 1 = ±1, so there are two possibilities: either
σ′ = σ(e1 + me2, e2) or σ′ = σ(e1 + me2, 2e1 + (2m− 1)e2). Again we exclude
the first one because e2 does not belong to σ(e1 + me2, e1). We exclude also
the second one because −1 = k(ce1 + de2) ≤ (k|σ(e1, e1 + e2))(ce1 + de2) and
(k|σ(e1, e1 + e2))(2e1 + (2m − 1)e2) = (−f1)(2e1 + (2m − 1)e2) = −2 < −1.
Thus we have proved that ce1 + de2 = e1 + (m− 1)e2. ¤
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16 Fano toric varieties of dimension at least 3

We want to prove a generalization of the lemma 15.1. For example, we could
try to prove that given a Fano toric variety Z, which is the blow-up of a toric
variety Z ′, then also Z ′ is a Fano variety. Unluckily this is already false in
dimension three. Let Z be the toric variety of dimension three whose fan ∆ has
maximal cones σ(e1, e2, e3) and σ(e1, e2, e1 + e2 − e3). The function associated
to the anticanonical bundle of Z is the restriction of −f1 − f2 − f3 to |∆|, so
the anticanonical bundle is the trivial bundle and it is not ample. But the
blow-up Z

′
of Z along the closed subvariety Zσ(e1,e2) associated to σ(e1, e2) is

a Fano variety. Indeed the fan ∆
′

of Z
′

has maximal cones σ(e1, e3, e1 + e2),
σ(e2, e3, e1 + e2), σ(e1, e1 + e2, e1 + e2 − e3) and σ(e2, e1 + e2 − e3, e1 + e2)}.

•

•
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e3e1 + e2 − e3 −→
σ(e1, e2)

•

•
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e3
e1 + e2 − e3 e1 + e2

Let k be the function associated to the anticanonical bundle of Z
′
. We have

(k|σ(e1, e3, e1 + e2))(e2) = (−f1 − f3)(e2) = 0 > −1, (k|σ(e1, e3, e1 + e2))(e1 +
e2 − e3) = (−f1 − f3)(e1 + e2 − e3) = 0 > −1, (k|σ(e2, e3, e1 + e2))(e1) =
(−f2 − f3)(e1) = 0 > −1, (k|σ(e2, e3, e1 + e2))(e1 + e2 − e3) = (−f2 − f3)(e1 +
e2 − e3) = 0 > −1, (k|σ(e1, e1 + e2, e1 + e2 − e3))(e2) = (−f1)(e2) = 0 > −1,
(k|σ(e1, e1 + e2, e1 + e2 − e3))(e3) = (−f1)(e3) = 0 > −1, (k|σ(e2, e1 + e2, e1 +
e2 − e3))(e1) = (−f2)(e1) = 0 > −1 and (k|σ(e2, e1 + e2, e1 + e2 − e3))(e3) =
(−f2)(e3) = 0 > −1. Therefore k is strictly convex on ∆

′
and Z

′
is a Fano

variety. It is easy to make higher dimensional example like Z, for example we
can take Z ×Al−2 and its blow-up along Zσ(e1,e2) ×Al−2. In these examples
we always have considered blow-ups along subvarieties of positive dimension.
This observation suggests to consider only blow-ups in S-fixed points. Indeed,
we will classify the Fano toric variety obtained from Al through a sequence of
blow-ups in S-fixed points. Notice that in the lemma 15.1 the variety Z ′ is
always obtained from Z through a sequence of blow-ups in fixed points.

In this section we will prove a generalization of the lemma 15.1 on a particular
class of varieties of arbitrarily fixed dimension l. We consider the class of the
smooth toric varieties whose fan contains two cones σ and σ′ with the following
properties: 1) the intersection σ ∩ σ′ is a cone of dimension l − 1, so we can
suppose σ = σ(v1, ..., vl−1, vl) and σ′ = σ(v1, ..., vl−1, w); 2) vl + w belongs to
the intersection σ ∩ σ′ and it is not zero. Now we want to show that this class
contains ”many” varieties. First of all it is not empty, for example it contains
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the blow-up of Al along a stable subvariety of codimension 2. (In the following
figure we draw a 3 dimensional example).
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Observe that the hypotheses imply that w is not a multiple of vl. We can
show that the first hypothesis is a very weak request, for example it is satisfied
by all varieties proper over Al and different from Al. Indeed, let Z be any
toric variety whose fan ∆ contains a (l − 1)-dimensional cone τ which is not
contained in the border of |∆|, then there are exactly two cones σ and σ′ in ∆
which contain τ .

Moreover, given two cones σ = σ(v1, ..., vl−1, vl) and σ′ = σ(v1, ..., vl−1, w)
with w =

∑
aivi, we have al = ±1 because of the smoothness of Z (al is the

determinant of the matrix of basis change from the basis {v1, ..., vl−1, w} to
the basis {v1, ..., vl−1, vl}). If al = 1, then σ and σ′ are contained in the same
semi-space V with border R(σ ∩ σ′). Thus, given any vector u is in the relative
interior of σ ∩ σ′, u is in the interior of σ (respectively of σ′) respect to the
relative topology of V . Hence σ ∩σ′ contains an open set of V , a contradiction.
Therefore al = −1.
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Observe that al = −1 implies that vl + w is contained in the vector space
generated by σ ∩ σ′ and the second hypothesis is equivalent to the request that
ai ≥ 0 for any i different from l. This hypothesis is more restrictive, indeed
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σ ∪ σ′ is convex if and only if vl + w ∈ σ ∪ σ′. Notice that all the smooth toric
varieties proper over A2 and different from A2 belong to our class. In higher
dimension it is easy to construct varieties whose cones do not satisfy the second
hypothesis, for example it is not satisfied by the blow-up of Al in the fixed
point.
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The hypotheses imply that σ ∪ σ′ = σ(v1, v2, v3, w) and σ ∩ σ′ = σ(v1, v2).
Moreover this class of varieties is stable by blow-ups centered in fixed points.
Indeed, let Z be a variety which satisfies the hypotheses with respect to σ and
σ′ and let Z ′ be a blow-up of Z in a S-fixed point. Then the fan of Z ′ contain
two cones ς ⊆ σ and ς ′ ⊆ σ′ of dimension l such that ς ∩ ς ′ = σ ∩ σ′. These
cones are univocally defined by these conditions and they satisfy our request, so
Z ′ belongs to our class. Now we can prove a generalization of the lemma 15.1.

Lemma 16.1 Let Z be a toric variety with fan ∆ and let k be the function
associated to the anticanonical bundle of Z. Let Z ′ be any toric variety obtained
from Z through a sequence of blow-ups centred in S-fixed points. Suppose that
there are two cones σ = σ(v1, ..., vl−1, vl) and σ′ = σ(v1, ..., vl−1, w) in ∆(l)
such that vl +w belongs to the intersection σ∩σ′ = σ(v1, ..., vl−1) and vl 6= −w.
If (k|σ(v1, ..., vl−1, vl))(w) ≤ −1, then Z ′ is not a Fano variety.

Observe that (k|σ(v1, ..., vl−1, vl))(w) ≤ −1 implies that Z is not a Fano
variety. Moreover, we know that w =

∑l−1
i=1 aivi − vl where the ai are positive

integers.
Proof. We can suppose l ≥ 3 because of the lemma 15.1. We will show

the lemma by induction, so we can suppose that Z ′ is the blow-up of Z cen-
tred in the fixed point associated to a cone σ̃ in ∆(l). Let k′ be the function
associated to the anticanonical bundle of Z ′. If σ̃ is different from σ(v1, ...,
vl−1, vl) and σ(v1, ..., vl−1, w), then Z ′ satisfies the hypotheses of the lemma for
σ(v1, ..., vl−1, vl) and σ(v1, ..., vl−1, w). Suppose that σ̃ = σ(v1, ..., vl−1, vl),
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then σ(v1, ..., vl−1,
∑l

i=1 vi) and σ(v1, ..., vl−1, w) belong to the fan of Z ′. For
each j in {1, ..., l}, let ϕj be the linear function such that ϕj(vi) = δi,j . We have
w + (

∑l
i=1 vi) =

∑l−1
i=1(ai + 1)vi, k|σ(v1, ..., vl−1, vl) = −∑

ϕi and (k′|σ(v1, ...,

vl−1,
∑l

i=1 vi)(w) = (−∑l−1
i=1 ϕi +(l−2)ϕl)(w) = (k|σ(v1, ..., vl−1, vl))(w)+(l−

1)ϕl(w) = (k|σ̃)(w)− (l − 1) < −1, so Z ′ satisfies the hypotheses of the lemma
for σ(v1, ..., vl−1,

∑l
i=1 vi) and σ(v1, ..., vl−1, w). Finally we suppose σ̃ = σ′.
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The fan of Z ′ contains the cones σ(v1, ..., vl−1, vl) and σ(v1, ..., vl−1,
∑l−1

i=1 vi+
w). We have vl + (

∑l−1
i=1 vi + w) =

∑l−1
i=1(ai + 1)vi and (k|σ(v1, ..., vl−1, vl))

(
∑l−1

i=1 vi +w) = (k|σ(v1, ..., vl−1, vl))(w) − (l − 1) < −1, so Z ′ satisfy the hy-
potheses of the lemma for σ(v1, ..., vl−1, vl) and σ(v1, ..., vl−1,

∑l−1
i=1 vi + w). ¤

Now we can classify the Fano toric varieties obtained from Al through a
sequence of blow-ups centred in S-fixed points.

Proposition 16.1 Let Z be a Fano toric variety obtained from Al through a
sequence of blow-ups centred in S-fixed points, then either Z is Al or Z is the
blow-up of Al in the origin. Moreover these varieties are Fano.

Proof. Let Z1 be the blow-up of Al in the S-stable point, let ∆1 be the
fan of Z1 and let k1 be the function associated to the anticanonical bundle of
Z1. The maximal cones in ∆1 are {σ(e1, ..., êj , ..., el,

∑
ei)} where j varies in

{1, ..., l}, while the 1-dimensional cones are σ(e1), ..., σ(el) and σ(
∑

ei). We
have (k|σ(e1, ..., êj , ..., el,

∑
ei))(ej) = (−∑

i 6=j fj + (l− 2)fj)(ej) = l− 2 > −1.
R+ej is the unique 1-dimensional cone not contained in σ(e1, ..., êj , ..., el,

∑
ei),

so k1 is strictly convex on ∆1 and Z1 is a Fano variety.
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The blow-ups of Z1 in a S fixed point are all isomorphic to the blow-up
Z2 of Z1 in the point associated to σ(e1, ..., el−1,

∑
ei). Let ∆2 be the fan of

Z2 and let k2 be the function associated to the anticanonical bundle of Z2.
The maximal cones in ∆2 are: σ(e1, ..., êj , ..., el,

∑l
i=1 ei), σ(e1, ..., êj , ..., el−1,∑l

i=1 ei, 2
∑l−1

i=1 ei + el) with j = 1, ..., l− 1 and σ(e1, ..., el−1, 2
∑l−1

i=1 ei +el). It
is sufficient to show that Z2 satisfies the hypotheses of the lemma 16.1 respect
to σ(e2, ..., el−1,

∑l
i=1 ei, el) and σ(e2, ..., el−1,

∑l
i=1 ei, 2

∑l−1
i=1 ei +el). We have

(2
∑l−1

i=1 ei+el)+el = 2(
∑l

i=1 ei) and (k2|σ(e2, ..., el−1,
∑l

i=1 ei, el))(2
∑l−1

i=1 ei+
el) = ((l−2)f1−

∑l−1
i=2 fi−fl)(2e1+2

∑l−1
i=2 ei+el) = 2(l−2)−2(l−2)−1 = −1.

¤

17 Introduction to the open Fano toric varieties
of dimension 3

For varieties of dimension 3 we can consider also blow-ups along varieties of
positive dimension. The proof will be similar to the previous one, but much
more difficult. We study again the class of varieties of the previous section and
we will prove a lemma similar to the lemma 16.1, but with stronger hypotheses
on the beginning variety Z. Thus we consider the class of varieties Z whose
fans ∆ contain two 3-dimensional cones σ(v1, v2, v3) and σ(v1, v2, w) with w =
a1v1 + a2v2 − v3. We suppose that a1 and a2 are positive integers such that
a1 + a2 > 0. Up to reordering the indices we can suppose that a1 ≥ a2. Recall
that σ(v1, v2, v3) ∪ σ(v1, v2, w) is the convex cone σ(v1, v2, v3, w) (but it does
not belong to ∆).

Let Z̃ be the open subvariety of Z whose fan ∆̃ has maximal cones σ(v1, v2, v3)
and σ(v1, v2, w). We want to find the conditions for Z̃ to be an (almost)
Fano variety. The function associated to the anticanonical bundle of Z̃ is
the restriction to the support |∆̃| of the function k associated to the anti-
canonical bundle of Z. For each j, let ϕj be the linear function such that
ϕj(vi) = δi,j , so (k|σ(v1, v2, v3)) = −ϕ1 − ϕ2 − ϕ3. If Z̃ is a Fano variety then
−a1−a2+1 = (k|σ(v1, v2, v3))(w) ≥ 0, so a1+a2 = 1. Therefore v3+w = v1 and
Z̃ is the blow up of A3 along a stable subvariety of dimension 1. This is a Fano
variety, indeed we have (k|σ(v1, v2, v3)(w) = (−ϕ1−ϕ2−ϕ3)(v1−v3) = 0 > −1
and (k|σ(v1, v2, w)(v3) = (−ϕ1 − ϕ2)(v3) = 0 > −1. If Z̃ is an almost Fano
variety then either Z̃ is a Fano variety or k is linear on |∆̃|. If k is linear then
−a1 − a2 + 1 = (k|σ(v1, v2, v3)(w) = −1, so a1 + a2 = 2. We have two possi-
bilities: either w = v1 + v2 − v3 or w = 2v1 − v3. In the first case we obtain a
variety isomorphic to the variety Z of the previous paragraph. This is the case
in which we will have more problems, so we will study it in a second time.

Lemma 17.1 Let Z be a toric variety which contains an open toric subvariety
Z̃ whose fan has maximal cones σ(v1, v2, v3) and σ(v1, v2, w). Write w + v3 =
a1v1 + a2v2 where a1 and a2 are positive integers with a1 ≥ a2. We suppose
that:
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1. a1 + a2 ≥ 2,

2. v3 + w 6= v1 + v2.

Let Z ′ be a toric variety obtained from Z through a sequence of blow-ups, then
Z ′ is not a Fano variety.

Proof. First of all we want to do some considerations on the hypotheses. i)
The inequality a1 + a2 ≥ 2 is equivalent to the condition (k|σ(v1, v2, v3))(w) ≤
−1, so Z̃ and Z are not Fano varieties. ii) Because of the previous observations
the two hypotheses a1 + a2 ≥ 2 and v3 + w 6= v1 + v2 are equivalent to the
inequality a1 ≥ 2. An useful observation is that the inequality a1 + a2 > 2
implies a1 ≥ 2. We will say that a variety satisfies the hypotheses of the lemma
weakly if either it satisfies the hypotheses of the lemma or it contains a variety
Z̃ isomorphic to Z, while we will sometimes say that a variety satisfies the
hypotheses properly if it satisfies the hypotheses. We could try to prove this
lemma as the lemma 16.1 by induction. Indeed we will prove that any blow-
up of Z satisfies the hypotheses of the lemma weakly, but unluckily we cannot
prove that v3 + w 6= v1 + v2. However, first we consider the case in which Z ′ is
a blow up of Z along a closed subvariety and afterwards we try to resolve the
problem. We will demonstrate that if Z ′ is a blow up of Z along the subvariety
associated to a cone τ , then Z ′ satisfies always the hypotheses weakly and it
satisfies the hypotheses of the lemma properly if τ 6= σ(v1, v2). In general we
have a sequence Z = Z0 ← Z1 ← ... ← Zi ← ... ← Zr = Z ′ where Zi+1 is the
blow-up of Zi along the stable subvariety associated to a suitable cone τi. If
Zj satisfies the hypotheses, then Zj+1 will satisfies the hypotheses weakly, in
particular Zj+1 is not a Fano variety. If Zj+1 satisfies the hypotheses properly
we can proceed by induction. Otherwise Zj+1 contains a variety isomorphic to
Z. Let ∆ be the fan of such variety. In this case we have two possibilities:
either this fan ∆ is contained in the fan of Zi for all i > j or there are j < h < r
such that ∆ is not contained in the fan of Zh+1, but it is contained in the fan
of Zi for all j < i ≤ h. In the first case Zi satisfies the hypotheses weakly for
all i > j, in particular Z ′ is not a Fano variety. In the second case we will prove
that Zh+1 satisfies the hypotheses of the lemma.

Now we suppose that Z ′ is the blow-up of Z along the closed subvariety asso-
ciated to a cone τ . Let ∆′ be the fan of Z ′. If τ is not contained in σ(v1, v2, v3, w)
then there is nothing to prove because σ(v1, v2, v3) and σ(v1, v2, w) belong to
∆′. We now suppose that τ is contained in σ(v1, v2, v3, w) but it is not con-
tained in σ(v1, v2). Observe that the hypotheses are symmetric in the two cones
σ(v1, v2, v3) and σ(v1, v2, w), so we can suppose that τ ⊂ σ(v1, v2, w). We have
three possibilities: τ = σ(v1, w), τ = σ(v2, w) and τ = σ(v1, v2, w).
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We always have ∆′(1) = ∆(1) ∪ {R+(w + b1v1 + b2v2)} with b1, b2 ∈ {0, 1}.
∆′ contains the cones σ(v1, v2, v3) and σ(v1, v2, w + b1v1 + b2v2). We have
(w + b1v1 + b2v2) + v3 = (a1 + b1)v1 + (a2 + b2)v1 with (a1 + b1) + (a2 + b2) > 2,
so Z ′ satisfies the hypotheses of the lemma. We want to remark that this part
of the prove does not require the last hypothesis.

Finally let τ = σ(v1, v2).
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The fan of Z ′ contains the cones σ(v1, v1 + v2, v3) and σ(v1, v1 + v2, w). We
have v3 + w = (a1 − a2)v1 + a2(v1 + v2) with (a1 − a2) + a2 = a1 ≥ 2. So Z ′

satisfies the hypotheses of the lemma weakly. We want to emphasize that this
is the first case in which we have used the last hypothesis.

Now we can consider the general case. We have a sequence Z = Z0 ← Z1 ←
... ← Zi ← ... ← Zr = Z ′ where Zi+1 is the blow-up of Zi along the subvariety
associated to a suitable cone τi. Let ∆i be the fan of Zi for each i. Sup-
pose that Zj satisfies the hypotheses of the lemma with respect to σ(vj

1, v
j
2, v

j
3)
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and σ(vj
1, v

j
2, w

j). If τj 6= σ(vj
1, v

j
2) then Zj+1 satisfies the hypotheses of the

lemma, in particular it is not a Fano variety. Hence we can suppose that
τj = σ(vj

1, v
j
2). Let σ(vj+1

1 , vj+1
2 , vj+1

3 ) and σ(vj+1
1 , vj+1

2 , wj+1) in ∆j+1 be two
cones with respect to which Zj+1 satisfies the hypotheses weakly. If Zj+1 satis-
fies the hypotheses with respect to σ(vj+1

1 , vj+1
2 , vj+1

3 ) and σ(vj+1
1 , vj+1

2 , wj+1),
then we can proceed by induction. Otherwise Z is isomorphic to the variety
whose fan has maximal cones σ(vj+1

1 , vj+1
2 , vj+1

3 ) and σ(vj+1
1 , vj+1

2 , wj+1). If
σ(vj+1

1 , vj+1
2 , vj+1

3 ) and σ(vj+1
1 , vj+1

2 , wj+1) belong to the fan of Z ′, then Z ′

is not a Fano variety. Otherwise there is a h such that: 0) j < h < r; 1)
σ(vj+1

1 , vj+1
2 , vj+1

3 ) and σ(vj+1
1 , vj+1

2 , wj+1) belong to ∆i for all j + 1 ≤ i ≤ h;
2) either σ(vj+1

1 , vj+1
2 , vj+1

3 ) or σ(vj+1
1 , vj+1

2 , wj+1) does not belong to ∆h+1.
We can suppose that σ(vj+1

1 , vj+1
2 , vj+1

3 ) does not belong to ∆h+1, otherwise we
exchange σ(vj+1

1 , vj+1
2 , vj+1

3 ) with σ(vj+1
1 , vj+1

2 , wj+1). In the first part of the
proof we have proved that, if τh 6= σ(vj+1

1 , vj+1
2 ), then Zh+1 satisfies the hy-

potheses of the lemma, so we can suppose that τh = σ(vj+1
1 , vj+1

2 ). Moreover we
can suppose σ(vj+1

1 , vj+1
2 , vj+1

3 ) = σ(vj
1, v

j
1 + vj

2, v
j
3) and σ(vj+1

1 , vj+1
2 , wj+1) =

σ(vj
1, v

j
1 + vj

2, w
j). Let Z̃j be the toric variety whose fan has maximal cones

σ(vj
1, v

j
2, v

j
3) and σ(vj

1, v
j
2, w

j); it is an open subvariety of Zj . The inverse im-
age Z̃j+1 of Z̃j in Zj+1 is the blow-up of Z̃j along the subvariety associated
to σ(vj

1, v
j
2). (Observe that the closed subvariety of Zj associated to σ(vj

1, v
j
2)

is contained in the open subvariety Z̃j). In the same way the inverse image
Z̃h+1 in Zh+1 of Z̃j+1 is the blow-up of Z̃j+1 along the subvariety associated
to σ(vj

1, v
j
1 + vj

2). We want to show that Z̃h+1 satisfies the hypotheses of the
lemma with respect to two suitable cones, so Zh+1 satisfies the hypotheses of
the lemma with respect to the same cones.
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Observe that wj = 2vj
1+vj

2−vj
3, because Z is isomorphic to the variety whose

fan has maximal cones σ(vj
1, v

j
1 + vj

2, v
j
3) and σ(vj

1, v
j
1 + vj

2, w
j). The fan of Z̃j

has maximal cones σ(vj
1, v

j
2, v

j
3) and σ(vj

1, v
j
2, 2vj

1 +vj
2−vj

3). The fan of Z̃j+1 has
maximal cones σ(vj

1, v
j
1 + vj

2, v
j
3), σ(vj

2, v
j
1 + vj

2, v
j
3), σ(vj

1, v
j
1 + vj

2, 2vj
1 + vj

2 − vj
3)

and σ(vj
2, v

j
1 + vj

2, 2vj
1 + vj

2 − vj
3). Finally the fan of Z̃h+1 has maximal cones

σ(vj
2, v

j
1 + vj

2, v
j
3), σ(vj

2, v
j
1 + vj

2, 2vj
1 + vj

2 − vj
3), σ(vj

1 + vj
2, 2vj

1 + vj
2, v

j
3), σ(vj

1 +
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vj
2, 2vj

1 + vj
2, 2v1 + v2 − v3), σ(vj

1, 2vj
1 + vj

2, v
j
3) and σ(vj

1, 2vj
1 + vj

2, 2vj
1 + vj

2 − vj
3).

Observe that Z̃r+1 satisfies the hypotheses of the lemma with respect to σ(vj
1 +

vj
2, v

j
3, 2vj

1+vj
2) and σ(vj

2, v
j
3, v

j
1+vj

2); indeed we have (2vj
1+vj

2)+vj
2 = 2(vj

1+vj
2).

¤
Now we want to study the varieties which contain an open subvariety iso-

morphic to Z. Observe that these varieties are never Fano varieties. Let Z be
a such variety and let Z ′ be the blow-up of Z along the subvariety isomorphic
to the subvariety of Z associated to σ(e1, e2). We will show that, if Z ′ satisfies
the hypotheses of the lemma 17.1, then there are not Fano varieties obtainable
from Z through a sequence of blow-ups.

Lemma 17.2 Let Z be a 3 dimensional toric variety whose fan contains two
cones σ(v1, v2, v3) and σ(v1, v2, v1+v2−v3). Let Z ′ be the blow-up of Z along the
stable subvariety associated to σ(v1, v2) and let Z ′′ be a toric variety obtained
from Z through a sequence of blow-ups. If Z ′′ is a Fano variety, then Z ′′ is
obtainable from Z ′ through a sequence of blow-ups.

Proof. We cannot proceed as in the previous lemma, because we do not
know the other cones of Z. We have a sequence Z = Z0 ← Z1 ← ... ← Zi ←
... ← Zh = Z ′′ where πi+1 : Zi+1 → Zi is the blow-up along the subvariety of Zi

associated to a suitable cone τi+1. Let ∆i be the fan of Zi for each i. First of all
we want to show that there is a cone τj equal to σ(v1, v2). If τi is not contained
in σ(v1, v2, v3, v1 +v2−v3) for any i, then σ(v1, v2, v3) and σ(v1, v2, v1 +v2−v3)
belong to ∆i for all i. Thus Z ′′ is not a Fano variety, a contradiction. Let j
be the first index such that τj is contained in σ(v1, v2, v3, v1 + v2 − v3), so τi *
σ(v1, v2, v3, v1 + v2− v3) for all i < j. If τj 6= σ(v1, v2) we know that Zj satisfies
the hypotheses of the lemma 17.1, so Z ′′ is not a Fano variety, a contradiction.
Therefore there is j such that τj = σ(v1, v2) and τi * σ(v1, v2, v3, v1 + v2 − v3)
for all i < j. We want to reorder the cones associated to the subvarieties along
which we are blowing-up. Observe that this is not possible in general. We will
show that Z ′′ is obtainable from Z ′ through the sequence of blow-ups along the
subvarieties associated to the cones τ1, ..., τ̂j , ..., τh.

We want to consider the following sequence of blow-ups: Z = Z ′0 ← Z ′1 ←
... ← Z ′i ← ... ← Z ′j , where π′1 : Z ′1 → Z ′0 is the blow-up along the subvariety of
Z ′0 associated to τj and π′i+1 : Z ′i+1 → Z ′i is the blow up along the subvariety
of Z ′i associated to τi for each i ≥ 1. Let ∆′

i be the fan of Z ′i. We want to
show that these blow-ups are well defined and that Z ′j = Zj . For the first point
we have to show that τi belongs to ∆′

i for each i < j. Because τj = σ(v1, v2)
the elements of ∆′

1(3) not contained in σ(v1, v2, v3, v1 + v2− v3) are exactly the
elements of ∆0(3) not contained in σ(v1, v2, v3, v1 + v2 − v3), i.e. the elements
of ∆0(3) different from σ(v1, v2, v3) and σ(v1, v2, v1 + v2 − v3).
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τj

The first claim follows because τi is contained in |∆|\σ(v1, v2, v3, v1+v2−v3)
for each i < j. Recall that, given ς ∈ ∆(l), Uς is the open subvariety of Z
associated to the cone ς. Z is the union of the open sets U1 and U2 defined
as follows: U1 is the union of Uσ(v1,v2,v3) and Uσ(v1,v2,v1+v2−v3), while U2 is
the union of the Uς where the ς varies in all the other maximal cones. The
blow-up π′1 induces an isomorphism between U2 and its inverse image, because
the subvariety of Z associated to σ(v1, v2) does not intersect any Uς with ς 6=
σ(v1, v2, v3), σ(v1, v2, v1 + v2− v3). In the same way πj induces an isomorphism
between the inverse image of U2 in Zj−1 and its inverse image in Zj . So the
inverse image of U2 in Zj is isomorphic to the the inverse image of U2 in Z ′j .
Moreover π′j ◦ ...◦π′2 induces an isomorphism between (π′1)

−1(U1) and its inverse
image. In the same way πj−1◦...◦π1 induces an isomorphism between U1 and its
inverse image. So the inverse image of U1 in Zj is isomorphic to the the inverse
image of U1 in Z ′j . Observe that the restrictions of these isomorphisms to the
torus are always the identity. Thus the second claim follows because there is
at most a morphism between two toric varieties such that its restriction to the
torus is the identity.

It is now sufficient to observe that Z ′1 = Z ′. ¤

18 Open Fano toric varieties of dimension 3

Now we have the instruments to classify, up to isomorphisms, the toric Fano
varieties obtainable from A3 through a sequence of blow-ups. We want to find
a finite number of varieties satisfying the lemma 17.1 and such that there are
only a finite number of toric varieties obtainable from A3 through a sequence
of blow-ups, but not obtainable from any of the previous varieties through a
sequence of blow-ups. We will proceed as follows: A3 is a Fano variety, so
we consider all the possible blow-ups of A3. Let Z be a blow-up of A3: 1)
if Z satisfies the hypothesis of lemma 17.1 we know that there are not Fano
variety obtainable from Z through a sequence of blow-ups; 2) if Z satisfies the
hypotheses of the lemma 17.2 we will study the variety Z ′ of that lemma; 3)
finally if Z is a Fano variety we reiterate the procedure. It is a priori possible
that Z belongs to none of the previous cases, but this will not happen for the
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varieties which we will study. In the following, if two blow-up of a given variety
are isomorphic we will examine only one of them. In our cases the isomorphism
will be induced by an isomorphism of N that exchanges the vector of the basis
{e1, e2, e3}. We want to observe that, in this paragraph, we include a variety
in the class of varieties obtainable from the variety itself through a sequence of
blow-ups. We want to remember how verify that a toric variety Z is a Fano
variety. Let ∆ be its fan, let k be the function associated to its anticanonical
bundle and suppose that all the maximal cones in ∆ are 3-dimensional. Then Z
is a Fano variety if and only if, given any cone σ ∈ ∆(3) and any cone τ ∈ ∆(1)
with τ * σ, (k|σ)(ρ(τ)) > −1 (here ρ(τ) is the primitive vector of τ).

A3 is a Fano variety. Up to isomorphisms there are two blow-ups of A3: i)
the variety ”1” which is the blow-up of A3 along the subvariety associated to
σ(e1, e2)

• •

•

•
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¯̄
¯̄
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¯̄

22222222222222222222222222

e1 e2

e3

e1 + e2

”1”

and ii) the variety ”2” which is the blow-up of A3 along the subvariety
associated to σ(e1, e2, e3).

• •

•

•
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e1 e2

e3

e1 + e2 + e3

”2”

Now we study the variety ”1”. Its fan has maximal cones σ(e1, e3, e1 + e2)
and σ(e2, e3, e1 + e2). The 1-dimensional cones are generated respectively by
e1, e2, e3 and e1 + e2. Let k1 be the function associated to its anticanonical
bundle. We have (k1|σ(e1, e3, e1 + e2))(e2) = (−f1 − f3)(e2) = 0 > −1 and
(k1|σ(e2, e3, e1 + e2))(e1) = (−f2 − f3)(e1) = 0 > −1, so this variety is a Fano
variety.
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The blow-ups of the variety ”1” are, up to isomorphisms: i) the variety
”3” which is the blow-up of the variety ”1” along the subvariety associated to
σ(e1, e3);
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e1 + e2

e1 + e3

”3”

σ

σ′

ii) the variety ”4” which is the blow-up of the variety ”1” along the subvariety
associated to σ(e1, e1 + e2);

• •

•

••
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e1 + e22e1 + e2
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σσ′

iii) the variety ”5” which is the blow-up of the variety ”1” along the subva-
riety associated to σ(e1 + e2, e2, e3);
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”5”

σ
σ′

and iv) the variety ”6” which is the blow-up of the variety ”1” along the
subvariety associated to σ(e1 + e2, e3).
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”6”

The fan of the variety ”3” has maximal cones σ(e1, e1+e2, e1+e3), σ(e3, e1+
e2, e1 + e3) and σ(e2, e3, e1 + e2). We have (e1 + e3)+ e2 = e3 +(e1 + e2), so this
variety satisfies the hypotheses of the lemma 17.2 for σ(e3, e1 + e2, e1 + e3) and
σ(e2, e3, e1 + e2). Hence we have to study the variety ”7” obtained blowing-up
”3” along the subvariety associated to σ(e3, e1 + e2).

• •

•

•

• •

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄

22222222222222222222222222

2222222222222 CC
CC

CC
CC

CC
CC

CC
CC

CC

e1 e2

e3

e1 + e2

e1 + e3 e1 + e2 + e3

”7”

σ

σ′

The fan of ”7” has maximal cones σ(e1, e1 + e2, e1 + e3), σ(e1 + e2, e1 +
e3, e1 + e2 + e3), σ(e3, e1 + e3, e1 + e2 + e3), σ(e2, e3, e1 + e2 + e3) and σ(e2, e1 +
e2, e1 + e2 + e3). We have (e1 + e2 + e3) + e1 = (e1 + e2) + (e1 + e3), so this
variety satisfies the hypotheses of the lemma 17.2 for σ(e1, e1 + e2, e1 + e3) and
σ(e1 +e2, e1 +e3, e1 +e2 +e3). Hence we have to study the variety ”8” obtained
blowing-up ”7” along the subvariety associated to σ(e1 + e2, e1 + e3).

91



• •

•

•

• •

•

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

1111111111111111111111111111111111111

1111111111111111111

°°
°°
°°
°°
°°

qqqqqqqqqqqqqqqq

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C

e1 e2

e3

e1 + e2

e1 + e3 e1 + e2 + e3

2e1 + e2 + e3

”8”

σ
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The fan of this variety has maximal cones σ(e1, e1 +e3, 2e1 +e2 +e3), σ(e1 +
e3, e1 + e2 + e3, 2e1 + e2 + e3), σ(e1, e1 + e2, 2e1 + e2 + e3), σ(e1 + e2, 2e1 +
e2 + e3, e1 + e2 + e3), σ(e2, e1 + e2, e1 + e2 + e3), σ(e3, e1 + e3, e1 + e2 + e3) and
σ(e2, e3, e1+e2+e3). We have (2e1+e2+e3)+e2 = (e1+e2)+(e1+e2+e3), so this
variety satisfies the hypotheses of the lemma 17.2 for σ(e2, e1 + e2, e1 + e2 + e3)
and σ(e1 +e2, e1 +e2 +e3, 2e1 +e2 +e3). Hence we have to study the variety ”9”
obtained blowing-up ”8” along the subvariety associated to σ(e1+e2, e1+e2+e3).
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σ
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The fan of this variety has maximal cones σ(e2, e1 + e2, 2e1 + 2e2 + e3),
σ(e2, 2e1 +2e2 +e3, e1 +e2 +e3), σ(e3, e2, e1 +e2 +e3), σ(e3, e1 +e3, e1 +e2 +e3),
σ(e1 + e3, e1 + e2 + e3, 2e1 + e2 + e3), σ(e1 + e2 + e3, 2e1 + e2 + e3, 2e1 + 2e2 +
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e3), σ(e1 + e2, 2e1 + e2 + e3, 2e1 + 2e2 + e3), σ(e1, e1 + e2, 2e1 + e2 + e3) and
σ(e1, e1 + e3, 2e1 + e2 + e3). We have (2e1 + 2e2 + e3) + e3 = 2(e1 + e2 + e3),
so ”9” satisfies the hypotheses of the lemma 17.1 for σ(e3, e2, e1 + e2 + e3) and
σ(e2, e1 + e2 + e3, 2e1 + 2e2 + e3). Thus there are not Fano varieties obtained
from ”3” through a sequence of blow-ups.

Now we examine the variety ”4”. Its fan has maximal cones σ(e1, e3, 2e1+e2),
σ(e3, 2e1+e2, e1+e2) and σ(e2, e1+e2, e3). We have (2e1+e2)+e2 = 2(e1+e2),
so ”4” satisfies the hypotheses of the lemma 17.1 for σ(e3, 2e1 + e2, e1 + e2) and
σ(e2, e1 + e2, e3).

Now we examine the variety ”5”. Its fan has maximal cones σ(e1, e3, e1+e2),
σ(e1+2e2+e3, e1+e2, e3), σ(e1+e2, e2, e1+2e2+e3) and σ(e1+2e2+e3, e2, e3).
We have (e1 +2e2 + e3)+ e1 = 2(e1 + e2)+ e3, so ”5” satisfies the hypotheses of
the lemma 17.1 with respect to σ(e1, e1 +e2, e3) and σ(e3, e1 +e2, e1 +2e2 +e3).

Observe that we have demonstrate that if a toric Fano variety is obtained
from the variety ”1” through a sequence of blow-ups, then either it is the variety
”1” or it is obtained from the variety ”6” through a sequence of blow-ups.
Now we want to show that the variety ”6” is a Fano variety. Let k6 be the
function associated to the anticanonical bundle of ”6” and let ∆6 be the fan
associated to ”6”. We have ∆6(3) = {σ(e1+e2, e1, e1+e2+e3), σ(e1, e3, e1+e2+
e3), σ(e2, e3, e1 +e2 +e3), σ(e1 +e2, e2, e1 +e2 +e3)} and ∆6(1) = {σ(e1), σ(e2),
σ(e3), σ(e1 + e2), σ(e1 + e2 + e3)}. So (k6|σ(e1 + e2, e1, e1 + e2 + e3))(e2) =
(−f1)(e2) = 0 > −1, (k6|σ(e1 + e2, e1, e1 + e2 + e3))(e3) = (−f1)(e3) = 0 > −1,
(k6|σ(e1, e3, e1 + e2 + e3))(e2) = (−f1 + f2− f3)(e2) = 1 > −1, (k6|σ(e1, e3, e1 +
e2 + e3))(e1 + e2) = (−f1 + f2 − f3)(e1 + e2) = 0 > −1, (k6|σ(e2, e3, e1 + e2 +
e3))(e1) = (f1 − f2 − f3)(e1) = 1 > −1, (k6|σ(e2, e3, e1 + e2 + e3))(e1 + e2) =
(f1−f2−f3)(e1+e2) = 0 > −1, (k6|σ(e1+e2, e2, e1+e2+e3))(e1) = (−f2)(e1) =
0 > −1 and (k6|σ(e1 + e2, e2, e1 + e2 + e3))(e3) = (−f2)(e3) = 0 > −1, so ”6” is
a Fano variety.

The blow-ups of the variety ”6” are, up to isomorphisms: i) the variety
”10” which is the blow-up of the variety ”6” along the subvariety associated to
σ(e1, e1 + e2);
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ii) the variety ”11” which is the blow-up of the variety ”6” along the subva-
riety associated to σ(e1 + e2, e1 + e2 + e3);
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iii) the variety ”12” which is the blow-up of the variety ”6” along the sub-
variety associated to σ(e3, e1 + e2 + e3);
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iv) the variety ”13” which is the blow-up of the variety ”6” along the sub-
variety associated to σ(e2, e3, e1 + e2 + e3);
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v) the variety ”14” which is the blow-up of the variety ”6” along the subva-
riety associated to σ(e2, e1 + e2, e1 + e2 + e3);
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vi) the variety ”15” which is the blow-up of the variety ”6” along the sub-
variety associated to σ(e1, e3);
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and vii) the variety ”16” which is the blow-up of the variety ”6” along the
subvariety associated to σ(e1, e1 + e2 + e3).
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We begin studying the variety ”10”. Its fan has maximal cones σ(e2, e1 +
e2, e1 + e2 + e3), σ(e2, e3, e1 + e2 + e3), σ(e1, e3, e1 + e2 + e3), σ(e1, e1 + e2 +
e3, 2e1 + e2) and σ(2e1 + e2, e1 + e2, e1 + e2 + e3). We have (2e1 + e2) + e2 =
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2(e1 + e2), so ”10” satisfies the hypotheses of the lemma 17.1 with respect to
σ(e2, e1 + e2, e1 + e2 + e3) and σ(2e1 + e2, e1 + e2, e1 + e2 + e3).

Now we examine the variety ”11”. Its fan has maximal cones σ(e1, e1 +
e2, 2e1 + 2e2 + e3), σ(e1, 2e1 + 2e2 + e3, e1 + e2 + e3), σ(e1, e3, e1 + e2 + e3),
σ(e2, e3, e1 + e2 + e3), σ(e2, 2e1 + 2e2 + e3, e1 + e2 + e3) and σ(e2, e1 + e2, 2e1 +
2e2 + e3). We have (2e1 + 2e2 + e3) + e3 = 2(e1 + e2 + e3), so ”11” satisfies the
hypotheses of the lemma 17.1 with respect to σ(e1, 2e1 + 2e2 + e3, e1 + e2 + e3)
and σ(e1, e3, e1 + e2 + e3).

The fan of the variety ”12” has maximal cones σ(e1, e1 + e2, e1 + e2 + e3),
σ(e1, e1 + e2 + e3, e1 + e2 + 2e3), σ(e1, e3, e1 + e2 + 2e3), σ(e2, e3, e1 + e2 + 2e3),
σ(e2, e1 + e2 + e3, e1 + e2 + 2e3) and σ(e2, e1 + e2, e1 + e2 + e3). We have
(e1 + e2 + 2e3) + (e1 + e2) = 2(e1 + e2 + e3), so ”12” satisfies the hypotheses of
the lemma 17.1 with respect to σ(e1, e1 + e2, e1 + e2 + e3) and σ(e1, e1 + e2 +
e3, e1 + e2 + 2e3).

The fan of the variety ”13” has maximal cones σ(e1, e1 + e2, e1 + e2 + e3),
σ(e2, e1+e2, e1+e2+e3), σ(e2, e1+e2+e3, e1+2e2+2e3), σ(e2, e3, e1+2e2+2e3),
σ(e3, e1 + e2 + e3, e1 +2e2 +2e3) and σ(e1, e3, e1 + e2 + e3). We have (e1 +2e2 +
2e3) + e1 = 2(e1 + e2 + e3), so ”13” satisfies the hypotheses of the lemma 17.1
with respect to σ(e1, e3, e1 + e2 + e3) and σ(e3, e1 + e2 + e3, e1 + 2e2 + 2e3).

The fan of the variety ”14” has maximal cones σ(e1, e1 + e2, e1 + e2 + e3),
σ(e1, e3, e1 + e2 + e3), σ(e2, e3, e1 + e2 + e3), σ(e2, e1 + e2 + e3, 2e1 + 3e2 + e3),
σ(e1 + e2, e1 + e2 + e3, 2e1 +3e2 + e3) and σ(e2, e1 + e2, 2e1 +3e2 + e3). We have
(2e1 + 3e2 + e3) + e3 = 2(e1 + e2 + e3) + e2, so ”14” satisfies the hypotheses of
the lemma 17.1 with respect to σ(e1, e2, e1 +e2 +e3) and σ(e2, e1 +e2 +e3, 2e1 +
3e2 + e3).

The fan of the variety ”15” has maximal cones σ(e2, e1 + e2, e1 + e2 + e3),
σ(e2, e3, e1 + e2 + e3), σ(e3, e1 + e3, e1 + e2 + e3), σ(e1, e1 + e3, e1 + e2 + e3)
and σ(e1, e1 + e2, e1 + e2 + e3). We have (e1 + e2) + (e1 + e3) = e1 + (e1 +
e2 + e3), so ”15” satisfies the hypotheses of the lemma 17.2 with respect to
σ(e1, e1 + e3, e1 + e2 + e3) and σ(e1, e1 + e2, e1 + e2 + e3). Hence we have to
study the variety obtained blowing-up ”15” along the subvariety associated to
σ(e1, e1+e2+e3), but this one is the variety that we have called ”8”. So there are
not Fano varieties obtained from ”15” through a sequence of blow-ups, because
”8” satisfies the hypotheses of the lemma 17.1.

The fan of the variety ”16” has maximal cones σ(e1 + e2, e1 + e2 + e3, 2e1 +
e2 + e3), σ(e1, e1 + e2, 2e1 + e2 + e3), σ(e1, e3, 2e1 + e2 + e3), σ(e3, e1 + e2 +
e3, 2e1 + e2 + e3), σ(e2, e3, e1 + e2 + e3) and σ(e2, e1 + e2, e1 + e2 + e3). We have
(2e1 +e2 +e3)+e2 = (e1 +e2)+(e1 +e2 +e3), so ”16” satisfies the hypotheses of
the lemma 17.2 with respect to σ(e2, e1 +e2, e1 +e2 +e3) and σ(e1 +e2, e1 +e2 +
e3, 2e1 + e2 + e3). Hence we have to study the variety ”17” obtained blowing-up
”16” along the subvariety associated to σ(e1 + e2, e1 + e2 + e3).
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The fan of this variety has maximal cones σ(e2, e1 + e2, 2e1 + 2e2 + e3),
σ(e2, e1+e2+e3, 2e1+2e2+e3), σ(e2, e3, e1+e2+e3), σ(e3, e1+e2+e3, 2e1+e2+
e3), σ(e1+e2+e3, 2e1+e2+e3, 2e1+2e2+e3), σ(e1+e2, 2e1+e2+e3, 2e1+2e2+e3),
σ(e1, e1 + e2, 2e1 + e2 + e3) and σ(e1, e3, 2e1 + e2 + e3). We have (2e1 + 2e2 +
e3) + e3 = 2(e1 + e2 + e3), so ”17” satisfies the hypotheses of the lemma 17.1
with respect to σ(e2, e3, e1 + e2 + e3) and σ(e2, e1 + e2 + e3, 2e1 + 2e2 + e3).
Observe that we have classified the toric Fano varieties obtainable form the
variety ”1” through a sequence of blow-ups, so we have only to study the varieties
dominating the variety ”2”.

Let k2 be the function associated to the anticanonical bundle of ”2” and
let ∆2 be the fan associated to ”2”. We have ∆2(3) = {σ(e2, e3, e1 + e2 +
e3), σ(e1, e3, e1+e2+e3), σ(e1, e2, e1+e2+e3)} and ∆2(1) = {σ(e1), σ(e2), σ(e3),
σ(e1 + e2 + e3)}. We have already showed that this variety is a Fano vari-
ety. Indeed, we have (k2|σ(e2, e3, e1 + e2 + e3))(e1) = (f1 − f2 − f3)(e1) =
1 > −1, (k2|σ(e1, e3, e1 + e2 + e3))(e2) = (−f1 + f2 − f3)(e2) = 1 > −1 and
(k2|σ(e1, e2, e1 + e2 + e3))(e3) = (−f1−f2 +f3)(e3) = 1 > −1. This inequalities
prove again that ”2” is a Fano variety.

The blow-up of the variety ”2” are, up to isomorphisms: i) the variety ”6”
that we have already examined;

ii) the variety ”18” which is the blow-up of the variety ”2” along the subva-
riety associated to σ(e1, e2, e1 + e2 + e3);
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and iii) the variety ”19” which is the blow-up of the variety ”6” along the
subvariety associated to σ(e3, e1 + e2 + e3).
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”19”

The fan of the variety ”18” has maximal cones σ(e1, e2, 2e1 + 2e2 + e3),
σ(e1, e1 +e2 +e3, 2e1 +2e2 +e3), σ(e1, e3, e1 +e2 +e3), σ(e2, e3, e1 +e2 +e3) and
σ(e2, e1 + e2 + e3, 2e1 + 2e2 + e3). Observe that the blow-up of ”18” along the
subvariety associated to σ(e1, e3) is isomorphic to the variety ”13” through the
isomorphism ϕ given by the action of (1, 2, 3) ∈Sym3 on {e1, e2, e3}. We have
showed that such variety satisfies the hypotheses of the lemma 17.1. Indeed we
have (2e1 + 2e2 + e3) + e3 = 2(e1 + e2 + e3), so ”18” satisfies the hypotheses of
the lemma 17.1 with respect to σ(e2, e3, e1 +e2 +e3) and σ(e2, e1 +e2 +e3, 2e1 +
2e2 + e3).

Now we want to show that the variety ”19” is a Fano variety. Let k19 be the
function associated to the anticanonical bundle of ”19” and let ∆19 be the fan
associated to ”19”. We have ∆19(3) = {σ(e1, e3, e1 + e2 + 2e3), σ(e1, e1 + e2 +
e3, e1+e2+2e3), σ(e1, e2, e1+e2+e3), σ(e2, e1+e2+e3, e1+e2+2e3)σ(e2, e3, e1+
e2+2e3)} and ∆19(1) = {σ(e1), σ(e2), σ(e3), σ(e1+e2+e3), σ(e1+e2+2e3)}. We
have (k19|σ(e1, e3, e1 +e2 +2e3))(e1 +e2 +e3) = (−f1 +2f2−f3)(e1 +e2 +e3) =
0 > −1, (k19|σ(e1, e3, e1 + e2 + 2e3))(e2) = (−f1 + 2f2 − f3)(e2) = 2 > −1,
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(k19|σ(e1, e1 + e2 + e3, e1 + e2 +2e3))(e2) = (−f1)(e2) = 0 > −1, (k19|σ(e1, e1 +
e2+e3, e1+e2+2e3))(e3) = (−f1)(e3) = 0 > −1, (k19|σ(e1, e2, e1+e2+e3))(e1+
e2 + 2e3) = (−f1 − f2 + f3)(e1 + e2 + 2e3) = 0 > −1, (k19|σ(e1, e2, e1 + e2 +
e3))(e3) = (−f1 − f2 + f3)(e3) = 1 > −1, (k19|σ(e2, e1 + e2 + e3, e1 + e2 +
2e3))(e2) = (−f2)(e1) = 0 > −1, (k19|σ(e2, e1 + e2 + e3, e1 + e2 + 2e3))(e3) =
(−f2)(e3) = 0 > −1, (k19|σ(e2, e3, e1 + e2 + 2e3))(e1 + e2 + e3) = (2f1 − f2 −
f3)(e1 + e2 + e3) = 0 > −1 and (k19|σ(e2, e3, e1 + e2 + 2e3))(e1) = (2f1 − f2 −
f3)(e1) = 2 > −1, so this variety is a Fano variety.

The blow-up of the variety ”19” are, up to isomorphisms: i) the variety ”12”
which satisfies the hypotheses of the lemma 17.1; ii) the variety ”20” which is the
blow-up of the variety ”19” along the subvariety associated to σ(e3, e1+e2+2e3);
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iii) the variety ”21” which is the blow-up of the variety ”19” along the
subvariety associated to σ(e1 + e2 + e3, e1 + e2 + 2e3);
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iv) the variety ”22” which is the blow-up of the variety ”19” along the
subvariety associated to σ(e1, e1 + e2 + 2e3);
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v) the variety ”23” which is the blow-up of the variety ”19” along the sub-
variety associated to σ(e1, e3);
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vi) the variety ”24” which is the blow-up of the variety ”19” along the
subvariety associated to σ(e1, e1 + e2 + e3);
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vii) the variety ”25” which is the blow-up of the variety ”19” along the
subvariety associated to σ(e1, e3, e1 + e2 + 2e3);
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viii) the variety ”26” which is the blow-up of the variety ”19” along the
subvariety associated to σ(e1, e1 + e2 + e3, e1 + e2 + 2e3);
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and ix) the variety ”27” which is the blow-up of the variety ”19” along the
subvariety associated to σ(e1, e2, e1 + e2 + e3).
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The fan of the variety ”20” has maximal cones σ(e1, e3, e1 + e2 + 3e3),
σ(e1, e1 + e2 + 3e3, e1 + e2 + 2e3), σ(e1, e1 + e2 + e3, e1 + e2 + 2e3), σ(e1, e2, e1 +
e2 + e3), σ(e2, e1 + e2 + e3, e1 + e2 + 2e3), σ(e2, e1 + e2 + 2e3, e1 + e2 + 3e3)
and σ(e2, e3, e1 + e2 + 3e3). We have (e1 + e2 + e3) + (e1 + e2 + 3e3) =
2(e1 + e2 + 2e3), so ”20” satisfies the hypotheses of the lemma 17.1 with re-
spect to σ(e1, e1 + e2 + e3, e1 + e2 + 2e3) and σ(e1, e1 + e2 + 2e3, e1 + e2 + 3e3).

The fan of the variety ”21” has maximal cones σ(e1, e3, e1 + e2 + 2e3),
σ(e1, e1+e2+2e3, 2e1+2e2+3e3), σ(e1, e1+e2+e3, 2e1+2e2+3e3), σ(e1, e2, e1+
e2+e3), σ(e2, e1+e2+e3, 2e1+2e2+3e3), σ(e2, e1+e2+2e3, 2e1+2e2+3e3) and
σ(e2, e3, e1 +e2 +2e3). We have (2e1 +2e2 +3e3)+e3 = 2(e1 +e2 +2e3), so ”21”
satisfies the hypotheses of the lemma 17.1 with respect to σ(e1, e3, e1 +e2 +2e3)
and σ(e1, e1 + e2 + 2e3, 2e1 + 2e2 + 3e3).

The fan of the variety ”22” has maximal cones σ(e2, e3, e1 + e2 + 2e3),
σ(e2, e1+e2+e3, e1+e2+2e3), σ(e1, e2, e1+e2+e3), σ(e1, e1+e2+e3, 2e1+e2+
2e3), σ(e1+e2+e3, e1+e2+2e3, 2e1+e2+2e3), σ(e3, e1+e2+2e3, 2e1+e2+2e3)
and σ(e1, e3, 2e1 + e2 + 2e3). We have (2e1 + e2 + 2e3)+ e2 = 2(e1 + e2 + e3), so
”22” satisfies the hypotheses of the lemma 17.1 with respect to σ(e2, e1 + e2 +
e3, e1 + e2 + 2e3) and σ(e1 + e2 + e3, e1 + e2 + 2e3, 2e1 + e2 + 2e3).

The fan of the variety ”23” has maximal cones σ(e3, e1 + e3, e1 + e2 + 2e3),
σ(e1, e1 +e3, e1 +e2 +2e3), σ(e1, e1 +e2 +e3, e1 +e2 +2e3), σ(e1, e2, e1 +e2 +e3),
σ(e2, e1+e2+e3, e1+e2+2e3) and σ(e2, e3, e1+e2+2e3). We have (e1+e2+e3)+
(e1+e3) = (e1+e2+2e3)+e1, so ”23” satisfies the hypotheses of the lemma 17.2
with respect to σ(e1, e1 + e2 + e3, e1 + e2 +2e3) and σ(e1, e1 + e3, e1 + e2 +2e3).
Hence we have to study the variety ”28” obtained blowing-up ”23” along the
subvariety associated to σ(e1, e1 + e2 + 2e3).
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The fan of this variety has maximal cones σ(e1, e2, e1+e2+e3), σ(e2, e1+e2+
e3, e1+e2+2e3), σ(e2, e3, e1+e2+2e3), σ(e3, e1+e3, e1+e2+2e3), σ(e1+e3, e1+
e2+2e3, 2e1+e2+2e3), σ(e1, e1+e3, 2e1+e2+2e3), σ(e1, e1+e2+e3, 2e1+e2+2e3)
and σ(e1 +e2 +e3, e1 +e2 +2e3, 2e1 +e2 +2e3). We have (2e1 +e2 +2e3)+e2 =
2(e1 + e2 + e3), so ”28” satisfies the hypotheses of the lemma 17.1 with respect
to σ(e1, e2, e1 + e2 + e3) and σ(e1, e1 + e2 + e3, 2e1 + e2 + 2e3).

The fan of the variety ”24” has maximal cones σ(e2, e3, e1 + e2 + 2e3),
σ(e2, e1 + e2 + e3, e1 + e2 + 2e3), σ(e2, e1 + e2 + e3, 2e1 + e2 + e3), σ(e1, e2, 2e1 +
e2+e3), σ(e1, 2e1+e2+e3, e1+e2+2e3), σ(e1+e2+e3, e1+e2+2e3, 2e1+e2+e3)
and σ(e1, e3, e1 + e2 + 2e3). We have (2e1 + e2 + e3) + e3 = (e1 + e2 + 2e3) + e1,
so ”24” satisfies the hypotheses of the lemma 17.2 with respect to σ(e1, 2e1 +
e2 + e3, e1 + e2 + 2e3) and σ(e1, e3, e1 + e2 + 2e3). Hence we have to study
the variety ”29” obtained blowing-up ”24” along the subvariety associated to
σ(e1, e1 + e2 + 2e3).
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e1 e2

e3

e1 + e2 + e3

e1 + e2 + 2e3

2e1 + e2 + e3

”29”

σ
σ′

2e1 + e2 + 2e3

This variety has maximal cones σ(e2, e3, e1 +e2 +2e3), σ(e2, e1 +e2 +e3, e1 +
e2 +2e3), σ(e2, e1 +e2 +e3, 2e1 +e2 +e3), σ(e1, e2, 2e1 +e2 +e3), σ(e1, 2e1 +e2 +
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e3, 2e1+e2+2e3), σ(2e1+e2+2e3, 2e1+e2+e3, e1+e2+2e3), σ(e1+e2+e3, 2e1+
e2+e3, e1+e2+2e3), σ(e3, e1+e2+2e3, 2e1+e2+2e3) and σ(e1, e3, 2e1+e2+2e3).
We have (2e1 + e2 + 2e3) + (e1 + e2 + e3) = (2e1 + e2 + e3) + (e1 + e2 + 2e3),
so ”29” satisfies the hypotheses of the lemma 17.2 with respect to σ(e1 + e2 +
e3, 2e1 + e2 + e3, e1 + e2 +2e3) and σ(2e1 + e2 +2e3, 2e1 + e2 + e3, e1 + e2 +2e3).
Hence we have to study the variety ”30” obtained blowing-up ”29” along the
subvariety associated to σ(2e1 + e2 + e3, e1 + e2 + 2e3).
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e1 e2
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e1 + e2 + e3

e1 + e2 + 2e3

2e1 + e2 + e3

”30”

σσ′

2e1 + e2 + 2e3

3e1 + 2e2 + 3e3

The fan of this variety has maximal cones σ(e2, e3, e1 + e2 + 2e3), σ(e2, e1 +
e2 + e3, e1 + e2 + 2e3), σ(e2, e1 + e2 + e3, 2e1 + e2 + e3), σ(e1, e2, 2e1 + e2 + e3),
σ(e1, 2e1 +e2 +e3, 2e1 +e2 +2e3), σ(2e1 +e2 +2e3, 2e1 +e2 +e3, 3e1 +2e2 +3e3),
σ(e1+e2+e3, 2e1+e2+e3, 3e1+2e2+3e3), σ(3e1+2e2+3e3, e1+e2+2e3, e1+e2+
e3), σ(e1+e2+2e3, 2e1+e2+2e3, 3e1+2e2+3e3), σ(e3, e1+e2+2e3, 2e1+e2+2e3)
and σ(e1, e3, 2e1 +e2 +2e3). We have (3e1 +2e2 +3e3)+e2 = 3(e1 +e2 +e3), so
”30” satisfies the hypotheses of the lemma 17.1 with respect to σ(e2, e1 + e2 +
e3, e1 + e2 + 2e3) and σ(e1 + e2 + e3, e1 + e2 + 2e3, 3e1 + 2e2 + 3e3).

The fan of the variety ”25” has maximal cones σ(e1, e2, e1+e2+e3), σ(e2, e1+
e2 + e3, e1 + e2 +2e3), σ(e2, e3, e1 + e2 +2e3), σ(e3, e1 + e2 +2e3, 2e1 + e2 +3e3),
σ(e1, e3, 2e1 + e2 + 3e3), σ(e1, e1 + e2 + 2e3, 2e1 + e2 + 3e3) and σ(e1, e1 + e2 +
e3, e1 +e2 +2e3). We have (2e1 +e2 +3e3)+(e1 +e2 +e3) = 2(e1 +e2 +2e3)+e1,
so ”25” satisfies the hypotheses of the lemma 17.1 with respect to σ(e1, e1 +
e2 + e3, e1 + e2 + 2e3) and σ(e1, e1 + e2 + 2e3, 2e1 + e2 + 3e3).

The fan of the variety ”26” has maximal cones σ(e2, e3, e1 + e2 + 2e3),
σ(e2, e1+e2+e3, e1+e2+2e3), σ(e1, e2, e1+e2+e3), σ(e1, e1+e2+e3, 3e1+2e2+
3e3), σ(e1, e1+e2+2e3, 3e1+2e2+3e3), σ(3e1+2e2+3e3, e1+e2+e3, e1+e2+2e3)
and σ(e1, e3, e1 + e2 + 2e3). We have (3e1 +2e2 + 3e3)+ e2 = 3(e1 + e2 + e3), so
”26” satisfies the hypotheses of the lemma 17.1 with respect to σ(e2, e1 + e2 +
e3, e1 + e2 + 2e3) and σ(e1 + e2 + e3, e1 + e2 + 2e3, 3e1 + 2e2 + 3e3).
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The fan of the variety ”27” has maximal cones σ(e1, e3, e1 + e2 + 2e3),
σ(e1, e1 +e2 +e3, e1 +e2 +2e3), σ(e1, e1 + e2 + e3, 2e1 +2e2 +e3), σ(e1, e2, 2e1 +
2e2 + e3), σ(e2, e1 + e2 + e3, 2e1 + 2e2 + e3), σ(e2, e1 + e2 + e3, e1 + e2 + 2e3)
and σ(e1, e3, e1 + e2 + 2e3). We have (e1 + e2 + 2e3) + (2e1 + 2e2 + e3) =
3(e1 + e2 + e3), so ”27” satisfies the hypotheses of the lemma 17.1 with respect
to σ(e1, e1 + e2 + e3, e1 + e2 + 2e3) and σ(e1, e1 + e2 + e3, 2e1 + 2e2 + e3).

Therefore we have proved the following theorem.

Proposition 18.1 The Fano toric varieties obtainable from A3 through a se-
quence of blow-up are, up to isomorphisms:

1. A3

2. a 2-blow-up of A3

3. the 3-blow-up of A3

4. the variety whose fan has maximal cones σ(e1, e1 + e2, e1 + e2 + e3),
σ(e1, e3, e1 +e2 +e3), σ(e2, e3, e1 +e2 +e3) and σ(e2, e1 +e2, e1 +e2 +e3).
This variety is obtainable from A3 through two consecutive blow-ups along
subvarieties of codimension 2,

5. the variety whose fan has maximal cones σ(e1, e3, e1 +e2 +2e3), σ(e1, e1 +
e2 +e3, e1 +e2 +2e3), σ(e1, e2, e1 +e2 +e3), σ(e2, e1 +e2 +e3, e1 +e2 +2e3)
and σ(e2, e3, e1 + e2 + 2e3). This variety is obtainable from A3 through a
3-blow up followed by a 2-blow up.
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We now want to explain why is too difficult to generalize the proof to 3-
dimensional almost Fano varieties or to Fano varieties of arbitrary dimension.
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It is likely that one can prove a lemma similar to the lemma 17.1 for the almost
Fano varieties. We suppose that we have to replace the hypothesis a1 ≥ 2 with
the hypothesis a1 ≥ 3. Unluckily, it is too difficult to generalize the explicit
part of the proof that we have done in this paragraph, because there are too
much varieties to study. Indeed we know that there are an infinite number of
almost Fano variety of dimension 3, for example the varieties A1 × Zn where
the Zn are the varieties of the proposition 15.2. Moreover, most of the varieties
that we have explicitly studied in this section are quasi-Fano varieties, so it is
difficult to find a family of varieties that hopefully contains all the almost-Fano
varieties.

We have two problem to generalize the proof to Fano varieties of arbitrary
dimension. First, it is difficult to generalize lemma 17.1. Observe that we have
used that there is only one troublesome variety, namely Z, and there is only
one ”bad” blow-up of Z. But this is false in higher dimension. For example,
in dimension 4 we have to consider two varieties: i) the variety whose fan has
maximal cones σ(v1, v2, v3, v4) and σ(v1, v2, v3, v1 + v2 + v3 − v4) and ii) the
variety whose fan has maximal cones σ(v1, v2, v3, v4) and σ(v1, v2, v3, v1 + v2 −
v4). Moreover we have to consider the blow-ups of any of such varieties along
the subvarieties associated to any cone of dimension at least 2 contained in
σ(v1, v2, v3). So we have to consider five case up to isomorphisms. Second, we
cannot reiterate the explicit part of the proof for every dimension.

19 Complete symmetric varieties of rank at least
3

In this section we begin to classify the Fano complete symmetric varieties of
rank at least 3 which are obtained from the wonderful variety by a sequence
of blow ups along closed orbits. Let Y be a such variety, then either Y is the
wonderful variety X or it is the blow-up of X along the closed orbit because
of the proposition 16.1. Recall that we have already classified the wonderful
Fano symmetric varieties in the theorem 13.1. We will use again the notation
used in the proof of that theorem. We want to prove that the blow-up of the
wonderful varieties along the closed orbit is not Fano if G/H has a simple factor
of rank at least 3. Remember that the weights associated to the anti-canonical
bundle are λi = 2δ − 2δ0 − (l − 2)αs

i +
∑

j 6=i αs
j with i = 1, ..., l. It is sufficient

to prove that there is always an index i such that < λi, (αs
i )
∨ > is negative.

Recall that (αs
i )
∨ = (2/ < αs

i , α
s
i >)αs

i ∈ MR is the coroot corresponding to
αs

i . Suppose that G/H is not simple and let G′/H ′ be a simple factor of rank l′

at least 3. Let λ′i be the weights of G′ defined in a similar way to the λi, then
λi = λ′i − (l − l′)αs

i + ω where ω is a spherical weight which vanishes on the
restricted roots of G′. Thus < λi, (αs

i )
∨ > ≤ < λ′i, (α

s
i )
∨ >, so it is sufficient to

consider the simple symmetric varieties of rank at least 3.
We consider two cases. First, suppose that there is an i ∈ {1, ..., l} such that

we have < β, αi >= 0 for each root β fixed by θ, so < β, θ(αi) >= 0. In this case
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< 2δ̃, (αs
i )
∨ >≤ 2, < 2δ̃0, (αs

i )
∨ >= 0, < αs

i , (α
s
i )
∨ >= 2 and < αs

j , (α
s
i )
∨ >≤ 0

for each j 6= i. Hence < λi, (αs
i )
∨ >≤ 2 + 0− 2− 0 = 0. Observe that this case

include the compactifications of a group. Moreover, the only simple involutions
of rank at least 3 which are not include in this case are: 1) the involutions of
type AII; 2) the involutions of type CII; 3) the involutions of type DIII if the
rank of G is odd.

Second, we suppose that there are simple roots α1, α2, α3, β1 and β2 with
the following properties: 1) α1, α2, α3 ∈ φ1 and β1, β2 ∈ φ0; 2) < βi, βi >=<
αj , αj > for each i and j; 3) < β1, β2 >= 0 and < βi, (α2)∨ >=< αs

j , (α
s
2)
∨ >=

−1 for each i and for each j different from 2; 4) αs
2 = 2α2 + β1 + β2. For

simplicity we suppose that < α2, α2 >= 2. Observe that for each β ∈ Γ0 we
have < β, αs

2 >=< θ(β), θ(αs
2) >= − < β,αs

2 >, so < β, αs
2 >= 0. Moreover

we have < 2δ, α2 >=< 2δ, β1 >=< 2δ, β2 >= 2, so < 2δ − 2δ0, α
s
2 >=<

2δ, αs
2 >= 8. Observe that < αs

2, α
s
2 >=< αs

2, 2α2 >= 4, so (αs
2)
∨ = 1

2αs
2 and

< 2δ − 2δ0, (αs
2)
∨ >= 4. Hence < λ2, (αs

2)
∨ >≤< 2δ − 2δ0 − (l − 2)αs

2 + αs
1 +

αs
3, (α

s
2)
∨ >≤ 4−2(l−2)−1−1 ≤ 0. Thus we have proved the following lemma.

Lemma 19.1 Suppose that (G, θ) = (G1, θ1)×(G2, θ2), where (G1, θ1) is simple
of rank at least 3. If Y is a Fano complete symmetric variety then it is wonderful.

20 Complete Fano symmetric varieties I

Now we want conclude the classification of the (almost) Fano complete sym-
metric varieties (with the suitable hypotheses). We have already classified the
associated Fano toric varieties, so we have only to calculate some weights. First
of all we will do some remark on the not simple symmetric variety and we will
introduce some notations. Suppose that (G, θ) = (G1, θ1)× (G2, θ2) and let φi

be the root system of Gi, so φ = φ1 ∪φ2. Let Ωi be the lattice generated by the
spherical weights of Gi, so Ω = Ω1 ⊕ Ω2. Given a weight λ in Ω, we can write
λ = λ1 + λ2 where λi belongs to Ωi. Observe that λ is (strongly) dominant if
and only if both λ1 and λ2 are (strongly) dominant. Thus we can reduce our-
selves to study some weights of simple symmetric varieties, even if the complete
symmetric variety may not be the product of a completion of G1/H1 and of a
completion of G2/H2. Because of the previous section we can suppose that the
rank of Gi/Hi is at most 3 for each i.

Now we list all the weights which we have to determine. If l = 3 we have to
study the weights

λ0 = 2δ − 2δ0

λ1 = 2δ − 2δ0 + αs
1

λ2 = 2δ − 2δ0 + αs
2

λ3 = 2δ − 2δ0 + αs
3

λ4 = 2δ − 2δ0 + αs
1 + αs

2
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λ5 = 2δ − 2δ0 + αs
1 + αs

3

λ6 = 2δ − 2δ0 + αs
2 + αs

3

λ7 = 2δ − 2δ0 − αs
1 + αs

2 + αs
3

λ8 = 2δ − 2δ0 + αs
1 − αs

2 + αs
3

λ9 = 2δ − 2δ0 + αs
1 + αs

2 − αs
3

λ10 = 2δ − 2δ0 − 2αs
1 + αs

2 + αs
3

λ11 = 2δ − 2δ0 + αs
1 − 2αs

2 + αs
3

and
λ12 = 2δ − 2δ0 + αs

1 + αs
2 − 2αs

3.

If l = 2 we have to determine the weights

µn = 2δ − 2δ0 − (n− 1)αs
1 + αs

2

νn = 2δ − 2δ0 + αs
1 − (n− 1)αs

2

η = 2δ − 2δ0

for each n ≥ 0. Observe that µ0 = ν0.
If l = 1 we have to study the weights ψn = 2δ − 2δ0 − (n − 1)αs

1 for each
n ≥ 0.

Suppose that l = 3 and (G, θ) = (G1, θ1)×(G2, θ2) where the rank of (G1, θ1)
is 2 and the rank of (G2, θ2) is 1. Then

λ0 = η + ψ1

λ1 = ν1 + ψ1

λ2 = µ1 + ψ1

λ3 = η + ψ0

λ4 = µ0 + ψ1

λ5 = ν1 + ψ0

λ6 = µ1 + ψ0

λ7 = µ2 + ψ0

λ8 = ν2 + ψ0

λ9 = µ0 + ψ2

λ10 = µ3 + ψ0

λ11 = ν3 + ψ0

and
λ12 = µ0 + ψ3.
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Suppose that (G, θ) = (G1, θ1)×(G2, θ2)×(G3, θ3) where the rank of (Gi, θi)
is 1 for each i. Let ψi

n be the weights of Gi defined as before. We have

λ0 = ψ1
1 + ψ2

1 + ψ3
1

λ1 = ψ1
0 + ψ2

1 + ψ3
1

λ2 = ψ1
1 + ψ2

0 + ψ3
1

λ3 = ψ1
1 + ψ2

1 + ψ3
0

λ4 = ψ1
0 + ψ2

0 + ψ3
1

λ5 = ψ1
0 + ψ2

1 + ψ3
0

λ6 = ψ1
1 + ψ2

0 + ψ3
0

λ7 = ψ1
2 + ψ2

0 + ψ3
0

λ8 = ψ1
0 + ψ2

2 + ψ3
0

λ9 = ψ1
0 + ψ2

0 + ψ3
2

λ10 = ψ1
3 + ψ2

0 + ψ3
0

λ11 = ψ1
0 + ψ2

3 + ψ3
0

and
λ12 = ψ1

0 + ψ2
0 + ψ3

3 .

Suppose l = 2 and (G, θ) = (G1, θ1) × (G2, θ2) where the rank of (Gi, θi) is
1 for each i. Let ψi

n be the weights of Gi defined as before. We have

µn = ψ1
n + ψ2

0

νn = ψ1
0 + ψ2

n

η = ψ1
1 + ψ2

1 .

Now we will write the weights of each complete symmetric variety whose
associated toric variety is Fano, respectively almost Fano.

Let Y be a complete symmetric variety of rank 2 such that the fan of asso-
ciated toric variety has 1-dimensional cones generated respectively by e1, e1 +
e2, e1+2e2, ..., e1+ie2, ..., e1+me2, e2. The weights associated to the anticanon-
ical bundle of Y are ν1 and µm.

Let Y be a complete symmetric variety of rank 2 such that the fan of asso-
ciated toric variety has 1-dimensional cones generated respectively by e1,me1 +
e2, (m − 1)e1 + e2, ..., ie1 + e2, ..., e1 + e2, e2. The weights associated to the
anticanonical bundle of Y are µ1 and νm.

Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along Xσ(e1,e2). The weights associated to the anticanonical bundle of Y
are λ5 and λ6.
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Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along Xσ(e1,e3). The weights associated to the anticanonical bundle of Y
are λ4 and λ6.

Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along Xσ(e2,e3). The weights associated to the anticanonical bundle of Y
are λ4 and λ5.

Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along Xσ(e1,e2,e3). The weights associated to the anticanonical bundle of
Y are λ7, λ8 and λ9.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along Xσ(e1,e2,e3) followed by a blow-up along Yσ(e1,e2). The
weights associated to the anticanonical bundle of Y are λ1, λ2, λ7 and λ8.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along Xσ(e1,e2,e3) followed by a blow-up along Yσ(e1,e3). The
weights associated to the anticanonical bundle of Y are λ1, λ3, λ7 and λ9.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along Xσ(e1,e2,e3) followed by a blow-up along Yσ(e2,e3). The
weights associated to the anticanonical bundle of Y are λ2, λ3, λ8 and λ9.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along Xσ(e1,e2,e3) followed by a blow-up along Yσ(e1,e1+e2+e3).
The weights associated to the anticanonical bundle of Y are λ2, λ3, λ7, λ11 and
λ12.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along Xσ(e1,e2,e3) followed by a blow-up along Yσ(e2,e1+e2+e3).
The weights associated to the anticanonical bundle of Y are λ1, λ3, λ8, λ10 and
λ12.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along Xσ(e1,e2,e3) followed by a blow-up along Yσ(e3,e1+e2+e3).
The weights associated to the anticanonical bundle of Y are λ1, λ2, λ9, λ10 and
λ11.

Finally let Y be a complete symmetric variety of rank l at least 3 which is
the blow-up of X along Xσ(e1,...,el). Let (G′, θ′) be a simple factor of (G, θ). By
the lemma 19.1 we can suppose that the rank l′ of (G′, θ′) is at most 2. If l′ = 2
we are interested to the weights µ0, µl−1, νl−1. If l′ = 1 we are interested to
the weights ψ0 and ψl−1.

Observe that it is not necessary to determine λ0, but its knowledge is useful
to determine the other weights.

To calculate these weights is useful to use another notation for the roots in
φ. We define {β1, ..., βr} as a reordering of the basis {α1, ..., αr} of φ with the
same notation of [Hu]. Let ω′i be the fundamental weight dual to β∨i and let
ωi = ω′i − θ(ω′i). Remember that δ =

∑m
i=1 ω′i. To calculate δ0, it is useful to

write
∑

ω′i as a linear combination of roots {β1, ..., βr} for each root system of
a classic Lie algebra. We have
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2δ =
m∑

i=1

i(m + 1− i)αi if the type of φ is Am,

2δ =
m∑

i=1

i(2m− i)αi if the type of φ is Bm,

2δ =
m−1∑

i=1

i(2m + 1− i)αi +
m(m + 1)

2
αm if the type of φ is Cm,

and

2δ =
m−2∑

i=1

i(2m− 1− i)αi +
m(m− 1)

2
(αm−1 + αm)

if the type of φ is Dm.
Now we want to write the simple restricted roots and the previous weights

respect to the ωi. In the first column we indicate the type of the involution
while, if the homogeneous symmetric variety is a group, we write the type of
its root system. In the second one we will write the rank m of G. In the third
column we write the αs

i as a linear combination of the {βs
1, ..., β

s
r} and as a linear

combination of the {ω1, ..., ωr}. In the forth one we write the weights that we
have defined in the begin of this section. Afterwards we will write a table in
which we indicated what weights are dominant, respectively regular. First we
consider the case in which l = 1.

A1 2 αs
1 = βs

1 = 2ω1 ψn = (4− 2n)ω1

AI 1 αs
1 = βs

1 = 4ω1 ψn = (6− 4n)ω1

AII 3 αs
1 = βs

2 = 2ω2 ψn = (6− 2n)ω2

AIV m αs
1 = βs

1 = ω1 ψn = (m + 1− n)ω1

BII m αs
1 = βs

1 = 2ω1 ψn = (2m− 2n + 1)ω1

CII m αs
1 = βs

2 = ω2 ψn = (2m− n)ω2

DII m αs
1 = βs

1 = 2ω1 ψn = (2m− 2n)ω1

FII 4 αs
1 = βs

4 = ω4 ψn = (12− n)ω1

A1 2 ψn if n ≤ 2 ψn if n ≤ 1
AI 1 ψn if n ≤ 1 ψn if n ≤ 1
AII 3 ψn if n ≤ 3 ψn if n ≤ 2
AIV m ψn if n ≤ m + 1 ψn if n ≤ m
BII m ψn if n ≤ m ψn if n ≤ m
CII m ψn if n ≤ 2m ψn if n ≤ 2m− 1
DII m ψn if n ≤ m ψn if n ≤ m− 1
FII 4 ψn if n ≤ 12 ψn if n ≤ 11

Observe that ψ0 and ψ1 are always regular. We now consider the case in
which l = 2.
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A2 4 αs
1 = βs

1 = 2ω1 − ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −ω1 + 2ω2 µn = (3− 2n)ω1 + (3 + n)ω2

νn = (3 + n)ω1 + (3− 2n)ω2

B2 4 αs
1 = βs

1 = 2ω1 − 2ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −ω1 + 2ω2 µn = (3− 2n)ω1 + (2 + 2n)ω2

νn = (3 + n)ω1 + (2− 2n)ω2

G2 4 αs
1 = βs

1 = 2ω1 − ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −3ω1 + 2ω2 µn = (1− 2n)ω1 + (3 + n)ω2

νn = (1 + 3n)ω1 + (3− 2n)ω2

AI 2 αs
1 = βs

1 = 4ω1 − 2ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −2ω1 + 4ω2 µn = (4− 4n)ω1 + (4 + 2n)ω2

νn = (4 + 2n)ω1 + (4− 4n)ω2

AII 5 αs
1 = βs

2 = 2ω2 − ω4 η = 4ω2 + 4ω4

αs
2 = βs

4 = −ω2 + 2ω4 µn = (5− 2n)ω2 + (5 + n)ω4

νn = (5 + n)ω2 + (5− 2n)ω4

AIII m ≥ 4 αs
1 = βs

1 = 2ω1 − ω2 η = 2ω1 + (m− 2)ω2

αs
2 = βs

2 = −ω1 + ω2 µn = (3− 2n)ω1 + (m− 2 + n)ω2

νn = (3 + n)ω1 + (m− 2− n)ω2

AIII 3 αs
1 = βs

1 = 2ω1 − 2ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −2ω1 + 4ω2 µn = (2− 2n)ω1 + (4 + 2n)ω2

νn = (2 + 2n)ω1 + (4− 4n)ω2

BI m ≥ 3 αs
1 = βs

1 = 4ω1 − 2ω2 η = 2ω1 + (2m + 1)ω2

αs
2 = βs

2 = −2ω1 + 2ω2 µn = (4− 4n)ω1 + (2m + 2n + 1)ω2

νn = (4 + 2n)ω1 + (2m− 2n + 1)ω2

BI 2 αs
1 = βs

1 = 4ω1 − 4ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −2ω1 + 4ω2 µn = (4− 4n)ω1 + (2 + 4n)ω2

νn = (4 + 2n)ω1 + (2− 4n)ω2

CII m ≥ 5 αs
1 = βs

2 = 2ω2 − ω4 η = 4ω2 + (2m− 5)ω4

αs
2 = βs

4 = −ω2 + ω4 µn = (5− 2n)ω2 + (2m + n− 5)ω4

νn = (5 + n)ω2 + (2m− n− 5)ω4

CII 4 αs
1 = βs

2 = 2ω2 − ω4 η = 4ω2 + 3ω4

αs
2 = βs

4 = −2ω2 + 2ω4 µn = (4− 2n)ω2 + (4 + n)ω4

νn = (4 + 2n)ω2 + (4− 2n)ω4

DI m αs
1 = βs

1 = 4ω1 − 2ω2 η = 2ω1 + (2m− 4)ω2

αs
2 = βs

2 = −2ω1 + 2ω2 µn = (4− 4n)ω1 + (2m + 2n− 4)ω2

νn = (4 + 2n)ω1 + (2m− 2n− 4)ω2

DIII 4 αs
1 = βs

2 = 2ω2 − 2ω4 η = 4ω2 + 2ω4

αs
2 = βs

4 = −2ω2 + 4ω4 µn = (4− 2n)ω2 + (4 + 2n)ω4

νn = (4 + 2n)ω2 + (4− 4n)ω4

DIII 5 αs
1 = βs

1 = 2ω1 − ω4 η = 4ω1 + 3ω4

αs
2 = βs

4 = −ω1 + ω4 µn = (5− 2n)ω1 + (3 + n)ω4

νn = (5 + n)ω1 + (3− n)ω4
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EIII 6 αs
1 = βs

2 = 2ω2 − ω1 η = 6ω2 + 5ω1

αs
2 = βs

1 = −ω2 + ω1 µn = (7− 2n)ω2 + (5 + n)ω1

νn = (7 + n)ω2 + (5− n)ω1

EIV 6 αs
1 = βs

1 = 2ω1 − ω6 η = 8ω1 + 8ω6

αs
2 = βs

6 = −ω1 + 2ω6 µn = (9− 2n)ω1 + (9 + n)ω6

νn = (9 + n)ω1 + (9− 2n)ω6

G 2 αs
1 = βs

1 = 4ω1 − 2ω2 η = 2ω1 + 2ω2

αs
2 = βs

2 = −6ω1 + 4ω2 µn = −4nω1 + (4 + 2n)ω2

νn = 6nω1 + (4− 4n)ω2

A2 4 µn if n ≤ 1 µn if n ≤ 1
νn if n ≤ 1 νn if n ≤ 1
η η

B2 4 µn if n ≤ 1 µn if n ≤ 1
νn if n ≤ 1 ν0

η η
G2 4 µ0 µ0

νn if n ≤ 1 νn if n ≤ 1
η η

AI 2 µn if n ≤ 1 µ0

νn if n ≤ 1 ν0

η η
AII 5 µn if n ≤ 2 µn if n ≤ 2

νn if n ≤ 2 νn if n ≤ 2
η η

AIII m ≥ 4 µn if n ≤ 1 µn if n ≤ 1
νn if n ≤ m− 2 νn if n ≤ m− 3
η η

AIII 3 µn if n ≤ 1 µ0

νn if n ≤ 1 ν0

η η
BI m ≥ 3 µn if n ≤ 1 µ0

νn if n ≤ m νn if n ≤ m
η η

BI 2 µn if n ≤ 1 µ0

ν0 ν0

η η
CII m ≥ 5 µn if n ≤ 2 µn if n ≤ 2

νn if n ≤ 2m− 5 νn if n ≤ 2m− 6
η η

113



CII 4 µn if n ≤ 2 µn if n ≤ 1
νn if n ≤ 2 νn if n ≤ 1
η η

DI m µn if n ≤ 1 µ0

νn if n ≤ m− 2 νn if n ≤ m− 3
η η

DIII 4 µn if n ≤ 2 µn if n ≤ 1
νn if n ≤ 1 ν0

η η
DIII 5 µn if n ≤ 2 µn if n ≤ 2

νn if n ≤ 3 νn if n ≤ 2
η η

EIII 6 µn if n ≤ 3 µn if n ≤ 3
νn if n ≤ 5 νn if n ≤ 4
η η

EIV 6 µn if n ≤ 4 µn if n ≤ 4
νn if n ≤ 4 νn if n ≤ 4
η η

G 2 µ0

νn if n ≤ 1
η η

Finally we can consider the case of rank l = 3.

A3 6 αs
1 = βs

1 = 2ω1 − ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −ω1 + 2ω2 − ω3 λ1 = 4ω1 + ω2 + 2ω3

αs
3 = βs

3 = −ω2 + 2ω3 λ2 = ω1 + 4ω2 + ω3

λ3 = 2ω1 + ω2 + 4ω3

λ4 = 3ω1 + 3ω2 + ω3

λ5 = 4ω1 + 4ω3

λ6 = ω1 + 3ω2 + 3ω3

λ7 = −ω1 + 4ω2 + 3ω3

λ8 = 5ω1 − 2ω2 + 5ω3

λ9 = 3ω1 + 4ω2 − ω3

λ10 = −3ω1 + 5ω2 + 3ω3

λ11 = 6ω1 − 4ω2 + 6ω3

λ12 = 3ω1 + 5ω2 − 3ω3

114



B3 6 αs
1 = βs

1 = 2ω1 − ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −ω1 + 2ω2 − 2ω3 λ1 = 4ω1 + ω2 + 2ω3

αs
3 = βs

3 = −ω2 + 2ω3 λ2 = ω1 + 4ω2

λ3 = 2ω1 + ω2 + 4ω3

λ4 = 3ω1 + 3ω2

λ5 = 4ω1 + 4ω3

λ6 = ω1 + 3ω2 + 2ω3

λ7 = −ω1 + 4ω2 + 2ω3

λ8 = 5ω1 − 2ω2 + 6ω3

λ9 = 3ω1 + 4ω2 − 2ω3

λ10 = −3ω1 + 5ω2 + 2ω3

λ11 = 6ω1 − 4ω2 + 8ω3

λ12 = 3ω1 + 5ω2 − 4ω3

C3 6 αs
1 = βs

1 = 2ω1 − ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −ω1 + 2ω2 − ω3 λ1 = 4ω1 + ω2 + 2ω3

αs
3 = βs

3 = −2ω2 + 2ω3 λ2 = ω1 + 4ω2 + ω3

λ3 = 2ω1 + 4ω3

λ4 = 3ω1 + 3ω2 + ω3

λ5 = 4ω1 − ω2 + 4ω3

λ6 = ω1 + 2ω2 + 3ω3

λ7 = −ω1 + 3ω2 + 3ω3

λ8 = 5ω1 − 3ω2 + 5ω3

λ9 = 3ω1 + 5ω2 − ω3

λ10 = −3ω1 + 4ω2 + 3ω3

λ11 = 6ω1 − 5ω2 + 6ω3

λ12 = 3ω1 + 7ω2 − 3ω3

AI 3 αs
1 = βs

1 = 4ω1 − 2ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −2ω1 + 4ω2 − 2ω3 λ1 = 6ω1 + 2ω3

αs
3 = βs

3 = −2ω2 + 4ω3 λ2 = 6ω2

λ3 = 2ω1 + 6ω3

λ4 = 4ω1 + 4ω2

λ5 = 6ω1 − 2ω2 + 6ω3

λ6 = 4ω2 + 4ω3

λ7 = −4ω1 + 6ω2 + 4ω3

λ8 = 8ω1 − 6ω2 + 8ω3

λ9 = 4ω1 + 6ω2 − 4ω3

λ10 = −8ω1 + 8ω2 + 4ω3

λ11 = 10ω1 − 10ω2 + 10ω3

λ12 = 4ω1 + 8ω2 − 8ω3
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AII 7 αs
1 = βs

2 = 2ω2 − ω4 λ0 = 4ω2 + 4ω4 + 4ω6

αs
2 = βs

4 = −ω2 + 2ω4 − ω6 λ1 = 6ω2 + 3ω4 + 4ω6

αs
3 = βs

6 = −ω4 + 2ω6 λ2 = 3ω2 + 6ω4 + 3ω6

λ3 = 4ω2 + 3ω4 + 6ω6

λ4 = 5ω2 + 5ω4 + 3ω6

λ5 = 6ω2 + 2ω4 + 6ω6

λ6 = 3ω2 + 5ω4 + 5ω6

λ7 = ω2 + 6ω4 + 5ω6

λ8 = 7ω2 + 7ω6

λ9 = 5ω2 + 6ω4 + ω6

λ10 = −ω2 + 7ω4 + 5ω6

λ11 = 8ω2 − 2ω4 + 8ω6

λ12 = 5ω2 + 7ω4 − ω6

AIII m ≥ 6 αs
1 = βs

1 = 2ω1 − ω2 λ0 = 2ω1 + 2ω2 + (m− 4)ω3

αs
2 = βs

2 = −ω1 + 2ω2 − ω3 λ1 = 4ω1 + ω2 + (m− 4)ω3

αs
3 = βs

3 = −ω2 + ω3 λ2 = ω1 + 4ω2 + (m− 5)ω3

λ3 = 2ω1 + ω2 + (m− 3)ω3

λ4 = 3ω1 + 3ω2 + (m− 5)ω3

λ5 = 4ω1 + (m− 3)ω3

λ6 = ω1 + 3ω2 + (m− 4)ω3

λ7 = −ω1 + 4ω2 + (m− 4)ω3

λ8 = 5ω1 − 2ω2 + (m− 2)ω3

λ9 = 3ω1 + 4ω2 + (m− 6)ω3

λ10 = −3ω1 + 5ω2 + (m− 4)ω3

λ11 = 6ω1 − 4ω2 + (m− 1)ω3

λ12 = 3ω1 + 5ω2 + (m− 7)ω3

AIII 5 αs
1 = βs

1 = 2ω1 − ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −ω1 + 2ω2 − 2ω3 λ1 = 4ω1 + ω2 + 2ω3

αs
3 = βs

3 = −2ω2 + 4ω3 λ2 = ω1 + 4ω2

λ3 = 2ω1 + 6ω3

λ4 = 3ω1 + 3ω2

λ5 = 4ω1 − ω2 + 6ω3

λ6 = ω1 + 2ω2 + 4ω3

λ7 = −ω1 + 3ω2 + 4ω3

λ8 = 5ω1 − 3ω2 + 8ω3

λ9 = 3ω1 + 5ω2 − 4ω3

λ10 = −3ω1 + 4ω2 + 4ω3

λ11 = 6ω1 − 5ω2 + 10ω3

λ12 = 3ω1 + 7ω2 − 8ω3
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BI m ≥ 4 αs
1 = βs

1 = 4ω1 − 2ω2 λ0 = 2ω1 + 2ω2 + (2m + 1)ω3

αs
2 = βs

2 = −2ω1 + 4ω2 − 2ω3 λ1 = 6ω1 + (2m + 1)ω3

αs
3 = βs

3 = −2ω2 + 2ω3 λ2 = 6ω2 + (2m− 1)ω3

λ3 = 2ω1 + (2m + 3)ω3

λ4 = 4ω1 + 4ω2 + (2m− 1)ω3

λ5 = 6ω1 − 2ω2 + (2m + 3)ω3

λ6 = 4ω2 + (2m + 1)ω3

λ7 = −4ω1 + 6ω2 + (2m + 1)ω3

λ8 = 8ω1 − 6ω2 + (2m + 5)ω3

λ9 = 4ω1 + 6ω2 + (2m− 3)ω3

λ10 = −8ω1 + 8ω2 + (2m + 1)ω3

λ11 = 10ω1 − 10ω2 + (2m + 7)ω3

λ12 = 4ω1 + 8ω2 + (2m− 5)ω3

BI 3 αs
1 = βs

1 = 4ω1 − 2ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −2ω1 + 4ω2 − 4ω3 λ1 = 6ω1 + 2ω3

αs
3 = βs

3 = −2ω2 + 4ω3 λ2 = 6ω2 − 2ω3

λ3 = 2ω1 + 6ω3

λ4 = 4ω1 + 4ω2 − 2ω3

λ5 = 6ω1 − 2ω2 + 6ω3

λ6 = 4ω2 + 2ω3

λ7 = −4ω1 + 6ω2 + 2ω3

λ8 = 8ω1 − 6ω2 + 10ω3

λ9 = 4ω1 + 6ω2 − 6ω3

λ10 = −8ω1 + 8ω2 + 2ω3

λ11 = 10ω1 − 10ω2 + 14ω3

λ12 = 4ω1 + 8ω2 − 10ω3

CI 3 αs
1 = βs

1 = 4ω1 − 2ω2 λ0 = 2ω1 + 2ω2 + 2ω3

αs
2 = βs

2 = −2ω1 + 4ω2 − 2ω3 λ1 = 6ω1 + 2ω3

αs
3 = βs

3 = −4ω2 + 4ω3 λ2 = 6ω2

λ3 = 2ω1 − 2ω2 + 6ω3

λ4 = 4ω1 + 4ω2

λ5 = 6ω1 − 4ω2 + 6ω3

λ6 = 2ω2 + 4ω3

λ7 = −4ω1 + 4ω2 + 4ω3

λ8 = 8ω1 − 8ω2 + 8ω3

λ9 = 4ω1 + 8ω2 − 4ω3

λ10 = −8ω1 + 6ω2 + 4ω3

λ11 = 10ω1 − 12ω2 + 10ω3

λ12 = 4ω1 + 12ω2 − 8ω3
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CII m ≥ 7 αs
1 = βs

2 = 2ω2 − ω4 λ0 = 4ω2 + 4ω4 + (2m− 9)ω6

αs
2 = βs

4 = −ω2 + 2ω4 − ω6 λ1 = 6ω2 + 3ω4 + (2m− 9)ω6

αs
3 = βs

6 = −ω4 + ω6 λ2 = 3ω2 + 6ω4 + (2m− 10)ω6

λ3 = 4ω2 + 3ω4 + (2m− 8)ω6

λ4 = 5ω2 + 5ω4 + (2m− 10)ω6

λ5 = 6ω2 + 2ω4 + (2m− 8)ω6

λ6 = 3ω2 + 5ω4 + (2m− 9)ω6

λ7 = ω2 + 6ω4 + (2m− 9)ω6

λ8 = 7ω2 + (2m− 7)ω6

λ9 = 5ω2 + 6ω4 + (2m− 11)ω6

λ10 = −ω2 + 7ω4 + (2m− 9)ω6

λ11 = 8ω2 − 2ω4 + (2m− 6)ω6

λ12 = 5ω2 + 7ω4 + (2m− 12)ω6

CII 6 αs
1 = βs

2 = 2ω2 − ω4 λ0 = 4ω2 + 4ω4 + 3ω6

αs
2 = βs

4 = −ω2 + 2ω4 − ω6 λ1 = 6ω2 + 3ω4 + 3ω6

αs
3 = βs

6 = −2ω4 + 2ω6 λ2 = 3ω2 + 6ω4 + 2ω6

λ3 = 4ω2 + 2ω4 + 5ω6

λ4 = 5ω2 + 5ω4 + 2ω6

λ5 = 6ω2 + ω4 + 5ω6

λ6 = 3ω2 + 4ω4 + 4ω6

λ7 = ω2 + 5ω4 + 4ω6

λ8 = 7ω2 − ω4 + 6ω6

λ9 = 5ω2 + 7ω4

λ10 = −ω2 + 6ω4 + 4ω6

λ11 = 8ω2 − 3ω4 + 7ω6

λ12 = 5ω2 + 9ω4 − 2ω6

DI m αs
1 = βs

1 = 4ω1 − 2ω2 λ0 = 2ω1 + 2ω2 + (2m− 6)ω3

αs
2 = βs

2 = −2ω1 + 4ω2 − 2ω3 λ1 = 6ω1 + (2m− 6)ω3

αs
3 = βs

3 = −2ω2 + 2ω3 λ2 = 6ω2 + (2m− 8)ω3

λ3 = 2ω1 + (2m− 4)ω3

λ4 = 4ω1 + 4ω2 + (2m− 8)ω3

λ5 = 6ω1 − 2ω2 + (2m− 4)ω3

λ6 = 4ω2 + (2m− 6)ω3

λ7 = −4ω1 + 6ω2 + (2m− 6)ω3

λ8 = 8ω1 − 6ω2 + (2m− 2)ω3

λ9 = 4ω1 + 6ω2 + (2m− 10)ω3

λ10 = −8ω1 + 8ω2 + (2m− 6)ω3

λ11 = 10ω1 − 10ω2 + 2mω3

λ12 = 4ω1 + 8ω2 + (2m− 12)ω3
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DIII 6 αs
1 = βs

2 = 2ω2 − ω4 λ0 = 4ω2 + 4ω4 + 2ω6

αs
2 = βs

4 = −ω2 + 2ω4 − 2ω6 λ1 = 6ω2 + 3ω4 + 2ω6

αs
3 = βs

6 = −2ω4 + 4ω6 λ2 = 3ω2 + 6ω4

λ3 = 4ω2 + 2ω4 + 6ω6

λ4 = 5ω2 + 5ω4

λ5 = 6ω2 + ω4 + 6ω6

λ6 = 3ω2 + 4ω4 + 4ω6

λ7 = ω2 + 5ω4 + 4ω6

λ8 = 7ω2 − ω4 + 8ω6

λ9 = 5ω2 + 7ω4 − 4ω6

λ10 = −ω2 + 6ω4 + 4ω6

λ11 = 8ω2 − 3ω4 + 10ω6

λ12 = 5ω2 + 9ω4 − 8ω6

DIII 7 αs
1 = βs

2 = 2ω2 − ω4 λ0 = 4ω2 + 4ω4 + 3ω6

αs
2 = βs

4 = −ω2 + 2ω4 − ω6 λ1 = 6ω2 + 3ω4 + 3ω6

αs
3 = βs

6 = −ω4 + ω6 λ2 = 3ω2 + 6ω4 + 2ω6

λ3 = 4ω2 + 3ω4 + 4ω6

λ4 = 5ω2 + 5ω4 + 2ω6

λ5 = 6ω2 + 2ω4 + 4ω6

λ6 = 3ω2 + 5ω4 + 3ω6

λ7 = ω2 + 6ω4 + 3ω6

λ8 = 7ω2 + 5ω6

λ9 = 5ω2 + 6ω4 + ω6

λ10 = −ω2 + 7ω4 + 3ω6

λ11 = 8ω2 − 2ω4 + 6ω6

λ12 = 5ω2 + 7ω4

EV II 7 αs
1 = βs

1 = 2ω1 − ω6 λ0 = 8ω1 + 8ω6 + 2ω7

αs
2 = βs

6 = −ω1 + 2ω6 − 2ω7 λ1 = 10ω1 + 7ω6 + 2ω7

αs
3 = βs

7 = −2ω6 + 4ω7 λ2 = 7ω1 + 10ω6

λ3 = 8ω1 + 6ω6 + 6ω7

λ4 = 9ω1 + 9ω6

λ5 = 10ω1 + 5ω6 + 6ω7

λ6 = 7ω1 + 8ω6 + 4ω7

λ7 = 5ω1 + 9ω6 + 4ω7

λ8 = 11ω1 + 3ω6 + 8ω7

λ9 = 9ω1 + 11ω6 − 4ω7

λ10 = 3ω1 + 10ω6 + 4ω7

λ11 = 12ω1 + ω6 + 10ω7

λ12 = 9ω1 + 13ω6 − 8ω7
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A3 6 λ0, λ1, λ2, λ3 λ0, λ1, λ2, λ3

λ4, λ5, λ6 λ4, λ6

B3 6 λ0, λ1, λ2, λ3 λ0, λ1, λ3

λ4, λ5, λ6 λ6

C3 6 λ0, λ1, λ2, λ3 λ0, λ1, λ2

λ4, λ6 λ4, λ6

AI 3 λ0, λ1, λ2, λ3 λ0

λ4, λ6

AII 7 λ0, λ1, λ2, λ3 λ0, λ1, λ2, λ3

λ4, λ5, λ6 λ4, λ5, λ6

λ7, λ8, λ9 λ7, λ9

AIII m ≥ 6 λ0, λ1, λ2, λ3 λ0, λ1, λ2, λ3

λ4, λ5, λ6 λ4, λ6

λ9 λ9 if m ≥ 7
λ12 if m ≥ 7 λ12 if m ≥ 8

AIII 5 λ0, λ1, λ2, λ3 λ0, λ1

λ4, λ6 λ6

BI m ≥ 4 λ0, λ1, λ2, λ3 λ0

λ4, λ6, λ9, λ12 λ4, λ9, λ12

BI 3 λ0, λ1, λ3, λ6 λ0

CI 3 λ0, λ1, λ2, λ4 λ0

λ6

CII m ≥ 7 λ0, λ1, λ2, λ3 λ0, λ1, λ2, λ3

λ4, λ5, λ6 λ4, λ5,λ6

λ7, λ8, λ9 λ7, λ9

λ12 λ12

CII 6 λ0, λ1, λ2, λ3 λ0, λ1, λ2, λ3

λ4, λ5, λ6 λ4, λ5,λ6

λ7, λ9 λ7

DI m λ0, λ1, λ2, λ3 λ0

λ4, λ6 λ4 if m ≥ 5
λ9 if m ≥ 5 λ9 if m ≥ 6
λ12 if m ≥ 6 λ12 if m ≥ 7

DIII 6 λ0, λ1, λ2, λ3 λ0, λ1, λ3

λ4, λ5, λ6 λ5, λ6

λ7 λ7

DIII 7 λ0, λ1, λ2, λ3 λ0, λ1, λ2, λ3

λ4, λ5, λ6 λ4, λ5, λ6

λ7, λ8, λ9 λ7, λ9

λ12

EV II 7 λ0, λ1, λ2, λ3 λ0, λ1, λ3

λ4, λ5, λ6 λ5, λ6

λ7, λ8 λ7, λ8

λ10, λ11 λ10, λ11
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21 Complete Fano symmetric varieties II

Now we can conclude the classification. In this section we always suppose that
{α1, ..., αl} is ordered so that {αs

1, ..., α
s
l } is a basis of φs with the notations

of [Hu]. We have to introduce some definitions. Let Y be a complete sym-
metric variety of rank 2. We will say that the type of Y is V (n) if the fan of
the associated toric variety has 1-dimensional cones generated respectively by
e1, e1 + e2, e1 + 2e2, ..., e1 + ie2, ..., e1 + ne2, e2.

• //

OO ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??²²²²²²²²²²²²

GGººººººººººº

KK¾¾¾¾¾¾¾¾¾¾¾

MM

e1

e2

V (n) :

Instead we will say that the type of Y is W (n) if the fan of the associated
toric variety has 1-dimensional cones generated respectively by e1, ne1 +e2, (n−
1)e1 + 2e2, ..., ie1 + e2, ..., e1 + e2, e2.

• //

OO ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??

oooooooooooo
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ggggggggggg
33

ccccccccccc
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e1

e2

W (n) :

Observe that Y is of type V1 if and only if it is of type W (1). We will say
that the type of Y is O if Y is wonderful. Finally, if Y has not type V (n), W (n)
or O, we will say that the type of Y is P .

Let Y be a complete symmetric variety of rank 3. We will say that the type
of Y is O if Y is the wonderful variety X.
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We will say that the type of Y is Q(1, 2) if Y is the blow-up of X along
Xσ(e1,e2).
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We will say that the type of Y is Q(1, 3) if Y is the blow-up of X along
Xσ(e1,e3).
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We will say that the type of Y is Q(2, 3) if Y is the blow-up of X along
Xσ(e2,e3).
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We will say that the type of Y is R if Y is the blow-up of X along Xσ(e1,e2,e3).
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We will say that the type of Y is S(1, 2) if Y is the blow-up of the variety
Y ′ of type R along Y ′

σ(e1,e2)
.
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”S(1, 2)”

We will say that the type of Y is S(1, 3) if Y is the blow-up of the variety
Y ′ of type R along Y ′

σ(e1,e3)
.
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”S(1, 3)”

We will say that the type of Y is S(2, 3) if Y is the blow-up of the variety
Y ′ of type R along Y ′

σ(e2,e3)
.
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We will say that the type of Y is T (1) if Y is the blow-up of the variety Y ′

of type R along Y ′
σ(e1,e1+e2+e3)

.
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”T (1)”

We will say that the type of Y is T (2) is the blow-up of the variety Y ′ of
type R along Y ′

σ(e2,e1+e2+e3)
.
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We will say that the type of Y is T (3) if Y is the blow-up of the variety Y ′

of type R along Y ′
σ(e3,e1+e2+e3)

.
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Finally, if Y is none of previous ones, we will say that the type of Y is P .
Now we can write the classification.

Theorem 21.1 Let Y be a complete symmetric variety associated to an open
toric variety Z. Suppose that Y is a completion of the symmetric variety G/H
associated to an involution (G, θ) of rank 2.

1. If Y is a Fano variety then either it is the wonderful symmetric variety X
or it is the blow-up of X along the closed orbit, so there at most two Fano
completions of G/H.

2. If (G, θ) is not simple then Y is a Fano variety if and only if it is the
wonderful symmetric variety X or it is the blow-up of X along the closed
orbit.

3. If Y is a wonderful simple variety then it is Fano if and only if (G, θ) has
not type G.

4. If Y is a simple Fano variety and it is not wonderful, we have exactly the
following possibilities for (G, θ) (let m be the rank of G):

• G/H is the adjoint group of type A2.

• (G, θ) has type AII and m = 5;

• (G, θ) has type AIII and m ≥ 4;

• (G, θ) has type CII;

• (G, θ) has type DIII and m = 5;

• (G, θ) has type EIII;

• (G, θ) has type EIV ;

5. If Y is almost-Fano then it has type O, V (n) or W (n) for a suitable n.

6. There is a finite number of almost Fano complete symmetric varieties, but
this number can be arbitrarily large.

7. Given an (almost) Fano toric variety Z proper over A2, there is an invo-
lution (G, θ) such that the associated complete symmetric variety Y = XZ

is an (almost) Fano variety.

8. The classification of the simple almost-Fano varieties Y is as in the fig-
ure 1.

9. Suppose that G/H = G1/H1 ×G2/H2. Then the completion of G1/H1 ×
G2/H2 of type V (n) is an almost Fano variety if and only if the completion
of G2/H2 ×G1/H1 of type W (n) is an almost Fano variety. Moreover, if
Y has type V (n), then the property of being almost Fano depends only on
G1 (and not on G2). Likewise if Y has type W (n) then the property of
being almost Fano depends only on G2 (and not on G1).
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(G, θ) rank G type of Y

A2 4 O, V (1) = W (1)
B2 4 O, V (1) = W (1)
G2 4 O
AI 2 O, V (1) = W (1)
AII 5 O,V (1) = W (1), V (2), W (2)
AIII m ≥ 4 O,V (1) = W (1), W (n) if n ≤ m− 2
AIII 3 O, V (1) = W (1)
BI m ≥ 3 O, V (1) = W (1)

W (n) if n ≤ m
BI 2 O
CII m ≥ 5 O, V (1) = W (1), V (2)

W (n) if n ≤ 2m− 5
CII 4 O, V (1) = W (1), V (2), W (2)
DI m O, V (1) = W (1)

W (n) if n ≤ m− 2
DIII 4 O, V (1) = W (1), V (2)
DIII 5 O, V (1) = W (1), V (2), W (2), W (3)
EIII 6 O, V (1) = W (1), V (2), V (3),

W (n) if n ≤ 5
EIV 6 O,V (1) = W (1), V (n) if n ≤ 4

W (n) if n ≤ 4
G 2 O

Figure 1: Simple almost Fano varieties

10. Suppose that (G, θ) = (G1, θ1) × (G2, θ2). If Y is wonderful then it is
almost-Fano, while the classification of the almost-Fano Y of type V (n) is
as in the figure 2.

For the case of rank 3 we need a definition to simplify the notations.

Definition 21.1 Let (G, θ) be an involution of rank 1. We will say that (G, θ)
is of type 2 if ψ2 is regular, while we will say that (G, θ) is of type 3 if ψ3 is
regular. If (G, θ) is not of type 2 then we will say that (G, θ) is of type 0.

We have the following classification:

Lemma 21.1 Let (G, θ) be an involution of rank 1.

1. If (G, θ) is of type 3 then it is of type 2.

2. The involutions of type 0 are the following:

• (G, θ) such that G/H is the adjoint group of type A1.

• (G, θ) of type AI with m = 1.
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(G1, θ1) rank G1 type of Y

A1 2 V (1),V (2)
AI 1 V (1)
AII 3 V (n) if n ≤ 3
AIV m V (n) if n ≤ m + 1
BII m V (n) if n ≤ m
CII m V (n) if n ≤ 2m
DII m V (n) if n ≤ m
FII (4,1) V (n) if n ≤ 12

Figure 2: Not-simple almost Fano varieties

3. The involutions of type 2 are the following:

• (G, θ) of type AII with m = 3;

• (G, θ) of type AIV ;

• (G, θ) of type BII;

• (G, θ) of type CII;

• (G, θ) of type DII;

• (G, θ) of type FII.

4. The involutions of type 3 are the following:

• (G, θ) of type AIV with m ≥ 3;

• (G, θ) of type BII with m ≥ 3;

• (G, θ) of type CII;

• (G, θ) of type DII;

• (G, θ) of type FII.

Theorem 21.2 Let Y be a complete symmetric variety obtained from the won-
derful variety X by a sequence of blow-ups along stable subvarieties. Suppose
that Y is a completion of the symmetric variety G/H associated to an involution
(G, θ) of rank 3.

1. If Y is a Fano variety then it has type O, Q(1, 2), Q(1, 3), Q(2, 3), R,
S(1, 2), S(1, 3), S(2, 3), T (1), T (2) or T (3). Thus there are at most eleven
Fano completions of G/H.

2. There is an involution (G, θ) such that Y is a Fano variety if and only if
it is of type O, Q(1, 2), Q(1, 3), Q(2, 3), R, S(1, 2), S(1, 3), S(2, 3), T (1),
T (2) or T (3).

3. If Y is simple and Fano then it is of type O, Q(1, 2), Q(1, 3), Q(2, 3) or
S(1, 3).
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4. The classification of the simple Fano varieties Y is as in the figure 3.

5. Suppose that (G, θ) = (G1, θ1)×(G2, θ2), where (G1, θ1) is a simple involu-
tion of rank 2 and (G2, θ2) is a involution of rank 1, then the classification
of the Fano varieties Y is as in the figure 4 (let r be the type of (G2, θ2)).

6. Suppose that (G, θ) = (G1, θ1) × (G2, θ2) × (G3, θ3) where (Gi, θi) is a
involution of rank 1 for each i. Let r be the number of (Gi, θi) of type 2
and let s be the number of (Gi, θi) of type 3, so 3 ≥ r ≥ s ≥ 0. Then the
classification of the Fano varieties Y is as follows:

• If r ≤ 1, then Y is a Fano variety if and only if it is of type O, Q(1, 2),
Q(1, 3) or Q(2, 3). In particular there are four Fano varieties.

• If r = 2, then there are five Fano varieties. Let i and j be the indices
such that Gi and Gj are of type 2. We can suppose that i < j. Y is
a Fano variety if and only if it is of type O, Q(1, 2), Q(1, 3), Q(2, 3)
or S(i, j).

• If (r, s) is equal to (3, 0) or to (3, 1), then there are eight Fano va-
rieties. Y is a Fano variety if and only if it is of type O, Q(1, 2),
Q(1, 3), Q(2, 3), R, S(1, 2), S(1, 3) or S(2, 3).

• If (r, s) = (3, 2), then there are nine Fano varieties. Suppose that Gi

is not of type 3, then Y is a Fano variety if and only if it is of type
O, Q(1, 2), Q(1, 3), Q(2, 3), R, S(1, 2), S(1, 3), S(2, 3) or T (i).

• If (r, s) = (3, 3), then there are eleven Fano varieties. Y is a Fano
variety if and only if it is of type O, Q(1, 2), Q(1, 3), Q(2, 3), R,
S(1, 2), S(1, 3), S(2, 3), T (1), T (2) or T (3).

Theorem 21.3 Let Y be a complete symmetric variety obtained from the won-
derful variety X by a sequence of blow-ups along closed orbits. Suppose that
Y is a completion of the symmetric variety G/H associated to the involution
(G, θ) of rank l (l > 1).

1. If Y is a Fano variety then either it is the wonderful variety X or it is the
blow-up of X along the closed orbit.

2. If there is a simple factor of (G, θ) of rank at least 3 and Y is a Fano
variety, then Y is wonderful.

3. Suppose that l ≥ 6. If there is a simple factor of (G, θ) of rank at least 2
and Y is a Fano variety, then Y is wonderful.

4. Suppose that Y is a Fano variety and it is not wonderful then we have the
following possibilities for a simple factor (G′, θ′) of (G, θ) of rank 2 (let m
be the rank of G′):

• G/H is the adjoint group of type A2 and l = 2;
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(G, θ) rank G type of Y

A3 6 O, Q(1, 3)
B3 6 O
C3 6 O, Q(1, 3)
AI 3 O
AII 7 O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 3)
AIII m ≥ 6 O, Q(1, 3)
AIII 5 O
BI m ≥ 3 O
CI 3 @
CII m ≥ 7 O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 3)
CII 6 O, Q(1, 2), Q(1, 3), Q(2, 3)
DI m O
DIII 6 O, Q(1, 2)
DIII 7 O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 3)
EV II 7 O, Q(1, 2)

Figure 3: Simple Fano varieties of rank 3

• (G′, θ′) is of type AII, m = 5 and l ≤ 3;
• (G′, θ′) is of type AIII, m ≥ 4 and l = 2;
• (G′, θ′) is of type CII, m ≥ 5 and l ≤ 3;
• (G′, θ′) is of type CII, m = 4 and l = 2;
• (G′, θ′) is of type DIII, m = 5 and l ≤ 3;
• (G′, θ′) is of type EIII, m = 6 and l ≤ 4;
• (G′, θ′) is of type EIV , m = 6 and l ≤ 5;

5. Suppose that Y is a Fano variety and it is not wonderful then we have the
following possibilities for a simple factor (G′, θ′) of (G, θ) of rank 1 (let m
be the rank of G′):

• G/H is the adjoint group of type A1 and l = 2;
• (G′, θ′) is of type AI and l = 2;
• (G′, θ′) is of type AII, m = 3 and l ≤ 3;
• (G′, θ′) is of type AIV and l ≤ m + 1;
• (G′, θ′) is of type BII and l ≤ m + 1;
• (G′, θ′) is of type CII and l ≤ 2m;
• (G′, θ′) is of type DII and l ≤ m;
• (G′, θ′) is of type FII and l ≤ 12;

6. Let (Gi, θi) be involutions as in the previous two points, then the blow-up
of the wonderful completion of

∏
Gi/Hi along the closed orbit is a Fano

variety.
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(G1, θ1) rank G1 type r of (G2, θ2) type of Y

A2 4 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3)
B2 4 ∀r O, Q(1, 3)
G2 4 ∀r O, Q(2, 3)
AI 2 ∀r O
AII 5 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 2)

if r = 2 R, S(1, 3), S(2, 3)
AIII m ≥ 4 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3)

if r = 2 and m ≥ 5 S(2, 3)
AIII 3 ∀r O
BI m ≥ 2 ∀r O
CII m ≥ 5 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 2)

if r = 2 R, S(1, 3), S(2, 3)
if r = 3 T (1)

CII 4 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3)
DI m ∀r O, Q(2, 3)
DIII 4 ∀r O, Q(1, 3)
DIII 5 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 2)

if r = 2 R, S(1, 3), S(2, 3)
EIII 6 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 2)

if r = 2 R, S(1, 3), S(2, 3), T (3)
if r = 3 T (1), T (2)

EIV 6 ∀r O, Q(1, 2), Q(1, 3), Q(2, 3), S(1, 2)
if r = 2 R, S(1, 3), S(2, 3), T (3)
if r = 3 T (1), T (2)

G 2 ∀r @

Figure 4: Not simple Fano varieties of rank 3
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