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Introduction

The initial-boundary value problem for the quasi-linear diffusion equation

up = Ap(u) (1)

has a unique solution if the function ¢ is monotone increasing with ¢ >
¢ > 0, such solution being, roughly speaking, as smooth as the function ¢
([Be], [LSU]). On the other hand, if ¢ < ¢ < 0, equation (1) is of backward
parabolic type and, in view of the smoothing effect, the initial-boundary
value problem for such an equation is in general #ll-posed, since it may have
a solution only for special initial data ([Pay]).

In this thesis we consider non-linearities ¢ whose main feature is their
non-monotone character. In this case equation (1) is said to be a forward-
backward parabolic equation, since it is well-posed forward in time at points
such that ¢/(s) > 0, whereas it is ill-posed (forward in time) where ¢'(s) < 0.
For, in the following the intervals where ¢’ > 0 will be referred to as the
stable phases, and the intervals where ¢’ < 0 as the unstable phases of
equation (1).

Most non-linearities ¢ considered in the literature belong to two different
classes:

(i) a cubic-like ¢ satisfying the assumption

¢(s) — too as s — +oo,
¢'(s) >0 if s<bands>ec,
¢'(s) <0 ifb<s<e,

5'(5) £0, ¢(c) #0,
A:=¢(c) < ¢(b) =B

(H1)

(see Fig.1);

(7i) a function ¢ with degeneration at infinity, which satisfies the following



assumption:

(Hz)

¢(s) >0 if s >0, ¢(s) =—¢p(—s)if s <0,
#(0) =0 and ¢(s) — 0 as s — +0o0,

¢ € LP(R) for some p € [1,00),

d(s)>0 if0<s<1, ¢(s)<0 ifs>1,
1) =1, ¢(1) %0

(see Fig.2). Both types are suggested by specific physical and biological
models, as discussed in the following subsection.

Motivations

Figure 1: Assumption (H;).

Forward-backward parabolic equations with a cubic-like ¢ naturally arise in
the theory of phase transitions. In this context the function u represents the
phase field, whose values characterize the difference between the two phases
(e.g., see [BS]). Therefore the half-lines (—oo,b) and (¢, 00) correspond to
stable phases, the interval (b, c) to an unstable phase (e.g., see [MTT]), and
equation (1) describes the dynamics of transition between stable phases.
Concerning assumption (Hsz), various physical and biological phenomena
modelled by means of equation (1) have been proposed in the literature, e.g.
a continuum model for movements of biological organisms ([HPO]), and a



Figure 2: Assumption (Ha).

continuous approximation to a discrete model for aggregating populations
([Pa]). In the latter case a typical choice of the function ¢ is

6(u) = wexp (—u),

where the unknown u > 0 represents the population density, while the tran-
sition probability (namely, the probability that an individual moves from
its location) p(u) = exp (—u) models aggregation phenomena, for it is a
decreasing function of w.

An independent, relevant motivation to study equation (1) subject to
assumption (Hg) comes from the context of image processing. In 1990 P.
Perona and J. Malik introduced an edge enhancement model, with the aim
of denoising a given image ug while at the same time controlling blurring
([PM]). The non-linear diffusion equation they proposed, thereafter known
as the Perona-Malik equation, reads

z = div]o(|Vz|)Vz]. (2)

Typical choices of the function o are o(s) = (1 + %), o(s) = exp (—s). In
the one-dimensional case, the equation reduces to

2t = [¢(22)]e, (3)
with ¢(s) = s(1 + s2)~! or ¢(s) = sexp (—s). Deriving equation (3) with



respect to x and setting u := z, formally gives equation (1), with ¢ satisfying
assumption (Ha).
In [BBDU] equation (3) arises as a mathematical model for heat transfer
in a stably stratified turbolent shear flow. Here the temperature w > 0
satisfies the equation
wy = [kwg], (4)

and under fixed external conditions the function k£ only depends on the
gradient of the temperature, namely

k=o(wy). (5)

Moreover, a typical choice of the function o is o(s) = ﬁ. Setting ¢(s) :=
so(s) and combining (4)-(5) gives equation (3).

Finally, let us also mention that equation (3) with assumption (Hs) can
be regarded as the formal L?-gradient system associated with a nonconvez
energy density 1 in one space dimension (in this case ¢ = ¢') of the form
Y(s) = log(1+ s?) ([BFG]). Analogously, the choice of the double well
potential 1(s) = (1 — 52)? leads naturally to equation (3) for a cubic-like ¢
satisfying assumption (Hp). Therefore the dynamics described by (3) (hence
by equation (1)) in one space dimension is relevant to various settings, where
nonconvex functionals arise (in this respect, see [Mii] for motivations in
nonlinear elasticity).

How to regularize?

As already remarked, the lack of forward parabolicity in equation (1) under
both assumptions (Hj) — (Ha) gives rise to ill-posed problems. As a con-
sequence, both development of singularities and lack of regularity can be
expected, when considering initial data ug which take values in the unstable
phase.

As a matter of fact, existence of solutions to the Neumann initial-boun-
dary value problem for the Perona-Malik equation (3) has been proven if the
derivative of the initial datum ug takes values in the stable phase ([KK]),
while for large values of |uj| no global C'-solution exists ([G], [K]). This
shows that even local existence of solutions (in some suitable functional
space) to the initial-boundary value problem for equation (1) (or (3)) is a
non-trivial problem (in this connection see also the numerical experiments

in [BFG], [FGP], [NMS] and [SSW]).

On the other hand, the uniqueness problem is even more cumbersome.
In the pioneering work [H| it was shown that, concerning the Neumann
initial-boundary value problem for equation (3), infinitely many weak L?2-
solutions can be constructed, if ¢ is a non-monotone piecewise linear function



satisfying the coercivity condition s¢(s) > cs? for some constant ¢ > 0. This
yields existence of infinitely many weak solutions to the forward-backward
equation (1) under assumption (H;). Although the assumptions in [H] are
not satisfied if (H2) holds, even in this case a general nonuniqueness result
has been proven. In fact, the existence of infinitely many weak W 1h-
solutions for equation (3) (thus the existence of infinitely many L°°-solutions
for equation (1)) under assumption (Hjy) was proven in [Z]. The techniques
used in [Z] consist in rephrasing the Neumann problem for equation (3) into
a partial differential inclusion problem, and are very different from ours (see
the subsection below).

When dealing with phenomena as above, a widely accepted idea is that
ill-posedness derives from neglecting some relevant information in the model-
ling of the physical phenomenon. Hence a general strategy is to restore this
information by introducing additional relations, which define a restricted
class of admissible solutions where the problem is expectedly well-posed. To
this purpose, a natural approach to address equations (1), (3) is to modify
the equation (and perhaps the boundary conditions) by introducing some
physically sensible regularization which leads to a well-posed problem. Then
the problem that arises is to describe the limiting points of the family of ap-
prozimate solutions as the regularization parameter goes to zero. A natural
question is whether such limiting points, obtained by means of the approxi-
mating process, define solutions (in some suitable sense depending on the
regularization itself) to the initial-boundary value problem for the original
ill-posed equation.

In this general framework, different regularizations have been proposed
and investigated. Among them, let us first mention the fourth-order regu-
larization, which leads to the Cahn-Hilliard equation

ur = Alp(u) — eAul . (6)

Equation (6) was introduced by Cahn in [C] for a non-linearity ¢ satisfying
assumption (Hp), with the aim to describe isothermal phase separation of
binary mixture quenched into an unstable homogeneous state.

Regularization (6) was used in [Sl] to address both the Dirichlet and
Neumann initial-boundary value problems for equation (3), when ¢ satisfies
assumption (Hi) (see [BFG] for the case (Hz)). Using the Young measure
representation of composite weak limits (e.g., see [GMS], [E2], [V]), it was
proven that the family of approximate solutions to the regularized problems
for (6) converges to a measure-valued solution of the initial-boundary value
problem for the original unperturbed equation (3) (in this connection see
also [P14]). Such a result is not surprising, for Young measures - and con-
sequently measure-valued solutions - naturally arise when describing rapid
oscillations that may appear in the limiting behaviour of solutions to non-
linear evolution equations ([D], [RH]).



A second, widely investigated regularization is the pseudoparabolic or
Sobolev regularization, which leads to the equation

up = Ap(u) + eAuy . (7)

The term Aw; can be interpreted by taking viscous relaxation effects into
account (see [NP], [BFJ]).

The Neumann initial-boundary value problem for equation (7) was stu-
died in [NP] under assumption (H;), and in [Pa] under assumption (Hs).
In both cases global existence and uniqueness of the solution u® is proven
to hold in L*(Q7) (Qr := Q2 x (0,T)) for any € > 0. Moreover, solutions
of equation (7) satisfy a class of viscous entropy inequalities, this parlance
being suggested by a formal analogy with the entropy inequalities for viscous
conservation law (see [E2], [MTT] and [Se]). As is well known, such entropy
inequalities carry over to weak solutions of the Cauchy problem for the first
order hyperbolic conservation law in the vanishing viscosity limit ¢ — 0
(e.g., see [Se]). These limiting entropy inequalities define the class of the
entropy solutions, which is shown to be a well-posedness class for the original
problem. Therefore, it is natural to wonder whether in the limit € — 0 it is
possible to prove existence and uniqueness of suitably defined weak entropy
solutions for the original equation (1).

In this direction, an exhaustive answer has been given in [P11] for the
case of a cubic-like ¢. In view of assumption (Hj), it turns out that the
family {u®} of solutions to the regularized Neumann initial-boundary value
problem for equation (7) is uniformly bounded in the L*°-norm, and the
limiting points (u,v) of the families {u®}, {¢(u®)} satisfy in the weak sense
the limiting equation

up = Av in D'(Qr) (8)

with initial datum wg and Neumann boundary conditions. Equation (8)
would give a weak solution of the Neumann initial-boundary value problem
for (1), if we had v = ¢(u); however, no such conclusion can be drawn, due
to the nonmonotone character of ¢.

In this connection, in [P11] it is shown that the couple (u, v) is a measure-
valued solution in the sense of Young measures to the unperturbed equation
(1). With respect to the results in [S]] for the Cahn-Hilliard regularization,
the novel feature here is the study of the family {7°} of Young measures
associated to the approximate solutions u®, and the characterization of the
disintegration v(, ) of any Young measure 7 obtained as the narrow limit
of such measures (see [E1], [GMS], [V]). In particular, it is proven that
the disintegration v(, ;) is an atomic measure given by the superposition of
three Dirac masses concentrated on the branches sg, si, s of the equa-
tion v = ¢(u). Hence the function u obtained as ¢ — 0 has the following



representation:
2
u = Z AiSi(v)’ (9)
i=0

for some positive coefficients A\; € L>°(Qr) such that Z?:o Ai =1 (see [E2],
[GMS], [V]). Equality (9) can be explained by saying that the function u
takes the fraction A; of its value at (z,t) on the branch s;(v) of the graph of
¢. Then the coefficients A; can be regarded as phase fractions, and u itself
as a superposition of different phases.

Finally, the solutions (u, v) so obtained satisfy a class of suitable limiting
entropy inequalities. This is why any couple (u, v) obtained from the Sobolev
equation (7) via the above limiting procedure is said to be a weak entropy
measure-valued solution of the initial-boundary value problem associated to
equation (1).

In spite of the formal analogy with the case of hyperbolic conservation
laws, no uniqueness result of weak entropy measure-valued solutions has
been proven, although such solutions seem a natural candidate in this sense.
In this respect it can be argued that the class of solutions considered in
[P11] is still too wide, and that uniqueness results might be recovered when
considering a more restricted class, defined by additional constraints. To
this purpose, again for a function ¢ subject to assumption (H;), in [EP] the
choice of two-phase entropy solutions has been suggested. Roughly speaking,
two-phase solutions of equation (1) occur when admitting transition only
between stable phases. Such a transition is described by an interface which
evolves in time, obeying suitable admissibility conditions (resulting from the
entropy inequalities) which select admissible jumps between the stable phases
(see [MTT]). Local existence and uniqueness of solutions of this kind have
been proven in [MTT?2] for the Cauchy problem associated to equation (1)
in the case of a piecewise linear ¢. However, it should be observed that
such two-phase solutions are not obtained as limiting points of approximate
solutions to some regularization of equation (1).

Finally, in [BBDU] the regularization

2t = [P(22)]z + e[t (22)]wt (10)

has been proposed to address the Neumann initial-boundary value problem
associated to equation (3) with ¢ satisfying (Hz). Here v is a nondecreasing
smooth function with a saturation at infinity - namely, ¥ (s) — v € R as
s — 00, so that equation (10) is regarded to as a degenerate pseudoparabolic
approximation of equation (3). Observe that the usual transformation u :=
z, leads to a corresponding degenerate pseudoparabolic approximation for
equation (1) under assumption (Hz).

Well-posedness of the Neumann initial-boundary value problem in any
cylinder Qr = Qx (0, T) for equation (10) has been studied in [BBDU] (here



2 C R is a bounded open interval). The main feature of the solutions z° €
BV (Qr), resulting from the degeneracy of 9" at infinity, is the formation of
discontinuities in finite time, even for smooth initial data. Moreover, at any
fixed point xo the discontinuity jump 2°(z{,t) — 25(zg,t) is nondecreasing
in time. This can be intrerpreted by saying that the singular term zi’(s)
(with respect to the Lebesgue measure) in the distributional derivative z,

(r)

prevails over the reqular (L'-)term z;\" as time proceeds.

Outline of results

Within the above general framework, the present thesis addresses four main
points, as outlined below. Each point, apart from the last one, corresponds
to a paper either appeared or submitted.

(7) In Chapter 1 we consider the Sobolev regularization (7) of equation (1)
in the case of a function ¢ subject to assumption (Hz). We wonder whether
results analogous to those obtained in [P11] hold in the present case, and,
if any difference occurs, what are the novel features deriving from assuming
(H3) instead of (Hj).

In this direction, let {u®} be the family of approximate (positive) so-
lutions to the Neumann initial-boundary value problem for the regularized
equations (7) in any cylinder Q7 := Q x (0,7) and for any initial datum
ug € L®(Q), up > 0 (Q being a bounded domain in RY with smooth
boundary 0€2). From the mathematical point of view, the main complica-
tion due to the specific shape of a non-linearity ¢ of ” Perona-Malik type”, in
particular to its degeneragy at infinity, is the weakening of the a-priori esti-
mates. Specifically, while for the functions ¢(u®) and the chemical potentials
v® := ¢(u®) + euf uniform L*>-estimates as in [Pl1] are proven to hold, the
family {u®} need not be uniformly bounded with respect to the L*°-norm,
thus only a uniform L'-estimate is given. This implies that the limit of the
family {u®} as ¢ — 0 can only be taken in a weaker sense with respect to
[P11], namely in the space M1 (Qr) of positive Radon measures over Qr
instead of L*°(Qr). In other words, any limiting point of the approximating
family u® is a positive Radon measures @ on Q7.

Nevertheless, using the idea of the biting convergence of “ removing sets of
small measure”, and using the general properties of the narrow convergence
for Young measures (e.g., see [GMS], [E2] [V]), we can represent the Radon
measure 4 as the sum

U=u-+ [, (11)

where 1 € MT(Qr) is a positive Radon measure, in general not absolutely
continuous with respect to the Lebesgue measure, and u € L'(Qr), u > 0.
On the other hand, the function w is proven to be a superposition of the
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stable branch s; and the unstable branch sy associated to the graph of ¢
(see Fig.2), namely

y— As1(v) + (1 — N)sa(v) if v>0,

10 if v=0

for some A € L*®(Qr) such that 0 < X < 1. Here v > 0 is the limit
of the family {¢(u®)} in the weak® topology of L>(Qr). Clearly, this is

the counterpart of the results proven in [P11] for a cubic-like ¢. Hence the
limiting equation obtained as ¢ — 0 reads

(12)

(U + ,u)t = Av in D/(QT), (13)

the appearance of the measure p depending on the degeneracy at infinity of
the function ¢ of Perona-Malik type.

In analogy with the case of a cubic-like ¢ treated in [Pl1], we also can
take the limit as € — 0 in the viscous entropy inequalities for the approxi-
mate solutions u®. Under additional restrictions due to the weaker a-priori
estimates, we obtain entropy inequalities for the couple (u,v).

Concerning the measure p, first we give qualitative properties of its sup-
port, then we prove the following ”disintegration”:

/ [ pin= /«m dt /Q Fa ) di(@), (14)

for any sufficiently regular f, where 7, € M™(Q) is a positive Radon measure
defined for a.e. t € (0,7). Finally, we show that the map ¢ — % (E) is
nondecreasing in (0,7 for any Borel set E C Q. This is the main qualitative
feature of the singular term p (or, equivalently, of its spatial disintegration
). It suggests that in equation (13) the singular part p prevails over
the regular L'-term u for large times (observe that the choice of T > 0
is arbitrary). In other words, it is reasonable to expect a general coarsening
effect, since in the measure u+ i singularities can appear and spread as time
goes on. This conjecture seems consistent with concentration phenomena, in
agreement with the model interpretation of equation (1) under assumption
(H3), particularly concerning aggregation phenomena.

(i) Chapter 2 deals with the degenerate pseudoparabolic regularization (10)
of equation (3) in the case of a function ¢ subject to assumption (Haz).
As already remarked, in [BBDU] existence and uniqueness of solutions to
the Neumann initial-boundary value problem associated to (10) have been
studied in any cylinder Qr = Q x (0,7], 2 C R being a bounded in-
terval. In this framework, a solution is meant to be a couple (z°,w°®),
where 2¢ € L*((0,T); BV(Q)), 25 € M (Qr), 2 € L*(Qr) and w® €
L®((0,T); HY () N C(Qp), ws € L2((0,T); HL(2)), such that

11



z; = [h(wg)]w + a[wg]m in L*(Qr) (15)

with initial datum zo € BV (2), z{ € MT(Q) (here h := ¢ o).
Our first aim is to give a notion of solution to the Neumann initial-

boundary value problem for (10) which is equivalent to that proposed in
[BBDU]J and, at the same time, more general. Precisely, denoting by zi’m

and z?(s) the regular and singular term of the spatial derivative z; with
respect to the Lebesgue measure, we prove that

(a) wf = (=), h(w?) = o(=5"),
(b) equation (15) reads

%= [o(z2")] +e[v(z2™)],.  in L*(Qr), (16)

() supp 25" = {(w,6) € Qr | w2 "), 1) = 7}.

Observe also that deriving (16) with respect to x formally gives the
following equation for the derivative z;

2], = [0(z5")],, + e[z )],  in D(Qr) (17)

which is a degenerate pseudoparabolic regularization for equation (1) under
assumption (Ha).

Then, as in the case of the Sobolev regularization (7), we proceed to
study the vanishing limit ¢ — 0 in (16) (and consequently in (17)). In this
direction, we only have general a-priori estimates in BV (Qr) for the family
{z°} - namely in MT(Qr) for the spatial derivatives z5. Hence, again the
space of positive Radon measures seems a natural candidate to take the
limit as € — 0, which leads to the limiting equations

x=v, in L*Qr), (18)

[22], = V2 in D'(Qr). (19)

Here z € BV (Qr) is the weak limit of the family {z2°} in BV (Qr), and

v € L®(Qr)NL2((0,T); H()), v > 0, is the limit of the family {cb(z;’(r))}
in the weak* topology of L>°(Qr).

Arguing as in (i), we can use the general notion of Young measures,

narrow and biting convergences, to prove the following decomposition of the
Radon measure z, € M™(Qr):

2y = Z + 1, (20)

where p € M™(Qr) is a positive Radon measure, in general not absolutely
continuous with respect to the Lebesgue measure, and Z € LI(QT), Z >0,

12



is a superposition of the two branches s;, so of the equation v = ¢(Z2),
namely

7 As1(v) + (1 — A)sa(v) it v>0,
10 if v=0

for some A € L*(Qr), 0 < A < 1. The above equality gives a clear
analogy with a cubic-like function considered in [P11]. On the other hand,
the measure p can be ”disintegrated” as the Lebesgue measure dt with
respect to the time variable ¢, and as a positive Radon measure 7; over {2
for a.e. t > 0 (see (14) in (7)), the map

t— v (E)

being nondecreasing for any Borel set & C ). This is the counterpart of the
results decribed in (i) above for the (possibly) singular term 5, € M™(Q).
Finally, the novel feature here, due to the degenerating term a[w(zx)] 4 D1
regularization (10), is the characterization of the support of the (possibly)
singular measure y; € M™(Q) (hence of u € M (Qr)). Precisely we prove
that

suppy; C {x € Q| v(z,t) =0}
for a.e. t > 0.

(797) In Chapter 3 we address the long-time behaviour of weak entropy
measure-valued solutions (u,v) to the Neumann initial-boundary value pro-
blem for equation (1) under assumption (H;) and in the one-dimensional
case 2 = (0,1). To this purpose, in view of the crucial estimate

o) 1
/ / v2dzdt < C,
o Jo

it is reasonable to expect that v(-,¢) approaches a constant value T as time
diverges. It is a natural question, whether this constant v is uniquely deter-
mined by the initial datum ug of the problem. In fact, since no uniqueness
of measure-valued solutions to the Neumann initial-boundary value problem
for (1) is known, the value ¥ could depend on the solution itself (in this con-
nection, see [MTT]). For any up € L*°(0, 1) let

1
My, :—/0 uo(x)dx. (21)

Then, if M,,, < a (respectively, M, > d; see Fig.1), we prove that v(-,t) and
u(+,t) converge uniformly to ¢(M,,) and M,, respectively, as t — oo, t ¢
Es, where Es are sets of arbitrarily small - albeit not zero - Lebesgue mea-
sure. Observe that for M,, < a and M,, > d the constant v is uniquely
determined by the initial datum wug.

13



We cannot prove a similar result if a < M,,, < d, since in this case the
asymptotic behaviour of the coefficients \; in representation (9) plays a role.
Prescisely, for any weak entropy solution (u,v) we can uniquely determine
a constant A <7 < B, and three coefficients A} € L*°(0, 1), such that v(-,t)
converges to v in the strong topology of C([0, 1]), and u(-,t) converges to u,

2
=Y \si(v),
1=0

a.e. in (0,1), again as t — oo, t ¢ Es5, Es being a set of arbitrarily small
(Lebesgue) measure. In particular, for a < M,, < d uniqueness of the
constant v and of the coefficients A7 only follows for any given weak entropy
measure-valued solution (u,v) of the Neumann initial-boundary value pro-
blem for (1) - namely, different weak entropy solutions with the same initial
datum ug might approach different values of v and w.

(7v) Finally, in Chapter 4 we address the long-time behaviour of two-phase
solutions to the Neumann initial-boundary value problem for equation (1),
again in the one dimensional case = (—1,1) and for a cubic-like ¢ which
satisfies assumption (Hjp). The techniques are almost the same as those
outlined in (i77) to study the asymptotic behaviour of general weak-entropy
measure-valued solutions. However, some specific novel features arise, as
explained below.

A two-phase solution to the Neumann initial-boundary value problem (in
Q = (—1,1) x (0,00)) for equation (1) is a triple (u,v,&) with the following
properties (see Chapter 4, Definition 4.2.1, [MTT] and [MTT2]):

(a) (u,v) is a weak entropy measure valued solution of the Neumann initial-
boundary value problem for (1) in @ and & : [0,00) — [—1,1], £(0) =0, is a
Lipschitz-continuous function;

(B) ve C(Q)NLA(0,T); HY(—1,1) for any T > 0 and u € L>®(Q),
u=s;(v) in V; (i=1,2).

Here s1, so denote respectively the first and the second stable branch of the
equation v = ¢(u) (see Fig.1), and

Vii={(z,t) e Q| —1 <z <£@)},
Voi={(z,t) e Q| £(t) <x < 1} .

Moreover u € C%1(V;) (i = 1,2), where C%1(V;) denotes the space of con-
tinuous functions f : V; — R such that w, ug, uz, € C(V;).

In view of («)-(8), there holds:

14



(a) the couple (u,v) is a classical solution of the problem:

ut = M)(u)]x:p in Vi,
u = up in V;N{t=0}

(i =1,2);

(b) for a.e. t > 0, £'(t) > 0 if v(&(t),t) = A, £(t) <0 if v(&(t),t) = B
and &'(t) = 0 if A < v(&(t),t) < B (this is a consequence of the entropy
inequalities).

In other words, in view of («), for any fixed t € (0,00), the function u(zx,t)
takes values in the first stable branch s; of the graph of ¢ for x € (—1,£(t)),
and in the second stable branch sy for z € (£(¢),1). Hence, the curve
v ={(&(t),t)| t € [0,00)} denotes the interface between stable phases, and
by (b) the function u can jump between such phases only at the points (z, )
where v(x,t) takes the values A, B.

As already remarked, uniqueness and local existence of two-phase so-
lutions have been proven in [MTT2] for the Cauchy problem associated
to (1) in R x (0,77 (see also [MTT] for uniqueness of two-phase solutions
to the Neumann initial-boundary value problem). Global existence for the
same problem (or for the Neumann initial-boundary value problem) is being
plenty addressed.

Assuming global existence, the long-time behaviour of such solutions
has been investigated proving asymptotic results concerning both the couple
(u,v) and the interface £. Let again M, be defined by

1 1
My, = / uo(x) dzx
2 )

for any initial datum wg, and let (u,v,€) be the two-phase solution of the
Neumann initial boundary value problem for (1) with initial datum ug. Then
we prove that the function v(-, t) approaches a constant value T as t — oo (in
some sense made precise in Chapter 4). Moreover, there exists the limiting
value of the interface

£ = lim £(1)
and the following properties hold:

(1) if My, > d (respectively, M,, < a), then £ = —1 (respectively, £* = 1);
in these cases T = ¢(M,,) and u(-,t) approaches the value M,, as t — oo;

(2) if a < M,, < d, then u(-,t) — @ as t — oo (in some suitable sense),
where

U= X(—l,&*)sl(ﬁ) + X(§*71)82<ﬁ).
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Chapter 1

On a Class of Equations with
Variable Parabolicity
Direction

1.1 Introduction

In this chapter we study positive solutions to the Neumann initial-boundary
value problem for the quasilinear forward-backward parabolic equation

ur = Ap(u) in Q x (0,7), (1.1.1)

where 2 C R" is a bounded domain with smooth boundary 0€2. Concerning
the function ¢ € C%(R) we make the following assumption:

(i) ¢ is bounded, ¢? € L'(R) for some p > 1;
(i) (0) =0, ¢(u) >0 for u >0, ¢(—u) = —p(u);
(Hy) (#i7) ¢ is strictly increasing for 0 < u < 1,
strictly decreasing for u > 1;
() ¢'(0) #0, ¢p(u) — 0 as u — 400

(see Fig.1.1). We always set ¢(1) = 1 in the following. Since the function
¢ is nonmonotone, equation (1.1.1) is well-posed whenever the solution u
takes values in the interval (0,1), yet it is ill-posed (forward in time) if
u € (1,400).

1.1.1 Motivations

Forward-backward parabolic equations naturally arise in the theory of phase
transitions, where the function u represents the enthalpy, ¢(u) the tempe-
rature of the medium and equation (1.1.1) follows from the Fourier law (e.g,
see [BS]). In this case ¢ € C?(R) is a nonmonotone cubic-like function
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Figure 1.1: Assumption (Hy).

satisfying the following condition:

I (i) ¢(u) >0 for|u| >1, ¢'(u) <0 for |u] <1;
(H2) (i1) p(£1) = F1, ¢(u) — +oo as u — Foo

(see Fig.1.2).

The two increasing branches S1 := {(u,¢(u)) |u € (—o0,—1)}, So :=
{(u,p(u)) | u € (1,400)} of the graph of ¢ correspond to stable phases, the
decreasing branch Sy := {(u,¢(u)) |u € (—=1,1)} to the unstable phase. We
shall use the same terminology if (Hp) holds (see below).

In one space dimension, equation (1.1.1) with ¢(u) = wexp (—u) (which
satisfies assumption (Hp)) arises as a diffusion approximation to a discrete
model for aggregating populations (see [Pa]). In this case the unknown u > 0
represents the population density, while the transition probability (i.e., the
probability that an individual moves from its location) p(u) = exp (—u)
models aggregation phenomena, for it is a decreasing function of w.

An independent motivation to study equation (1.1.1) under assumption
(H1) is given by a mathematical model for heat transfer in a stably stratified
turbulent shear flow in one space dimension (see [BBDU]). The temperature
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Figure 1.2: Assumption (Hs).

w > 0 satisfies the equation
Wy = (kwx)x )

under fixed external conditions the function k only depends on the gradient
of the temperature, namely

k=o(wy).
Moreover, a typical choice of the function o is
A
0(8):m (A, B>0);
then the above equation reads
with ¢(s) := so(s). Deriving the above equation with respect to = and
setting u := w; gives equation (1.1.1) (observe that ¢(s) = so(s) = B’iiQ

satisfies assumption (H1)).

It is worth observing that equation (1.1.2) with ¢(s) = so(s) is the one-
dimensional Perona-Malik equation. In the general n-dimensional case the
Perona-Malik equation reads

wy = div[o(|[Vw)Vw] inQx(0,7) (QCR"); (1.1.3)
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typical choices of ¢ are either o(s) = (14 s?)71, or o(s) = exp (—s) (see
[PM]). If n = 1, the transformation u = w, gives a link between equations
(1.1.1) and (1.1.2). Most results concerning equation (1.1.3) refer to the one-
dimensional case. Existence of solutions to the Neumann initial-boundary
value problem for equation (1.1.2) has been proved, if the derivative of the
initial datum wug takes values in the stable phase (see [KK]), while for large
values of |uf| no global C*-solution exists (see [G],[K]). Assuming homo-
geneous Neumann boundary conditions and smoothness of initial data, the
existence of infinitely many weak W 1*-solutions for the one-dimensional
Perona-Malik equation has been proved in [Z] (this yields the existence of
infinitely many weak L!-solutions for equation (1.1.1)). The techniques used
in [Z], where equation (1.1.2) is reformulated as a first order partial differen-
tial inclusion problem, are very different from those of the present approach.
Finally, observe that equation (1.1.2) can be regarded as the formal L?2-
gradient system associated with a nonconvex energy density v in one space
dimension (in this case ¢ = ¢'); for instance, 1(s) = log(1 + s?) holds for
the Perona-Malik equation, or the double well potential 1(s) = (1 — s?)? for
a cubic nonlinearity. Therefore the dynamics described by equation (1.1.1)
in one space dimension is relevant to various settings, where nonconvex
functionals arise (e.g., see [Mii] for motivations in nonlinear elasticity).

1.1.2 Outline of results

A natural approach to address equation (1.1.1) is to introduce some regula-
rization. In this chapter, we associate with equation (1.1.1) the pseu-
doparabolic or Sobolev regularization

ur = Ap(u) + eAuy,
where ¢ is a positive parameter. Introducing the chemical potential
v = P(u) + cut (e >0), (1.1.4)
we focus our attention on the initial-boundary value problem

w=A7Av inQx(0,7T]:=Qr

Q=0 ondQx(0,T] (1.1.5)
U = U in)x0.

Let us mention that a different regularization, leading to the Cahn-
Hilliard equation:

uy = Ag(u) — kA?u (k> 0),

has been widely used (in particular, see [BFG], [Sl]). Both regularizations
are physically meaningful (see [BFJ]), although the limiting dynamics of
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solutions expectedly depends on the regularization itself. Let us also recall
that a degenerate pseudoparabolic regularization of equation (1.1.2), namely

wr = [p(wy)]s + ex(Wa)at (1.1.6)

was used in [BBDU]J; here x is a smooth nonlinear function, x'(s) > 0 for
s >0, x(s) v €R, X(s) — 0as s — +oo. As before, in one space
dimension deriving (1.1.6) with respect to x and setting u = w, gives a
different regularization of equation (1.1.1).

Problem (1.1.4)-(1.1.5) was studied in [Pa], proving its well-posedness
in the class of the bounded solutions for any € > 0 (analogous results had
been proved earlier in [NP], if (Hz) holds). Our main concern here is to
investigate the vanishing viscosity limit of such solutions. In particular, a
natural question is the following: describing the limiting points of the family
{u®} of solutions to (1.1.4)-(1.1.5) as ¢ — 0 (in some suitable topology),
can we define weak, or possibly measure-valued solutions to the Neumann
initial-boundary value problem for the original ill-posed equation (1.1.1)7
The latter reads:

u = Ad(u) in Qr
P (u) =0 in 09 x (0,7 (1.1.7)
v
u = ug in Q@ x {0} .
An exhaustive answer to the above question was given in [P11], if assumption
(H2) holds (see also [P12],[P13]). We outline below the main results of [P11]
for convenience of the reader, aiming to point out the novel features deriving

from assumption (Hp) - in particular, from the degeneracy at infinity of a
nonlinearity ¢ “of Perona-Malik type”.

Assumption (Hs)

Consider problem (1.1.4)-(1.1.5) under assumption (Hs). As proved in [NP],
the following holds:

e for any € > 0 and ug € L>°(Q) there exists a unique solution (uf,v®)
to problem (1.1.4)-(1.1.5), v® defined by (1.1.4);

e there exists a constant C' > 0, which does not depend on &, such that

[u |~ @ry = € (1.1.8)
[l L2 o,y () + IVEUE ] 200y < C (1.1.9)
[v¥ )l Lo (@r) < C- (1.1.10)
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In view of such uniform estimates of the family {(u®,v®)}, there exist
sequences {u*}, {v°*} and a couple (u,v) with u € L>®(Qr), v € L*(Qr)N
L?((0,T); H*(Q)) such that:

ut Doy in L(Qr), (1.1.11)
v Dy in L(Qr), (1.1.12)
v — v in L2((0,T); H'(Q)). (1.1.13)

Set € = ¢}, in the weak formulation of problem (1.1.4)-(1.1.5), namely:

// uky da:dt:/ Vusk -dexdt—/uo(m)w(x,O) dr (1.1.14)
T Qr Q
for any v € CY(Qr), ¥(.,T) = 0 in Q. Taking the limit as k — oo in
equality (1.1.14) and using (1.1.11)-(1.1.13) gives

//T(uwt—vu.vw dxdt+/ﬂu0¢(x,0) de =0 (1.1.15)

for any 1 as above - namely, the couple (u,v) is a weak solution of problem
(1.1.5).

Equation (1.1.15) would give a weak solution of problem (1.1.7), if we had
v = ¢(u); however, no such conclusion can be drawn from (1.1.11)-(1.1.13),
due to the nonmonotone character of ¢. Nevertheless, as proved in [Pl1], a
weak solution of problem (1.1.7) in the sense of Young measures does exist.
Consider the Young measure 7% := 7°¢ associated to each u®*; let 7 denote
the narrow limit of the sequence {7*} and V(z,t) 1ts associated disintegration,
defined for a.e. (z,t) € Qr (see Definition 1.2.2 and Proposition 1.2.7 below).
Since the sequence {u} is uniformly bounded in L>*(Q7r) (see (1.1.8)), for
any f € C(R) there holds:

Fur) = in L®(Qr), (1.1.16)

where

[z, t) = /Rf@) V(w,t)(dE) for a.e. (z,t) € Qr (1.1.17)

(e.g., see [E1]).

The structure of the Young measure 7 associated with the sequence
{ur} was investigated in [PI1], proving that its disintegration v, is the
superposition of three Dirac masses concentrated on the three branches of
the equation v = ¢(u). In fact, there holds:

2

V) (§) =D Xilz,1)5(6 = Bi(v(x, 1)) (1.1.18)

1=0
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(for a.e. (x,t) € Qr and any & € R) with some coefficients \; € L*(Qr),
Ai >0 and 32 )\ = 1; here we set S; := {(53;(v),v)} (i = 0,1,2).
By equality (1.1.18) there holds:

2
/R Ve (d€) = 3 A DB (u(a, 1)) = u(a, 1) (1.1.19)
=0

(this follows from (1.1.11) and (1.1.17) choosing f(§) = &); moreover,

2
/Rcﬁ(é)l/(x,t)(d&) =D iz, 1)(Bi(v(x, 1)) = v(z, 1) (1.1.20)
1=0

for a.e. (z,t) € Qp. Inserting equalities (1.1.19)-(1.1.20) in (1.1.15) we
obtain:

//QT{ & /R V(a1 (dE) = VY-V /]R S(E)V(ap) (dg)} ddt +

—i—/ﬂuo(:c)z/z(x,O)da: =0.

Equation (1.1.19) says that the limiting function u is the barycenter of the
disintegration v, ;) of the narrow limit 7; in view of (1.1.21), the measure 7
can be regarded as a measure-valued solution of the limiting problem (1.1.7).

The crucial role of the uniform L*-estimate (1.1.8) is apparent from the
above discussion. In turn, estimate (1.1.8) is an immediate consequence of
the following result (see [NP]):

Let (Hs) hold. Then any interval [uy,us] such that
d(ur) < o(u) < d(ug) if and only if u € [uq, us] (1.1.22)

is a positively invariant region for problem (1.1.4)-(1.1.5).

(1.1.21)

It is informative to sketch the proof of the above result. Set for any
g€ CYR), g >0:

G(u) := /Ou g(¢p(s))ds + k (k eR). (1.1.23)

Let € > 0 be fixed; let (u®, v®) be the solution to problem (1.1.4)-(1.1.5). We
have:

% /Q G (2, 1)) dz = /Q o(S(u))ui da (1.1.24)
= /Q(UE)AU€d$+/[9(¢(UE))—Q(UE)WWCC

Q Q
= /div(g(vg)Vvs)d:c—/g’(vg)]Vqu\de

Q Q



Since g is nondecreasing and

ov®
ov

=0 on 0 x (0,77,
we obtain
d
dt/ G(u®(z,t))dx < —/ g (W) Vo P de <0 in (0,T). (1.1.25)
Q Q

By a proper choice of the function g the result follows (see [NP] for details).

Clearly, the above proof of inequality (1.1.25) is independent from the
specific shape of ¢; yet, if (H;) holds, a bounded interval [u1, ug] is positively
invariant only if [u1, ua] C [0, 1] (see Proposition 1.2.3). Therefore inequality
(1.1.8) holds if [lug||ze(q) < 1, but the family {u®} need not be uniformly
bounded in L>*(Qr) if |luo|| foo () > 1.

However, it follows from (1.1.25) that the half-line [0, 00) is positively
invariant (see Proposition 1.2.3). Then we get the following conservation
law for positive solutions to (1.1.4)-(1.1.5):

Ol = [ w0t = [ w)de=wlpe, (1120

for any ¢ € [0, T] - namely, a uniform L!-estimate of the family {u®}, which
will play a crucial role in the following.

Let us mention another important point. Arguing as in (1.1.24) we
obtain the weak inequality:

/ {G®)py — g(v°)Vip - Vo© — g (v°)|Vof|*} dadt >0 (1.1.27)
Qr

for any v € C®(Qr), ¥ > 0 (see Lemma 1.2.2). Inequality (1.1.27) is
referred to as the entropy inequality for problem (1.1.4)-(1.1.5), in view of
its analogy with the entropy inequality for the one-dimensional viscous con-
servation law (e.g., see [Se|; see also [E2]). It was proved in [P11] that any
weak solution (u,v) of problem (1.1.5) satisfies a limiting form of inequality
(1.1.27) as € — 0; in fact, there holds:

/ {G*Y—g(v)Vv - Vi — g'(v)|VU\21/J} dxdt > 0 (1.1.28)
Qr
for any v as above, where
2
G*(x,t) :== Z)\iG(ﬁi(v(m,t))) for a.e. (z,t) € Qp. (1.1.29)
i=0

In view of the above discussion (in particular, see (1.1.18), (1.1.21) and
(1.1.28)), we can think of the quintuple u,v, Ao, A1, A2 as a weak entropy
solution in the sense of Young measures of the limiting problem (1.1.7).
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It was also proved in [P11] that the coefficients \; of such solutions (see
(1.1.18)) have a remarkable monotonicity property with respect to time,
which gives rise to a hysteresis effect in the mechanism of phase transitions;
the latter is typical of phase changes described by a cubic-like nonlinearity
([EP]; see also [MTT]).

Assumption (Hp)

Let us now consider problem (1.1.4)-(1.1.5) under assumption (H;). As
before, for any € > 0 and ug € L>()) there exists a unique solution (uf, v¢)
(see [Pa]). Assume uy > 0, as we always do in the following discussion; then
the uniform L'-estimate (1.1.26) and inequalities (1.1.9)-(1.1.10) hold (see
Theorem 1.2.1 and Propositions 1.2.4-1.2.5).

As before, we can associate to each u® its Young measure 7, introdu-
cing the narrow limit 7 and its associated disintegration v(, ;). However, at
variance from the previous case we cannot pass to the limit in the left-hand
side of equality (1.1.14), since the family {u®} need not be equi-integrable
in the cylinder Q7 (thus relatively compact in the weak topology of L'; see
Proposition 1.2.7). This is the most relevant complication with respect to
the case when (Hj) holds.

Nevertheless, using the idea of the biting convergence of “removing sets
of small measure” (e.g., see [GMS], [V]), we can associate to {u*} an equi-
integrable subsequence. More precisely, we can find a subsequence {u®} =
{ui} C {u*}, a decreasing sequence of measurable sets A; C Qr, |A;j| —
0, and a measure p € M(Qp) such that

//TquXAjzpdxdtH //Qdeu (1.1.30)

for any ¥ € C(@y), and
U XA, —u o in LYQr); (1.1.31)

here v € L'(Qr) is the barycenter of the Young disintegration V(z,t), Namely
u(z, t) = / § V(g (dE) for a.e. (z,t) € Qr (1.1.32)
[0,00)

(see Proposition 1.2.8; by xg we denote the characteristic function of any
subset E C Qr).

In view of (1.1.30)-(1.1.31), passing to the limit as j — oo in equality
(1.1.14) (written with k = k;) gives:

//Tuzbtdxdt—i-//QT Wy dy = (1.1.33)

= / Vv-dexdt—/UO(I)¢($a0)dx
Qr

Q
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for any ¢ € C1(Qr) such that 1(.,T) = 0in Q (see Theorem 1.2.9). Observe
that the above equality reduces to (1.1.15) if x = 0; in fact, this is the case
if the uniform L*°-estimate holds, which implies equi-integrability of the
family {u®}. Therefore the appearance of the measure p is connected with
assumption (Hp) - in particular, with the degeneracy of ¢ at infinity, which
is a novel feature with respect to a cubic-like nonlinearity. It seems also
related with possible concentration phenomena, in agreement with the model
interpretation discussed above ([Pal; in this connection, see the paragraph
(6) below).

We can rephrase equation (1.1.33) by saying that the positive Radon
measure u + 1 € M(Q7p) is a solution of the equation

(u+p)e=Av in D'(Qr) . (1.1.34)

The properties of the reqular termu € L*(Qr) are investigated in Subsection
1.2.3, those of the singular term p € M(Q7) in Subsection 1.2.4; the main
results are summarized below.

(a) The results concernig u are the counterpart of those in [P11] for a cubic-
like ¢. As in this case, we refer to the increasing branch

St o= {(w, 6(w) | u € [0, 1]} = {(Bi(v), ) [v € [0,1]}

as the stable phase, to the decreasing branch

Sg = {(u, ¢(u) [u € (1, +00)} = {(B2(v),v) [v € (0,1)}

as the unstable one. As for the structure of the Young disintegration v, 4
associated to the Young measure 7, we prove it to be (see Corollary 1.2.13):

e an atomic measure, whose support consists of the points £ (v(x,t))
and [a(v(z,t)), if v(x,t) # 0;

e the Dirac mass concentrated in 4;(0) =0, if v(x,t) =0

(recall that v = v(z,t) is the weak*-limit in L*°(Qr) of both sequences
{v%i}, {p(u®i)}). Hence u is a superposition of the two phases S; and So,
namely

(1.1.35)

| ABi(v) + (1= N)Fa(v) for v > 0,
“Tlo0 for v =0

for some A € L>®(Qr), 0 < A < 1. In analogy with the cubic-like case, this
can be expressed by saying that the function u takes the fraction X\ of its
value at (z,t) on the stable branch S, respectively the fraction (1 — A) on
the unstable branch Ss.
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Using the above representation of w and the results of Subsection 1.2.2,
we obtain the following inequality satisfied by the couple (u,v):

// ut)y dedt — / Vv - Vi dxdt + / wot(z,0)dx >0 (1.1.36)
Qr Qr Q

for any v € CY(Qr), ¥(.,T) = 01in Q and ¥ > 0 in Q7 (see Theorem
1.2.10). Observe that inequality (1.1.36) is not a consequence of the weak
formulation (1.1.33) (in fact, no assumption on the sign of ) is made).

By analogy with the cubic-like case, it is natural to ask whether the
couple (u,v) in equality (1.1.33) satisfies a limiting entropy inequality. This
is indeed the case, if the family {G(u®)} is equi-integrable in Qp (Theorem
1.2.16). Again, this restriction is due to the lack of equi-integrability of
the family {u¢}, thus to the weaker a priori estimates (L' instead of L)
available now. Nevertheless, monotonicity in time of the phase fraction A
can be proved also in the present case (see Theorem 1.2.15).

(6) In Subsection 1.2.4 we address the properties of the measure p in equali-

y (1.1.33). First we investigate the support of p, making use of equality
(1.1.33) itself (see Proposition 1.2.17). Secondly, we prove the following
disintegration of u:

/ fdu—/ dt/f(x,t)d’yt(x) for any f € LY(Qrp,du); (1.1.37)
Qr [0,T7] Q

here 3; € M(9) is a Radon measure defined for a.e. t € (0,7). We also show
that there exists a unique h € L*°(0,T), h > 0 such that 5, = h(t)y; for a.e.
€ (0,T); here v, is a probability measure over € and a representative of h
is
h(t) = / uo(z) dz/u(aj,t) dz (1.1.38)
Q Q
for a.e. t € (0,T) (see Propositions 1.2.18-1.2.19). Observe that the above
equality also reads:

/Qu(:c,t) dx+/9d%(x) :/Quo(x) da . (1.1.39)

A remarkable feature of the application ¢t — 7 is its nondecreasing character.
In fact, we prove (see Proposition 1.2.21):

Lo dint) < [ o) dinto (1.1.40)
for any ¢ € CY(Q) and a.e. ti,to € (0,T), t; < t; namely, the map

t — 4 (E) is nondecreasing in (0,T) for any Borel set E C Q.
As a consequence of equalities (1.1.39)-(1.1.40), the function

tl—>/ ;rt
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is nonincreasing in time. Therefore, within the constant map from (0,7) to
R, t— [qu(z,t)de 4+ 5(Q), there is a relative growth of the term (%)
with respect to the term [, u(x,t)dz as time increases.

This suggests that in equation (1.1.34) the singular part p prevails over
the regular L'-term u for large times!. In other words, it is reasonable to
expect a general “coarsening” effect, since the absolutely continuous part
of the measure u + p decreases and possibly disappears, while singularities
can appear and spread as time goes on. As already remarked, this conjectu-
re seems consistent with the model interpretation of equation (1.1.1) (in
particular, with its connection with the Perona-Malik equation).

1.2 Mathematical framework and results

1.2.1 Viscous regularization
Let us first give the following

Definition 1.2.1. Let ug € L>®(2). By a solution to problem (1.1.4)-(1.1.5)
we mean any couple u® € C1([0,T]; L>(2)), v € C([0,T];C(Q) N Wlif(Q))
with p > n, Av® € C([0,T]; L>(Q)), which satisfies (1.1.4)-(1.1.5) in the
classical sense. A solution is said to be global if it is a solution in QT for
any T > 0.

Concerning well-posedness of problem (1.1.4)-(1.1.5), the following result is
well known (see [NP], [Pa] for the proof

).
Theorem 1.2.1. For any uy € L™®(Q) and € > 0 there exists a unique
global solution (u®,v®) of problem (1.1.4)-(1.1.5). Moreover, there holds:

16w ) lieor <1, Il < 1. (12.1)

Arguing as in the Introduction (see (1.1.24)) gives the following

Lemma 1.2.2. Let (u®,v%) be a solution of problem (1.1.4)-(1.1.5). Let
g€ CYR), ¢’ >0 and G be defined by (1.1.23). Then for any t € [0,T]

/ G (2,1)) dz < / Gluo()) dz. (1.2.2)
Q Q

Moreover, for any ¢ € C*(Qr), ¥ > 0 the entropy inequality (1.1.27) is
satisfied.

Concerning the existence of positively invariant regions for problem (1.1.4)-
(1.1.5), the following result can be proven.

Proposition 1.2.3. The half line [0, +00) is positively invariant for problem
(1.1.4)-(1.1.5). The same is true for any interval [0,u] with u € (0,1].

!Observe that the choice of T' > 0 is arbitrary (see Theorem 1.2.1).
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Remark 1.2.1. In view of the above result, the assumption ug > 0 implies
u® >0, thus ¢(u®) > 0in Qr (see (Hyp)). Since for any ¢t € [0,T] v = v°( ., t)
solves the problem:

{ —eAvE 4+ v = p(uf)(.,1t) in

1>
(‘(991) =0 on 082,
v

we also have v* > 0 in Q7.

Concerning the initial data, in the sequel we always make the assumption:
(Hg) (N ELOO(Q), ug > 0.

Then from Proposition 1.2.3 we easily obtain the following a priori bound
for the family {u®} .

Proposition 1.2.4. Any positive solution to problem (1.1.4)-(1.1.5) satisfies
equality (1.1.26) for each t € [0,T].

We also have the following

Proposition 1.2.5. Let (u®,v%) solve problem (1.1.4)-(1.1.5). Then there
exists a constant C' > 0 such that inequality (1.1.9) holds for any ¢ > 0,
T >0.

Set C}(R) := {f cCYR)|f, f bounded}. The following result plays an
important role when studying the limiting behaviour of the family {u°} as
e — 0.

Proposition 1.2.6. Let f, g € CL(R); let F := f(¢) and G be defined by
(1.1.23). Suppose

F(uf) > F*, G(uf) = G, Fu)Gu") = H*
in L>®(Qr), where {u®} satisfies problem (1.1.4)-(1.1.5). Then H* = F*G*.

The proof of Proposition 1.2.6 is almost the same as in [P11] (see also Chapter
2), thus we omit it.

Remark 1.2.2. The above assumption G(uf) = G* would follow from the
L*>-estimate (1.1.8), if assumption (Hz) were satisfied. In the present case,
since

+o00
Glu)| = < /0 19(6(s))] ds

/0 " g(6(s)) ds

it is natural to assume g o ¢ € L'(R) to obtain boundedness of the family
{G(v®)} in L®(Qr). Observe that any g € C1(0,1) satisfies this condition;
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in fact,

€

u —+o00
Gs)| = /0 g(6(s)) ds| < /0 19(6(s))] ds
B2(a)
< max g(Q)] 6(s)|ds < C.
C€larb] Bi(a)

Here 0 < a < b < 1 have been choosen so that suppg C [a,b], while
B1(a), P2(a) denote the two solutions of the equation ¢(u) = a.

1.2.2 Vanishing viscosity limit

Let us recall the following

Definition 1.2.2. Let 7%, 7 be Young measures on Qr x R. We say that

7% — 7 narrowly, if

/ odr® — o dr (1.2.3)
QrxR QrxR

for any ¢ : Qr x R — R bounded and measurable, o(x,t, .) continuous for
a.e. (x,t) € Qr.

The following proposition is a consequence of the more general Prohorov’s
theorem (e.g., see [V]).

Proposition 1.2.7. Let u® denote the unique solution of problem (1.1.4)-
(1.1.5) and 7¢ the associated Young measure (¢ > 0). Then:

(i) there exist a sequence {u*} C {u®} and a Young measure 7 on Qr x R
such that TF — 7 narrowly;

(ii) for any f € C(R) such that the sequence { f(u*)} is bounded in L*(Qr)

and equi-integrable there holds
flw™) = f* in LNQr); (1.2.4)

here
[z, t) = / F (&) vz p(d8) forae. (z,t) € Qr (1.2.5)
[0,+00)

and V(g 1) 18 the disintegration of the Young measure T.

As pointed out in the Introduction, in general we cannot guarantee the
equi-integrability of the sequence {u®*}; hence Proposition 1.2.7-(ii) cannot
be directly used with f(u) = u. However, we can associate to {u°*} an
equi-integrable subsequence by removing sets of small measure; this is the
content of the following proposition (e.g., see [GMS], [V] for the proof).
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Proposition 1.2.8. Let the assumptions of Proposition 1.2.7 be satisfied.
Then there exist a subsequence {u} = {u™} C {u*} and a sequence of
measurable sets {A;},

A; C Qr, Ajp1 CA; foranyjeN, |A;]—0 asj— oo,

such that the sequence {ustQT\Aj} is equi-integrable. Moreover, (1.1.31)-
(1.1.32) hold.

From the above proposition we obtain the following

Theorem 1.2.9. Let the assumptions of Proposition 1.2.7 be satisfied; let
{usi}, {A;} be the sequences considered in Proposition 1.2.8.
(i) Let v € LY(Qr) be the L'-weak limit of the sequence {¢(u)}, whose
existence is ensured by the first estimate in (1.2.1) and Proposition 1.2.7-
(ii). Then v € L>®(Qr) N L2((0,T); HY()) and there holds:

V& Sy in L*(Qr),
v = in L*((0,T); H'(Q)),

v%i being defined by (1.1.4).
(ii) There exist a subsequence of {ui}, denoted again {u®}, and a positive
Radon measure i € M*(Qr) such that

//QT u XA, drdt — //Qdeu (1.2.6)

for any ¢ € C(Qr).
(iii) Let u be the L'-weak limiting function in (1.1.31). Then equality
(1.1.33) holds for any ¥ € CY(Qr) such that (., T) =0 in Q.

Since p is a positive Radon measure on Qp, from (1.1.33) we get

//T(uwt — Vv - V) da:dt+/9u0(:p)q/}(x,o) dr <0, (1.2.7)

for any v € C1(Qr) such that ¢(.,T) = 0 in , ¥y > 0 in Q7. However, the
sign assumption concerning v; does not seem very natural; in this respect,
the following theorem is expedient.

Theorem 1.2.10. Let (u,v) be the couple given by Proposition 1.2.8 and
Theorem 1.2.9. Then inequality (1.1.36) holds for any 1 € C*(Qr), ¥ >0
in Qr such that (., T) =0 in Q.
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1.2.3 Regular term

Let v(; 1) be the disintegration of the Young measure 7 considered in Propo-
sition 1.2.7, which holds for a.e. (z,t) € Qr. Following [P11], we assume the
following condition to be satisfied.

Condition (S): The functions (3}, 5 are linearly independent on any
open subset of the interval (0,1).
Let Iy = [0,1], Iz = (1, +00); set v = v, 4 for simplicity. For a.e. (z,t) €
Qr define two maps 0; = 0, )4 : C(R) — R by setting

/ Fa(dN) = (foo0) = / (fod)©u(de) — (1=1,2). (128)
R I

Set also
o:=01+02. (1.2.9)

It is immediately seen that oq, o9 are (positive) Radon measures on R; in
view of the above definitions, o = o(, ) is a probability measure on R for
a.e. (z,t) € Qp. In analogy with [P11], the following lemma will be proven.

Lemma 1.2.11. Let 01, o2 be the Radon measures defined by (1.2.8). Then:
(i) suppo; C [0,1] (I =1,2);

(ii) 75({0}) = 0;

(iii) foB € L'([0,1],doy) (I = 1,2) for any f € C(R), such that the sequence
{f(u)} is bounded in L'(Q7) and equi-integrable.

In view of Lemma 1.2.11-(%), the support of the measure o is contained in
[0,1]. We also have:

(f.0) = (fro0) + (fr02) = / (f 0 &)(€) v(de) (1.2.10)

[0,400)

for any f € C(R); moreover,

{f;v)

/ F© ey = [ £ vide) + / £(6) v(de)
[0,+00) I I

- /[ (o B0) 0 0l(€)wtde) + [ (£ o ) o 61(6) vl
= (fopi,01)+(fopa02) (1.2.11)

for any f € C(R) such that the sequence { f(u%/)} is bounded in L'(Qr) and
equi-integrable (here use of (1.2.8) and Lemma 1.2.11- (i) has been made).
The next theorem gives a useful representation of the measure o.
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Theorem 1.2.12. The measure 0 = 0, ) is the Dirac mass concentrated
at the point

o( ) i= /[0#00) BE) V(o) (46) = (6, 10 (1.2.12)

for a.e. (x,t) € Qr.

Thanks to equations (1.2.10)-(1.2.11), Theorem 1.2.12 and Lemma 1.2.11-
(i1), we obtain the following result, which describes the structure of the
Young disintegration measure v. The analogy with the cubic-like case in-
vestigated in [P11] (see (1.1.18)) should be observed.

Proposition 1.2.13. Let v € L>=(Q7) N L?((0,T); HY(Q)) be the limiting
function given by Theorem 1.2.9. Then for a.e. (x,t) € Qr the measure
V(z,t) 15 atomic. More precisely:

(i) if v(z,t) > 0, then supp v(,4) consists of the points 41 (v(w,t)), B2(v(z,1));
(ii) if v(w,t) = 0, then supp v(, ;) = {0}.

From the above proposition we obtain the following

Theorem 1.2.14. Let (u,v) be the couple mentioned in Theorem 1.2.9.
Then:
(i) there exists A € L>®(Qr), 0 < X < 1 such that equality (1.1.35) holds

a.e. in Qp;
(ii) there holds

d(u) — v in LP(Qr) for anyp € [1,00),
v — v in L*(Qr).

The following monotonicity property of the coefficient A in (1.1.35) can be
proved; the proof is modeled after that in [P11], thus we omit it.

Theorem 1.2.15. Assume ¢ (1) # 0. Let (u,v,\) be the triple mentioned
in Theorem 1.2.14; suppose

O<v<k<l (1.2.13)

in some cylinder Qo = Qo % [o, B], Qo C Q. Then the function X(z, .) is
nondecreasing with respect to t € [a, (], for a.e. x € Q.

In view of Lemma 1.2.2, the solutions (u®,v®) to problem (1.1.4)-(1.1.5)
satisfy the entropy inequalities (1.1.27) for any € > 0. The following theorem
shows that, under suitable assumptions, this kind of inequalities is preserved
in the viscous limit € — 0. The proof is similar to that given in [P11] (see
also [MTT]) for the cubic-like case, thus it is omitted.
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Theorem 1.2.16. Let v, A\ be the functions given by Theorem 1.2.9 and
Theorem 1.2.14, respectively. Let G be defined by (1.1.23) with g € C1(R),
g >0 and let the family {G(u®)} be equi-integrable in Qp. Then there holds:

// (G — g(v)Vv - Vi — ¢ ()| Vv|*y) dadt >0 (1.2.14)

for any ¢ € C§(Qr), ¥ > 0, G* being the L'-weak limit of the sequence

{G(u=)}:

o { 26(10()61(1))) + (1= A)G(Ba(v)) ;Z:Z ~ 8 (1.2.15)

1.2.4 Singular term

Let us return to the measure p encountered in Theorem 1.2.9. Some infor-
mation concerning its support is given by the following proposition.

Proposition 1.2.17. Let p be the positive Radon measure mentioned in
Theorem 1.2.9. Then:

(i) w is not a countable superposition of Dirac measures concentrated in
points of Qr;

(ii) for any to € [0,T) there holds u(Fy,) = 0, where Fy, := Q x {to};

(731) w(E) = 0 for any closed k-dimensional manifold E C Qr with k < n—1.

Remark 1.2.3. In view of Proposition 1.2.17-(iii) above, if n > 3 there
holds pu({zo} x [0,T]) = 0 for any z¢ € Q.

Some qualitative properties of the measure p are given below. To begin with,
we observe that p can be disintegrated in two measures, defined on [0, 7] and
Q respectively; this is the content of the following proposition. The proof
(which is a particular consequence of the more general Proposition 8 on p.
35 of [GMS], Vol. I) is omitted.

Proposition 1.2.18. Let € M (Qr) be the measure mentioned in Theo-
rem 1.2.9. Then there exists a measure X\ € M*([0,T]) and A-a.e. in [0,T]
a measure vy, € MT(Q) such that:

(i) for any Borel set E C Qr there holds

mm—ﬁﬂmammx

where Ey == {z € Q| (z,t) € E};

(ii) for any f € LY(Qp,du) the function f(t,.) belongs to L*(Q,dv;) for
A —a.e. t €[0,T] and there holds:

!/%fmzﬁﬂwwlymwmm»
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Moreover, since u(Qr) < oo, we can choose AN(I) = u(Q x I) for any I C
[0,T], and v:(Q )flfor/\—ae te0,T].

The next proposition shows that A € M™([0,T]) is absolutely continuous
with respect to the Lebesgue measure.

Proposition 1.2.19. (i) There exists a unique h € L>(0,T), h > 0, such
that dX\ = hdt. Moreover, equality (1.1.38) holds.
(ii) Set Yy := h(t)y € M(Q). Then equality (1.1.37) holds.

We can use the family of Radon measures {4;} to improve the description
of the limiting behaviour of the sequence {u®} as €; — 0. Precisely, the
following theorem holds.

Theorem 1.2.20. Let assumption of Theorem 1.2.9 be satisfied. Let u €
LY(Qr) be the limiting function given by Theorems 1.2.9-1.2.14. Let 7 €
M(Q) be the Radon measure given by Proposition 1.2.19-(ii) for a.e. t €

(0,T). Then:
(i) for any ¢ € C(2)
/Q(WXQT\A )(z, mé/ in L=(0,T),
/Q (uxa;)(z, ) dx = / x) dyy(x in L=(0,T);
(ii) set

Wf(t) ::/Quaf(m,t)gp(x) dx (1.2.16)

for any ¢ € CY(Q). Then the sequence {Wf} strongly converges in C'([0,T1])

to the function

We(t) ::/Qu(x,t)go(x)dx—i—/ng(x)d’yt(x), pe[0, 7] (1.217)

Moreover, for any t € [0,T]

/u(m,t) o(x) dx—l—/cp(:v) dy(x) (1.2.18)
Q Q

B /0 s /Q Vo(z,s) - Voola) d + /Q o) uo () da.

Remark 1.2.4. Equation (1.2.18) in the above theorem implies that for any
¢ € CHQ) the function t — W¥(t) belongs to the space W2(0,T) (since
v € L0, T; HY())), with weak derivative given by

W) = — /Q Vo(z, ) - V() da.
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We also observe that there is a formal analogy between equation (1.1.33) and
equation (1.2.18), hence a natural question is whether equation (1.2.18) can
be deduced directly by equation (1.1.33). Actually, it is not so. In fact, from
equation (1.1.34) we obtain for any ¢ € C1(Qr):

/ (xt)w(xtdx—l-/thd% /waUO()d:U—I—

// $5¢t$8d$d8—//¢tx5 (1.2.19)
[ [ mastes) == [ as [ etws) Voo, s)da

Thus, this shows that equation (1.1.33) follows from (1.2.19) by choosing t =
T and (., T) =0 in Q, while (1.2.19) implies equation (1.2.18) choosing
Y(x,t) = ¥(x).

In view of the above results, from Theorem 1.2.10 we can deduce the fol-
lowing monotonicity property of the family {4;}, whose interpretation has
been pointed out in the Introduction.

Proposition 1.2.21. For any p € C1(Q), ¢ >0 and fora.e. 0 <t <ty <
T there holds:

/ () dr, () < / (@) iy (). (1.2.20)
Q Q

1.3 Viscous regularization: Proofs

Proof of Lemma 1.2.2. The proof of inequality (1.1.25), which plainly
implies (1.2.2), has been given in the Introduction. Concerning inequality
(1.1.27), for any ¥ € C°(Qr), ¥ > 0, there holds

d

/ G )pdr = /[G(us)]tw dx +/ G(u®)r dx (1.3.1)

dt Jo 0 Q

- / o) b do + / G(u)r do
Q Q

/wg(va)AUSCm-i-/ G (u®)Yy da.
Q Q

IN

Using the Neumann boundary condition, we have
/ Pg(v¥)AvSder = / div (1pg(v®)Vo®) dox — / V(yg(v®)) - Vot dx
Q Q Q
= —/ {g(v*)V1p - V& + 1pg (v°)|Vo°|?} da. (1.3.2)
Q

Integrating (1.3.1) with respect to time and using (1.3.2) gives inequality
(1.1.27). O
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Proof of Proposition 1.2.3. (i) Choose g € C'(R) such that g(s) < 0,
g (s) >0if s <0, g(s) =0 if s > 0. By assumption (H;) we have G(u) >
0if u € (—00,0), G(u) =0 if u > 0 (here we choose k = 0 in the definition
(1.1.23)). By inequality (1.2.2) we obtain

WSLGW%am¢mgLGmd@Mw:0

for any t € [0, 7). This implies G(u(.,t)) = 0, thus u(.,t) > 0 a.e. in Q for
any t € [0,7] and the first claim follows.

(ii) If u < 1, set M := ¢(@) and choose g € C*(R), ¢’ > 0 such that
g(s) <0if s <0, g(s) =0if s € [0,M], g(s) > 01if s > M. It is easily
seen that G(u) > 0 for any v € R, G(u) = 0 if u € [0,a] and G(u) > 0
for w € R\ [0, @]. By inequality (1.2.2) we obtain now G(u(.,t)) = 0, thus
u(.,t) €10,a] a.e. in Q for any t € [0, 7.

The case @ = 1 can be treated in a similar way. Define ¢ € Lip(R) as

follows:

| o(s) if0<s<1

¢(S)'_{s if s > 1,
then consider the solution @° of the correspondent problem (1.1.4)-(1.1.5).
Arguing as above shows that 4 < 1 uniformly in Q7p, thus 4° = u® in Qp
for any T" > 0; hence the conclusion follows. O

Proof of Proposition 1.2.4. Integrating with respect to x the first equa-
tion in (1.1.5) and using the Neumann boundary conditions we obtain:

d . e ove
o Qu dm—/Qutdx— o D0 do =0

for any t € [0, 7). This implies

Aw@owzémmm

for any ¢t € [0,7] and € > 0. Finally, assumption ug > 0 in  implies u® > 0
in Q7 (see Proposition 1.2.3); hence the conclusion. O

The following proof is almost the same as in [P11], [MTT]; we give it for
convenience of the reader.

Proof of Proposition 1.2.5. Choosing g(s) = s in equation (1.1.24) gives

d uf(z,t) e _ €
dt/gdx/o o(s)ds = /Q[gb(ue)va]vj(u) dz
: € € _ €12
+/ﬂd1v(v Vo®)dx /Q|Vv |“ dx.

In view of equation (1.1.4) and of the Neumann boundary conditions, we

get
d u®(x,t)
—— [ dx / o(s)ds :/s(uf)QdaﬁL/ Ve |? da.
dt Jo 0 Q0 Q0
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Integrating the above equality on (0,7") (for any 7" > 0) gives

/OT /Q (e(uf)? + | Vo< |?] dadt
/Qdm </Ouo(x) o(5) ds) - /de </Oue(x,T) " ds)
/Qdm (/OUO(x) o(s) ds) :

here use of assumption (Hs) and Proposition 1.2.3 has been made. Hence
the result follows. U

IN

1.4 Vanishing viscosity limit: Proofs

Proof of Theorem 1.2.9. (i) By the first estimate in (1.2.1) the se-
quence {¢(u)} is bounded in L*°(Qr); hence v € L>®(Qr) and

¢(u) Sv i L¥(Qr)

as j — oo. By the second estimate in (1.2.1), also the sequence {v®} is
bounded in L>®(Qr), hence weakly* relatively compact in this space. On
the other hand, for any ¢ € L*(Qr) there holds:

‘// (v —vp) dxdt‘ (1.4.1)
T
// |05 — d(u)||p| dexdt + ‘// u) —wv godxdt‘

1 2, 1/2
/ ”5 / 6]||L2 Qr) ||g0HL2 (Qr) + ‘// 5] —v g@dﬂfdt‘

In view of (1.1.9), passing to the limit with respect to j — oo in (1.4.1)
gives

IN

IN

v = v in L*(Qr),

hence weakly™* in L>®(Qr).
Moreover, in view of estimate (1.1.9), the sequence {v®/} is uniformly
bounded in L2((0,7T); H'(2)), thus v € L2((0,T); H'(2)) and there holds:

v —wv in L*((0,7); HY()). (1.4.2)

(ii) Since the sequence {u} is bounded in L*(Qr) (see (1.1.26)), the same
holds for the sequence {uaj XA, }, too. For simplicity, set

e M in Qr
= uaj)(A]' ) Hj = { 0 in RTH’I \ QT
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It follows that
1|l ety = gl Ly < Cs

hence there exist a subsequence of {fi;}, denoted again {f;}, and a Radon
measure 4 € M(R""1) such that

//}R"H fojp dedt — - ¥ du, (1.4.3)

for any ¢ € C.(R™"1) (e.g. , see [GMS]). Clearly,

supp 1 € Qr ; (1.4.4)

moreover, since Q7 C R™™! is compact, for any ¢ € C(Qr) we can find
¥ € C.(R™1) such that ¢ = ¢ in Qp. Then by (1.4.3)-(1.4.4) the claim
follows.

(iii) Set

U = uTxga; FuTxa; (JEN)

in the weak formulation (1.1.14) of problem (1.1.4)-(1.1.5) (here recall that
{usi} = {u™} C {u*}). Fix any ¢ € CY(Q7), ¥(.,T) =0 in Q; in view
of (1.2.6), (1.4.2) and in view of Proposition 1.2.8, passing to the limit as
j — oo in (1.1.14) gives equality (1.1.33). Hence the conclusion follows. [J

The proof of Theorem 1.2.10 will be given at the end of Section 1.5.

1.5 Regular term: Proofs

Proof of Lemma 1.2.11. (i) Choose f € C(R) such that
(a) f(A) >0if A e (1,+00),
(b) F(\) =0if xe[0,1].
By (1.2.1) and since u® > 0 there holds 0 < ¢(u®) < 1, thus f(¢(u®)) =0
a.e. in Q7. Then from equalities (1.2.5), (1.2.8) we obtain:
0= [ (Fea)©ud) = 3 ().
[0,4-00) =12

Since f > 0 on R, this implies (f,0;) = 0, thus f = 0 for oy —a.e. A € R
(I =1,2); hence the claim follows.
(ii) For any h € N, we consider the function f;, € C([0,1]) defined by setting

—hA+1  for A€ [0,1/h)

F) = { 0 for A € [1/h,1]; (1.5.1)
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observe that f;, > 0, fa(A) — X103 (\) as h — oo for any A € [0, 1]. Moreover,

0 < (fn,02) = /[071] Jno2(dX) = /(1,+oo)(fh o ¢)(&) v(dE) (1.5.2)

- / (—h(€) + 1) w(de) < / v(de).
(B2(1/h),+00) (B2(1/h),+o0)

Since X (g,(1/h),4+00)(§) — 0 for any £ € [0,+00), passing to the limit with
respect to h — oo in (1.5.2) proves the claim.

(#i7) Consider any f € C(R) such that the sequence {f(u®/)} is bounded in
L'(Qr) and equi-integrable; then f € L'(R*,dv) by Proposition 1.2.7-(i1).
Clearly, |f| o 31 € C([0,1]) € L'([0,1],do1); then by (1.2.8) and claim (i)

above we get:
/ (If] 0 B1 0 6)(€) v(de) = / (If] 0 B)(A) o1 (dN). (15.3)
[0,1]

Moreover, |f|o B2 € C((0,1]), thus, in view of claim (i), it is oo-measurable.
Then by (1.2.8) we obtain (see also (1.2.11)):

/ (1] 0 B2)(N) oa(dN) = /(\f\ Byo )(E)v(de)  (1.5.4)

[0,1]

= [ e - [ (5o mma@ < +ox.
[0,400) [0,1]

This concludes the proof. O
The proof of Theorem 1.2.12 needs two preliminary results. The first
one is an easy consequence of Proposition 1.2.6 and Proposition 1.2.7-(i3).

Lemma 1.5.1. Let v, ;) be the disintegration of the Young measure T given
by Proposition 1.2.7. Let F,G be as in Proposition 1.2.6; suppose the family
{G(u®)} to be bounded in L>=(Qr). Then for a.e. (z,t) € Qr

(/[OHFOO) F(g) V(z,t) (d§)> (/[O,Jroo) G(f) V(z,t) (df)) —

_ / F(E)G(E) vy (dE).
[0,4-00)

The proof of the second result is almost the same as in [P11]; we give it
for convenience of the reader. In this connection, consider the nonincreasing
functions

) = o (M), pa(y) = or (A 1] 0 4),
where [ = 1,2, A €[0,1] and A C [0,1]. Then the following holds.
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Lemma 1.5.2. Let A C [0, 1] be compact and o(A) > 0. Then
M(X) — Ms(A\) = Nag forae. \€(0,1), (1.5.5)

where
. 2
M= (8 -55)" > B,
=1

2
Ma = [o(A)] (8= 85) "> Bipia,
=1

N = [o(A)] " o2(A) — 02 ([0, 1))

Proof. Since A is compact, there exists a sequence {f;} € C1([0,1]), fr >0,
fn=1o0n A, such that

fn(A) = xa(A)  for any X € [0,1]

as h — oo. Fix g € C}(0,1); consider the function G defined by (1.1.23). In
view of Remark 1.2.2, the family {G(u®)} is uniformly bounded in Q7. Set
F}, := fn(¢); by Proposition 1.2.6 and Lemma 1.5.1 we obtain:

( / (0 6)(€) u(do) ( / G(©) u<ds>)
[0,400) [0,400)
— / G(E)(fn 0 0)(€) w(de).

[0,400)

Using (1.2.11), the above equation reads:

2 2
( fh()\)U(d)\)> D (GoBon) =) (fulGopB),
[071} =1 =1

Letting h — oo gives
2

2
sy [ cama@y = X [ cEoma@). 150
=1

1 [071] A

Observe that for A > 0

B1(N) A
(GoB)(N) = /0 9((s)) ds = /0 g(OB(C) de,

B2(A 1 B2(X)
(Gof)(N) = /0 ))ds = / g(8(s)) ds + / 9(6(s)) ds

1g OB dc/

], o
/0/\9 d(—i—/ (81(¢) = B2(¢)) 9(¢) d¢ .

40



Since g € C1(0,1), the function G o 33 can be continuously extended to
A =0, so that G o 33 € C(]0,1]) and for any A € [0, 1] there holds:

A
(GoB)(N) =a+ /0 (OB e, (15.7)
where .
=0, = /0 J(OBL(0) - BHC)) de (15.8)
Using (1.5.7)-(1.5.8), equality (1.5.6) reads:

2

o4y /M (cl - 9B dc) ad)  (159)

=1
= g/A (cz+/0Ag(<)ﬁz’(<) dC) or(dN).

Concerning the left-hand side of (1.5.9), we have:

2 A
LDy /M (cl i /O 9B dg) o1(dN) (1.5.10)
2 A
— o(4) IZ <Cz (1,01) + /M o1(dN) /0 J(OBQ) dg)
2 1
DY <cl (1, 00) + /0 a¢ 9()B(C) /m alw))

2

1
— o)} <cl o+ [ a0m@n dc) |

=1

As for the right-hand side, there holds:

lz:/A <cl+/0)\9(05l/(o dC) oi(dN) (1.5.11)
2

A /

— ; (CIUI(A)"F/[O’” xA(N) az(d/\)/O 9(O)BIC) dC)

2 1

- ; (ClUI(A)+/O d¢ 9(¢)B(¢) /[C,l] XA()\)Ul(d)\)>
2 1

- Z<cm<A>+ / pl,A<<>g(<>ﬂz<od<>.

=1
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By (1.5.10)-(1.5.11) equality (1.5.9) reads:

1
(4 <cl o+ [ sim(c) d<> ~ (1512

=1

namely (see (1.5.8))
[ 90 {100.02) ~ ox(aoa - ) +
+l§;ﬁf [p1 = pralo(A)] ] }(C) ¢ =0.

Since g € C1(0,1) is arbitrary, we also have:

2
S Bilor = lo(A)] " pral = [lo(A)] o2(A) = (1,09)] (81 — 55)
=1

for a.e. ¢ € (0,1). Dividing by ] — (5 (which is positive in (0,1)) both
members of the above equality we obtain (1.5.5). This completes the proof.
O

Proof of Theorem 1.2.12. Set
Ao :=min{\ € [0,1] |\ € suppo}.

If Ao = 1, the claim is obvious. Let A9 < 1; choose A = [Ag, Ao + J] with
d > 0 suitably small. Then o(A) # 0, Ma(X) =0if A € (Ag+4, 1); moreover,
by equation (1.5.5) we have

M(X) = Ny

for a.e A € (Ao +0,1). Since Ny does not depend on A and ¢ is arbitrary,
we obtain

M(\) = Ny (1.5.13)

for a.e. XA € (Xo, 1).
Consider any compact A C [A\g,1); there exists an interval (A*,1) such

that
AN(A\,1) =

In the interval (A*,1) we have M4(\) =0,

=R Y

ence by (1.5.5) and (1.5.13)

N4 = Nppgy- (1.5.14)
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Again in view of (1.5.5), equalities (1.5.13)-(1.5.14) imply Ma(A) = 0 for
a.e. A € (Ao, 1) and for any compact A C [Ag, 1), namely

2
> BNa((M1NA) =0 for a.e. A€ (Ao, 1). (1.5.15)
=1

Consider any closed interval A = [a, 5] C (Ao, 1). If A € (Ao, @) we have
oi([A\, 1] N A) = 0;(A). Hence, by equation (1.5.15), it follows that

2
> Bi(Nai(A) =0 for ae. A€ (A, ). (1.5.16)
=1

Since the functions 3] and g} are continuous in (Ao, ), equality (1.5.16)
holds for any A € (Ao, «); by Condition (iS), this implies 01 (A4) = 02(A) = 0.
Since o and 3 are arbitrary, it follows that the support of ¢ consists at most
of two points, namely Ao, {1}. Let us prove that suppo = {\g}, ruling out
the latter possibility.

By contradiction, let {1} € suppo; choose A = {1} in (1.5.5). There
holds

0<o(A) <o(]0,1]) (1.5.17)

and
pr(A) = o1((A 1)) = ou([A 1 N A) = pra(A) = ou(A),
for A € (A, 1). Hence, by (1.5.5), we obtain

0 = BN [01(4) = o1(A)[o(A)] ™" = o2(A)[o(A)] ™" + 02([0,1])] +
+05(A) [o2(4) = 02(A)[0(A)] 7! + o2(A) o (A4)] 7 = 02([0,1])]

for any A\ € (Ao, 1). By Condition (5) it follows that:

{ 01(4) = [o(A)]"to1(A) = [0(A)] " oa(A) + 02([0,1]) = 0
03(4) = [o(A)] "' o2(A) + [0(A)] " o2(4) — 02([0,1]) = 0

The above equalities imply o(A) = 1, a contradiction with (1.5.17) (recall
that by (1.2.10) o is a probability measure). This proves that suppo = {Ao},
thus o is the Dirac mass concentrated at the point Ag.

The above conclusion holds for the measure o = 0, ), for a.e. (z,t) €
Q7. Taking the dependence on (z,t) into account and using (1.2.10) with
f(A) = A, we have:

)\O(xat) = <)‘70(I,t)> = <¢7 V(:B,t)> = U($,t),

v(z,t) being defined by (1.2.12). This completes the proof. O

Proof of Proposition 1.2.13. By Theorem 1.2.12 the measure o, ; is the
Dirac mass concentrated at the point v(z,t). Let us distinguish two cases,
namely v(z,t) > 0 and v(z,t) = 0.
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(i) If v(x,t) > 0, equation (1.2.10) implies that oy, and oy, ) have the
following form:

Oi(wt) = M@, 1) Oparys, Oy = (1= A2, 1)) Gy
for some A € L>®(Q7), A > 0in Q7. Then by equation (1.2.11) there holds:

2
| 1) = 3 (o o) (1.5.18)
[0,400) =1
— A (B T (1= A, 0) f(Balo(a, 1)),

for any f € C(R) such that f(u) is bounded in L'(Qr) and equi-integrable
(see Lemma 1.2.11-(ii1)).
(i) If v(z,t) = 0, by Lemma 1.2.11 we get 0y (5 ) = 0(y) and

/[0+ O ade) = {f o, 0en) = F(0) = £ (1519

Then the conclusion follows. O

Proof of Theorem 1.2.14. (i) Equality (1.1.35) is a direct consequence
of Propositions 1.2.8, 1.2.13 (see (1.5.18)-(1.5.19)).
(7i) In view of Propositions 1.2.7 and 1.2.13, for any p > 1

[p(u)]P = oP in L®(Qr).
Hence
d(u) — v in LP(Qr)

for any p € [1,00) (e.g., see [GMS]), thus the claim follows from estimate
(1.1.9). This completes the proof. O

Now we can prove Theorem 1.2.10.

Proof of Theorem 1.2.10. Denote by Gy the function defined by (1.1.23)
with g(v) =% (§ € (0,1)) and k = 0, namely

Go(u) = /0 “[6(s)7ds.

Let v € CYQp), ¥ >0, 9%(.,T) = 0in Q. As in the proof of Lemma
1.2.2, we get

d & = u® T u® T

G | etwrwdr = [ Gotwyida+ [ (Gt wds (1520)
/Gg(ua)wtdm—i—/(va)eAvadx

Q Q

IN

(recall that v* > 0 by Remark 1.2.1). We proceed in three steps.
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Step 1. For any € > 0 and 0 € (0,1) there holds:

/ {Go(u)y — mw L.Vt dadt + (1.5.21)
/Gguo Y(x,0)dz > 0.
In fact, inequality (1.5.21) plainly follows from (1.5.20), if we show that
/Q( N AvEY da < _0+1/ V(). Vi da. (1.5.22)

0
For any k € N the function (ve + E> is in H'(€), hence we have:

v+ AvEy dx

JRCE

_ —/Q<1;5—|—]1)9Vv5-vwdx—9/ﬂ(vs+;)9_1|V1}€|2¢dx
< —/§2<1}5+;)9V7}5-V¢dx.

Passing to the limit with respect to k& — oo in the above inequality gives
/(U‘E)GAUWJ dr < — / (v°)OVo® - Vo da.
Q Q

Observe that (v°)T! ¢ H'(Q) and V[(v%)**1] = (0 + 1)(v*)?Vv®: hence
inequality (1.5.22), thus (1.5.21) follows.
Step 2. Let us prove that for any 6 € (0,1)

1
/ o {sz& - va9+1 . vw} dxdt +
+/ Go(up)(z)(z,0)dx > 0, (1.5.23)
Q

where Gj is the L'-weak limit of the sequence {Gg(u®)} (see (1.2.15)). To
this purpose, we study separately the different terms of (1.5.21) (written
with e =¢;) as e; — 0.

(i) By assumption (H;) ¢? € L'(R) for some p > 1, hence ¢/ € L (R)
(# € (0,1)). Then for any u > 0

Gotw) < | " (s ds < ( / " (s) ds>f’ (@5 < 1) ()

Since the sequence {1} is bounded in L'(Q7), by the above inequality the
_p_

sequence {Gg(u®)} is bounded in L?=9(Qr), hence weakly compact in this

space. In particular, this implies (possibly passing to a subsequence):

Go(u™) — Gy in LY(Q7),
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/ Go(u® )y dadt — / Gy dxdt.
Qr Qr
(7i) Observe that
||(U€j)6+1||%2(O,T;H1(Q)) _ // [(Uaj)26+2+|v(vaj)0+1|2]dxdt
T

Qrl + (6417 [ [ @)1V P
Qr

Q7| + 4[5 | 20,1112 < O

IN

IN

here use of estimates (1.1.9), (1.2.1) has been made. Hence, possibly passing
to a subsequence, there exists w € L?(0,7; H'(Q)) such that

(0~ in L*0,T; HY(Q))

as j — oo. Since by Theorem 1.2.14-(ii) v¥ — v in L*(Qr), it follows that
w = v+, Therefore

(v59)? T — T i 220, T; HY(Q))

as j — 0o, whence

V(050 . Vi dadt // / Vot Ve dzdt.
0+1/QT Y dzdi — 011 ), " Ydo

Step 3. Finally, we pass to the limit with respect to § — 0 in inequality
(1.5.23). Again, we consider separately its different terms.
(7) By (1.2.15) there holds:

o5 = { A B O6()0ds + (1= A) [0 [p(s)]0ds ﬁwg
if v =0,

Plainly, this implies Gj(z,t) — u(x,t) as § — 0, for a.e. (x,t) € Q.
Moreover, a.e. in ()7 there holds

. AB1(v) + (1 — X)fBa(v) ifv>0
|G9|§{:0 if v =0;

hence by (1.1.35) we have |G| < u € LY(Qr). It follows that
Gy —u  in LYQr) (1.5.24)
as § — 0. It is similarly seen that

Go(ug) — ug in L(Q). (1.5.25)
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(74) From Step 2 above we get
0
[0 2010y < C

for any # € (0,1), with a constant C' independent of #; hence the family
{091} is weakly compact in L?(0,T; H'()). Observe that v**! — v in
L?(Qr) as § — 0. This implies

o~ in L0, T; HY(Q)),

1

— / Vot Vo dedt — / Vv - V) dxdt (1.5.26)
0+1 Qr Qr

as 0 — 0. In view of (1.5.24)-(1.5.26), passing to the limit as § — 0 in
(1.5.23) gives the claim. O

1.6 Singular term: Proofs

Proof of Proposition 1.2.17. (i) Consider any (xo,%p) € € x (0,T). Let
I, = [to — r,to +r] and B(zg,r) C R™ be the n-dimensional ball with center
in g and radius r. Choose r such that

I, C (0,7) and B(xzg,3r)CccC Q.

By standard arguments there exist n € CL(0,T), p € C°(Q) with the
following properties:

(a) n(t) =1fort € I, p(x) =1 for x € B(zo,r);

() 0 <n(t) <1forany t e (0,7),0 < p(x) <1 for any x €

(¢) suppn C I, supp p © B(wo, 3r);

(d) 8875(33)‘ <Zforanyz€Q (i=1,..,n).

Set

P(x,t) = p(a)i(t),

where .
n(t) :== —/t n(s)ds. (1.6.1)
Clearly, ¢ € C'(Q) and vy > 0. Then from (1.1.33) we obtain:

// ud:xdt+// du
B(zo,r)x I B(zo,r)xIr

// ) N(t)Vo - Vpdzdt — 7(0) /Q uo(@)p(x) d

T
i) [ [ elVeldedt s ar [ wlap(e) ds
0 B(z0,3r) B(z0,3r)

ClrrleVvHLz(QT)r”/Q + C2Hu0||Loo(Q)T”H.

IN

IN

IN
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Then there exists C' > 0 such that for small values of r

// du < Crn/? ;
B(zo,r)xIr

letting 7 — 0 claim (7) follows in this case. The case (xq,ty) € OQr can be
dealt with in a similar way.

(74) Given any to € (0,7T), choose ¥ (x,t) = 7(t) as test function in (1.1.33),
with 7 defined by (1.6.1). We get

// udxdt—i—// du // nudacdt—i—// ndup
QxI, Qx I, T Qr

< —i0) /Q uo(x) d < 4ruol| 1 ).

IN

The cases tg = 0 and tg = T are dealt with similarly, thus the claim follows.
(7i1) Let E C Q1 be a k-dimensional closed manifold. Then for any (zg,ty) €
E there exist an open neighbourhood Uy of (zg,ty) and a map

F: Uy CR"! — RHLIF F = (FYF? . F"Hi=hy,

such that:

(a) ENUy = {(x,t) € Uy| F(z,t) =0}

(b) the derivative DF(xo,tp) has maximal rank, i.e. equal to n + 1 — k.
Set z,+1 = t. By (b) above there holds

O(F', F2, .. FrHl=Fk)

a(xi1a$1'27 o xin+1—k)

(560,750) =a 75 0

for some {i1,142, ...in11-} C {1,2, ..n + 1}. For sake of simplicity, assume
{ir,i2, . cipy1—k ={k+1,k+2, ..n+1}.
Consider the function
G: Uy SR — R G(z1,22, . Tng1) = (Y1, Y2, - Ynt1),
defined as follows:

Y1 =1 — o1

Yk i= Tk — Zok
ol
Ye1 = FH (21, . Tpta)

\ Yn+1 = Fn+1fk($1, CTpgl)-

Hence, G(zg,t9) = 0 and

GENU) ={(y1, - yn+1) ER"™ | ypy1 = ... = ynp1 =0}.
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Moreover, by (b) the function G is local diffeomorphism near (zo,ty). For
any R, r > 0 consider the sets

Bk(O,R) ::{(yl,..yk)ERk| y%+..—|—y,§<R},
Qn1-£0,7) = {(Wrt1, - - Yns1) | sl <7} 3
define also
N := Bi(0, R) X Qui1-1(0,7),
B = G7H(Br(0, R) x {0, 0}) € G
n+1— k

observe that EJt C E is a neighbourhood of (x,t) in E.
Consider the map ¢ : Nf — R,

S, - Yns1) = Pr(y1, - Uk) Prr1(Wrs1) - - Prtr1(Ynt1),

where the functions ¢; satisfy the following properties:

(a) @i € C(Bi(0, R)), @i € C(=r,7) (i=k+1,..n+]1);

b)0<@;<1(i=k,..n+1)

(c) o =11in Bk(O R/2), ¢;=1in [-r/2,7/2], i=k+1,..n+1;
) |V do;

( ’ = ﬁa dy;
Set ¢ := ¢ o G; recall that for r, R suitably small the map

<C(i=k+1,..n+1).

- T

TN = AT
is a diffeomorphism. Hence ¢ € C®°(G~H(NF)), p=11in G~ (./\/'R/Q) and
g:l 0% Oyn | _
8yh 8:3]

for some Cj, Cy > 0 (which depend on the map G). Choose

1
+02; (I=1...n+1) (1.6.2)

R

T
P(z,t) = —/t o(z,s)ds (1.6.3)

as test function in equation (1.1.33). Then we get:

// udacdt—i—// dp < (1.6.4)
G-IV G-V
< // ugoda:dt—l—// wdu

Qr T

— / vv.wdxdt/uow(m,o)dx
Qr Q
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Since

t
/ Vo -Vipdedt = / Vv -V (/ o(z,s) ds) dzdt
Qr Qr 0

T t 2 1/2
vl 20,71 (02)) (/ / (/ [Vl ds) d:ndt)
o Ja \Jo

<
1/2
< ”U||L2(0,T;H1(Q))T1/2 (//Gl(NR) V| d:zdt)
C
<

i w2

and

—/Quow(x,O) dr = /Quo </0Tcp($,s) ds> d (1.6.5)

T
||u0”L°°(Q)/O /ng(:c,s) ds < C|GTH N,

IN

from (1.6.4) we obtain:

—1/prR/2
//Gl(NR/2 udzdt + (G 1(/\/’7"/2 )

r/2)
C
—IGTI VIV + CleTH N

IN

n+l—k n— k

< CRF™51 £ CREpHIk < Cpp

Passing to the limit in the above inequality as » — 0 gives
R/2 : —1/pnrR/2 . nol-k
p(Ey"") < lim p(GH N 7)) < lim Cpr 2 = 0;
in view of the compactness of F, the conclusion follows. O

Proof of Proposition 1.2.19. For any I C [0,7] Proposition 1.2.18 gives:

/ dA(t) = / (@) dA(t) = u(@ % T) < 2uo | 2oy 1]
I I

the last estimate following by Proposition 1.2.17-(4i). This shows that the
measure A is absolutely continuous with respect to the Lebesgue measure
on [0, 7], thus there exists h € L'(0,T), h > 0, such that d\ = hdt.

Fix to € (0,T) and choose 7, € C2°(0,T") with the following properties:

(@) 0<n, <1, n,=1in [ty —rto+7],

(b) suppn, C [to—r—o,to+r+0o] with r, o > 0 suitably small. Choosing

T
fin(t) = — / o (5) ds
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as test function in equation (1.1.33) and taking the limit as 0 — 0 gives

// du:—// udxdt+2r/u0dx,
Ox [to—r,to—l—T] Qx [to—’r,to-}—r} Q

In view of Proposition 1.2.18, the above equality reads:

to+r . to+r to+r
/ h(t) v (Q) dt = / h(t) dt = —/ dt/ uda:+2r/ wo da.
to—r to—r to—r Q Q

Dividing by 2r and letting » — 0 we obtain equality (1.1.38) for a.e. ¢t €
(0,T). Since v > 0 in Qr, from (1.1.38) we get

h(t) §/Qu0(m) dx

for a.e. t € (0,T), thus h € L>°(0,T). This completes the proof. O

Proof of Theorem 1.2.20. (i) Fix any ¢ € C(Q); set
WPr) = [ (g pla) do,
WEe(r) = /Q (xa,) (@, g de (jEN).

In view of estimate (1.1.26) the sequences {W;"P}, {Wf"p} are bounded in
L*>°(0,T); hence (possibly extracting a subsequence)

Whe S whe o wre SAWwhein 1°(0,7)

for some Wh¥ W% € [>°(0,T). By (1.1.31) there holds
Whe(t) —/ u(z,t) p(x) dz for a.e. t € (0, 7). (1.6.6)
Q

On the other hand, the weak convergence of {uy4,} to pin M(Qr) (see
(1.2.6)) and equation (1.1.37) imply

W2 () = /Q o(2) diu(z)  for ae. t € (0,T). (1.6.7)

(i7) Let us show that the sequence {Wf} (W7 defined by (1.2.16)) belongs
to C([0,T]) and is relatively compact in this space. We have

W< [ el (@) do < ellomllulo)
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for any t € [0,7], j € N (here use of estimate (1.1.26) has been made).
Moreover, using equation (1.1.5), we get

t2
W (t) — WE(ts)| = / dt
1

1905 | 2@ Il 2121

/ Vo - Ve dz
Q

IN

— to]M/2;

hence the claim follows.
By the above inequality and Ascoli-Arzela Theorem, we conclude that
WY — W¢ e C([0,T7), where

W#(t) ::/Qcp(x)u(:r,t) da:+/ﬂg0(x) dA(x)

by step (i) above.
Finally, from the weak formulation of problem (1.1.5) we get

/Qtp(:v)uaj(x,t) dx =
— _/Ot ds/QVvaj(:v, s) - V(z) dx+/ o(x) ug(z) dx

Q

for any ¢ € [0, 7], hence equation (1.2.18) follows as j — oco. This completes
the proof. O

Proof of Proposition 1.2.21. Fix any ¢ € CY(Q), ¢ > 0; let n €
Lip([0,T]), n > 0, n(T") = 0. We can choose

(1) = p(x)n(t)

both in equation (1.1.33) and in inequality (1.1.36). This obtains:

// 77t90d,u+// [ntapu—nVU~V<p]dxdt+n(0)/wuodxzo,
Qr Qr Q

// [TItSOU—UVU'Vgo]dxdt—i-n(O)/cpuodxzo.
T Q

// nep dp < 0,
Qr

namely (using Proposition 1.2.18)

This implies

/ : m ()W (t) dt <0 (1.6.8)
0

for any 7 as above, the function W2 ¥ € L>(0,T) being defined by (1.6.7).
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Fix 0 < t; < tg < T} consider n € Lip([0,T]) defined as follows:

(b—ti4r/2)/r  if L€ (th—1/2t +7/2)
n(t) :== 1 if teti+r/2,ta—1r/2)
(= to—r/2))r if L€ (ta—1/2 00 +7/2),

with » > 0 suitably small. Using 7 as test function in inequality (1.6.8) gives
1 t1+r/2 1 t2+7"/2
/ W2e(t)dt < / W29 (t)dt.
" Jti—r/2 T Jto—r/2

Thus as r — 0 we get
W24(t) < W>#(t),

and the conclusion follows. O
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Chapter 2

Degenerate pseudoparabolic
regularization

of a forward-backward
parabolic equation

2.1 Introduction

In this chapter we consider the initial-boundary value problem

u = [p(uz)]y nQx(0,7]=:Q
o(ugy) =0 in 90 x (0,7] (2.1.1)
u = ug in Q x {0}.

Here T' > 0, 2 C R is a bounded interval and ¢ is a nonmonotone function,
which satisfies for some constant o > 0 the following assumption:

(i) ¢ € C*(R)NL(R), p(0) =0, ¢(s) =0 ass— oo}
(Hy) (17) 0 < ¢(s) < (a) for s >0, p(s) <0 for s <0;
(137) ¢'(s) > 0 for 0 < s < o, ¢'(s) <0 for s > a.

In view of assumption (H;) — (i74), the first equation in (2.1.1) is of forward-
backward parabolic type. Its main feature is to be ill-posed whenever the
solution wu, takes values in the interval (o, 00) where ¢’ < 0.

Problem (2.1.1) independently arises in mathematical models of oceano-
graphy [BBDU] and image processing [PM]. By the change of unknown v :=
Uz, it reduces to a model for aggregating populations in population dynamics
[Pa]. Under different assumptions on ¢, it also arises in the theory of phase
transitions (in this connection, see [E2], [MTT] and references therein).

Several regularizations of forward-backward parabolic equations have
been proposed on physical grounds and mathematically investigated (in
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particular, see [BFG], [Pa], [NP], [S]])). In this chapter we make use of
the regularization proposed in [BBDU] to take memory effects into account,
namely

ur = [p(ug)]e + €[t (ua)]er - (2.1.2)

The function % is related to ¢ and satisfies the following assumption:

(i) ¢ €C’R), ¥ >0inR, (=) = —i(s),

P(s) — vas s — oo for some v € (0,00);
(Ha) (1) |¢'| < k1Y’ in R for some k; > 0;

(7i7) ‘(W) ‘ < kot in R for some kg > 0.

Observe that (Hg)—(4) implies ¢/’ (s) — 0 as s — co. Hence ¢’ is not bounded
away from zero, and equation (2.1.2) is degenerate pseudoparabolic.
Concerning the initial data ug, in [BBDU] the following assumption was
made:

(Hy) { (1) up € BV(Q);

(13) up nondecreasing in 2.

Assumptions (Hi) — (Hs) are always made below. Following [BBDU],
under the above we address for any € > 0 the initial-boundary value problem

ur = [p(uz)]e + €[t (uz)]at in Q
o(ug) =0 in 00 x (0,T] (2.1.3)
u = up in Q x {0}.

The purpose of the present chapter is twofold:

Step (7). First we study problem (2.1.3) for fixed ¢ > 0. Existence and
uniqueness of solutions to problem (2.1.3) have been proved in [BBDU]
in this framework, a solution of (2.1.3) is meant to be a couple (uf,w®),
where u¢ € L*((0,7); BV (R)), u(- ,t) is non-decreasing for a.e. t € (0 T),
uf € I2(Q) and we € L=((0,T); HA(R)) N C(Q), w € LA(0,T); Hy(®))
such that

)

ul = h(w), +ew, in L*(Q) (2.1.4)

with initial datum wug (here h := p o 9~!). We show that the definition
of solution made in [BBDU] (see Definition 2.2.2 below) can be actually
interpreted in an alternative - and equivalent - way. Precisely, denoting by
ui’(r) and ui’(s) the regular and singular term of the spatial derivative u,
with respect to the Lebesgue measure, we prove that:

(a) w* = d](u;(r)), h(w®) = gp(ui’(r)) a.e. in Q;
(b) equation (2.1.4) reads

up = p(ug™), +ep(p”), =0, i LXQ),  (215)
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where

o= () + (v ()]
(s)

(c) the support of the singular part ug " is characterized as follows:

suppus® = {(z,1) € Q| ¥ (ug") (z,t) =~} .

Observe also that deriving (2.1.5) with respect to x gives the following equa-
tion for the derivative u,

[us], = [e(ug®)],, +elvs™)],, =v. W D(Q).  (216)

Step (ii). Then we investigate the limit of solutions of (2.1.3) as ¢ — 0.
In this direction, concerning the family {v°} we show that there exists a
constant C' > 0 such that

vl zoe(@s 10 2o,y () < C-

On the other hand, for the family {u‘} in general we only have a-priori
estimates in BV (Q) - namely in M™(Qr) for the spatial derivatives uf.
Thus, the space of positive Radon measures seems a natural candidate to
take the limit as € — 0 in problems of (2.1.3). In particular we obtain the
limiting equations

u=v, in L*Q), (2.1.7)

and also

[um]t = Ups in D'(Q). (2.1.8)
Here, for some sequence €; — 0, u € BV (Q) is the weak limit of the sequence
{u%} in BV(Q), and v € L=(Q) N L%((0,T); H}()), v > 0, is the limit of
both the sequences {v% } and {gp(u;j’(r))} in the weak™® topology of L*°(Q).

Moreover, we can use the general notion of Young measures, narrow and bi-
ting convergences, to prove the following decomposition of the Radon mea-
sure u; € M1 (Qr):

Uy = Z + p, (2.1.9)

where u € MT(Qr) is a positive Radon measure, in general not absolutely
continuous with respect to the Lebesgue measure, and Z € LY(Q), Z > 0, is
a superposition of the two branches s, so of the equation v = p(2) (v > 0),
namely
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7 As1(v) + (1 = A)sa(v) if v>0
10 if v=0

(see Theorem 2.2.7). Moreover, denoting by < -, - > the duality map between
MT(Q) and the space C.(Q), in Theorem 2.2.9 we show that the following
disintegration of the measure p holds:

T
<mf>= / <A, £, 1) > dt;
0
here 4, is a positive Radon measure over {2 for a.e. t > 0 and the map

is non-decreasing for any Borel set £ C (2.

Finally, concerning the support of the (possibly) singular measure 4; €
MT(Q) (hence of u € MT(Q)), in Theorem 2.2.10 we prove that

supp: C {x € Q| v(z,t) =0}

for a.e. t > 0.

2.2 Mathematical framework and results

2.2.1 The case ¢ >0

In the sequel we denote by M™(Q) the space of positive Radon measures on
Q, and by < -, > the duality map between M™(Q) and the space C.(Q) of
continuous functions f : @ — R with compact support. Let C1(Q) be the
space of C! functions f : Q — R with compact support.

Let us make the following definition.

Definition 2.2.1. A function u¢ : Q — R is a solution of problem (2.1.3),
if there holds:

(1) u® € L*=((0,T); BV(Q)), u(-,t) is nondecreasing for a.e. t € (0,T), and
uf € LX(Q);

(i) (uz™), v(e™) € C@) N L=((0,7); HY(R)), and [p(ug™)), €
L2((0,T); HY(Q)), where uS") denote the density of the absolutely con-

tinuous part (with respect to the Lebesgue measure) of the Radon measure

ug € MT(Q)

(7it) the equation
uf = [ (ug")]e + e[t (us") e (2.2.1)



is satisfied in L*(Q), and there holds
/ / [ G+ (™) € 4 (s |ur Chddt = (2.2.2)
— - [ @0 do
Q

for any ¢ € CH(Q), ¢(-,T) =0 in .

The following result will be proven.

Theorem 2.2.1. Let assumptions (H1) — (Hs) be satisfied. Then for any
€ > 0 there exists a unique solution u® of problem (2.1.3). Moreover, there
holds

5?5, = [ ()], + [0, W DQ) (223)

here ug'"”) € LYQ), us®) e MH(Q) denote the density of the absolutely
continuous part, respectively the singular part (with respect to the Lebesgue
measure) of the Radon measure uS,.

It is informative to compare Definition 2.2.1 with an alternative definition
of solution to problem (2.1.3), which was used in [BBDU]. Define a function
h:[=7,7] — R by setting

op1(z if |z
h(2) ::{g () éuiz (2.2.4)

Definition 2.2.2. A couple of functions u€,w® : @ — R is a solution of
problem (2.1.3), if there holds:

(i) u¢ € L>((0,T); BV(RQ)), u(-,t) is nondecreasing for a.e. t € (0,T), and
ui € L*(Q);
(i) we € C(Q) N L®((0,T); H}(2)) such that |we| < v in Q, and

_ +
w(e,t) = lim v <“ :”ht u(a™, t>>_ (2.2.5)
—0
T <u u(ac‘,t))
h—0+

or a Q a d t 0 h(37 € € i, 7 0 7
wt E 2((07 )7 ('(Q))’

(ii7) the equation
u; = [h(w)]z + ews, (2.2.6)
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is satisfied in L?(Q), and there holds

/ {u G+ la ¢+ ewmtg}d:rdt (2.2.7)

. / o (2)C(x, 0)d
Q

for any ¢ € CY1(Q), ¢(-,T) =0 in Q.
The following well-posedness result was proven in [BBDU].

Theorem 2.2.2. Let assumptions (Hy) — (Hs) be satisfied. Then for any
e > 0 there exists a unique solution (u,w) of problem (2.1.3) in the sense
of Definition 2.2.2.

The equivalence between Definitions 2.2.1 and 2.2.2 is an immediate conse-
quence of the following statement.

Theorem 2.2.3. Let assumptions (Hy) — (Hs) be satisfied. Let (u€, w*)
be the solution of problem (2.1.3) in the sense of Definition 2.2.2, whose
existence is asserted in Theorem 2.2.2. Then

uS™ = (W) ae. inQ, (2.2.8)
supp us®) = {(z,t) € Q | w(z,t) =~}. (2.2.9)
()

Moreover, the set suppug"’ has Lebesque measure |[supp um’(s)| = 0.

For any € > 0 set

Ve = go(u;’m) + 6[¢(u§’(r))]t. (2.2.10)
Observe that equation (2.2.1) simply reads
uf = v, (2.2.11)

Inspired by [Pl1], we will show that for any € > 0 there exists a set F'© C

(0,T) of Lebesgue measure |F¢| = 0 such that the couple (ui’(r), v¢), satisfies
the entropy inequality:

1
/ Gus ™) (1) C (2, 2 dx—/G ) (2, 1) C a1 ) <
/:2/ usM) ¢ — g(v) v ) dadt (2.2.12)

for any t1,t2 € (0,T)\F€¢ with t; < t2 and any ¢ € C*([0, T); HE (Q)NH?(Q)),
¢ >0, (yz <0 (see Proposition 2.3.17). Here

A
GO\ ;:/0 (g0 9)(s)ds (2.2.13)

and g is an arbitrary function in C*'(R) such that ¢’ > 0, g = 0 in [0, S,], for
some Sy > 0.
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2.2.2 Letting e — 0
Set

S1={(C.eQIC € 0,0} = {(s1(v),0)v € [0, 0(a)]},  (22.14)
So = {(C.p(QIC € (@,00)} = {(s2(0) v)lv € (0, 0(a) ) (2:2.15)

the above sets will be referred to as the stable branch, respectively the un-
stable of the graph of ¢. Following [P11], we always assume in the sequel:

Condition (S): The functions s}, s4 are linearly independent on any
open subset of the interval (0, p()).

Let u€ be the unique solution (in the sense of Definition 2.2.1) of problem
(2.1.3), whose existence is asserted by Theorem 2.2.1. Our purpose is to
study the behaviour and the limiting points of the families {uﬁ}, {ve} and

{w(ufv’(r))} as € — 0. To this aim, in Lemmata 2.3.10-2.3.12 it is shown that
there exists a constant C' > 0, which does not depend on ¢, such that

Jugm+ @) < C- (2.2.16)
ugllz2(gy < O (2.2.17)
v o) < C (2.2.18)
”UEHL2((0,T);H3(Q)) <C. (2.2.19)

Observe that inequality (2.2.16) implies
lug 1) < C, 4 || pr ) < C (2.2.20)

for some constant C' > 0 independent of €. Also, inequalities (2.2.16)-(2.2.17)
imply that the family {u®} is bounded in BV(Q). Hence there exist a
subsequence {ek}, ex — 0, and a couple of functions v € BV(Q) with
ur € L3(Q), v € L°(Q) N L3((0,T); HE(Q)) such that

u* =y in BV(Q), (2.2.21)
u S u,  in MT(Q), (2.2.22)
ud —uy  in L3(Q), (2.2.23)
v* 2y in L°(Q), (2.2.24)
v* —~ v in L2((0,T); H (). (2.2.25)
It will also be proven (see Lemma 2.4.3) that
e(u) Sy in L(Q). (2.2.26)
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Observe that (2.2.21) implies
u* —u in L. (Q). (2.2.27)

The above remarks allow to take the limit as ¢, — 0 in equality (2.2.2)
written with € = ¢, namely

//Q {u* ¢ + v CHdadt = —/ uo(2)C(x, 0) da,

Q

thus obtaining

//Q {u Gt v Gt = — /Q uo(2)¢(x,0) dx (2.2.28)

for any ¢ € C1(Q), ¢(-,T) = 0 in Q. This can be expressed by saying that
the couple (u,v) is a weak solution of the problem

Up = Uy in Q
v=0 in 99 x (0,7 (2.2.29)
U = Ug in Q x {O}

2.2.3 Structure of u,

Were v = p(u,), equation (2.2.28) would give a weak solution of problem
(2.1.1). However, no such conclusion can be drawn from (2.2.21)-(2.2.25), in
view of the nonmonotone character of ¢. Nevertheless, the structure of the
limiting measure u, € M™(Q) (see (2.2.22)) can be studied in considerable
detail by Young measures techniques. To this purpose, let us first recall the

following definition ([GMS], [V]).

Definition 2.2.3. Let 1;, 7 be Young measures on Q x R (k € N). The
sequence {T} converges to T narrowly, if

/ Ydrp — Ydr (2.2.30)
QxR

QxR
for any ¥ : Q@ x R — R bounded and measurable, (x,t,-) continuous for

ae. (x,t) € Q.

Consider the family {Te} of Young measures associated to {u;f(r)}. In view
of (2.2.20) and the Prohorov Theorem (e.g. see [V]), we have the following
result.
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Proposition 2.2.4. Let u® be the unique solution of problem (2.1.3), and

Te the Young measure associated to the density uﬁ;’(r) of the absolutely con-
tinuous part of the Radon measure ul, € M*(Q) (e > 0). Then:

(i) there erist a sequence {ugf“’(r)} C {ui’(r)} and a Young measure T on
Q1 x R such that 1, — T narrowly (here 7, = 7, );

(ii) for any f € C(R) such that the sequence {f(uf,;k’(r))} is bounded in
LY(Q) and equi-integrable there holds

flug @) = f*in LNQ); (2:2.31)

here
F¥(t) = /{0 J@dren©  Jorac @neQ (228
, oo
and V(g 1) 1s the disintegration of the Young measure T.

In general, the sequence {ui’“’(r)} need not be equi-integrable in the cylinder
@; hence Proposition 2.2.4-(4i) cannot be applied with f(z) = z. However,
we can associate to {ui’“’(r)} an equi-integrable subsequence by removing
sets of small measure. This is the content of the following theorem, which
easily follows from the Biting Lemma (e.g., see [GMS], [V] for the proof; here
and in the sequel we denote by |F| the Lebesgue measure of any measurable
set £ C R).

Theorem 2.2.5. Let the assumptions of Proposition 2.2.4 be satisfied. Then
there exist a subsequence {u;j’m} = {u;kj’(r)} - {u;'“(r)} and a sequence
of measurable sets {Aj},

A CQ, Ajg1 CA;j foranyjeN, |Aj|—0 asj— oo,

such that the sequence {u?’(r)

(i) there holds

XQ\A]-} is equi-integrable. Moreover,

u Dxou, = 2 in INQ), (2.2.33)

where Z € L'(Q) is the barycenter of the Young disintegration V(x,t), namely

Z(x,t) = /[0 )§du(x,t)(§) forae. (z,t) € Q; (2.2.34)

(i1) there exists a measure 1 € M™T(Q) such that

uij’(r)XAj Ao in MT(Q). (2.2.35)

Concerning the family {ufg(s)}, the second estimate in (2.2.20) immediately
gives the following result.
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Theorem 2.2.6. Let u® be the unique solution of problem (2.1.3), and ui’(s)
the singular part of the Radon measure u, € M™1(Q) (e > 0). Then there

exist a subsequence {u;j’(s)} and a measure s € M (Q) such that

€55(8) %

Uy po in MT(Q). (2.2.36)
Observe that (2.2.35) and (2.2.36) read

// uij’(r)XAdemdt — <y, ¢ >, // uij’(s)g“dxdt —< g, ( >
Q Q

(2.2.37)
for any ¢ € C.(Q). Let up € MT(Q) be the limit of the sequence uf in the
weak* topology of MT(Q) (see (2.2.22)). In view of (2.2.33), (2.2.35) and
(2.2.36), it follows that

U =7+ 11, (2.2.38)

where Z is the barycenter of the Young disintegration of the limiting measure
T (see (2.2.34)) and

W= p1 + o . (2.2.39)

Let us observe that the triple (Z, u, v), where v denotes the limiting function
in (2.2.24)-(2.2.26), satisfies the equality

(Z 4+ p)e = v inD(Q). (2.2.40)

In fact, equality (2.2.3) reads

// {u;(”)g - v;cx} dedt + <uS® ¢ >=0
Q

for any ¢ € C°(Q) (see (2.2.10)). By (2.2.25), Theorems 2.2.5-2.2.6 and
(2.2.39), letting € — 0 gives

// [2C = ve Gldadt + < p1, G > =0
Q

Remark 2.2.1. Although Z can be regarded as the density of an absolutely
continuous measure (with respect to the Lebesgue measure), we do not know
whether this measure and the measure pu are mutually singular. Therefore the
representation (2.2.38) need not coincide with the Lebesgue decomposition of
Uy -

Concerning the function Z, we shall prove the following result.
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Theorem 2.2.7. There exists A € L*>°(Q), 0 < X <1, such that

Z = { 351(”) L= As2(v) g i ~ 8 (2.2.41)

a.e. in Q. Here s1,s9 are defined by (2.2.14)-(2.2.15) and v is the limiting
function in (2.2.24)-(2.2.25).

The proof of Theorem 2.2.7 relies on the following characterization of the
disintegration v(, ;) of the measure 7 (see Proposition 2.2.4-(i))

y _ )\<x7t)551(v(:1:,t)) +(1- /\(x7t))632(v(x,t)) if v(z,t) >0
(1) 9o if v(z,t) =0,
(2.2.42)
which holds for almost every (x,t) € Q. The proof is adapted from [P11],
[Sm].

Further we investigate the properties of the measure p defined in (2.2.39). A
remarkable feature of u is its nondecreasing character with respect to time;
this is the content of the following theorem.

Theorem 2.2.8. There holds:
// {Z¢ — vy (o bdadt > 0 (2.2.43)
Q

For any ¢ € CM([0,T); HY(Q) 0 HA(Q)), ¢(,0) = ¢(T) = 0 in ©, ¢ > 0
and Cpp < 0.

In view of Theorem 2.2.8, in equality (2.2.40) the singular part p of the
measure in the left-hand side prevails over the regular L!-term Z as time
progresses. This produces a general “coarsening” effect, since the absolutely
continuous part decreases and possibly disappears, while singularities can
appear and spread as time goes on. Such effect seems consistent with the
model interpretation of equation (2.1.1), and with the results proven in
[BBDU] for the case € > 0.

Let us next prove a disintegration result concerning the measure y. For any
subset E C @ denote by E; := {z € Q| (,t) € E} its section at the time
t € (0,T). Then we can prove the following result.

Theorem 2.2.9. Let p be the measure defined in (2.2.39). Then for a.e.
t € (0,T) there exists a measure 4 € M1(Q) such that:
(i) for any Borel set E C Q there holds

T
M(E)—/O Fie(Er) dt ;
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moreover, for any f € C.(Q) there holds:

T
<p, f>= / <A, f(-, 1) > dt; (2.2.44)
0
(i3) for any p € HF(Q) N H%(Q), p >0, pzr <0 in Q, there holds

<5/t1,P> < <’~Yt27p> (2-2-45)

for almost every ty,ts € (0,T), t1 < ta.
Finally, the following theorem holds.

Theorem 2.2.10. For a.e. t € (0,T) let 3 € M™T(Q) be the Radon measure
given by Theorem 2.2.9 and v the limiting function in (2.2.24)-(2.2.26). Let
the following assumption be satisfied:

(Hy) s%)'(s) < ks  for someks > 0.
Then there ezists a subset EC (0,T) of zero Lebesgue measure such that
supp A C {x € Q| v(x,t) = 0}

foranyte (0,T)\ E.

2.3 The case ¢ > 0: Proofs.

Let us recall for further purposes the proof of the existence part of Theorem
2.2.2. This was obtained approximating problem (2.1.3) by the nondegene-
rate problem

Uy = [Qali(ux)]ft + ew)m(ux)]xt in Q
(F5) P (tz) =0 in 0Q x (0, 7]
u = oy in Q x {0}

for any k > 0, then letting kK — 0. Concerning ¢,;, ¥, and ug, the following
was assumed:

(i) ex(0)=0, px — ¢, ¥x—1inC} (R)ask— 0;

(77) 0 < pr(s) < pr(a) for s >0, @.(s) <0 for s <0;

(i13) Y 0odd, ¥ +k <Y, <Y+ 2k In R, ) € L¥(R);
SN/

(iv) Ihl < kv, |(%) ‘ <kylonR, g€ L'(R);

(

v) ups € C®(Q), uf,, > 0in Q, uf,.(0) = uf,(1) =0,
uox — ug in L'(Q) as & — 0, Jlugllnr ) < llugllae ) -
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It is easily seen that under the above hypotheses problem (Pf) has a unique
solution u¢ € C([0,7];C**H(Q)) N C1((0,T); C**(Q)) for any x > 0 and
[ € N [BBDU]J. Moreover, the following holds.

Lemma 2.3.1. Let assumption (A) be satisfied. Then:
(i) there holds

/ us,(z,t)de = / uok(z)dz  for anyt > 0; (2.3.1)
Q Q

(79) uS,(+,t) >0 in Q .

RI

The next step is to obtain uniform a priori estimates of the sequences {uz}
and {¢.(ul,)} (¢ > 0 fixed); this is the content of the following three
lemmata. We prove the first two for future reference, while referring the
reader to [BBDU] for the proof of the third.

Lemma 2.3.2. Let (A) be satisfied. Then there exists a constant C > 0
such that for any k >0
ug L@y < C, (2.3.2)

[zl Lo (0,701 0)) < C- (2.3.3)

Moreover, the constant C is independent of e.

Proof. Inequality (2.3.2) follows from (2.3.3). To prove the latter, set

U; = (pﬁ(ueﬁx) +e [wﬁ(uf@x)]t ’ (234)
and observe that deriving with respect to x the equation in (Pf) gives
=0V, nQ. (2.3.5)

From (2.3.4)-(2.3.5) we obtain the equality

€
Uyt

€ €

1}5 = SOR(UZ$) + 6wl{€ (u,‘e{.l’>v/€.l’l‘ .

Then for any ¢ € (0,T"), vS(+,t) solves the problem

z— e[ (up, (1)) 2ae = (Ui, (11))  In Q
{ z=0 on 0f). (2.3.6)

Since by assumption ¢, > ¢’ + k > k, and uf, > 0 by Lemma 2.3.1-(ii), by
the maximum principle we obtain

0<v.(-t) <prla) inQ (2.3.7)
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(here use of assumption (A)-(¢7) has been made). In view of the boundary
condition v¢(+,t) = 0 on 9N (¢t > 0) we also have
ovg,
ov

2(-,t) <0 on 0N

for any t € (0,T), where % denotes the outer derivative at 0€). Then
integrating with respect to x and ¢ equation (2.3.5) we obtain

/ufm(x,t)dxg/u{)n(m)dx.
Q Q

Since ut, > 0 by Lemma 2.3.1-(é7), the result follows. O

Lemma 2.3.3. Let (A) be satisfied. Then there exists a constant C > 0
such that for any k >0

// Uir) t d dt < = C (2.3.8)
n €

luiellz2 @) = vz i) < € (2.3.9)

and

where the function vj, is defined by (2.3.4). Moreover, the constant C is
independent of €.

Proof. From (2.3.4)-(2.3.5) we obtain plainly

“ Uha — / € o € \2
K /0 on(s)ds /Q (4 ) () 2l /Q (o6 2

Integrating the above equality with respect to t gives

// 3+ el (up,) (ugyy) *dodt = (2.3.10)

uOI‘C uenz(va)
= /dx/ gon(s)ds—/dx/ vr(s)ds <
Q 0 Q 0
g, ()
< /dw/
Q 0

(here use of Lemma 2.3.1-(4i) has been made). Since uf, = v:, (see the
equation in (Pf)) and ¢, € L*(R) by assumption (A)-(iv), the result follows.
(]

Remark 2.3.1. Observe that by assumptions (Hz) — (i) and (A) — (ii7)
inequality (2.3.8) implies

o (i )] 22@) < (2.3.11)

Sl
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Lemma 2.3.4. Let (A) be satisfied. Then there exists a constant C > 0
such that for any k >0

Hd’n(“fm)HLOO((O,T);H(%(Q)) <, (2.3.12)
| [0 (ura ) lz2(@) < €' (2.3.13)
lon (i)l oo 0,7y 13 () < C'- (2.3.14)

Remark 2.3.2. Let us mention that the constant C' > 0 in inequalities
(2.3.2)-(2.3.3), (2.3.8)-(2.3.9) does not depend on €, whereas it does in in-
equalities (2.3.12)-(2.3.14).

Corollary 2.3.5. Let (A) be satisfied. Then there exists a constant C' > 0
such that for any k > 0

19w (Ul 51 (@) < € (2.3.15)

[ ()l o172 gy < € (2.3.16)

where Cl/z(Q) denotes the Banach space of Holder continuous functions
with exponent 1/2 in Q endowed with the usual norm.

Proof. Inequality (2.3.15) follows from (2.3.11) and (2.3.12). Inequality
(2.3.16) is an easy consequence of the same inequalities and (2.3.13). O

Following [BBDU], let us now draw some consequences of the above esti-
mates. In view of (2.3.3) and (2.3.9), the family {u¢} is uniformly bounded
in WHL(Q) N L>®((0,T); WH1(Q)). Hence by compact embedding and a
diagonal argument there exist a sequence xk; — 0 and a function u® €
BV(Q) N L>*((0,T); BV(Q)) with u§ € L?(Q), such that

ug, —ut in LY(Q), (2.3.17)

Uy = uy in MY(Q), (2.3.18)

ug, (1) = u(- 1) in L'(Q) for ae. t € (0,T), (2.3.19)
ug —up in L2(Q). (2.3.20)

Observe that (2.3.1) and (2.3.19) imply

/ u(z,t)dx = / uo(x)dx for ae. t € (0,7). (2.3.21)
Q Q

Moreover, by estimates (2.3.12), (2.3.13) and (2.3.15) there exists w® €
L®((0,7); H}(2)) N HY(Q), with w§ € L?((0,T); H}(2)), such that

Ur; (uw) —w' in HY(Q), (2.3.22)
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[wnj (u“)L —wf in L2((0,T); HI(Q)). (2.3.23)

In view of (2.3.16), we can assume w® € C(Q) and
W, (uw) ~w in C(Q). (2.3.24)

Concerning the sequence {gonj (u;ﬂ) } we can now prove the following
lemma, where the function h is defined by (2.2.4).

Lemma 2.3.6. Let (A) be satisfied. Then

on, (Uhye) = h(w) in LA(O.T):HJ(Q),  (23.25)
Dr; (ufwc) — h(w®) in C(Q). (2.3.26)

Proof. By inequality (2.3.14), possibly extracting a subsequence, also de-
noted by {¢x; (u )}, there exists z € L2((0,T); HE(€)) such that

on, (thye) =2 i L2((0,7): HY ().

Kj

Let us define:
h,.ij = (g, © 1/),;_1 .
We have:

[©r; (ulﬁi]l“)]t - {h"f (s (U;x))L -
= (U (u) [, (0,00
and

[y )]y = [Py (i (,2) | =
= |y (o ) [0, ()| | =
= L (e (k) [, ()| [t )]+
iy (o (2)) [0, ()|

Moreover, observe that (2.3.13) implies that there exists a constant C' > 0

such that
H [w”j (u’zﬂ”")]t’ L2((0,T);L>(R))

In view of assumption (A4)-(iv), (2.3.12)-(2.3.13) and (2.3.27), there exists a
constant C' > 0, independent of «;, such that

ESIC] I e |G

<C. (2.3.27)

<C. (2.3.28)
L2((0,T):L°(%2))

tx

L*(Q)
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By (2.3.14) and (2.3.28) we obtain

hence (possibly extracting another subsequence) we have
Pr; (u;]x) —z in C(Q).

On the other hand, from the inequality on R:

<
V@

Q

(pﬁy( f‘ijl’)

’

oy (u50) = )| < [y (e, (15,) ) = e, (0| +
+ ‘h,{j (w) — h(we)’ <k ¢,§J( Uy r) —we
+ ‘hkj (w) — h(we)‘
we obtain
©r; (u Zx) — h(w®) ae. in Q
(here use of assumption (A)-(i) and (A)-(iv) has been made). Hence z =
h(w€) a.e. in @ and (2.3.26) follows. O

In view of the above remarks, taking the limit as j — oo in the weak
formulatlon of problem (P ) we see that the couple (uf,w¢) (with u° as

n (2.3.17) and w* as in (2 3.22)) solves problem (2.1.3) in the sense of
Deﬁnition 2.2.2. Uniqueness was proven in [BBDU], while monotonicity in
space follows from Lemma 2.3.1-(i7) and the above convergence results (see
(2.3.18)). Hence Theorem 2.2.2 follows.

It is also easily seen that:

Lemma 2.3.7. Let (A) be satisfied. Then

P(ug,,) — w i L((0,T); L'Y(Q)), (2.3.29)
P(ug ) — w° a.e. in Q. (2.3.30)

Proof. Assumption (A) — (ii7) implies that

¢(U§]x) + ﬁjuzjx < wrij (uen]:p) < 1/}(”6&]:1:) + 2’£juf£jx (2331)
(recall that uj , > 0 by Lemma 2.3.1-(ii)). Then we have
1 (ukjo) = Y, (g o) | Lo (0.1):20 () = (2.3.32)

- teS(lég’)/Q {1/%]- (ufei]a:) - w(“;ﬂc) (a:,t)dx < 2"€jHuffj:IJHL"O((O,T);Ll(Q)) :

From (2.3.3) and (2.3.32) convergence (2.3.29) follows. As j — oo (possibly
extracting a subsequence, still denoted {uf_,}), this also gives (2.3.30). O
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Remark 2.3.3. Observe that (2.3.24) and the left inequality in (2.3.31)
imply w® > 0 in Q (since Uy = 0), whereas (2.3.30) and the fact that

w® € C(Q) give w® < in Q, for 0 < <~ in [0,00).
Proposition 2.3.9 below deals with the behaviour of the family {uf{ﬂ} of

solutions to (Pf) in the limit x; — 0. Let us first prove the following
lemma.

Lemma 2.3.8. Let (A) be satisfied. Let {n,{j} be the sequence of Young
measures associated to the sequence {u;jm} above. Then:
(i) there exists a Young measure 1 such that as k; — 0

Nk; — N narrowly in Q; (2.3.33)

(7i) the disintegration V() Of the Young measure n is the Dirac mass con-
centrated at the point ¥~ (we(z,t)), namely

V(izt) = 5w—1(w€(z,t)) for a.e. (l’,t) €Q. (2.3.34)

Proof. (i) Follows from inequality (2.3.3) and the Prohorov’s theorem (see
V).

(74) In view of (2.3.29), the sequence {w(uzjx)} is bounded in L!(Q), hence
by Prohorov’s theorem the associated sequence of Young measures {xs;, }
converges narrowly to a Young measure x. Let o(, ) denote the disintegra-
tion of the Young measure x for a.e. (x,t) € Q. By the very definition of the
sequences {nnj}, {Xx, } and of disintegration, for any f € C.(R) we have

x, dvig ¢ dxdt = 3.
//Q¢< t>{/{0m)f<s> (,)(E)} . (2.3.35)

jll>lgo //Q o(x,t)f (uf{jw(m,t» dxdt =
~ i [ /Q o 1) (F o) (v (us,.) (2.1)) dadt =

B //Q o) { /[Om) (fou™) (§) dogay (g)} dedt

for any ¢ € C1(Q). On the other hand, since ¥(uS, ) — w a.e. in Q (see

Nj$
(2.3.30)), the disintegration o, 4 of x is the Dirac mass concentrated at the
point we(z,t), namely

U(:E,t) = 511)5(.’2,15) (2336)
(see [V, Proposition 1]). Then from equalities (2.3.35)-(2.3.36) we obtain

/[0 € dvie(©) = 1 (67w (@,0)

for a.e. (z,t) € @, whence the result follows. O
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Proposition 2.3.9. Let (A) be satisfied. Then:
(i) v (w) € LY(Q) and there exists a subsequence of {uzjx}, denoted

again {unﬂ}, such that:

ul, . — ¢ H(wo) a.e. in Q; (2.3.37)

K;T

(ii) the set
S = {(z,t) € Q | w(z,t) =7} (2.3.38)

has zero Lebesgue measure.

Proof. (i) The limit (2.3.37) follows from equality (2.3.34) by Proposition 1
in [V]. Since uj, , > 0 (see Lemma 2.3.1-(i4)), by (2.3.37), inequality (2.3.3)
and the Fatou Lemma we obtain

// YN (w)dzdt < liminf // Ldrdt < C'.
KJ—>OO

Therefore ¢~ (w) € LY(Q).
(i) Set

By = {(.t) € Q| w(a.1) Z’y—%} (neN). (2.3.39)

Then -
By, CB,, 8=()B;, |S= lim |Bgl, (2.3.40)

where | - | denotes the Lebesgue measure. Since 1)y <u§j z) — w* uniformly
in @, thus in BS, (see (2.3.24)), there holds

sup
(z,t)EB,

7/%] ( Uy x) (1’775) —we(x,t)‘ < l

n

for any x; > 0 sufficiently small. From the above inequality and (2.3.31) we
obtain

. 1 .
Uy o >V ! (’y 5~ 2ﬁju;ﬂ> in B, . (2.3.41)

On the other hand, by Lemma 2.3.1-(i7) and (2.3.3) there exists a subse-
quence, denoted again {x;}, such that x;u ke — 0 ae in Q, thus

_ 1 _ 1 .
(0 1<7—2n—2ﬁ] Rﬂ> — ) 1<7_2n> a.e. in B, .

Then by the Lebesgue Theorem we have

// <7 — — — 2Kjuf, ) dxdt — = (v - 21n> 1BS|  (2.3.42)
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for any n € N. In view of (2.3.41)-(2.3.42), we obtain

1
p! <7 - ) |BS| = hm // <7 - — = Qﬁju;jz> dxdt <
< hmlnf// (2.3.43)

thus o
1Bl < —7—1
v (v = 35)
for some constant C' > 0 and any n € N. Letting n — oo in the previous
inequality the conclusion follows. O

We can now prove Theorem 2.2.3.
Proof of Theorem 2.2.3. Fix any € > 0 and set
R = {(z,1) € Q | w(z,t) <7} .

Since w € C(Q), R is open in Q. Let ¢ € C.(R); denote by K the support
of (. Since w*® is continuous in @, thus in K, there exists

Mg := max w(z,t) <-~.
K (x,t)EXK ( ) i

Set 0 := vy — Mkg. Since 1y ( us, m) — w uniformly in C(Q) (see (2.3.24)),
there holds

mlganj< Kjx)<MK+%—7—57K

for any k; sufficiently small. In view of the left inequality in (2.3.31), this

plainly implies
1)
uf@jr < Q;Z)_l <’7 - ;) in K7

if r; is sufficiently small.
From the latter inequality and the limit (2.3.37), by the Lebesgue Theorem
we obtain

/ / uf, o dadt — / / b N w)Cdadt  for any ¢ € CL(RY).  (2.3.44)

On the other hand, in view of (2.3.3) and (2.3.18), there holds

// Uy oG dodt — <ug, (> = // ¢ drdt+ <uS®), ¢ > (2.3.45)

for any ¢ € C(Q). From (2.3.44)-(2.3.45) we obtain the equality

<us®) ¢ >= //Q {wfl(we) us) }dedt for any ¢ € C.(R9),
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which entails:

(1) ui’(s)(K ) = 0 for any compact subset K C R, hence for any ¢ > 0 we
have u5® (R€) = 0 and supp W =0 \ R¢ (because @ \ RE is closed).
Let S€ be the closed set defined by (2.3.38) and observe that Q \ R¢ =
S U{oQ\{S°NaQ}}. Let us show that any (zg,tp) € 9Q \ {S°NOQ}
does not belong to supp ufc’(s). In fact for any (zg,%p) as above there holds
we(zp,to) < 7, hence by the continuity of w€, for any § > 0, sufficiently
small, there exists Ups C Q, (xo,t0) € Up, such that

w(z,t) < w(zo,t0) + <y —4.

We can suppose that
Uos = Bs2(0,t0) N Q,

where By (z0,t9) denotes the ball centered at (zo,%p) and radius 62 (see
(2.3.16)). Arguing as above, we can use the uniform convergence (2.3.24) to
prove that:

u$™) (Bga (20,t0) N Q) = 0

for any § > 0, sufficiently small. This implies that (xg,%y) ¢ supp ug’(s)7

namely:

supp us®) =S¢
for any € > 0; then (2.2.9) follows. Finally, by Proposition 2.3.9-(i7) S¢ has
zero Lebesgue measure.

(44) us") = Y~ Hwe) a.e. in R, thus in Q. Then the conclusion follows. [J

Let us now prove Theorem 2.2.1.

Proof of Theorem 2.2.1. The existence of a unique solution to problem
(2.1.3) is an obvious consequence of Theorems 2.2.2-2.2.3. To prove (2.2.3),
observe that for any x > 0 u{,, satisfies the problem

Ut = [px(U)lzz + €[ts(U)]zat in @
U=0 in 90 x (0,7]
U = g, in Q x {0}.

Then for any ¢ € C2°(Q) there holds

/ /Q [0S0 Gr— (S Co — thn(uSy), Co bdzdt = 0.

In view of (2.3.18), (2.3.23) and (2.3.25) letting x — 0 obtains

// {0606 - p(us) G0 — e (us),, ¢ b dadt + < ug), ¢ > =0,
Q

This completes the proof. O
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Remark 2.3.4. Consider for any n € N the complement in Q of the set
(2.3.39), namely

Ay ={@neQl v <y} mem); (2.3.46)

(recall that by (2.2.8) w® = ¢(u§’(T)) a.e. in Q). Then for any j € N
sufficiently large there holds:

1
Upe <Y (7 - 2n> in AS . (2.3.47)

In fact, fix any € > 0. Since
U () = (ug™) in C(Q)
as kj — 0 (see (2.2.8) and (2.3.24) ), we have

Then assumption (A) and Lemma 2.3.1-(ii) give

1 .
T/J(Uiﬂc) < kjufcjx + T/J(Ui]x) < ¢kj (U’ijm) < - % m Afl :

This proves the claim.

Lemma 2.3.10. For any € > 0 the function v¢ defined by (2.2.10) belongs
to L>=(Q) N L2((0,T); H:()), and the following estimates hold:

0 <o <ola), (2.3.48)
||U;65HL2(Q) < C (2.3.49)
for some constant C' > 0, which does not depend on €.
Proof. By (2.3.23) and (2.3.25) there holds
v, = h(w) + ewf in L*((0,T); Hy () (2.3.50)
as r; — 0, v, being defined by (2.3.4). By Proposition 2.3.9-(7i) there

holds w® < 7, thus h(w) = ¢ o~ Hwe) = cp(ui’(r)) a.e. in Q (see (2.2.4)
and (2.2.8)). Hence, by (2.3.50) we obtain

vS — ¢ in L2((0,T); HY(Q)).

Kj
Then inequality (2.3.48) is a consequence of assumption (A)-(i) and (2.3.7),
since

0< limO // {on,(a) - v;j}Cdfcdt = // {o(a) — v }¢dzdt
KT Q Q
for any ¢ € L?(Q), ¢ > 0. On the other hand, inequality (2.3.49) follows

from (2.3.9) by the lower semicontinuity of the norm (see also Remark 2.3.2);
hence the result follows. g
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Lemma 2.3.11. There exists a constant C > 0 such that for any ¢ > 0
there holds:

€(r)\12
// W) g < © (2.3.51)
Q ¥(ug™) €

Proof. By (2.3.8) there exists g € L?(Q) such that (possibly extracting a
subsequence) there holds:

[%j (uzjz)]t
U, (U 0)

Let 8¢, AS, denote the sets defined by (2.3.38), respectively (2.3.46). Since
Af, is open, S¢ is closed and

—~g in L*Q). (2.3.52)

00
AZQA;-‘rl? S = ﬂB’VEl
n=1

(see (2.3.40)), for any ¢ € CL(Q\ 8¢) there exists n € N such that supp ¢ C
A¢. Then by inequality (2.3.47) we obtain

1 1
0< <
V(uge) ~ U (W (= 5))
in Af, for any n € N. This implies

[, (uS,)], Ne e i 120
b () ¥ (ug)

for any ¢ € CH(Q \ S°) (here use of (2.3.23) and (2.3.37) has been made).

Hence
g=- -7t
/1/}/ (u;’(r))

since |S¢| = 0 by Proposition 2.3.9-(i4). Then inequality (2.3.51) follows
from (2.3.8) by the lower semicontinuity of the norm. O

a.e. in Q

Lemma 2.3.12. Inequalities (2.2.16) and (2.2.17) hold.

Proof. Observe that, in view of estimate (2.3.3), the family {u} is bounded
in M*(Q)), hence (2.2.16) holds. Moreover,

€ __ ,,€ 3
Uy = vy, a.e. in @

(see equation (2.2.1) and (2.2.10)), hence estimates (2.3.49) gives (2.2.17).
(]

The next proposition deals with the regularity of v¢ and (ui’m) .
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Proposition 2.3.13. Let v¢ be the function defined by (2.2.10) and for any
n € N let AS, be the set defined by (2.3.46). Then for any n € N there holds

v (ui’(r))t € L2(AS) and

T

&(r)
= (ug“’))t = [w/((ux()))]t a.e. in A5, . (2.3.53)
o' (ug”

v

Moreover,
€ € € €,(r) : 2( p€
vij:r - Vpxs uijt - (ux )t in L (An)

Proof. Observe that

Uy oy = Vpeogy = M (2.3.54)

szt e ’IJZ).{{J (ufc]m)

(here use of (2.3.5) and (2.3.6) has been made). By (2.3.47) in Remark 2.3.4
we have:

/DC; <u;ﬂi>2dxdt = l/)( o) dadt = (2.3.55)
L
< Ny (@ ”LQ(Q)( ;)))23
- f(ww— <v—;n>>> ’

the last estimate in the previous equality following by (2.3.11). Inequality
(2.3.55) implies that the families {v,€ 2} and {u;jmt} are uniformly bounded

in L?(AS), hence v5,, (u alr ))t € L*(A;), and

| /\

Vnyer = Ve U — (ug), in L2(47)

as k; — 0, for any n € N. Finally, in view of (2.3.23), (2.3.37) and (2.3.47),
we obtain equality (2.3.53). O

For any g € C1(R), set

A
Gi(A) == /0 g o pr(s)ds. (2.3.56)
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Proposition 2.3.14. For any g € C*(0,¢(a)), g = 0 in [0,S,] for some
Sg >0, let G be the function defined by (2.2.13). Then for any € > 0 there
exists a set E€ C Q of Lebesgue measure |E€| = 0 such that there holds:

(1) G(ug(r)) € L>(Q) and there holds:
G”j (uij)(l'a t) - G(u;(r))(l‘a t)

K
for any (z,1) € Q\ E;
(i) there exists

€,(r €,(r [w (U;’(T))]t —
[Glug™)], = glo(ug! )))w'(u;(% = (2.3.57)
= gle(uy))(wg™) i L*(Q).
Moreowver,
(G, ()] = [Glug™)], in LP(Q). (2.3.58)

Proof. (i) Fix any € > 0. Let £ C @ be the set of Lebesgue measure
|E€| = 0 such that (2.3.37) holds for any (z,t) € @ \ E€. In view of (2.2.8),
(2.3.37) and Assumption (A), we have

Gy (1E,) (1) — G (2,8) for any (z,1) € Q \ E,

K

where G, and G are defined by (2.3.56), (2.2.13), respectively. Moreover,
since g = 0 in [0, S,], we have:

5;2(Sg)
Gy (4, < < [ Talentenas <€, (2359)

le(sg)

[ atentnas

(here Si;1 and k2 denote the stable and unstable branch of the equation
v = @i(2), respectively). Hence, G(ui’(r)) € L™(Q).

(ii) Fix any g € C*(0,¢(a)), g =0 in [0, S,] for some S; > 0. Consider the
family {u;J} of the solutions to (Fg;). We have

[Gui)le = 9(pn, (up,0)) Uy, 2)e = (2.3.60)
o v [Wny ()l
= 9(¢px, (umjx))manj (uf, ), (sﬁﬂ(sg))}.

Moreover, in view of Assumption (A)-(i), we can suppose that for any &;
small enough there holds v, (sx,2(Sg)) < ¥(s2(Sg)) + p for some 0 < p <
v—w(iz(sg)) (

Hence,

here so denote the unstable branche of the equation v = ¢(2)).

{1%]- (u;]x) < w”ij (SHJQ(SQ))} - {wﬁj (u;]x) < w(SQ(Sg)) + P}
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On the other hand, in view of (2.3.24) we have:

{t; (ufy,0) < W(52(S9)) + p} € {(ug™)) < (52(5y)) +2p} € Ao
where 69 is chosen so that
—YP(s9(S
sy + LU
Thus,
€ € an (u,‘E{ r)]t
[G(ul‘ija})]t = g(SOsz (unjx))WXAgg
and the claim follows by (2.2.8), (2.3.26) and Lemma 2.3.13. O

Lemma 2.3.15. For any g € CL(0, () and k > 0 let G}, be the function
defined by (2.3.56). Then there exists a constant Cy > 0 (independent of r
and €) such that

/ ' [ Gututaida

for any h € CL(Q).
Proof. Fix any g € C}(0,¢(c)) and let ay, by € (0,p(a)) be such that

dt < Co(lhll i@y + Ihellize)  (2361)

supp g = [ag, bg] C (0, p(a)).
Let v, be the function defined by (2.3.4). In view of (2.3.5) and (2.3.6), we

have:
T T
/ / (Gl ohdz| dt = /
0 Q 0

/ ' [ oot = g0 uiatda

</ / 19'lcten o) <( >) (h]ddt +

+//Q[|9(UE“)HU§HH%| + [R]lg (v")|(vE,) ) dadt <
< Cy(llhllLeo@) + I1Pzll2(0)); (2.3.62)

the last estimate following by (2.3.49) and (2.3.51). This concludes the
proof. O

dt <

/Q 9(on () uSghda

T
dt+/ /g( Ii) m:xhdx
0 Q

IN

dt <

Proposition 2.3.16. For any g € CL(0,¢(a)) let G be the function defined
by (2.2.13). Then for any h € CL(QQ) there holds:

/ /Gu’ )thdz

for some Cy > 0 independent of .

dt < Cy([|hllLe @) + [Pzllz2(0)), (2.3.63)
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Proof. For any € > 0, r; > 0 and h € C}(Q) set

T, (0) 1= [ Gyt )l ) o)

By (2.3.58) there holds
Iy, =T in LY0,7)

as kj — 0, where

Te(t) /Q [G@e)] (.0 h(w)da.

Thus, inequality (2.3.63) is an easy consequence of (2.3.61). O

Proposition 2.3.17. Let g € C1([0,¢(a)]), ¢ > 0, g = 0 in [0,S,] for
some Sq > 0, and consider the function G defined by (2.2.13) in terms of
g. Then, for any e > 0 there exists a set F© C (0,T) of Lebesque measure
|F¢| = 0 such that inequalities (2.2.12) hold.

Proof. Fix any € > 0 and any ¢ € C*([0,T]; H}(Q)NH?(2)), ¢ >0, (e <0
in Q. Consider the family {ug} of solutions to problem (P%) and let Gy
be the funcions defined by (2.3.56) for any g € C*([0, ¢(c)]). Assume that
g =01in [0,S,], for some S, > 0, and assume that ¢’ > 0. We have

d € €
" /Q G (Ul )Gz = /Q G, (U, ) ol + (2.3.64)
+ [ gl (0l

Let vy be the function defined by (2.3.4). Since uy, ., = vy, 4, (see (2.3.5)),
we obtain

/ 9, (U ), il = / g(vE S, sl +
Q Q

vf{j - cpﬁj (ueﬁijl')

6,(1}}/-{]' (UEI{J(E)

+ /Q [9(w, (5, ) — 9(05,)] Cdo <

< = [ it — [ 005,00 <
Q Q
< —/g(vzj)ngzﬂdfv:/G(v;j)cmdzv. (2.3.65)
Q Q
Here .
G(ug) = / 7 g(s)ds. (2.3.66)
0



Integrating equality (2.3.64) with respect to ¢ and using (2.3.65) gives

[ Gy 0221 = [ G (a0 1) o <
Q Q

to to
/ / G, (S ) ludt + / / G VCondadt (2.3.67)
t1 Q ’ t1 Q /

for any t; < to <T'. Since G(\) is a convex function on R (by the assumption
g’ > 0), there holds

G(ug,) = g(v) (v, —v) + G(v),

hence, in view of (2.3.50) we obtain

to to
/ /G(ve)gmdxdt>hm1nf/ /G ) apdaxdt (2.3.68)
t1 Q t1

(here use of assumption (z; < 0 has been made). Let £ C @ be the set
of zero Lebesgue-measure given by Proposition 2.3.14. Then there exists
F<C(0,T), |F¢| =0 such that for any ¢t € (0,7) \ F the set

={z € Q] (z,t) e E} CQ

has Lebesgue measure |E%!| = 0. Moreover, for any t € (0,7) \ F€ there
holds
G (1) — G (1)) ae in Q (2.3.69)

KT

(see Proposition 2.3.14-(7)). By (2.3.68), (2.3.69) and Proposition 2.3.14-(3),
passing to the limit with respect to x; — 0 in (2.3.67) gives

/G G(T (x,t2))C(x, ta d:c—/G e’r)xtl )¢ (x,t)dx <

to to
< / / GuS ™ dadt + / / G (v) Copdadt =
t t
th 1t2
= / / Gus ™) dadt — / / VS pdadt (2.3.70)
t1 t1
and this concludes the proof. O

2.4 Vanishing Viscosity Limit: proofs

To prove Theorem 2.2.7 we need some technical preliminaries. As a first
step, consider the orthonormal basis of L?(2) which is formed by the eigen-
functions 7y, € H} () of the operator —A with homogeneous Dirichlet con-
ditions. Let {Mh} be the corresponding sequence of eigenvalues. For any
€ > 0, let Il be the operator defined as follows

Z Tnnn s fo = (f,mm)12(0), (2.4.1)

h:epup <1
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for any f € L?(2). In this way we have introduced a family of orthogonal
projection operators which is used in the following result.

Lemma 2.4.1. There exists C > 0 such that, for any K > 0, € > 0 there
holds

ITe @r(tiee) |22 (0,112 () + e 2|1 = M)pn(ug,) 2 < C- (24.2)
Proof. Fix any €, k > 0, fix any t € (0,7) and for simplicity set
p(a) = pulug,)(z,t),  v(@)=vg(e,t),  Yu(z) = [delugy)], (2,1),

where v¢ is defined by (2.3.4). We have:
op = /ng(a;) np(z)dx = (2.4.3)
— ¢ [ v miz)da+ [ ola)mado =
= —€[tt]n + vp.
Thus,

e @l o) = D Hugh < (2.4.4)

eup <1

Z [20n05 + 2un€’[1r]5] <
eup <1

o o0
> 2upvh + Y 2efih]; =
h=1 h=1

= 2 [ [(0h)? + v 0.

IN

IN

and,

e - He)@”%?(ﬂ) = Z e g < (2.4.5)
€pp>1

27 Y [ + Efbli] <

epp>1

<D 2w+ Y 2} <

epp>1 epp>1

< 2 [ [(0h)? + elw(us)]}] (@ 0.

IN

In view of estimate (2.3.49) and (2.3.51), integrating (2.4.4) and (2.4.5) with
respect to ¢ gives (2.4.2). O
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For any f € C(R) set

FO\ = f(p(V): (2.4.6)
The following proposition will be crucial in the investigation of the viscosity
limit € — 0.

Proposition 2.4.2. Fiz any g € CX(0,p(a)), f € CL(R) and let G, F be
the functions defined by (2.2.13) and (2.4.6), respectively. Suppose that there
exists C' > 0 such that || f|| @) < C, | f Loy < C. Finally, assume that
Gs") & 6, Fus™) & F* and GuS ™) FE™) S HY in Lo(Q).
Then

H* = G*F*. (2.4.7)

Remark 2.4.1. Observe that for any g € C1([0, p(a)]), g(0) = 0, the family
{G(u;(r))} is uniformly bounded in L*°(Q). In fact for a.e. (z,t) € Q there
holds:

Gug) (1) = <

“;7(?“) (w)t)
A g(o(N)dA

Ammwﬂwﬂg

IN

< max ! / Mld\ < C
< _max [90)] [ elir <

since p € LY (R) by assumption (Hy)-(i).
Proof of Proposition 2.4.2. Following [P11], we set
Fe o= f(IL pus™)) (2.4.8)

and observe that, passing to the limit with respec to x; — 0 in inequality
(2.4.2) gives

[T SO(U;(T))HLZ((O,T);H&(Q)) +e 2 =T (us) |2y < C, (2.4.9)

(here use of Lemma 2.3.6 has been made). Since || f'[| o (r) is bounded, we
have

IFE = Fus™)llra) = 1F@ep(ue™)) — Fo(us™))llza) <
£/ oo @ | (T = TIe) o (u ™) || 2y — 0

IN

as € — 0 by (2.4.9). Moreover, the family {G (ui’(r))} is uniformly bounded
in @ (see Remark 2.4.1), hence the previous inequality implies

1G(u ™) e = Gug ™) F (g )| 2 — 0
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as € — 0. Thus, in order to prove (2.4.7), it suffices to show that

/ / FeGuS™h dadt — / / F*G*hdadt (2.4.10)
Q Q

as € — 0, for any h € C}(Q). To this purpose, assume for simplicity
Q=(0,1), set

I(x,t) := /Ox GusM) (g, t)de for a.e. t € (0,T) (2.4.11)

and observe that:

/ / FGuS™h dadt = — / / D¢(FCh)dadt . (2.4.12)
Q Q

In view of (2.4.9), there holds
IFE o) < 1 e I e (W) el2() < C
hence F* € L?((0,T); H'(Q)) and
F¢—~F' in L*Q) (2.4.13)

as € — 0. Then, for any ¢ € C}(Q) and for a.e. t € (0,T), set

250 = [ Gl Do) (2.4.14)
In view of (2.3.63) we have:

AG w0, < Cgg-

Thus, for any ¢ € C1(£2) there exist a sequence ¢, — 0 and Ay € L*(0,7)
such that

T
/ G — Agldt — 0. (2.4.15)
0

On the other hand, since we have assumed G(ug’m) 5 G*in L®(Q) as
€ — 0, there holds

Ag(t) = /Q G (€, 1)(€)de (2.4.16)

for a.e. t € (0,T), and the whole family {Afb} satisfies (2.4.15). In other
words, we have:
T
J

/G(ug”))qﬁd{ - / G*¢d§'dt -0 (2.4.17)
Q Q
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for any ¢ € CL(Q). Since C1() is dense in L'(Q2), by means of (2.4.17)

there holds
T
I

for any x € (0,1) (recall that we have assumed Q = (0, 1)), namely

/QG(UE’(T))X(O@) d¢ — /QG*X(O,x) dfl dt — 0

T
/ Tz, £) — " (2, )| dt — 0 (2.4.18)
0
(see (2.4.11)) for any z € Q. Here

(1) 1= /O "Gt (e e (2.4.19)

for a.e. t € (0,T). In view of (2.4.18) and since the family {I"“} is uniformly
bounded in L*°(Q), we have

r‘ —1* in LYQ).
Thus, eventually up to a sequence ¢, — 0, there holds
I (z,t) — I'*(z,t) for a.e. (x,t) € Q. (2.4.20)

Let us conclude the proof. In view of (2.4.20) and since the family {I"} is
uniformly bounded in L*°(Q), there holds

s - T* in L*(Q).
Therefore, by (2.4.13) we obtain:
FST% —~ F*T* in L*(Q)

I'* being defined by (2.4.19). Hence, for any h € C1(Q) the right-hand side
in (2.4.12) (written for € = €;) converges to

- / / (F*h),T*dzdt = / / F*G*hdxdt
Q Q

(see (2.4.19)) and the claim follows. O

Lemma 2.4.3. Let v € L>®(Q) be the limit of the sequence {v*} in the
weak™ topology of L*>°(Q) (see (2.2.24)). Then (2.2.26) holds.

Proof. Observe that

= l/2 —0 (2.4.21)

6(r)\ _ €
”SO(Ux ) U||L2(Q) 12(Q)

M2 [ )] |
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as € — 0 (here use of (2.3.51) has been made). By (2.4.21) we obtain
e(uM) = v in L*(Q) (2.4.22)

where v is the limit of the sequence {v%} in the weak topology of L(Q).
On the other hand, the family {go(ug;’“’(r))} is uniformly bounded in L*>(Q).
Hence, eventually up to a subsequence €, there holds

o™y 25 i I(Q) (2.4.23)
for some v € L*>°(Q). Finally, by (2.4.22) ¥ = v a.e. in @ and the whole
sequence {gp(ui’“’m)} satisfies (2.4.23). O

Now we can prove Theorem 2.2.7.

Proof of Theorem 2.2.7. Let 7 be the Young measure obtained as narrow
limit of the sequence 7, of Young measures associated to the functions ug“’(r)
(see Proposition 2.2.4). Let v, ) be the disintegration of 7, which holds for
a.e. (x,t) € Q. Our purpose is to give a characterization of the probability
measure v,y for a.e. (z,t) € Q. In this direction, fix any (z,t) € Q, set
I :=[0,0], I := (a,+0c) and v := v, for simplicity. Then define two
maps 0; = 0(,y),; : C(R) — R by setting

/R FN doi(N) = (o0, ) = / (Fop)©dv(e)  (1=12). (2424)

I

Then o1, oy are (positive) Radon measures on R.

Step 1. Concerning o7, [ = 1,2, it is easily seen that:

(1) supp oy € [0, p(a)] (1 = 1,2);

i) o2({0}) = 0;

ii1) let s1, so be the stable and unstable branch of the equation v = p(u)
see (2.2.14)-(2.2.15)); then for any f € C(R), such that the sequence
{f(ug“’(r))} is bounded in L'(Q) and equi-integrable, the function f o s; €
LY([0, o()],day) (I = 1,2) (e.g., see [Sm]).

Then set

(
(
(

o:=01+09. (2.4.25)

In view of the above definitions, we have

(0.f) = (o0, f) + (o0, f) = / (f 0 0)(€) du(€) (2.4.26)

[0,400)
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for any f € C(R), hence 0 = 0, is a probability measure on R for a.e.
(z,t) € Q. In view of (ii) the support of the measure o is contained in
[0, o()]; moreover v and o satisfy the following relation:

wf) = / F©dv(e) = | f©dv(e) + [ (&) dule) =
[0,4-00) I I

- / [(f 0 51) 0 @] (€) dul€) + / [(f 0 52) 0 0] (€) di(€) =
I Iz

= (o1, fos1)+ (02, [ 0s2) (2.4.27)

for any f € C(R) such that the sequence {f(u§j7(r))} is bounded in L'(Q)
and equi-integrable (here use of (2.4.24) and Step 1-(iii) has been made).

Step 2. For a.e. (z,t) € Q the measure 0, ; is the Dirac mass concentrated
at the point

ol t) = /[0 BRGIVCE TR (2.4.28)

Observe that v is the weak* limit of the squence {p(ug } in L>°(Q) (see
(2.2.31)-(2.2.32)).

Let us give a sketch of the proof (see [Pl1] and [Sm] for further details). In
view of Proposition 2.4.2 and (2.2.31)-(2.2.32), for a.e. (z,t) € Q we obtain

(/ dy(w t ) ( dy(x,t) (§)> =
[0,400) [0,4-00)

— | FOGE dn(© (2.4.29)
[0,400)

for any G, F defined by (2.2.13) and (2.4.6), in correspondence of f € C*(R)
with || fl| oo (r)s [/l o< (r) bounded and g € C1(0, ¢(a)).

Fix any (7,t) € @ such that (2.4.29) holds and set 0 = 0,4y, V = V).

Let A C [0, ¢()] be any compact such that o(A) > 0. Since A is compact,

there exists a sequence {fz} C C([0, o(c)]), fn >0, fn =1 on A, such that
fn(A) — xa(A)  for any A € [0, p(a)]

as h — 0o. Set Fy, := fr(p). In view of (2.4.29) we have

( / (20 9)(E) dv@)) ( / G(©) du(§)> _
[0,+00) [0,+00)

- / G(&)(f 0 ©)() dv(€).
[0,400)
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Using (2.4.27), the above equation reads:

Mw
Mw

(o, fn) Y (o1,Gos)) =Y (o, fu(Gosp)),

=1 =1
and letting h — oo gives

2

a(A)> /[O’w(a)] G(s1(\)) doy (A Z / G(si(\)doy(N).

=1

Writing the above equality in a suitable way gives the following equation
M) — Ma(X) = Nya for a.e. X € (0,¢p(a)), (2.4.30)

where

(see [P11] and [Sm)] for details).

Then set
Ao :=min{\ € [0, p(a)] |\ € suppo}.

If \p = p(a), the claim is obvious. Assume )y < ¢(a) and choose A5 =
[Xo, Ao + 6] with 6 > 0 small enough. Then o(As) # 0 and Ma,(X) = 0 if
A€ (Ao + 9, (). Therefore by equation (2.4.30) we have

M(X\) = Nga, fora.e. A€ (Ao +9,0(a)).
Since N4, does not depend on A and ¢ is arbitrary, we obtain

= N{/\O} for a.e. A € (Mo, (). (2.4.31)

Then observe that for any compact A C [Ag, p(«)) there exists an interval
(A*, () such that
AN\ p(a)) =0.

Therefore in the interval (A", p(a)) we have M4 (\) = 0, hence in view of
(2.4.30) and (2.4.31) we have:

Na=Ng, v (2.4.32)
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Using (2.4.30) again, observe that equalities (2.4.31)-(2.4.32) imply M4 (\) =
0 for a.e. A € (Ao, ¢(a)) and for any compact A C [Ag, p(r)), namely

D s Nau([A p(a)]NA) =0 for ae. A€ (Ao, p()). (2.4.33)
=1

Consider any closed interval A = [31, f2] C (Ao, p(a)). If A € (No,F1) we
have o;([A, p(a)] N A) = 0;(A). Hence, by equation (2.4.33), it follows that

D si(Nai(A) =0 for a.e. A€ (Ao, B). (2.4.34)
=1

Since the functions s} and sj are continuous in (Ao, 31), equality (2.4.34)
holds for any A € (Mg, 81); by Condition ('S) there holds o1(A) = 02(A) = 0.
Since (1 and (32 are arbitrary, it follows that the support of o consists at most
of two points, namely {\o} and {¢(«)}. Finally, by means of Condition (.5)
again, the latter possibility is ruled out (see [Sm]).

Step 3. Let us conclude the proof: in view of Steps 1-2 and (2.4.26), for
a.e. (z,t) € Q the measures 0y, and oy, ) have the following form:

Az, 1) dy(a if v(z,t) >0
e = { (@, 1) Sy (at) (2,t)

00 if v(z,t) =0
(1= Xz,t)) Ou(at) if v(z,t) >0
T2wt) { 0 if v(x,t) =

for some A € L>®(Q), A > 0in Q. By (2.2.31)-(2.2.32) and equality (2.4.27)
we obtain representation (2.2.42). Finally equality (2.2.41) is a consequence
of (2.2.34) and (2.2.42). O

Proposition 2.4.4. Let v € L*>®(Q) be the weak™ limit of the sequence
{gp(u;’(r))} in L>(Q). Then, there exists a subsequence {€;} C {er}, € =
€k, such that there holds

cp(u;j’(r)) — v a.e. in Q. (2.4.35)
Proof. Observe that (2.2.31), (2.2.32) and (2.2.42) imply that
()P = o in L'(Q),
for any 1 < p < 0o, namely also

e @ N o) = 0l e(0)-

Hence
o) = v in LP(Q)
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for any 1 < p < 0o (e.g., see [B]) and this concludes the proof. O

In the following theorem we prove a refinement ”at fixed time” of the disin-
tegration formula (2.2.42).

Theorem 2.4.5. Let {¢;} C {e;} be the subsequence given by Proposition
2.4.4. Fora.e. t >0, let {Tetj} be the family of Young measures associated

to the sequence {u;j’(r)(-, t)}. Then there exists a set F C (0,T) of Lebesgue
measure |F'| = 0 such that for any t € (0,T)\ F there exists a Young measure

7t such that

Tfj — 7' narrowly in Q x R. (2.4.36)

Moreover, for a.e. x € Q the disintegration V., of T is given by

o )\($, t)ésl(v(m,t)) + (1 - )\(LB, t))ész(v(r,t)) if ’U(:U, t) >0

v 0 if v(z,t) =0.
(2.4.37)
Here v(-,t) and \(-,t) are the values at fized t of the functions considered in
(2.2.42).

Proof. In view of Proposition 2.4.4, there exists a set F'* C (0, T') of Lebesgue
measure |F'l| = 0 such that:

Sp(u;j7(7‘)(~,t)) — v(-, 1) a.e. in €, (2.4.38)

for any ¢t € (0,7)\ F'. For any ¢; > 0 let F C (0,T) be the set of
zero Lebesgue-measure given by Proposition 2.3.17, such that the entropy
inequalities (2.2.12) hold for any ¢, t2 € (0,7) \ F'9. Set

F?:=|JF9, F:=FuUF.
heN

Thus, F' C (0,T) has Lebesgue measure |F| = 0.
For any ¢t € (0,T) \ F there exists a subsequence {e¢;+} C {e;}, such that

Aot 00
X{Ogu;j’t’(r)(.i)ga} AT in L (Q) (2439)

for some \! € L®°(Q), 0 < X < 1.

Fix any t € (0,7") \ F and observe that for any f € C.(R) we can write:

E'»tv(r) . _ E',ty(r) .
FOE ) = (Fom o O gy iy +
ej,t7(7') X
+(f 0 82 0 ) (uz ( 7t))X{u;j,t’(7")(.7t)>a} (2.4.40)
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a.e. in . In view of (2.4.38) and (2.4.39) we obtain:

F T 8) B NG (fos)(w( 1) + (2.4.41)
(1= N(O))(f os2)(v(-t) in Lo(Q).

This implies that for any ¢t € (0,7") \ F' the sequence {Tfj t} of Young mea-
sures associated to the sequence {u%+(-,t)} converges narrowly to a Young

t t

measure 7" over {2 X R whose disintegration 78 is of the form:

A(z)d + (1= X(2))d if v(z,t) >0
t s1(v(z,t)) sa(v(z,t)) )
* { d0 if v(z,t) =0 (2.4.42)

for a.e. x € Q. Let us show that for a.e. x € Q the coefficient \f(x) is
the value at fixed ¢ of the function A(x,t), given by Theorem 2.2.7 - which
implies that the whole sequence {7} satisfies (2.4.36) and (2.4.37). To this
purpose, fix any g € C1([0, ¢(a)]), g > 0, § =0 in [0, 5] for some S5 > 0,
and consider inequalities (2.2.12) with g = g, namely:

/ G(uS)(z,t2)((, t2 dx—/G uS ™ (2, 1) (2, 1 )dade <

to to
/(/Gu’QMﬁ—/./ J05Cp dadt (2.4.43)
t1 t1

for any t1,t2 € (0,T) \ F¢, t1 < t2, and for any ¢ € CL([0,T); H} () N
H?(Q)), ¢ >0, (p <0. Here G is defined by (2.2.13) in correspondence of
g. Fix any t € (0,7) \ F (so that (2.4.41)-(2.4.42) hold).

Then for any f € H}(Q) N H?(Q), f >0, fr <0 and for any r > 0 set:
¢"(z,t) = h" () f(z),

where B
0 if |t—t] >,
Wt)=q Lt-%+1 ift € [t—r 1, (2.4.44)
-t +1  ifte(t+0].
By standard arguments of approximation by smooth functions we can choose

¢" as test function in inequalities (2.4.43) written for t; =¢ —r, to =t and
€=g¢; . We obtain

/QG(u;j’“(T))(flf,t)f(l’)dx < (2.4.45)

1 d — €. 7,(r ¢ €7
/ /G@W“ﬁ@ﬁ—/ /MﬂmﬂwﬁMMt
r Ji—r JQ t—r JQ

Let us take the limit as €;7 — 0 in the above inequalities. In this direction,
observe that by estimate (2.3.51), there holds

Jt’

o557 — (™) 2y — O,
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hence
vt — v in L*(Q)

as €;7 — 0 (here use of (2.4.35) has been made).

€;7 — 0 in inequalities (2.4.45) gives

/Q [N (2)(G o s1)(v(, ) + (1 = A)(G o s9) (v(z,1))] fz)dz <

Therefore, the limit as

A i .
| [ s [ [ gy, (2.4.46)
for any f € H&(Q) NH2(Q), f>0, fe <0, where
v)) + (1 = N)G(s2(v)) if v>0 (2.4.47)

if v=0

(here use of (2.2.42), (2.4.41), Remark 2.4.1 and Proposition 2.2.4 has been
made). We can assume that for any f € HZ(Q) N H?(Q), f >0, fux <0,

we have:

lim — //G (x,t) f(x) dedt = /G (x,t)f(x)dz,
r—=071 Ji_,

t+r
hm / x) dxdt = /G (x,t)f(z)dz,

r—0 17
for a.e. t € (O,T) \ F. Then we take the limit as r — 0 in (2.4.46) and

obtain:
/ A(2)(G o s1)(v(z, ) + (1 — A\)G o s2)(v(z, D)) f(x)da <

Q
/ & (2.7 f (2)dz
Q

for any f as above. By analogous arguments also the reverse inequality can

be proven, therefore we have:

N (@)G(s1(v(@, ) + (1= X)G(sa(v(a.8)) = G (x,7)

for a.e. z € Q. In view of (2.4.47) the above equality gives

M(z) = Mz, 1)
for a.e. z € Q and for any t € (0,7) \ F, thus the conclusion follows. [

As a consequence of the above theorem, for any t € (0,7) \ F, where F C

(0,T), |F| =0 is the set given by Theorem 2.4.5, there holds:

(2.4.48)

vk = Ve Jorae ze€,
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where 1/() is defined by (2.4.37) in Theorem 2.4.5 and v. ) is the disin-
tegration associated to the limiting Young measure 7 over Q x R given
by Proposition 2.2.4 and (2.2.42). In view of Theorem 2.4.5 and by the
general properties of Young measures, for any ¢ € (0,7) \ F' and for any
f € C(R), such that the sequence {f(u G )(~,t))} is bounded in L'(€) and
equi-integrable, there holds:

F (1) = o) in 29), (2.4.49)
where
f*’t(x) — [)‘f(sl(v)) + (1 - )‘)f(SQ(U))] (:C’t) if U($, t) > 07
f(0) if v(x,t) =0
(2.4.50)

for a.e. x € Q (see [GMS], [V]). Finally, letting ¢; — 0 in the entropy
inequalities (2.2.12) gives the following result.

Theorem 2.4.6. For any g € CY(R) let G be the function defined by
(2.2.13). Let F' C (0,T) be the set of zero Lebesque-measure given by Theo-
rem 2.4.5. Then for any g € C1([0,0(c]), g =0 in [0,S,] for some Sy >0
and g > 0 there holds

/ G*(x,t2)((x, ta)dx — / G*(x,t1)((x, t1)de < (2.4.51)
/t2/ G*¢ — vxgx} (x,t)dzdt,
t1

for any t1 < to, t1,t2 € (0,T)\ F, and for any ¢ € C*([0,T); H:(Q) N
H2(Q)), (>0, (e <0. Here

G = { SG(Sl(v)) + (1= N)G(s2(v)) Z ! ig (2.4.52)

a.e. in Q.

Proof. Consider any g € C1([0,¢()]), ¢’ > 0, g = 0 in [0,S,], for some
Sg > 0. Let {¢;} be the sequence given by Proposition 2.4.4. Observe that

the family {G(u;j’(r))} is bounded in L*>®(Q) (see Remark 2.4.1). Hence, in
view of (2.2.31), (2.2.32) and (2.2.42) we have

Gue™y A @ i L(Q), (2.4.53)

where G* is defined by (2.4.52). Moreover, in view of Theorem 2.4.5 for any
t € (0,T)\ F there holds

G (1) 5 GH(, 1) in L®(Q) (2.4.54)
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(see (2.4.49) and (2.4.50)). Finally, by means of (2.3.51) we obtain
lo = (" 2q) = e el 2iq) — 0 (2.4.55)
as j — oo. Hence, in view of Proposition 2.4.4 there holds:
v — v in L*(Q). (2.4.56)

By (2.2.25) and (2.4.53)-(2.4.56), passing to the limit with respect to ¢; — 0
in the entropy inequalities (2.2.12) gives (2.4.51) (see [MTT], [P11] for further
details). ]

2.5 Structure of u,: Proofs

Proof of Theorem 2.2.8. Consider the sequence {g,} C C([0,p(a)]),
defined as follows

0 if s € [0,1/2n]
gn(s) =< 2ns—1 if s € (1/2n,1/n)
1 if s € [1/n,p(a)].

By standard arguments of regularization and approximation with smooth
functions, we can write the entropy inequalities (2.4.51) for g = g,. We
obtain

/ (GGt — gn(v)vaCe]dadt > 0, (2.5.1)
Q

for any C € Cl([OaTLH&(Q) N HQ(Q))7 C > 07 Cx:r < 07 C(ao) = C(,T) =0
in €. Recall that

o { MO g (o(($))ds + (1= A) [2© gu(((s))ds  ifv >0,
ifv=0.

Thus, Gf, < Z € LY(Q) and G}, — Z a.e.in Q as n — oo (because g, (s) — 1
for any s € (0, ¢(c))). This implies that

/ / G Gdadt — / / Z¢dzdt (2.5.2)

as n — oo for any ¢ as above. Moreover, observe that

In(V) vy = UO gn(s)ds} ) (2.5.3)

and
lgn(V)vellz2(@) < lvzllz2 (@)

94



The above estimate implies that the sequence { gn(v)vz} is weakly relatively
compact in L*(Q). In view of (2.5.3) and since for a.e. (z,t) € Q

v(z,t)
/ gn(s)ds — v
0

as n — 00, there holds
gn(V)vy = v, in L*(Q). (2.5.4)

Using (2.5.2) and (2.5.4), passing to the limit as n — oo in (2.5.1) gives
(2.2.43). O

Proof of Theorem 2.2.9. There exists a measure A\ € M*(0,T), and for
A-a.e. t € (0,T) a measure v € M (Q) such that:
(a) for any Borel set E C () there holds

T
W(E) = /0 e(Ee) dA(),

where E; := {z € Q| (z,t) € E};
(b) for any f € C.(Q) there holds:

//Qfd”: /OTd)‘(t)/Qf(fUaf) dy () (2.5.5)

(this is a consequence of the more general Proposition 8 on p. 35 of [GMS],
Vol. I). Moreover, since u(Q) < oo, we can choose A(I) = p(2 x I) for any
Ic(0,7),and v(2) =1 for A —a.e. t € (0, 7).

(i) Let us prove that the measure A € M™(0,T) is absolutely continuous
with respect to the Lebesgue measure. To this purpose, fix any 0 < tg < T
and consider the interval I, := [to — r,tg + r]. Choose r > 0 such that
Iy, := [to — 2r,to + 27] C (0,T). Then there exists 7, € Cl(I3.) such that
n=1linl,, 0<n, <1, and suppn, C Iy.. Set

t to+2r
ﬁr(t)—/o nr(s)ds—/o nr(s)ds. (2.5.6)

Consider the family {UZ} of solutions to problem (Pf) and let v, be the
function defined by (2.3.4) for any ¢, x > 0. Recall that in the proof of
Lemma 2.3.2 we have shown that v<(-,t) € HE(Q), v (-,t) > 0 in  for any
t € (0,T). Hence, there holds:

VEL(1,1) <0, 5, (0,£) >0 (2.5.7)
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for any ¢ € (0,T). In view of assumption (A4)-(v), (2.3.5) and (2.5.7), there

holds
to+2r to+2r
/ (x,t)n,(t)dxdt = / ﬁT(t)/ Vg ppdadt +
t Q

to—2r 0—2r
—ﬁT(O)/ngﬁda: < 47“/()“6,;#[37 (2.5.8)

(observe that 7,(t) < 0 for any ¢t and |77(0)| < 4r). Passing to the limit in
(2.5.8) first as k — 0, then as € — 0 gives

to+r to+r
/ / x,t)dxdt +/ / dp < 4rlug|l pm+ ) - (2.5.9)
to to

In view of (2.5.5), the above inequality reads

[Tao=[TTow [aws s

o—T o—T

to+r
< Ar|lugllae o) / / x,t)dxdt
to

(recall that dv; is a probability measure for A-a.e. t € (0,7)). Thus, d\ =
h(t)dt for some h € L'(0,T). On the other hand, h € L>(0,T), since by
(2.5.10) we have

h(t) < 2llugllae@) = 12( D)Ly a)

for a.e. t > 0 (recall that by assumption uf, € M*(Q) it follows Z > 0 a.e.
in Q). Setting
Ve := h(t)n
for a.e. t € (0,T) gives claim (7).
(7i) By (2.2.40) and inequality (2.2.43) there holds

(1. Ce) <0, (2.5.11)

for any ¢ € CZ([0,T]; Hy () N H?(Q)), ¢ >0, (oo <0, ¢(-0) =¢(,T) =0
in Q. Fix any 0 < ¢; < t2 and consider 7, € Lip([0,00)) defined as follows:

Lt—t14+1%) if te(ti—%5,t+%)
1

if telti+5,t—5]
“lt—t,-1%) if te(ta—5,ta+ %),

nr(t) =

with 7 > 0 such that [t; — 5,t2 + 5] C (0,T). For any p € HJ () N H(Q),
p >0, prr <0, choose Y7 (z,t) := n,(t)p(z) as test function in inequality
(2.5.11). In wiew of (2.2.44) we obtain:

1 [tits } 1 [tzt5 3
/ - (p)dt < T/ () dt,
t

T _r _r
1—3 la—3
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whence as 7 — 0 we get
<;)4/t1 ’ p> < <;>(/t27 p> .
O
To prove Theorem 2.2.10 we need some preliminary results. The first one is

the following technical Lemma.

Lemma 2.5.1. Let f € L?((0,7); H*(Q)), where Q C R is a bounded inter-
val. Then there exists a set H C (0,T) of Lebesque measure |H| = 0 such
that for any to € (0,T)\ H there holds:

to+h
lim — / f(l’o,t) dt = f(xo,to) (2512)

for any xo € Q).

Proof. Set Q := Q x (0,T). Since f, € L*(Q), there exists a set H' C (0,T)
of Lebesgue measure |H'| = 0 such that for any to € (0,7)\ H! there holds
f(-,t0) € HY() and

o+h
hm o dt/f x,t) d:c—/f x,tg)d C(to) - (2.5.13)

h—0 h

On the other hand, we can find a dense and countable set D C Q, D = {z}
such that for any x € D the map

t— f(xg, t)
belongs to the space L1(0,T). Therefore for any z € D there exists a set

HF C (0,T), |H*| = 0, such that

t0+h
Jim / Fla, it = f(z to) (2.5.14)

for any to € (0,T)\ H*. Set:

H:=H'UH?, H?:= (U Hk> .

keN

Fix any top € (0,7) \ H and then fix any zo € Q. Since D is dense and
countable in €2, for any € > 0 there exists x5 € D such that

1 IS
0

97



(here C(tp) > 0 is defined by (2.5.13)). Observe that

to+h roth
P, Vo)~ fanold = 5 [ (o) - St o+
to+h
o [ U - fag )+
to+h
+% /to [f (25, t0) — f(zo,t0)] dt.

Let us study the three term in the right-hand side of the above equality. In

view of (2.5.15), we have:

1 to+h 1 to+h x0

’h/t [f(zo,t) — f(x5,1)] dt’ =5 /t dt/g fol(z,t)dx
0 0 Zq

1 to+h % ) e
< <h/t /Qfgdxdt> lzo — 5|2 <3 (2.5.16)
0

hor any h < 7' (e,t0) (here use of (2.5.13) has been made). Moreover,

1 to+h

[ 0 - s ] <
0

<

(2.5.17)

Wl ™

for any h < Ez(a,xo,to) by (2.5.14) (recall that z§ € D). Finally, there
holds:

1

to+h
P e - sl = 15650~ )] <

to

) 1
< (/ f£<x,to>dx) 20— 5]} <
Q

the last inequality being a consequence of (2.5.13) and (2.5.15). Set

(2.5.18)

w| ™

h(e, zg,tp) = min {El(e,to),ﬁ2(€,xo,to)} .
In view of (2.5.16)-(2.5.18), there holds

1

to+h
E /to [f(w(), t) — f(l’o, to)] dt < e

hor any h < h(e, zo,t9). This concludes the proof. O

Next, arguing as in the proof of Theorem 2.2.9, we can decompose the

positive Radon measure ufc’(s) in the following way

<u,0> = [T Gt o 0) i (2.5.19)
0

for any ¢ € C.(Q), for some 7§ € M™(Q) defined for a.e. t € (0,T).
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Remark 2.5.1. Observe that by (2.2.3) there holds:

/OT he (1) { </ﬂ us ™ (z, t)d)(x)da:) + (35, ¢>} dt =

T
= / h(t)dt/ ve(z,t)dp(z)de (2.5.20)
0 Q
for any ¢ € CX(Q) and h € CX(0,T). Since by (2.2.19) the map
— ¢ =(2)d
t— [ i@ t)on(a)da

belongs to the space L*(0,T) for any € > 0, it follows that the function

t— < /Q u;V)(x,t)gb(x)dx) + (3%, )
belongs to H'(0,T) C C([0,T)) for any ¢ € CL(Q).
The following lemma holds.

Lemma 2.5.2. For any e > 0 there exists a set H* C (0,T), of zero Lebesgue
measure such that:

(i) for any t € (0,T)\ H¢, v(-,t) € HL(Q) (here v¢ is defined by (2.2.10));
(7i) for any e >0, t € (0,T)\ H® and for any 6 > 0, set

B§(t) :== {z € Q| v(z,t) > 6} . (2.5.21)
Then for any € > 0 there holds
supp 75 N B§(t) = 0. (2.5.22)

Proof. (i) Since v € L2((0,T); HY(2)) (see (2.2.19)), it follows that, for any
€ > 0, there exists a set H19) (0,T) of Lebesgue measure \H(l’ﬁ) =0,
such that v(-,t) € H}(Q) for any t € (0,T)\ H9). This gives claim (4).
Moreover, since [Qﬁ(u;’(r))]t € L%((0,7); H)(R)), we can find a set HZ) C
(0,T) of Lebesgue-measure |H )| = 0 such that for any ¢t € (0,7) \ H®*)
there holds [¢(ug™)],(-,t) € H3(R) € C() and:

to+h
i | )] (a0, 0t = [6(ED)] (worte)  (25.23)

h—0 E
for any xg € Q (see Proposition 2.5.1). Set

H¢ = HLO y g29)
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(#) Fix any tg € (0,7) \ H¢ and for any § > 0 let B§(tg) C € be the set
defined by (2.5.21) in correspondence of ty. In view of Theorem 2.2.3 and
decomposition (2.5.19), there holds

supp; = {x € Q| p(us®)(w,1) =7}

Fix any € > 0 and suppose that there exist ¢ty € (0,7)\ H¢ and zy € Q such
that

BE(to) N {x e Q| YusM)(z,to) = 7} > w0} . (2.5.24)

Let I,(zp) denote the interval centered at zy and length r. We have:

Ry I C e

I’r(xO)

to+h
= / / (us "N (, t)dadt
to IT xo

hence in the limit as » — 0,

to+h
D) (o, to + h)dz — (ug) (o, to)dw = / [ (ug")]e(wo, t)dadt

to

(recall that ¢ (us") € C(Q) and [ (u €<T><, t))], € C(Q) for ae. t € (0,T)).
Observe that by (2.5.24) there holds 1 (ui m) )(z0,t0) = . Therefore we have:

p(us) (o, t0) = 0. (2.5.25)

Moreover, in [BBDU]J it is proved that if 1 (u; &(r) )(zo,t0) = 7, then there
holds ¥ (ug &(r) )(zo,to + h) =« for any h > 0. Therefore we obtain

t0+h
li =
hlir%) h /to (l’o,t)dt 0,

namely:
[ (ug™)]e(wo, t0) = 0

(here use of (2.5.23) has been made). On the other hand, by our assumption
xo € Bj(to) hence we have:

6 < v (wo, to) = p(ug") (z0, o) + €[t (ug™)]e(zo, o) =

(see also (2.5.25)) which gives a contradiction. O
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Remark 2.5.2. In view of Lemma 2.5.2, for any € > 0 and for any g €
CH[0,p(a)]), ¢ >0, g=0in [0,Sy] for some Sy > 0, there holds:

(s (1)),

V(-5 1)), (5 1) = ¢ e LY(Q), and
g (- 1))vga (- 1) = g(v° (-, 1)) W ;’(T)(,t)) ()

gl us™ (z [w(u;(r)( ’t))]t x,t)dx
/Q ( ( T ( 7t))) 1/}’<u;’(r) (x,t)) C( 7t) <

< - /Q 90 (2, DS (2, )G, ) e

for a.e. t € (0,T) and for any ¢ € CY([0,T); H(Q)), ¢ > 0 (by the same
arguments used to prove (2.53.65) in Proposition 2.3.17). This implies:

(i) the entropy inequalities (2.4.51) and inequalities (2.2.43) hold for any
¢ € CH[0,T]; HE(Q)), ¢ >0 (see the proof of Theorems 2.2.8-2.4.6);

(ii) for a.e. t € (0,T) let % € M™T(Q) be the Radon measure given by
Theorem 2.2.9. Then (i, f) < (Juy, f) for a.e. t1 < ty and for any f €
clQ), f>0.

Proposition 2.5.3. Let Z be the function defined by (2.2.34), (2.2.41) and
Y € MT(Q) be the Radon measure given by Theorem 2.2.9-(i) for a.e. t €
(0,T). Let {e;}, €j — 0, be the sequence given by Proposition 2.4.4. Then
for any t € (0,T) there holds

/ W (@, (e, t)dz + (57, 6) — / 2@ )(x)dz + (50, &) (2.5.26)
Q Q

for any ¢ € CH(Q), as e; — 0.

Proof. Fix any ¢ € C}() and observe that the function

050 = ([ i 00wie) + G0 0)

belongs to the space H'(0,T)) (see Remark 2.5.1). By (2.5.20) it follows that

1

Uy (t) = 7 /Ot (/Q uS\") (2, 8)p(x) deds + (5, ¢)> ds +

I .
- t/O Asvx($,8)¢z($)d$d8,

hence estimates (2.2.16) and (2.2.19) give

\|U;jHC([o,T]) <C
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for some C' independent of €;. Moreover, by (2.2.19) (see also Remark 2.5.1),
we obtain

U9 (t2) — U (t1)] < Cyllvg || 2 lt2 — t1]V? < Cylts — to| /2,

where the constant Cy does not depend on ¢;. Then the sequence {U;j } is

relatively compact in C([0,77]), and the conclusion follows. O

Proposition 2.5.4. Let {¢;}, €; — 0, be the sequence given by Proposition
2.4.4. Then there exists a subset E* C (0,T) of Lebesgue measure |E*| =0,
with the following property: for anyt € (0,00)\E! there exists a subsequence
{€;+} € {€;} (depending on t) such that

/Q{( ) e [()1} (z,t) dz < C(t) < oo, (2.5.27)

/( €5 i?

Vit () = u( ) in O(). (2.5.28)
)

Proof. In view of estimates (2.3.49), (2.3.51) and using the Fatou Lemma,
we have

T y v "))
/0 hjn_l}ggf (/Q [(ny)2+ejW (z,t)dx | dt < C.

The above estimate implies that

€5,(r)\12
lbniéglf (/Q ()2 + ejW] (x,t) dx)

belongs to the space L'(0,T), hence there exists a set E'c (0,7), |E'| =0,
such that, for any ¢ € (0,7) \ E', claim (2.5.27) holds for some subsequence
{€t} € {€;}, which depends on ¢.

Let F' C (0,T) be the set of zero Lebesgue measure given by Theorem 2.4.5
and set B
E'=E'UF.

Now, fix any ¢ € (0,7]\ E! and observe that estimate (2.5.27) implies that
the sequence {v%:t(-,¢)} is uniformly bounded in C(€) and equi-continuous.
On the other hand, for any ¢ € (0,T) \ E' there holds v%!(-,t) — v a.e. in
Q. In fact

vt (1) = p(ug ) (1) + g [ ()] (1),

and by Proposition 2.4.4 and (2.5.27) we obtain

@(U;j’t’(r))(-,t)ﬁv a.e. in Q,
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and
Gj,t[w(uscj’t’(r))]t(-,t)—>O a.e. in Q

Therefore the whole sequence {v€f7t(-, )} converges uniformly in Q, namely:
v9t(- 1) — v(-t) in C(Q)
and this concludes the proof. O

Now we can prove Theorem 2.2.10.

Proof of Theorem 2.2.10. For any €¢; > 0 let H% C (0,7") be the set of
zero Lebesgue measure given by Proposition 2.5.2. Finally, let E* C (0,7T),
|E1| = 0 be the set given by Proposition 2.5.4. Set:

E:=E'UE*, E®:=|(|JHY
J

Fix any t € (0,00) \ F and for any § > 0, set
Bs(t) :={z € Q| v(z,t) > 6}; (2.5.29)

consider the sequence {¢; .} given by Proposition 2.5.4, so that (2.5.27) and
(2.5.28) hold. In view of the uniform convergence

vt t) — v(,t) in C(Q),

it follows that

NI
NGNS

vt (1) > o(t) — o > - in Bsl(t)

for any €;; small enough. Therefore in view of Lemma 2.5.2 there holds:
Bs(t) Nsupp " =0
for any €;,; small enough. Moreover, by (2.5.27) and (2.5.28) we obtain:

52

P at)de < [ [ O o e <
4 Bs(t)

Bs(t)

2 [ [P O] (@ e
Bs(t)

IA

Ej@,(’r’))] 2

+ejit / (Ufcj’“("))W(ufg’“(r))Wui—_r’f (z,t)dz. (2.5.30)
Bs(t) ,(Z)/(uxg,tv( ))

Observe that the assumption (Hj)-(7) implies that there exists a constant
C > 0 such that:

103



In view of assumption (H4) and estimate (2.5.27), it follows that

e]tv() 2
ej,t/(U?’“(T))%’(ui’”“(’”))Mdm < (25.32)
Q

v )
€5,6,(T)\12
< kg/ €j7thCB < C(t) < o0
Q wl(uzj»t’(”)

Estimates (2.5.30)-(2.5.32) imply that the sequence {u ol ,t)} is weakly
relatively compact in L'(Bs(t)), hence convergent to Z(-,t) in the weak
topology of this space (here use of Theorem 2.4.5 has been made). In other
words

/ ug " (@, )6 (w)da + / da)dy’ = (2:5.33)
Bjs(t)

Bs(t)

- / w3, p(@)de — | Z(w, t)o(x)da,
Bs(t)

Bs(t)

for any ¢ € C.(€2). On the other hand, setting
B§(t) . ={x € Q| v(z,t) >0} C Bs(t)

Proposition 2.5.3 gives

im [ @ tg@)d+ | plo)di =
€it=0 ) Bs (1) Bs(t)

= / Z(z,t)p(x)dx + (15( )dAt,
Bs(t) Bs(t

for any ¢ € C1(B$(t)). Hence, in view of (2.5.33) we obtain:

/ o(2)di, = 0,
¢ (t)

for any ¢ € CL(Bg(t)), for any § > 0. This implies that J;(BZ(t)) = 0 for
any ¢ > 0, namely:

4 (B(t)) =0, B(t) ={x € Q| v(z,t) >0} (2.5.34)
(because B(t) is an open set and the family {B§(t)}s for 6 = -, n € N, is an
increasing sequence of open sets such that U, 1/n(t) = B(t )) By (2.5.34)
the claim follows. (]
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Chapter 3

Long-time behaviour of
solutions to a
forward-backward
parabolic equation

3.1 Introduction

In this chapter we study the long-time behaviour of solutions to the quasi-
linear forward-backward parabolic problem

up = [p(u)]zz  in (0,1) X (0,00) := Qo
[p(u)], =0 in {0,1} x (0,00) (3.1.1)
u = ug in (0,1) x {0} .

Here ug € L°°(0,1) and ¢ € C?*(R) is a nonmonotone, cubic-like function
satisfying the following conditions:

(ii) A:=¢(c) < ¢(b) =: B, ¢(u) — too as u — £00;
(i) (D) £ 0, ¢"(c) £0.

We also denote by a € (—o0,b) and d € (c,00) the roots of the equation
¢(u) = A, respectively ¢(u) = B (see Fig.3.1).

Problem (3.1.1) with a cubic-like ¢ arises in the theory of phase transi-
tions (see below for the physical motivation of different choices of ¢). In this
context the function u represents the phase field, whose values characterize
the difference between the two phases (e.g., see [BS]). The half-lines (—oo, b)
and (¢, 00) correspond to stable phases and the interval (b, ¢) to an unstable
phase (e.g., see [MTT]). Therefore

S1 1= {(u. 6(u))] u € (~00,6)} = {(s1(v).v)| v € (~00, B)}

{(i)¢’(u)>0 foru<bandu>c, ¢'(u)<0 forb<u<c
(H)
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Figure 3.1: Assumption (H).

and
S = {(, 6(u))] u € (¢,00)} = {(s2(v), v)]| v € (4, 50)}

are referred to as the stable branches, and

So = {(u, 6(w)] u € (b,¢)} = {(s0(v), v)| v € (4, B)}

as the unstable branch of the graph of ¢. Beside (H), we always make the
following assumption:

Condition (S): The functions s, sh and s{, are linearly independent on
any open subset of the interval (A, B).

In what follows, we always consider weak entropy measure-valued solu-
tions to problem (3.1.1), whose existence and relevant properties were inve-
stigated in [P11] (see Definition 3.2.1). They are obtained as limiting points
as ¢ — 0 of the family {u®} of solutions to the regularized equation

up = [d(w)]zx + EUzat (e >0), (3.1.2)

considered in the half-strip (0, 1) x (0, 00) with the same initial and boundary
conditions as in (3.1.1). As proved in [NP], such solutions satisfy a family
of viscous entropy inequalities, whose limit as ¢ — 0 exists in a suitable
sense ([P11]; see Section 3.2 below). In [NP] the long-time behaviour of the
solution u® was studied for fixed ¢ > 0.

Let us mention that other regularizations of forward-backward equations,
beside that considered in (3.1.2), have been used. The equation
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arises both in image reconstruction problems (as the one-dimensional ver-
sion of the Perona-Malik equation; see [PM]), and as a mathematical model
for heat transfer in a stably stratified turbulent shear flow in one space di-
mension (see [BBDU]). In these cases a typical choice of the function ¢ is
o(s) = % (A,B > 0), or ¢(s) = sexp(—s). Observe that the transfor-
mation u = w, reduces equation (3.1.3) to the equation u; = [¢(u)]gz. If
@(s) = sexp (—s), the latter has been proposed as a mathematical model for
aggregating populations (see [Pa]). Using the regularization (3.1.2), results
analogous to those for problem (3.1.1) with a cubic-like ¢ have been proved
in [Pa] for the case ¢ > 0, and in [Sm] for the limiting case ¢ — 0. A different
regularization of (3.1.3), namely

wy = [¢p(wz)]e + e[x(wz)]zt (3.1.4)

was used in [BBDUJ; here x is a smooth nonlinear function, such that x/(s) >
0 for s > 0, x(s) - v € Rand x'(s) — 0 as s — oco. In addition, the
regularization of (3.1.3) leading to the fourth-order equation

wy = [d(we)]z — KWgzza (k> 0) (3.1.5)

has been also investigated (see [BFG], [Sl]; observe that the change of un-
known u = w; reduces equation (3.1.5) to the one-dimensional Cahn-Hilliard
equation). While the regularizations (3.1.2), (3.1.4) take time-delay effects
into account, (3.1.5) arises when considering non-local spatial effects. It is
conceivable that both regularizations are physically meaningful (see [BFJ]),
although the limiting dynamics of solutions expectedly depends on the re-
gularization itself.

It was proved in [Sl] that measure-valued solutions of the Neumann
initial-boundary value problem for equation (3.1.3) can be defined by ta-
king a suitable limit as k — 0 of solutions to the corresponding problem for
(3.1.5), in the same way as for u; = [p(u)]z, letting e — 01in (3.1.2) (however,
such solutions do not seem to satisfy any entropy inequality). The long-time
behaviour of such solutions was also studied, yet under assumptions on ¢
which are not satisfied if assumption (H) holds.

The chapter is organized as follows. In Section 3.2 we describe our results
and the methods of proofs. Precise statements are given in Section 3.3 (see
also Subsection 3.4.2). Sections 3.4 and 3.5 are essentially devoted to proofs.

3.2 Outline of results

Following [P11] (see also [EP], [MTT]) we give the following definition.

Definition 3.2.1. By a weak entropy measure-valued solution of (3.1.1)
in Qoo we mean any quintuple u, Ao, A1, A2 € L®(Qx), v € L¥(Qso) N
L2((0,T); HY(0,1)) for any T > 0 such that:
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(7) Z?:o Ai =1, \; >0 and there holds:

2
u= Z)\isi(v) (3.2.1)
=0

with My =1ifv <A, d=1ifv>DB;

(ii) for any T > 0, set Qp := (0,1) x (0,7T); then for any T > 0 the couple
(u,v) satisfies the equality

//QT {utpr — varhy } dadt + /Oluo(a:)w(x,O)dm =0 (3.2.2)

for any ¢ € CY(Qp), ¥(-,T) =0 in (0,1);
(iii) for any g € C*(R), set

A
G\ = / g(o(s))ds. (3.2.3)

Then, for any T > 0 the entropy inequality
[ [ 4G vi= gy - g @i v +
Qr
1
+/ G(uo)y(z,0)dx > 0 (3.2.4)
0

is satisfied for any ¥ € CY(Qr), ¥ > 0, ¥(-,T) = 0 in (0,1), and g €
Cl(R), ¢ > 0.
Here, G* € L*(Qw) is defined by

2

G*(z,t) :== Z)\i(x,t)G(si(v(x,t))) (3.2.5)

i=0
fora.e. (z,t) € Qoo
Let us also make the following:

Definition 3.2.2. By a steady state solution of (3.1.1) we mean any quin-
tuple @, Ny, A, A5 € L(0,1), T € R such that 0 < X\f <1, 37 A =1
and

2
= \si(D) (3.2.6)
=0

with \] = 14fv < A, X5 =1 ifv > B. Observe that uw is constant if
1< A, 7> B.
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In [P11] the existence of weak entropy measure-valued solutions of problem
(3.1.1) was proved; let us briefly outline the proof for further reference.

Consider for any € > 0 the reqularized problem:

u; =05, in Qs
=0 in {0,1} x (0,00) (3.2.7)
u = ug in (0,1) x {0},

where

v° = ¢(u°) + euf . (3.2.8)
Global existence and uniqueness of the solution u® to problem (3.2.7) were
proved in [NP].
Moreover, concerning the families {u®} and {v°} the following a priori esti-
mates were proved to hold:

| u®[] Lo (@ue) < C (3.2.9)
[0°] Loo(@ue) < € (3.2.10)
10zl 22 (o) + 1 VeEUi |l 2200y < s (3.2.11)

for some C > 0 independent of £. The proof of the above estimates makes
use of the equality

/ G(u®)(z, t2)p(z, t2)dx —/ Gu®)(z, t1)Y(z, t1)de = (3.2.12)

/ / G () dadt + /:2 / Ylg (va)]”_:mdxdw
/tb/ Npgv dedt—/ / g (v )2dxdt

which holds for any t; < t2, ¥ € CY(Q..), g € CL(R) and G defined by
(3.2.3). For any T > 0, choosing in (3.2.12) ¢ € C*(Qp), ¥ >0, (-, T) =0
and ¢’ > 0 also gives the so-called viscous entropy inequality

/ 0 {G(ua)wt — g(v )5y — g'(va)(vi)Qw} dxdt +
1T
+/ G(uo)(z,0)dz >0, (3.2.13)
0

which thus holds for any nondecreasing sufficiently regular g.

Relying on estimates (3.2.9), (3.2.10) and (3.2.11), it was shown in [P11] that,
eventually up to a sequence {ex}, ex — 0, in any cylinder Q7 the sequence
{7%*} of Young measures associated to the functions u* converges in the
narrow topology over Qr x R to a Young measure 7 (e.g., see [V]), whose
disintegration v(, ) is a superposition of the three Dirac masses concentrated
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on the branches Sy, S2, Sy of the graph of ¢. In other words there exist
Ai € L®(Qoo) (1=0,1,2), 0<\; <1, 32 A\ = 1, such that there holds:

2
Viat) = Z )‘Z(xa t)(ssi(v(x,t))v (3214)
=0

where \j = 1if v < A, Ag =1if v > B and v € L*(Q) is the limit of
both the sequences {¢(u*)} and {v°*} in the weak™ topology of L>®(Qx)
(see (3.2.8) and (3.2.11)). By the properties of the narrow convergence of
Young measures, for any f € C(R) there holds:

F) S in L%(Qo0), (3.2.15)

where
2

frlat) =) Nila ) f (si(v(x,1))) (3.2.16)
i=0

(e.g., see [GMS] and [V]). In particular, there holds u* = u in L®(Q),
u = E?:O Aisi(v). Moreover, in view of estimate (3.2.11), we have v €
L%((0,T); H*(0,1)) and v** — v in L?((0,T); H'(0,1)) for any T > 0. Fi-
nally, passing to the limit as €, — 0 in the weak formulation of problems
(3.2.7) and in inequalities (3.2.13) gives equation (3.2.2) and the entropy
inequalities (3.2.4), respectively.

This shows that global weak entropy measure-valued solutions of problem
(3.1.1) do exist, hence it is meaningful to investigate their long-time be-
haviour.

The chapter is organized as follows:

() in Subsection 3.3.1 we claim that, for any weak entropy measure-valued
solution (u,v) of problem (3.1.1), not necessarily obtained by means of the
Sobolev regularization (3.1.2), there exists a set F' C (0,00) of Lebesgue
measure |F'| = 0 such that the following inequalities:

1 1
/ G (2, 1) (@) da —/ G t)o(a)ds > (3.2.17)
0 0
to 1
> [ [ s + g C)ieduas
t1 0
hold for any t1,t2 € (0,00) \ F, t1 < ta, ¢ € CY([0,1]), ¢ >0, and g €
CY(R), ¢" > 0 (see Theorem 3.3.1). Here the function G* is defined by

(3.2.3) and (3.2.5). In particular, choosing ¢ = 1 in the above equalities
gives

[ee) 1
/ dt/ v2(x,t)dz < C. (3.2.18)
0 0
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for some constant C' > 0 (by setting g(\) = \); moreover,

1 1
/ G*(z,t2)dx < / G*(z,t1)dx (3.2.19)
0 0

for any t1 < t9, ti1,ty € (0,00) \ F and for any non-decreasing g.

Inequalities (3.2.17)-(3.2.19) will play a crucial role in the study of the
asymptotic behaviour in time of the solutions to problem (3.1.1).

In Subsection 3.4.2 we address the case of weak entropy measure-valued
solutions (u,v) of problem (3.1.1) obtained as limiting points of the families
{u}, {v°} of solutions to the regularized problems (3.2.7) (here for any
e > 0 the function v° is defined by (3.2.8)). As already remarked, the
estimates and convergence results proved in [P11] in the limit ¢ — 0 hold
in the cylinder (Qo, and do not give any information about the behaviour
of the family {u®(-,¢)} for fixed £ > 0. In this connection, we claim (see
Proposition 3.4.3 and Theorem 3.4.4) that there exists a subset F' C (0, 00),
of Lebesgue measure |F| = 0, such that for any ¢ € (0,00) \ F the Young
measures associated to the functions u®(-,¢) (which are uniformly bounded
in L>°(0,1)) converge narrowly to a Young measure 7¢ with disintegration

2
V; = Z )\i(m’ )58i(v(x,t)) (3.2.20)

t
=0
for a.e. x € (0,1). Here \i(-,t), v(-t
functions considered in (3.2.14).

) are the values at fixed ¢ of the

(8) Then we proceed to investigate the long-time behaviour of any weak
entropy measure-valued solution (u,v) to problem (3.1.1). In this direction,
first we observe that in view of inequalities (3.2.18) the map

1
tl—>/ v2(x,t)dx
0

belongs to the space L'(0,00), hence

00 1
/ dt/ v2(x, t)dz — 0 as T — oo. (3.2.21)
T 0

In view of (3.2.21), in Theorem 3.3.5 we show that there exists a unique
constant ¥ € R such that for any diverging sequence {t,} there exist a
subsequence {t,, } C {t,} and aset E C (0, c0) of Lebesgue measure |E| = 0,
so that

v(,t+ty,) — v in C([0,1]) (3.2.22)

for any ¢t € (0,00) \ E. The value of v depends on the average M, of the
initial datum ug to problem (3.1.1),

1
My, ::/O up(x)dx. (3.2.23)
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In fact, as a consequence of the homogeneous Neumann boundary condition
in (3.1.1), the following conservation law holds:

1 1
/ u(z, t)de = / uo(x)dx for any t > 0 (3.2.24)
0 0

and using (3.2.24) we prove that
(i) a < M, <dif and only if A <7 < B;
(#3) if My, < a (respectively, M, > d), then v = ¢(M,,);

(see Fig.3.1). Observe that for M,, < a and M,, > d the constant T
is uniquely determined by the initial datum wug, precisely by its average
over (0,1) - namely, v does not change for any weak entropy solution of
problem (3.1.1) with the same initial datum wug. This is a remarkable feature,
for no uniqueness of measure valued solutions to problem (3.1.1) is known.
Unfortunately, we do not prove the same result for a < M,,, < d: in this case
we only deduce the uniqueness of the constant v for any given weak entropy
measure-valued solution (u,v) of problem (3.1.1) - namely, the value of ©
might depend on the particular choice of the couple (u,v).

Concerning the long-time behaviour of u(-,t), we have to distinguish the
cases a < My, < d and M,, < a, M,, > d.

In fact when o < M,, < d, we have to take into account the long-time
behaviour of the coefficients A;. Precisely, for any ¢ = 0,1,2 there exists a
unique A} € L>(0,1), Af >0, Z?:o Af = 1, such that for any diverging
and non-decreasing sequence {t,} there holds

iz, t+t,,) — A (x) for a.e. z € (0,1) (3.2.25)
for any t € (0,00) \ E, where {t,, } C {t,} and E C (0,00) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.2.22) holds (see Proposition 3.3.4
and Proposition 3.5.4). The coefficients A} are uniquely determined by any
fixed weak entropy measure-valued solution (u,v) of problem (3.1.1), that

is, they do not depend on the sequence {t,,}. Thus, in view of (3.2.22) and
(3.2.25) we obtain:

u(t+ty,) = a.e. in (0,1), (3.2.26)

for any t € (0,00) \ E, where
2
=) Asi(D) (3.2.27)
=0
(see Theorem 3.3.6-(1)).
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On the other hand, when M,,, < a (respectively M,, > d), by the uniform
convergence v(-,t + t,) — ¢(My,), using standard arguments of positively
invariant regions we show that there exists 7" > 0 so large that v(-,t) < A
(respectively, v(-,t) > B) in (0,1) for a.e. t > T (see Theorem 3.3.5-(i7)).
Thus, by (3.2.1) we have

u(-,t) = si(v(-,t)) in (0,1) (3.2.28)

(respectively, u(-,t) = sa(v(+,t)) in (0,1)) for a.e. t > T. Arguing as in the
case a < M,, < d, for any diverging and non-decreasing sequence {t,} we
denote by {tn,} € {t,} and E C (0,00) respectively any subsequence and
any set of zero Lebesgue-measure such that (3.2.22) holds. In view of the
above remarks, we have:

u(yt+tn) — My, in C([0,1]) (3.2.29)

for any t € (0,00) \ E (see Theorem 3.3.6-(ii)).

Then, given any weak entropy measure-valued solution (u, v) of problem
(3.1.1) we wonder whether there exists the limit as ¢ — oo, in some suitable
topology, of the families u(-,t) and v(-,t). In fact, in view of the above
remarks, for any non-decreasing sequence {t,}, t, — oo, there exist a
subsequence {t,, } C {t,} and a set E C (0,00), |E| = 0 such that v(-,t +
tn,) — Uin C([0,1]), and u(-,t+t,,) — wa.e. in (0,1) or u(-, t+t,, ) — My,
uniformly in [0,1], only for ¢ € RT \ E'; observe that the set F, in general,
depends on the sequence {t,}. A natural question is the following: is it
possible to prove that E is independent of the choice of {t,}7 In other
words, we are interested in proving the existence of the limits

v(,t) —v  in C([0,1)), (3.2.30)

u(-,t) — a.e.in (0,1), (3.2.31)
(in the case a < M,,, < d) and

u(e,t) = My, in C([0,1]) (3.2.32)
(in the cases M,, < a, My, > d) as t — oo, t € RT \ E* for some

E* C (0,00) of Lebesgue measure, | E*| = 0. To address this point, for any
k € N consider the sets:

By = {t € (0, 00)| /01 V2(2, t)dx < k} , (3.2.33)

and
1
Ay = {t € (0,00)] /0 v2(x, t)dx > k:} = (0,00) \ Bxg. (3.2.34)
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Then, A1 C Ag, and, in view of estimate (3.2.18),
C
| Ax| < % 0 as k — oo. (3.2.35)

This implies that
Ao =) A (3.2.36)
k=1

has Lebesgue measure |A| = 0, thus E* = A, would be a natural choice.
However, we can only prove a slightly weaker result, showing that for any £ >
0, the limits (3.2.30)-(3.2.32) hold as t — oo, t € By (see Theorem 3.3.7).
In other words, for any § > 0, we can find a set A; /5 such that [A; /5| < 6,
and convergences (3.2.30)-(3.2.32) hold for t — oo, t € (0,00) \ A;s-

Finally, in view of Definition 3.2.2, the couple (w,v) (in the case a <
M,, < d) and the couple (M, »(M,,)) (in the cases M,, < a, My, > d)
are steady state solutions of problem (3.1.1).

3.3 Mathematical frameworks and results

3.3.1 A priori estimates

The following theorem is a consequence of the entropy inequalities (3.2.4).

Theorem 3.3.1. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1). Then there exists a set F' C (0,00) of Lebesgue measure
|F'| =0 such that inequalities (3.2.17) hold for any t1, ta € (0,00) \ F.

By Theorem 3.3.1 we obtain the following results.

Corollary 3.3.2. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1). Then there exists a constant C' > 0 such that estimate
(3.2.18) holds.

Corollary 3.3.3. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1) and let F be the set given by Theorem 3.3.1. For any g €
CH(R), let G* be the function defined by (3.2.5). Then there exists

1
Ly := lim / G*(x,t) dx, (3.3.1)
t — o0 0

te(0,00)\ F

for any non-decreasing g.
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Finally, we give a property of monotonicity in time of the coefficients \;(x, t)
for a.e. x € (0,1). Analogous results in this direction have been proved
in [Pl1], showing that A\j(z,t) (repectively, Aa(z,t)) is non-decreasing with
respect to ¢ in any cylinder of the form I x (t1,t2), I C (0,1) whenever v
is strictly less that B (respectively, strictly larger than A). However if the
latter assumption is dropped, a weaker result of monotonicity is still valid.
This is the content of the following proposition.

Proposition 3.3.4. Let (u,v) be a weak entropy measure-valued solution
of problem (3.1.1). Let t; < ta € (0,00) \ F' where F is the set of zero
Lebesque-measure given by Theorem 3.3.1. Then:

(1) if v(-,t;) < B* < B in (0,1), j =1,2, we have

Az, te) > Mi(x, 1) (3.3.2)
for a.e. x € (0,1);
(i) if v(-,t;) > A* > A in (0,1), j =1,2, we have

Xo(z,t2) > No(z, 1) (3.3.3)
for a.e. x € (0,1).

3.3.2 Large-time behaviour of weak entropy solutions

In what follows we denote by (u,v) a weak entropy measure-valued solution
of problem (3.1.1). We begin by the following result, which is a consequence
of estimate (3.2.18) and the conservation law (3.2.24).

Theorem 3.3.5. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1) with initial datum uo and let M, be defined by (3.2.23).
Then there exists a unique constant © € R such that for any diverging se-
quence {t,,} there exist a subsequence {t,, } C {t,} and a set E C (0,00) of
Lebesgue measure |E| =0, so that there holds

vt +tn) —T in C([0,1]) (3.3.4)
for any t € (0,00) \ E. Moreover,
(i) a < My, <dif and only if A <v < B;
(i) if My, < a or My, > d, then
7= (My,). (3.3.5)

Finally, if My, < a (respectively, My, > d), for any € > 0 there exists T > 0
such that v(-,t) < A — € (respectively, v(-,t) > B +¢€) in [0,1] for any
t € (T,00)\F. Here F is the set of zero Lebesgue-measure given by Theorem
3.3.1.
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Remark 3.3.1. The set E C (0,00) of zero Lebesque-measure given by
Theorem 3.3.5 in correspondence of any diverging sequence {t,} depends on
the sequence itself.

Next, for any diverging sequence {t,} and for a.e. ¢ > 0, consider the se-
quence {u(-,t +t,)}, where

2
u(z,t+ty) = Z izt +ty)si(v(z,t +t,)) for ae. x€(0,1) (3.3.6)
1=0

(see (3.2.1)). In the following theorem we show that u(-,t + ¢,,) approaches

for a.e. t > 0 a time-independent function @, uniquely determined by the
couple (u,v) itself.

Theorem 3.3.6. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1) with initial datum ug, let M,, be defined by (3.2.23) and let
v be the constant given by Theorem 3.3.5. Then:

(1) if a < My, <d, for any i =0,1,2 there exists a unique A} € L*(0,1),
Af >0 and Z?:o Af =1 such that for any diverging and non-decreasing
sequence {t,} there holds:

2
u(yt+tn,) > W= > Nsi(®)  ae in (0,1) (3.3.7)
=0
for any t € (0,00) \ E, where {ty, } C {t,} and E C (0,00) are respectively

any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.3.4) holds;

(i) if My, < a and M,, > d, for any diverging and non-decreasing sequence
{tn} there holds:

U(e,t 4ty ) — My, in C([0,1]) (3.3.8)

for any t € (0,00) \ E, where {t,, } C {t,} and E C (0,00) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.3.4) holds. Moreover, if My, < a
(respectively, M,, > d) there exists T > 0 such that u(-,t) = s1(v(-,t)) in
(0,1) (respectively, u = sa(v(-,t)) if My, > d) for anyt € (T,00)\ F'. Here
F is the set of zero Lebesgue-measure given by Theorem 3.3.1.

Observe that the coefficients A} given by Theorem 3.3.6 do not depend on
the sequence {t,}.

Theorem 3.3.5 and Theorem 3.3.6 address the asymptotic behaviour in time
of v(-,t +t,) and u(-,t + t,) along any diverging sequence {t,} and for any
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t € (0,00) \ E, where FE is a set of Lebesgue measure |E| = 0, possibly
depending on the choice of {t,} itself. As stated in Section 3.2, we wonder
whether we can refine the results of Theorem 3.3.5 and Theorem 3.3.6 finding
a fized set E* of Lebesgue measure |[E*| = 0, such that

v(,tn) =0, u(-,t,) —u (or My,) (3.3.9)

in the respective topologies, for any sequence {t,} C (0,00) \ E*. A slightly
weaker result in this direction is the content of the following theorem. Pre-
cisely, we show that convergences (3.3.9) hold only except for sets of arbi-
trarily small - albeit non-zero - Lebesgue measure.

Theorem 3.3.7. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1) with initial datum ug. For any k > 0, let By C RT be the
set defined by (3.2.33). Let M,, be defined by (3.2.23), let © be the constant
gwen by Theorem 3.53.5 and let X} be the functions given by Theorem 3.3.6.
Let F be the set given by Theorem 8.3.1. Then for any diverging and non-
decreasing sequence {t,} C By \ F' there holds:

v(-,ty) — T in C([0,1]). (3.3.10)
Moreover,
(i) if a < My, < d, then

u(ytn) — 1 a.e. in (0,1) (3.3.11)
where w € L*°(0,1) is the function defined in (3.3.7);
(i) if My, < a or My, > d, then

u(-, tn) — My, in C(]0,1]). (3.3.12)

The couple (@,7) in (3.3.10)-(3.3.11) (in the case a < M,, < d) and the
couple (My,, p(My,)) (in the cases M,, < a, M,, > d) are steady state

solutions of problem (3.1.1) (see Definition 3.2.2). The following theorem is
an immediate consequence of Theorem 3.3.7.

Theorem 3.3.8. Let (u,v) be a weak entropy measure-valued solution of
problem (3.1.1). For any k > 0, let B, C R™ be the set defined by (3.2.33).
Then for any diverging and non-decreasing sequence {t,} C By the couple

(u(" tn)’ 2}(', tn))

converges to a steady state solution of (3.1.1) (in a sense made precise by
Theorem 3.3.7).
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3.4 Proof of results of Subsection 3.3.1 and im-

proved results on the Sobolev regularization

3.4.1 Proof of results of Subsection 3.3.1

The proof of Theorem 3.3.1 needs the following lemma.

Lemma 3.4.1. There exists a set E C Q, of Lebesgue measure | E| =0,
such that for any (x,t) € Qo \ E there holds:

1
2/ / |G*(&,8) — G*(x,t)|déds — 0 as T — 0, (3.4.1)
T JI.t) J I ()

where G* € L™ (Qso) is any function defined by (3.2.5) for any g € C*(R).
Here 1,.(t), I(x) denote the intervals of length r centered at t > 0 and
x € (0,1), respectively.

Remark 3.4.1. The importance of Lemma 3.4.1 can be explained as follows.
Since the function G* € L®(Qu) for any g € CY(R), there erists a set
Ec+ C Quo, | Eg+| =0, in general depending on G*, such that (3.4.1) holds
for anyt € Qoo \ Eg+ (e.g., see [GMS]). The main result in our context is
that we can find a set E C Quo, | E| =0, so that (3.4.1) is satisfied for any
t € Qoo \ E and for any choice of the function G* - namely, the set E is
independent of G*.

Proof of Lemma 3.4.1. Since v, € L? (Qo) and v, \;, $i(v) € L®(Q)
(i =0,1,2), there exists a set E C Qo of Lebesgue measure |E| = 0, such
that there hold:

7“12/w> /w) |02 (€, 8) — va(, 1)[?déds — 0, (3.4.2)
?}z/w) /W) |v(€, 5) — v(,t)| Pdéds — 0, (3.4.3)
:g/h(t) /Ir(x) | 5i(v(&, ) — si(v(z,1))|Pdéds — 0, (3.4.4)
oo L e a0 @)

as r — 0, for any (z,t) € Qx \ E (e.g., see [GMS]) and for any p € [1,00).

Thus, fix any (z,t) € Qs \ E, let G* be the function defined by (3.2.3)
and (3.2.5) for any g € C'(R) and let I denote the integral in (3.4.1). To
begin with, observe that

1 2
TN
7“2; L) 1@
z,t))

si(v(
ﬂ&@@—&@Jn/ g(6(N))dA

Si (U(&-?S))
MEs) [ gloane
si(v(x,t))

déds,
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hence

déds + (3.4.6)

si(v(§,s))
sy/( g(B(N)dA

1 2
< Z/ /
r? & si(v(@t))

1 2 si(v(z,t))
- (@(A))dA
a2 [

In view of (3.4.5), the last integral in the right-hand side of (3.4.6) converges
to zero as r — (. Finally, observe that

si(v(€,9))
/’ 19(6(\)]dA
si(v(z,t))

— Xi(z,t)] déds.

< lgllzoe(—c,oylsi(v(&; 8)) = siv(z, 1),

where C'is chosen so that ||v||fe~(g.) < C. Therefore, by (3.4.4) passing to
the limit as 7 — 0 in the first term of the right-hand side of (3.4.6) gives

2 )
1 / / /sz(v(é,s))
- g(o(N)|d\| déds <
72 S0 Do ME | Ly 11O
< lgllze-co) Z > / /I | 5i(v — si(v(x, )| déds — 0.
This concludes the proof. O

Lemma 3.4.2. Let (u,v) be a weak entropy measure-valued solution of pro-

blem (3.1.1) and let G* be the function defined by (3.2.5) for any g € C1(R)).
Then there exists F C (0,00) of Lebesque measure |F| = 0, such that for
any g € CY(R), ¢’ >0, there holds

/ 31/ G (&, s)p(§)deds — /01 G*(&,t)p()dE (3.4.7)

and
t+1 1 1
G* (&, déds — | G*(&,t d 3.4.8
w[ 7] ese@as - [ e (3.48)
as n — oo, for any v € C1([0,1]), ¢ >0, and for any t € (0,00) \ F.

Proof. Let E C Qs be the set of zero Lebesgue-measure given by Lemma
3.4.1. There exists F' C (0,00), | F| =0, such that for any t € (0,00) \ F

E':={x € (0,1)] (x,t) € E} C(0,1) (3.4.9)

has Lebesgue measure | E*| = 0.
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Let us address (3.4.7) ((3.4.8) can be proved in an analogous way). Fix any
t € (0,00) \ F and for any n € N consider the function I';,(£), & € (0,1),
defined as follows:

t
() i=n / G* (€, 5)ds. (3.4.10)
t—L
Since G* € L*(Q), we have

ITnllzee0,1) < NGl Lo0 Qo)

for any n € N. Thus, there exists G € L>(0,1) such that, eventually up to
a subsequence, there holds

I, >G" in L>(0,1) (3.4.11)
as n — oQ.

For any n > 0 and k > 0, consider the functions:

nkrn . hM(s)=n(s—1t)+1 ifse [t—%,t],
P (s) = { hF(s) = —k(s —t) +1 if se(t,t+ %], (34.12)
and, for a.e. z € (0,1),
0 if € —a| > 4,
"k (E) =4 K —2)+k if £ € [z — 7, 2], (3.4.13)
K ¢—2)+k if £ € (2,2 + 1.
Denote by Si the square
1 1 1
Choosing
YR, ) = W ()™ (€) (3.4.14)

as test function in the entropy inequalities (3.2.4) gives

t x—i—l
n / / " GE, 5) ot () deds — k / / G deds >
t—% :C—% Sk
t+% m+% i
> / ) / ) 9(v)pg veh™Fdeds (3.4.15)
t—= Ja—¢

for any g € C1(R), ¢’ > 0. In view of (3.4.11), taking the limit n — oo in
(3.4.15) gives

x+%

GO i~ /S K
/S k g(v

Sl

)gpg’kvghkdﬁds. (3.4.16)

/
]
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We study the limit k& — oo in the above inequality for any fixed z € (0,1)\ E*
(here, for any t € F', E* C (0,1) is the set of zero Lebesgue-measure defined
by (3.4.9) in correspondence of ¢). By Lemma 3.4.1 we have:

k / / G hdgds — G (2, 1) (3.4.17)
Sk

as k — oo. Concerning the second term in the right-hand side of (3.4.16),
there holds

t4+1 T
// g(v)hkvggpg’kdfds = k2/ k/ ) hEg(v)vedéds + (3.4.18)
Sk t -3

t+% x+%
k2 / / h¥g(v)vedéds,
t x

and the right-hand side of (3.4.18) converges to

g(v(z,))va(z,t)  gv(z,t))vs(2t) _
2 2
as k — oo (here use of (3.4.2) and (3.4.3) has been made). Hence, (3.4.17)-
(3.4.18) imply that for any = € (0,1) \ E' (hence for a.e. x € (0,1)) there

holds:

1
lm [ GH&)p™ (&) d¢ > G*(z,1).

k—oo 0
Since

1
G'(z) = lim [ G'(&)""(&)d¢,

k—oo Jo
for a.e. z € (0, 1), there holds:
G'(z) > G*(x,1) (3.4.19)

for a.e. x € (0,1) and for any g € C*(R), ¢’ > 0 and G* defined by (3.2.5).
Let us prove the reverse inequality. To this purpose, for any n > 0 and
k > 0, consider the functions:

k(s —t+ LX) +1 ifseft—1—Lt—1
n,k — n k> ni
Z(s) s { —n(s—t+1)4+1 ifse(t—14, (34.20)

and, for a.e. z € (0,1),

0 if |£—x| > %,
¢FE) =4 KA —a)+k iteelr—1 7], (3.4.21)
—kX¢—2)+k ifﬁe(:r,x—i—%].
Choose
WR(E s) i= 2R ()R (E) (3.4.22)
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as test function in the entropy inequalities (3.2.4). We obtain

/ttni/ G(&5)¢™(deds = n t/x orertagas >

2 /
—L_

for any g € C*(R), ¢’ > 0. Denote by Sj the square

/ : 9(v)¢¢ Fvez R deds (3.4.23)

1 1
k k

1 1 1

In view of (3.4.11), taking the limit n — oo in (3.4.23) gives

Sk = (33

+1

o] [ et [T croct e >

k

// g(v)(é”’ Ugékdﬁds, (3.4.24)
Sk

where #F(s) = k(s —t)+ 1 for s € (t — £,t). Arguing as above, taking the
limit £ — oo in (3.4.24) gives

1
Gi(x) = lim [ GYE&)C™*(&)de < G*(x,1) (3.4.25)

k—oo Jo

for a.e. x € (0,1), for any g € CY(R), ¢’ > 0 and G* defined by (3.2.5).
Thus (3.4.7) follows. O

Proof of Theorem 3.3.1. Fix any t1, t2 € (0,00) \ F', where F' is the set
given in Lemma 3.4.2. Suppose t; < to and consider the function

0 ift <t)— 1
n(t—t) +1 ift ety — 2,1,
R(t) =< 1 if &€ (ty,ta), (3.4.26)
n(ty —t) + 1 if t € [ta, t2 + 1],
0 ift >ty + 1.

For any choice of ¢ € C1([0,1]), ¢ > 0, choosing " (x,t) := @(z)h™(t) as
test function in the entropy inequalities (3.2.4) gives

t2+
/ /G*xt x—n/ /G*xt x)dr >
tl,,

t2+n
I, / R g(0)vapa + ¢ (V)0 dudt (3.4.27)
-1 Jo
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for any g € CY(R), ¢’ > 0 and G* defined by (3.2.5). In view of (3.4.7)-
(3.4.8) in Lemma 3.4.2, passing to the limit as n — oo in (3.4.27) gives
(3.2.17) and the claim follows. O

Proof of Corollary 3.3.2. Write inequalities (3.2.17) with t; =0, p(-) =1
in (0,1) and g(s) = s. We obtain:

/OT /01 v2dzdt < /01 (/Ouom ¢(s)ds) dx +

2 si(v(@,1))
—;/01 Ai(z,T) (/o ! <z5(s)ds> de < C

for any T € (0,00) \ F, since v € L*(Qs) (here F is the set given by
Theorem 3.3.1). Taking the limit as 7' — oo in the above inequality gives
estimate (3.2.18). O

Proof of Corollary 3.3.3. Write inequalities (3.2.17) with ¢(-) = 1 in
(0,1) and g € C'(R), ¢’ > 0. We obtain:

1 1 to 1
/ G*(x,t1)dx — / G*(x,ta)dx > / / g (v)vidxdt >0
0 0 tr Jo

for any t; < tg € (0,00) \ F', where F is the set given by Theorem 3.3.1 and
G* is the function defined by (3.2.5) in terms of g. The above inequality
implies that the map

1
t|—>/ G*(z,t)dx
0

is non-increasing in (0,00) \ F for any g € C'(R), ¢ > 0. By standard
arguments of approximation with smooth functions, the assumption g €
C'(R) can be dropped. O

Proof of Proposition 3.3.4. Let t; <ty € (0,00)\ F' and assume v(-,t;) <

B* < Bin (0,1) for j = 1,2 (the case v(-,t;) > A* > A can be treated in
an analogous way). Following [P11], for any p > 0 set

9p(A) =

{ 0 A< B=p, (3.4.28)

p1/2 ifA>B—p

and let G, be the function defined by (3.2.5) in terms of G, where

A
Go(\) = /0 9(6(5))ds .
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Since g, is non-decreasing, using standard arguments of approximation with
smooth functions, we can use it in inequality (3.2.17) and obtain

1
/G*(ﬂs,tl d$—/ G (x,t2)p(z)dr > (3.4.29)

to
/ / 9p(V)vyprdadt
t1

for any ¢ € C2°(0,1), ¢ > 0. For any p such that B — p > B*, we have
2 si(v(z,t)))

Gilnty) = 3 il ty) / gp($(s))ds =
1=0
s1(B—p)
- Al(:c,tj)/ p~2ds (3.4.30)
s0(B—p)

for j = 1,2 (here use of assumption v(-,¢;) < B* < B has been made). On
the other hand, since ¢”(b) # 0, we have

s1(B—p)
/ ( pV%ds — —C (3.4.31)

so(B—p)
as p — 0. Here C > 0 is a constant depending on the value ¢”(b) (see also
[P11]).
Moreover, using a standard argument of positively invariant regions (e.g.,
see [NP] and [MTT]), it is easily seen that

v(,t) < B (3.4.32)

for a.e. t > t1. Hence,

‘ / gp(v vmcpmdxdt‘ (3.4.33)

= ‘ / - </ )ds) dmdt‘ <
< Pl/Z/ / (v = B+ p)| paz| dxdt <
t1 v(-,t)>B—p}

to 1
< p1/2/ /|<pm|d1:dt—>0
t1 0

as p — 0, the last inequality being a consequence of (3.4.32). Observe
that (3.4.33) shows that the right-hand side in (3.4.29) converges to zero as
p — 0. Concerning the first member of (3.4.29), by (3.4.31) it easily seen

that
1

lim [G;(m, t1) — G;(z, to)|p(z)dx = (3.4.34)
p—0 Jo

1
_ ¢ /0 D, 1) — M, t2)]p(z) da
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for any ¢ € C2°(0,1), ¢ > 0. Thus, by (3.4.33) and (3.4.34) passing to the
limit as p — 0 in (3.4.29) gives

1
/0 (2, 12) — A (a0 ()de > 0 (3.4.35)

for any ¢ € C2°(0,1), ¢ > 0. This implies (3.3.2). O

3.4.2 More about the Sobolev regularization and the
vanishing viscosity limit

Let (u,v) be a weak entropy measure-valued solution of problem (3.1.1)
obtained as limiting point of the solutions u®, v® to the regularized problems
(3.2.7) (here for any € > 0 the function v° is defined by (3.2.8)). Precisely,
there exists a sequence {e}, € — 0 such that

2
u€k * u = Z )\isi(v) n LOO(QOO)?
=0

U6k7 ¢(u6k) = v, in LOO(QOO)a

v = v, in L3(Qoo).
Moreover, we can assume:
d(u*F) — v ae in Qoo (3.4.36)

(e.g., see [P11]). The following proposition is a direct consequence of (3.4.36).

Proposition 3.4.3. Let v € L*™°(Qu) be the limit of the sequence {¢p(u*)}
in the weak™ topology of L™®°(Q~). For any t > 0, denote by {T{_fk} the
sequence of the Young measures associated to the family {uc*(-,t)}. Then
there exists Iy C (0,00), | F1| = 0 such that for any t € (0,00) \ Fy there
exist a subsequence {ex+} C {ex} and a Young measure 7° over (0,1) x R so
that:

it 7t narrowly. (3.4.37)

Ek,t

Moreover, for anyt € (0,00)\ Fy there exist A\l € L>°(0,1) (i =0,1,2), 0<
A<, 212:0 A =1, such that the disintegration v of T is of the form

vy = ZA§<$)5Si(v(x7t))7 (3.4.38)

for a.e. x € (0,1), where Xi(x) =1 if v(x,t) < A and Ns(x) = 1 if v(x,t) >
B.
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Proof. In view of (3.4.36), there exists a set F; C (0,00), |Fi| = 0, such
that
d(uF)(z,t) — v(z,t) for a.e. z € (0,1) (3.4.39)

and for any ¢t € (0,00) \ Fi. Thus, for any ¢t € (0,00) \ F; the Young
measures associated to the sequence {¢(u®#)(-,t)} converge in the narrow
topology over (0,1) x R to a Young measure whose disintegration o', is the
Dirac mass concentrated at the point v(z,t) - namely

0L =0y for ae. x€(0,1) (3.4.40)

(see [GMS] and [V]). On the other hand, since || u (-, )| oo (o,1) < C, for
any t € (0,00) \ F! there exists a subsequence {ej;} C {ex} such that
the Young measures associated to the sequence {u®kt(-,t)} converge to a
Young measure 7 in the narrow topology of (0,1) x R. For a.e. x € (0,1)
let v! denote the disintegration of the Young measure 7%, at any fixed t €
(0, OO) \ Fl.

Fix any t € (0,00) \ F1, consequently fix any € (0,1), and write for
simplicity

v(z,t)=v and v =1,

o=0 -

Arguing as in [P11] and using the general properties of the narrow conver-
gence of Young measures (e.g., see [V]), for any f € C(R) there holds

f(v) = /R F(Q)do(¢) = /R (f 0 H)Ndv(N), (3.4.41)

the first equality in the above equation following by (3.4.40). Then decom-
pose the measure o in three measures o; (i =0, 1,2), namely

2
0 = § Oi,
i=0
where

F0dn() = [ (reaNan.

R

F(O)doo(¢) = /[b (o),

R

F(O)doa(¢) = /( (09N

R

for any f € C(R). Here b, c are defined as in Fig.3.1. Clearly, in view of
(3.4.40) we easily obtain

oi = Aiby (i =0,1,2) (3.4.42)
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for some coeflicients 0 < A; < 1, such that Z?:o Ai = 1. Here in general
Ai = Ai(z), hence for any fixed t € (0,00) \ Fy, AL € L>(0,1).

We can now conclude the proof, giving the characterization (3.4.38) of the
measure v. In fact, in view of (3.4.42) we easily obtain the following relation
between the measures o; and v,

/ FOdv(N) = / (f 0 510 H)Ndv(N) +
R (—o0,b)

+/[b7c](fosoo(f>)(/\)dV(/\)+/ (f 0 530 d)(N)dr(\) =

(¢,00)

- / (f 0 51)(C)dors () + / (f © 50)(C)do(C) + / (f 0 52)(C)dora(C) =
R R R
= Mf(s1(v)) +Xof(s0(v) + A2 f(s2(v))

for any f € C(R). In other words, v is an atomic measure concentrated on
the three branches of the equation v = ¢(u) and (3.4.38) follows. O

In [P11] it is proved that the sequence of the Young measures associated to
the family {u®*} converges in the narrow topology of the Young measures
on Qr x R to a measure 7 whose disintegration v, ;) is given by (3.2.14) (for
any T > 0). Hence, a natural question is the following: is it possible to show
that for a.e. ¢t > 0 there holds Vf_) = V(. a.e. in (0,1)7 In this connection,

in view of (3.2.14) and (3.4.38), it suffices to prove that for a.e. t > 0

M(z) = Ni(z,t)  if A<w(z,t) < B, (3.4.43)
M(z) = A (2, 1) if v(z,t)=A (3.4.44)

and
My(z) = Na(w,t)  ifv(z,t) =B (3.4.45)

for a.e. z € (0,1). In fact, observe that for v(x,t) = A there holds
Vi = N ()85, (a) + (1= X (2))05(a)
Viag) = M(2,1) 0, (a) + (1 = A1(2,1))d50(a)
and for v(x,t) = B
Vi = Ay(2)05, () + (1= A5(2))ds0(m),
V(zp) = M2(2, )05,y + (1 — Xa(2,1)) 050 (B)-

The proof of equalities (3.4.43)-(3.4.45) is the content of the following theo-
rem.

Theorem 3:4.4. There exists
t € (0,00) \ F equalities (3.4.43)

(0,00), | F| = 0, such that for any

F C
-(3.4.45) hold.
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Proof. Let F1 C (0,00) be the set of zero Lebesgue-measure given by Propo-
sition 3.4.3. Observe that, in view of Proposition 3.4.3 and using the general
properties of the narrow convergence of Young measures (e.g., see [GMS],
[V]), for any f € C(R) and for any ¢ € (0,00) \ F; we have:

f(ust (-, 1)) = f1 in L(0,1), (3.4.46)
where {e1+} C {ex} is the subsequence given by Proposition 3.4.3 in corre-
spondence of any t € (0,00) \ F! and

2

F1(@) = 3 M@ (si(v(a. 1) (3447

for a.e. x € (0,1). Here A\! is the function given by Proposition 3.4.3 (i =
0,1,2).
Let F' C (0,00) be the set of zero Lebesgue measure given by Theorem 3.3.1
and set

F:=FUF.

Clearly, F' has Lebesgue measure |F| = 0. Fix any t € (0,00) \ F and define

1
R"(s)=n(s—t)+1 ift——<s<t
n

Write the viscous equalities (3.2.12) for t; =t — %, to =t, € = €1 and test
function

Y (@, s) := h"(s)e(z),
for any ¢ € C1([0,1]), ¢ > 0. Moreover, assuming in (3.2.12) g € C*(R)
and ¢’ > 0, we obtain:

/G (ukt(x,t)) x<n/ /G ukt)p drds +
j/ j/ h™(s)g (vt vz ppdads, (3.4.48)

where G is the function defined by (3.2.3) in terms of g. In view of (3.4.46)-
(3.4.47) and (3.2.15)-(3.2.16), passing to the limit as ;4 — 0 in the above
inequalities gives

/ G'(z da:<n/ / G*gpdmds—/ / h"g(v)vypdrds,
t—1 -1

(3.4.49)
for any p € C1([0,1]), ¢ > 0and g € C*(R), ¢’ > 0. Here G* is the function
defined by (3.2.5) and

2
= > NG(si(v) ae. in (0.1) (3.4.50)
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(see (3.4.46)-(3.4.47)). On the other hand, by (3.4.7) in Lemma 3.4.2, taking
the limit as n — oo in (3.4.49) gives

1 1
/ G (x)p(z)dr < / G*(x,t)p(z)dx
0 0
for any ¢ and g as above. This implies
G'(z) < G*(z,1)

for a.e. x € (0,1). In an analogous way we can prove the reverse inequality,
hence for any g € C1(R), ¢’ > 0 we have:

G'(x) = G*(z,t) (3.4.51)

for a.e. x € (0,1), where G! is defined by (3.4.50) and G* is defined by
(3.2.5). By approximation arguments, equality (3.4.51) holds for any non-
decreasing g, hence for any g € BV (R). Precisely we obtain:

2 2

si(v(z,t)) si(v(z,t))
S () / G0N =3 Nl ) / g(B(N)dA

=0 =0

for a.e. x € (0,1) and for any g € BV (R). The above equalities implies
(3.4.43)-(3.4.45) (see Lemma 3.5.2 and Lemma 3.5.3 in the following section).
O

As a consequence of the above result, for any t € (0,00) \ F' the whole se-
quence {Tgk} of Young measures associated to the functions us+(?) converges
in the narrow topology over (0,1) x R. Using the general properties of the
narrow convergence of Young measures, the following result holds.

Proposition 3.4.5. Let F C (0,00) be the set of zero Lebesgue-measure
given by Theorem 3.4.4. Then for any t € (0,00)\ F' and for any f € C(R),
we have

f(usk('at)) = f*('vt) mn LOO(Oa 1)a
where f*(x,t) is defined by (3.2.16).

3.5 Proof of results of Section 3.3.2

Most proofs of the results in Section 3.3.2 make use of the following technical
lemmas.

Let BV (R) denote the space of the functions with bounded total variation
on R.
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Lemma 3.5.1. Let vy, vo € [A,B], 0<a; <1, 0<b; <1 (i=1,2), such
that

s1(v1) s2(v1)
a /0 9(6(5))ds + by /0 gb(s)ds+  (351)
(1 —ar —b) / O 6(s))ds =
ai 1 ) g s))ds =
s1(v2) s2(v2)
S /0 9(6(s))ds + by /0 9(6(s))ds +

so(v2)
+(1— a3 — by) /O 9(6(s))ds,

for any g € BV (R). Then v; = va.

Proof. For simplicity, assume that vo > vy and let us distinguish the cases
Vg > 0, vy < 0.

(i) If vo > 0, set
v :=max{0,v;}
and then fix any v € (v,v2). For any n € N, set
gn(>‘) = nX[U,U—I—l/n]()‘)' (3'5'2)
Equality (3.5.1) with g = g, gives
ain[so(v + 1/n) — so(v)] + a1n[s1(v) — s1(v+ 1/n)] = (3.5.3)
= aznfso(v +1/n) — s0(v)] + banlsz2(v +1/n) — s2(v)] +
+(1 —ag — ba)n[so(v + 1/n) — so(v)].
Let us take the limit as n — oo in (3.5.3). We obtain
ar[sp(v) — s1(v)] = (3.5.4)
= azs)(v) + bash(v) + (1 — az — b2)s((v)

for any v € (v, v2). Hence, in view of Condition (S), there holds

a1 =0
bo =0 (3.5.5)
a1+ by =1,

which gives an absurd. This concludes the proof in the case vy > 0.

(i) If vo < 0, again fix any v € (v1,v2) and for any n € N let g, be the
function defined by (3.5.2). Equality (3.5.1) with g = g,, gives

ain[s1(v) — s1(v 4+ 1/n)] + bin[so(v) — so(v +1/n)] + (3.5.6)
+(1 — a1 — by)n[so(v) — so(v+1/n)] =
= banlso(v) — so(v + 1/n)] + ban[sa(v + 1/n) — sa(v)].
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Thus, we pass to the limit with respect to n — oo in (3.5.6) and obtain

—aysy(v) — bysy(v) — (1 — a1 — by)sy(v) = (3.5.7)
= —bysy(v) + bash(v)

for any v € (v1,v2). Again, (3.5.7) and Condition (S) imply

a] = 0
by =0 (3.5.8)
ay +by =1,

and the claim follows. ]

Lemma 3.5.2. Letv € (A,B), 0<a; <1, 0<b; <1 (i=1,2), be such
that equality

s1(v) s2(v)
o /0 9(6(5))ds + by /0 dbENds+  (359)
(1—ar—by) /W) (6(s))ds =
a—b) | g(@(s))ds =
s1(v) s2(v)
S /0 9(6(s))ds + by /0 9(6(s))ds +

so(v)
(1 - a3 —by) /0 9(6(s))ds

holds for any g € BV (R). Then a1 = a2 and by = be.

Proof. In (3.5.9), choose

9(\) = X[,B/(A) if v >0, (3.5.10)
g(A\) = x4, (V) if v <0. (3.5.11)
We have: ®)
S1(v
(a1 — ag)/ ds=0 if v >0, (3.5.12)
so(v)
and
s2(v)
(b — bg)/ ds—=0  ifv<0. (3.5.13)
so(v)

Thus, (3.5.12)-(3.5.13) imply

{alzag if v>0,

b1 = by if v <. (3514)
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Moreover, choosing g(A) = 1 in (3.5.9) gives

(b1 — b2)(s2(v) — sp(v)) =0 if v >0, (3.5.15)
(a1 —az)(s1(v) — sp(v)) =0 if v <0. (3.5.16)
Hence,
b1 = by ifv>0,
{ a1 = as if v <O0. (3.5.17)
This concludes the proof. O

Lemma 3.5.3. Let us consider equality (3.5.9) forv = A andv = B. Then,

{alzag ifv==A,

Proof. Observe that sg(A) = ¢ = s2(A), so(B) = b = s1(B) (see Fig.3.1).
Hence equality (3.5.9) reads

o [ atods+ (1 -a) [gelas= (3519
= a [ glo)ds+ (1 -a) [ glo(s)as
it v = A (recall that a = s1(A)), and
o [ atotnds + (-0 [oenis=  @520)
= 0o [ ototonas + (1 -2a) [ atotsns,

if v = B (recall that d = s2(B)). Equalities (3.5.19)-(3.5.20) imply (3.5.18)
and the claim follows. O

Proof of Theorem 3.3.5. Let {t,} C (0,00) be any diverging sequence.
Observe that

oo rl oo rl
/ / vi(x, b+ tn)dadt = / / v2(z, s)dxds,
0 0 tn JO

thus, in view of (3.2.18) we have

oo prl
/ / v2(xz,t + ty)dadt — 0 as n — o0o. (3.5.21)
o Jo
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This implies that there exist a subsequence {t,, } and a set E C (0,00) of
Lebesgue measure |E| = 0 such that

1
/ V2(z,t + ty, )dr — 0 as k — oo (3.5.22)
0

for any t € (0,00) \ E. We proceed as follows.

Step (o). For any diverging sequence {t,}, let {t,, } C {t,} and E C (0, 00)
be respectively any subsequence and any set of zero Lebesgue-measure such
that (3.5.22) holds for any ¢ € (0,00) \ E. Then we show that the sequence
{v(-,t +tn,)} converges uniformly in (0,1) to a constant T, (possibly de-
pendending on the choice of the sequence {t,}) for any ¢ € (0,00) \ E.

Step (). We prove that the constant v;, given in Step («) does not depend
on the choice of the diverging sequence {t,}. In other words v;, = v for any
sequence {t,}.

Proof of Step («). Fix any diverging sequence {¢,} and let {¢,, } C {t,} and
E C (0,00) be respectively any subsequence and any set of zero Lebesgue-
measure such that (3.5.22) holds for any ¢ € (0,00) \ E. Arguing by contra-
diction, suppose that we can find two subsequences {t, 1}, {tn2} C {tn.}
and t1, to € (0,00) \ E, such that

1innig.}f ”U(', t1 + tn,l) — (-, ta + tn,Q)”C([O,l]) > 0. (3.5.23)

Observe that by (3.5.22) we have
1
l/q§@¢f+%ﬂ¢xao (j=1,2). (3.5.24)
0

Moreover, since v(-,t; + t,;) € H*(0,1) C C([0,1]) and

1 1/2
|v(@2, b5 + tnj) —v(@1,t) + tnyj)| < (/ vi(x,t; + tw‘)dw) |2 — |1/
’ (3.5.25)
for any z1 # x9 € (0,1), we deduce by the Ascoli-Arzela Theorem that the
sequence {v(-,t; +t, )} is relatively compact in C(][0,1]) for j = 1,2 (here
use of (3.5.24) has been made). Hence, possibly passing to a subsequence,
we have

v(tj+tng) — v inC([0,1])  (j=1,2). (3.5.26)

Observe that by (3.5.24) and (3.5.25) v! and v? are constant. Let us show
that:
vt =0 =71y, (3.5.27)
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which is in clear contradiction with (3.5.23) and concludes the proof of Step
(a).

In this direction, first observe that the sequences {\;(-,t; + ¢, ;)} are uni-
formly bounded in L*°(0,1) for j = 1,2 and ¢« = 0,1,2. Hence, eventually
passing to a subsequence, we can suppose that

Nt o) SN i L°(0,1)  (j=1,2) (3.5.28)

for some 0 < )\:’j <1, X{’j =1 if v/ < A, )\S’j =1 if v/ > B and
S22 A7 =1 ae. in (0,1). Since by representation (3.2.1) we have
2
St ttng) = Xl b+ tg)si(v(stj + b)) in (0,1)
7=l

0
(for j =1,2), by means of (3.5.26) and (3.5.28) we obtain

2
u(yty +tng) > Y A ()si(v?)  in L(0,1) (3.5.29)
i=0
for j = 1,2. Thus, using the above convergence and the conservation law
(3.2.24) gives

2 A 1
Zsi(v)/o N (@)de = My (j = 1,2) (3.5.30)

1=0

where M, is defined by (3.2.23). Let us distinguish the cases a < M,,, < d
and M, < a, M,, > d.

If a < M,, < d, observe that v/ < A (and v/ > B) in (3.5.30) gives a
contradiction. In fact, v/ < A would imply A\}” = 1 in (0,1). Therefore
(3.5.30) would reduce to

s1(v?) = My, .

On the other hand, v/ < A implies s1(v/) < a, which gives an absurd since
we have assumed a < M,, < d. Clearly, with the same arguments, it is
easily seen that v/ < B in the case a < M,, < d. Hence, v/ € [A, B] for
j = 1,2. Moreover, by (3.5.26) and (3.5.28), for any non-decreasing g and
G* defined by (3.2.5) in terms of g there holds

2

) si(v7)
G*(-,tﬁtn,j)i\ZA;J(-)/ g(é(s))ds in L°(0,1).  (3.5.31)

On the other hand, since there exists

1
lim / G*(z,t)dx =
t— o0 0

te (0,00)\ F
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for any non-decreasing g (see (3.3.1) in Corollary 3.3.3), there holds
1 1
lim G* (.%', t1 + &y, 1)d1‘ = lim G* (2?, to + tmg)dx

for any non-decreasing g, hence for any g € BV(R). Using (3.5.31) the
above equality reads

2

ZZ; (/01 AZf’l(ﬂf)d~’6> /Si(vl)g(qﬁ(s))ds = (3.5.32)
2

- ([ xrew) | " g(otens

i=0
for any g € BV (R), thus v! = v? by Lemma 3.5.1. This proves equality
(3.5.27) and concludes the proof of Step («) in the case a < M, < d.

Now suppose M,,, < a (the case M,, > d can be treated in an analogous
way). Arguing as in the case a < M,,, < d, it is easily seen that equation
(3.5.30) with M,, < a implies v} < A for j = 1,2. Thus, since for v/ < A
we have A\]7 =1 (j = 1,2), equation (3.5.30) reduces to

51(v7) = My,. (3.5.33)

This implies v! = v? - namely (3.5.27) - and concludes the proof of Step ()
also in the case M,, < a.

Proof of Step (). Now suppose that there exist Uy # Vg2 and two diverging
sequences {t}l} ) {ti} such that

v(oti+th) = v, mo(01])  (j=1,2), (3.5.34)
for some t1, t2 € (0,00). Here ,; Is the constant given by Step () in
correspondence of the diverging sequence {t%}, j = 1,2 (see equality
(3.5.27)). Arguing as in the previous step, we can assume that, eventually
passing to a subsequence, the sequences {)\i(~,tj + til)} converge to some
A7 € L°°(0,1) in the weak* topology of L>(0,1), i = 0,1,2 and j = 1,2.
Again, 0 < A7 <1, Y2 07 =1, A/ = 1if7,; < Aand Ay =1
if ,; > B. Therefore, concerning the sequence uf(-,¢; + th) (j = 1,2)
convergenge (3.5.29) holds in correspondence of each sequence {tj + t%}
Consequently the conservation law (3.2.24) gives equation (3.5.30). Again,
we distinguish the cases a < M, < d and M,, < a, M,, > d.

If a < My, < dwe can argue as in Step («), proving that v, and v,z satisfy
equation (3.5.32) - namely v;1 = 9,2 by Lemma 3.5.1.

135



On the other hand, if M,, < a (the case M,, > B is analogous) we can
proceed as in the proof of Step («) showing that equation (3.5.30) implies
v, < Afor j =1,2, hence 51(v;1) = 51(V;2) = My, (recall that if v, < A

then A¥Y =1 in (3.5.29)).

Finally, let us prove the last claim in Theorem 3.3.5-(i7). In this direction,
assume M,,, < a (the case M,,, > d can be treated in a similar way). In view
of the above remarks, there exists a nondecreasing sequence {t,}, t, — oo,
such that v(-,t,) — ¢(M,,) in C([0,1]), and, by our assumption, ¢p(M,,) <
A. This means that, for any fixed € > 0 small enough, there exists N > 0
such that

v(x,ty) < d(My,) —2e < A—, for any t, > ty. (3.5.35)
Let ga € C*(R) be the non-decreasing function on R, defined as follows:

{()\—A—{—E)Q ifA>A—¢

0 A< A—e, (3.5.36)

ga(\) =

and set \
Gai= [ aatols)is
s1(A—e)
Using g4 in inequality (3.2.17) with test function ¢ =1 in (0, 1), gives

1 1
/ G (2, )dar < / G (2, )z = 0, (3.5.37)
0 0

for any t € (0,00) \ F, t > ty, where F is the set given by Theorem 3.3.1
(the last equality in (3.5.37) being a consequence of (3.5.35) and (3.5.36)).
Since G% (x,t) > 0 if v(x,t) > A—e, by inequality (3.5.37) the claim follows.
U

The proof of Theorem 3.3.6 needs some preliminary results. The techniques
used and the results concerning the characterization of the behaviour of
the sequence {u(-,t +t,)} defined by (3.3.6) for large values of ¢,, are quite
different in the cases a < M,,, < d and M,, < a, M,, > d, respectively.

In fact, observe that if a < M,, < d we have to take into account the
behaviour of the sequences {\;(-,t +¢,)} in (3.3.6), hence in this case the
first step is to study the long-time behaviour of these sequences for any
diverging {t,} and for a.e. t > 0 (see Proposition 3.5.4 below).

On the other hand, when M, < a (or M,, > d), in view of Theorem
3.3.5-(i7) and in view of (3.2.1), we have that (3.3.6) reduces to u(-, t+t,) =
s1(v(-,t +tyn)) (respectively, u(-,t +t,) = s2(v(-,t +ty))) for large values of
t.

To begin with, using Proposition 3.3.4 we proceed to study the long-time
behaviour of the coefficients A;. Precisely, the following proposition holds.
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Proposition 3.5.4. Let (u,v) be a weak entropy measure-valued solution
of problem (3.1.1) with initial datum ug. Assume a < M,, < d, where M,,
is defined by (3.2.23), and let v € [A, B] be the constant given by Theorem
3.83.5. Then:

(1) if A<v < B, for any i =0,1,2 there exists a unique X} € L*°(0,1) (i =
0,1,2), 0 <\ <1, Z?:o Af =1 a.e. in (0,1), such that for any diverging
and non-decreasing sequence {t,} there holds:

Xt +tn,) = Ai () a.e. in (0,1) (3.5.38)

for any t € (0,00) \ E, where {t,, } C {tn} and E C (0,00) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.3.4) holds.

(i) if U = B, there ezists a unique \5 € L>°(0,1), 0 < A5 <1, such that for
any diverging and non-decreasing sequence {t,} there holds:

Ao(eyt +tn,) — A5(0) a.e. in (0,1) (3.5.39)

for any t € (0,00) \ E, where {t,, } C {t,} and E C (0,00) are respectively
any subsequence and any set of zero-Lebesgue-measure as in (i);
(111) if v = A, there ezists a unique A} € L*°(0,1), 0 < A} < 1, such that
for any diverging and non-decreasing sequence {t,} there holds:

Mt +tn,) — A1) a.e. in (0,1) (3.5.40)

for any t € (0,00) \ E, where {ty, } C {t,} and E C (0,00) are respectively
any subsequence and any set of zero Lebesgue-measure as in (i).

Proof. Let a < M,, < d, hence v € [A, B] by Theorem 3.3.5. Fix any non-
decreasing diverging sequence {t,} and then fix any subsequence of {t,}
(which we will continue to denote by {¢,}) and any set E C (0,00), |E| =0
(whose existence is assured by Theorem 3.3.5) such that v(-,t +t,) — ©
in C([0,1]) for any t € (0,00) \ E. This implies that for any fixed ¢ > 0
small enough, and for any t € (0,00) \ E there exists N € N, in general
dependending on t and {t¢,}, such that:

U—e<v(z,t+t,) <T+e (3.5.41)

for any = € (0,1) and for any n > N. Let us consider separately the cases
A<t<B,v=Aandv=B.

(i) Assume A < T < B. Then in view of (3.5.41) and by Proposition 3.3.4,
for any ¢t € (0,00) \ E there holds

MGt +tn) <Mt +tay),
Aa(t+tn) < Xyt 4 tngn)
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for any n > N (because we can suppose in (3.5.41) A+ ¢ < T — € and
U+e < B —c¢ for some ¢ > 0 small enough). This implies that for any
t € (0,00) \ E there exists A" € L=(0,1) such that

Ni(w,t4t,) — AP x), forae. ze(0,1) (i=0,1,2). (3.5.42)

Let us show that the coefficients A:’t do not depend on t. To this purpose,
fix t; < ta. Suppose that

Xi(tj +tn) = AP7()  ae. in (0,1) (3.5.43)

asn — oo (j = 1,2). Observe that the uniform convergence of v(t; + t,)
to U as n — oo proved in Theorem 3.3.5 (here j = 1,2), and (3.5.43) imply

that
(@)
G (- tj +ty) }:A* tf/ 9(o(s))ds (3.5.44)

asn — 0o, j =1,2. Here G* is any function defined by (3.2.5) in terms of
any non-decreasing g.
By (3.5.41) and in view of Proposition 3.3.4, we have

/\1(.213, to + tn) > /\1(21?, t1+ tn), (3.5.45)

)\2(.%', to + tn> > )\Q(m, t1 + tn> (3.5.46)

for a.e. x € (0,1) for n large enough (because we have assumed t; < t3).
Observe that properties (3.5.45) and (3.5.46) hold in correspondence of both
the coefficients A\; and Ay since we have assumed A < v < B (see Proposition
3.3.4). This implies

AVE AT AR >A0" aein (0,1). (3.5.47)

On the other hand, for any g € BV (R), there holds
1 1
lim G*(x,t1 + tp)dr = lim G*(x,ta + tyn)dx

n—oo 0 n—oo 0

(see Corollary 3.3.3), namely

2

S ([etwaw) [asonas= @

1=0
2

= Z( /0 1 AZ"“(:Jc)da:) / smg(gt(s))ds

1=0

(here use of (3.5.44) has been made). Equality (3.5.48) implies that
1 1
/ AP () de = / AP () d (i=1,2) (3.5.49)
0 0
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(see Lemma 3.5.2), hence in view of (3.5.47) we have A""' = A" (i =
0,1,2) and we can set:
)\:’t = )\:’t"
in (3.5.42), the coefficients )\:’t” possibly depending on the sequence {t,}.
Then we show that the coefficients )\;-k’ tn are independent of the sequence
{tn}. To this purpose, suppose that there exist {t,ll} , {ti}, non-decreasing,
such that

Ni(z,t+ ) — A\ (z) forae. z € (0,1),t>0  (j=1,2). (3.5.50)
Assume that

lim inf(t2 —t1) > 0,

n—oo

and fix any t1, to € R, such that

liminf(ty +t2 —t; —t1) > 0. (3.5.51)

n—oo

Thus, for n large enough, to +12 > t; +t.. It follows that, arguing as above
we obtain A\ ! = )\:,2 in (0,1) (¢ =0,1,2) and the claim follows.

7

(i1) Assume that 7 = A (the case T = B is analogous). Again, by (3.5.41)
and in view of Proposition 3.3.4, for any t € (0,00) \ E, there exists )\Q{’t €
L*°(0,1) such that

M(z,t+t,) — AP, for ae. z € (0,1). (3.5.52)

Then we fix t; < t9 and show that there holds X{’tl = ’{’tQ. To begin with,
observe that (3.5.41) and Proposition 3.3.4 give

)\1(.’E, to + tn) > )\1(%, t1 + tn) (3553)
for n large enough, hence
AP > AR gein (0,1) (3.5.54)

(because ¥ = A < B and t; < t2). On the other hand, the same arguments
used in (), Corollary 3.3.3 and Lemma 3.5.3 give:

1 1
/A*f“dx:/ AP, (3.5.55)
0 0

hence Xf’tl = )\*{’tz.
Finally, arguing as in the case A < T < B, it is easily seen that the coefficient
A} does not depend on the sequence {t,}. O
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Proof of Theorem 3.3.6. Fix any non-decreasing diverging sequence {t¢, }
and then fix any subsequence of {t,} (which we will continue to denote
by {tn}) and any set E C (0,00), |E| = 0 (whose existence is assured by
Theorem 3.3.5) such that v(-,t+¢,) — v in C([0,1]) for any ¢ € (0,00) \ E.

(1) Assume a < M,, < d. Then for any t € (0,00) \ E we have \;(-,t +
tn) — Af(-) a.e. in (0,1), where A} € L*°(0,1) are the functions uniquely
determined by Proposition 3.5.4. Thus, in view of representation (3.3.6)
u(-, t+t,) — u(-) a.e.in (0,1) and for any ¢ € (0,00)\ E, where @ € L*°(0,1)
is the function defined by (3.3.7).

(74) Now consider the case M,, < a (if M,,, > d we proceed in an analogous
way). By definition (3.2.1) and Theorem 3.3.5-(i¢), we have

u(t+tn) =s1(v(-,t+t,)) in (0,1) (3.5.56)

for large values of t,,. Thus u(-,t + t,) — s1(¢(My,)) = My, uniformly in
[0,1] for any t € (0,00)\ E by the uniform convergence v(-,t+t,) — ¢(My,)
(see equality (3.3.5)). O

Proof of Theorem 3.3.7. Fix any k > 0 and consider any non-decreasing
sequence {t,} C By \ F, t, — 0o as n — oo. In view of definition (3.2.33),

1
sup/ v2(x, ty)dr < k. (3.5.57)
neNJo

Arguing as in the proof of Theorem 3.3.5 it is easily seen that (3.5.57) implies
that, eventually up to a subsequence, there holds

v(+,t,) —w in C([0,1]), (3.5.58)

for some w € C([0,1]). On the other hand, we can find two non-decreasing
and diverging sequences {s}}, {s2} such that s, <t, <s2, [t —sh| <1
and v(-,s%) — © uniformly in [0,1] ( = 1,2). Writing inequalities (3.2.17)
first between sl and t,, then between ¢, and s2 gives

1 1 tn 1
| e ship@is - [ 6@ telaae= [ [ gt
0 0 st Jo

1 1 2 pl
/ G*(x,ty)p(z)dx —/ G*(m,s%)np(a?)dx 2/ / g(v)vgppdrdt
0 0 tn JO

for any g € CYR), ¢ > 0, ¢ € CY([0,1]), ¢ > 0 and G* defined by
(3.2.5). We take the limit as n — oo in the above inequalities and obtain
(for a.e. x € (0,1))

S; (5)

2 si(w(w)) 2
St [ gtotsnds =@ [ glolo)ds
i=0 1=0
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for any ¢ € CY(R), ¢’ > 0 (hence for any g € BV (R)). Here, for any
i = 0,1,2, X! is the function given by Proposition 3.5.4 and ); is some
function such that _

il tn) = Xi() in L™®(0,1)
(eventually up to a subsequence). By Lemma 3.5.1 we obtain

w(zx) =7 forany z € [0,1].

Thus, the the whole sequence {v(-,t,)} converges to v in the strong topology
of C([0,1]) - namely (3.3.10) follows. Concerning the sequence {u(-,t,)} we
have to distinguish the cases a < M,, < d and M,, < a, M,, > d.

(1) Assume a < M, < d. Observe that, in view of the uniform convergence
(3.3.10) we can use Proposition 3.3.4 and obtain
Ai(x,tng1) > iz, ty), ifA<v<B (i=1,2),
A (2, tng1) > M, tn), if v = A4,
Xo(x,tnt1) > Ao(x, ty), ifv=1B
for a.e. x € (0,1) and for n large enough. Hence, arguing as in the proof of
Theorem 3.3.6 gives:
iz, tps1) — A (), ifA<v<B (i=1,2),
M (@, tns1) = Al(z),  ifT=A,
Xo(z,tny1) — A5(x), ifv=DB
for a.e. x € (0,1), where the coefficients A are uniquely determined by

Proposition 3.5.4. Observe that the above convergences and (3.3.10) imply
(3.3.11) and this concludes the proof in the case a < M, < d.

(7) Now assume M, < a (if M,, > d the claim follows by similar argu-
ments). Recall that in this case 7 = ¢(M,,) < A (see (3.3.5) in Theo-
rem 3.3.5). Moreover, in view of Theorem 3.3.5-(i7) again, there holds
v(-tn) < Anm,, < Ain (0,1) for n large enough. Hence

u(z, ty) = s1(v(z,t,)) for any x € (0,1). (3.5.59)
Observe that for any x € (0,1) there holds
[s1(v(z,tn)) = Muo| = |s1(v(,tn)) = s1(¢(My,))| < (3.5.60)

< Oy llo(tn) = ¢(Muo )l c(j0,17)
where
City = [ 8111 Lo (¢(Mug) (Mo +e) < 0
for some fixed € > 0, small enough. In fact, by assumption M,,, < a we can
choose € such that ¢(M,,) + € < A (recall that s} (A) = +0o0), hence
1 811] Loo (6(Mug ) e (Mg ) ) < OO-

Since the right-hand side in (3.5.60) approaches zero as n — oo, the uniform
convergence (3.3.12) holds. O
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Chapter 4

Long-time behaviour of
two-phase solutions

4.1 Introduction

In this chapter we consider the Neumann initial-boundary value problem for
the equation

w=[¢w)],, in Q:=(-1,1)x (0,00) (4.1.1)
where the function ¢ satisfies the following assumption

¢ (u) >0 ifue (—o0,b)U/ (c,00),
¢ (u) <0 ifue(be),
B = ¢(b) > ¢(c) = A, ¢(u) — oo as u — oo,
¢"(b) # 0, ¢"(c) # 0.

We also denote by a € (—o0,b) and d € (¢,00) the roots of the equation
¢(u) = A, respectively ¢(u) = B (see Fig.4.1).

In view of the non-monotone character of the non-linearity ¢, equation
(4.1.1) is of forward-backward parabolic type, since it is well-posed forward
in time at the points where ¢/ > 0 and it is ill-posed where ¢’ < 0. In this
connection, we denote by

S1:={(u, ¢(u)) | u € (=00,b)} = {(s1(v),v) | v € (=00, B)}

(Hi) (4.1.2)

and
Sy = {(u, p(u)) | u € (c,00)} = {(s2(v),v) | v € (A, 00)}

the stable branches of the equation v = ¢(u), whereas

So = {(u,6(w) | u € (b,0)} = {(s0(v),v)) | v € (4, B)}

is referred to as the unstable branch.
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Figure 4.1: Assumption (Hy).

4.1.1 DMotivations and related problems

Equation (4.1.1) with a function ¢ satisfying assumption (H;) natu-
rally arises in the theory of phase transitions. In this context, u represents
the phase field and equation (4.1.1) describes the evolution between stable
phases. With a non-linearity ¢ of a different shape, in particular for a ¢
which vanishes at infinity, equation (4.1.1) describes models in population
dynamics ([Pa]), image processing ([PM]) and gradient systems associated
with non-convex functionals ([BFG]).

The initial-boundary value problem for equation (4.1.1) (either under
Dirichlet or Neumann boundary conditions) has been widely addressed in
the literature. Most techniques consist in modifying the (possibly) ill-posed
equation (hence the boundary conditions) with some regularization which
leads to a well-posed problem. A natural question is whether the approxi-
mating solutions define a solution (in some suitable sense, depending on
the regularization itself) of (4.1.1) as the regularization parameter goes to
zero. Many regularizations of equation (4.1.1) have been proposed and in-
vestigated (see [BBDU], [NP], [Sl]). Among them, let us mention the pseu-
doparabolic or Sobolev regularization

ur = Ap(u) + eAuy, (4.1.3)
which has been studied in [NP] for the corresponding Neumann initial-

boundary value problem in Qr := Q x (0,T), for any T > 0. In [P11] it
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is shown that the limiting points of the family of the approximating so-
lutions (u®, ¢(u®)) are weak entropy measure-valued solutions (u,v) of the
Neumann initial-boundary value problem in @p for the original equation
(4.1.1). Precisely, it is shown that the couple (u,v) obtained in the limit
€ — 0 satisfies the following properties:

(i) uw € L=(Qr), v € L®(Qr) N L*((0,T); H'(Q)) and

2
u= Z Aisi(v)
i=0

for some \; € L>®(Qr), 0 < A\; <1 and Z?:o i =1;

(7i) the couple (u,v) solves in the weak sense the equation

up = Av in D'(Qr); (4.1.4)

(7i7) the couple (u,v) satisfies the following class of entropy inequalities:
|| (676~ 9650 + g 0)ToPuidudr +
T
+/ G o) (z, 0)dz > 0
Q

for any ¢ € CY(Qy), ¥ >0, (-, T) = 0. Here, for any g € C1(R), ¢’ >0,
and

Actually, uniqueness in the class of weak entropy measure-valued solutions
to the Neumann initial-boundary value problem for equation (4.1.1) is un-
known, albeit this class seems a natural candidate in this sense, in view of
the entropy inequalities (see also [H] and [Z] for general results of nonunique-
ness). A natural question is whether uniqueness can be recovered by intro-
ducing some additional constraints. To this purpose, two-phase solutions
have been introduced in [EP] and investigated in [MTT2] (see also [MTT]).
Roughly speaking, a two-phase solution of the Neumann initial-boundary
value problem associated to equation (4.1.1) in Qp = (—1,1) x (0,T) is a
weak entropy measure-valued solution (u,v) (in the sense of [P11]) which
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describes transitions only between stable phases. Such solutions exhibit a
smooth interface £ : [0,7] — [—1, 1] such that

=s1(v) in {(z,t) eQr| — 1<z <)}
=s2(v) in {(z,t) e Qr| &) <z <1},

where s1 and so denote the first and the second stable branch of the equation
v = ¢(u). It is worth observing that the interface £ evolves obeying admissi-
bility conditions which follows from the entropy inequalities (see Definition
4.2.1 in Subsection 4.2.1).

Uniqueness and local existence of two-phase solutions of the Cauchy
problem for equation (4.1.1) under assumption (H;) has been proved in
[MTT2] (the proof of similar results for the Neumann initial-buondary value
problem was outlined in [MTT]). Actually, global existence of such solutions
is not known, albeit it is plenty addressed.

Assuming global exixtence, we investigate the long-time behaviour of
two-phase solutions to the Neumann initial-boundary value problem for
equation (4.1.1), proving asymptotic results concerning both v(-,t) and the
interface £(t).

4.2 Mathematical framework and results

4.2.1 Properties and Basic Estimates

Consider the initial-boundary value problem
u = [o(u)],, in (=1,1) x (0,00) := @,
=0

[p(u)] in {—1,1} x (0, 00), (4.2.1)
u = ug in (—1,1) x {0},

where ug € L>°(—1,1) satisfies the following assumption

ugp < b in (—=1,0), up > ¢ in (0,1),
@ { e e

Following [MTT], we give the definition of two-phase solutions to problem
(4.2.1).

Denote by C%1(Q) the set of functions f € C(Q) such that f,, fos, fi €
Q).
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Definition 4.2.1. By a two-phase solution of problem (4.2.1) we mean any
triple (u,v,&) such that:

(i) u € L*(Q), v € L®(Q)N 2((O,T), ( 1)) for any T > 0 and
£:[0,00) = [-1,1], £ € Cl([()? ), £(0) =
(ii) set
Vi={(z,t) eQ| —1<z<&(t), te]0,00)}, (4.2.2)
Vo:i={(x,t) e Q| &{(t) <z <1, t€]0,00)} 4.2.3

and

v = Vi NV = {(€(),1) | t € (0,00)}. (4.2.4)

Then, u € C*Y(V1) N C*Y(Va), v(-,t) € C([—1,1]) for any t > 0, and there
holds
u = si(v) a.e. inV; (1=1,2); (4.2.5)

(iii) for any t > 0 there exist finite the limits

i v (€(8) £ 1.1) = v (€00, 1) (4.2.6)

(iv) for any T > 0 set Qp := (—1,1) x (0,T). Then for any T > O there
holds:

//T wbt = Vol dxdt*/_ uo(z)¢(z, 0)dz = 0; (4.2.7)

for any ¢ € CY(Qr), ¥(-,T) =0 in [-1,1];
(v) for any g € CL(R), set

A
GO i= [ glo(s))ds (4.2.8)

then, for any T > 0 and under the assumption g’ > 0, the entropy inequali-
ties

/ / V) vy — g (V)02Y]dxdt + (4.2.9)
/ G(uo(x))(x,0)dx > 0

hold for any ¢ € CY(Qr), ¥ >0 and (-, T) =0 in (—1,1).
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Remark 4.2.1. Observe that, in view of Definition 4.2.1, the following
properties hold.

(i) The function v(.,t) € H*(—1,1) for any t > 0. Moreover, the couple
(u,v) is a classical solution of

{mzwmm in V;,
u = ug inV;N{t=0}

(i=1,2);
(ii) the Rankine-Hugoniot condition

¢ == (4.2.10)

holds a.e. on ~y. Here [h] := h(£(t)T,t) —h(£(t)™,t) denotes the jump across
~v of any piecewise continuous function h;

(iii) by the entropy inequalities (4.2.9), it follows that

EG(u)] > —g(v)[ve] a.e. on 7y,

for any G defined by (4.2.8) in terms of g € C*(R), ¢’ > 0. Observe that
the above condition implies that

§>0 ifv=A,
¢ <0 ifv=B, (4.2.11)
¢ =0 ifv#A, v+ B.

Namely, jumps between the stable phases s1 and sa occur only at the points
(z,t) where the function v(x,t) takes the values A (jumps from sg to s1) or
B (jumps from s1 to s2).

Uniqueness and local existence of two-phase solutions have been studied in
[MTT2] for the Cauchy problem, under suitable assumptions on the initial
datum up and for a piecewise function ¢. In [MTT] uniqueness of two-
phase solutions to the Neumann initial-boundary value problem for equation
(4.1.1) is proven. As already stated in the introduction, actually no resut
concerning global existence of two-phase solutions (either for the Cauchy
problem or for the Neumann initial-boundary value problem) is known, al-
beit it is plenty object of investigation. However, assuming global existence,
the long-time behaviour of two-phase solutions to problem (4.2.1) presents
very nice features and novelties with respect to the general case of weak
entropy measure-valued solutions (see Chapter 3). Let us give more details.

To begin with, some a-priori estimates are in order. For any initial datum
ug set

1 1
M,, = 2/ up(x)dx. (4.2.12)
-1
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By the homogeneous Neumann boundary conditions in (4.2.1), we deduce
the following result.

Proposition 4.2.1. Let ug € L°(—1,1) and let (u,v,§) be the two-phase
solution of problem (4.2.1) with initial datum ug. Then the following con-

servation law holds

1 1
5 / u(z, t)de = My, (4.2.13)
-1

for any t > 0.

On the other hand, in view of the entropy inequalities (4.2.9), we obtain
the two following results, whose role will be crucial in the latter.

Proposition 4.2.2. Let (u,v,§) be a two-phase solution of problem (4.2.1)
and for any g € CY(R), let G be the function defined by (4.2.8). Then:

(i) for any t1 < t3 and for any ¢ € C*([~1,1]), @ >0, there holds
1 1
/1 G(u(z,t1))e(x) doe — /1 G(u(z,t2))p(x)de > (4.2.14)
to 1
/ 2
> [ [ st + o )i

for any g € C'(R), ¢' > 0;
(ii) there exists

Ly := lim 1 G(u)(x,t)dx (4.2.15)

t—o0 1

for any non-decreasing g.

Proposition 4.2.3. Let (u,v,§) be a two-phase solution of problem (4.2.1).
Then there exists C > 0 such that

[e's) 1
/ / v2(x,t)dzdt < C. (4.2.16)
0 -1

4.2.2 Long-time behaviour

In the latter we denote by (u, v, ) any two-phase solution of problem (4.2.1).
We begin by the following proposition.
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Proposition 4.2.4. Let (u,v,§) be the two-phase solution of problem (4.2.1)
with initial datum ug and let My, be defined by (4.2.12). Then there exists
a unique constant v* such that for any diverging sequence {t,} there ezist a
subsequence {t,, } C {ty} and a set E C (0,00) of Lebesgue measure |E| =0,
so that:

v(-,t+tpn,) — 0" in C([—-1,1]) (4.2.17)

for any t € (0,00) \ E. Moreover,
(i) A <v* < B if and only if a < M, <d;

(i) if My, < a (respectively M,, > d) then v* = ¢(M,,) and for any € > 0
there exists T > 0 such that v(-,t) < A — e (respectively v(-,t) > B+¢) in
[—1,1] for anyt > T.

The first step in the investigation of the long-time behaviour of two-phase
solutions of problem (4.2.1) is the study of the interface £(t) as ¢ diverges.
This is the content of the following theorem.

Theorem 4.2.5. Let (u,v,§) be the two-phase solution of problem (4.2.1)
with initial datum ug, let My, be defined by (4.2.12) and let v* be the constant
given by Proposition 4.2.4. Then, there exists

tlim E(t) =: & (4.2.18)
Moreover,

(i) if A <v* < B there exists T > 0 such that {(t) = &* for any t > T;

(ii) if v* < A (respectively, v* > B) then £* = 1 (respectively, £ = —1)
and there exists T > 0 such that £(t) = 1 (respectively, £(t) = —1) for any
t>T.

Remark 4.2.2. As a consequence of Proposition 4.2.4 and Theorem 4.2.5,
when considering initial data ug of problem (4.2.1) with mass

My, <a (or My, >d),
there exists T > 0 such that for any t > T there holds:
u(t) = si(v(-, 1)) (ul-t) = s2(v(- 1))

in [—1,1] (here (u,v, ) is the two-phase solution of (4.1.1) with initial datum
U()).

Now our aim is to estabilish whether, for any two-phase solution (u, v, )
of (4.2.1), there exists the limit as ¢ — oo, in some suitable topology, of the
families v(+,t) and u(-,t). In this direction, for any k € N consider the sets

By, = {t € (0,00) | /11 v2(x, t)de < k:} , (4.2.19)
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and

1
Ap = (0,00) \ By, = {t € (0,00) | /_1 v2(x, t)dx > k‘} . (4.2.20)

Observe that, Ag11 C Ag, |Ak| < C/k by estimate (4.2.16), hence

A 4

k=1

= lim |Ag| =0.
o, 14!

The following theorem describes the long-time behaviour of the function
v(-,t) along any diverging sequence {t,}.

Theorem 4.2.6. Let (u,v,§) be the two-phase solution of problem (4.2.1)
with initial datum ug, let My, be defined by (4.2.12) and let v* be the constant
given by Proposition 4.2.4. For any k € N, let By, Ax, C (0,00) be the sets
defined by (4.2.19) and (4.2.20), respectively. Then,

(i) for any diverging sequence {t,} C By there holds

v(s,ty) — 0" in C([—-1,1)); (4.2.21)
(ii) for any diverging sequence {t,} C Ay there holds

V(- ty) — v* in LP(—1,1) (4.2.22)

for any 1 < p < 0.

The next step is the investigation of the long-time behaviour of the
function u(-,t). Since by (4.2.2)-(4.2.5) in Definition 4.2.1

u(+,t) = X(=1,e0)51(v(- 1) + Xe,ns2(v(-,1))  in (=1,1),

we have to take into account the asymptotic behaviour of the interface £(t)
(here xg denotes the characteristic function of any set £ C (—1,1)). There-
fore, combining Theorem 4.2.5 and Theorem 4.2.6 we show that the u(-,t)
approaches the function u*, where

o { X(-16951 () + Xgrps2(”) i a <My, < d (4.2.23)

My, it My, <a, My, >d,

as t — oo. This is the content of the following theorem.
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Theorem 4.2.7. Let (u,v,§) be the two-phase solution of problem (4.2.1)
with initial datum ug. Let M, be defined by (4.2.12), let & be the constant
given by Theorem 4.2.5 and let u* be the function defined by (4.2.23). For
any k € N, let By, A C (0,00) be the sets defined by (4.2.19) and (4.2.20),
repectively. Then,

(i) for any diverging sequence {t,} C By there holds
u(z, ty) — u* for any z e [-1,1]\ {{"} (4.2.24)
if a < My, <d; otherwise
u(eyty) — u* = My, in C([—1,1]) (4.2.25)

if My, < a, My, >d;
(i) for any diverging sequence {t,} C Ay there holds

u(sty) — u* in LP(—1,1) (4.2.26)
for any 1 < p < 0.

Remark 4.2.3. Convergences in Theorem 4.2.6-(ii) and Theorem 4.2.7-(ii)
hold also in the weak* topology of the space L>®(—1,1).

4.3 Proofs of Section 4.2.1

Proof of Proposition 4.2.1. Fix any ¢t > 0 and for any n € N set

. 1 if t € 0,1),
fin(s) = { —n(s —t—1) if s € [t,t + 2. (4.3.1)

Choosing
Up(x,8) = hfb(s)

as test function in the weak formulation (4.2.7) gives

t++ ol 1
n/ / u(z,t)dx —/ up(x)dx,
t -1 -1

hence (4.2.13) in the limit n — oo. This concludes the proof. O

Proof of Proposition 4.2.2 (i) Consider any t; < t2 and for any n € N

set
n(t—ti+2) ift €[t — L,4],
hn(t) = 1 ift (tl,tg),
—n(t—ty— 1) if t € [t to + 1].
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Fix any ¢ € C'([-1,1]), ¢ > 0 and choose

¢n(x> t) = hn(t)gp('r)

as test function in the entropy inequalities (4.2.9). We obtain

t1 1 ta+1/n 1
n/ dt/ G(u)cpdx—n/ dt/ Gu)pdr >
t1—1/n -1 to -1

t2+1/n 1
> / / hnlg(©)) v + g’ (v)02)dudt,
t1—1/n —1

for any g € C'(R), ¢’ > 0. Hence, taking the limit as n — 0o in the previous
inequality gives (4.2.14).

(#4) Observe that choosing ¢(z) = 1 in inequalities (4.2.14) gives

1 1
/ Glu(w, t1))dz > / Glu(, 1)) dz (4.3.2)
1 —1

for any t; < to and for any ¢ € C*(R), ¢’ > 0 (recall that G is defined
in terms of g by (4.2.8)). By standard arguments of approximation with
smooth functions, the assumption g € C'(R) can be dropped. Inequalities
(4.3.2) imply that the map

1
t— /_1 G(u(z,t))dx

is nonincreasing in (0, 00) for any non-decreasing g, hence the claim follows.
O

Proof of Proposition 4.2.3. Let us choose in inequalities (4.2.14) g(\) =
Aand ¢(-) =1 in [—1,1]. We obtain

/OT /11 v2(x, t)dxdt < /11 I(ugp)dx — /11 I(u(z,T))dz, (4.3.3)
where

A
I()\) ::/ o(s)ds.

Since u € L*(Q) (see Definition 4.2.1-(¢)) and T' > 0 is arbitrary, inequali-
ties (4.3.3) imply estimate (4.2.16). O
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4.4 Proofs of Section 4.2.2

Most proofs of the results in Section 4.2.2 need the following technical
results.

Let BV (R) denote the space of real functions which have bounded total
variation on R.

Proposition 4.4.1. Let v', v? € [A, B] and &', €2 € [~1,1] be such that

s1(vh) s2(v')
€ [ atotnds = =) [T gto()as -
) 51('02) ) 32(112)
=@+ [ g+ 0-¢) [T o)
for any g € BV (R). Then, v' = v? and ¢! = €2,
The proof of Proposition 4.4.1 is almost the same as in [ST] (see also Chapter
3), thus we omit it.

In order to prove Proposition 4.2.4, we begin by the following proposition.

Proposition 4.4.2. Let (u,v,§) be the two-phase solution of problem (4.2.1)
with initial datum ug and let M, be defined by (4.2.12). Then, there exists
a unique constant v* such that

v(,ty) — v* in C([-1,1]) (4.4.1)

for any diverging sequence {t,} such that
1
/ v2(z,ty)dz — 0 as m — o0. (4.4.2)
~1

Proof. Observe that for any diverging sequence {t,} satisfying (4.4.2) there
exists a constant k£ > 0 such that:

1 1/2
[v(xe,tn) —v(x1,tn)] < </ v%(m,t@dw) lzg — 21|12 <

-1
< ]{71/2’%2 — x1\1/2, (4.4.3)

for any =1, z2 € [—1,1] and for any n € N large enough. Moreover,

[v(s ta)lle-1,1y) < C. (4.4.4)

(see Definition 4.2.1-(7)). Estimates (4.4.3) and (4.4.4) imply that the se-
quence {v(-,ty)} is equi-continuous and uniformly bounded in C([—1,1]).
We proceed in two steps.
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(o) First we show that the sequence {v(-, )} converges uniformly [—1, 1]
to a constant v’ possibly depending on {t,}.

(3) Then we prove that v'" is independent of the choice of the sequence
{tn}. In other words there exists a unique v* € R such that (4.4.1) holds.

«) Suppose that there exist two subesequences {t. 1, {#21 C {¢,} such
( ) n n
that

liminf [[o(-, ) = (-, 7))l e(-1,1) = 0 (4.4.5)

for some ¢ > 0. On the other hand, we can assume that (eventually passing
to subsequences)

v, t) = in C([-1,1]), (j=1,2) (4.4.6)

for some constants v!, v? € [—1,1] (here use of (4.4.2) and (4.4.3) has been
made). Moreover, we can suppose that

) — & as n — 0o (1=1,2). (4.4.7)

Let us show that
vl ==l gl =g2 =¢in, (4.4.8)

v
In view of Definition 4.2.1-(i7) we have:
G (u(-, t%)) = X(_l,g(t%))G(sl(U(H tfm))) + X(g(t%),l)G(SZ(v('v tajm))) ;o (4.4.9)
hence by (4.4.6)-(4.4.7) there holds

G(u(- 1)) = x(-1.6nG(51(0")) + x(@,1)G(s2(v7)) (G =1,2) (4.4.10)
for any G defined by (4.2.8) in terms of any g € BV (R). Therefore,
1

lim G(u(z,t)))dx =

n—oo J_q
= (@ +1)GE) +(1-)G(2()  (1=1,2).

On the other hand, for any G defined by (4.2.8) in terms of any g € BV (R),
by (4.2.15) there holds

1 1
lim G(u(z,tl))dz = lim G(u(x,t2))dz,

n—oo J_q n—oo | 4
namely:

(€' +1)G(s1(0h) + (1 = €)G(s2(v')) =
= (£ +1DG(s1(0") + (1 - €)G(s2(v%)).
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The above equality implies (4.4.8) (see Proposition 4.4.1) which is in clear
contradiction with (4.4.5).

(B) Now assume that there exist two diverging sequences {¢}} and {¢2}
satisfying (4.4.2) such that

v(.,t)) = in C([-1,1]), (j=1,2) (4.4.11)
for some constants vy, v9. Moreover, we can suppose that
) — ¢ as n — 0o, (4.4.12)
Arguing as in Step («) gives equality

(€ +1)G(s1(0h) + (1 = €)G(s2(v')) =
= (€ +DG(s1(v?)) + (1 - €)G(s2(v?))

for any G defined by (4.2.8) in terms of any g € BV (R). This implies v! = v?
(see Proposition 4.4.1) and the claim follows. O
Proof of Proposition 4.2.4. For any diverging sequence {t,}, set

v, (x,t) == v(x, t+ ty) for z € [-1,1], t > 0.

oo 1 00 1
/ / (vs,)2 (x, t)dxdt = / / v2(z, s)dzds — 0
0 J-1 tn J-1

as n — oo (see (4.2.16)), there exist a subsequence {t,, } C {t,} and a set
E C (0,00) of Lebesgue measure |E| = 0 such that:

Since

1
/ V2(z,t + tp, )dz — 0
-1

for any t € (0,00) \ E. Hence, by Proposition 4.4.2 convergence (4.2.17)
follows.

Fix any {t,}, t, — oo such that v(-,¢,) converge uniformly to v* in
[—1,1]. The conservation law (4.2.13) implies

(14 €)s1(v") + (1 — £)sa(v") = 2My, (4.4.13)

where M, is defined by (4.2.12) and £* is some value in [—1, 1] such that,
eventually up to a subsequence, £(t,) — £*. Thus:

(1) if a < My, < d, suppose v* < A (hence £* = 1), so that (4.4.13) reduces
to
a > s1(v*) = My,,
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which gives an absurd. Analogously we can show that v* < B. Hence
v* € [A, B] in this case.

If My, < a (the case M,, > d is analogous), suppose that v* > A. Again,
in view of (4.4.13), we obtain

20 < (6" + D)s1(4) + (1 - €)s1(4) <
< (€ + D)1 (v") + (1= €)s2(v") = 2M,,

which gives a contradiction.

(7i) Finally, let us prove the last claim of Proposition 4.2.4 (again in the case
M,, < a). In this direction, fix any {¢,}, ¢, — oo such that

V(- ty) — v* in C(]—1,1]).

It follows that, for any € > 0 small enough, there exists m € N, such that

v(ty) <V —2e < A—¢ (4.4.14)
for any n > n. Set
T .= tﬁ,
and
(5) = 0 ifs<A-—¢,
JA-el) = 5 0 ifs>A—c¢.

Assume that g4_. is non-decreasing on R. Observe that

A .

o |0 if A <s1(4A—¢),
Ga—e(N) = /sl(As) 9a—c(9(s))ds = { >0  fA>s(A—¢).
(4.4.15)
In view of (4.2.14), for any ¢ > T we obtain

1

)
0< / Gao(s1(0(x,0)))de + | Ga(sa(v(z,t))dz <
1 £(t)

1
< / Ga—c(s1(v(z,T)))dx =0 (4.4.16)
-1
(here use of Definition 4.2.1- (i), (4.4.14) and (4.4.15) has been made), which

implies v(-,t) < A — ¢ for any ¢ > T. This concludes the proof. O

The following Lemma gives properties of monotonicity in time of the inteface

£(t).

Lemma 4.4.3. Let (u,v,§) be the two-phase solution of problem (4.2.1)
with initial datum ug and let v* be the constant given by Proposition 4.4.2.
Then there exists T' > 0 such that the map

t— &(t)
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fort > T is:
(i) non-decreasing if v* < B;

(7i) non-increasing if v* > A.

Proof. (i) Assume v* < B. Consider any sequence {t,}, t, — oo, such that
v(s,ty) — V" in C(]—-1,1])

(here use of Proposition 4.2.4 has been made). Since v* < B, there exists
7 € N such that v(-,t,) < B for any n > n. Set

T =tz
write inequality (4.2.14) for ¢ =1 in [—1,1] and

0 for s < B,
>0 for s > B

gan(s) = {

where gap is non-decreasing. Using Definition 4.2.1-(i7), for any t > T, we
have

£(t) 1
/_1 Gap(si(v(z,t)))dr + E(t)GAB(SQ(U(fL‘,t)))d.TS (4.4.17)

&(T) 1
< / G ap(s1(v(z, T)))dz + /5 ., Ganloao(o Tz =0

-1

by our choice of T" and by the uniform convergence of v(-,t,) to v* in [—1, 1]
(here G 4p is defined by (4.2.8) in correspondence of g4p). On the other
hand, observe that the non-negative function

A
Gap(h) = /0 g5 (0(s))ds

is strictly positive for any A > so(B), thus inequality (4.4.17) implies
v(-,t) < B for any ¢t > T. (4.4.18)
Next, for any p > 0, set

0 if s<B—p,
p1/2 if B—p<s<B.

Set
A
Go(N) = /0 0p(6(5))ds
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and consider the entropy inequalities (4.2.14) for g = g, and ¢, > t; > T.
We obtain

-1 £(t1)
£(t2) 1
- (/ Go(s2(v(w,t2)))p(x)dr + Gp(s2(v(w,t2)))p(x)dx

>

£(t1) 1
(/ Gp(s1(v(z, t1)))p(z)dz + Gp(82(v($7t1)))<ﬂ($)d$> +
£(t2) )

v

1
ta 1
/t /_1gp(v(x’t»%(wvt)%@z(iﬁ)dwdt =

- - / / 11 s (2) ( /O o gp<s>ds> dadt (4.4.19)

for any ¢ € C}(—1,1), » > 0. Concerning the right-hand side of (4.4.19),

we have
to rl v(z,t)
/ / Pz () / gp(s)ds | dedt| = (4.4.20)
t1 -1 0
to
-] V2 (0(@,1) — B+ p)aa(w)dadt| <
t1 v(z,t)>B—p}
<

to 1
p1/2/ / |0wa(z)|dz — 0
t1 -1

as p — 0 (here use of (4.4.18) has been made). Next, observe that, for any
t > T, there holds

&) 1
| Gateie@is + [ Gylsalole))plaids =
-1 )
&t

) s1(B—p) 1
= / X{v(:p,t)<pr}(x)t) / p ds | dx +
-1 s0(B—p)

@) s1(v(,t)) "
+ /1 X{v(:v,t)zpr}(wat) / P / ds | dx +

o(B—p)
1 sa(v(z,t)) 19
+ / X{v(x,t)Zpr}(xat) / P 2ds dux; (4.4.21)
&(t) s2(B—p)
Since ¢”(b) # 0 (see Assumption (Hqp)), it follows that
' £(t) 1
iy [ Gyl (0o D)ot + | | Gl )l =
—0J1 &(t

£(t)
= _0/1 2X {o(2,)<B} (%, 1) + X{o(e,)=B) (7, D))o (T)dz, (4.4.22)
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for some C' > 0, depending on the value ¢”(b). Thus, in view of (4.4.20)-
(4.4.22), taking the limit as p — 0 in (4.4.19) gives

&(t)
/1 [2X {o(2,t1)< B} T X{o(at)=BP(T)dT < (4.4.23)

&(t2)
< /1 [2X {o(2,t2)< B} T X{u(z,t2)=B}P(T)dz,
for any ¢ € C!(—1,1), ¢ > 0. Ruling out of contradiction, suppose that
E(t2) < &(t1), fix any T € (&(t2),&(t1)) and observe that (4.4.23) implies

0 < 2X{u(a,t1)<B} (T, t1) + X{o(a,t1)=B} (T, t1) < 0,
which gives an absurd. Hence, £(t2) > £(t1) for any to >t > T.

(74) The case v* > A can be treated in a similar way O

Proof of Theorem 4.2.5. Let us distinguish the cases A < v* < B,
v*=A, v* = Band v* < A, v* > B.
(1) If A < v* < B, in view of Lemma 4.4.3 there exists 7" > 0 such that
E(t1) < &(t2) < &(ty) for any to > t1 > T. Hence for any t > T the function
&(t) is constant and the claim folows.

(74) In the case v* = A (v* = B), in view of Lemma 4.4.3 there exists T" > 0
such that the map ¢ — &(t) is non-decreasing (non-increasing) on (7', 00)
and again (4.2.18) holds.

(7i1) If v* < A, by Proposition 4.2.4-(i7) there exists 7' > 0 such that
v(-,t) < Ain [-1,1] for any ¢ > T. Hence, in view of Definition 4.2.1-
(i4), (1) = $1(0(£)) - namely, £(t) = 1 - for any ¢ > T.

(iv) In the case v* > B, by Proposition 4.2.4-(ii) there exists T' > 0 such
that v(-,¢) > B in [—1,1] for any ¢t > T. Hence, in view of Definition 4.2.1-
(i), u(-,t) = sa(v(+,t)) - namely, £(t) = —1 - forany t > T'. . O

Proof of Theorem 4.2.6. Let v* and £* be the constants given by Propo-
sition 4.2.4 and Theorem 4.2.5, respectively. Fix any k € N and consider
any {t,} C Bi. We have

1
Sup/ v2(x,t,)dr <k, (4.4.24)
neNJ—
hence
1 1/2
(@, ) — 01, tn)| < (/ vg(x,tn)dm> I — 21|12 <
—1
< EY2|zg — |V, (4.4.25)
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for any x1, z9 € [—1,1]. Moreover,
lv(ta)lleqe1y < C (4.4.26)

(see Definition 4.2.1-(7)). Estimates (4.4.25) and (4.4.26) imply that the
sequence {v(-,t,)} is equi-continuous and uniformly bounded in C([—1,1]),
thus there exists o € C([—1,1]) such that, eventually passing to a subse-
quence, there holds

v(-ty) — 0 in C([-1,1]).

Let us show that

v =v" in [—1,1]. (4.4.27)
To this purpose, we can find two sequences {t}l} , {ti} such that
v(-,th) —v*  in O([~1,1]), (i=1,2)
and
th Sto <th,  fta =1 <1

for any n € N, i = 1,2 (here use of Proposition 4.2.4 has been made). Then,
in view of inequalities (4.2.14), we obtain

</1 G(u(z,t,,))e(x)ds — /11 G(u(x,tn))@(x)dx> >

> /t1 / v(z,t))ve(z, t) o (z)dxdt, (4.4.28)
and
</_11 G (u(x,ty) dx—/ G(u(z,t2)) (:c)dx) >
> /tt / 11g(v(x,t))vx(x,t)gox(x)dxdt, (4.4.29)

for any G defined by (4.2.8) in terms of any g € C(R), ¢’ > 0, and for any
o € CY([~1,1]), ¢ > 0. In view of estimate (4.2.16), there holds

t ol
/ / v2(x, t)dadt
tn J-1

thus, passing to the limit as n — oo in (4.4.28) and (4.4.29) gives

& 1

B G(s1(v"))p(@)dx + . G(s2(v™))p(x)dr <

& 1

B G(s1(0(2)))p(x)dz + . G(s2(0(2)))p(x)dz <
& 1

g G(s1(v"))p(@)dx + . G(s2(v"))p(z)dx.

— 0,

IN

IN
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Observe that the above equality implies
s1(v") = s1(0(x)) for any x € (—=1,£7),

and
s2(v*) = s2(0(x)) for any x € (£%,1).

Since s; and sy are strictly monotone functions, (4.4.27) follows.

(7i) Fix any k > 0 and any sequence {t,} C Ay. If

1
sup/ v2(z,t,)dr < oo
neNJ -1

we can argue as in the proof of (i). Therefore suppose

1
sup/ v2(x, t,)dr = oo
neNJ -1

In this case the sequence {v(-,t,)} need not be relatively compact in the
strong topology of C'([—1,1]). However, by means of Propositin 4.2.4 we
can find two sequences {t}l} ) {ti} such that

v(-,th) —v*  in O([-1,1]), (i=1,2)

and ‘
th <t, <t It — 0] <1

for any n € N, ¢ = 1,2,. Arguing as above gives

1 1
/ Glulr, £1)) pla)di — / Glulz, tn))p(a)da >

-1 -1

1
> / /g (1)) vs(, )y () dad, (4.4.30)
o)1
and
1
G(u(z,ty) dx—/ G(u(z, t2))p(x)dx >
1
2 1
2 / /9(”(957t))“a:(w,t)ﬁpx(x)dxdt, (4.4.31)
tn -1

for any g € C*(R), ¢’ > 0, and for any ¢ € C*([~1,1]), ¢ > 0 (here G is
defined by (4.2.8)). Thus, passing to the limit as n — oo gives

1

nh_)ngo B G(u(z, ty))p(x)dx = (4.4.32)
&* 1
— 9 G(s1(v"))p(z)dx + . G(s2(v"))p(x)dx.
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Observe that in view of Definition 4.2.1, we have

1
/1 G(u(z, tn))p(x)dr = (4.4.33)
£(tn)

1

= /1 G(s1(v(@,tn)))p(w)de + » )G(82(v(w7tn)))¢(x)dﬂf

and, for any § > 0 we can assume
=0 <&(ty) <& 496
for n large enough (by Theorem 4.2.5). Thus, by (4.4.32) and (4.4.33) we
have
=0 =0
lim [s1(v(z, tn))[Pep(x)dx =/ [s1(v%)[Pep () dac
—1

n—oo [_4

for any ¢ € CH(—1,£* — §) and p > 1 (here we have choosen g(s) =
ps1/®~V(s) in (4.4.32)) and
1 1
i [ Jsa(vleta)Pelade = [ Jsa(e)Po(e)ds
o0 Jexts £ +6

for any ¢ € CX(£* + 0,1) and p > 1 (here we have choosen g(s) =
p~|s2|®=Y(s)). In other words, by the arbitrariness of §, we have proven
that

s1(v(e,ty)) — s1(v¥) in LP(—1,¢&%), (4.4.34)

and
so(v(-,ty)) — s2(v™) in LP(£%, 1), (4.4.35)

As a consequence of the above convergences, we obtain
v(s,ty) — v* in LP(—1,1),
for any 1 < p < oo, and the claim (4.2.22) follows. O

Proof of Theorem 4.2.7. For any diverging sequence {t,}, in view of
Definition 4.2.1 we have

W, tn) = X105 (00T 1)) + X(ey 152 (0(@ b)) (44.36)

(i) Assume {t,,} C By, where By, is the set defined by (4.2.19) for any k € N.
Since v(,t,) — v* in C([—1,1]) by Theorem 4.2.6-(i) and £(t,) — £* by
Theorem 4.2.5, taking the limit as n — oo in (4.4.36) gives

u(z, t,) — u*
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for any = € [—1, 1]\ £*, the function u* being defined by (4.2.23). Moreover,
if My, < a (respectively M,, > d) v* = ¢(M,,) (see Proposition 4.2.4-(ii))
and equation (4.4.36) reduces to

u(z, ty) = s1(v(z,ty)) (u(z,t,) = sa(v(z,ty)))
for n € N large enough (see Remark 4.2.2). Therefore u(-,t,) — My,
uniformly in [—1, 1] by Theorem 4.2.6-(i).

(74) Now asume {t,} C A, where Ay is the set defined by (4.2.20). In this
case v(+,t,) — v* in LP(—1,1) for any 1 < p < oo (see Theorem 4.2.6-(i7))
and £(t,) — & (see Theorem 4.2.5), hence passing to the limit in (4.4.36)
gives (4.2.26) and the claim follows. O
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