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Introduction

The initial-boundary value problem for the quasi-linear diffusion equation

ut = ∆φ(u) (1)

has a unique solution if the function φ is monotone increasing with φ′ ≥
c > 0, such solution being, roughly speaking, as smooth as the function φ
([Be], [LSU]). On the other hand, if φ′ ≤ c < 0, equation (1) is of backward
parabolic type and, in view of the smoothing effect, the initial-boundary
value problem for such an equation is in general ill-posed, since it may have
a solution only for special initial data ([Pay]).

In this thesis we consider non-linearities φ whose main feature is their
non-monotone character. In this case equation (1) is said to be a forward-
backward parabolic equation, since it is well-posed forward in time at points
such that φ′(s) > 0, whereas it is ill-posed (forward in time) where φ′(s) < 0.
For, in the following the intervals where φ′ > 0 will be referred to as the
stable phases, and the intervals where φ′ < 0 as the unstable phases of
equation (1).

Most non-linearities φ considered in the literature belong to two different
classes:
(i) a cubic-like φ satisfying the assumption

(H1)


φ(s)→ ±∞ as s→ ±∞,
φ′(s) > 0 if s < b and s > c,
φ′(s) < 0 if b < s < c,
φ′′(b) 6= 0, φ′′(c) 6= 0,
A := φ(c) < φ(b) =: B

(see Fig.1);
(ii) a function φ with degeneration at infinity, which satisfies the following
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assumption:

(H2)


φ(s) > 0 if s > 0, φ(s) = −φ(−s) if s < 0,
φ(0) = 0 and φ(s)→ 0 as s→ +∞,
φ ∈ Lp(R) for some p ∈ [1,∞),
φ′(s) > 0 if 0 ≤ s < 1, φ′(s) < 0 if s > 1,
φ(1) = 1 , φ′′(1) 6= 0

(see Fig.2). Both types are suggested by specific physical and biological
models, as discussed in the following subsection.

Figure 1: Assumption (H1).

Motivations

Forward-backward parabolic equations with a cubic-like φ naturally arise in
the theory of phase transitions. In this context the function u represents the
phase field, whose values characterize the difference between the two phases
(e.g., see [BS]). Therefore the half-lines (−∞, b) and (c,∞) correspond to
stable phases, the interval (b, c) to an unstable phase (e.g., see [MTT]), and
equation (1) describes the dynamics of transition between stable phases.

Concerning assumption (H2), various physical and biological phenomena
modelled by means of equation (1) have been proposed in the literature, e.g.
a continuum model for movements of biological organisms ([HPO]), and a
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Figure 2: Assumption (H2).

continuous approximation to a discrete model for aggregating populations
([Pa]). In the latter case a typical choice of the function φ is

φ(u) = u exp (−u),

where the unknown u ≥ 0 represents the population density, while the tran-
sition probability (namely, the probability that an individual moves from
its location) p(u) = exp (−u) models aggregation phenomena, for it is a
decreasing function of u.

An independent, relevant motivation to study equation (1) subject to
assumption (H2) comes from the context of image processing. In 1990 P.
Perona and J. Malik introduced an edge enhancement model, with the aim
of denoising a given image u0 while at the same time controlling blurring
([PM]). The non-linear diffusion equation they proposed, thereafter known
as the Perona-Malik equation, reads

zt = div
[
σ(|∇z|)∇z

]
. (2)

Typical choices of the function σ are σ(s) = (1 + s2)−1, σ(s) = exp (−s). In
the one-dimensional case, the equation reduces to

zt = [φ(zx)]x, (3)

with φ(s) = s(1 + s2)−1 or φ(s) = s exp (−s). Deriving equation (3) with
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respect to x and setting u := zx formally gives equation (1), with φ satisfying
assumption (H2).

In [BBDU] equation (3) arises as a mathematical model for heat transfer
in a stably stratified turbolent shear flow. Here the temperature w ≥ 0
satisfies the equation

wt = [kwx]x , (4)

and under fixed external conditions the function k only depends on the
gradient of the temperature, namely

k = σ(wx) . (5)

Moreover, a typical choice of the function σ is σ(s) = A
B+s2

. Setting φ(s) :=
sσ(s) and combining (4)-(5) gives equation (3).

Finally, let us also mention that equation (3) with assumption (H2) can
be regarded as the formal L2-gradient system associated with a nonconvex
energy density ψ in one space dimension (in this case φ = ψ′) of the form
ψ(s) = log (1 + s2) ([BFG]). Analogously, the choice of the double well
potential ψ(s) = (1 − s2)2 leads naturally to equation (3) for a cubic-like φ
satisfying assumption (H1). Therefore the dynamics described by (3) (hence
by equation (1)) in one space dimension is relevant to various settings, where
nonconvex functionals arise (in this respect, see [Mü] for motivations in
nonlinear elasticity).

How to regularize?

As already remarked, the lack of forward parabolicity in equation (1) under
both assumptions (H1) − (H2) gives rise to ill-posed problems. As a con-
sequence, both development of singularities and lack of regularity can be
expected, when considering initial data u0 which take values in the unstable
phase.

As a matter of fact, existence of solutions to the Neumann initial-boun-
dary value problem for the Perona-Malik equation (3) has been proven if the
derivative of the initial datum u0 takes values in the stable phase ([KK]),
while for large values of |u′0| no global C1-solution exists ([G], [K]). This
shows that even local existence of solutions (in some suitable functional
space) to the initial-boundary value problem for equation (1) (or (3)) is a
non-trivial problem (in this connection see also the numerical experiments
in [BFG], [FGP], [NMS] and [SSW]).

On the other hand, the uniqueness problem is even more cumbersome.
In the pioneering work [H] it was shown that, concerning the Neumann
initial-boundary value problem for equation (3), infinitely many weak L2-
solutions can be constructed, if φ is a non-monotone piecewise linear function
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satisfying the coercivity condition sφ(s) ≥ cs2 for some constant c > 0. This
yields existence of infinitely many weak solutions to the forward-backward
equation (1) under assumption (H1). Although the assumptions in [H] are
not satisfied if (H2) holds, even in this case a general nonuniqueness result
has been proven. In fact, the existence of infinitely many weak W 1,∞-
solutions for equation (3) (thus the existence of infinitely many L∞-solutions
for equation (1)) under assumption (H2) was proven in [Z]. The techniques
used in [Z] consist in rephrasing the Neumann problem for equation (3) into
a partial differential inclusion problem, and are very different from ours (see
the subsection below).

When dealing with phenomena as above, a widely accepted idea is that
ill-posedness derives from neglecting some relevant information in the model-
ling of the physical phenomenon. Hence a general strategy is to restore this
information by introducing additional relations, which define a restricted
class of admissible solutions where the problem is expectedly well-posed. To
this purpose, a natural approach to address equations (1), (3) is to modify
the equation (and perhaps the boundary conditions) by introducing some
physically sensible regularization which leads to a well-posed problem. Then
the problem that arises is to describe the limiting points of the family of ap-
proximate solutions as the regularization parameter goes to zero. A natural
question is whether such limiting points, obtained by means of the approxi-
mating process, define solutions (in some suitable sense depending on the
regularization itself) to the initial-boundary value problem for the original
ill-posed equation.

In this general framework, different regularizations have been proposed
and investigated. Among them, let us first mention the fourth-order regu-
larization, which leads to the Cahn-Hilliard equation

ut = ∆[φ(u)− ε∆u] . (6)

Equation (6) was introduced by Cahn in [C] for a non-linearity φ satisfying
assumption (H1), with the aim to describe isothermal phase separation of
binary mixture quenched into an unstable homogeneous state.

Regularization (6) was used in [Sl] to address both the Dirichlet and
Neumann initial-boundary value problems for equation (3), when φ satisfies
assumption (H1) (see [BFG] for the case (H2)). Using the Young measure
representation of composite weak limits (e.g., see [GMS], [E2], [V]), it was
proven that the family of approximate solutions to the regularized problems
for (6) converges to a measure-valued solution of the initial-boundary value
problem for the original unperturbed equation (3) (in this connection see
also [Pl4]). Such a result is not surprising, for Young measures - and con-
sequently measure-valued solutions - naturally arise when describing rapid
oscillations that may appear in the limiting behaviour of solutions to non-
linear evolution equations ([D], [RH]).
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A second, widely investigated regularization is the pseudoparabolic or
Sobolev regularization, which leads to the equation

ut = ∆φ(u) + ε∆ut . (7)

The term ∆ut can be interpreted by taking viscous relaxation effects into
account (see [NP], [BFJ]).

The Neumann initial-boundary value problem for equation (7) was stu-
died in [NP] under assumption (H1), and in [Pa] under assumption (H2).
In both cases global existence and uniqueness of the solution uε is proven
to hold in L∞(QT ) (QT := Ω × (0, T )) for any ε > 0. Moreover, solutions
of equation (7) satisfy a class of viscous entropy inequalities, this parlance
being suggested by a formal analogy with the entropy inequalities for viscous
conservation law (see [E2], [MTT] and [Se]). As is well known, such entropy
inequalities carry over to weak solutions of the Cauchy problem for the first
order hyperbolic conservation law in the vanishing viscosity limit ε → 0
(e.g., see [Se]). These limiting entropy inequalities define the class of the
entropy solutions, which is shown to be a well-posedness class for the original
problem. Therefore, it is natural to wonder whether in the limit ε→ 0 it is
possible to prove existence and uniqueness of suitably defined weak entropy
solutions for the original equation (1).

In this direction, an exhaustive answer has been given in [Pl1] for the
case of a cubic-like φ. In view of assumption (H1), it turns out that the
family {uε} of solutions to the regularized Neumann initial-boundary value
problem for equation (7) is uniformly bounded in the L∞-norm, and the
limiting points (u, v) of the families {uε} , {φ(uε)} satisfy in the weak sense
the limiting equation

ut = ∆v in D′(QT ) (8)

with initial datum u0 and Neumann boundary conditions. Equation (8)
would give a weak solution of the Neumann initial-boundary value problem
for (1), if we had v = φ(u); however, no such conclusion can be drawn, due
to the nonmonotone character of φ.

In this connection, in [Pl1] it is shown that the couple (u, v) is a measure-
valued solution in the sense of Young measures to the unperturbed equation
(1). With respect to the results in [Sl] for the Cahn-Hilliard regularization,
the novel feature here is the study of the family {τ ε} of Young measures
associated to the approximate solutions uε, and the characterization of the
disintegration ν(x,t) of any Young measure τ obtained as the narrow limit
of such measures (see [E1], [GMS], [V]). In particular, it is proven that
the disintegration ν(x,t) is an atomic measure given by the superposition of
three Dirac masses concentrated on the branches s0, s1, s2 of the equa-
tion v = φ(u). Hence the function u obtained as ε → 0 has the following
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representation:

u =
2∑
i=0

λisi(v), (9)

for some positive coefficients λi ∈ L∞(QT ) such that
∑2

i=0 λi = 1 (see [E2],
[GMS], [V]). Equality (9) can be explained by saying that the function u
takes the fraction λi of its value at (x, t) on the branch si(v) of the graph of
φ. Then the coefficients λi can be regarded as phase fractions, and u itself
as a superposition of different phases.

Finally, the solutions (u, v) so obtained satisfy a class of suitable limiting
entropy inequalities. This is why any couple (u, v) obtained from the Sobolev
equation (7) via the above limiting procedure is said to be a weak entropy
measure-valued solution of the initial-boundary value problem associated to
equation (1).

In spite of the formal analogy with the case of hyperbolic conservation
laws, no uniqueness result of weak entropy measure-valued solutions has
been proven, although such solutions seem a natural candidate in this sense.
In this respect it can be argued that the class of solutions considered in
[Pl1] is still too wide, and that uniqueness results might be recovered when
considering a more restricted class, defined by additional constraints. To
this purpose, again for a function φ subject to assumption (H1), in [EP] the
choice of two-phase entropy solutions has been suggested. Roughly speaking,
two-phase solutions of equation (1) occur when admitting transition only
between stable phases. Such a transition is described by an interface which
evolves in time, obeying suitable admissibility conditions (resulting from the
entropy inequalities) which select admissible jumps between the stable phases
(see [MTT]). Local existence and uniqueness of solutions of this kind have
been proven in [MTT2] for the Cauchy problem associated to equation (1)
in the case of a piecewise linear φ. However, it should be observed that
such two-phase solutions are not obtained as limiting points of approximate
solutions to some regularization of equation (1).

Finally, in [BBDU] the regularization

zt = [φ(zx)]x + ε[ψ(zx)]xt (10)

has been proposed to address the Neumann initial-boundary value problem
associated to equation (3) with φ satisfying (H2). Here ψ is a nondecreasing
smooth function with a saturation at infinity - namely, ψ(s) → γ ∈ R as
s→∞, so that equation (10) is regarded to as a degenerate pseudoparabolic
approximation of equation (3). Observe that the usual transformation u :=
zx leads to a corresponding degenerate pseudoparabolic approximation for
equation (1) under assumption (H2).

Well-posedness of the Neumann initial-boundary value problem in any
cylinder QT = Ω×(0, T ) for equation (10) has been studied in [BBDU] (here
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Ω ⊆ R is a bounded open interval). The main feature of the solutions zε ∈
BV (QT ), resulting from the degeneracy of ψ′ at infinity, is the formation of
discontinuities in finite time, even for smooth initial data. Moreover, at any
fixed point x0 the discontinuity jump zε(x+

0 , t) − zε(x−0 , t) is nondecreasing
in time. This can be intrerpreted by saying that the singular term z

ε,(s)
x

(with respect to the Lebesgue measure) in the distributional derivative zx
prevails over the regular (L1-)term z

ε,(r)
x as time proceeds.

Outline of results

Within the above general framework, the present thesis addresses four main
points, as outlined below. Each point, apart from the last one, corresponds
to a paper either appeared or submitted.

(i) In Chapter 1 we consider the Sobolev regularization (7) of equation (1)
in the case of a function φ subject to assumption (H2). We wonder whether
results analogous to those obtained in [Pl1] hold in the present case, and,
if any difference occurs, what are the novel features deriving from assuming
(H2) instead of (H1).

In this direction, let {uε} be the family of approximate (positive) so-
lutions to the Neumann initial-boundary value problem for the regularized
equations (7) in any cylinder QT := Ω × (0, T ) and for any initial datum
u0 ∈ L∞(Ω), u0 ≥ 0 (Ω being a bounded domain in RN with smooth
boundary ∂Ω). From the mathematical point of view, the main complica-
tion due to the specific shape of a non-linearity φ of ”Perona-Malik type”, in
particular to its degeneragy at infinity, is the weakening of the a-priori esti-
mates. Specifically, while for the functions φ(uε) and the chemical potentials
vε := φ(uε) + εuεt uniform L∞-estimates as in [Pl1] are proven to hold, the
family {uε} need not be uniformly bounded with respect to the L∞-norm,
thus only a uniform L1-estimate is given. This implies that the limit of the
family {uε} as ε → 0 can only be taken in a weaker sense with respect to
[Pl1], namely in the space M+(QT ) of positive Radon measures over QT
instead of L∞(QT ). In other words, any limiting point of the approximating
family uε is a positive Radon measures ũ on QT .

Nevertheless, using the idea of the biting convergence of “ removing sets of
small measure ”, and using the general properties of the narrow convergence
for Young measures (e.g., see [GMS], [E2] [V]), we can represent the Radon
measure ũ as the sum

ũ = u+ µ, (11)

where µ ∈ M+(QT ) is a positive Radon measure, in general not absolutely
continuous with respect to the Lebesgue measure, and u ∈ L1(QT ), u ≥ 0.
On the other hand, the function u is proven to be a superposition of the
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stable branch s1 and the unstable branch s2 associated to the graph of φ
(see Fig.2), namely

u =
{
λs1(v) + (1− λ)s2(v) if v > 0,
0 if v = 0

(12)

for some λ ∈ L∞(QT ) such that 0 ≤ λ ≤ 1. Here v ≥ 0 is the limit
of the family {φ(uε)} in the weak* topology of L∞(QT ). Clearly, this is
the counterpart of the results proven in [Pl1] for a cubic-like φ. Hence the
limiting equation obtained as ε→ 0 reads

(u+ µ)t = ∆v in D′(QT ), (13)

the appearance of the measure µ depending on the degeneracy at infinity of
the function φ of Perona-Malik type.

In analogy with the case of a cubic-like φ treated in [Pl1], we also can
take the limit as ε → 0 in the viscous entropy inequalities for the approxi-
mate solutions uε. Under additional restrictions due to the weaker a-priori
estimates, we obtain entropy inequalities for the couple (u, v).

Concerning the measure µ, first we give qualitative properties of its sup-
port, then we prove the following ”disintegration”:∫ ∫

QT

f dµ =
∫

(0,T )
dt

∫
Ω
f(x, t) dγ̃t(x), (14)

for any sufficiently regular f , where γ̃t ∈M+(Ω) is a positive Radon measure
defined for a.e. t ∈ (0, T ). Finally, we show that the map t 7→ γ̃t(E) is
nondecreasing in (0, T ) for any Borel set E ⊆ Ω. This is the main qualitative
feature of the singular term µ (or, equivalently, of its spatial disintegration
γ̃t). It suggests that in equation (13) the singular part µ prevails over
the regular L1-term u for large times (observe that the choice of T > 0
is arbitrary). In other words, it is reasonable to expect a general coarsening
effect, since in the measure u+µ singularities can appear and spread as time
goes on. This conjecture seems consistent with concentration phenomena, in
agreement with the model interpretation of equation (1) under assumption
(H2), particularly concerning aggregation phenomena.

(ii) Chapter 2 deals with the degenerate pseudoparabolic regularization (10)
of equation (3) in the case of a function φ subject to assumption (H2).
As already remarked, in [BBDU] existence and uniqueness of solutions to
the Neumann initial-boundary value problem associated to (10) have been
studied in any cylinder QT = Ω × (0, T ], Ω ⊆ R being a bounded in-
terval. In this framework, a solution is meant to be a couple (zε, wε),
where zε ∈ L∞((0, T );BV (Ω)), zεx ∈ M+(QT ), zεt ∈ L2(QT ) and wε ∈
L∞((0, T );H1

0 (Ω)) ∩ C(QT ), wεt ∈ L2((0, T );H1
0 (Ω)), such that
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zεt =
[
h(wε)

]
x

+ ε
[
wε
]
tx

in L2(QT ) (15)

with initial datum z0 ∈ BV (Ω), z′0 ∈M+(Ω) (here h := φ ◦ ψ−1).
Our first aim is to give a notion of solution to the Neumann initial-

boundary value problem for (10) which is equivalent to that proposed in
[BBDU] and, at the same time, more general. Precisely, denoting by z

ε,(r)
x

and z
ε,(s)
x the regular and singular term of the spatial derivative zεx with

respect to the Lebesgue measure, we prove that

(a) wε = ψ(zε,(r)x ), h(wε) = φ(zε,(r)x ),

(b) equation (15) reads

zεt =
[
φ(zε,(r)x )

]
x

+ ε
[
ψ(zε,(r)x )

]
tx

in L2(QT ), (16)

(c) supp zε,(s)x =
{

(x, t) ∈ QT | ψ(zε,(r)x )(x, t) = γ
}

.

Observe also that deriving (16) with respect to x formally gives the
following equation for the derivative zεx[

zεx
]
t

=
[
φ(zε,(r)x )

]
xx

+ ε
[
ψ(zε,(r)x )

]
txx

in D′(QT ) (17)

which is a degenerate pseudoparabolic regularization for equation (1) under
assumption (H2).

Then, as in the case of the Sobolev regularization (7), we proceed to
study the vanishing limit ε → 0 in (16) (and consequently in (17)). In this
direction, we only have general a-priori estimates in BV (QT ) for the family
{zε} - namely in M+(QT ) for the spatial derivatives zεx. Hence, again the
space of positive Radon measures seems a natural candidate to take the
limit as ε→ 0, which leads to the limiting equations

zt = vx in L2(QT ), (18)[
zx
]
t

= vxx in D′(QT ). (19)

Here z ∈ BV (QT ) is the weak limit of the family {zε} in BV (QT ), and
v ∈ L∞(QT )∩L2((0, T );H1

0 (Ω)), v ≥ 0, is the limit of the family
{
φ(zε,(r)x )

}
in the weak* topology of L∞(QT ).

Arguing as in (i), we can use the general notion of Young measures,
narrow and biting convergences, to prove the following decomposition of the
Radon measure zx ∈M+(QT ):

zx = Z + µ, (20)

where µ ∈ M+(QT ) is a positive Radon measure, in general not absolutely
continuous with respect to the Lebesgue measure, and Z ∈ L1(QT ), Z ≥ 0,
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is a superposition of the two branches s1, s2 of the equation v = φ(Z),
namely

Z =
{
λs1(v) + (1− λ)s2(v) if v > 0,
0 if v = 0

for some λ ∈ L∞(QT ) , 0 ≤ λ ≤ 1. The above equality gives a clear
analogy with a cubic-like function considered in [Pl1]. On the other hand,
the measure µ can be ”disintegrated” as the Lebesgue measure dt with
respect to the time variable t, and as a positive Radon measure γt over Ω
for a.e. t > 0 (see (14) in (i)), the map

t 7→ γt(E)

being nondecreasing for any Borel set E ⊆ Ω. This is the counterpart of the
results decribed in (i) above for the (possibly) singular term γ̃t ∈ M+(Ω).
Finally, the novel feature here, due to the degenerating term ε

[
ψ(zx)

]
tx

in
regularization (10), is the characterization of the support of the (possibly)
singular measure γt ∈ M+(Ω) (hence of µ ∈ M+(QT )). Precisely we prove
that

supp γt ⊆
{
x ∈ Ω | v(x, t) = 0

}
for a.e. t > 0.

(iii) In Chapter 3 we address the long-time behaviour of weak entropy
measure-valued solutions (u, v) to the Neumann initial-boundary value pro-
blem for equation (1) under assumption (H1) and in the one-dimensional
case Ω = (0, 1). To this purpose, in view of the crucial estimate∫ ∞

0

∫ 1

0
v2
xdxdt ≤ C ,

it is reasonable to expect that v(·, t) approaches a constant value v as time
diverges. It is a natural question, whether this constant v is uniquely deter-
mined by the initial datum u0 of the problem. In fact, since no uniqueness
of measure-valued solutions to the Neumann initial-boundary value problem
for (1) is known, the value v could depend on the solution itself (in this con-
nection, see [MTT]). For any u0 ∈ L∞(0, 1) let

Mu0 :=
∫ 1

0
u0(x)dx. (21)

Then, if Mu0 < a (respectively, Mu0 > d; see Fig.1), we prove that v(·, t) and
u(·, t) converge uniformly to φ(Mu0) and Mu0 respectively, as t → ∞ , t /∈
Eδ, where Eδ are sets of arbitrarily small - albeit not zero - Lebesgue mea-
sure. Observe that for Mu0 < a and Mu0 > d the constant v is uniquely
determined by the initial datum u0.
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We cannot prove a similar result if a ≤ Mu0 ≤ d, since in this case the
asymptotic behaviour of the coefficients λi in representation (9) plays a role.
Prescisely, for any weak entropy solution (u, v) we can uniquely determine
a constant A ≤ v ≤ B, and three coefficients λ∗i ∈ L∞(0, 1), such that v(·, t)
converges to v in the strong topology of C([0, 1]), and u(·, t) converges to u,

u =
2∑
i=0

λ∗i si(v),

a.e. in (0, 1), again as t → ∞, t /∈ Eδ, Eδ being a set of arbitrarily small
(Lebesgue) measure. In particular, for a ≤ Mu0 ≤ d uniqueness of the
constant v and of the coefficients λ∗i only follows for any given weak entropy
measure-valued solution (u, v) of the Neumann initial-boundary value pro-
blem for (1) - namely, different weak entropy solutions with the same initial
datum u0 might approach different values of v and u.

(iv) Finally, in Chapter 4 we address the long-time behaviour of two-phase
solutions to the Neumann initial-boundary value problem for equation (1),
again in the one dimensional case Ω = (−1, 1) and for a cubic-like φ which
satisfies assumption (H1). The techniques are almost the same as those
outlined in (iii) to study the asymptotic behaviour of general weak-entropy
measure-valued solutions. However, some specific novel features arise, as
explained below.

A two-phase solution to the Neumann initial-boundary value problem (in
Q = (−1, 1)× (0,∞)) for equation (1) is a triple (u, v, ξ) with the following
properties (see Chapter 4, Definition 4.2.1, [MTT] and [MTT2]):

(α) (u, v) is a weak entropy measure valued solution of the Neumann initial-
boundary value problem for (1) in Q and ξ : [0,∞)→ [−1, 1], ξ(0) = 0, is a
Lipschitz-continuous function;
(β) v ∈ C(Q) ∩ L2((0, T );H1(−1, 1) for any T > 0 and u ∈ L∞(Q),

u = si(v) in Vi (i = 1, 2) .

Here s1, s2 denote respectively the first and the second stable branch of the
equation v = φ(u) (see Fig.1), and

V1 := {(x, t) ∈ Q | − 1 < x < ξ(t)} ,
V2 := {(x, t) ∈ Q | ξ(t) < x < 1} .

Moreover u ∈ C2,1(Vi) (i = 1, 2), where C2,1(Vi) denotes the space of con-
tinuous functions f : Vi → R such that ut, ux, uxx ∈ C(Vi).

In view of (α)-(β), there holds:
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(a) the couple (u, v) is a classical solution of the problem:{
ut =

[
φ(u)

]
xx

in Vi,

u = u0 in V i ∩ {t = 0}

(i = 1, 2);

(b) for a.e. t ≥ 0, ξ′(t) ≥ 0 if v(ξ(t), t) = A, ξ′(t) ≤ 0 if v(ξ(t), t) = B
and ξ′(t) = 0 if A < v(ξ(t), t) < B (this is a consequence of the entropy
inequalities).

In other words, in view of (α), for any fixed t ∈ (0,∞), the function u(x, t)
takes values in the first stable branch s1 of the graph of φ for x ∈ (−1, ξ(t)),
and in the second stable branch s2 for x ∈ (ξ(t), 1). Hence, the curve
γ = {(ξ(t), t) | t ∈ [0,∞)} denotes the interface between stable phases, and
by (b) the function u can jump between such phases only at the points (x, t)
where v(x, t) takes the values A, B.

As already remarked, uniqueness and local existence of two-phase so-
lutions have been proven in [MTT2] for the Cauchy problem associated
to (1) in R × (0, T ] (see also [MTT] for uniqueness of two-phase solutions
to the Neumann initial-boundary value problem). Global existence for the
same problem (or for the Neumann initial-boundary value problem) is being
plenty addressed.

Assuming global existence, the long-time behaviour of such solutions
has been investigated proving asymptotic results concerning both the couple
(u, v) and the interface ξ. Let again Mu0 be defined by

Mu0 :=
1
2

∫ 1

−1
u0(x) dx

for any initial datum u0, and let (u, v, ξ) be the two-phase solution of the
Neumann initial boundary value problem for (1) with initial datum u0. Then
we prove that the function v(·, t) approaches a constant value v as t→∞ (in
some sense made precise in Chapter 4). Moreover, there exists the limiting
value of the interface

ξ∗ := lim
t→∞

ξ(t),

and the following properties hold:

(1) if Mu0 > d (respectively, Mu0 < a), then ξ∗ = −1 (respectively, ξ∗ = 1);
in these cases v = φ(Mu0) and u(·, t) approaches the value Mu0 as t→∞;

(2) if a ≤ Mu0 ≤ d, then u(·, t) → u as t → ∞ (in some suitable sense),
where

u := χ(−1,ξ∗)s1(v) + χ(ξ∗,1)s2(v).
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Chapter 1

On a Class of Equations with
Variable Parabolicity
Direction

1.1 Introduction

In this chapter we study positive solutions to the Neumann initial-boundary
value problem for the quasilinear forward-backward parabolic equation

ut = ∆φ(u) in Ω× (0, T ), (1.1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. Concerning
the function φ ∈ C2(R) we make the following assumption:

(H1)


(i) φ is bounded, φp ∈ L1(R) for some p > 1;
(ii) φ(0) = 0, φ(u) > 0 for u > 0, φ(−u) = −φ(u);
(iii) φ is strictly increasing for 0 < u < 1,

strictly decreasing for u > 1;
(iv) φ′(0) 6= 0, φ(u)→ 0 as u→ +∞

(see Fig.1.1). We always set φ(1) = 1 in the following. Since the function
φ is nonmonotone, equation (1.1.1) is well-posed whenever the solution u
takes values in the interval (0, 1), yet it is ill-posed (forward in time) if
u ∈ (1,+∞).

1.1.1 Motivations

Forward-backward parabolic equations naturally arise in the theory of phase
transitions, where the function u represents the enthalpy, φ(u) the tempe-
rature of the medium and equation (1.1.1) follows from the Fourier law (e.g,
see [BS]). In this case φ ∈ C2(R) is a nonmonotone cubic-like function
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Figure 1.1: Assumption (H1).

satisfying the following condition:

(H2)
{

(i) φ′(u) > 0 for |u| > 1, φ′(u) < 0 for |u| < 1;
(ii) φ(±1) = ∓1, φ(u)→ ±∞ as u→ ±∞

(see Fig.1.2).
The two increasing branches S1 := {(u, φ(u)) |u ∈ (−∞,−1)}, S2 :=

{(u, φ(u)) | u ∈ (1,+∞)} of the graph of φ correspond to stable phases, the
decreasing branch S0 := {(u, φ(u)) |u ∈ (−1, 1)} to the unstable phase. We
shall use the same terminology if (H1) holds (see below).

In one space dimension, equation (1.1.1) with φ(u) = u exp (−u) (which
satisfies assumption (H1)) arises as a diffusion approximation to a discrete
model for aggregating populations (see [Pa]). In this case the unknown u ≥ 0
represents the population density, while the transition probability (i.e., the
probability that an individual moves from its location) p(u) = exp (−u)
models aggregation phenomena, for it is a decreasing function of u.

An independent motivation to study equation (1.1.1) under assumption
(H1) is given by a mathematical model for heat transfer in a stably stratified
turbulent shear flow in one space dimension (see [BBDU]). The temperature
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Figure 1.2: Assumption (H2).

w ≥ 0 satisfies the equation

wt = (kwx)x ;

under fixed external conditions the function k only depends on the gradient
of the temperature, namely

k = σ(wx) .

Moreover, a typical choice of the function σ is

σ(s) =
A

B + s2
(A,B > 0) ;

then the above equation reads

wt = [φ(wx)]x (1.1.2)

with φ(s) := sσ(s). Deriving the above equation with respect to x and
setting u := wx gives equation (1.1.1) (observe that φ(s) = sσ(s) = As

B+s2

satisfies assumption (H1)).
It is worth observing that equation (1.1.2) with φ(s) = sσ(s) is the one-

dimensional Perona-Malik equation. In the general n-dimensional case the
Perona-Malik equation reads

wt = div
[
σ(|∇w|)∇w

]
in Ω× (0, T ) (Ω ⊆ Rn) ; (1.1.3)
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typical choices of σ are either σ(s) = (1 + s2)−1, or σ(s) = exp (−s) (see
[PM]). If n = 1, the transformation u = wx gives a link between equations
(1.1.1) and (1.1.2). Most results concerning equation (1.1.3) refer to the one-
dimensional case. Existence of solutions to the Neumann initial-boundary
value problem for equation (1.1.2) has been proved, if the derivative of the
initial datum u0 takes values in the stable phase (see [KK]), while for large
values of |u′0| no global C1-solution exists (see [G],[K]). Assuming homo-
geneous Neumann boundary conditions and smoothness of initial data, the
existence of infinitely many weak W 1,∞-solutions for the one-dimensional
Perona-Malik equation has been proved in [Z] (this yields the existence of
infinitely many weak L1-solutions for equation (1.1.1)). The techniques used
in [Z], where equation (1.1.2) is reformulated as a first order partial differen-
tial inclusion problem, are very different from those of the present approach.

Finally, observe that equation (1.1.2) can be regarded as the formal L2-
gradient system associated with a nonconvex energy density ψ in one space
dimension (in this case φ = ψ′); for instance, ψ(s) = log(1 + s2) holds for
the Perona-Malik equation, or the double well potential ψ(s) = (1− s2)2 for
a cubic nonlinearity. Therefore the dynamics described by equation (1.1.1)
in one space dimension is relevant to various settings, where nonconvex
functionals arise (e.g., see [Mü] for motivations in nonlinear elasticity).

1.1.2 Outline of results

A natural approach to address equation (1.1.1) is to introduce some regula-
rization. In this chapter, we associate with equation (1.1.1) the pseu-
doparabolic or Sobolev regularization

ut = ∆φ(u) + ε∆ut,

where ε is a positive parameter. Introducing the chemical potential

v := φ(u) + εut (ε > 0) , (1.1.4)

we focus our attention on the initial-boundary value problem
ut = ∆v in Ω× (0, T ] := QT
∂v
∂ν = 0 on ∂Ω× (0, T ]
u = u0 in Ω× 0 .

(1.1.5)

Let us mention that a different regularization, leading to the Cahn-
Hilliard equation:

ut = ∆φ(u)− κ∆2u (κ > 0) ,

has been widely used (in particular, see [BFG], [Sl]). Both regularizations
are physically meaningful (see [BFJ]), although the limiting dynamics of
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solutions expectedly depends on the regularization itself. Let us also recall
that a degenerate pseudoparabolic regularization of equation (1.1.2), namely

wt = [φ(wx)]x + εχ(wx)xt (1.1.6)

was used in [BBDU]; here χ is a smooth nonlinear function, χ′(s) > 0 for
s > 0, χ(s) → γ ∈ R, χ′(s) → 0 as s → +∞. As before, in one space
dimension deriving (1.1.6) with respect to x and setting u = wx gives a
different regularization of equation (1.1.1).

Problem (1.1.4)-(1.1.5) was studied in [Pa], proving its well-posedness
in the class of the bounded solutions for any ε > 0 (analogous results had
been proved earlier in [NP], if (H2) holds). Our main concern here is to
investigate the vanishing viscosity limit of such solutions. In particular, a
natural question is the following: describing the limiting points of the family
{uε} of solutions to (1.1.4)-(1.1.5) as ε → 0 (in some suitable topology),
can we define weak, or possibly measure-valued solutions to the Neumann
initial-boundary value problem for the original ill-posed equation (1.1.1)?
The latter reads: 

ut = ∆φ(u) in QT
∂

∂ν
φ(u) = 0 in ∂Ω× (0, T ]

u = u0 in Ω× {0} .
(1.1.7)

An exhaustive answer to the above question was given in [Pl1], if assumption
(H2) holds (see also [Pl2],[Pl3]). We outline below the main results of [Pl1]
for convenience of the reader, aiming to point out the novel features deriving
from assumption (H1) - in particular, from the degeneracy at infinity of a
nonlinearity φ “ of Perona-Malik type ”.

Assumption (H2)

Consider problem (1.1.4)-(1.1.5) under assumption (H2). As proved in [NP],
the following holds:

• for any ε > 0 and u0 ∈ L∞(Ω) there exists a unique solution (uε, vε)
to problem (1.1.4)-(1.1.5), vε defined by (1.1.4);

• there exists a constant C > 0, which does not depend on ε, such that

‖uε‖L∞(QT ) ≤ C ; (1.1.8)

‖vε‖L2((0,T );H1(Ω)) + ‖√εuεt‖L2(QT ) ≤ C ; (1.1.9)

‖vε‖L∞(QT ) ≤ C . (1.1.10)
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In view of such uniform estimates of the family {(uε, vε)}, there exist
sequences {uεk}, {vεk} and a couple (u, v) with u ∈ L∞(QT ), v ∈ L∞(QT )∩
L2((0, T );H1(Ω)) such that:

uεk
∗
⇀ u in L∞(QT ) , (1.1.11)

vεk
∗
⇀ v in L∞(QT ) , (1.1.12)

vεk ⇀ v in L2((0, T );H1(Ω)) . (1.1.13)

Set ε = εk in the weak formulation of problem (1.1.4)-(1.1.5), namely:∫ ∫
QT

uεkψt dxdt =
∫ ∫

QT

∇vεk · ∇ψ dxdt−
∫

Ω
u0(x)ψ(x, 0) dx (1.1.14)

for any ψ ∈ C1(QT ), ψ( . , T ) = 0 in Ω. Taking the limit as k → ∞ in
equality (1.1.14) and using (1.1.11)-(1.1.13) gives∫ ∫

QT

(uψt −∇v · ∇ψ) dxdt+
∫

Ω
u0ψ(x, 0) dx = 0 (1.1.15)

for any ψ as above - namely, the couple (u, v) is a weak solution of problem
(1.1.5).

Equation (1.1.15) would give a weak solution of problem (1.1.7), if we had
v = φ(u); however, no such conclusion can be drawn from (1.1.11)-(1.1.13),
due to the nonmonotone character of φ. Nevertheless, as proved in [Pl1], a
weak solution of problem (1.1.7) in the sense of Young measures does exist.
Consider the Young measure τk := τ εk associated to each uεk ; let τ denote
the narrow limit of the sequence {τk} and ν(x,t) its associated disintegration,
defined for a.e. (x, t) ∈ QT (see Definition 1.2.2 and Proposition 1.2.7 below).
Since the sequence {uεk} is uniformly bounded in L∞(QT ) (see (1.1.8)), for
any f ∈ C(R) there holds:

f(uεk) ∗⇀ f∗ in L∞(QT ) , (1.1.16)

where

f∗(x, t) :=
∫

R
f(ξ) ν(x,t)(dξ) for a.e. (x, t) ∈ QT (1.1.17)

(e.g., see [E1]).
The structure of the Young measure τ associated with the sequence

{uεk} was investigated in [Pl1], proving that its disintegration ν(x,t) is the
superposition of three Dirac masses concentrated on the three branches of
the equation v = φ(u). In fact, there holds:

ν(x,t)(ξ) =
2∑
i=0

λi(x, t)δ
(
ξ − βi(v(x, t))

)
(1.1.18)
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(for a.e. (x, t) ∈ QT and any ξ ∈ R) with some coefficients λi ∈ L∞(QT ),
λi ≥ 0 and

∑2
i=0 λi = 1; here we set Si := {(βi(v), v)} (i = 0, 1, 2).

By equality (1.1.18) there holds:∫
R
ξν(x,t)(dξ) =

2∑
i=0

λi(x, t)βi(v(x, t)) = u(x, t) (1.1.19)

(this follows from (1.1.11) and (1.1.17) choosing f(ξ) = ξ); moreover,∫
R
φ(ξ)ν(x,t)(dξ) =

2∑
i=0

λi(x, t)φ(βi(v(x, t))) = v(x, t) (1.1.20)

for a.e. (x, t) ∈ QT . Inserting equalities (1.1.19)-(1.1.20) in (1.1.15) we
obtain:∫∫

QT

{
ψt

∫
R
ξν(x,t)(dξ)−∇ψ · ∇

∫
R
φ(ξ)ν(x,t)(dξ)

}
dxdt+

+
∫

Ω
u0(x)ψ(x, 0)dx = 0 .

(1.1.21)

Equation (1.1.19) says that the limiting function u is the barycenter of the
disintegration ν(x,t) of the narrow limit τ ; in view of (1.1.21), the measure τ
can be regarded as a measure-valued solution of the limiting problem (1.1.7).

The crucial role of the uniform L∞-estimate (1.1.8) is apparent from the
above discussion. In turn, estimate (1.1.8) is an immediate consequence of
the following result (see [NP]):

Let (H2) hold. Then any interval [u1, u2] such that

φ(u1) ≤ φ(u) ≤ φ(u2) if and only if u ∈ [u1, u2] (1.1.22)

is a positively invariant region for problem (1.1.4)-(1.1.5).

It is informative to sketch the proof of the above result. Set for any
g ∈ C1(R), g′ ≥ 0:

G(u) :=
∫ u

0
g(φ(s))ds+ k (k ∈ R) . (1.1.23)

Let ε > 0 be fixed; let (uε, vε) be the solution to problem (1.1.4)-(1.1.5). We
have:

d

dt

∫
Ω
G(uε(x, t)) dx =

∫
Ω
g(φ(uε))uεt dx (1.1.24)

=
∫

Ω
g(vε)∆vε dx+

∫
Ω

[g(φ(uε))− g(vε)]uεt dx

=
∫

Ω
div(g(vε)∇vε) dx−

∫
Ω
g′(vε)|∇vε|2 dx

+
∫

Ω
[g(φ(uε))− g(vε)]

vε − φ(uε)
ε

dx.
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Since g is nondecreasing and

∂vε

∂ν
= 0 on ∂Ω× (0, T ],

we obtain

d

dt

∫
Ω
G(uε(x, t)) dx ≤ −

∫
Ω
g′(vε)|∇vε|2 dx ≤ 0 in (0, T ) . (1.1.25)

By a proper choice of the function g the result follows (see [NP] for details).
Clearly, the above proof of inequality (1.1.25) is independent from the

specific shape of φ; yet, if (H1) holds, a bounded interval [u1, u2] is positively
invariant only if [u1, u2] ⊆ [0, 1] (see Proposition 1.2.3). Therefore inequality
(1.1.8) holds if ‖u0‖L∞(Ω) ≤ 1, but the family {uε} need not be uniformly
bounded in L∞(QT ) if ‖u0‖L∞(Ω) > 1.

However, it follows from (1.1.25) that the half-line [0,∞) is positively
invariant (see Proposition 1.2.3). Then we get the following conservation
law for positive solutions to (1.1.4)-(1.1.5):

‖uε(t)‖L1(Ω) =
∫

Ω
uε(x, t) dx =

∫
Ω
u0(x) dx = ‖u0‖L1(Ω) (1.1.26)

for any t ∈ [0, T ] - namely, a uniform L1-estimate of the family {uε}, which
will play a crucial role in the following.

Let us mention another important point. Arguing as in (1.1.24) we
obtain the weak inequality:∫ ∫

QT

{
G(uε)ψt − g(vε)∇ψ · ∇vε − ψg′(vε)|∇vε|2

}
dxdt ≥ 0 (1.1.27)

for any ψ ∈ C∞c (QT ), ψ ≥ 0 (see Lemma 1.2.2). Inequality (1.1.27) is
referred to as the entropy inequality for problem (1.1.4)-(1.1.5), in view of
its analogy with the entropy inequality for the one-dimensional viscous con-
servation law (e.g., see [Se]; see also [E2]). It was proved in [Pl1] that any
weak solution (u, v) of problem (1.1.5) satisfies a limiting form of inequality
(1.1.27) as ε→ 0; in fact, there holds:∫∫

QT

{
G∗ψt−g(v)∇v · ∇ψ − g′(v)|∇v|2ψ

}
dxdt ≥ 0 (1.1.28)

for any ψ as above, where

G∗(x, t) :=
2∑
i=0

λiG
(
βi(v(x, t))

)
for a.e. (x, t) ∈ QT . (1.1.29)

In view of the above discussion (in particular, see (1.1.18), (1.1.21) and
(1.1.28)), we can think of the quintuple u, v, λ0, λ1, λ2 as a weak entropy
solution in the sense of Young measures of the limiting problem (1.1.7).
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It was also proved in [Pl1] that the coefficients λi of such solutions (see
(1.1.18)) have a remarkable monotonicity property with respect to time,
which gives rise to a hysteresis effect in the mechanism of phase transitions;
the latter is typical of phase changes described by a cubic-like nonlinearity
([EP]; see also [MTT]).

Assumption (H1)

Let us now consider problem (1.1.4)-(1.1.5) under assumption (H1). As
before, for any ε > 0 and u0 ∈ L∞(Ω) there exists a unique solution (uε, vε)
(see [Pa]). Assume u0 ≥ 0, as we always do in the following discussion; then
the uniform L1-estimate (1.1.26) and inequalities (1.1.9)-(1.1.10) hold (see
Theorem 1.2.1 and Propositions 1.2.4-1.2.5).

As before, we can associate to each uε its Young measure τ ε, introdu-
cing the narrow limit τ and its associated disintegration ν(x,t). However, at
variance from the previous case we cannot pass to the limit in the left-hand
side of equality (1.1.14), since the family {uε} need not be equi-integrable
in the cylinder QT (thus relatively compact in the weak topology of L1; see
Proposition 1.2.7). This is the most relevant complication with respect to
the case when (H2) holds.

Nevertheless, using the idea of the biting convergence of “ removing sets
of small measure ” (e.g., see [GMS], [V]), we can associate to {uεk} an equi-
integrable subsequence. More precisely, we can find a subsequence {uεj} ≡{
u
εkj
}
⊆ {uεk}, a decreasing sequence of measurable sets Aj ⊆ QT , |Aj | →

0, and a measure µ ∈M(QT ) such that∫ ∫
QT

uεjχAjψ dxdt→
∫ ∫

QT

ψ dµ (1.1.30)

for any ψ ∈ C(QT ), and

uεjχQT \Aj ⇀ u in L1(QT ) ; (1.1.31)

here u ∈ L1(QT ) is the barycenter of the Young disintegration ν(x,t), namely

u(x, t) :=
∫

[0,∞)
ξ ν(x,t)(dξ) for a.e. (x, t) ∈ QT (1.1.32)

(see Proposition 1.2.8; by χE we denote the characteristic function of any
subset E ⊆ QT ).

In view of (1.1.30)-(1.1.31), passing to the limit as j → ∞ in equality
(1.1.14) (written with k = kj) gives:∫ ∫

QT

uψt dxdt+
∫ ∫

QT

ψt dµ = (1.1.33)

=
∫ ∫

QT

∇v · ∇ψ dxdt−
∫

Ω
u0(x)ψ(x, 0) dx
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for any ψ ∈ C1(QT ) such that ψ( . , T ) = 0 in Ω (see Theorem 1.2.9). Observe
that the above equality reduces to (1.1.15) if µ = 0; in fact, this is the case
if the uniform L∞-estimate holds, which implies equi-integrability of the
family {uε}. Therefore the appearance of the measure µ is connected with
assumption (H1) - in particular, with the degeneracy of φ at infinity, which
is a novel feature with respect to a cubic-like nonlinearity. It seems also
related with possible concentration phenomena, in agreement with the model
interpretation discussed above ([Pa]; in this connection, see the paragraph
(β) below).

We can rephrase equation (1.1.33) by saying that the positive Radon
measure u+ µ ∈M(QT ) is a solution of the equation

(u+ µ)t = ∆v in D′(QT ) . (1.1.34)

The properties of the regular term u ∈ L1(QT ) are investigated in Subsection
1.2.3, those of the singular term µ ∈ M(QT ) in Subsection 1.2.4; the main
results are summarized below.

(α) The results concernig u are the counterpart of those in [Pl1] for a cubic-
like φ. As in this case, we refer to the increasing branch

S1 := {(u, φ(u)) |u ∈ [0, 1]} = {(β1(v), v) | v ∈ [0, 1]}

as the stable phase, to the decreasing branch

S2 := {(u, φ(u) |u ∈ (1,+∞)} = {(β2(v), v) | v ∈ (0, 1)}

as the unstable one. As for the structure of the Young disintegration ν(x,t)

associated to the Young measure τ , we prove it to be (see Corollary 1.2.13):

• an atomic measure, whose support consists of the points β1(v(x, t))
and β2(v(x, t)), if v(x, t) 6= 0;

• the Dirac mass concentrated in β1(0) = 0, if v(x, t) = 0

(recall that v = v(x, t) is the weak*-limit in L∞(QT ) of both sequences
{vεj}, {φ(uεj )}). Hence u is a superposition of the two phases S1 and S2,
namely

u =
{
λβ1(v) + (1− λ)β2(v) for v > 0,
0 for v = 0

(1.1.35)

for some λ ∈ L∞(QT ), 0 ≤ λ ≤ 1. In analogy with the cubic-like case, this
can be expressed by saying that the function u takes the fraction λ of its
value at (x, t) on the stable branch S1, respectively the fraction (1 − λ) on
the unstable branch S2.
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Using the above representation of u and the results of Subsection 1.2.2,
we obtain the following inequality satisfied by the couple (u, v):∫ ∫

QT

uψt dxdt−
∫ ∫

QT

∇v · ∇ψ dxdt+
∫

Ω
u0ψ(x, 0) dx ≥ 0 (1.1.36)

for any ψ ∈ C1(QT ), ψ( . , T ) = 0 in Ω and ψ ≥ 0 in QT (see Theorem
1.2.10). Observe that inequality (1.1.36) is not a consequence of the weak
formulation (1.1.33) (in fact, no assumption on the sign of ψt is made).

By analogy with the cubic-like case, it is natural to ask whether the
couple (u, v) in equality (1.1.33) satisfies a limiting entropy inequality. This
is indeed the case, if the family {G(uε)} is equi-integrable in QT (Theorem
1.2.16). Again, this restriction is due to the lack of equi-integrability of
the family {uε}, thus to the weaker a priori estimates (L1 instead of L∞)
available now. Nevertheless, monotonicity in time of the phase fraction λ
can be proved also in the present case (see Theorem 1.2.15).

(β) In Subsection 1.2.4 we address the properties of the measure µ in equali-
ty (1.1.33). First we investigate the support of µ, making use of equality
(1.1.33) itself (see Proposition 1.2.17). Secondly, we prove the following
disintegration of µ:∫ ∫

QT

f dµ =
∫

[0,T ]
dt

∫
Ω
f(x, t) dγ̃t(x) for any f ∈ L1(QT , dµ) ; (1.1.37)

here γ̃t ∈M(Ω) is a Radon measure defined for a.e. t ∈ (0, T ). We also show
that there exists a unique h ∈ L∞(0, T ), h ≥ 0 such that γ̃t = h(t)γt for a.e.
t ∈ (0, T ); here γt is a probability measure over Ω and a representative of h
is

h(t) =
∫

Ω
u0(x) dx−

∫
Ω
u(x, t) dx (1.1.38)

for a.e. t ∈ (0, T ) (see Propositions 1.2.18-1.2.19). Observe that the above
equality also reads:∫

Ω
u(x, t) dx+

∫
Ω
dγ̃t(x) =

∫
Ω
u0(x) dx . (1.1.39)

A remarkable feature of the application t 7→ γ̃t is its nondecreasing character.
In fact, we prove (see Proposition 1.2.21):∫

Ω
ϕ(x) dγ̃t1(x) ≤

∫
Ω
ϕ(x) dγ̃t2(x) (1.1.40)

for any ϕ ∈ C1(Ω) and a.e. t1, t2 ∈ (0, T ), t1 < t2; namely, the map
t 7→ γ̃t(E) is nondecreasing in (0, T ) for any Borel set E ⊆ Ω.

As a consequence of equalities (1.1.39)-(1.1.40), the function

t 7→
∫

Ω
u(x, t) dx

26



is nonincreasing in time. Therefore, within the constant map from (0, T ) to
R , t 7→

∫
Ω u(x, t)dx + γ̃t(Ω), there is a relative growth of the term γ̃t(Ω)

with respect to the term
∫

Ω u(x, t)dx as time increases.
This suggests that in equation (1.1.34) the singular part µ prevails over

the regular L1-term u for large times1. In other words, it is reasonable to
expect a general “ coarsening ” effect, since the absolutely continuous part
of the measure u + µ decreases and possibly disappears, while singularities
can appear and spread as time goes on. As already remarked, this conjectu-
re seems consistent with the model interpretation of equation (1.1.1) (in
particular, with its connection with the Perona-Malik equation).

1.2 Mathematical framework and results

1.2.1 Viscous regularization

Let us first give the following

Definition 1.2.1. Let u0 ∈ L∞(Ω). By a solution to problem (1.1.4)-(1.1.5)
we mean any couple uε ∈ C1([0, T ];L∞(Ω)), vε ∈ C([0, T ];C(Ω)∩W 2,p

loc (Ω))
with p > n, ∆vε ∈ C([0, T ];L∞(Ω)), which satisfies (1.1.4)-(1.1.5) in the
classical sense. A solution is said to be global if it is a solution in QT for
any T > 0.

Concerning well-posedness of problem (1.1.4)-(1.1.5), the following result is
well known (see [NP], [Pa] for the proof).

Theorem 1.2.1. For any u0 ∈ L∞(Ω) and ε > 0 there exists a unique
global solution (uε, vε) of problem (1.1.4)-(1.1.5). Moreover, there holds:

‖φ(uε)‖L∞(QT ) ≤ 1 , ‖vε‖L∞(QT ) ≤ 1 . (1.2.1)

Arguing as in the Introduction (see (1.1.24)) gives the following

Lemma 1.2.2. Let (uε, vε) be a solution of problem (1.1.4)-(1.1.5). Let
g ∈ C1(R), g′ ≥ 0 and G be defined by (1.1.23). Then for any t ∈ [0, T ]∫

Ω
G(uε(x, t)) dx ≤

∫
Ω
G(u0(x)) dx. (1.2.2)

Moreover, for any ψ ∈ C∞c (QT ), ψ ≥ 0 the entropy inequality (1.1.27) is
satisfied.

Concerning the existence of positively invariant regions for problem (1.1.4)-
(1.1.5), the following result can be proven.

Proposition 1.2.3. The half line [0,+∞) is positively invariant for problem
(1.1.4)-(1.1.5). The same is true for any interval [0, ū] with ū ∈ (0, 1].

1Observe that the choice of T > 0 is arbitrary (see Theorem 1.2.1).
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Remark 1.2.1. In view of the above result, the assumption u0 ≥ 0 implies
uε ≥ 0, thus φ(uε) ≥ 0 in QT (see (H1)). Since for any t ∈ [0, T ] vε ≡ vε( . , t)
solves the problem:{ −ε∆vε + vε = φ(uε)( . , t) in Ω

∂vε

∂ν
= 0 on ∂Ω ,

we also have vε ≥ 0 in QT .

Concerning the initial data, in the sequel we always make the assumption:

(H3) u0 ∈ L∞(Ω) , u0 ≥ 0 .

Then from Proposition 1.2.3 we easily obtain the following a priori bound
for the family {uε} .

Proposition 1.2.4. Any positive solution to problem (1.1.4)-(1.1.5) satisfies
equality (1.1.26) for each t ∈ [0, T ].

We also have the following

Proposition 1.2.5. Let (uε, vε) solve problem (1.1.4)-(1.1.5). Then there
exists a constant C > 0 such that inequality (1.1.9) holds for any ε > 0,
T > 0.

Set C1
b (R) :=

{
f ∈ C1(R) | f, f ′ bounded

}
. The following result plays an

important role when studying the limiting behaviour of the family {uε} as
ε→ 0.

Proposition 1.2.6. Let f, g ∈ C1
b (R); let F := f(φ) and G be defined by

(1.1.23). Suppose

F (uε) ∗⇀ F ∗, G(uε) ∗⇀ G∗, F (uε)G(uε) ∗⇀ H∗

in L∞(QT ), where {uε} satisfies problem (1.1.4)-(1.1.5). Then H∗ = F ∗G∗.

The proof of Proposition 1.2.6 is almost the same as in [Pl1] (see also Chapter
2), thus we omit it.

Remark 1.2.2. The above assumption G(uε) ∗⇀ G∗ would follow from the
L∞-estimate (1.1.8), if assumption (H2) were satisfied. In the present case,
since

|G(u)| =
∣∣∣∣∫ u

0
g(φ(s)) ds

∣∣∣∣ ≤ ∫ +∞

0
|g(φ(s))| ds ,

it is natural to assume g ◦ φ ∈ L1(R) to obtain boundedness of the family
{G(uε)} in L∞(QT ). Observe that any g ∈ C1

c (0, 1) satisfies this condition;
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in fact,

|G(uε)| =
∣∣∣∣∫ uε

0
g(φ(s)) ds

∣∣∣∣ ≤ ∫ +∞

0
|g(φ(s))| ds

≤ max
ζ∈[a,b]

|g′(ζ)|
∫ β2(a)

β1(a)
|φ(s)| ds < C .

Here 0 < a < b < 1 have been choosen so that supp g ⊆ [a, b], while
β1(a), β2(a) denote the two solutions of the equation φ(u) = a.

1.2.2 Vanishing viscosity limit

Let us recall the following

Definition 1.2.2. Let τk, τ be Young measures on QT × R. We say that
τk → τ narrowly, if ∫

QT×R
ϕdτk →

∫
QT×R

ϕdτ (1.2.3)

for any ϕ : QT × R → R bounded and measurable, ϕ(x, t, . ) continuous for
a.e. (x, t) ∈ QT .

The following proposition is a consequence of the more general Prohorov’s
theorem (e.g., see [V]).

Proposition 1.2.7. Let uε denote the unique solution of problem (1.1.4)-
(1.1.5) and τ ε the associated Young measure (ε > 0). Then:
(i) there exist a sequence {uεk} ⊆ {uε} and a Young measure τ on QT × R
such that τk → τ narrowly;
(ii) for any f ∈ C(R) such that the sequence {f(uεk)} is bounded in L1(QT )
and equi-integrable there holds

f(uεk) ⇀ f∗ in L1(QT ); (1.2.4)

here

f∗(x, t) :=
∫

[0,+∞)
f(ξ) ν(x,t)(dξ) for a.e. (x, t) ∈ QT (1.2.5)

and ν(x,t) is the disintegration of the Young measure τ .

As pointed out in the Introduction, in general we cannot guarantee the
equi-integrability of the sequence {uεk}; hence Proposition 1.2.7-(ii) cannot
be directly used with f(u) = u. However, we can associate to {uεk} an
equi-integrable subsequence by removing sets of small measure; this is the
content of the following proposition (e.g., see [GMS], [V] for the proof).
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Proposition 1.2.8. Let the assumptions of Proposition 1.2.7 be satisfied.
Then there exist a subsequence {uεj} ≡

{
u
εkj
}
⊆ {uεk} and a sequence of

measurable sets {Aj},

Aj ⊂ QT , Aj+1 ⊂ Aj for any j ∈ N, |Aj | → 0 as j →∞,

such that the sequence
{
uεjχQT \Aj

}
is equi-integrable. Moreover, (1.1.31)-

(1.1.32) hold.

From the above proposition we obtain the following

Theorem 1.2.9. Let the assumptions of Proposition 1.2.7 be satisfied; let
{uεj} , {Aj} be the sequences considered in Proposition 1.2.8.
(i) Let v ∈ L1(QT ) be the L1-weak limit of the sequence {φ(uεj )}, whose
existence is ensured by the first estimate in (1.2.1) and Proposition 1.2.7-
(ii). Then v ∈ L∞(QT ) ∩ L2((0, T );H1(Ω)) and there holds:

vεj
∗
⇀ v in L∞(QT ),

vεj ⇀ v in L2((0, T );H1(Ω)),

vεj being defined by (1.1.4).
(ii) There exist a subsequence of {uεj}, denoted again {uεj}, and a positive
Radon measure µ ∈M+(QT ) such that∫ ∫

QT

uεjχAjψ dxdt→
∫ ∫

QT

ψ dµ (1.2.6)

for any ψ ∈ C(QT ).
(iii) Let u be the L1-weak limiting function in (1.1.31). Then equality
(1.1.33) holds for any ψ ∈ C1(QT ) such that ψ( . , T ) = 0 in Ω.

Since µ is a positive Radon measure on QT , from (1.1.33) we get∫ ∫
QT

(uψt −∇v · ∇ψ) dxdt+
∫

Ω
u0(x)ψ(x, 0) dx ≤ 0, (1.2.7)

for any ψ ∈ C1(QT ) such that ψ( . , T ) = 0 in Ω, ψt ≥ 0 in QT . However, the
sign assumption concerning ψt does not seem very natural; in this respect,
the following theorem is expedient.

Theorem 1.2.10. Let (u, v) be the couple given by Proposition 1.2.8 and
Theorem 1.2.9. Then inequality (1.1.36) holds for any ψ ∈ C1(QT ), ψ ≥ 0
in QT such that ψ( . , T ) = 0 in Ω.
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1.2.3 Regular term

Let ν(x,t) be the disintegration of the Young measure τ considered in Propo-
sition 1.2.7, which holds for a.e. (x, t) ∈ QT . Following [Pl1], we assume the
following condition to be satisfied.

Condition (S): The functions β′1, β′2 are linearly independent on any
open subset of the interval (0, 1).

Let I1 ≡ [0, 1], I2 ≡ (1,+∞); set ν ≡ ν(x,t) for simplicity. For a.e. (x, t) ∈
QT define two maps σl ≡ σ(x,t);l : C(R)→ R by setting∫

R
f(λ)σl(dλ) ≡ 〈f, σl〉 :=

∫
Il

(f ◦ φ)(ξ) ν(dξ) (l = 1, 2) . (1.2.8)

Set also
σ := σ1 + σ2 . (1.2.9)

It is immediately seen that σ1, σ2 are (positive) Radon measures on R; in
view of the above definitions, σ ≡ σ(x,t) is a probability measure on R for
a.e. (x, t) ∈ QT . In analogy with [Pl1], the following lemma will be proven.

Lemma 1.2.11. Let σ1, σ2 be the Radon measures defined by (1.2.8). Then:
(i) suppσl ⊆ [0, 1] (l = 1, 2);
(ii) σ2({0}) = 0;
(iii) f◦βl ∈ L1([0, 1], dσl) (l = 1, 2) for any f ∈ C(R), such that the sequence
{f(uεj )} is bounded in L1(QT ) and equi-integrable.

In view of Lemma 1.2.11-(i), the support of the measure σ is contained in
[0, 1]. We also have:

〈f, σ〉 = 〈f, σ1〉+ 〈f, σ2〉 =
∫

[0,+∞)
(f ◦ φ)(ξ) ν(dξ) (1.2.10)

for any f ∈ C(R); moreover,

〈f, ν〉 ≡
∫

[0,+∞)
f(ξ) ν(dξ) =

∫
I1

f(ξ) ν(dξ) +
∫
I2

f(ξ) ν(dξ)

=
∫
I1

[(f ◦ β1) ◦ φ](ξ) ν(dξ) +
∫
I2

[(f ◦ β2) ◦ φ](ξ) ν(dξ)

= 〈f ◦ β1, σ1〉+ 〈f ◦ β2, σ2〉 (1.2.11)

for any f ∈ C(R) such that the sequence {f(uεj )} is bounded in L1(QT ) and
equi-integrable (here use of (1.2.8) and Lemma 1.2.11-(iii) has been made).

The next theorem gives a useful representation of the measure σ.
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Theorem 1.2.12. The measure σ ≡ σ(x,t) is the Dirac mass concentrated
at the point

v(x, t) :=
∫

[0,+∞)
φ(ξ) ν(x,t)(dξ) =

〈
φ, ν(x,t)

〉
(1.2.12)

for a.e. (x, t) ∈ QT .

Thanks to equations (1.2.10)-(1.2.11), Theorem 1.2.12 and Lemma 1.2.11-
(ii), we obtain the following result, which describes the structure of the
Young disintegration measure ν. The analogy with the cubic-like case in-
vestigated in [Pl1] (see (1.1.18)) should be observed.

Proposition 1.2.13. Let v ∈ L∞(QT ) ∩ L2((0, T );H1(Ω)) be the limiting
function given by Theorem 1.2.9. Then for a.e. (x, t) ∈ QT the measure
ν(x,t) is atomic. More precisely:
(i) if v(x, t) > 0, then supp ν(x,t) consists of the points β1(v(x, t)), β2(v(x, t));
(ii) if v(x, t) = 0, then supp ν(x,t) = {0}.

From the above proposition we obtain the following

Theorem 1.2.14. Let (u, v) be the couple mentioned in Theorem 1.2.9.
Then:
(i) there exists λ ∈ L∞(QT ), 0 ≤ λ ≤ 1 such that equality (1.1.35) holds
a.e. in QT ;
(ii) there holds

φ(uεj )→ v in Lp(QT ) for any p ∈ [1,∞) ,
vεj → v in L2(QT ).

The following monotonicity property of the coefficient λ in (1.1.35) can be
proved; the proof is modeled after that in [Pl1], thus we omit it.

Theorem 1.2.15. Assume φ′′(1) 6= 0. Let (u, v, λ) be the triple mentioned
in Theorem 1.2.14; suppose

0 < v ≤ k < 1 (1.2.13)

in some cylinder Q0 = Ω0 × [α, β], Ω0 ⊂ Ω. Then the function λ(x, . ) is
nondecreasing with respect to t ∈ [α, β], for a.e. x ∈ Ω0.

In view of Lemma 1.2.2, the solutions (uε, vε) to problem (1.1.4)-(1.1.5)
satisfy the entropy inequalities (1.1.27) for any ε > 0. The following theorem
shows that, under suitable assumptions, this kind of inequalities is preserved
in the viscous limit ε → 0. The proof is similar to that given in [Pl1] (see
also [MTT]) for the cubic-like case, thus it is omitted.
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Theorem 1.2.16. Let v, λ be the functions given by Theorem 1.2.9 and
Theorem 1.2.14, respectively. Let G be defined by (1.1.23) with g ∈ C1(R),
g′ ≥ 0 and let the family {G(uε)} be equi-integrable in QT . Then there holds:∫ ∫

QT

(
G∗ψt − g(v)∇v · ∇ψ − g′(v)|∇v|2ψ

)
dxdt ≥ 0 (1.2.14)

for any ψ ∈ C∞0 (QT ), ψ ≥ 0, G∗ being the L1-weak limit of the sequence
{G(uεj )}:

G∗ =
{
λG(β1(v)) + (1− λ)G(β2(v)) for v > 0
G(0) for v = 0.

(1.2.15)

1.2.4 Singular term

Let us return to the measure µ encountered in Theorem 1.2.9. Some infor-
mation concerning its support is given by the following proposition.

Proposition 1.2.17. Let µ be the positive Radon measure mentioned in
Theorem 1.2.9. Then:
(i) µ is not a countable superposition of Dirac measures concentrated in
points of QT ;
(ii) for any t0 ∈ [0, T ] there holds µ(Ft0) = 0, where Ft0 := Ω× {t0};
(iii) µ(E) = 0 for any closed k-dimensional manifold E ⊂ QT with k < n−1.

Remark 1.2.3. In view of Proposition 1.2.17-(iii) above, if n ≥ 3 there
holds µ({x0} × [0, T ]) = 0 for any x0 ∈ Ω.

Some qualitative properties of the measure µ are given below. To begin with,
we observe that µ can be disintegrated in two measures, defined on [0, T ] and
Ω respectively; this is the content of the following proposition. The proof
(which is a particular consequence of the more general Proposition 8 on p.
35 of [GMS], Vol. I) is omitted.

Proposition 1.2.18. Let µ ∈M+(QT ) be the measure mentioned in Theo-
rem 1.2.9. Then there exists a measure λ ∈M+([0, T ]) and λ-a.e. in [0, T ]
a measure γt ∈M+(Ω) such that:
(i) for any Borel set E ⊂ QT there holds

µ(E) =
∫

[0,T ]
γt(Et) dλ(t),

where Et :=
{
x ∈ Ω | (x, t) ∈ E

}
;

(ii) for any f ∈ L1(QT , dµ) the function f(t, . ) belongs to L1(Ω, dγt) for
λ− a.e. t ∈ [0, T ] and there holds:∫ ∫

QT

f dµ =
∫

[0,T ]
dλ(t)

∫
Ω
f(x, t) dγt(x) .
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Moreover, since µ(QT ) < ∞, we can choose λ(I) = µ(Ω × I) for any I ⊆
[0, T ], and γt(Ω) = 1 for λ− a.e. t ∈ [0, T ].

The next proposition shows that λ ∈ M+([0, T ]) is absolutely continuous
with respect to the Lebesgue measure.

Proposition 1.2.19. (i) There exists a unique h ∈ L∞(0, T ), h ≥ 0, such
that dλ = h dt. Moreover, equality (1.1.38) holds.
(ii) Set γ̃t := h(t)γt ∈M(Ω). Then equality (1.1.37) holds.

We can use the family of Radon measures {γ̃t} to improve the description
of the limiting behaviour of the sequence {uεj} as εj → 0. Precisely, the
following theorem holds.

Theorem 1.2.20. Let assumption of Theorem 1.2.9 be satisfied. Let u ∈
L1(QT ) be the limiting function given by Theorems 1.2.9-1.2.14. Let γ̃t ∈
M(Ω) be the Radon measure given by Proposition 1.2.19-(ii) for a.e. t ∈
(0, T ). Then:
(i) for any ϕ ∈ C(Ω)∫

Ω
(uεjχQT \Aj )(x, . )ϕ(x) dx ∗

⇀

∫
Ω
u(x, . )ϕ(x) dx in L∞(0, T ),∫

Ω
(uεjχAj )(x, . )ϕ(x) dx ∗

⇀

∫
Ω
ϕ(x) dγ̃t(x) in L∞(0, T ) ;

(ii) set

Wϕ
j (t) :=

∫
Ω
uεj (x, t)ϕ(x) dx (1.2.16)

for any ϕ ∈ C1(Ω). Then the sequence
{
Wϕ
j

}
strongly converges in C([0, T ])

to the function

Wϕ(t) :=
∫

Ω
u(x, t)ϕ(x) dx+

∫
Ω
ϕ(x) dγ̃t(x), t ∈ [0, T ]. (1.2.17)

Moreover, for any t ∈ [0, T ]∫
Ω
u(x, t)ϕ(x) dx+

∫
Ω
ϕ(x) dγ̃t(x) (1.2.18)

= −
∫ t

0
ds

∫
Ω
∇v(x, s) · ∇ϕ(x) dx+

∫
Ω
ϕ(x)u0(x) dx.

Remark 1.2.4. Equation (1.2.18) in the above theorem implies that for any
ϕ ∈ C1(Ω) the function t 7→ Wϕ(t) belongs to the space W 1, 2(0, T ) (since
v ∈ L2(0, T ;H1(Ω))), with weak derivative given by

Wϕ
t (t) := −

∫
Ω
∇v(x, t) · ∇ϕ(x) dx.
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We also observe that there is a formal analogy between equation (1.1.33) and
equation (1.2.18), hence a natural question is whether equation (1.2.18) can
be deduced directly by equation (1.1.33). Actually, it is not so. In fact, from
equation (1.1.34) we obtain for any ψ ∈ C1(QT ):∫

Ω
u(x, t)ψ(x, t) dx+

∫
Ω
ψ(x, t) dγ̃t(x)−

∫
Ω
ψ(x, 0)u0(x) dx+

−
∫ t

0

∫
Ω
u(x, s)ψt(x, s) dxds−

∫ t

0

∫
Ω
ψt(x, s)dµ (1.2.19)

=
∫ t

0

∫
Ω

(u+ µ)tψ(x, s) = −
∫ t

0
ds

∫
Ω
∇v(x, s) · ∇ψ(x, s) dx.

Thus, this shows that equation (1.1.33) follows from (1.2.19) by choosing t =
T and ψ( . , T ) = 0 in Ω, while (1.2.19) implies equation (1.2.18) choosing
ψ(x, t) = ψ(x).

In view of the above results, from Theorem 1.2.10 we can deduce the fol-
lowing monotonicity property of the family {γ̃t}, whose interpretation has
been pointed out in the Introduction.

Proposition 1.2.21. For any ϕ ∈ C1(Ω), ϕ ≥ 0 and for a.e. 0 ≤ t1 < t2 ≤
T there holds: ∫

Ω
ϕ(x) dγ̃t1(x) ≤

∫
Ω
ϕ(x) dγ̃t2(x) . (1.2.20)

1.3 Viscous regularization: Proofs

Proof of Lemma 1.2.2. The proof of inequality (1.1.25), which plainly
implies (1.2.2), has been given in the Introduction. Concerning inequality
(1.1.27), for any ψ ∈ C∞c (QT ), ψ ≥ 0, there holds

d

dt

∫
Ω
G(uε)ψ dx =

∫
Ω

[G(uε)]tψ dx+
∫

Ω
G(uε)ψt dx (1.3.1)

=
∫

Ω
g(φ(uε))uεtψ dx+

∫
Ω
G(uε)ψt dx

≤
∫

Ω
ψg(vε)∆vε dx+

∫
Ω
G(uε)ψt dx.

Using the Neumann boundary condition, we have∫
Ω
ψg(vε)∆vε dx =

∫
Ω

div (ψg(vε)∇vε) dx−
∫

Ω
∇(ψg(vε)) · ∇vε dx

= −
∫

Ω

{
g(vε)∇ψ · ∇vε + ψg′(vε)|∇vε|2

}
dx. (1.3.2)

Integrating (1.3.1) with respect to time and using (1.3.2) gives inequality
(1.1.27). �
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Proof of Proposition 1.2.3. (i) Choose g ∈ C1(R) such that g(s) < 0,
g′(s) > 0 if s < 0, g(s) ≡ 0 if s ≥ 0. By assumption (H1) we have G(u) >
0 if u ∈ (−∞, 0), G(u) ≡ 0 if u ≥ 0 (here we choose k = 0 in the definition
(1.1.23)). By inequality (1.2.2) we obtain

0 ≤
∫

Ω
G(uε(x, t)) dx ≤

∫
Ω
G(u0(x)) dx = 0

for any t ∈ [0, T ]. This implies G(u( . , t)) = 0, thus u( . , t) ≥ 0 a.e. in Ω for
any t ∈ [0, T ] and the first claim follows.

(ii) If ū < 1, set M := φ(ū) and choose g ∈ C1(R), g′ ≥ 0 such that
g(s) < 0 if s < 0, g(s) = 0 if s ∈ [0,M ], g(s) > 0 if s > M . It is easily
seen that G(u) ≥ 0 for any u ∈ R, G(u) = 0 if u ∈ [0, ū] and G(u) > 0
for u ∈ R \ [0, ū]. By inequality (1.2.2) we obtain now G(u( . , t)) = 0, thus
u( . , t) ∈ [0, ū] a.e. in Ω for any t ∈ [0, T ].

The case ū = 1 can be treated in a similar way. Define φ̃ ∈ Lip(R) as
follows:

φ̃(s) :=
{
φ(s) if 0 ≤ s ≤ 1
s if s > 1,

then consider the solution ũε of the correspondent problem (1.1.4)-(1.1.5).
Arguing as above shows that ũε ≤ 1 uniformly in QT , thus ũε = uε in QT
for any T > 0; hence the conclusion follows. �

Proof of Proposition 1.2.4. Integrating with respect to x the first equa-
tion in (1.1.5) and using the Neumann boundary conditions we obtain:

d

dt

∫
Ω
uε dx =

∫
Ω
uεt dx =

∫
∂Ω

∂vε

∂ν
dσ = 0

for any t ∈ [0, T ]. This implies∫
Ω
uε(x, t) dx =

∫
Ω
u0(x) dx

for any t ∈ [0, T ] and ε > 0. Finally, assumption u0 ≥ 0 in Ω implies uε ≥ 0
in QT (see Proposition 1.2.3); hence the conclusion. �

The following proof is almost the same as in [Pl1], [MTT]; we give it for
convenience of the reader.
Proof of Proposition 1.2.5. Choosing g(s) = s in equation (1.1.24) gives

d

dt

∫
Ω
dx

∫ uε(x,t)

0
φ(s) ds =

∫
Ω

[φ(uε)− vε]v
ε − φ(uε)

ε
dx

+
∫

Ω
div(vε∇vε) dx−

∫
Ω
|∇vε|2 dx.

In view of equation (1.1.4) and of the Neumann boundary conditions, we
get

− d

dt

∫
Ω
dx

(∫ uε(x,t)

0
φ(s) ds

)
=
∫

Ω
ε(uεt )

2 dx+
∫

Ω
|∇vε|2 dx.
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Integrating the above equality on (0, T ) (for any T > 0) gives∫ T

0

∫
Ω

[
ε(uεt )

2 + |∇vε|2
]
dxdt

=
∫

Ω
dx

(∫ u0(x)

0
φ(s) ds

)
−
∫

Ω
dx

(∫ uε(x,T )

0
φ(s) ds

)

≤
∫

Ω
dx

(∫ u0(x)

0
φ(s) ds

)
;

here use of assumption (H3) and Proposition 1.2.3 has been made. Hence
the result follows. �

1.4 Vanishing viscosity limit: Proofs

Proof of Theorem 1.2.9. (i) By the first estimate in (1.2.1) the se-
quence {φ(uεj )} is bounded in L∞(QT ); hence v ∈ L∞(QT ) and

φ(uεj ) ∗⇀ v in L∞(QT )

as j → ∞. By the second estimate in (1.2.1), also the sequence {vεj} is
bounded in L∞(QT ), hence weakly* relatively compact in this space. On
the other hand, for any ϕ ∈ L2(QT ) there holds:∣∣∣∣∫ ∫

QT

(vεjϕ− vϕ) dxdt
∣∣∣∣ (1.4.1)

≤
∫ ∫

QT

|vεj − φ(uεj )||ϕ| dxdt+
∣∣∣∣∫ ∫

QT

(φ(uεj )− v)ϕdxdt
∣∣∣∣

≤ ε
1/2
j ‖ε

1/2
j u

εj
t ‖L2(QT )‖ϕ‖L2(QT ) +

∣∣∣∣∫ ∫
QT

(φ(uεj )− v)ϕdxdt
∣∣∣∣ .

In view of (1.1.9), passing to the limit with respect to j → ∞ in (1.4.1)
gives

vεj ⇀ v in L2(QT ),

hence weakly* in L∞(QT ).
Moreover, in view of estimate (1.1.9), the sequence {vεj} is uniformly

bounded in L2((0, T );H1(Ω)), thus v ∈ L2((0, T );H1(Ω)) and there holds:

vεj ⇀ v in L2((0, T );H1(Ω)). (1.4.2)

(ii) Since the sequence {uεj} is bounded in L1(QT ) (see (1.1.26)), the same
holds for the sequence

{
uεjχAj

}
, too. For simplicity, set

µj := uεjχAj , µ̃j :=
{
µj in QT
0 in Rn+1 \QT .
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It follows that
‖µ̃j‖L1(Rn+1) = ‖µj‖L1(QT ) < C ,

hence there exist a subsequence of {µ̃j}, denoted again {µ̃j}, and a Radon
measure µ ∈M(Rn+1) such that∫ ∫

Rn+1

µ̃jψ dxdt→
∫ ∫

Rn+1

ψ dµ, (1.4.3)

for any ψ ∈ Cc(Rn+1) (e.g. , see [GMS]). Clearly,

suppµ ⊆ QT ; (1.4.4)

moreover, since QT ⊂ Rn+1 is compact, for any ψ ∈ C(QT ) we can find
ψ̃ ∈ Cc(Rn+1) such that ψ̃ = ψ in QT . Then by (1.4.3)-(1.4.4) the claim
follows.
(iii) Set

uεj = uεjχQT \Aj + uεjχAj (j ∈ N)

in the weak formulation (1.1.14) of problem (1.1.4)-(1.1.5) (here recall that
{uεj} ≡

{
u
εkj
}
⊆ {uεk}). Fix any ψ ∈ C1(QT ), ψ( . , T ) = 0 in Ω; in view

of (1.2.6), (1.4.2) and in view of Proposition 1.2.8, passing to the limit as
j →∞ in (1.1.14) gives equality (1.1.33). Hence the conclusion follows. �

The proof of Theorem 1.2.10 will be given at the end of Section 1.5.

1.5 Regular term: Proofs

Proof of Lemma 1.2.11. (i) Choose f ∈ C(R) such that

(a) f(λ) > 0 if λ ∈ (1,+∞) ,

(b) f(λ) = 0 if λ ∈ [0, 1].

By (1.2.1) and since uε ≥ 0 there holds 0 ≤ φ(uε) ≤ 1, thus f(φ(uε)) = 0
a.e. in QT . Then from equalities (1.2.5), (1.2.8) we obtain:

0 =
∫

[0,+∞)
(f ◦ φ)(ξ) ν(dξ) =

∑
l=1,2

〈f, σl〉 .

Since f ≥ 0 on R, this implies 〈f, σl〉 = 0 , thus f = 0 for σl − a.e. λ ∈ R
(l = 1, 2); hence the claim follows.
(ii) For any h ∈ N, we consider the function fh ∈ C([0, 1]) defined by setting

f(λ) :=
{
−hλ+ 1 for λ ∈ [0, 1/h)
0 for λ ∈ [1/h, 1] ;

(1.5.1)
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observe that fh ≥ 0, fh(λ)→ χ{0}(λ) as h→∞ for any λ ∈ [0, 1]. Moreover,

0 ≤ 〈fh, σ2〉 =
∫

[0,1]
fh σ2(dλ) =

∫
(1,+∞)

(fh ◦ φ)(ξ) ν(dξ) (1.5.2)

=
∫

(β2(1/h),+∞)
(−hφ(ξ) + 1) ν(dξ) ≤

∫
(β2(1/h),+∞)

ν(dξ).

Since χ(β2(1/h),+∞)(ξ) → 0 for any ξ ∈ [0,+∞), passing to the limit with
respect to h→∞ in (1.5.2) proves the claim.
(iii) Consider any f ∈ C(R) such that the sequence {f(uεj )} is bounded in
L1(QT ) and equi-integrable; then f ∈ L1(R+, dν) by Proposition 1.2.7-(ii).
Clearly, |f | ◦ β1 ∈ C([0, 1]) ⊆ L1([0, 1], dσ1); then by (1.2.8) and claim (i)
above we get:∫

I1

(|f | ◦ β1 ◦ φ)(ξ) ν(dξ) =
∫

[0,1]
(|f | ◦ β1)(λ)σ1(dλ). (1.5.3)

Moreover, |f | ◦β2 ∈ C((0, 1]), thus, in view of claim (ii), it is σ2-measurable.
Then by (1.2.8) we obtain (see also (1.2.11)):∫

[0,1]
(|f | ◦ β2)(λ)σ2(dλ) =

∫
I2

(|f | ◦ β2 ◦ φ)(ξ) ν(dξ) (1.5.4)

=
∫

[0,+∞)
|f |(ξ) ν(dξ)−

∫
[0,1]

(|f | ◦ β1)(λ)σ1(dλ) < +∞.

This concludes the proof. �
The proof of Theorem 1.2.12 needs two preliminary results. The first

one is an easy consequence of Proposition 1.2.6 and Proposition 1.2.7-(ii).

Lemma 1.5.1. Let ν(x,t) be the disintegration of the Young measure τ given
by Proposition 1.2.7. Let F,G be as in Proposition 1.2.6; suppose the family
{G(uε)} to be bounded in L∞(QT ). Then for a.e. (x, t) ∈ QT(∫

[0,+∞)
F (ξ) ν(x,t)(dξ)

)(∫
[0,+∞)

G(ξ) ν(x,t)(dξ)

)
=

=
∫

[0,+∞)
F (ξ)G(ξ) ν(x,t)(dξ).

The proof of the second result is almost the same as in [Pl1]; we give it
for convenience of the reader. In this connection, consider the nonincreasing
functions

ρl(λ) := σl ([λ, 1]) , ρl,A(λ) := σl ([λ, 1] ∩A) ,

where l = 1, 2 , λ ∈ [0, 1] and A ⊆ [0, 1]. Then the following holds.
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Lemma 1.5.2. Let A ⊂ [0, 1] be compact and σ(A) > 0. Then

M(λ)−MA(λ) = NA for a.e. λ ∈ (0, 1), (1.5.5)

where

M :=
(
β′1 − β′2

)−1
2∑
l=1

β′lρl ,

MA := [σ(A)]−1
(
β′1 − β′2

)−1
2∑
l=1

β′lρl,A ,

NA := [σ(A)]−1σ2(A)− σ2 ([0, 1]) .

Proof. Since A is compact, there exists a sequence {fh} ⊂ C1([0, 1]), fh ≥ 0,
fh = 1 on A, such that

fh(λ)→ χA(λ) for any λ ∈ [0, 1]

as h→∞. Fix g ∈ C1
c (0, 1); consider the function G defined by (1.1.23). In

view of Remark 1.2.2, the family {G(uε)} is uniformly bounded in QT . Set
Fh := fh(φ); by Proposition 1.2.6 and Lemma 1.5.1 we obtain:(∫

[0,+∞)
(fh ◦ φ)(ξ) ν(dξ)

)(∫
[0,+∞)

G(ξ) ν(dξ)

)

=
∫

[0,+∞)
G(ξ)(fh ◦ φ)(ξ) ν(dξ).

Using (1.2.11), the above equation reads:(∫
[0,1]

fh(λ)σ(dλ)

)
2∑
l=1

〈G ◦ βl, σl〉 =
2∑
l=1

〈fh(G ◦ βl), σl〉 .

Letting h→∞ gives

σ(A)
2∑
l=1

∫
[0,1]

G(βl(λ))σl(dλ) =
2∑
l=1

∫
A
G(βl(λ))σl(dλ) . (1.5.6)

Observe that for λ > 0

(G ◦ β1)(λ) =
∫ β1(λ)

0
g(φ(s)) ds =

∫ λ

0
g(ζ)β′1(ζ) dζ ,

(G ◦ β2)(λ) =
∫ β2(λ)

0
g(φ(s)) ds =

∫ 1

0
g(φ(s)) ds+

∫ β2(λ)

1
g(φ(s)) ds

=
∫ 1

0
g(ζ)β′1(ζ) dζ −

∫ 1

λ
g(ζ)β′2(ζ) dζ

=
∫ λ

0
g(ζ)β′2(ζ) dζ +

∫ 1

0

(
β′1(ζ)− β′2(ζ)

)
g(ζ) dζ .
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Since g ∈ C1
c (0, 1), the function G ◦ β2 can be continuously extended to

λ = 0, so that G ◦ β2 ∈ C([0, 1]) and for any λ ∈ [0, 1] there holds:

(G ◦ βl) (λ) = cl +
∫ λ

0
g(ζ)β′l(ζ) dζ , (1.5.7)

where

c1 := 0, c2 :=
∫ 1

0
g(ζ)(β′1(ζ)− β′2(ζ)) dζ . (1.5.8)

Using (1.5.7)-(1.5.8), equality (1.5.6) reads:

σ(A)
2∑
l=1

∫
[0,1]

(
cl +

∫ λ

0
g(ζ)β′l(ζ) dζ

)
σl(dλ) (1.5.9)

=
2∑
l=1

∫
A

(
cl +

∫ λ

0
g(ζ)β′l(ζ) dζ

)
σl(dλ).

Concerning the left-hand side of (1.5.9), we have:

σ(A)
2∑
l=1

∫
[0,1]

(
cl +

∫ λ

0
g(ζ)β′l(ζ) dζ

)
σl(dλ) (1.5.10)

= σ(A)
2∑
l=1

(
cl 〈1, σl〉+

∫
[0,1]

σl(dλ)
∫ λ

0
g(ζ)β′l(ζ) dζ

)

= σ(A)
2∑
l=1

(
cl 〈1, σl〉+

∫ 1

0
dζ g(ζ)β′l(ζ)

∫
[ζ,1]

σl(dλ)

)

= σ(A)
2∑
l=1

(
cl 〈1, σl〉+

∫ 1

0
g(ζ)β′l(ζ)ρl(ζ) dζ

)
.

As for the right-hand side, there holds:

2∑
l=1

∫
A

(
cl +

∫ λ

0
g(ζ)β′l(ζ) dζ

)
σl(dλ) (1.5.11)

=
2∑
l=1

(
clσl(A) +

∫
[0,1]

χA(λ)σl(dλ)
∫ λ

0
g(ζ)β′l(ζ) dζ

)

=
2∑
l=1

(
clσl(A) +

∫ 1

0
dζ g(ζ)β′l(ζ)

∫
[ζ,1]

χA(λ)σl(dλ)

)

=
2∑
l=1

(
clσl(A) +

∫ 1

0
ρl,A(ζ)g(ζ)β′l(ζ) dζ

)
.
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By (1.5.10)-(1.5.11) equality (1.5.9) reads:

σ(A)
2∑
l=1

(
cl 〈1, σl〉+

∫ 1

0
(gβ′lρl)(ζ) dζ

)
= (1.5.12)

=
2∑
l=1

(
clσl(A) +

∫ 1

0
(gβ′lρl,A)(ζ) dζ

)
,

namely (see (1.5.8))∫ 1

0
g(ζ)

{[
〈1, σ2〉 − σ2(A)[σ(A)]−1

]
(β′1 − β′2) +

+
2∑
l=1

β′l
[
ρl − ρl,A[σ(A)]−1

]}
(ζ) dζ = 0 .

Since g ∈ C1
c (0, 1) is arbitrary, we also have:

2∑
l=1

β′l
[
ρl − [σ(A)]−1ρl,A

]
=
[
[σ(A)]−1σ2(A)− 〈1, σ2〉

]
(β′1 − β′2)

for a.e. ζ ∈ (0, 1). Dividing by β′1 − β′2 (which is positive in (0, 1)) both
members of the above equality we obtain (1.5.5). This completes the proof.
�

Proof of Theorem 1.2.12. Set

λ0 := min {λ ∈ [0, 1] |λ ∈ suppσ} .

If λ0 = 1, the claim is obvious. Let λ0 < 1; choose A = [λ0, λ0 + δ] with
δ > 0 suitably small. Then σ(A) 6= 0, MA(λ) = 0 if λ ∈ (λ0+δ, 1); moreover,
by equation (1.5.5) we have

M(λ) = NA

for a.e λ ∈ (λ0 + δ, 1). Since NA does not depend on λ and δ is arbitrary,
we obtain

M(λ) = N{λ0} (1.5.13)

for a.e. λ ∈ (λ0, 1).
Consider any compact A ⊂ [λ0, 1); there exists an interval (λ∗, 1) such

that
A ∩ (λ∗, 1) = ∅.

In the interval (λ∗, 1) we have MA(λ) ≡ 0, hence by (1.5.5) and (1.5.13)

NA = N{λ0}. (1.5.14)
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Again in view of (1.5.5), equalities (1.5.13)-(1.5.14) imply MA(λ) = 0 for
a.e. λ ∈ (λ0, 1) and for any compact A ⊂ [λ0, 1), namely

2∑
l=1

β′l(λ)σl([λ, 1] ∩A) = 0 for a.e. λ ∈ (λ0, 1). (1.5.15)

Consider any closed interval A = [α, β] ⊂ (λ0, 1). If λ ∈ (λ0, α) we have
σl([λ, 1] ∩A) = σl(A). Hence, by equation (1.5.15), it follows that

2∑
l=1

β′l(λ)σl(A) = 0 for a.e. λ ∈ (λ0, α). (1.5.16)

Since the functions β′1 and β′2 are continuous in (λ0, α), equality (1.5.16)
holds for any λ ∈ (λ0, α); by Condition (S), this implies σ1(A) = σ2(A) = 0.
Since α and β are arbitrary, it follows that the support of σ consists at most
of two points, namely λ0, {1}. Let us prove that suppσ = {λ0}, ruling out
the latter possibility.

By contradiction, let {1} ∈ suppσ; choose A = {1} in (1.5.5). There
holds

0 < σ(A) < σ([0, 1]) (1.5.17)

and
ρl(λ) = σl([λ, 1]) = σl([λ, 1] ∩A) = ρl,A(λ) = σl(A),

for λ ∈ (λ0, 1). Hence, by (1.5.5), we obtain

0 = β′1(λ)
[
σ1(A)− σ1(A)[σ(A)]−1 − σ2(A)[σ(A)]−1 + σ2([0, 1])

]
+

+β′2(λ)
[
σ2(A)− σ2(A)[σ(A)]−1 + σ2(A)[σ(A)]−1 − σ2([0, 1])

]
,

for any λ ∈ (λ0, 1). By Condition (S) it follows that:{
σ1(A)− [σ(A)]−1σ1(A)− [σ(A)]−1σ2(A) + σ2([0, 1]) = 0
σ2(A)− [σ(A)]−1σ2(A) + [σ(A)]−1σ2(A)− σ2([0, 1]) = 0.

The above equalities imply σ(A) = 1, a contradiction with (1.5.17) (recall
that by (1.2.10) σ is a probability measure). This proves that suppσ = {λ0},
thus σ is the Dirac mass concentrated at the point λ0.

The above conclusion holds for the measure σ ≡ σ(x,t), for a.e. (x, t) ∈
QT . Taking the dependence on (x, t) into account and using (1.2.10) with
f(λ) = λ, we have:

λ0(x, t) =
〈
λ, σ(x,t)

〉
=
〈
φ, ν(x,t)

〉
= v(x, t) ,

v(x, t) being defined by (1.2.12). This completes the proof. �

Proof of Proposition 1.2.13. By Theorem 1.2.12 the measure σ(x,t) is the
Dirac mass concentrated at the point v(x, t). Let us distinguish two cases,
namely v(x, t) > 0 and v(x, t) = 0.

43



(i) If v(x, t) > 0, equation (1.2.10) implies that σ1(x,t) and σ2(x,t) have the
following form:

σ1(x,t) = λ(x, t) δv(x,t), σ2(x,t) =
(
1− λ(x, t)

)
δv(x,t)

for some λ ∈ L∞(QT ), λ ≥ 0 in QT . Then by equation (1.2.11) there holds:∫
[0,+∞)

f(ξ)ν(x,t)(dξ) =
2∑
l=1

〈
f ◦ βl, σl,(x,t)

〉
(1.5.18)

= λ(x, t)f(β1(v((x, t))) +
(
1− λ(x, t)

)
f(β2(v(x, t))),

for any f ∈ C(R) such that f(uεj ) is bounded in L1(QT ) and equi-integrable
(see Lemma 1.2.11-(iii)).
(i) If v(x, t) = 0, by Lemma 1.2.11 we get σ1,(x,t) = σ(x,t) and∫

[0,+∞)
f(ξ)ν(x,t)(dξ) =

〈
f ◦ β1, σ(x,t)

〉
= f(β1(0)) = f(0) . (1.5.19)

Then the conclusion follows. �

Proof of Theorem 1.2.14. (i) Equality (1.1.35) is a direct consequence
of Propositions 1.2.8, 1.2.13 (see (1.5.18)-(1.5.19)).
(ii) In view of Propositions 1.2.7 and 1.2.13, for any p > 1

[φ(uεj )]p ∗⇀ vp in L∞(QT ) .

Hence
φ(uεj )→ v in Lp(QT )

for any p ∈ [1,∞) (e.g., see [GMS]), thus the claim follows from estimate
(1.1.9). This completes the proof. �

Now we can prove Theorem 1.2.10.

Proof of Theorem 1.2.10. Denote by Gθ the function defined by (1.1.23)
with g(v) = vθ (θ ∈ (0, 1)) and k = 0, namely

Gθ(u) :=
∫ u

0
[φ(s)]θds.

Let ψ ∈ C1(QT ), ψ ≥ 0, ψ( . , T ) = 0 in Ω. As in the proof of Lemma
1.2.2, we get

d

dt

∫
Ω
Gθ(uε)ψ dx =

∫
Ω
Gθ(uε)ψt dx+

∫
Ω

[Gθ(uε)]tψ dx (1.5.20)

≤
∫

Ω
Gθ(uε)ψt dx+

∫
Ω

(vε)θ∆vεψ dx

(recall that vε ≥ 0 by Remark 1.2.1). We proceed in three steps.
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Step 1. For any ε > 0 and θ ∈ (0, 1) there holds:∫ ∫
QT

{
Gθ(uε)ψt −

1
θ + 1

∇(vε)θ+1 · ∇ψ
}
dxdt+ (1.5.21)

+
∫

Ω
Gθ(u0)(x)ψ(x, 0) dx ≥ 0.

In fact, inequality (1.5.21) plainly follows from (1.5.20), if we show that∫
Ω

(vε)θ∆vεψ dx ≤ − 1
θ + 1

∫
Ω
∇(vε)θ+1 · ∇ψ dx. (1.5.22)

For any k ∈ N the function
(
vε +

1
k

)θ
is in H1(Ω), hence we have:∫

Ω

(
vε +

1
k

)θ
∆vεψ dx

= −
∫

Ω

(
vε +

1
k

)θ
∇vε · ∇ψ dx− θ

∫
Ω

(
vε +

1
k

)θ−1
|∇vε|2ψ dx

≤ −
∫

Ω

(
vε +

1
k

)θ
∇vε · ∇ψ dx.

Passing to the limit with respect to k →∞ in the above inequality gives∫
Ω

(vε)θ∆vεψ dx ≤ −
∫

Ω
(vε)θ∇vε · ∇ψ dx.

Observe that (vε)θ+1 ∈ H1(Ω) and ∇[(vε)θ+1] = (θ + 1)(vε)θ∇vε: hence
inequality (1.5.22), thus (1.5.21) follows.
Step 2. Let us prove that for any θ ∈ (0, 1)∫ ∫

QT

{
G∗θψt −

1
θ + 1

∇vθ+1 · ∇ψ
}
dxdt+

+
∫

Ω
Gθ(u0)(x)ψ(x, 0) dx ≥ 0, (1.5.23)

where G∗θ is the L1-weak limit of the sequence {Gθ(uεj )} (see (1.2.15)). To
this purpose, we study separately the different terms of (1.5.21) (written
with ε = εj) as εj → 0.
(i) By assumption (H1) φp ∈ L1(R) for some p > 1, hence φθ ∈ L

p
θ (R)

(θ ∈ (0, 1)). Then for any u ≥ 0

|Gθ(u)| ≤
∫ u

0
φθ(s) ds ≤

(∫ u

0
φθ

p
θ (s) ds

) θ
p

(u)
p−θ
p ≤ ‖φp‖

θ
p

L1(R)
(u)

p−θ
p .

Since the sequence {uεj} is bounded in L1(QT ), by the above inequality the
sequence {Gθ(uεj )} is bounded in L

p
p−θ (QT ), hence weakly compact in this

space. In particular, this implies (possibly passing to a subsequence):

Gθ(uεj ) ⇀ G∗θ in L1(QT ) ,
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∫ ∫
QT

Gθ(uεj )ψt dxdt→
∫ ∫

QT

G∗θψt dxdt.

(ii) Observe that

‖(vεj )θ+1‖2L2(0,T ;H1(Ω)) =
∫ ∫

QT

[(vεj )2θ+2 + |∇(vεj )θ+1|2]dxdt

≤ |QT |+ (θ + 1)2

∫ ∫
QT

(vεj )2θ|∇vεj |2dxdt

≤ |QT |+ 4‖vεj‖L2(0,T ;H1(Ω)) ≤ C ;

here use of estimates (1.1.9), (1.2.1) has been made. Hence, possibly passing
to a subsequence, there exists w ∈ L2(0, T ;H1(Ω)) such that

(vεj )θ+1 ⇀ w in L2(0, T ;H1(Ω))

as j →∞. Since by Theorem 1.2.14-(ii) vεj → v in L2(QT ), it follows that
w = vθ+1. Therefore

(vεj )θ+1 ⇀ vθ+1 in L2(0, T ;H1(Ω))

as j →∞, whence

1
θ + 1

∫ ∫
QT

∇(vεj )θ+1 · ∇ψ dxdt→
∫ ∫

QT

1
θ + 1

∫ ∫
QT

∇vθ+1 · ∇ψ dxdt.

Step 3. Finally, we pass to the limit with respect to θ → 0 in inequality
(1.5.23). Again, we consider separately its different terms.
(i) By (1.2.15) there holds:

G∗θ =

{
λ
∫ β1(v)

0 [φ(s)]θds+ (1− λ)
∫ β2(v)

0 [φ(s)]θds if v > 0
0 if v = 0,

Plainly, this implies G∗θ(x, t) → u(x, t) as θ → 0, for a.e. (x, t) ∈ QT .
Moreover, a.e. in QT there holds

|G∗θ| ≤
{
λβ1(v) + (1− λ)β2(v) if v > 0
= 0 if v = 0 ;

hence by (1.1.35) we have |G∗θ| ≤ u ∈ L1(QT ). It follows that

G∗θ → u in L1(QT ) (1.5.24)

as θ → 0. It is similarly seen that

Gθ(u0)→ u0 in L1(Ω). (1.5.25)
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(ii) From Step 2 above we get

‖vθ+1‖2L2(0,T ;H1(Ω)) ≤ C

for any θ ∈ (0, 1), with a constant C independent of θ; hence the family{
vθ+1

}
is weakly compact in L2(0, T ;H1(Ω)). Observe that vθ+1 → v in

L2(QT ) as θ → 0. This implies

vθ+1 ⇀ v in L2(0, T ;H1(Ω)) ,

1
θ + 1

∫ ∫
QT

∇vθ+1 · ∇ψ dxdt→
∫ ∫

QT

∇v · ∇ψ dxdt (1.5.26)

as θ → 0. In view of (1.5.24)-(1.5.26), passing to the limit as θ → 0 in
(1.5.23) gives the claim. �

1.6 Singular term: Proofs

Proof of Proposition 1.2.17. (i) Consider any (x0, t0) ∈ Ω× (0, T ). Let
Ir ≡ [t0− r, t0 + r] and B(x0, r) ⊂ Rn be the n-dimensional ball with center
in x0 and radius r. Choose r such that

I2r ⊂ (0, T ) and B(x0, 3r) ⊂⊂ Ω.

By standard arguments there exist η ∈ C1
c (0, T ), ρ ∈ C∞c (Ω) with the

following properties:
(a) η(t) = 1 for t ∈ Ir, ρ(x) = 1 for x ∈ B(x0, r);
(b) 0 ≤ η(t) ≤ 1 for any t ∈ (0, T ), 0 ≤ ρ(x) ≤ 1 for any x ∈ Ω;
(c) supp η ⊆ I2r, supp ρ ⊆ B(x0, 3r);
(d)

∣∣∣ ∂ρ∂xi (x)
∣∣∣ ≤ C

r for any x ∈ Ω (i = 1, ..., n).
Set

ψ(x, t) := ρ(x)η̃(t),

where

η̃(t) := −
∫ T

t
η(s) ds. (1.6.1)

Clearly, ψ ∈ C1(QT ) and ψt ≥ 0. Then from (1.1.33) we obtain:∫ ∫
B(x0,r)×Ir

u dxdt+
∫ ∫

B(x0,r)×Ir
dµ

≤
∫ ∫

QT

η̃(t)∇v · ∇ρ dxdt− η̃(0)
∫

Ω
u0(x)ρ(x) dx

≤ |η̃(0)|
∫ T

0

∫
B(x0,3r)

|∇v||∇ρ| dxdt+ 4r
∫
B(x0,3r)

u0(x)ρ(x) dx

≤ C1rr
−1‖∇v‖L2(QT )r

n/2 + C2‖u0‖L∞(Ω)r
n+1.
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Then there exists C > 0 such that for small values of r∫ ∫
B(x0,r)×Ir

dµ ≤ Crn/2 ;

letting r → 0 claim (i) follows in this case. The case (x0, t0) ∈ ∂QT can be
dealt with in a similar way.
(ii) Given any t0 ∈ (0, T ), choose ψ(x, t) = η̃(t) as test function in (1.1.33),
with η̃ defined by (1.6.1). We get∫ ∫

Ω×Ir
u dxdt+

∫ ∫
Ω×Ir

dµ ≤
∫ ∫

QT

ηu dxdt+
∫ ∫

QT

η dµ

≤ −η̃(0)
∫

Ω
u0(x) dx ≤ 4r‖u0‖L1(Ω).

The cases t0 = 0 and t0 = T are dealt with similarly, thus the claim follows.
(iii) Let E ⊂ QT be a k-dimensional closed manifold. Then for any (x0, t0) ∈
E there exist an open neighbourhood U0 of (x0, t0) and a map

F : U0 ⊆ Rn+1 → Rn+1−k, F = (F 1, F 2, . . . Fn+1−k),

such that:
(a) E ∩ U0 = {(x, t) ∈ U0 | F (x, t) = 0};
(b) the derivative DF (x0, t0) has maximal rank, i.e. equal to n+ 1− k.

Set xn+1 ≡ t. By (b) above there holds

∂(F 1, F 2, . . . Fn+1−k)
∂(xi1 , xi2 , . . . xin+1−k)

(x0, t0) = a 6= 0

for some {i1, i2, . . . in+1−k} ⊂ {1, 2, . . n+ 1}. For sake of simplicity, assume

{i1, i2, . . in+1−k} = {k + 1, k + 2, . . n+ 1} .

Consider the function

G : U0 ⊆ Rn+1 → Rn+1, G(x1, x2, . . xn+1) = (y1, y2, . . yn+1),

defined as follows: 

y1 := x1 − x01

...
yk := xk − x0k

yk+1 := F 1(x1, . . xn+1)
...
yn+1 := Fn+1−k(x1, . . xn+1).

Hence, G(x0, t0) = 0 and

G(E ∩ U0) =
{

(y1, . . yn+1) ∈ Rn+1 | yk+1 = . . . = yn+1 = 0
}
.
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Moreover, by (b) the function G is local diffeomorphism near (x0, t0). For
any R, r > 0 consider the sets

Bk(0, R) :=
{

(y1, . . yk) ∈ Rk |
√
y2

1 + . . + y2
k < R

}
,

Qn+1−k(0, r) := {(yk+1, . . yn+1) | |yi| < r} ;

define also
NR
r := Bk(0, R)×Qn+1−k(0, r) ,

ER0 := G−1(Bk(0, R)× {0, . . . , 0︸ ︷︷ ︸
n+1−k

}) ⊆ G−1(NR
r ) ;

observe that ER0 ⊆ E is a neighbourhood of (x0, t0) in E.
Consider the map ϕ̃ : NR

r → R,

ϕ̃(y1, . . yn+1) := ϕ̃k(y1, . . yk) ϕ̃k+1(yk+1) · · · ϕ̃n+1(yn+1),

where the functions ϕ̃i satisfy the following properties:
(a) ϕ̃k ∈ C∞c (Bk(0, R)), ϕ̃i ∈ C∞c (−r, r) (i = k + 1, . . n+ 1);
(b) 0 ≤ ϕ̃i ≤ 1 (i = k, . . n+ 1);
(c) ϕ̃k ≡ 1 in Bk(0, R/2), ϕ̃i ≡ 1 in [−r/2, r/2], i = k + 1, . . n+ 1;
(d) |∇ϕ̃k| ≤ C

R ,
∣∣∣dϕ̃idyi

∣∣∣ ≤ C
r (i = k + 1, . . n+ 1).

Set ϕ := ϕ̃ ◦G; recall that for r, R suitably small the map

G : G−1(NR
r )→ NR

r

is a diffeomorphism. Hence ϕ ∈ C∞c (G−1(NR
r )), ϕ ≡ 1 in G−1(NR/2

r/2 ) and

∣∣∣∣ ∂ϕ∂xj
∣∣∣∣ =

∣∣∣∣∣
n+1∑
h=1

∂ϕ̃

∂yh

∂yh
∂xj

∣∣∣∣∣ ≤ C1
1
R

+ C2
1
r

(l = 1 . . . n+ 1) (1.6.2)

for some C1, C2 > 0 (which depend on the map G). Choose

ψ(x, t) = −
∫ T

t
ϕ(x, s) ds (1.6.3)

as test function in equation (1.1.33). Then we get:∫ ∫
G−1(NR/2

r/2
)
u dxdt+

∫ ∫
G−1(NR/2

r/2
)
dµ ≤ (1.6.4)

≤
∫ ∫

QT

uϕdxdt+
∫ ∫

QT

ϕdµ

=
∫ ∫

QT

∇v · ∇ψ dxdt−
∫

Ω
u0ψ(x, 0) dx.
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Since∫ ∫
QT

∇v · ∇ψ dxdt =
∫ ∫

QT

∇v · ∇
(∫ t

0
ϕ(x, s) ds

)
dxdt

≤ ‖v‖L2(0,T ;H1(Ω))

(∫ T

0

∫
Ω

(∫ t

0
|∇ϕ| ds

)2

dxdt

)1/2

≤ ‖v‖L2(0,T ;H1(Ω))T
1/2

(∫ ∫
G−1(NRr )

|∇ϕ|2 dxdt
)1/2

≤ C

r
|G−1(NR

r )|1/2

and

−
∫

Ω
u0ψ(x, 0) dx =

∫
Ω
u0

(∫ T

0
ϕ(x, s) ds

)
dx (1.6.5)

≤ ‖u0‖L∞(Ω)

∫ T

0

∫
Ω
ϕ(x, s) ds ≤ C|G−1(NR

r )|,

from (1.6.4) we obtain:∫ ∫
G−1(NR/2

r/2
)
u dxdt+ µ

(
G−1(NR/2

r/2 )
)

≤ C

r
|G−1(NR

r )|1/2 + C|G−1(NR
r )|

≤ CRkr
n+1−k

2
−1 + CRkrn+1−k ≤ CRr

n−1−k
2 .

Passing to the limit in the above inequality as r → 0 gives

µ(ER/20 ) ≤ lim
r→0

µ
(
G−1(NR/2

r/2 )
)
≤ lim

r→0
CRr

n−1−k
2 = 0 ;

in view of the compactness of E, the conclusion follows. �

Proof of Proposition 1.2.19. For any I ⊂ [0, T ] Proposition 1.2.18 gives:∫
I
dλ(t) =

∫
I
γt(Ω) dλ(t) = µ(Ω× I) ≤ 2‖u0‖L1(Ω)|I| ,

the last estimate following by Proposition 1.2.17-(ii). This shows that the
measure λ is absolutely continuous with respect to the Lebesgue measure
on [0, T ], thus there exists h ∈ L1(0, T ), h ≥ 0, such that dλ = h dt.

Fix t0 ∈ (0, T ) and choose ησ ∈ C∞c (0, T ) with the following properties:
(a) 0 ≤ ησ ≤ 1, ησ ≡ 1 in [t0 − r, t0 + r] ,
(b) supp ησ ⊆ [t0−r−σ, t0+r+σ] with r, σ > 0 suitably small. Choosing

η̃σ(t) := −
∫ T

t
ησ(s) ds

50



as test function in equation (1.1.33) and taking the limit as σ → 0 gives∫ ∫
Ω×[t0−r,t0+r]

dµ = −
∫ ∫

Ω×[t0−r,t0+r]
u dxdt+ 2r

∫
Ω
u0 dx,

In view of Proposition 1.2.18, the above equality reads:∫ t0+r

t0−r
h(t) γt(Ω) dt =

∫ t0+r

t0−r
h(t) dt = −

∫ t0+r

t0−r
dt

∫
Ω
u dx+ 2r

∫
Ω
u0 dx.

Dividing by 2r and letting r → 0 we obtain equality (1.1.38) for a.e. t ∈
(0, T ). Since u ≥ 0 in QT , from (1.1.38) we get

h(t) ≤
∫

Ω
u0(x) dx

for a.e. t ∈ (0, T ), thus h ∈ L∞(0, T ). This completes the proof. �

Proof of Theorem 1.2.20. (i) Fix any ϕ ∈ C(Ω); set

W 1, ϕ
j (t) :=

∫
Ω

(uεjχQT \Aj )(x, t)ϕ(x) dx ,

W 2, ϕ
j (t) :=

∫
Ω

(uεjχAj )(x, t)ϕ(x) dx (j ∈ N) .

In view of estimate (1.1.26) the sequences {W 1, ϕ
j }, {W 2, ϕ

j } are bounded in
L∞(0, T ); hence (possibly extracting a subsequence)

W 1, ϕ
j

∗
⇀W 1, ϕ, W 2, ϕ ∗

⇀W 2, ϕ in L∞(0, T )

for some W 1, ϕ, W 2, ϕ ∈ L∞(0, T ). By (1.1.31) there holds

W 1, ϕ(t) =
∫

Ω
u(x, t)ϕ(x) dx for a.e. t ∈ (0, T ). (1.6.6)

On the other hand, the weak convergence of
{
uεjχAj

}
to µ in M(QT ) (see

(1.2.6)) and equation (1.1.37) imply

W 2, ϕ(t) =
∫

Ω
ϕ(x) dγ̃t(x) for a.e. t ∈ (0, T ). (1.6.7)

(ii) Let us show that the sequence
{
Wϕ
j

}
(Wϕ

j defined by (1.2.16)) belongs
to C([0, T ]) and is relatively compact in this space. We have

|Wϕ
j (t)| ≤

∫
Ω
|ϕ(x)|uεj (x, t) dx ≤ ‖ϕ‖C(Ω)‖u0‖L1(Ω)
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for any t ∈ [0, T ], j ∈ N (here use of estimate (1.1.26) has been made).
Moreover, using equation (1.1.5), we get

|Wϕ
j (t1)−Wϕ

j (t2)| =
∫ t2

t1

dt

∣∣∣∣∫
Ω
∇vεj · ∇ϕdx

∣∣∣∣
≤ ‖∇vεj‖L2(QT )‖ϕ‖C1(Ω)|Ω|1/2|t1 − t2|1/2 ;

hence the claim follows.
By the above inequality and Ascoli-Arzelà Theorem, we conclude that

Wϕ
j →Wϕ ∈ C([0, T ]), where

Wϕ(t) :=
∫

Ω
ϕ(x)u(x, t) dx+

∫
Ω
ϕ(x) dγ̃t(x)

by step (i) above.
Finally, from the weak formulation of problem (1.1.5) we get∫

Ω
ϕ(x)uεj (x, t) dx =

= −
∫ t

0
ds

∫
Ω
∇vεj (x, s) · ∇ϕ(x) dx+

∫
Ω
ϕ(x)u0(x) dx

for any t ∈ [0, T ], hence equation (1.2.18) follows as j →∞. This completes
the proof. �

Proof of Proposition 1.2.21. Fix any ϕ ∈ C1(Ω), ϕ ≥ 0; let η ∈
Lip([0, T ]), η ≥ 0, η(T ) = 0. We can choose

ψ(x, t) = ϕ(x)η(t)

both in equation (1.1.33) and in inequality (1.1.36). This obtains:∫ ∫
QT

ηtϕdµ+
∫ ∫

QT

[ηtϕu− η∇v · ∇ϕ] dxdt+ η(0)
∫

Ω
ϕu0 dx = 0 ,∫ ∫

QT

[ηtϕu− η∇v · ∇ϕ] dxdt+ η(0)
∫

Ω
ϕu0 dx ≥ 0 .

This implies ∫ ∫
QT

ηtϕdµ ≤ 0,

namely (using Proposition 1.2.18)∫ T

0
ηt(t)W 2, ϕ(t) dt ≤ 0 (1.6.8)

for any η as above, the function W 2, ϕ ∈ L∞(0, T ) being defined by (1.6.7).
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Fix 0 < t1 < t2 < T ; consider η ∈ Lip([0, T ]) defined as follows:

η(t) :=


(t− t1 + r/2)/r if t ∈ (t1 − r/2, t1 + r/2)
1 if t ∈ [t1 + r/2, t2 − r/2]
−(t− t2 − r/2)/r if t ∈ (t2 − r/2, t2 + r/2),

with r > 0 suitably small. Using η as test function in inequality (1.6.8) gives

1
r

∫ t1+r/2

t1−r/2
W 2, ϕ(t) dt ≤ 1

r

∫ t2+r/2

t2−r/2
W 2, ϕ(t) dt .

Thus as r → 0 we get
W 2, ϕ(t1) ≤W 2, ϕ(t2) ,

and the conclusion follows. �
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Chapter 2

Degenerate pseudoparabolic
regularization
of a forward-backward
parabolic equation

2.1 Introduction

In this chapter we consider the initial-boundary value problem
ut = [ϕ(ux)]x in Ω× (0, T ] =: Q
ϕ(ux) = 0 in ∂ Ω× (0, T ]
u = u0 in Ω× {0} .

(2.1.1)

Here T > 0, Ω ⊂ R is a bounded interval and ϕ is a nonmonotone function,
which satisfies for some constant α > 0 the following assumption:

(H1)


(i) ϕ ∈ C2(R) ∩ L1(R), ϕ(0) = 0, ϕ(s)→ 0 as s→∞ ;
(ii) 0 < ϕ(s) ≤ ϕ(α) for s > 0, ϕ(s) < 0 for s < 0 ;
(iii) ϕ′(s) > 0 for 0 < s < α, ϕ′(s) < 0 for s > α .

In view of assumption (H1)− (iii), the first equation in (2.1.1) is of forward-
backward parabolic type. Its main feature is to be ill-posed whenever the
solution ux takes values in the interval (α,∞) where ϕ′ < 0.

Problem (2.1.1) independently arises in mathematical models of oceano-
graphy [BBDU] and image processing [PM]. By the change of unknown v :=
ux, it reduces to a model for aggregating populations in population dynamics
[Pa]. Under different assumptions on ϕ, it also arises in the theory of phase
transitions (in this connection, see [E2], [MTT] and references therein).

Several regularizations of forward-backward parabolic equations have
been proposed on physical grounds and mathematically investigated (in
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particular, see [BFG], [Pa], [NP], [Sl])). In this chapter we make use of
the regularization proposed in [BBDU] to take memory effects into account,
namely

ut = [ϕ(ux)]x + ε[ψ(ux)]xt . (2.1.2)

The function ψ is related to ϕ and satisfies the following assumption:

(H2)



(i) ψ ∈ C3(R), ψ′ > 0 in R, ψ(−s) = −ψ(s),
ψ(s)→ γ as s→∞ for some γ ∈ (0,∞) ;

(ii) |ϕ′| ≤ k1ψ
′ in R for some k1 > 0 ;

(iii)
∣∣∣∣(ϕ′ψ′)′∣∣∣∣ ≤ k2ψ

′ in R for some k2 > 0 .

Observe that (H2)−(i) implies ψ′(s)→ 0 as s→∞. Hence ψ′ is not bounded
away from zero, and equation (2.1.2) is degenerate pseudoparabolic.
Concerning the initial data u0, in [BBDU] the following assumption was
made:

(H3)
{

(i) u0 ∈ BV (Ω) ;
(ii) u0 nondecreasing in Ω .

Assumptions (H1) − (H3) are always made below. Following [BBDU],
under the above we address for any ε > 0 the initial-boundary value problem

ut = [ϕ(ux)]x + ε[ψ(ux)]xt in Q
ϕ(ux) = 0 in ∂Ω× (0, T ]
u = u0 in Ω× {0} .

(2.1.3)

The purpose of the present chapter is twofold:

Step (i). First we study problem (2.1.3) for fixed ε > 0. Existence and
uniqueness of solutions to problem (2.1.3) have been proved in [BBDU];
in this framework, a solution of (2.1.3) is meant to be a couple (uε, wε),
where uε ∈ L∞((0, T );BV (Ω)), uε(·, t) is non-decreasing for a.e. t ∈ (0, T ),
uεt ∈ L2(Q) and wε ∈ L∞((0, T );H1

0 (Ω)) ∩ C(Q), wεt ∈ L2((0, T );H1
0 (Ω)),

such that

uεt = h(wε)x + εwεtx in L2(Q) (2.1.4)

with initial datum u0 (here h := ϕ ◦ ψ−1). We show that the definition
of solution made in [BBDU] (see Definition 2.2.2 below) can be actually
interpreted in an alternative - and equivalent - way. Precisely, denoting by
u
ε,(r)
x and u

ε,(s)
x the regular and singular term of the spatial derivative uεx

with respect to the Lebesgue measure, we prove that:

(a) wε = ψ
(
u
ε,(r)
x

)
, h(wε) = ϕ

(
u
ε,(r)
x

)
a.e. in Q;

(b) equation (2.1.4) reads

uεt = ϕ
(
uε,(r)x

)
x

+ εψ
(
uε,(r)x

)
tx

= vεx in L2(Q), (2.1.5)
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where
vε := ϕ

(
uε,(r)x

)
+ ε
[
ψ
(
uε,(r)x

)]
t
;

(c) the support of the singular part uε,(s)x is characterized as follows:

suppuε,(s)x =
{

(x, t) ∈ Q | ψ
(
uε,(r)x

)
(x, t) = γ

}
.

Observe also that deriving (2.1.5) with respect to x gives the following equa-
tion for the derivative uεx

[
uεx
]
t

=
[
ϕ
(
uε,(r)x

)]
xx

+ ε
[
ψ(uε,(r)x )

]
txx

= vεxx in D′(Q). (2.1.6)

Step (ii). Then we investigate the limit of solutions of (2.1.3) as ε → 0.
In this direction, concerning the family {vε} we show that there exists a
constant C > 0 such that

‖vε‖L∞(Q), ‖vε‖L2((0,T );H1
0 (Ω)) ≤ C.

On the other hand, for the family {uε} in general we only have a-priori
estimates in BV (Q) - namely in M+(QT ) for the spatial derivatives uεx.
Thus, the space of positive Radon measures seems a natural candidate to
take the limit as ε → 0 in problems of (2.1.3). In particular we obtain the
limiting equations

ut = vx in L2(Q), (2.1.7)

and also [
ux
]
t

= vxx in D′(Q). (2.1.8)

Here, for some sequence εj → 0, u ∈ BV (Q) is the weak limit of the sequence
{uεj} in BV (Q), and v ∈ L∞(Q) ∩ L2((0, T );H1

0 (Ω)), v ≥ 0, is the limit of
both the sequences {vεj} and

{
ϕ(uεj ,(r)x )

}
in the weak* topology of L∞(Q).

Moreover, we can use the general notion of Young measures, narrow and bi-
ting convergences, to prove the following decomposition of the Radon mea-
sure ux ∈M+(QT ):

ux = Z + µ, (2.1.9)

where µ ∈ M+(QT ) is a positive Radon measure, in general not absolutely
continuous with respect to the Lebesgue measure, and Z ∈ L1(Q), Z ≥ 0, is
a superposition of the two branches s1, s2 of the equation v = ϕ(z) (v ≥ 0),
namely
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Z =
{
λs1(v) + (1− λ)s2(v) if v > 0
0 if v = 0

(see Theorem 2.2.7). Moreover, denoting by< ·, · > the duality map between
M+(Q) and the space Cc(Q), in Theorem 2.2.9 we show that the following
disintegration of the measure µ holds:

< µ, f > =
∫ T

0
< γ̃t, f(·, t) > dt ;

here γ̃t is a positive Radon measure over Ω for a.e. t > 0 and the map

t 7→ γ̃t(E)

is non-decreasing for any Borel set E ⊆ Ω.

Finally, concerning the support of the (possibly) singular measure γ̃t ∈
M+(Ω) (hence of µ ∈M+(Q)), in Theorem 2.2.10 we prove that

supp γ̃t ⊆
{
x ∈ Ω | v(x, t) = 0

}
for a.e. t > 0.

2.2 Mathematical framework and results

2.2.1 The case ε > 0

In the sequel we denote byM+(Q) the space of positive Radon measures on
Q, and by < ·, · > the duality map betweenM+(Q) and the space Cc(Q) of
continuous functions f : Q → R with compact support. Let C1

c (Q) be the
space of C1 functions f : Q→ R with compact support.

Let us make the following definition.

Definition 2.2.1. A function uε : Q → R is a solution of problem (2.1.3),
if there holds:

(i) uε ∈ L∞((0, T );BV (Ω)), uε(·, t) is nondecreasing for a.e. t ∈ (0, T ), and
uεt ∈ L2(Q);

(ii) ϕ
(
u
ε,(r)
x

)
, ψ

(
u
ε,(r)
x

)
∈ C(Q) ∩ L∞((0, T );H1

0 (Ω)), and [ψ
(
u
ε,(r)
x

)
]t ∈

L2((0, T );H1
0 (Ω)), where u

ε,(r)
x denote the density of the absolutely con-

tinuous part (with respect to the Lebesgue measure) of the Radon measure
uεx ∈M+(Q) .

(iii) the equation
uεt = [ϕ

(
uε,(r)x

)
]x + ε[ψ

(
uε,(r)x

)
]xt (2.2.1)
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is satisfied in L2(Q), and there holds∫∫
Q

{
uε ζt + [ϕ

(
uε,(r)x

)
]x ζ + ε[ψ

(
uε,(r)x

)
]xt ζ

}
dxdt = (2.2.2)

= −
∫

Ω
u0(x)ζ(x, 0) dx

for any ζ ∈ C1(Q), ζ(·, T ) = 0 in Ω.

The following result will be proven.

Theorem 2.2.1. Let assumptions (H1) − (H3) be satisfied. Then for any
ε > 0 there exists a unique solution uε of problem (2.1.3). Moreover, there
holds[

uε,(r)x + uε,(s)x

]
t

=
[
ϕ
(
uε,(r)x

)]
xx

+ ε
[
ψ
(
uε,(r)x

)]
xxt

in D′(Q) ; (2.2.3)

here u
ε,(r)
x ∈ L1(Q), uε,(s)x ∈ M+(Q) denote the density of the absolutely

continuous part, respectively the singular part (with respect to the Lebesgue
measure) of the Radon measure uεx.

It is informative to compare Definition 2.2.1 with an alternative definition
of solution to problem (2.1.3), which was used in [BBDU]. Define a function
h : [−γ, γ]→ R by setting

h(z) :=
{
ϕ ◦ ψ−1(z) if |z| < γ
0 if |z| = γ .

(2.2.4)

Definition 2.2.2. A couple of functions uε, wε : Q → R is a solution of
problem (2.1.3), if there holds:
(i) uε ∈ L∞((0, T );BV (Ω)), uε(·, t) is nondecreasing for a.e. t ∈ (0, T ), and
uεt ∈ L2(Q);
(ii) wε ∈ C(Q) ∩ L∞((0, T );H1

0 (Ω)) such that |wε| ≤ γ in Q, and

wε(x, t) = lim
h→0+

ψ

(
uε(x+ h, t)− uε(x+, t)

h

)
= (2.2.5)

= lim
h→0+

ψ

(
uε(x− h, t)− uε(x−, t)

h

)
for any x ∈ Ω and t > 0 (here uε(x±, t) := limη→0+ u(x ± η, t)). Moreover,
wεt ∈ L2((0, T );H1

0 (Ω));
(iii) the equation

uεt = [h(wε)]x + εwεxt (2.2.6)
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is satisfied in L2(Q), and there holds∫∫
Q

{
uε ζt + [h(wε)]x ζ + εwεxt ζ

}
dxdt = (2.2.7)

= −
∫

Ω
u0(x)ζ(x, 0)dx

for any ζ ∈ C1(Q), ζ(·, T ) = 0 in Ω.

The following well-posedness result was proven in [BBDU].

Theorem 2.2.2. Let assumptions (H1) − (H3) be satisfied. Then for any
ε > 0 there exists a unique solution (uε, wε) of problem (2.1.3) in the sense
of Definition 2.2.2.

The equivalence between Definitions 2.2.1 and 2.2.2 is an immediate conse-
quence of the following statement.

Theorem 2.2.3. Let assumptions (H1) − (H3) be satisfied. Let (uε, wε)
be the solution of problem (2.1.3) in the sense of Definition 2.2.2, whose
existence is asserted in Theorem 2.2.2. Then

uε,(r)x = ψ−1(wε) a.e. in Q , (2.2.8)

suppuε,(s)x =
{

(x, t) ∈ Q | wε(x, t) = γ
}
. (2.2.9)

Moreover, the set suppuε,(s)x has Lebesgue measure |suppuε,(s)x | = 0.

For any ε > 0 set
vε := ϕ

(
uε,(r)x

)
+ ε
[
ψ(uε,(r)x )

]
t
. (2.2.10)

Observe that equation (2.2.1) simply reads

uεt = vεx . (2.2.11)

Inspired by [Pl1], we will show that for any ε > 0 there exists a set F ε ⊆
(0, T ) of Lebesgue measure |F ε| = 0 such that the couple (uε,(r)x , vε), satisfies
the entropy inequality:∫ 1

0
G(uε,(r)x )(x, t2)ζ(x, t2)dx−

∫
Ω
G(uε,(r)x )(x, t1)ζ(x, t1)dx ≤

≤
∫ t2

t1

∫
Ω

[G(uε,(r)x )ζt − g(vε)vεxζx]dxdt (2.2.12)

for any t1, t2 ∈ (0, T )\F ε with t1 < t2 and any ζ ∈ C1([0, T ];H1
0 (Ω)∩H2(Ω)),

ζ ≥ 0, ζxx ≤ 0 (see Proposition 2.3.17). Here

G(λ) :=
∫ λ

0
(g ◦ ϕ)(s)ds (2.2.13)

and g is an arbitrary function in C1(R) such that g′ ≥ 0, g ≡ 0 in [0, Sg], for
some Sg > 0.
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2.2.2 Letting ε→ 0

Set

S1 :=
{

(ζ, ϕ(ζ))|ζ ∈ [0, α]
}
≡
{

(s1(v), v)|v ∈ [0, ϕ(α)]
}
, (2.2.14)

S2 :=
{

(ζ, ϕ(ζ))|ζ ∈ (α,∞)
}
≡
{

(s2(v), v)|v ∈ (0, ϕ(α))
}

; (2.2.15)

the above sets will be referred to as the stable branch, respectively the un-
stable of the graph of ϕ. Following [Pl1], we always assume in the sequel:

Condition (S): The functions s′1, s′2 are linearly independent on any
open subset of the interval (0, ϕ(α)).

Let uε be the unique solution (in the sense of Definition 2.2.1) of problem
(2.1.3), whose existence is asserted by Theorem 2.2.1. Our purpose is to
study the behaviour and the limiting points of the families

{
uε
}

,
{
vε
}

and{
ψ(uε,(r)x )

}
as ε→ 0. To this aim, in Lemmata 2.3.10-2.3.12 it is shown that

there exists a constant C > 0, which does not depend on ε, such that

‖uεx‖M+(Q) ≤ C . (2.2.16)

‖uεt‖L2(Q) ≤ C ; (2.2.17)

‖vε‖L∞(Q) ≤ C , (2.2.18)

‖vε‖L2((0,T );H1
0 (Ω)) ≤ C . (2.2.19)

Observe that inequality (2.2.16) implies

‖uε,(r)x ‖L1(Q) ≤ C , ‖uε,(s)x ‖M+(Q) ≤ C (2.2.20)

for some constant C > 0 independent of ε. Also, inequalities (2.2.16)-(2.2.17)
imply that the family

{
uε
}

is bounded in BV (Q). Hence there exist a
subsequence

{
εk
}

, εk → 0, and a couple of functions u ∈ BV (Q) with
ut ∈ L2(Q), v ∈ L∞(Q) ∩ L2((0, T );H1

0 (Ω)) such that

uεk ⇀ u in BV (Q) , (2.2.21)

uεkx
∗
⇀ ux in M+(Q) , (2.2.22)

uεkt ⇀ ut in L2(Q) , (2.2.23)

vεk
∗
⇀ v in L∞(Q) , (2.2.24)

vεk ⇀ v in L2((0, T );H1
0 (Ω)) . (2.2.25)

It will also be proven (see Lemma 2.4.3) that

ϕ
(
uεk,(r)x

) ∗
⇀ v in L∞(Q) . (2.2.26)
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Observe that (2.2.21) implies

uεk → u in L1
loc(Q) . (2.2.27)

The above remarks allow to take the limit as εk → 0 in equality (2.2.2)
written with ε = εk, namely∫∫

Q

{
uεk ζt + vεkx ζ

}
dxdt = −

∫
Ω
u0(x)ζ(x, 0) dx ,

thus obtaining∫∫
Q

{
u ζt + vx ζ

}
dxdt = −

∫
Ω
u0(x)ζ(x, 0) dx (2.2.28)

for any ζ ∈ C1(Q), ζ(·, T ) = 0 in Ω. This can be expressed by saying that
the couple (u, v) is a weak solution of the problem

ut = vx in Q
v = 0 in ∂ Ω× (0, T ]
u = u0 in Ω×

{
0
}
.

(2.2.29)

2.2.3 Structure of ux

Were v = ϕ(ux), equation (2.2.28) would give a weak solution of problem
(2.1.1). However, no such conclusion can be drawn from (2.2.21)-(2.2.25), in
view of the nonmonotone character of ϕ. Nevertheless, the structure of the
limiting measure ux ∈M+(Q) (see (2.2.22)) can be studied in considerable
detail by Young measures techniques. To this purpose, let us first recall the
following definition ([GMS], [V]).

Definition 2.2.3. Let τk, τ be Young measures on Q × R (k ∈ N). The
sequence {τk} converges to τ narrowly, if∫

Q×R
ψ dτk →

∫
Q×R

ψ dτ (2.2.30)

for any ψ : Q × R → R bounded and measurable, ψ(x, t, ·) continuous for
a.e. (x, t) ∈ Q.

Consider the family
{
τε
}

of Young measures associated to
{
u
ε,(r)
x

}
. In view

of (2.2.20) and the Prohorov Theorem (e.g. see [V]), we have the following
result.
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Proposition 2.2.4. Let uε be the unique solution of problem (2.1.3), and
τε the Young measure associated to the density uε,(r)x of the absolutely con-
tinuous part of the Radon measure uεx ∈M+(Q) (ε > 0). Then:
(i) there exist a sequence

{
u
εk,(r)
x

}
⊆
{
u
ε,(r)
x

}
and a Young measure τ on

QT × R such that τk → τ narrowly (here τk ≡ τεk);
(ii) for any f ∈ C(R) such that the sequence

{
f
(
u
εk,(r)
x

)}
is bounded in

L1(Q) and equi-integrable there holds

f
(
uεk,(r)x

)
⇀ f∗ in L1(Q); (2.2.31)

here

f∗(x, t) :=
∫

[0,+∞)
f(ξ) dν(x,t)(ξ) for a.e. (x, t) ∈ Q (2.2.32)

and ν(x,t) is the disintegration of the Young measure τ .

In general, the sequence
{
u
εk,(r)
x

}
need not be equi-integrable in the cylinder

Q; hence Proposition 2.2.4-(ii) cannot be applied with f(z) = z. However,
we can associate to

{
u
εk,(r)
x

}
an equi-integrable subsequence by removing

sets of small measure. This is the content of the following theorem, which
easily follows from the Biting Lemma (e.g., see [GMS], [V] for the proof; here
and in the sequel we denote by |E| the Lebesgue measure of any measurable
set E ⊆ R).

Theorem 2.2.5. Let the assumptions of Proposition 2.2.4 be satisfied. Then

there exist a subsequence
{
u
εj ,(r)
x

}
≡
{
u
εkj ,(r)
x

}
⊆
{
u
εk,(r)
x

}
and a sequence

of measurable sets
{
Aj
}

,

Aj ⊂ Q, Aj+1 ⊂ Aj for any j ∈ N, |Aj | → 0 as j →∞,

such that the sequence
{
u
εj ,(r)
x χQ\Aj

}
is equi-integrable. Moreover,

(i) there holds
u
εj ,(r)
x χQ\Aj ⇀ Z in L1(Q) , (2.2.33)

where Z ∈ L1(Q) is the barycenter of the Young disintegration ν(x,t), namely

Z(x, t) :=
∫

[0,∞)
ξ dν(x,t)(ξ) for a.e. (x, t) ∈ Q ; (2.2.34)

(ii) there exists a measure µ1 ∈M+(Q) such that

u
εj ,(r)
x χAj

∗
⇀ µ1 in M+(Q) . (2.2.35)

Concerning the family
{
u
ε,(s)
x

}
, the second estimate in (2.2.20) immediately

gives the following result.
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Theorem 2.2.6. Let uε be the unique solution of problem (2.1.3), and uε,(s)x

the singular part of the Radon measure uεx ∈ M+(Q) (ε > 0). Then there
exist a subsequence

{
u
εj ,(s)
x

}
and a measure µ2 ∈M+(Q) such that

u
εj ,(s)
x

∗
⇀ µ2 in M+(Q) . (2.2.36)

Observe that (2.2.35) and (2.2.36) read∫ ∫
Q
u
εj ,(r)
x χAjζ dxdt→< µ1, ζ > ,

∫ ∫
Q
u
εj ,(s)
x ζ dxdt→< µ2, ζ >

(2.2.37)
for any ζ ∈ Cc(Q). Let ux ∈M+(Q) be the limit of the sequence uεkx in the
weak* topology of M+(Q) (see (2.2.22)). In view of (2.2.33), (2.2.35) and
(2.2.36), it follows that

ux = Z + µ , (2.2.38)

where Z is the barycenter of the Young disintegration of the limiting measure
τ (see (2.2.34)) and

µ := µ1 + µ2 . (2.2.39)

Let us observe that the triple (Z, µ, v), where v denotes the limiting function
in (2.2.24)-(2.2.26), satisfies the equality

(Z + µ)t = vxx in D′(Q) . (2.2.40)

In fact, equality (2.2.3) reads∫∫
Q

{
uε,(r)x ζt − vεxζx

}
dxdt + < uε,(s)x , ζt > = 0

for any ζ ∈ C∞c (Q) (see (2.2.10)). By (2.2.25), Theorems 2.2.5-2.2.6 and
(2.2.39), letting ε→ 0 gives∫∫

Q
[Zζt − vx ζx]dxdt + < µ, ζt > = 0

Remark 2.2.1. Although Z can be regarded as the density of an absolutely
continuous measure (with respect to the Lebesgue measure), we do not know
whether this measure and the measure µ are mutually singular. Therefore the
representation (2.2.38) need not coincide with the Lebesgue decomposition of
ux.

Concerning the function Z, we shall prove the following result.
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Theorem 2.2.7. There exists λ ∈ L∞(Q), 0 ≤ λ ≤ 1, such that

Z =
{
λs1(v) + (1− λ)s2(v) if v > 0
0 if v = 0

(2.2.41)

a.e. in Q. Here s1, s2 are defined by (2.2.14)-(2.2.15) and v is the limiting
function in (2.2.24)-(2.2.25).

The proof of Theorem 2.2.7 relies on the following characterization of the
disintegration ν(x,t) of the measure τ (see Proposition 2.2.4-(i))

ν(x,t) =
{
λ(x, t)δs1(v(x,t)) + (1− λ(x, t))δs2(v(x,t)) if v(x, t) > 0
δ0 if v(x, t) = 0 ,

(2.2.42)
which holds for almost every (x, t) ∈ Q. The proof is adapted from [Pl1],
[Sm].

Further we investigate the properties of the measure µ defined in (2.2.39). A
remarkable feature of µ is its nondecreasing character with respect to time;
this is the content of the following theorem.

Theorem 2.2.8. There holds:∫∫
Q

{
Zζt − vx ζx

}
dxdt ≥ 0 (2.2.43)

For any ζ ∈ C1([0, T ];H1
0 (Ω) ∩ H2(Ω)), ζ(·, 0) = ζ(·, T ) = 0 in Ω, ζ ≥ 0

and ζxx ≤ 0.

In view of Theorem 2.2.8, in equality (2.2.40) the singular part µ of the
measure in the left-hand side prevails over the regular L1-term Z as time
progresses. This produces a general ”coarsening” effect, since the absolutely
continuous part decreases and possibly disappears, while singularities can
appear and spread as time goes on. Such effect seems consistent with the
model interpretation of equation (2.1.1), and with the results proven in
[BBDU] for the case ε > 0.

Let us next prove a disintegration result concerning the measure µ. For any
subset E ⊆ Q denote by Et :=

{
x ∈ Ω | (x, t) ∈ E

}
its section at the time

t ∈ (0, T ). Then we can prove the following result.

Theorem 2.2.9. Let µ be the measure defined in (2.2.39). Then for a.e.
t ∈ (0, T ) there exists a measure γ̃t ∈M+(Ω) such that:
(i) for any Borel set E ⊆ Q there holds

µ(E) =
∫ T

0
γ̃t(Et) dt ;
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moreover, for any f ∈ Cc(Q) there holds:

< µ, f > =
∫ T

0
< γ̃t, f(·, t) > dt ; (2.2.44)

(ii) for any ρ ∈ H1
0 (Ω) ∩H2(Ω), ρ ≥ 0, ρxx ≤ 0 in Ω, there holds

〈γ̃t1 , ρ〉 ≤ 〈γ̃t2 , ρ〉 (2.2.45)

for almost every t1, t2 ∈ (0, T ), t1 < t2.

Finally, the following theorem holds.

Theorem 2.2.10. For a.e. t ∈ (0, T ) let γ̃t ∈M+(Ω) be the Radon measure
given by Theorem 2.2.9 and v the limiting function in (2.2.24)-(2.2.26). Let
the following assumption be satisfied:

(H4) s2ψ′(s) ≤ k3 for some k3 > 0 .

Then there exists a subset E ⊆ (0, T ) of zero Lebesgue measure such that

supp γ̃t ⊆
{
x ∈ Ω | v(x, t) = 0

}
for any t ∈ (0, T ) \ E.

2.3 The case ε > 0: Proofs.

Let us recall for further purposes the proof of the existence part of Theorem
2.2.2. This was obtained approximating problem (2.1.3) by the nondegene-
rate problem

(P εκ)


ut = [ϕκ(ux)]x + ε[ψκ(ux)]xt in Q
ϕκ(ux) = 0 in ∂Ω× (0, T ]
u = u0κ in Ω× {0}

for any κ > 0, then letting κ→ 0. Concerning ϕκ, ψκ and u0κ the following
was assumed:

(A)



(i) ϕκ(0) = 0 , ϕκ → ϕ, ψκ → ψ in C3
loc(R) as κ→ 0 ;

(ii) 0 < ϕκ(s) ≤ ϕκ(α) for s > 0, ϕκ(s) < 0 for s < 0 ;
(iii) ψκ odd, ψ′ + κ ≤ ψ′κ ≤ ψ′ + 2κ in R, ψ′′κ ∈ L∞(R) ;

(iv) |ϕ′κ| ≤ k1 ψ
′
κ

∣∣∣∣(ϕ′κψ′κ)′
∣∣∣∣ ≤ k2 ψ

′
κ on R , ϕk ∈ L1(R);

(v) u0κ ∈ C∞(Ω), u′0κ ≥ 0 in Ω, u′0κ(0) = u′0κ(1) = 0,
u0κ → u0 in L1(Ω) as κ→ 0 , ‖u′0κ‖L1(Ω) ≤ ‖u′0‖M+(Ω) .
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It is easily seen that under the above hypotheses problem (P εκ) has a unique
solution uεκ ∈ C([0, T ];C2+l(Ω)) ∩ C1((0, T ];C2+l(Ω)) for any κ > 0 and
l ∈ N [BBDU]. Moreover, the following holds.

Lemma 2.3.1. Let assumption (A) be satisfied. Then:
(i) there holds ∫

Ω
uεκ(x, t)dx =

∫
Ω
u0κ(x)dx for any t > 0 ; (2.3.1)

(ii) uεκx(·, t) ≥ 0 in Ω .

The next step is to obtain uniform a priori estimates of the sequences
{
uεκ
}

and
{
ψκ(uεκx)

}
(ε > 0 fixed); this is the content of the following three

lemmata. We prove the first two for future reference, while referring the
reader to [BBDU] for the proof of the third.

Lemma 2.3.2. Let (A) be satisfied. Then there exists a constant C > 0
such that for any κ > 0

‖uεκ‖L∞(Q) ≤ C , (2.3.2)

‖uεκx‖L∞((0,T );L1(Ω)) ≤ C . (2.3.3)

Moreover, the constant C is independent of ε.

Proof. Inequality (2.3.2) follows from (2.3.3). To prove the latter, set

vεκ := ϕκ(uεκx) + ε [ψκ(uεκx)]t , (2.3.4)

and observe that deriving with respect to x the equation in (P εκ) gives

uεκxt = vεκxx in Q . (2.3.5)

From (2.3.4)-(2.3.5) we obtain the equality

vεκ = ϕκ(uεκx) + εψ′κ(uεκx)vεκxx .

Then for any t ∈ (0, T ), vεκ(·, t) solves the problem{
z − ε [ψ′κ(uεκx(·, t))] zxx = ϕ(uεκx(·, t)) in Ω
z = 0 on ∂Ω .

(2.3.6)

Since by assumption ψ′κ ≥ ψ′+ κ ≥ κ, and uεκx ≥ 0 by Lemma 2.3.1-(ii), by
the maximum principle we obtain

0 ≤ vεκ(·, t) ≤ ϕκ(α) in Ω (2.3.7)
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(here use of assumption (A)-(ii) has been made). In view of the boundary
condition vεκ(·, t) = 0 on ∂Ω (t ≥ 0) we also have

∂vεκ
∂ν

(·, t) ≤ 0 on ∂Ω

for any t ∈ (0, T ), where ∂
∂ν denotes the outer derivative at ∂Ω. Then

integrating with respect to x and t equation (2.3.5) we obtain∫
Ω
uεκx(x, t)dx ≤

∫
Ω
u′0κ(x)dx .

Since uεκx ≥ 0 by Lemma 2.3.1-(ii), the result follows. �

Lemma 2.3.3. Let (A) be satisfied. Then there exists a constant C > 0
such that for any κ > 0 ∫∫

Q

[
ψκ
(
uεκx
)]2
t

ψ′κ(uεκx)
dxdt ≤ C

ε
, (2.3.8)

and
‖uεκt‖L2(Q) = ‖vεκx‖L2(Q) ≤ C , (2.3.9)

where the function vεk is defined by (2.3.4). Moreover, the constant C is
independent of ε.

Proof. From (2.3.4)-(2.3.5) we obtain plainly

d

dt

∫
Ω
dx

∫ uεκx

0
ϕκ(s)ds = −

∫
Ω
εψ′κ(uεκx)(uεκxt)

2dx−
∫

Ω
(vεκx)2dx .

Integrating the above equality with respect to t gives∫∫
Q

(vεκ)2
x + εψ′κ(uεκx)(uεκxt)

2dxdt = (2.3.10)

=
∫

Ω
dx

∫ u′0κ(x)

0
ϕκ(s)ds−

∫
Ω
dx

∫ uεκx(x,T )

0
ϕκ(s)ds ≤

≤
∫

Ω
dx

∫ u′0κ(x)

0
ϕκ(s)ds

(here use of Lemma 2.3.1-(ii) has been made). Since uεκt = vεκx (see the
equation in (P εk)) and ϕk ∈ L1(R) by assumption (A)-(iv), the result follows.
�

Remark 2.3.1. Observe that by assumptions (H2) − (i) and (A) − (iii)
inequality (2.3.8) implies

‖ [ψκ(uεκx))]t ‖L2(Q) ≤
C√
ε
. (2.3.11)
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Lemma 2.3.4. Let (A) be satisfied. Then there exists a constant C > 0
such that for any κ > 0

‖ψκ(uεκx)‖L∞((0,T );H1
0 (Ω)) ≤ C , (2.3.12)

‖ [ψκ(uεκx)]xt ‖L2(Q) ≤ C , (2.3.13)

‖ϕκ(uεκx)‖L∞((0,T );H1
0 (Ω)) ≤ C . (2.3.14)

Remark 2.3.2. Let us mention that the constant C > 0 in inequalities
(2.3.2)-(2.3.3), (2.3.8)-(2.3.9) does not depend on ε, whereas it does in in-
equalities (2.3.12)-(2.3.14).

Corollary 2.3.5. Let (A) be satisfied. Then there exists a constant C > 0
such that for any κ > 0

‖ψκ(uεκx)‖H1(Q) ≤ C , (2.3.15)

‖ψκ(uεκx)‖C1/2(Q) ≤ C , (2.3.16)

where C1/2(Q) denotes the Banach space of Hölder continuous functions
with exponent 1/2 in Q endowed with the usual norm.

Proof. Inequality (2.3.15) follows from (2.3.11) and (2.3.12). Inequality
(2.3.16) is an easy consequence of the same inequalities and (2.3.13). �

Following [BBDU], let us now draw some consequences of the above esti-
mates. In view of (2.3.3) and (2.3.9), the family {uεκ} is uniformly bounded
in W 1,1(Q) ∩ L∞((0, T );W 1,1(Ω)). Hence by compact embedding and a
diagonal argument there exist a sequence κj → 0 and a function uε ∈
BV (Q) ∩ L∞((0, T );BV (Ω)) with uεt ∈ L2(Q), such that

uεκj → uε in L1(Q) , (2.3.17)

uεkjx
∗
⇀ uεx in M+(Q) , (2.3.18)

uεκj (·, t)→ uε(·, t) in L1(Ω) for a.e. t ∈ (0, T ) , (2.3.19)

uεκjt ⇀ uεt in L2(Q) . (2.3.20)

Observe that (2.3.1) and (2.3.19) imply∫
Ω
uε(x, t)dx =

∫
Ω
u0(x)dx for a.e. t ∈ (0, T ) . (2.3.21)

Moreover, by estimates (2.3.12), (2.3.13) and (2.3.15) there exists wε ∈
L∞((0, T );H1

0 (Ω)) ∩H1(Q), with wεt ∈ L2((0, T );H1
0 (Ω)), such that

ψκj

(
uεκjx

)
⇀ wε in H1(Q) , (2.3.22)
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[
ψκj

(
uεκjx

)]
t
⇀ wεt in L2((0, T );H1

0 (Ω)) . (2.3.23)

In view of (2.3.16), we can assume wε ∈ C(Q) and

ψκj

(
uεκjx

)
→ wε in C(Q) . (2.3.24)

Concerning the sequence
{
ϕκj

(
uεκjx

)}
we can now prove the following

lemma, where the function h is defined by (2.2.4).

Lemma 2.3.6. Let (A) be satisfied. Then

ϕκj

(
uεκjx

)
⇀ h(wε) in L2((0, T );H1

0 (Ω)) , (2.3.25)

ϕκj

(
uεκjx

)
→ h(wε) in C(Q) . (2.3.26)

Proof. By inequality (2.3.14), possibly extracting a subsequence, also de-
noted by {ϕκj (uεκjx)}, there exists z ∈ L2((0, T );H1

0 (Ω)) such that

ϕκj

(
uεκjx

)
⇀ z in L2((0, T );H1

0 (Ω)) .

Let us define:
hκj := ϕκj ◦ ψ−1

κj .

We have: [
ϕκj (u

ε
κjx)

]
t

=
[
hκj
(
ψκj (u

ε
κjx)

)]
t

=

= h′κj
(
ψκj (u

ε
κjx)

) [
ψκj (u

ε
κjx)

]
t

and [
ϕκj (u

ε
κjx)

]
tx

=
[
hκj
(
ψκj (u

ε
κjx)

)]
tx

=

=
[
h′κj
(
ψκj (u

ε
κjx)

) [
ψκj (u

ε
κjx)

]
t

]
x

=

= h′′κj
(
ψκj (u

ε
κjx)

) [
ψκj (u

ε
κjx)

]
x

[
ψκj (u

ε
κjx)

]
t
+

+h′κj
(
ψκj (u

ε
κjx)

) [
ψκj (u

ε
κjx)

]
tx
.

Moreover, observe that (2.3.13) implies that there exists a constant C > 0
such that ∥∥∥[ψκj(uεκjx)]t∥∥∥L2((0,T );L∞(Ω))

≤ C . (2.3.27)

In view of assumption (A)-(iv), (2.3.12)-(2.3.13) and (2.3.27), there exists a
constant C̃ > 0, independent of κj , such that∥∥∥[ϕκj(uεκjx)]tx∥∥∥L2(Q)

≤ C̃ ,
∥∥∥[ϕκj(uεκjx)]t∥∥∥L2((0,T );L∞(Ω))

≤ C̃ . (2.3.28)
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By (2.3.14) and (2.3.28) we obtain∥∥∥ϕκj(uεκjx)∥∥∥C1/2(Q)
≤ C ,

hence (possibly extracting another subsequence) we have

ϕκj
(
uεκjx

)
→ z in C(Q) .

On the other hand, from the inequality on R:∣∣∣ϕκj (uεκjx)− h(wε)
∣∣∣ ≤ ∣∣∣hκj (ψκj(uεκjx))− hκj (wε)∣∣∣+

+
∣∣hκj (wε)− h(wε)

∣∣ ≤ k1

∣∣∣ψκj(uεκjx)− wε∣∣∣+

+
∣∣hkj (wε)− h(wε)

∣∣
we obtain

ϕκj
(
uεκjx

)
→ h(wε) a.e. in Q

(here use of assumption (A)-(i) and (A)-(iv) has been made). Hence z =
h(wε) a.e. in Q and (2.3.26) follows. �

In view of the above remarks, taking the limit as j → ∞ in the weak
formulation of problem (P εκj ) we see that the couple (uε, wε) (with uε as
in (2.3.17) and wε as in (2.3.22)) solves problem (2.1.3) in the sense of
Definition 2.2.2. Uniqueness was proven in [BBDU], while monotonicity in
space follows from Lemma 2.3.1-(ii) and the above convergence results (see
(2.3.18)). Hence Theorem 2.2.2 follows.

It is also easily seen that:

Lemma 2.3.7. Let (A) be satisfied. Then

ψ(uεκjx)→ wε in L∞((0, T );L1(Ω)) , (2.3.29)

ψ(uεκjx)→ wε a.e. in Q. (2.3.30)

Proof. Assumption (A)− (iii) implies that

ψ(uεκjx) + κju
ε
κjx ≤ ψκj (uεκjx) ≤ ψ(uεκjx) + 2κjuεκjx (2.3.31)

(recall that uεκjx ≥ 0 by Lemma 2.3.1-(ii)). Then we have

‖ψ(uεκjx)− ψκj (uεκjx)‖L∞((0,T );L1(Ω)) = (2.3.32)

= sup
t∈(0,T )

∫
Ω

[
ψκj (u

ε
κjx)− ψ(uεκjx)

]
(x, t)dx ≤ 2κj‖uεκjx‖L∞((0,T );L1(Ω)) .

From (2.3.3) and (2.3.32) convergence (2.3.29) follows. As j →∞ (possibly
extracting a subsequence, still denoted {uεκjx}), this also gives (2.3.30). �
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Remark 2.3.3. Observe that (2.3.24) and the left inequality in (2.3.31)
imply wε ≥ 0 in Q (since uεκjx ≥ 0), whereas (2.3.30) and the fact that
wε ∈ C(Q) give wε ≤ γ in Q, for 0 ≤ ψ < γ in [0,∞).

Proposition 2.3.9 below deals with the behaviour of the family
{
uεκjx

}
of

solutions to (P εκ) in the limit κj → 0. Let us first prove the following
lemma.

Lemma 2.3.8. Let (A) be satisfied. Let
{
ηκj
}

be the sequence of Young
measures associated to the sequence

{
uεκjx

}
above. Then:

(i) there exists a Young measure η such that as κj → 0

ηκj → η narrowly in Q ; (2.3.33)

(ii) the disintegration ν(x,t) of the Young measure η is the Dirac mass con-
centrated at the point ψ−1(wε(x, t)), namely

ν(x,t) = δψ−1(wε(x,t)) for a.e. (x, t) ∈ Q . (2.3.34)

Proof. (i) Follows from inequality (2.3.3) and the Prohorov’s theorem (see
[V]).
(ii) In view of (2.3.29), the sequence

{
ψ(uεκjx)

}
is bounded in L1(Q), hence

by Prohorov’s theorem the associated sequence of Young measures {χκj}
converges narrowly to a Young measure χ. Let σ(x,t) denote the disintegra-
tion of the Young measure χ for a.e. (x, t) ∈ Q. By the very definition of the
sequences

{
ηκj
}

, {χκj} and of disintegration, for any f ∈ Cc(R) we have∫∫
Q
φ(x, t)

{∫
[0,∞)

f(ξ) dν(x,t)(ξ)

}
dxdt = (2.3.35)

= lim
j→∞

∫∫
Q
φ(x, t)f

(
uεκjx(x, t)

)
dxdt =

= lim
j→∞

∫∫
Q
φ(x, t)

(
f ◦ ψ−1

) (
ψ
(
uεκjx

)
(x, t)

)
dxdt =

=
∫∫

Q
φ(x, t)

{∫
[0,∞)

(
f ◦ ψ−1

)
(ξ) dσ(x,t)(ξ)

}
dxdt

for any φ ∈ C1
c (Q). On the other hand, since ψ(uεκjx) → wε a.e. in Q (see

(2.3.30)), the disintegration σ(x,t) of χ is the Dirac mass concentrated at the
point wε(x, t), namely

σ(x,t) = δwε(x,t) (2.3.36)

(see [V, Proposition 1]). Then from equalities (2.3.35)-(2.3.36) we obtain∫
[0,∞)

f(ξ) dν(x,t)(ξ) = f
(
ψ−1(wε(x, t))

)
for a.e. (x, t) ∈ Q, whence the result follows. �
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Proposition 2.3.9. Let (A) be satisfied. Then:
(i) ψ−1(wε) ∈ L1(Q) and there exists a subsequence of

{
uεκjx

}
, denoted

again
{
uεκjx

}
, such that:

uεκjx → ψ−1(wε) a.e. in Q ; (2.3.37)

(ii) the set
Sε :=

{
(x, t) ∈ Q | wε(x, t) = γ

}
(2.3.38)

has zero Lebesgue measure.

Proof. (i) The limit (2.3.37) follows from equality (2.3.34) by Proposition 1
in [V]. Since uεκjx ≥ 0 (see Lemma 2.3.1-(ii)), by (2.3.37), inequality (2.3.3)
and the Fatou Lemma we obtain∫∫

Q
ψ−1(wε)dxdt ≤ lim inf

κj→∞

∫∫
Q
uεκjxdxdt ≤ C .

Therefore ψ−1(wε) ∈ L1(Q).

(ii) Set

Bε
n :=

{
(x, t) ∈ Q | wε(x, t) ≥ γ − 1

n

}
(n ∈ N) . (2.3.39)

Then

Bε
n+1 ⊆ Bε

n , Sε =
∞⋂
n=1

Bε
n , |Sε| = lim

n→∞
|Bε

n| , (2.3.40)

where | · | denotes the Lebesgue measure. Since ψκj
(
uεκjx

)
→ wε uniformly

in Q, thus in Bε
n (see (2.3.24)), there holds

sup
(x,t)∈Bεn

∣∣∣ψκj (uεκjx) (x, t)− wε(x, t)
∣∣∣ < 1

n

for any κj > 0 sufficiently small. From the above inequality and (2.3.31) we
obtain

uεκjx > ψ−1

(
γ − 1

2n
− 2κjuεκjx

)
in Bε

n . (2.3.41)

On the other hand, by Lemma 2.3.1-(ii) and (2.3.3) there exists a subse-
quence, denoted again {κj}, such that κjuεκjx → 0 a.e. in Q, thus

ψ−1

(
γ − 1

2n
− 2κjuεκjx

)
→ ψ−1

(
γ − 1

2n

)
a.e. in Bε

n .

Then by the Lebesgue Theorem we have∫∫
Bεn

ψ−1

(
γ − 1

2n
− 2κjuεκjx

)
dxdt→ ψ−1

(
γ − 1

2n

)
|Bε

n| (2.3.42)
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for any n ∈ N. In view of (2.3.41)-(2.3.42), we obtain

ψ−1

(
γ − 1

2n

)
|Bε

n| = lim
κj→0

∫∫
Bεn

ψ−1

(
γ − 1

2n
− 2κjuεκjx

)
dxdt ≤

≤ lim inf
κj→0

∫∫
Bεn

uεκjx ≤ C (2.3.43)

thus
|Bε

n| <
C

ψ−1
(
γ − 1

2n

)
for some constant C > 0 and any n ∈ N. Letting n → ∞ in the previous
inequality the conclusion follows. �

We can now prove Theorem 2.2.3.

Proof of Theorem 2.2.3. Fix any ε > 0 and set

Rε :=
{

(x, t) ∈ Q | wε(x, t) < γ
}
.

Since wε ∈ C(Q), Rε is open in Q. Let ζ ∈ Cc(Rε); denote by K the support
of ζ. Since wε is continuous in Q, thus in K, there exists

MK := max
(x,t)∈K

wε(x, t) < γ .

Set δK := γ−MK . Since ψκj
(
uεκjx

)
→ w uniformly in C(Q) (see (2.3.24)),

there holds
max
K

ψκj

(
uεκjx

)
≤MK +

δK
2

= γ − δK
2

for any κj sufficiently small. In view of the left inequality in (2.3.31), this
plainly implies

uεκjx ≤ ψ−1

(
γ − δK

2

)
in K ,

if κj is sufficiently small.
From the latter inequality and the limit (2.3.37), by the Lebesgue Theorem
we obtain∫∫

Q
uεκjxζ dxdt→

∫∫
Q
ψ−1(wε)ζ dxdt for any ζ ∈ Cc(Rε) . (2.3.44)

On the other hand, in view of (2.3.3) and (2.3.18), there holds∫∫
Q
uεκjxζ dxdt→ < uεx, ζ > =

∫∫
Q
uε,(r)x ζ dxdt+ < uε,(s)x , ζ > (2.3.45)

for any ζ ∈ Cc(Q). From (2.3.44)-(2.3.45) we obtain the equality

< uε,(s)x , ζ >=
∫∫

Q

{
ψ−1(wε)− uε,(r)x

}
ζ dxdt for any ζ ∈ Cc(Rε) ,
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which entails:
(i) uε,(s)x (K) = 0 for any compact subset K ⊆ Rε, hence for any ε > 0 we
have u

ε,(s)
x (Rε) = 0 and suppuε,(s)x = Q \ Rε (because Q \ Rε is closed).

Let Sε be the closed set defined by (2.3.38) and observe that Q \ Rε =
Sε ∪ {∂Q \ {Sε ∩ ∂Q}}. Let us show that any (x0, t0) ∈ ∂Q \ {Sε ∩ ∂Q}
does not belong to suppuε,(s)x . In fact for any (x0, t0) as above there holds
wε(x0, t0) < γ, hence by the continuity of wε, for any δ > 0, sufficiently
small, there exists U0,δ ⊆ Q, (x0, t0) ∈ U0, such that

wε(x, t) ≤ wε(x0, t0) + δ ≤ γ − δ .

We can suppose that
U0,δ = Bδ2(x0, t0) ∩Q ,

where Bδ2(x0, t0) denotes the ball centered at (x0, t0) and radius δ2 (see
(2.3.16)). Arguing as above, we can use the uniform convergence (2.3.24) to
prove that:

uε,(s)x (Bδ2(x0, t0) ∩Q) = 0

for any δ > 0, sufficiently small. This implies that (x0, t0) /∈ suppuε,(s)x ,
namely:

suppuε,(s)x = Sε

for any ε > 0; then (2.2.9) follows. Finally, by Proposition 2.3.9-(ii) Sε has
zero Lebesgue measure.

(ii) uε,(r)x = ψ−1(wε) a.e. in Rε, thus in Q. Then the conclusion follows. �

Let us now prove Theorem 2.2.1.

Proof of Theorem 2.2.1. The existence of a unique solution to problem
(2.1.3) is an obvious consequence of Theorems 2.2.2-2.2.3. To prove (2.2.3),
observe that for any κ > 0 uεκx satisfies the problem

Ut = [ϕκ(U)]xx + ε[ψκ(U)]xxt in Q
U = 0 in ∂Ω× (0, T ]
U = u′0κ in Ω× {0} .

Then for any ζ ∈ C∞c (Q) there holds∫∫
Q

{
uεκxζt − ϕκ

(
uεκx
)
x
ζx − εψκ

(
uεκx
)
tx
ζx
}
dxdt = 0 .

In view of (2.3.18), (2.3.23) and (2.3.25) letting κ→ 0 obtains∫∫
Q

{
uε,(r)x ζt − ϕ

(
uε,(r)x

)
x
ζx − εψ

(
uε,(r)x

)
tx
ζx

}
dxdt + < uε,(s)x , ζt > = 0 .

This completes the proof. �
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Remark 2.3.4. Consider for any n ∈ N the complement in Q of the set
(2.3.39), namely

Aεn :=
{

(x, t) ∈ Q | ψ(uε,(r)x ) < γ − 1
n

}
(n ∈ N) ; (2.3.46)

(recall that by (2.2.8) wε = ψ
(
u
ε,(r)
x

)
a.e. in Q). Then for any j ∈ N

sufficiently large there holds:

uεkjx ≤ ψ
−1

(
γ − 1

2n

)
in Aεn . (2.3.47)

In fact, fix any ε > 0. Since

ψkj (u
ε
kjx

)→ ψ(uε,(r)x ) in C(Q)

as kj → 0 (see (2.2.8) and (2.3.24)), we have

ψkj (u
ε
kjx

) ≤ γ − 1
2n

in Aεn .

Then assumption (A) and Lemma 2.3.1-(ii) give

ψ(uεkjx) ≤ kjuεkjx + ψ(uεkjx) ≤ ψkj (uεkjx) ≤ γ − 1
2n

in Aεn .

This proves the claim.

Lemma 2.3.10. For any ε > 0 the function vε defined by (2.2.10) belongs
to L∞(Q) ∩ L2((0, T );H1

0 (Ω)), and the following estimates hold:

0 ≤ vε ≤ ϕ(α) , (2.3.48)

‖vεx‖L2(Q) ≤ C (2.3.49)

for some constant C > 0, which does not depend on ε.

Proof. By (2.3.23) and (2.3.25) there holds

vεκj ⇀ h(wε) + εwεt in L2((0, T );H1
0 (Ω)) (2.3.50)

as κj → 0, vεκj being defined by (2.3.4). By Proposition 2.3.9-(ii) there

holds wε < γ, thus h(wε) = ϕ ◦ ψ−1(wε) = ϕ
(
u
ε,(r)
x

)
a.e. in Q (see (2.2.4)

and (2.2.8)). Hence, by (2.3.50) we obtain

vεκj ⇀ vε in L2((0, T );H1
0 (Ω)) .

Then inequality (2.3.48) is a consequence of assumption (A)-(i) and (2.3.7),
since

0 ≤ lim
κj→0

∫∫
Q

{
ϕκj (α)− vεκj

}
ζdxdt =

∫∫
Q

{
ϕ(α)− vε

}
ζdxdt

for any ζ ∈ L2(Q), ζ ≥ 0. On the other hand, inequality (2.3.49) follows
from (2.3.9) by the lower semicontinuity of the norm (see also Remark 2.3.2);
hence the result follows. �
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Lemma 2.3.11. There exists a constant C > 0 such that for any ε > 0
there holds: ∫∫

Q

[
ψ
(
u
ε,(r)
x

)]2
t

ψ′(uε,(r)x )
dxdt ≤ C

ε
(2.3.51)

Proof. By (2.3.8) there exists g ∈ L2(Q) such that (possibly extracting a
subsequence) there holds:[

ψκj
(
uεκjx

)]
t√

ψ′κj (u
ε
κjx)

⇀ g in L2(Q). (2.3.52)

Let Sε, Aεn denote the sets defined by (2.3.38), respectively (2.3.46). Since
Aεn is open, Sε is closed and

Aεn ⊆ Aεn+1 , Sε =
∞⋂
n=1

Bε
n

(see (2.3.40)), for any ζ ∈ C1
c (Q \ Sε) there exists n ∈ N such that supp ζ ⊆

Aεn. Then by inequality (2.3.47) we obtain

0 ≤ 1
ψ′(uεκjx)

≤ 1
ψ′
(
ψ−1

(
γ − 1

2n

))
in Aεn for any n ∈ N. This implies[

ψκj
(
uεκjx

)]
t√

ψ′κj (u
ε
κjx)

ζ ⇀

[
ψ
(
u
ε,(r)
x

)]
t√

ψ′
(
u
ε,(r)
x

) ζ in L2(Q)

for any ζ ∈ C1
c (Q \ Sε) (here use of (2.3.23) and (2.3.37) has been made).

Hence

g =

[
ψ
(
u
ε,(r)
x

)]
t√

ψ′
(
u
ε,(r)
x

) a.e. in Q

since |Sε| = 0 by Proposition 2.3.9-(ii). Then inequality (2.3.51) follows
from (2.3.8) by the lower semicontinuity of the norm. �

Lemma 2.3.12. Inequalities (2.2.16) and (2.2.17) hold.

Proof. Observe that, in view of estimate (2.3.3), the family
{
uεx
}

is bounded
in M+(Q)), hence (2.2.16) holds. Moreover,

uεt = vεx a.e. in Q

(see equation (2.2.1) and (2.2.10)), hence estimates (2.3.49) gives (2.2.17).
�

The next proposition deals with the regularity of vε and
(
u
ε,(r)
x

)
t
.
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Proposition 2.3.13. Let vε be the function defined by (2.2.10) and for any
n ∈ N let Aεn be the set defined by (2.3.46). Then for any n ∈ N there holds
vεxx,

(
u
ε,(r)
x

)
t
∈ L2(Aεn) and

vεxx =
(
uε,(r)x

)
t

=

[
ψ
(
u
ε,(r)
x

)]
t

ψ′
(
u
ε,(r)
x

) a.e. in Aεn . (2.3.53)

Moreover,
vεkjxx ⇀ vεxx, uεkjxt ⇀

(
uε,(r)x

)
t

in L2(Aεn).

Proof. Observe that

uεκjxt = vεκjxx =
[ψκj (u

ε
κjx)]t

ψ′κj (u
ε
κjx)

(2.3.54)

(here use of (2.3.5) and (2.3.6) has been made). By (2.3.47) in Remark 2.3.4
we have:∫∫

Aεn

(
uεκjxt

)2
dxdt =

∫∫
Aεn

(vεκjxx)2dxdt = (2.3.55)

=
∫∫

Aεn

(
[ψκj (u

ε
κjx)]t

ψ′κj (u
ε
κjx)

)2

dxdt ≤

≤ ‖[ψκj (uεκjx)]t‖2L2(Q)

(
1

ψ′
(
ψ−1

(
γ − 1

2n

)))2

≤

≤ C

ε

(
1

ψ′
(
ψ−1

(
γ − 1

2n

)))2

,

the last estimate in the previous equality following by (2.3.11). Inequality
(2.3.55) implies that the families

{
vεκjxx

}
and

{
uεκjxt

}
are uniformly bounded

in L2(Aεn), hence vεxx,
(
u
ε,(r)
x

)
t
∈ L2(Aεn), and

vεκjxx ⇀ vεxx , uεκjxt ⇀
(
uε,(r)x

)
t

in L2(Aεn)

as κj → 0, for any n ∈ N. Finally, in view of (2.3.23), (2.3.37) and (2.3.47),
we obtain equality (2.3.53). �

For any g ∈ C1(R), set

Gκ(λ) :=
∫ λ

0
g ◦ ϕκ(s)ds. (2.3.56)
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Proposition 2.3.14. For any g ∈ C1(0, ϕ(α)), g ≡ 0 in [0, Sg] for some
Sg > 0, let G be the function defined by (2.2.13). Then for any ε > 0 there
exists a set Eε ⊆ Q of Lebesgue measure |Eε| = 0 such that there holds:

(i) G(uε,(r)x ) ∈ L∞(Q) and there holds:

Gκj (u
ε
κjx)(x, t)→ G(uε,(r)x )(x, t)

for any (x, t) ∈ Q \ Eε;
(ii) there exists

[
G(uε,(r)x )

]
t

= g(ϕ
(
uε,(r)x

)
)

[
ψ
(
u
ε,(r)
x

)]
t

ψ′
(
u
ε,(r)
x

) ≡ (2.3.57)

≡ g(ϕ
(
uε,(r)x

)
)(uε,(r)x )t in L2(Q) .

Moreover,
[Gκj (u

ε
κjx)]t ⇀

[
G(uε,(r)x )

]
t

in L2(Q). (2.3.58)

Proof. (i) Fix any ε > 0. Let Eε ⊆ Q be the set of Lebesgue measure
|Eε| = 0 such that (2.3.37) holds for any (x, t) ∈ Q \ Eε. In view of (2.2.8),
(2.3.37) and Assumption (A), we have

Gκj (u
ε
κjx)(x, t)→ G(uε,(r)x )(x, t) for any (x, t) ∈ Q \ Eε,

where Gκj and G are defined by (2.3.56), (2.2.13), respectively. Moreover,
since g ≡ 0 in [0, Sg], we have:

|Gκj (uεκjx)| ≤
∣∣∣∣∫ uεκjx

0
g(ϕκ(s))ds

∣∣∣∣ ≤ ∫ sκj2(Sg)

sκj1(Sg)
g(ϕκj (s))ds ≤ Cg (2.3.59)

(here sκj1 and sκj2 denote the stable and unstable branch of the equation

v = ϕk(z), respectively). Hence, G(uε,(r)x ) ∈ L∞(Q).

(ii) Fix any g ∈ C1(0, ϕ(α)), g ≡ 0 in [0, Sg] for some Sg > 0. Consider the
family

{
uεκj
}

of the solutions to (P εκj ). We have

[G(uεκjx)]t = g(ϕκj (u
ε
κjx))(uεκjx)t = (2.3.60)

= g(ϕκj (u
ε
κjx))

[ψκj (u
ε
κjx)]t

ψ′κj (u
ε
κjx)

χ{
ψκj (uεκjx)≤ψκj (sκj2(Sg))

}.
Moreover, in view of Assumption (A)-(i), we can suppose that for any κj
small enough there holds ψκj (sκj2(Sg)) ≤ ψ(s2(Sg)) + ρ for some 0 < ρ <
γ−ψ(s2(Sg))

4 (here s2 denote the unstable branche of the equation v = ϕ(z)).
Hence, {

ψκj (u
ε
κjx) ≤ ψκj (sκj2(Sg))

}
⊆
{
ψκj (u

ε
κjx) ≤ ψ(s2(Sg)) + ρ

}
.
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On the other hand, in view of (2.3.24) we have:{
ψκj (u

ε
κjx) ≤ ψ(s2(Sg)) + ρ

}
⊆
{
ψ(uε,(r)x ) ≤ ψ(s2(Sg)) + 2ρ

}
⊆ Aεδg

where δg is chosen so that

ψ(s2(Sg)) +
γ − ψ(s2(Sg))

2
≤ γ − δg.

Thus,

[G(uεκjx)]t = g(ϕκj (u
ε
κjx))

[ψκj (u
ε
κjx)]t

ψ′κj (u
ε
κjx)

χAε
δg

and the claim follows by (2.2.8), (2.3.26) and Lemma 2.3.13. �

Lemma 2.3.15. For any g ∈ C1
c (0, ϕ(α)) and κ > 0 let Gk be the function

defined by (2.3.56). Then there exists a constant Cg > 0 (independent of κ
and ε) such that∫ T

0

∣∣∣∣∫
Ω

[Gκ(uεκx)]thdx
∣∣∣∣ dt ≤ Cg(‖h‖L∞(Ω) + ‖hx‖L2(Ω)

)
(2.3.61)

for any h ∈ C1
c (Ω).

Proof. Fix any g ∈ C1
c (0, ϕ(α)) and let ag, bg ∈ (0, ϕ(α)) be such that

supp g = [ag, bg] ⊂ (0, ϕ(α)).

Let vεκ be the function defined by (2.3.4). In view of (2.3.5) and (2.3.6), we
have: ∫ T

0

∣∣∣∣∫
Ω

[Gκ(uεκx)]thdx
∣∣∣∣ dt =

∫ T

0

∣∣∣∣∫
Ω
g(ϕκ(uεκx))uεκxthdx

∣∣∣∣ dt ≤
≤

∫ T

0

∣∣∣∣∫
Ω

[g(ϕκ(uεκx))− g(vεκ)]uεκxthdx
∣∣∣∣ dt+

∫ T

0

∣∣∣∣∫
Ω
g(vεκ)vεκxxhdx

∣∣∣∣ dt ≤
≤

∫ ∫
Q
‖g′‖C([ag ,bg ])

ψκ(uεκx)2
t

ψ′κ(uεκx)
|h|dxdt+

+
∫ ∫

Q
[|g(vεκ)||vεκx ||hx|+ |h||g′(vεκ)|(vεκx)2]dxdt ≤

≤ Cg(‖h‖L∞(Q) + ‖hx‖L2(Q)), (2.3.62)

the last estimate following by (2.3.49) and (2.3.51). This concludes the
proof. �

Proposition 2.3.16. For any g ∈ C1
c (0, ϕ(α)) let G be the function defined

by (2.2.13). Then for any h ∈ C1
c (Ω) there holds:∫ T

0

∣∣∣∣∫
Ω
G(uε,(r)x )thdx

∣∣∣∣ dt ≤ Cg(‖h‖L∞(Q) + ‖hx‖L2(Q)), (2.3.63)

for some Cg > 0 independent of ε.
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Proof. For any ε > 0, κj > 0 and h ∈ C1
c (Ω) set

Γεκj (t) :=
∫

Ω
[Gκj (u

ε
κjx)]t(x, t)h(x)dx.

By (2.3.58) there holds

Γεκj ⇀ Γε in L1(0, T )

as κj → 0, where

Γε(t) :=
∫

Ω

[
G
(
uε,(r)x

)]
t
(x, t)h(x)dx.

Thus, inequality (2.3.63) is an easy consequence of (2.3.61). �

Proposition 2.3.17. Let g ∈ C1([0, ϕ(α)]), g′ ≥ 0, g ≡ 0 in [0, Sg] for
some Sg > 0, and consider the function G defined by (2.2.13) in terms of
g. Then, for any ε > 0 there exists a set F ε ⊆ (0, T ) of Lebesgue measure
|F ε| = 0 such that inequalities (2.2.12) hold.

Proof. Fix any ε > 0 and any ζ ∈ C1([0, T ];H1
0 (Ω)∩H2(Ω)), ζ ≥ 0, ζxx ≤ 0

in Q. Consider the family
{
uεκ
}

of solutions to problem (P εκ) and let Gκ
be the funcions defined by (2.3.56) for any g ∈ C1([0, ϕ(α)]). Assume that
g ≡ 0 in [0, Sg], for some Sg > 0, and assume that g′ ≥ 0. We have

d

dt

∫
Ω
Gκj (u

ε
κjx)ζdx =

∫
Ω
Gκj (u

ε
κjx)ζtdx+ (2.3.64)

+
∫

Ω
g(ϕκj (u

ε
κjx))uεκjxtζdx .

Let vεκj be the function defined by (2.3.4). Since uεκjxt = vεκjxx (see (2.3.5)),
we obtain ∫

Ω
g(ϕκj (u

ε
κjx))uεκjxtζdx =

∫
Ω
g(vεκj )v

ε
κjxxζdx+

+
∫

Ω

[
g(ϕκj (u

ε
κjx))− g(vεκj )

]vεκj − ϕκj (uεκjx)

εψ′κj (u
ε
κjx)

ζdx ≤

≤ −
∫

Ω
g(vεκj )v

ε
κjxζxdx−

∫
Ω
g′(vεκj )(v

ε
κjx)2ζdx ≤

≤ −
∫

Ω
g(vεκj )ζxv

ε
κjxdx =

∫
Ω
G(vεκj )ζxxdx. (2.3.65)

Here

G(vεκj ) :=
∫ vεκj

0
g(s)ds. (2.3.66)
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Integrating equality (2.3.64) with respect to t and using (2.3.65) gives∫
Ω
Gκj (u

ε
κjx(x, t2))ζ(x, t2)dx−

∫
Ω
Gκj (u

ε
κjx(x, t1))ζ(x, t1)dx ≤

≤
∫ t2

t1

∫
Ω
Gκj (u

ε
κjx)ζtdxdt+

∫ t2

t1

∫
Ω
G(vεκj )ζxxdxdt (2.3.67)

for any t1 < t2 ≤ T . SinceG(λ) is a convex function on R (by the assumption
g′ ≥ 0), there holds

G(vεκj ) ≥ g(vε)(vεκj − vε) +G(vε),

hence, in view of (2.3.50) we obtain∫ t2

t1

∫
Ω
G(vε)ζxxdxdt ≥ lim inf

κj→0

∫ t2

t1

∫
Ω
G(vεκj )ζxxdxdt (2.3.68)

(here use of assumption ζxx ≤ 0 has been made). Let Eε ⊆ Q be the set
of zero Lebesgue-measure given by Proposition 2.3.14. Then there exists
F ε ⊆ (0, T ), |F ε| = 0 such that for any t ∈ (0, T ) \ F ε the set

Eε,t = {x ∈ Ω | (x, t) ∈ Eε} ⊆ Ω

has Lebesgue measure |Eε,t| = 0. Moreover, for any t ∈ (0, T ) \ F ε there
holds

G(uεκjx(·, t))→ G(uε,(r)x (·, t)) a.e. in Ω (2.3.69)

(see Proposition 2.3.14-(i)). By (2.3.68), (2.3.69) and Proposition 2.3.14-(i),
passing to the limit with respect to κj → 0 in (2.3.67) gives∫

Ω
G(uε,(r)x (x, t2))ζ(x, t2)dx−

∫
Ω
G(uε,(r)x (x, t1))ζ(x, t1)dx ≤

≤
∫ t2

t1

∫
Ω
G(uε,(r)x )ζtdxdt+

∫ t2

t1

∫
Ω
G(vε)ζxxdxdt =

=
∫ t2

t1

∫
Ω
G(uε,(r)x )ζtdxdt−

∫ t2

t1

∫
Ω
g(vε)vεxζxdxdt (2.3.70)

and this concludes the proof. �

2.4 Vanishing Viscosity Limit: proofs

To prove Theorem 2.2.7 we need some technical preliminaries. As a first
step, consider the orthonormal basis of L2(Ω) which is formed by the eigen-
functions ηh ∈ H1

0 (Ω) of the operator −∆ with homogeneous Dirichlet con-
ditions. Let

{
µh
}

be the corresponding sequence of eigenvalues. For any
ε > 0, let Πε be the operator defined as follows

Πεf :=
∑

h: εµh≤1

fhηh , fh = (f, ηh)L2(Ω), (2.4.1)
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for any f ∈ L2(Ω). In this way we have introduced a family of orthogonal
projection operators which is used in the following result.

Lemma 2.4.1. There exists C > 0 such that, for any κ > 0, ε > 0 there
holds

‖Πε ϕκ(uεκx)‖L2((0,T );H1
0 (Ω)) + ε−1/2‖(I −Πε)ϕκ(uεκx)‖L2(Q) ≤ C. (2.4.2)

Proof. Fix any ε, κ > 0, fix any t ∈ (0, T ) and for simplicity set

ϕ(x) := ϕκ(uεκx)(x, t), v(x) := vεκ(x, t), ψt(x) :=
[
ψκ(uεκx)

]
t
(x, t),

where vεκ is defined by (2.3.4). We have:

ϕh =
∫

Ω
ϕ(x) ηh(x)dx = (2.4.3)

= −ε
∫

Ω
ψt(x) ηh(x)dx+

∫
Ω
v(x) ηh(x)dx =

= −ε[ψt]h + vh.

Thus,

‖Πε ϕ‖2H1
0 (Ω) =

∑
εµh≤1

µhϕ
2
h ≤ (2.4.4)

≤
∑
εµh≤1

[
2µhv2

h + 2µhε2[ψt]2h
]
≤

≤
∞∑
h=1

2µhv2
h +

∞∑
h=1

2ε[ψt]2h =

= 2
∫

Ω

[(
vεκx
)2 + ε

[
ψ(uεκx)

]2
t

]
(x, t)dx ,

and,

ε−1‖(I −Πε)ϕ‖2L2(Ω) =
∑
εµh>1

ε−1ϕ2
h ≤ (2.4.5)

≤ 2ε−1
∑
εµh>1

[v2
h + ε2[ψt]2h] ≤

≤
∑
εµh>1

2µhv2
h +

∑
εµh>1

2ε[ψt]2h ≤

≤ 2
∫

Ω

[(
vεκx
)2 + ε

[
ψ(uεκx)

]2
t

]
(x, t)dx.

In view of estimate (2.3.49) and (2.3.51), integrating (2.4.4) and (2.4.5) with
respect to t gives (2.4.2). �
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For any f ∈ C(R) set
F (λ) := f(ϕ(λ)). (2.4.6)

The following proposition will be crucial in the investigation of the viscosity
limit ε→ 0.

Proposition 2.4.2. Fix any g ∈ C1
c (0, ϕ(α)), f ∈ C1(R) and let G, F be

the functions defined by (2.2.13) and (2.4.6), respectively. Suppose that there
exists C > 0 such that ‖f‖L∞(R) ≤ C, ‖f ′‖L∞(R) ≤ C. Finally, assume that

G(uε,(r)x ) ∗
⇀ G∗, F (uε,(r)x ) ∗

⇀ F ∗ and G(uε,(r)x )F (uε,(r)x ) ∗
⇀ H∗ in L∞(Q).

Then
H∗ = G∗F ∗. (2.4.7)

Remark 2.4.1. Observe that for any g ∈ C1([0, ϕ(α)]), g(0) = 0, the family{
G
(
u
ε,(r)
x

)}
is uniformly bounded in L∞(Q). In fact for a.e. (x, t) ∈ Q there

holds:

|G(uε,(r)x )(x, t)| =

∣∣∣∣∣
∫ u

ε,(r)
x (x,t)

0
g(ϕ(λ))dλ

∣∣∣∣∣ ≤
≤

∣∣∣∣∫ ∞
0
|g(ϕ(λ))|dλ

∣∣∣∣ ≤
≤ max

ξ∈[0,ϕ(α)]
|g′(ξ)|

∫
R
|ϕ(λ)|dλ ≤ C

since ϕ ∈ L1(R) by assumption (H1)-(i).

Proof of Proposition 2.4.2. Following [Pl1], we set

F ε := f(Πε ϕ(uε,(r)x )) (2.4.8)

and observe that, passing to the limit with respec to κj → 0 in inequality
(2.4.2) gives

‖Πε ϕ
(
uε,(r)x

)
‖L2((0,T );H1

0 (Ω)) + ε−1/2‖(I −Πε)ϕ
(
uε,(r)x

)
‖L2(Q) ≤ C, (2.4.9)

(here use of Lemma 2.3.6 has been made). Since ‖f ′‖L∞(R) is bounded, we
have

‖F ε − F (uε,(r)x )‖L2(Q) = ‖f(Πε ϕ
(
uε,(r)x

)
)− f(ϕ

(
uε,(r)x

)
)‖L2(Q) ≤

≤ ‖f ′‖L∞(R)‖(I −Πε)ϕ
(
uε,(r)x

)
‖L2(Q) → 0

as ε→ 0 by (2.4.9). Moreover, the family
{
G(uε,(r)x )

}
is uniformly bounded

in Q (see Remark 2.4.1), hence the previous inequality implies

‖G(uε,(r)x )F ε −G(uε,(r)x )F (uε,(r)x )‖L2(Q) → 0
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as ε→ 0. Thus, in order to prove (2.4.7), it suffices to show that∫ ∫
Q
F εG(uε,(r)x )h dxdt→

∫ ∫
Q
F ∗G∗h dxdt , (2.4.10)

as ε → 0, for any h ∈ C1
c (Q). To this purpose, assume for simplicity

Ω = (0, 1), set

Γε(x, t) :=
∫ x

0
G(uε,(r)x )(ξ, t)dξ for a.e. t ∈ (0, T ) (2.4.11)

and observe that:∫ ∫
Q
F εG(uε,(r)x )h dxdt = −

∫ ∫
Q

Γε(F εh)xdxdt . (2.4.12)

In view of (2.4.9), there holds

‖F εx‖L2(Q) ≤ ‖f ′‖L∞(R)‖[Πεϕ(uε,(r)x )]x‖L2(Q) ≤ Cf ,

hence F ∗ ∈ L2((0, T );H1(Ω)) and

F εx ⇀ F ∗x in L2(Q) (2.4.13)

as ε→ 0. Then, for any φ ∈ C1
c (Ω) and for a.e. t ∈ (0, T ), set

Λεφ(t) :=
∫

Ω
G(uε,(r)x )(ξ, t)φ(ξ)dξ. (2.4.14)

In view of (2.3.63) we have:

‖Λεφ‖W 1,1(0,T ) ≤ Cg,φ.

Thus, for any φ ∈ C1
c (Ω) there exist a sequence εk → 0 and Λφ ∈ L1(0, T )

such that ∫ T

0
|Λεkφ − Λφ|dt→ 0. (2.4.15)

On the other hand, since we have assumed G(uε,(r)x ) ∗
⇀ G∗ in L∞(Q) as

ε→ 0, there holds

Λφ(t) ≡
∫

Ω
G∗(ξ, t)φ(ξ)dξ (2.4.16)

for a.e. t ∈ (0, T ), and the whole family
{

Λεφ
}

satisfies (2.4.15). In other
words, we have: ∫ T

0

∣∣∣∣∫
Ω
G(uε,(r)x )φdξ −

∫
Ω
G∗φdξ

∣∣∣∣ dt→ 0 (2.4.17)
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for any φ ∈ C1
c (Ω). Since C1

c (Ω) is dense in L1(Ω), by means of (2.4.17)
there holds ∫ T

0

∣∣∣∣∫
Ω
G(uε,(r)x )χ(0,x) dξ −

∫
Ω
G∗χ(0,x) dξ

∣∣∣∣ dt→ 0

for any x ∈ (0, 1) (recall that we have assumed Ω = (0, 1)), namely∫ T

0
|Γε(x, t)− Γ∗(x, t)|dt→ 0 (2.4.18)

(see (2.4.11)) for any x ∈ Ω. Here

Γ∗(x, t) :=
∫ x

0
G∗(ξ, t)dξ (2.4.19)

for a.e. t ∈ (0, T ). In view of (2.4.18) and since the family {Γε} is uniformly
bounded in L∞(Q), we have

Γε → Γ∗ in L1(Q).

Thus, eventually up to a sequence εk → 0, there holds

Γεk(x, t)→ Γ∗(x, t) for a.e. (x, t) ∈ Q. (2.4.20)

Let us conclude the proof. In view of (2.4.20) and since the family {Γε} is
uniformly bounded in L∞(Q), there holds

Γεk → Γ∗ in L2(Q).

Therefore, by (2.4.13) we obtain:

F εkx Γεk ⇀ F ∗xΓ∗ in L2(Q)

Γ∗ being defined by (2.4.19). Hence, for any h ∈ C1
c (Q) the right-hand side

in (2.4.12) (written for ε = εk) converges to

−
∫ ∫

Q
(F ∗h)xΓ∗dxdt =

∫ ∫
Q
F ∗G∗h dxdt

(see (2.4.19)) and the claim follows. �

Lemma 2.4.3. Let v ∈ L∞(Q) be the limit of the sequence {vεk} in the
weak* topology of L∞(Q) (see (2.2.24)). Then (2.2.26) holds.

Proof. Observe that

‖ϕ
(
uε,(r)x

)
− vε‖L2(Q) = ε1/2

∥∥∥ε1/2[ψ(uε,(r)x )
]
t

∥∥∥
L2(Q)

→ 0 (2.4.21)
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as ε→ 0 (here use of (2.3.51) has been made). By (2.4.21) we obtain

ϕ
(
uεk,(r)x

)
⇀ v in L2(Q) (2.4.22)

where v is the limit of the sequence
{
vεk
}

in the weak topology of L∞(Q).

On the other hand, the family
{
ϕ(uεk,(r)x )

}
is uniformly bounded in L∞(Q).

Hence, eventually up to a subsequence εkj , there holds

ϕ
(
u
εkj ,(r)
x

) ∗
⇀ ṽ in L∞(Q) (2.4.23)

for some ṽ ∈ L∞(Q). Finally, by (2.4.22) ṽ = v a.e. in Q and the whole
sequence

{
ϕ
(
u
εk,(r)
x

)}
satisfies (2.4.23). �

Now we can prove Theorem 2.2.7.

Proof of Theorem 2.2.7. Let τ be the Young measure obtained as narrow
limit of the sequence τεk of Young measures associated to the functions uεk,(r)x

(see Proposition 2.2.4). Let ν(x,t) be the disintegration of τ , which holds for
a.e. (x, t) ∈ Q. Our purpose is to give a characterization of the probability
measure ν(x,t) for a.e. (x, t) ∈ Q. In this direction, fix any (x, t) ∈ Q, set
I1 := [0, α], I2 := (α,+∞) and ν := ν(x,t) for simplicity. Then define two
maps σl ≡ σ(x,t); l : C(R)→ R by setting∫

R
f(λ) dσl(λ) ≡ 〈σl, f〉 :=

∫
Il

(f ◦ ϕ)(ξ) dν(ξ) (l = 1, 2) . (2.4.24)

Then σ1, σ2 are (positive) Radon measures on R.

Step 1. Concerning σl, l = 1, 2, it is easily seen that:
(i) suppσl ⊆ [0, ϕ(α)] (l = 1, 2);
(ii) σ2(

{
0
}

) = 0;
(iii) let s1, s2 be the stable and unstable branch of the equation v = ϕ(u)
(see (2.2.14)-(2.2.15)); then for any f ∈ C(R), such that the sequence{
f(uεk,(r)x )

}
is bounded in L1(Q) and equi-integrable, the function f ◦ sl ∈

L1([0, ϕ(α)], dσl) (l = 1, 2) (e.g., see [Sm]).

Then set
σ := σ1 + σ2 . (2.4.25)

In view of the above definitions, we have

〈σ, f〉 = 〈σ1, f〉+ 〈σ2, f〉 =
∫

[0,+∞)
(f ◦ ϕ)(ξ) dν(ξ) (2.4.26)
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for any f ∈ C(R), hence σ ≡ σ(x,t) is a probability measure on R for a.e.
(x, t) ∈ Q. In view of (ii) the support of the measure σ is contained in
[0, ϕ(α)]; moreover ν and σ satisfy the following relation:

〈ν, f〉 ≡
∫

[0,+∞)
f(ξ) dν(ξ) =

∫
I1

f(ξ) dν(ξ) +
∫
I2

f(ξ) dν(ξ) =

=
∫
I1

[(f ◦ s1) ◦ ϕ](ξ) dν(ξ) +
∫
I2

[(f ◦ s2) ◦ ϕ](ξ) dν(ξ) =

= 〈σ1, f ◦ s1〉+ 〈σ2, f ◦ s2〉 (2.4.27)

for any f ∈ C(R) such that the sequence
{
f(uεj ,(r)x )

}
is bounded in L1(Q)

and equi-integrable (here use of (2.4.24) and Step 1-(iii) has been made).

Step 2. For a.e. (x, t) ∈ Q the measure σ(x,t) is the Dirac mass concentrated
at the point

v(x, t) :=
∫

[0,+∞)
ϕ(ξ) dν(x,t)(ξ) =

〈
ν(x,t), ϕ

〉
. (2.4.28)

Observe that v is the weak* limit of the squence
{
ϕ(uεk,(r)x

}
in L∞(Q) (see

(2.2.31)-(2.2.32)).

Let us give a sketch of the proof (see [Pl1] and [Sm] for further details). In
view of Proposition 2.4.2 and (2.2.31)-(2.2.32), for a.e. (x, t) ∈ Q we obtain(∫

[0,+∞)
F (ξ) dν(x,t)(ξ)

)(∫
[0,+∞)

G(ξ) dν(x,t)(ξ)

)
=

=
∫

[0,+∞)
F (ξ)G(ξ) dν(x,t)(ξ) (2.4.29)

for any G, F defined by (2.2.13) and (2.4.6), in correspondence of f ∈ C1(R)
with ‖f‖L∞(R), ‖f ′‖L∞(R) bounded and g ∈ C1

c (0, ϕ(α)).

Fix any (x, t) ∈ Q such that (2.4.29) holds and set σ ≡ σ(x,t), ν ≡ ν(x,t).
Let A ⊆ [0, ϕ(α)] be any compact such that σ(A) > 0. Since A is compact,
there exists a sequence {fh} ⊂ C([0, ϕ(α)]), fh ≥ 0, fh = 1 on A, such that

fh(λ)→ χA(λ) for any λ ∈ [0, ϕ(α)]

as h→∞. Set Fh := fh(ϕ). In view of (2.4.29) we have(∫
[0,+∞)

(fh ◦ ϕ)(ξ) dν(ξ)

)(∫
[0,+∞)

G(ξ) dν(ξ)

)
=

=
∫

[0,+∞)
G(ξ)(fh ◦ ϕ)(ξ) dν(ξ).
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Using (2.4.27), the above equation reads:

〈σ, fh〉
2∑
l=1

〈σl, G ◦ sl〉 =
2∑
l=1

〈σl, fh(G ◦ sl)〉 ,

and letting h→∞ gives

σ(A)
2∑
l=1

∫
[0,ϕ(α)]

G(sl(λ)) dσl(λ) =
2∑
l=1

∫
A
G(sl(λ))dσl(λ) .

Writing the above equality in a suitable way gives the following equation

M(λ)−MA(λ) = NA for a.e. λ ∈ (0, ϕ(α)), (2.4.30)

where

M(λ) :=
(
s′1(λ)− s′2(λ)

)−1
2∑
l=1

s′lσl ([λ, ϕ(α)]) ,

MA(λ) := [σ(A)]−1
(
s′1(λ)− s′2(λ)

)−1
2∑
l=1

s′lσl ([λ, ϕ(α)] ∩A) ,

NA := [σ(A)]−1σ2(A)− σ2 ([0, ϕ(α)])

(see [Pl1] and [Sm] for details).

Then set
λ0 := min

{
λ ∈ [0, ϕ(α)] |λ ∈ suppσ

}
.

If λ0 = ϕ(α), the claim is obvious. Assume λ0 < ϕ(α) and choose Aδ =
[λ0, λ0 + δ] with δ > 0 small enough. Then σ(Aδ) 6= 0 and MAδ(λ) = 0 if
λ ∈ (λ0 + δ, ϕ(α)). Therefore by equation (2.4.30) we have

M(λ) = NAδ for a.e. λ ∈ (λ0 + δ, ϕ(α)).

Since NAδ does not depend on λ and δ is arbitrary, we obtain

M(λ) = N{
λ0

} for a.e. λ ∈ (λ0, ϕ(α)) . (2.4.31)

Then observe that for any compact A ⊂ [λ0, ϕ(α)) there exists an interval
(λ∗, ϕ(α)) such that

A ∩ (λ∗, ϕ(α)) = ∅ .
Therefore in the interval (λ∗, ϕ(α)) we have MA(λ) ≡ 0, hence in view of
(2.4.30) and (2.4.31) we have:

NA = N{
λ0

} . (2.4.32)
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Using (2.4.30) again, observe that equalities (2.4.31)-(2.4.32) implyMA(λ) =
0 for a.e. λ ∈ (λ0, ϕ(α)) and for any compact A ⊂ [λ0, ϕ(α)), namely

2∑
l=1

s′l(λ)σl([λ, ϕ(α)] ∩A) = 0 for a.e. λ ∈ (λ0, ϕ(α)). (2.4.33)

Consider any closed interval A = [β1, β2] ⊂ (λ0, ϕ(α)). If λ ∈ (λ0, β1) we
have σl([λ, ϕ(α)] ∩A) = σl(A). Hence, by equation (2.4.33), it follows that

2∑
l=1

s′l(λ)σl(A) = 0 for a.e. λ ∈ (λ0, β1). (2.4.34)

Since the functions s′1 and s′2 are continuous in (λ0, β1), equality (2.4.34)
holds for any λ ∈ (λ0, β1); by Condition (S) there holds σ1(A) = σ2(A) = 0.
Since β1 and β2 are arbitrary, it follows that the support of σ consists at most
of two points, namely {λ0} and {ϕ(α)}. Finally, by means of Condition (S)
again, the latter possibility is ruled out (see [Sm]).
Step 3. Let us conclude the proof: in view of Steps 1-2 and (2.4.26), for
a.e. (x, t) ∈ Q the measures σ1(x,t) and σ2(x,t) have the following form:

σ1(x,t) =
{
λ(x, t) δv(x,t) if v(x, t) > 0
δ0 if v(x, t) = 0

σ2(x,t) =
{ (

1− λ(x, t)
)
δv(x,t) if v(x, t) > 0

0 if v(x, t) = 0

for some λ ∈ L∞(Q), λ ≥ 0 in Q. By (2.2.31)-(2.2.32) and equality (2.4.27)
we obtain representation (2.2.42). Finally equality (2.2.41) is a consequence
of (2.2.34) and (2.2.42). �

Proposition 2.4.4. Let v ∈ L∞(Q) be the weak* limit of the sequence{
ϕ
(
u
ε,(r)
x

)}
in L∞(Q). Then, there exists a subsequence {εj} ⊆ {εk} , εj ≡

εkj , such that there holds

ϕ(uεj ,(r)x )→ v a.e. in Q. (2.4.35)

Proof. Observe that (2.2.31), (2.2.32) and (2.2.42) imply that

|ϕ(uεj ,(r)x )|p ⇀ |v|p in L1(Q),

for any 1 < p <∞, namely also

‖ϕ(uεj ,(r)x )‖Lp(Q) → ‖v‖Lp(Q).

Hence
ϕ(uεj ,(r)x )→ v in Lp(Q)
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for any 1 ≤ p <∞ (e.g., see [B]) and this concludes the proof. �

In the following theorem we prove a refinement ”at fixed time” of the disin-
tegration formula (2.2.42).

Theorem 2.4.5. Let {εj} ⊆ {εk} be the subsequence given by Proposition
2.4.4. For a.e. t > 0, let

{
τ tεj
}

be the family of Young measures associated

to the sequence
{
u
εj ,(r)
x (·, t)

}
. Then there exists a set F ⊆ (0, T ) of Lebesgue

measure |F | = 0 such that for any t ∈ (0, T )\F there exists a Young measure
τ t such that

τ tεj → τ t narrowly in Ω× R . (2.4.36)

Moreover, for a.e. x ∈ Ω the disintegration νtx of τ t is given by

νtx =
{
λ(x, t)δs1(v(x,t)) + (1− λ(x, t))δs2(v(x,t)) if v(x, t) > 0
δ0 if v(x, t) = 0 .

(2.4.37)
Here v(·, t) and λ(·, t) are the values at fixed t of the functions considered in
(2.2.42).

Proof. In view of Proposition 2.4.4, there exists a set F 1 ⊆ (0, T ) of Lebesgue
measure |F 1| = 0 such that:

ϕ(uεj ,(r)x (·, t))→ v(·, t) a.e. in Ω, (2.4.38)

for any t ∈ (0, T ) \ F 1. For any εj > 0 let F εj ⊆ (0, T ) be the set of
zero Lebesgue-measure given by Proposition 2.3.17, such that the entropy
inequalities (2.2.12) hold for any t1, t2 ∈ (0, T ) \ F εj . Set

F 2 :=
⋃
h∈N

F εj , F := F 1 ∪ F 2 .

Thus, F ⊆ (0, T ) has Lebesgue measure |F | = 0.

For any t ∈ (0, T ) \ F there exists a subsequence {εj,t} ⊆ {εj}, such that

χ{
0≤u

εj,t,(r)
x (·,t)≤α

} ∗
⇀ λt in L∞(Ω) (2.4.39)

for some λt ∈ L∞(Ω), 0 ≤ λt ≤ 1.

Fix any t ∈ (0, T ) \ F and observe that for any f ∈ Cc(R) we can write:

f(uεj,t,(r)x (·, t)) = (f ◦ s1 ◦ ϕ)(uεj,t,(r)x (·, t))χ{
0≤u

εj,t,(r)
x (·,t)≤α

} +

+(f ◦ s2 ◦ ϕ)(uεj,t,(r)x (·, t))χ{
u
εj,t,(r)
x (·,t)>α

} (2.4.40)
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a.e. in Ω. In view of (2.4.38) and (2.4.39) we obtain:

f(uεj,t,(r)x (·, t)) ∗
⇀ λt(·)(f ◦ s1)(v(·, t)) + (2.4.41)

+(1− λt(·))(f ◦ s2)(v(·, t)) in L∞(Ω) .

This implies that for any t ∈ (0, T ) \ F the sequence
{
τ tεj,t

}
of Young mea-

sures associated to the sequence {uεj,t(·, t)} converges narrowly to a Young
measure τ t over Ω× R whose disintegration νt(·) is of the form:

νtx =
{
λt(x)δs1(v(x,t)) + (1− λt(x))δs2(v(x,t)) if v(x, t) > 0
δ0 if v(x, t) = 0

(2.4.42)

for a.e. x ∈ Ω. Let us show that for a.e. x ∈ Ω the coefficient λt(x) is
the value at fixed t of the function λ(x, t), given by Theorem 2.2.7 - which
implies that the whole sequence {τ εj} satisfies (2.4.36) and (2.4.37). To this
purpose, fix any g ∈ C1([0, ϕ(α)]), g′ ≥ 0, g ≡ 0 in [0, Sg] for some Sg > 0,
and consider inequalities (2.2.12) with g = g, namely:∫

Ω
G(uεx)(x, t2)ζ(x, t2)dx−

∫
Ω
G(uε,(r)x )(x, t1)ζ(x, t1)dxdx ≤

≤
∫ t2

t1

∫
Ω
G(uε,(r)x )ζtdxdt−

∫ t2

t1

∫
Ω
g(vε)vεxζx dxdt (2.4.43)

for any t1, t2 ∈ (0, T ) \ F ε, t1 < t2, and for any ζ ∈ C1([0, T ];H1
0 (Ω) ∩

H2(Ω)), ζ ≥ 0, ζxx ≤ 0. Here G is defined by (2.2.13) in correspondence of
g. Fix any t ∈ (0, T ) \ F (so that (2.4.41)-(2.4.42) hold).

Then for any f ∈ H1
0 (Ω) ∩H2(Ω), f ≥ 0, fxx ≤ 0 and for any r > 0 set:

ζr(x, t) = hr(t)f(x) ,

where

hr(t) :=


0 if | t− t| > r,
1
r (t− t) + 1 if t ∈ [t− r, t],
−1
r (t− t) + 1 if t ∈ (t, t+ r] .

(2.4.44)

By standard arguments of approximation by smooth functions we can choose
ζr as test function in inequalities (2.4.43) written for t1 = t− r, t2 = t and
ε = εj,t. We obtain∫

Ω
G
(
u
εj,t,(r)
x

)
(x, t)f(x)dx ≤ (2.4.45)

≤ 1
r

∫ t

t−r

∫
Ω
G
(
u
εj,t,(r)
x

)
fdxdt−

∫ t

t−r

∫
Ω
hrg(vεj,t)v

εj,t
x fxdxdt .

Let us take the limit as εj,t → 0 in the above inequalities. In this direction,
observe that by estimate (2.3.51), there holds

‖vεj,t − ϕ(u
εj,t,(r)
x )‖L2(Q) → 0,
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hence
vεj,t → v in L2(Q)

as εj,t → 0 (here use of (2.4.35) has been made). Therefore, the limit as
εj,t → 0 in inequalities (2.4.45) gives∫

Ω

[
λt(x)(G ◦ s1)(v(x, t)) + (1− λt)(G ◦ s2)(v(x, t))

]
f(x)dx ≤

≤ 1
r

∫ t

t−r

∫
Ω
G
∗
fdxdt−

∫ t

t−r

∫
Ω
hrg(v)vxfx (2.4.46)

for any f ∈ H1
0 (Ω) ∩H2(Ω), f ≥ 0, fxx ≤ 0, where

G
∗ =

{
λG(s1(v)) + (1− λ)G(s2(v)) if v > 0
G(0) ≡ 0 if v = 0

(2.4.47)

(here use of (2.2.42), (2.4.41), Remark 2.4.1 and Proposition 2.2.4 has been
made). We can assume that for any f ∈ H1

0 (Ω) ∩H2(Ω), f ≥ 0, fxx < 0,
we have:

lim
r→0

1
r

∫ t

t−r

∫
Ω
G
∗(x, t)f(x) dxdt =

∫
Ω
G
∗(x, t)f(x) dx ,

lim
r→0

1
r

∫ t+r

t

∫
Ω
G
∗(x, t)f(x) dxdt =

∫
Ω
G
∗(x, t)f(x) dx ,

for a.e. t ∈ (0, T ) \ F . Then we take the limit as r → 0 in (2.4.46) and
obtain: ∫

Ω
[λt(x)(G ◦ s1)(v(x, t)) + (1− λt)G ◦ s2)(v(x, t))]f(x)dx ≤

≤
∫

Ω
G
∗(x, t)f(x)dx

for any f as above. By analogous arguments also the reverse inequality can
be proven, therefore we have:

λt(x)G(s1(v(x, t))) + (1− λt)G(s2(v(x, t))) = G
∗(x, t)

for a.e. x ∈ Ω. In view of (2.4.47) the above equality gives

λt(x) = λ(x, t)

for a.e. x ∈ Ω and for any t ∈ (0, T ) \ F , thus the conclusion follows. �

As a consequence of the above theorem, for any t ∈ (0, T ) \ F , where F ⊆
(0, T ), |F | = 0 is the set given by Theorem 2.4.5, there holds:

νtx = ν(x,t) for a.e. x ∈ Ω , (2.4.48)
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where νt(·) is defined by (2.4.37) in Theorem 2.4.5 and ν(·,·) is the disin-
tegration associated to the limiting Young measure τ over Q × R given
by Proposition 2.2.4 and (2.2.42). In view of Theorem 2.4.5 and by the
general properties of Young measures, for any t ∈ (0, T ) \ F and for any
f ∈ C(R), such that the sequence

{
f(uεj ,(r)x (·, t))

}
is bounded in L1(Ω) and

equi-integrable, there holds:

f(uεj ,(r)x (·, t)) ⇀ f∗, t(·) in L1(Ω), (2.4.49)

where

f∗, t(x) =
{

[λf(s1(v)) + (1− λ)f(s2(v))] (x, t) if v(x, t) > 0,
f(0) if v(x, t) = 0

(2.4.50)
for a.e. x ∈ Ω (see [GMS], [V]). Finally, letting εj → 0 in the entropy
inequalities (2.2.12) gives the following result.

Theorem 2.4.6. For any g ∈ C1(R) let G be the function defined by
(2.2.13). Let F ⊆ (0, T ) be the set of zero Lebesgue-measure given by Theo-
rem 2.4.5. Then for any g ∈ C1([0, ϕ(α]), g ≡ 0 in [0, Sg] for some Sg > 0
and g′ ≥ 0 there holds∫ 1

0
G∗(x, t2)ζ(x, t2)dx−

∫
Ω
G∗(x, t1)ζ(x, t1)dx ≤ (2.4.51)

≤
∫ t2

t1

∫
Ω

[
G∗ζt − g(v)vxζx

]
(x, t)dxdt,

for any t1 < t2, t1, t2 ∈ (0, T ) \ F , and for any ζ ∈ C1([0, T ];H1
0 (Ω) ∩

H2(Ω)), ζ ≥ 0, ζxx ≤ 0. Here

G∗ =
{
λG(s1(v)) + (1− λ)G(s2(v)) if v > 0
0 if v = 0

(2.4.52)

a.e. in Q.

Proof. Consider any g ∈ C1([0, ϕ(α)]), g′ ≥ 0, g ≡ 0 in [0, Sg], for some
Sg > 0. Let {εj} be the sequence given by Proposition 2.4.4. Observe that
the family

{
G(uεj ,(r)x )

}
is bounded in L∞(Q) (see Remark 2.4.1). Hence, in

view of (2.2.31), (2.2.32) and (2.2.42) we have

G(uεj ,(r)x ) ∗⇀ G∗ in L∞(Q), (2.4.53)

where G∗ is defined by (2.4.52). Moreover, in view of Theorem 2.4.5 for any
t ∈ (0, T ) \ F there holds

G(uεj ,(r)x (·, t)) ∗⇀ G∗(·, t) in L∞(Ω) (2.4.54)

93



(see (2.4.49) and (2.4.50)). Finally, by means of (2.3.51) we obtain

‖vεj − ϕ(uεj ,(r)x )‖L2(Q) = ‖εjψ(uεj ,(r)x )t‖L2(Q) → 0 (2.4.55)

as j →∞. Hence, in view of Proposition 2.4.4 there holds:

vεj → v in L2(Q) . (2.4.56)

By (2.2.25) and (2.4.53)-(2.4.56), passing to the limit with respect to εj → 0
in the entropy inequalities (2.2.12) gives (2.4.51) (see [MTT], [Pl1] for further
details). �

2.5 Structure of ux: Proofs

Proof of Theorem 2.2.8. Consider the sequence
{
gn
}
⊆ C1([0, ϕ(α)]),

defined as follows

gn(s) =


0 if s ∈ [0, 1/2n]
2ns− 1 if s ∈ (1/2n, 1/n)
1 if s ∈ [1/n, ϕ(α)] .

By standard arguments of regularization and approximation with smooth
functions, we can write the entropy inequalities (2.4.51) for g = gn. We
obtain ∫∫

Q
[G∗nζt − gn(v)vxζx]dxdt ≥ 0, (2.5.1)

for any ζ ∈ C1([0, T ];H1
0 (Ω) ∩H2(Ω)), ζ ≥ 0, ζxx ≤ 0, ζ(·, 0) = ζ(·, T ) = 0

in Ω. Recall that

G∗n =

{
λ
∫ s1(v)

0 gn(ϕ((s))ds+ (1− λ)
∫ s2(v)

0 gn(ϕ((s))ds if v > 0,
0 if v = 0.

Thus, G∗n ≤ Z ∈ L1(Q) and G∗n → Z a.e. in Q as n→∞ (because gn(s)→ 1
for any s ∈ (0, ϕ(α))). This implies that∫∫

Q
G∗nζtdxdt→

∫∫
Q
Zζtdxdt (2.5.2)

as n→∞ for any ζ as above. Moreover, observe that

gn(v)vx =
[∫ v

0
gn(s)ds

]
x

(2.5.3)

and
‖gn(v)vx‖L2(Q) ≤ ‖vx‖L2(Q) .
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The above estimate implies that the sequence
{
gn(v)vx

}
is weakly relatively

compact in L2(Q). In view of (2.5.3) and since for a.e. (x, t) ∈ Q∫ v(x,t)

0
gn(s)ds→ v

as n→∞, there holds

gn(v)vx ⇀ vx in L2(Q). (2.5.4)

Using (2.5.2) and (2.5.4), passing to the limit as n → ∞ in (2.5.1) gives
(2.2.43). �

Proof of Theorem 2.2.9. There exists a measure λ ∈ M+(0, T ), and for
λ-a.e. t ∈ (0, T ) a measure γt ∈M+(Ω) such that:

(a) for any Borel set E ⊂ Q there holds

µ(E) =
∫ T

0
γt(Et) dλ(t),

where Et :=
{
x ∈ Ω | (x, t) ∈ E

}
;

(b) for any f ∈ Cc(Q) there holds:∫ ∫
Q
f dµ =

∫ T

0
dλ(t)

∫
Ω
f(x, t) dγt(x) (2.5.5)

(this is a consequence of the more general Proposition 8 on p. 35 of [GMS],
Vol. I). Moreover, since µ(Q) <∞, we can choose λ(I) = µ(Ω× I) for any
I ⊂ (0, T ), and γt(Ω) = 1 for λ− a.e. t ∈ (0, T ).

(i) Let us prove that the measure λ ∈ M+(0, T ) is absolutely continuous
with respect to the Lebesgue measure. To this purpose, fix any 0 < t0 < T
and consider the interval Ir := [t0 − r, t0 + r]. Choose r > 0 such that
I2r := [t0 − 2r, t0 + 2r] ⊂ (0, T ). Then there exists ηr ∈ C1

c (I2r) such that
η ≡ 1 in Ir, 0 ≤ ηr ≤ 1, and supp ηr ⊆ I2r. Set

η̃r(t) =
∫ t

0
ηr(s)ds−

∫ t0+2r

0
ηr(s)ds. (2.5.6)

Consider the family
{
uεκ
}

of solutions to problem (P εκ) and let vεκ be the
function defined by (2.3.4) for any ε, κ > 0. Recall that in the proof of
Lemma 2.3.2 we have shown that vεκ(·, t) ∈ H1

0 (Ω) , vεκ(·, t) > 0 in Ω for any
t ∈ (0, T ). Hence, there holds:

vεκx(1, t) < 0, vεκx(0, t) > 0 (2.5.7)
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for any t ∈ (0, T ). In view of assumption (A)-(v), (2.3.5) and (2.5.7), there
holds ∫ t0+2r

t0−2r

∫
Ω
uεκx(x, t)ηr(t)dxdt = −

∫ t0+2r

t0−2r
η̃r(t)

∫
Ω
vεκxxdxdt+

−η̃r(0)
∫

Ω
u′0,κdx ≤ 4r

∫
Ω
u′0,κdx (2.5.8)

(observe that η̃r(t) ≤ 0 for any t and |η̃(0)| ≤ 4r). Passing to the limit in
(2.5.8) first as κ→ 0, then as ε→ 0 gives∫ t0+r

t0−r

∫
Ω
Z(x, t)dxdt+

∫ t0+r

t0−r

∫
Ω
dµ ≤ 4r‖u′0‖M+(Ω) . (2.5.9)

In view of (2.5.5), the above inequality reads∫ t0+r

t0−r
dλ(t) =

∫ t0+r

t0−r
dλ(t)

∫
Ω
dγt(x) ≤ (2.5.10)

≤ 4r‖u′0‖M+(Ω) −
∫ t0+r

t0−r

∫
Ω
Z(x, t)dxdt

(recall that dγt is a probability measure for λ - a.e. t ∈ (0, T )). Thus, dλ =
h(t)dt for some h ∈ L1(0, T ). On the other hand, h ∈ L∞(0, T ), since by
(2.5.10) we have

h(t) ≤ 2‖u′0‖M+(Ω) − ‖Z(·, t)‖L1(Ω)

for a.e. t > 0 (recall that by assumption u′0 ∈M+(Ω) it follows Z ≥ 0 a.e.
in Q). Setting

γ̃t := h(t)γt

for a.e. t ∈ (0, T ) gives claim (i).

(ii) By (2.2.40) and inequality (2.2.43) there holds

〈µ, ζt〉 ≤ 0, (2.5.11)

for any ζ ∈ C1
c ([0, T ];H1

0 (Ω) ∩H2(Ω)), ζ ≥ 0, ζxx ≤ 0, ζ(·, 0) = ζ(·, T ) = 0
in Ω. Fix any 0 < t1 < t2 and consider ηr ∈ Lip([0,∞)) defined as follows:

ηr(t) :=


1
r (t− t1 + r

2) if t ∈ (t1 − r
2 , t1 + r

2)
1 if t ∈ [t1 + r

2 , t2 − r
2 ]

−1
r (t− t2 − r

2) if t ∈ (t2 − r
2 , t2 + r

2),

with r > 0 such that [t1 − r
2 , t2 + r

2 ] ⊂ (0, T ). For any ρ ∈ H1
0 (Ω) ∩H2(Ω),

ρ ≥ 0, ρxx ≤ 0, choose ψr(x, t) := ηr(t)ρ(x) as test function in inequality
(2.5.11). In wiew of (2.2.44) we obtain:

1
r

∫ t1+ r
2

t1− r2
〈γ̃t, ρ〉 dt ≤

1
r

∫ t2+ r
2

t2− r2
〈γ̃t, ρ〉 dt,
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whence as r → 0 we get
〈γ̃t1 , ρ〉 ≤ 〈γ̃t2 , ρ〉 .

�

To prove Theorem 2.2.10 we need some preliminary results. The first one is
the following technical Lemma.

Lemma 2.5.1. Let f ∈ L2((0, T );H1(Ω)), where Ω ⊆ R is a bounded inter-
val. Then there exists a set H ⊆ (0, T ) of Lebesgue measure |H| = 0 such
that for any t0 ∈ (0, T ) \H there holds:

lim
h→0

1
h

∫ t0+h

t0

f(x0, t) dt = f(x0, t0) (2.5.12)

for any x0 ∈ Ω .

Proof. Set Q := Ω× (0, T ). Since fx ∈ L2(Q), there exists a set H1 ⊆ (0, T )
of Lebesgue measure |H1| = 0 such that for any t0 ∈ (0, T ) \H1 there holds
f(·, t0) ∈ H1(Ω) and

lim
h→0

1
h

∫ t0+h

t0

dt

∫
Ω
f2
x(x, t)dx =

∫
Ω
f2
x(x, t0) dx := C(t0) . (2.5.13)

On the other hand, we can find a dense and countable set D ⊆ Ω, D = {xk}
such that for any xk ∈ D the map

t 7−→ f(xk, t)

belongs to the space L1(0, T ). Therefore for any xk ∈ D there exists a set
Hk ⊆ (0, T ), |Hk| = 0, such that

lim
h→0

1
h

∫ t0+h

t0

f(xk, t)dt = f(xk, t0) (2.5.14)

for any t0 ∈ (0, T ) \Hk. Set:

H := H1 ∪H2 , H2 :=

(⋃
k∈N

Hk

)
.

Fix any t0 ∈ (0, T ) \ H and then fix any x0 ∈ Ω. Since D is dense and
countable in Ω, for any ε > 0 there exists xε0 ∈ D such that

|x0 − xε0|
1
2 <

ε

6
√
C(t0)

(2.5.15)
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(here C(t0) > 0 is defined by (2.5.13)). Observe that

1
h

∫ t0+h

t0

[f(x0, t)− f(x0, t0)] dt =
1
h

∫ t0+h

t0

[f(x0, t)− f(xε0, t)] dt+

+
1
h

∫ t0+h

t0

[f(xε0, t)− f(xε0, t0)] dt+

+
1
h

∫ t0+h

t0

[f(xε0, t0)− f(x0, t0)] dt .

Let us study the three term in the right-hand side of the above equality. In
view of (2.5.15), we have:∣∣∣∣1h

∫ t0+h

t0

[f(x0, t)− f(xε0, t)] dt
∣∣∣∣ =

1
h

∣∣∣∣∣
∫ t0+h

t0

dt

∫ x0

xε0

fx(x, t) dx

∣∣∣∣∣ ≤
≤

(
1
h

∫ t0+h

t0

∫
Ω
f2
x dxdt

) 1
2

|x0 − xε0|
1
2 ≤ ε

3
. (2.5.16)

hor any h ≤ h1(ε, t0) (here use of (2.5.13) has been made). Moreover,∣∣∣∣1h
∫ t0+h

t0

[f(xε0, t)− f(xε0, t0)] dt
∣∣∣∣ ≤ ε

3
(2.5.17)

for any h ≤ h
2(ε, x0, t0) by (2.5.14) (recall that xε0 ∈ D). Finally, there

holds:

1
h

∣∣∣∣∫ t0+h

t0

[f(xε0, t)− f(xε0, t0)] dt
∣∣∣∣ = |f(xε0, t)− f(xε0, t0)| ≤

≤
(∫

Ω
f2
x(x, t0) dx

) 1
2

|x0 − xε0|
1
2 ≤ ε

3
(2.5.18)

the last inequality being a consequence of (2.5.13) and (2.5.15). Set

h(ε, x0, t0) = min
{
h

1(ε, t0), h2(ε, x0, t0)
}
.

In view of (2.5.16)-(2.5.18), there holds

1
h

∫ t0+h

t0

[f(x0, t)− f(x0, t0)] dt < ε

hor any h ≤ h(ε, x0, t0) . This concludes the proof.

Next, arguing as in the proof of Theorem 2.2.9, we can decompose the
positive Radon measure uε,(s)x in the following way

< uε,(s)x , φ > =
∫ ∞

0
〈γ̃εt , φ(·, t)〉 dt (2.5.19)

for any φ ∈ Cc(Q), for some γ̃εt ∈M+(Ω) defined for a.e. t ∈ (0, T ).
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Remark 2.5.1. Observe that by (2.2.3) there holds:∫ T

0
ht(t)

{(∫
Ω
uε,(r)x (x, t)φ(x)dx

)
+ 〈γ̃εt , φ〉

}
dt =

=
∫ T

0
h(t)dt

∫
Ω
vεx(x, t)φx(x)dx (2.5.20)

for any φ ∈ C1
c (Ω) and h ∈ C1

c (0, T ). Since by (2.2.19) the map

t 7−→
∫

Ω
vεx(x, t)φx(x)dx

belongs to the space L2(0, T ) for any ε > 0, it follows that the function

t 7−→
(∫

Ω
uε,(r)x (x, t)φ(x)dx

)
+ 〈γ̃εt , φ〉

belongs to H1(0, T ) ⊆ C([0, T ]) for any φ ∈ C1
c (Ω).

The following lemma holds.

Lemma 2.5.2. For any ε > 0 there exists a set Hε ⊂ (0, T ), of zero Lebesgue
measure such that:
(i) for any t ∈ (0, T ) \Hε, vε(·, t) ∈ H1

0 (Ω) (here vε is defined by (2.2.10));
(ii) for any ε > 0, t ∈ (0, T ) \Hε and for any δ > 0, set

Bε
δ(t) :=

{
x ∈ Ω | vε(x, t) ≥ δ

}
. (2.5.21)

Then for any ε > 0 there holds

supp γ̃εt ∩Bε
δ(t) = ∅ . (2.5.22)

Proof. (i) Since vε ∈ L2((0, T );H1
0 (Ω)) (see (2.2.19)), it follows that, for any

ε > 0, there exists a set H(1,ε) ⊂ (0, T ) of Lebesgue measure |H(1,ε)| = 0,
such that vε(·, t) ∈ H1

0 (Ω) for any t ∈ (0, T ) \H(1,ε). This gives claim (i).
Moreover, since

[
ψ
(
u
ε,(r)
x

)]
t
∈ L2((0, T );H1

0 (Ω)), we can find a set H(2,ε) ⊆
(0, T ) of Lebesgue-measure |H(2,ε)| = 0 such that for any t ∈ (0, T ) \H(2,ε)

there holds
[
ψ
(
u
ε,(r)
x

)]
t
(·, t) ∈ H1

0 (Ω) ⊆ C(Ω) and:

lim
h→0

1
h

∫ t0+h

t0

[
ψ
(
uε,(r)x

)]
t
(x0, t)dt =

[
ψ
(
uε,(r)x

)]
t
(x0, t0) (2.5.23)

for any x0 ∈ Ω (see Proposition 2.5.1). Set

Hε := H(1,ε) ∪H(2,ε) .
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(ii) Fix any t0 ∈ (0, T ) \ Hε and for any δ > 0 let Bε
δ(t0) ⊂ Ω be the set

defined by (2.5.21) in correspondence of t0. In view of Theorem 2.2.3 and
decomposition (2.5.19), there holds

supp γ̃εt ≡
{
x ∈ Ω | ψ(uε,(r)x )(x, t) = γ

}
.

Fix any ε > 0 and suppose that there exist t0 ∈ (0, T ) \Hε and x0 ∈ Ω such
that

Bε
δ(t0) ∩

{
x ∈ Ω | ψ(uε,(r)x )(x, t0) = γ

}
⊇ {x0} . (2.5.24)

Let Ir(x0) denote the interval centered at x0 and length r. We have:

1
r

∫
Ir(x0)

ψ(uε,(r)x )(x, t0 + h)dx− 1
r

∫
Ir(x0)

ψ(uε,(r)x )(x, t0)dx =

=
1
r

∫ t0+h

t0

∫
Ir(x0)

[ψ(uε,(r)x )]t(x, t)dxdt ,

hence in the limit as r → 0,

ψ(uε,(r)x )(x0, t0 + h)dx− ψ(uε,(r)x )(x0, t0)dx =
∫ t0+h

t0

[ψ(uε,(r)x )]t(x0, t)dxdt

(recall that ψ
(
u
ε,(r)
x

)
∈ C(Q) and

[
ψ
(
u
ε,(r)
x (·, t)

)]
t
∈ C(Ω) for a.e. t ∈ (0, T )).

Observe that by (2.5.24) there holds ψ
(
u
ε,(r)
x )(x0, t0) = γ . Therefore we have:

ϕ(uε,(r)x )(x0, t0) = 0 . (2.5.25)

Moreover, in [BBDU] it is proved that if ψ(uε,(r)x )(x0, t0) = γ, then there
holds ψ(uε,(r)x )(x0, t0 + h) = γ for any h > 0. Therefore we obtain

lim
h→0

1
h

∫ t0+h

t0

[ψ(uε,(r)x )]t(x0, t)dt = 0 ,

namely:
[ψ(uε,(r)x )]t(x0, t0) = 0

(here use of (2.5.23) has been made). On the other hand, by our assumption
x0 ∈ Bε

δ(t0) hence we have:

δ ≤ vε(x0, t0) = ϕ(uε,(r)x )(x0, t0) + ε[ψ(uε,(r)x )]t(x0, t0) =
= ε[ψ(uε,(r)x )]t(x0, t0) = 0,

(see also (2.5.25)) which gives a contradiction. �
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Remark 2.5.2. In view of Lemma 2.5.2, for any ε > 0 and for any g ∈
C1([0, ϕ(α)]), g′ ≥ 0, g ≡ 0 in [0, Sg] for some Sg > 0, there holds:

g(vε(·, t))vεxx(·, t) ≡ g(vε(·, t))
[
ψ(uε,(r)x (·, t))

]
t

ψ′(uε,(r)x (·, t))
∈ L1(Ω) , and

∫
Ω
g(ϕ(uε,(r)x (x, t)))

[
ψ(uε,(r)x (x, t))

]
t

ψ′(uε,(r)x (x, t))
ζ(x, t) dx ≤

≤ −
∫

Ω
g(vε(x, t))vεx(x, t)ζx(x, t) dx

for a.e. t ∈ (0, T ) and for any ζ ∈ C1([0, T ];H1
0 (Ω)), ζ ≥ 0 (by the same

arguments used to prove (2.3.65) in Proposition 2.3.17). This implies:

(i) the entropy inequalities (2.4.51) and inequalities (2.2.43) hold for any
ζ ∈ C1([0, T ];H1

0 (Ω)), ζ ≥ 0 (see the proof of Theorems 2.2.8-2.4.6);
(ii) for a.e. t ∈ (0, T ) let γ̃t ∈ M+(Ω) be the Radon measure given by
Theorem 2.2.9. Then 〈γ̃t1 , f〉 ≤ 〈γ̃t2 , f〉 for a.e. t1 ≤ t2 and for any f ∈
C1
c (Ω), f ≥ 0.

Proposition 2.5.3. Let Z be the function defined by (2.2.34), (2.2.41) and
γ̃t ∈ M+(Ω) be the Radon measure given by Theorem 2.2.9-(i) for a.e. t ∈
(0, T ). Let {εj} , εj → 0, be the sequence given by Proposition 2.4.4. Then
for any t ∈ (0, T ) there holds∫

Ω
u
εj ,(r)
x (x, t)φ(x, t)dx+

〈
γ̃
εj
t , φ

〉
→
∫

Ω
Z(x, t)φ(x)dx+ 〈γ̃t, φ〉 (2.5.26)

for any φ ∈ C1
c (Ω), as εj → 0.

Proof. Fix any φ ∈ C1
c (Ω) and observe that the function

U
εj
φ (t) :=

(∫
Ω
u
εj ,(r)
x (x, t)φ(x)dx

)
+
〈
γ̃
εj
t , φ

〉
belongs to the space H1(0, T ) (see Remark 2.5.1). By (2.5.20) it follows that

U
εj
φ (t) =

1
t

∫ t

0

(∫
Ω
uε,(r)x (x, s)φ(x) dxds+ 〈γ̃εs, φ〉

)
ds+

− 1
t

∫ t

0

∫
Ω
s vεx(x, s)φx(x)dxds ,

hence estimates (2.2.16) and (2.2.19) give

‖U εjφ ‖C([0,T ]) ≤ C
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for some C independent of εj . Moreover, by (2.2.19) (see also Remark 2.5.1),
we obtain

|U εj (t2)− U εj (t1)| ≤ Cφ‖vεjx ‖L2(Q)|t2 − t1|1/2 ≤ Cφ|t1 − t2|1/2,

where the constant Cφ does not depend on εj . Then the sequence
{
U
εj
φ

}
is

relatively compact in C([0, T ]), and the conclusion follows. �

Proposition 2.5.4. Let {εj} , εj → 0, be the sequence given by Proposition
2.4.4. Then there exists a subset E1 ⊆ (0, T ) of Lebesgue measure |E1| = 0,
with the following property: for any t ∈ (0,∞)\E1 there exists a subsequence
{εj,t} ⊆ {εj} (depending on t) such that∫

Ω

{
(vεj,tx )2 + εj,t

[ψ(uεj,t,(r)x )]2t
ψ′(uεj,t,(r)x )

}
(x, t) dx ≤ C(t) <∞ , (2.5.27)

vεj,t(·, t)→ v(·, t) in C(Ω) . (2.5.28)

Proof. In view of estimates (2.3.49), (2.3.51) and using the Fatou Lemma,
we have∫ T

0
lim inf
j→∞

(∫
Ω

[
(vεjx )2 + εj

[
ψ(uεj ,(r)x )

]2
t

ψ′(uεj ,(r)x )

]
(x, t) dx

)
dt ≤ C.

The above estimate implies that

lim inf
j→∞

(∫
Ω

[
(vεjx )2 + εj

[
ψ(uεj ,(r)x )

]2
t

ψ′(uεj ,(r)x )

]
(x, t) dx

)

belongs to the space L1(0, T ), hence there exists a set Ẽ1 ⊂ (0, T ), |Ẽ1| = 0,
such that, for any t ∈ (0, T ) \ Ẽ1, claim (2.5.27) holds for some subsequence
{εj,t} ⊆ {εj}, which depends on t.

Let F ⊆ (0, T ) be the set of zero Lebesgue measure given by Theorem 2.4.5
and set

E1 := Ẽ1 ∪ F .
Now, fix any t ∈ (0, T ] \ E1 and observe that estimate (2.5.27) implies that
the sequence {vεj,t(·, t)} is uniformly bounded in C(Ω) and equi-continuous.
On the other hand, for any t ∈ (0, T ) \ E1 there holds vεj ,t(·, t)→ v a.e. in
Ω. In fact

vεj,t(·, t) = ϕ(uεj,t,(r)x )(·, t) + εj,t
[
ψ(uεj,t,(r)x )

]
t
(·, t) ,

and by Proposition 2.4.4 and (2.5.27) we obtain

ϕ(uεj,t,(r)x )(·, t)→ v a.e. in Ω ,
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and
εj,t
[
ψ(uεj,t,(r)x )

]
t
(·, t)→ 0 a.e. in Ω

Therefore the whole sequence
{
vεj ,t(·, )

}
converges uniformly in Ω, namely:

vεj,t(·, t)→ v(·, t) in C(Ω)

and this concludes the proof. �

Now we can prove Theorem 2.2.10.

Proof of Theorem 2.2.10. For any εj > 0 let Hεj ⊆ (0, T ) be the set of
zero Lebesgue measure given by Proposition 2.5.2. Finally, let E1 ⊆ (0, T ),
|E1| = 0 be the set given by Proposition 2.5.4. Set:

E := E1 ∪ E2, E2 :=

⋃
j

Hεj

 .

Fix any t ∈ (0,∞) \ E and for any δ > 0, set

Bδ(t) :=
{
x ∈ Ω | v(x, t) ≥ δ

}
; (2.5.29)

consider the sequence {εj,t} given by Proposition 2.5.4, so that (2.5.27) and
(2.5.28) hold. In view of the uniform convergence

vεj,t(·, t)→ v(·, t) in C(Ω),

it follows that
vεj,t(·, t) ≥ v(·, t)− δ

2
≥ δ

2
in Bδ(t)

for any εj,t small enough. Therefore in view of Lemma 2.5.2 there holds:

Bδ(t) ∩ supp γ̃εj,tt = ∅

for any εj,t small enough. Moreover, by (2.5.27) and (2.5.28) we obtain:

δ2

4

∫
Bδ(t)

(uεj,t,(r)x )2(x, t)dx ≤
∫
Bδ(t)

[
(uεj,t,(r)x )2(vεj,t)2

]
(x, t)dx ≤

≤ 2
∫
Bδ(t)

[
(uεj,t,(r))2ϕ(uεj,t,(r)x )2

]
(x, t)dx

+εj,t
∫
Bδ(t)

[
(uεj,t,(r)x )2ψ′(uεj,t,(r)x )

[
ψ(uεj,t,(r)x )

]2
t

ψ′(uεj,t,(r)x )

]
(x, t)dx . (2.5.30)

Observe that the assumption (H1)-(i) implies that there exists a constant
C > 0 such that:

‖uεj,t,(r)x (·, t)ϕ(uεj,t,(r)x )(·, t)‖L∞(Ω) ≤ C . (2.5.31)
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In view of assumption (H4) and estimate (2.5.27), it follows that

εj,t

∫
Ω

(uεj,t,(r)x )2ψ′(uεj,t,(r)x )

[
ψ(uεj,t,(r)x )

]2
t

ψ′(uεj,t,(r)x )
dx ≤ (2.5.32)

≤ k3

∫
Ω
εj,t

[
ψ(uεj,t,(r)x )

]2
t

ψ′(uεj,t,(r)x )
dx ≤ C(t) <∞.

Estimates (2.5.30)-(2.5.32) imply that the sequence
{
u
εj,t,(r)
x (·, t)

}
is weakly

relatively compact in L1(Bδ(t)), hence convergent to Z(·, t) in the weak
topology of this space (here use of Theorem 2.4.5 has been made). In other
words ∫

Bδ(t)
u
εj,t,(r)
x (x, t)φ(x)dx+

∫
Bδ(t)

φ(x)dγ̃εj,tt = (2.5.33)

=
∫
Bδ(t)

u
εj,t,(r)
x (x, t)φ(x)dx→

∫
Bδ(t)

Z(x, t)φ(x)dx,

for any φ ∈ Cc(Ω). On the other hand, setting

Ba
δ (t) := {x ∈ Ω | v(x, t) > δ} ⊆ Bδ(t)

Proposition 2.5.3 gives

lim
εj,t→0

∫
Bδ(t)

u
εj,t,(r)
x (x, t)φ(x)dx+

∫
Bδ(t)

φ(x)dγ̃εj,tt =

=
∫
Bδ(t)

Z(x, t)φ(x)dx+
∫
Bδ(t)

φ(x)dγ̃t,

for any φ ∈ C1
c (Ba

δ (t)). Hence, in view of (2.5.33) we obtain:∫
Baδ (t)

φ(x)dγ̃t = 0,

for any φ ∈ C1
c (Ba

δ (t)), for any δ > 0. This implies that γ̃t(Ba
δ (t)) = 0 for

any δ > 0, namely:

γ̃t(B(t)) = 0 , B(t) = {x ∈ Ω | v(x, t) > 0} (2.5.34)

(because B(t) is an open set and the family {Ba
δ (t)}δ for δ = 1

n , n ∈ N, is an
increasing sequence of open sets such that ∪nBa

1/n(t) = B(t)). By (2.5.34)
the claim follows. �
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Chapter 3

Long-time behaviour of
solutions to a
forward-backward
parabolic equation

3.1 Introduction

In this chapter we study the long-time behaviour of solutions to the quasi-
linear forward-backward parabolic problem

ut = [φ(u)]xx in (0, 1)× (0,∞) := Q∞
[φ(u)]x = 0 in {0, 1} × (0,∞)
u = u0 in (0, 1)× {0} .

(3.1.1)

Here u0 ∈ L∞(0, 1) and φ ∈ C2(R) is a nonmonotone, cubic-like function
satisfying the following conditions:

(H)


(i) φ′(u) > 0 for u < b and u > c, φ′(u) < 0 for b < u < c;
(ii) A := φ(c) < φ(b) =: B, φ(u)→ ±∞ as u→ ±∞;
(iii) φ′′(b) 6= 0, φ′′(c) 6= 0.

We also denote by a ∈ (−∞, b) and d ∈ (c,∞) the roots of the equation
φ(u) = A, respectively φ(u) = B (see Fig.3.1).

Problem (3.1.1) with a cubic-like φ arises in the theory of phase transi-
tions (see below for the physical motivation of different choices of φ). In this
context the function u represents the phase field, whose values characterize
the difference between the two phases (e.g., see [BS]). The half-lines (−∞, b)
and (c,∞) correspond to stable phases and the interval (b, c) to an unstable
phase (e.g., see [MTT]). Therefore

S1 := {(u, φ(u))| u ∈ (−∞, b)} ≡ {(s1(v), v)| v ∈ (−∞, B)} ,

105



Figure 3.1: Assumption (H).

and
S2 := {(u, φ(u))|u ∈ (c,∞)} ≡ {(s2(v), v)| v ∈ (A,∞)}

are referred to as the stable branches, and

S0 := {(u, φ(u))|u ∈ (b, c)} ≡ {(s0(v), v)| v ∈ (A,B)}

as the unstable branch of the graph of φ. Beside (H), we always make the
following assumption:

Condition (S): The functions s′1, s′2 and s′0 are linearly independent on
any open subset of the interval (A,B).

In what follows, we always consider weak entropy measure-valued solu-
tions to problem (3.1.1), whose existence and relevant properties were inve-
stigated in [Pl1] (see Definition 3.2.1). They are obtained as limiting points
as ε→ 0 of the family {uε} of solutions to the regularized equation

ut = [φ(u)]xx + εuxxt (ε > 0) , (3.1.2)

considered in the half-strip (0, 1)×(0,∞) with the same initial and boundary
conditions as in (3.1.1). As proved in [NP], such solutions satisfy a family
of viscous entropy inequalities, whose limit as ε → 0 exists in a suitable
sense ([Pl1]; see Section 3.2 below). In [NP] the long-time behaviour of the
solution uε was studied for fixed ε > 0.

Let us mention that other regularizations of forward-backward equations,
beside that considered in (3.1.2), have been used. The equation

wt = [φ(wx)]x (3.1.3)
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arises both in image reconstruction problems (as the one-dimensional ver-
sion of the Perona-Malik equation; see [PM]), and as a mathematical model
for heat transfer in a stably stratified turbulent shear flow in one space di-
mension (see [BBDU]). In these cases a typical choice of the function φ is
φ(s) = As

B+s2
(A,B > 0), or φ(s) = s exp (−s). Observe that the transfor-

mation u = wx reduces equation (3.1.3) to the equation ut = [φ(u)]xx. If
φ(s) = s exp (−s), the latter has been proposed as a mathematical model for
aggregating populations (see [Pa]). Using the regularization (3.1.2), results
analogous to those for problem (3.1.1) with a cubic-like φ have been proved
in [Pa] for the case ε > 0, and in [Sm] for the limiting case ε→ 0. A different
regularization of (3.1.3), namely

wt = [φ(wx)]x + ε[χ(wx)]xt (3.1.4)

was used in [BBDU]; here χ is a smooth nonlinear function, such that χ′(s) >
0 for s > 0, χ(s) → γ ∈ R and χ′(s) → 0 as s → ∞. In addition, the
regularization of (3.1.3) leading to the fourth-order equation

wt = [φ(wx)]x − κwxxxx (κ > 0) (3.1.5)

has been also investigated (see [BFG], [Sl]; observe that the change of un-
known u = wx reduces equation (3.1.5) to the one-dimensional Cahn-Hilliard
equation). While the regularizations (3.1.2), (3.1.4) take time-delay effects
into account, (3.1.5) arises when considering non-local spatial effects. It is
conceivable that both regularizations are physically meaningful (see [BFJ]),
although the limiting dynamics of solutions expectedly depends on the re-
gularization itself.

It was proved in [Sl] that measure-valued solutions of the Neumann
initial-boundary value problem for equation (3.1.3) can be defined by ta-
king a suitable limit as κ→ 0 of solutions to the corresponding problem for
(3.1.5), in the same way as for ut = [φ(u)]xx letting ε→ 0 in (3.1.2) (however,
such solutions do not seem to satisfy any entropy inequality). The long-time
behaviour of such solutions was also studied, yet under assumptions on φ
which are not satisfied if assumption (H) holds.

The chapter is organized as follows. In Section 3.2 we describe our results
and the methods of proofs. Precise statements are given in Section 3.3 (see
also Subsection 3.4.2). Sections 3.4 and 3.5 are essentially devoted to proofs.

3.2 Outline of results

Following [Pl1] (see also [EP], [MTT]) we give the following definition.

Definition 3.2.1. By a weak entropy measure-valued solution of (3.1.1)
in Q∞ we mean any quintuple u, λ0, λ1, λ2 ∈ L∞(Q∞), v ∈ L∞(Q∞) ∩
L2((0, T );H1(0, 1)) for any T > 0 such that:
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(i)
∑2

i=0 λi = 1, λi ≥ 0 and there holds:

u =
2∑
i=0

λisi(v) (3.2.1)

with λ1 = 1 if v < A, λ2 = 1 if v > B;

(ii) for any T > 0, set QT := (0, 1)× (0, T ); then for any T > 0 the couple
(u, v) satisfies the equality∫ ∫

QT

{uψt − vxψx} dxdt+
∫ 1

0
u0(x)ψ(x, 0)dx = 0 (3.2.2)

for any ψ ∈ C1(QT ), ψ(·, T ) = 0 in (0, 1);

(iii) for any g ∈ C1(R), set

G(λ) :=
∫ λ

g(φ(s))ds. (3.2.3)

Then, for any T > 0 the entropy inequality∫ ∫
QT

{
G∗ψt − g(v)vxψx − g′(v)v2

xψ
}
dxdt+

+
∫ 1

0
G(u0)ψ(x, 0)dx ≥ 0 (3.2.4)

is satisfied for any ψ ∈ C1(QT ), ψ ≥ 0, ψ(·, T ) = 0 in (0, 1), and g ∈
C1(R), g′ ≥ 0.
Here, G∗ ∈ L∞(Q∞) is defined by

G∗(x, t) :=
2∑
i=0

λi(x, t)G(si(v(x, t))) (3.2.5)

for a.e. (x, t) ∈ Q∞.

Let us also make the following:

Definition 3.2.2. By a steady state solution of (3.1.1) we mean any quin-
tuple u, λ∗0, λ

∗
1, λ

∗
2 ∈ L∞(0, 1), v ∈ R such that 0 ≤ λ∗i ≤ 1,

∑2
i=0 λ

∗
i = 1

and

u =
2∑
i=0

λ∗i si(v) (3.2.6)

with λ∗1 = 1 if v < A, λ∗2 = 1 if v > B. Observe that u is constant if
v < A, v > B.
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In [Pl1] the existence of weak entropy measure-valued solutions of problem
(3.1.1) was proved; let us briefly outline the proof for further reference.
Consider for any ε > 0 the regularized problem:

uεt = vεxx in Q∞
vεx = 0 in {0, 1} × (0,∞)
u = u0 in (0, 1)× {0} ,

(3.2.7)

where
vε := φ(uε) + εuεt . (3.2.8)

Global existence and uniqueness of the solution uε to problem (3.2.7) were
proved in [NP].
Moreover, concerning the families {uε} and {vε} the following a priori esti-
mates were proved to hold:

‖uε‖ L∞(Q∞) ≤ C , (3.2.9)

‖ vε‖ L∞(Q∞) ≤ C , (3.2.10)

‖ vεx‖ L2(Q∞) + ‖√εuεt‖ L2(Q∞) ≤ C , (3.2.11)

for some C > 0 independent of ε. The proof of the above estimates makes
use of the equality∫ 1

0
G(uε)(x, t2)ψ(x, t2)dx−

∫ 1

0
G(uε)(x, t1)ψ(x, t1)dx = (3.2.12)

=
∫ t2

t1

∫ 1

0
ψtG(uε)dxdt+

∫ t2

t1

∫ 1

0
ψ[g(φ(uε))− g(vε)]

vε − φ(uε)
ε

dxdt+

−
∫ t2

t1

∫ 1

0
g(vε)ψxvεxdxdt−

∫ t2

t1

∫ 1

0
ψg′(vε)(vεx)2dxdt ,

which holds for any t1 < t2, ψ ∈ C1(Q∞), g ∈ C1(R) and G defined by
(3.2.3). For any T > 0, choosing in (3.2.12) ψ ∈ C1(QT ), ψ ≥ 0, ψ(·, T ) = 0
and g′ ≥ 0 also gives the so-called viscous entropy inequality∫ ∫

QT

{
G(uε)ψt − g(vε)vεxψx − g′(vε)(vεx)2ψ

}
dxdt+

+
∫ 1

0
G(u0)ψ(x, 0)dx ≥ 0 , (3.2.13)

which thus holds for any nondecreasing sufficiently regular g.
Relying on estimates (3.2.9), (3.2.10) and (3.2.11), it was shown in [Pl1] that,
eventually up to a sequence {εk} , εk → 0, in any cylinder QT the sequence
{τ εk} of Young measures associated to the functions uεk converges in the
narrow topology over QT × R to a Young measure τ (e.g., see [V]), whose
disintegration ν(x,t) is a superposition of the three Dirac masses concentrated
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on the branches S1, S2, S0 of the graph of φ. In other words there exist
λi ∈ L∞(Q∞) (i = 0, 1, 2), 0 ≤ λi ≤ 1,

∑2
i=0 λi = 1, such that there holds:

ν(x,t) =
2∑
i=0

λi(x, t)δsi(v(x,t)), (3.2.14)

where λ1 = 1 if v < A, λ2 = 1 if v > B and v ∈ L∞(Q∞) is the limit of
both the sequences {φ(uεk)} and {vεk} in the weak* topology of L∞(Q∞)
(see (3.2.8) and (3.2.11)). By the properties of the narrow convergence of
Young measures, for any f ∈ C(R) there holds:

f(uεk) ∗⇀ f∗ in L∞(Q∞), (3.2.15)

where

f∗(x, t) =
2∑
i=0

λi(x, t)f(si(v(x, t))) (3.2.16)

(e.g., see [GMS] and [V]). In particular, there holds uεk ∗
⇀ u in L∞(Q∞),

u =
∑2

i=0 λisi(v). Moreover, in view of estimate (3.2.11), we have v ∈
L2((0, T );H1(0, 1)) and vεk ⇀ v in L2((0, T );H1(0, 1)) for any T > 0. Fi-
nally, passing to the limit as εk → 0 in the weak formulation of problems
(3.2.7) and in inequalities (3.2.13) gives equation (3.2.2) and the entropy
inequalities (3.2.4), respectively.

This shows that global weak entropy measure-valued solutions of problem
(3.1.1) do exist, hence it is meaningful to investigate their long-time be-
haviour.

The chapter is organized as follows:
(α) in Subsection 3.3.1 we claim that, for any weak entropy measure-valued
solution (u, v) of problem (3.1.1), not necessarily obtained by means of the
Sobolev regularization (3.1.2), there exists a set F ⊆ (0,∞) of Lebesgue
measure |F | = 0 such that the following inequalities:∫ 1

0
G∗(x, t1)ϕ(x)dx−

∫ 1

0
G∗(x, t2)ϕ(x)dx ≥ (3.2.17)

≥
∫ t2

t1

∫ 1

0
[g(v)vxϕx + g′(v)v2

xϕ]dxdt

hold for any t1, t2 ∈ (0,∞) \ F, t1 < t2, ϕ ∈ C1([0, 1]), ϕ ≥ 0, and g ∈
C1(R), g′ ≥ 0 (see Theorem 3.3.1). Here the function G∗ is defined by
(3.2.3) and (3.2.5). In particular, choosing ϕ ≡ 1 in the above equalities
gives ∫ ∞

0
dt

∫ 1

0
v2
x(x, t)dx ≤ C. (3.2.18)
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for some constant C > 0 (by setting g(λ) = λ ); moreover,∫ 1

0
G∗(x, t2)dx ≤

∫ 1

0
G∗(x, t1)dx (3.2.19)

for any t1 ≤ t2, t1, t2 ∈ (0,∞) \ F and for any non-decreasing g.
Inequalities (3.2.17)-(3.2.19) will play a crucial role in the study of the

asymptotic behaviour in time of the solutions to problem (3.1.1).

In Subsection 3.4.2 we address the case of weak entropy measure-valued
solutions (u, v) of problem (3.1.1) obtained as limiting points of the families
{uε} , {vε} of solutions to the regularized problems (3.2.7) (here for any
ε > 0 the function vε is defined by (3.2.8)). As already remarked, the
estimates and convergence results proved in [Pl1] in the limit ε → 0 hold
in the cylinder Q∞, and do not give any information about the behaviour
of the family {uε(·, t)} for fixed t > 0. In this connection, we claim (see
Proposition 3.4.3 and Theorem 3.4.4) that there exists a subset F̃ ⊆ (0,∞),
of Lebesgue measure |F̃ | = 0, such that for any t ∈ (0,∞) \ F̃ the Young
measures associated to the functions uε(·, t) (which are uniformly bounded
in L∞(0, 1)) converge narrowly to a Young measure τ t with disintegration

νtx =
2∑
i=0

λi(x, t)δsi(v(x,t)) (3.2.20)

for a.e. x ∈ (0, 1). Here λi(·, t), v(·, t) are the values at fixed t of the
functions considered in (3.2.14).

(β) Then we proceed to investigate the long-time behaviour of any weak
entropy measure-valued solution (u, v) to problem (3.1.1). In this direction,
first we observe that in view of inequalities (3.2.18) the map

t 7−→
∫ 1

0
v2
x(x, t)dx

belongs to the space L1(0,∞), hence∫ ∞
T

dt

∫ 1

0
v2
x(x, t)dx→ 0 as T →∞. (3.2.21)

In view of (3.2.21), in Theorem 3.3.5 we show that there exists a unique
constant v ∈ R such that for any diverging sequence {tn} there exist a
subsequence {tnk} ⊆ {tn} and a set E ⊆ (0,∞) of Lebesgue measure |E| = 0,
so that

v(·, t+ tnk)→ v in C([0, 1]) (3.2.22)

for any t ∈ (0,∞) \ E. The value of v depends on the average Mu0 of the
initial datum u0 to problem (3.1.1),

Mu0 :=
∫ 1

0
u0(x)dx. (3.2.23)
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In fact, as a consequence of the homogeneous Neumann boundary condition
in (3.1.1), the following conservation law holds:∫ 1

0
u(x, t)dx =

∫ 1

0
u0(x)dx for any t > 0 (3.2.24)

and using (3.2.24) we prove that

(i) a ≤Mu0 ≤ d if and only if A ≤ v ≤ B;

(ii) if Mu0 < a (respectively, Mu0 > d), then v = φ(Mu0);

(see Fig.3.1). Observe that for Mu0 < a and Mu0 > d the constant v
is uniquely determined by the initial datum u0, precisely by its average
over (0, 1) - namely, v does not change for any weak entropy solution of
problem (3.1.1) with the same initial datum u0. This is a remarkable feature,
for no uniqueness of measure valued solutions to problem (3.1.1) is known.
Unfortunately, we do not prove the same result for a ≤Mu0 ≤ d: in this case
we only deduce the uniqueness of the constant v for any given weak entropy
measure-valued solution (u, v) of problem (3.1.1) - namely, the value of v
might depend on the particular choice of the couple (u, v).

Concerning the long-time behaviour of u(·, t), we have to distinguish the
cases a ≤Mu0 ≤ d and Mu0 < a, Mu0 > d.
In fact when a ≤ Mu0 ≤ d, we have to take into account the long-time
behaviour of the coefficients λi. Precisely, for any i = 0, 1, 2 there exists a
unique λ∗i ∈ L∞(0, 1), λ∗i ≥ 0,

∑2
i=0 λ

∗
i = 1, such that for any diverging

and non-decreasing sequence {tn} there holds

λi(x, t+ tnk)→ λ∗i (x) for a.e. x ∈ (0, 1) (3.2.25)

for any t ∈ (0,∞) \ E, where {tnk} ⊆ {tn} and E ⊆ (0,∞) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.2.22) holds (see Proposition 3.3.4
and Proposition 3.5.4). The coefficients λ∗i are uniquely determined by any
fixed weak entropy measure-valued solution (u, v) of problem (3.1.1), that
is, they do not depend on the sequence {tn}. Thus, in view of (3.2.22) and
(3.2.25) we obtain:

u(·, t+ tnk)→ u a.e. in (0, 1), (3.2.26)

for any t ∈ (0,∞) \ E, where

u :=
2∑
i=0

λ∗i si(v) (3.2.27)

(see Theorem 3.3.6-(i)).
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On the other hand, when Mu0 < a (respectively Mu0 > d), by the uniform
convergence v(·, t + tn) → φ(Mu0), using standard arguments of positively
invariant regions we show that there exists T > 0 so large that v(·, t) < A
(respectively, v(·, t) > B) in (0, 1) for a.e. t ≥ T (see Theorem 3.3.5-(ii)).
Thus, by (3.2.1) we have

u(·, t) = s1(v(·, t)) in (0, 1) (3.2.28)

(respectively, u(·, t) = s2(v(·, t)) in (0, 1)) for a.e. t ≥ T . Arguing as in the
case a ≤ Mu0 ≤ d, for any diverging and non-decreasing sequence {tn} we
denote by {tnk} ⊆ {tn} and E ⊆ (0,∞) respectively any subsequence and
any set of zero Lebesgue-measure such that (3.2.22) holds. In view of the
above remarks, we have:

u(·, t+ tnk)→Mu0 in C([0, 1]) (3.2.29)

for any t ∈ (0,∞) \ E (see Theorem 3.3.6-(ii)).

Then, given any weak entropy measure-valued solution (u, v) of problem
(3.1.1) we wonder whether there exists the limit as t→∞, in some suitable
topology, of the families u(·, t) and v(·, t). In fact, in view of the above
remarks, for any non-decreasing sequence {tn} , tn → ∞, there exist a
subsequence {tnk} ⊆ {tn} and a set E ⊆ (0,∞), |E| = 0 such that v(·, t +
tnk)→ v in C([0, 1]), and u(·, t+tnk)→ u a.e. in (0, 1) or u(·, t+tnk)→Mu0

uniformly in [0, 1], only for t ∈ R+ \ E ; observe that the set E, in general,
depends on the sequence {tn}. A natural question is the following: is it
possible to prove that E is independent of the choice of {tn}? In other
words, we are interested in proving the existence of the limits

v(·, t)→ v in C([0, 1]), (3.2.30)

u(·, t)→ u a.e. in (0, 1), (3.2.31)

(in the case a ≤Mu0 ≤ d) and

u(·, t)→Mu0 in C([0, 1]) (3.2.32)

(in the cases Mu0 < a, Mu0 > d) as t → ∞, t ∈ R+ \ E∗, for some
E∗ ⊆ (0,∞) of Lebesgue measure, |E∗| = 0. To address this point, for any
k ∈ N consider the sets:

Bk :=
{
t ∈ (0,∞)|

∫ 1

0
v2
x(x, t)dx < k

}
, (3.2.33)

and

Ak :=
{
t ∈ (0,∞)|

∫ 1

0
v2
x(x, t)dx ≥ k

}
≡ (0,∞) \Bk. (3.2.34)
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Then, Ak+1 ⊆ Ak, and, in view of estimate (3.2.18),

|Ak| ≤
C

k
→ 0 as k →∞. (3.2.35)

This implies that

A∞ :=
∞⋂
k=1

Ak (3.2.36)

has Lebesgue measure |A∞| = 0, thus E∗ = A∞ would be a natural choice.
However, we can only prove a slightly weaker result, showing that for any k >
0, the limits (3.2.30)-(3.2.32) hold as t → ∞, t ∈ Bk (see Theorem 3.3.7).
In other words, for any δ > 0, we can find a set A1/δ such that |A1/δ| ≤ δ,
and convergences (3.2.30)-(3.2.32) hold for t→∞, t ∈ (0,∞) \A1/δ.

Finally, in view of Definition 3.2.2, the couple (u, v) (in the case a ≤
Mu0 ≤ d) and the couple (Mu0 , φ(Mu0)) (in the cases Mu0 < a, Mu0 > d)
are steady state solutions of problem (3.1.1).

3.3 Mathematical frameworks and results

3.3.1 A priori estimates

The following theorem is a consequence of the entropy inequalities (3.2.4).

Theorem 3.3.1. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1). Then there exists a set F ⊆ (0,∞) of Lebesgue measure
|F | = 0 such that inequalities (3.2.17) hold for any t1, t2 ∈ (0,∞) \ F .

By Theorem 3.3.1 we obtain the following results.

Corollary 3.3.2. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1). Then there exists a constant C > 0 such that estimate
(3.2.18) holds.

Corollary 3.3.3. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1) and let F be the set given by Theorem 3.3.1. For any g ∈
C1(R), let G∗ be the function defined by (3.2.5). Then there exists

Lg := lim
t→∞

t ∈ (0,∞) \ F

∫ 1

0
G∗(x, t) dx, (3.3.1)

for any non-decreasing g.
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Finally, we give a property of monotonicity in time of the coefficients λi(x, t)
for a.e. x ∈ (0, 1). Analogous results in this direction have been proved
in [Pl1], showing that λ1(x, t) (repectively, λ2(x, t)) is non-decreasing with
respect to t in any cylinder of the form I × (t1, t2), I ⊆ (0, 1) whenever v
is strictly less that B (respectively, strictly larger than A). However if the
latter assumption is dropped, a weaker result of monotonicity is still valid.
This is the content of the following proposition.

Proposition 3.3.4. Let (u, v) be a weak entropy measure-valued solution
of problem (3.1.1). Let t1 < t2 ∈ (0,∞) \ F where F is the set of zero
Lebesgue-measure given by Theorem 3.3.1. Then:

(i) if v(·, tj) ≤ B∗ < B in (0, 1), j = 1, 2, we have

λ1(x, t2) ≥ λ1(x, t1) (3.3.2)

for a.e. x ∈ (0, 1);

(ii) if v(·, tj) ≥ A∗ > A in (0, 1), j = 1, 2, we have

λ2(x, t2) ≥ λ2(x, t1) (3.3.3)

for a.e. x ∈ (0, 1).

3.3.2 Large-time behaviour of weak entropy solutions

In what follows we denote by (u, v) a weak entropy measure-valued solution
of problem (3.1.1). We begin by the following result, which is a consequence
of estimate (3.2.18) and the conservation law (3.2.24).

Theorem 3.3.5. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1) with initial datum u0 and let Mu0 be defined by (3.2.23).
Then there exists a unique constant v ∈ R such that for any diverging se-
quence {tn} there exist a subsequence {tnk} ⊆ {tn} and a set E ⊆ (0,∞) of
Lebesgue measure |E| = 0, so that there holds

v(·, t+ tnk)→ v in C([0, 1]) (3.3.4)

for any t ∈ (0,∞) \ E. Moreover,

(i) a ≤Mu0 ≤ d if and only if A ≤ v ≤ B;

(ii) if Mu0 < a or Mu0 > d, then

v = φ(Mu0). (3.3.5)

Finally, if Mu0 < a (respectively, Mu0 > d), for any ε > 0 there exists T > 0
such that v(·, t) ≤ A − ε (respectively, v(·, t) ≥ B + ε) in [0, 1] for any
t ∈ (T,∞)\F . Here F is the set of zero Lebesgue-measure given by Theorem
3.3.1.
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Remark 3.3.1. The set E ⊆ (0,∞) of zero Lebesgue-measure given by
Theorem 3.3.5 in correspondence of any diverging sequence {tn} depends on
the sequence itself.

Next, for any diverging sequence {tn} and for a.e. t > 0, consider the se-
quence {u(·, t+ tn)}, where

u(x, t+ tn) =
2∑
i=0

λi(x, t+ tn)si(v(x, t+ tn)) for a.e. x ∈ (0, 1) (3.3.6)

(see (3.2.1)). In the following theorem we show that u(·, t+ tn) approaches
for a.e. t > 0 a time-independent function u, uniquely determined by the
couple (u, v) itself.

Theorem 3.3.6. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1) with initial datum u0, let Mu0 be defined by (3.2.23) and let
v be the constant given by Theorem 3.3.5. Then:

(i) if a ≤Mu0 ≤ d, for any i = 0, 1, 2 there exists a unique λ∗i ∈ L∞(0, 1),
λ∗i ≥ 0 and

∑2
i=0 λ

∗
i = 1 such that for any diverging and non-decreasing

sequence {tn} there holds:

u(·, t+ tnk)→ u :=
2∑
i=0

λ∗i si(v) a.e. in (0, 1) (3.3.7)

for any t ∈ (0,∞) \ E, where {tnk} ⊆ {tn} and E ⊆ (0,∞) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.3.4) holds;

(ii) if Mu0 < a and Mu0 > d, for any diverging and non-decreasing sequence
{tn} there holds:

u(·, t+ tnk)→Mu0 in C([0, 1]) (3.3.8)

for any t ∈ (0,∞) \ E, where {tnk} ⊆ {tn} and E ⊆ (0,∞) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.3.4) holds. Moreover, if Mu0 < a
(respectively, Mu0 > d) there exists T > 0 such that u(·, t) = s1(v(·, t)) in
(0, 1) (respectively, u = s2(v(·, t)) if Mu0 > d) for any t ∈ (T,∞) \F . Here
F is the set of zero Lebesgue-measure given by Theorem 3.3.1.

Observe that the coefficients λ∗i given by Theorem 3.3.6 do not depend on
the sequence {tn}.
Theorem 3.3.5 and Theorem 3.3.6 address the asymptotic behaviour in time
of v(·, t+ tn) and u(·, t+ tn) along any diverging sequence {tn} and for any
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t ∈ (0,∞) \ E, where E is a set of Lebesgue measure |E| = 0, possibly
depending on the choice of {tn} itself. As stated in Section 3.2, we wonder
whether we can refine the results of Theorem 3.3.5 and Theorem 3.3.6 finding
a fixed set E∗ of Lebesgue measure |E∗| = 0, such that

v(·, tn)→ v , u(·, tn)→ u (or Mu0) (3.3.9)

in the respective topologies, for any sequence {tn} ⊆ (0,∞) \E∗. A slightly
weaker result in this direction is the content of the following theorem. Pre-
cisely, we show that convergences (3.3.9) hold only except for sets of arbi-
trarily small - albeit non-zero - Lebesgue measure.

Theorem 3.3.7. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1) with initial datum u0. For any k > 0, let Bk ⊆ R+ be the
set defined by (3.2.33). Let Mu0 be defined by (3.2.23), let v be the constant
given by Theorem 3.3.5 and let λ∗i be the functions given by Theorem 3.3.6.
Let F be the set given by Theorem 3.3.1. Then for any diverging and non-
decreasing sequence {tn} ⊆ Bk \ F there holds:

v(·, tn)→ v in C([0, 1]). (3.3.10)

Moreover,

(i) if a ≤Mu0 ≤ d, then

u(·, tn)→ u a.e. in (0, 1) (3.3.11)

where u ∈ L∞(0, 1) is the function defined in (3.3.7);

(ii) if Mu0 < a or Mu0 > d, then

u(·, tn)→Mu0 in C([0, 1]). (3.3.12)

The couple (u, v) in (3.3.10)-(3.3.11) (in the case a ≤ Mu0 ≤ d) and the
couple (Mu0 , φ(Mu0)) (in the cases Mu0 < a, Mu0 > d) are steady state
solutions of problem (3.1.1) (see Definition 3.2.2). The following theorem is
an immediate consequence of Theorem 3.3.7.

Theorem 3.3.8. Let (u, v) be a weak entropy measure-valued solution of
problem (3.1.1). For any k > 0, let Bk ⊆ R+ be the set defined by (3.2.33).
Then for any diverging and non-decreasing sequence {tn} ⊆ Bk the couple

(u(·, tn), v(·, tn))

converges to a steady state solution of (3.1.1) (in a sense made precise by
Theorem 3.3.7).
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3.4 Proof of results of Subsection 3.3.1 and im-
proved results on the Sobolev regularization

3.4.1 Proof of results of Subsection 3.3.1

The proof of Theorem 3.3.1 needs the following lemma.

Lemma 3.4.1. There exists a set E ⊆ Q∞, of Lebesgue measure |E| = 0,
such that for any (x, t) ∈ Q∞ \ E there holds:

1
r2

∫
Ir(t)

∫
Ir(x)
|G∗(ξ, s)−G∗(x, t)| dξds→ 0 as r → 0, (3.4.1)

where G∗ ∈ L∞(Q∞) is any function defined by (3.2.5) for any g ∈ C1(R).
Here Ir(t), Ir(x) denote the intervals of length r centered at t > 0 and
x ∈ (0, 1), respectively.

Remark 3.4.1. The importance of Lemma 3.4.1 can be explained as follows.
Since the function G∗ ∈ L∞(Q∞) for any g ∈ C1(R), there exists a set
EG∗ ⊆ Q∞, |EG∗ | = 0, in general depending on G∗, such that (3.4.1) holds
for any t ∈ Q∞ \ EG∗ (e.g., see [GMS]). The main result in our context is
that we can find a set E ⊆ Q∞, |E| = 0 , so that (3.4.1) is satisfied for any
t ∈ Q∞ \ E and for any choice of the function G∗ - namely, the set E is
independent of G∗.

Proof of Lemma 3.4.1. Since vx ∈ L2
loc(Q∞) and v, λi, si(v) ∈ L∞(Q∞)

(i = 0, 1, 2), there exists a set E ⊆ Q∞ of Lebesgue measure |E| = 0, such
that there hold:

1
r2

∫
Ir(t)

∫
Ir(x)
| vx(ξ, s)− vx(x, t)|2dξds→ 0, (3.4.2)

1
r2

∫
Ir(t)

∫
Ir(x)
| v(ξ, s)− v(x, t)| pdξds→ 0, (3.4.3)

1
r2

∫
Ir(t)

∫
Ir(x)
| si(v(ξ, s))− si(v(x, t))| pdξds→ 0, (3.4.4)

1
r2

∫
Ir(t)

∫
Ir(x)
|λi(ξ, s)− λi(x, t)| pdξds→ 0 (3.4.5)

as r → 0, for any (x, t) ∈ Q∞ \E (e.g., see [GMS]) and for any p ∈ [1,∞).
Thus, fix any (x, t) ∈ Q∞ \ E, let G∗ be the function defined by (3.2.3)

and (3.2.5) for any g ∈ C1(R) and let IG
∗

r denote the integral in (3.4.1). To
begin with, observe that

IG
∗

r ≤ 1
r2

2∑
i=0

∫
Ir(t)

∫
Ir(x)

∣∣∣∣∣λi(ξ, s)
∫ si(v(ξ,s))

si(v(x,t))
g(φ(λ))dλ+

+[λi(ξ, s)− λi(x, t)]
∫ si(v(x,t))

g(φ(λ))dλ

∣∣∣∣∣ dξds,
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hence

IG
∗

r ≤ 1
r2

2∑
i=0

∫
Ir(t)

∫
Ir(x)

∣∣∣∣∣λi(ξ, s)
∫ si(v(ξ,s))

si(v(x,t))
g(φ(λ))dλ

∣∣∣∣∣ dξds+ (3.4.6)

+
1
r2

2∑
i=0

∫
Ir(t)

∫
Ir(x)
|λi(ξ, s)− λi(x, t)|

∣∣∣∣∣
∫ si(v(x,t))

g(φ(λ))dλ

∣∣∣∣∣ dξds.
In view of (3.4.5), the last integral in the right-hand side of (3.4.6) converges
to zero as r → 0. Finally, observe that∣∣∣∣∣

∫ si(v(ξ,s))

si(v(x,t))
|g(φ(λ))|dλ

∣∣∣∣∣ ≤ ‖g‖L∞(−C,C)|si(v(ξ, s))− si(v(x, t))| ,

where C is chosen so that ‖v‖L∞(Q∞) ≤ C. Therefore, by (3.4.4) passing to
the limit as r → 0 in the first term of the right-hand side of (3.4.6) gives

1
r2

2∑
i=0

∫
Ir(t)

∫
Ir(x)

λi(ξ, s)

∣∣∣∣∣
∫ si(v(ξ,s))

s1(v(x,t))
|g(φ(λ))|dλ

∣∣∣∣∣ dξds ≤
≤ ‖g‖L∞(−C,C)

2∑
i=0

1
r2

∫
Ir(t)

∫
Ir(x)
| si(v(ξ, s))− si(v(x, t))| dξds→ 0.

This concludes the proof. �

Lemma 3.4.2. Let (u, v) be a weak entropy measure-valued solution of pro-
blem (3.1.1) and let G∗ be the function defined by (3.2.5) for any g ∈ C1(R)).
Then there exists F ⊆ (0,∞) of Lebesgue measure |F | = 0, such that for
any g ∈ C1(R), g′ ≥ 0, there holds

n

∫ t

t− 1
n

∫ 1

0
G∗(ξ, s)ϕ(ξ)dξds→

∫ 1

0
G∗(ξ, t)ϕ(ξ)dξ (3.4.7)

and

n

∫ t+ 1
n

t

∫ 1

0
G∗(ξ, s)ϕ(ξ)dξds→

∫ 1

0
G∗(ξ, t)ϕ(ξ)dξ (3.4.8)

as n→∞, for any ϕ ∈ C1([0, 1]), ϕ ≥ 0, and for any t ∈ (0,∞) \ F .

Proof. Let E ⊆ Q∞ be the set of zero Lebesgue-measure given by Lemma
3.4.1. There exists F ⊆ (0,∞), |F | = 0, such that for any t ∈ (0,∞) \ F

Et := {x ∈ (0, 1)| (x, t) ∈ E} ⊆ (0, 1) (3.4.9)

has Lebesgue measure |Et| = 0.
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Let us address (3.4.7) ((3.4.8) can be proved in an analogous way). Fix any
t ∈ (0,∞) \ F and for any n ∈ N consider the function Γn(ξ), ξ ∈ (0, 1),
defined as follows:

Γn(ξ) := n

∫ t

t− 1
n

G∗(ξ, s)ds. (3.4.10)

Since G∗ ∈ L∞(Q∞), we have

‖Γn‖L∞(0,1) ≤ ‖G∗‖L∞(Q∞)

for any n ∈ N. Thus, there exists Gt ∈ L∞(0, 1) such that, eventually up to
a subsequence, there holds

Γn
∗
⇀ Gt in L∞(0, 1) (3.4.11)

as n→∞.

For any n > 0 and k > 0, consider the functions:

hn,k(s) :=
{
hn(s) = n(s− t) + 1 if s ∈ [t− 1

n , t],
hk(s) = −k(s− t) + 1 if s ∈ (t, t+ 1

k ],
(3.4.12)

and, for a.e. x ∈ (0, 1),

ϕx,k(ξ) :=


0 if | ξ − x| > 1

k ,
k2(ξ − x) + k if ξ ∈ [x− 1

k , x],
−k2(ξ − x) + k if ξ ∈ (x, x+ 1

k ].
(3.4.13)

Denote by Sk the square

Sk := (x− 1
k
, x+

1
k

)× (t, t+
1
k

).

Choosing
ψn,k(ξ, s) := hn,k(s)ϕx,k(ξ) (3.4.14)

as test function in the entropy inequalities (3.2.4) gives

n

∫ t

t− 1
n

∫ x+ 1
k

x− 1
k

G∗(ξ, s)ϕx,k(ξ)dξds− k
∫ ∫

Sk

G∗ϕx,kdξds ≥

≥
∫ t+ 1

k

t− 1
n

∫ x+ 1
k

x− 1
k

g(v)ϕx,kξ vξh
n,kdξds (3.4.15)

for any g ∈ C1(R), g′ ≥ 0. In view of (3.4.11), taking the limit n → ∞ in
(3.4.15) gives ∫ x+ 1

k

x− 1
k

Gt(ξ)ϕx,k(ξ)dξ − k
∫ ∫

Sk

G∗ϕx,kdξds ≥

≥
∫ ∫

Sk

g(v)ϕx,kξ vξh
kdξds. (3.4.16)
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We study the limit k →∞ in the above inequality for any fixed x ∈ (0, 1)\Et
(here, for any t ∈ F , Et ⊆ (0, 1) is the set of zero Lebesgue-measure defined
by (3.4.9) in correspondence of t). By Lemma 3.4.1 we have:

k

∫ ∫
Sk

G∗ϕx,kdξds→ G∗(x, t) (3.4.17)

as k → ∞. Concerning the second term in the right-hand side of (3.4.16),
there holds∫ ∫

Sk

g(v)hkvξϕ
x,k
ξ dξds = k2

∫ t+ 1
k

t

∫ x

x− 1
k

hkg(v)vξdξds+ (3.4.18)

− k2

∫ t+ 1
k

t

∫ x+ 1
k

x
hkg(v)vξdξds,

and the right-hand side of (3.4.18) converges to

g(v(x, t))vx(x, t)
2

− g(v(x, t))vx(x, t)
2

= 0

as k →∞ (here use of (3.4.2) and (3.4.3) has been made). Hence, (3.4.17)-
(3.4.18) imply that for any x ∈ (0, 1) \ Et (hence for a.e. x ∈ (0, 1)) there
holds:

lim
k→∞

∫ 1

0
Gt(ξ)ϕx,k(ξ) dξ ≥ G∗(x, t) .

Since

Gt(x) = lim
k→∞

∫ 1

0
Gt(ξ)ϕx,k(ξ)dξ ,

for a.e. x ∈ (0, 1), there holds:

Gt(x) ≥ G∗(x, t) (3.4.19)

for a.e. x ∈ (0, 1) and for any g ∈ C1(R), g′ ≥ 0 and G∗ defined by (3.2.5).
Let us prove the reverse inequality. To this purpose, for any n > 0 and
k > 0, consider the functions:

zn,k(s) :=
{
k(s− t+ 1

n) + 1 if s ∈ [t− 1
n − 1

k , t− 1
n ],

−n(s− t+ 1
n) + 1 if s ∈ (t− 1

n , t],
(3.4.20)

and, for a.e. x ∈ (0, 1),

ζx,k(ξ) :=


0 if | ξ − x| > 1

k ,
k2(ξ − x) + k if ξ ∈ [x− 1

k , x],
−k2(ξ − x) + k if ξ ∈ (x, x+ 1

k ].
(3.4.21)

Choose
Ψn,k(ξ, s) := zn,k(s)ζx,k(ξ) (3.4.22)
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as test function in the entropy inequalities (3.2.4). We obtain

k

∫ t− 1
n

t− 1
n
− 1
k

∫ x+ 1
k

x− 1
k

G∗(ξ, s)ζx,k(ξ)dξds− n
∫ t

t− 1
n

∫ x+ 1
k

x− 1
k

G∗ζx,kdξds ≥

≥
∫ t

t− 1
n
− 1
k

∫ x+ 1
k

x− 1
k

g(v)ζx,kξ vξz
n,kdξds (3.4.23)

for any g ∈ C1(R), g′ ≥ 0. Denote by Sk the square

Sk := (x− 1
k
, x+

1
k

)× (t− 1
k
, t).

In view of (3.4.11), taking the limit n→∞ in (3.4.23) gives

k

∫ ∫
Sk

G∗ζx,kdξds−
∫ x+ 1

k

x− 1
k

Gt(ξ)ζx,k(ξ)dξ ≥

≥
∫ ∫

Sk

g(v)ζx,kξ vξ z̃
kdξds, (3.4.24)

where z̃k(s) = k(s− t) + 1 for s ∈ (t− 1
k , t). Arguing as above, taking the

limit k →∞ in (3.4.24) gives

Gt(x) = lim
k→∞

∫ 1

0
Gt(ξ)ζx,k(ξ) dξ ≤ G∗(x, t) (3.4.25)

for a.e. x ∈ (0, 1), for any g ∈ C1(R), g′ ≥ 0 and G∗ defined by (3.2.5).
Thus (3.4.7) follows.

Proof of Theorem 3.3.1. Fix any t1, t2 ∈ (0,∞) \ F , where F is the set
given in Lemma 3.4.2. Suppose t1 < t2 and consider the function

hn(t) :=


0 if t < t1 − 1

n ,
n(t− t1) + 1 if t ∈ [t1 − 1

n , t1],
1 if t ∈ (t1, t2),
n(t2 − t) + 1 if t ∈ [t2, t2 + 1

n ],
0 if t > t2 + 1

n .

(3.4.26)

For any choice of ϕ ∈ C1([0, 1]), ϕ ≥ 0, choosing ψn(x, t) := ϕ(x)hn(t) as
test function in the entropy inequalities (3.2.4) gives

n

∫ t1

t1− 1
n

∫ 1

0
G∗(x, t)ϕ(x)dx− n

∫ t2+ 1
n

t2

∫ 1

0
G∗(x, t)ϕ(x)dx ≥

≥
∫ t2+ 1

n

t1− 1
n

∫ 1

0
hn[g(v)vxϕx + g′(v)v2

xϕ]dxdt (3.4.27)
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for any g ∈ C1(R), g′ ≥ 0 and G∗ defined by (3.2.5). In view of (3.4.7)-
(3.4.8) in Lemma 3.4.2, passing to the limit as n → ∞ in (3.4.27) gives
(3.2.17) and the claim follows. �

Proof of Corollary 3.3.2. Write inequalities (3.2.17) with t1 = 0, ϕ(·) ≡ 1
in (0, 1) and g(s) = s. We obtain:∫ T

0

∫ 1

0
v2
xdxdt ≤

∫ 1

0

(∫ u0(x)

0
φ(s)ds

)
dx+

−
2∑
i=0

∫ 1

0
λi(x, T )

(∫ si(v(x,T ))

0
φ(s)ds

)
dx ≤ C

for any T ∈ (0,∞) \ F , since v ∈ L∞(Q∞) (here F is the set given by
Theorem 3.3.1). Taking the limit as T → ∞ in the above inequality gives
estimate (3.2.18). �

Proof of Corollary 3.3.3. Write inequalities (3.2.17) with ϕ(·) ≡ 1 in
(0, 1) and g ∈ C1(R), g′ ≥ 0. We obtain:∫ 1

0
G∗(x, t1)dx−

∫ 1

0
G∗(x, t2)dx ≥

∫ t2

t1

∫ 1

0
g′(v)v2

xdxdt ≥ 0

for any t1 < t2 ∈ (0,∞) \F , where F is the set given by Theorem 3.3.1 and
G∗ is the function defined by (3.2.5) in terms of g. The above inequality
implies that the map

t 7−→
∫ 1

0
G∗(x, t)dx

is non-increasing in (0,∞) \ F for any g ∈ C1(R), g′ ≥ 0. By standard
arguments of approximation with smooth functions, the assumption g ∈
C1(R) can be dropped. �

Proof of Proposition 3.3.4. Let t1 < t2 ∈ (0,∞)\F and assume v(·, tj) ≤
B∗ < B in (0, 1) for j = 1, 2 (the case v(·, tj) ≥ A∗ > A can be treated in
an analogous way). Following [Pl1], for any ρ > 0 set

gρ(λ) :=
{

0 if λ ≤ B − ρ,
ρ−1/2 if λ > B − ρ (3.4.28)

and let G∗ρ be the function defined by (3.2.5) in terms of Gρ, where

Gρ(λ) :=
∫ λ

0
gρ(φ(s))ds .
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Since gρ is non-decreasing, using standard arguments of approximation with
smooth functions, we can use it in inequality (3.2.17) and obtain∫ 1

0
G∗ρ(x, t1)ϕ(x)dx−

∫ 1

0
G∗ρ(x, t2)ϕ(x)dx ≥ (3.4.29)

≥
∫ t2

t1

∫ 1

0
gρ(v)vxϕxdxdt

for any ϕ ∈ C∞c (0, 1), ϕ ≥ 0. For any ρ such that B − ρ > B∗, we have

G∗ρ(x, tj) =
2∑
i=0

λi(x, tj)
∫ si(v(x,tj))

0
gρ(φ(s))ds =

= λ1(x, tj)
∫ s1(B−ρ)

s0(B−ρ)
ρ−1/2ds (3.4.30)

for j = 1, 2 (here use of assumption v(·, tj) ≤ B∗ < B has been made). On
the other hand, since φ′′(b) 6= 0, we have∫ s1(B−ρ)

s0(B−ρ)
ρ−1/2ds→ −C (3.4.31)

as ρ → 0. Here C > 0 is a constant depending on the value φ′′(b) (see also
[Pl1]).
Moreover, using a standard argument of positively invariant regions (e.g.,
see [NP] and [MTT]), it is easily seen that

v(·, t) ≤ B (3.4.32)

for a.e. t ≥ t1. Hence,∣∣∣∣ ∫ t2

t1

∫ 1

0
gρ(v)vxϕxdxdt

∣∣∣∣ = (3.4.33)

=
∣∣∣∣ ∫ t2

t1

∫ 1

0
ϕxx

(∫ v

0
gρ(s)ds

)
dxdt

∣∣∣∣ ≤
≤ ρ−1/2

∫ t2

t1

∫
{v(·,t)>B−ρ}

(v −B + ρ)|ϕxx| dxdt ≤

≤ ρ1/2

∫ t2

t1

∫ 1

0
|ϕxx| dxdt→ 0

as ρ → 0, the last inequality being a consequence of (3.4.32). Observe
that (3.4.33) shows that the right-hand side in (3.4.29) converges to zero as
ρ → 0. Concerning the first member of (3.4.29), by (3.4.31) it easily seen
that

lim
ρ→0

∫ 1

0
[G∗ρ(x, t1)−G∗ρ(x, t2)]ϕ(x)dx = (3.4.34)

= −C
∫ 1

0
[λ1(x, t1)− λ1(x, t2)]ϕ(x)dx
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for any ϕ ∈ C∞c (0, 1), ϕ ≥ 0. Thus, by (3.4.33) and (3.4.34) passing to the
limit as ρ→ 0 in (3.4.29) gives∫ 1

0
[λ1(x, t2)− λ1(x, t1)]ϕ(x)dx ≥ 0 (3.4.35)

for any ϕ ∈ C∞c (0, 1), ϕ ≥ 0. This implies (3.3.2). �

3.4.2 More about the Sobolev regularization and the
vanishing viscosity limit

Let (u, v) be a weak entropy measure-valued solution of problem (3.1.1)
obtained as limiting point of the solutions uε, vε to the regularized problems
(3.2.7) (here for any ε > 0 the function vε is defined by (3.2.8)). Precisely,
there exists a sequence {εk} , εk → 0 such that

uεk
∗
⇀ u =

2∑
i=0

λisi(v) in L∞(Q∞),

vεk , φ(uεk) ∗⇀ v, in L∞(Q∞),
vεkx ⇀ vx in L2(Q∞).

Moreover, we can assume:

φ(uεk)→ v a.e. in Q∞ (3.4.36)

(e.g., see [Pl1]). The following proposition is a direct consequence of (3.4.36).

Proposition 3.4.3. Let v ∈ L∞(Q∞) be the limit of the sequence {φ(uεk)}
in the weak* topology of L∞(Q∞). For any t > 0, denote by

{
τ tεk
}

the
sequence of the Young measures associated to the family {uεk(·, t)}. Then
there exists F1 ⊆ (0,∞), |F1| = 0 such that for any t ∈ (0,∞) \ F1 there
exist a subsequence {εk,t} ⊆ {εk} and a Young measure τ t over (0, 1)×R so
that:

τ tεk,t → τ t narrowly. (3.4.37)

Moreover, for any t ∈ (0,∞)\F1 there exist λti ∈ L∞(0, 1) (i = 0, 1, 2 ), 0 ≤
λti ≤ 1,

∑2
i=0 λ

t
i = 1, such that the disintegration νtx of τ t is of the form

νtx =
2∑
i=0

λti(x)δsi(v(x,t)), (3.4.38)

for a.e. x ∈ (0, 1), where λt1(x) = 1 if v(x, t) < A and λt2(x) = 1 if v(x, t) >
B.
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Proof. In view of (3.4.36), there exists a set F1 ⊆ (0,∞), |F1| = 0, such
that

φ(uεk)(x, t)→ v(x, t) for a.e. x ∈ (0, 1) (3.4.39)

and for any t ∈ (0,∞) \ F1. Thus, for any t ∈ (0,∞) \ F1 the Young
measures associated to the sequence {φ(uεk)(·, t)} converge in the narrow
topology over (0, 1)× R to a Young measure whose disintegration σtx is the
Dirac mass concentrated at the point v(x, t) - namely

σtx = δv(x,t) for a.e. x ∈ (0, 1) (3.4.40)

(see [GMS] and [V]). On the other hand, since ‖uεk(·, t)‖ L∞(0,1) ≤ C, for
any t ∈ (0,∞) \ F 1 there exists a subsequence {εk,t} ⊆ {εk} such that
the Young measures associated to the sequence {uεk,t(·, t)} converge to a
Young measure τ t in the narrow topology of (0, 1) × R. For a.e. x ∈ (0, 1)
let νtx denote the disintegration of the Young measure τ t, at any fixed t ∈
(0,∞) \ F1.

Fix any t ∈ (0,∞) \ F1, consequently fix any x ∈ (0, 1), and write for
simplicity

σ ≡ σtx, v(x, t) ≡ v and ν ≡ νtx.
Arguing as in [Pl1] and using the general properties of the narrow conver-
gence of Young measures (e.g., see [V]), for any f ∈ C(R) there holds

f(v) =
∫

R
f(ζ)dσ(ζ) =

∫
R

(f ◦ φ)(λ)dν(λ), (3.4.41)

the first equality in the above equation following by (3.4.40). Then decom-
pose the measure σ in three measures σi (i = 0, 1, 2), namely

σ =
2∑
i=0

σi,

where ∫
R
f(ζ)dσ1(ζ) :=

∫
(−∞,b)

(f ◦ φ)(λ)dν(λ) ,∫
R
f(ζ)dσ0(ζ) :=

∫
[b,c]

(f ◦ φ)(λ)dν(λ) ,∫
R
f(ζ)dσ2(ζ) :=

∫
(c,∞)

(f ◦ φ)(λ)dν(λ)

for any f ∈ C(R). Here b, c are defined as in Fig.3.1. Clearly, in view of
(3.4.40) we easily obtain

σi = λiδv (i = 0, 1, 2) (3.4.42)
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for some coefficients 0 ≤ λi ≤ 1, such that
∑2

i=0 λi = 1. Here in general
λi = λti(x), hence for any fixed t ∈ (0,∞) \ F1, λ

t
i ∈ L∞(0, 1).

We can now conclude the proof, giving the characterization (3.4.38) of the
measure ν. In fact, in view of (3.4.42) we easily obtain the following relation
between the measures σi and ν,∫

R
f(λ)dν(λ) =

∫
(−∞,b)

(f ◦ s1 ◦ φ)(λ)dν(λ) +

+
∫

[b,c]
(f ◦ s0 ◦ φ)(λ)dν(λ) +

∫
(c,∞)

(f ◦ s2 ◦ φ)(λ)dν(λ) =

=
∫

R
(f ◦ s1)(ζ)dσ1(ζ) +

∫
R

(f ◦ s0)(ζ)dσ0(ζ) +
∫

R
(f ◦ s2)(ζ)dσ2(ζ) =

= λ1f(s1(v)) + λ0f(s0(v)) + λ2f(s2(v))

for any f ∈ C(R). In other words, ν is an atomic measure concentrated on
the three branches of the equation v = φ(u) and (3.4.38) follows.

In [Pl1] it is proved that the sequence of the Young measures associated to
the family {uεk} converges in the narrow topology of the Young measures
on QT ×R to a measure τ whose disintegration ν(x,t) is given by (3.2.14) (for
any T > 0). Hence, a natural question is the following: is it possible to show
that for a.e. t > 0 there holds νt(·) = ν(·, t) a.e. in (0, 1)? In this connection,
in view of (3.2.14) and (3.4.38), it suffices to prove that for a.e. t > 0

λti(x) = λi(x, t) if A < v(x, t) < B, (3.4.43)

λt1(x) = λ1(x, t) if v(x, t) = A (3.4.44)

and
λt2(x) = λ2(x, t) if v(x, t) = B (3.4.45)

for a.e. x ∈ (0, 1). In fact, observe that for v(x, t) = A there holds

νtx = λt1(x)δs1(A) + (1− λt1(x))δs0(A),

ν(x,t) = λ1(x, t)δs1(A) + (1− λ1(x, t))δs0(A)

and for v(x, t) = B

νtx = λt2(x)δs2(B) + (1− λt2(x))δs0(B),

ν(x,t) = λ2(x, t)δs2(B) + (1− λ2(x, t))δs0(B).

The proof of equalities (3.4.43)-(3.4.45) is the content of the following theo-
rem.

Theorem 3.4.4. There exists F̃ ⊆ (0,∞), | F̃ | = 0, such that for any
t ∈ (0,∞) \ F̃ equalities (3.4.43)-(3.4.45) hold.
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Proof. Let F1 ⊆ (0,∞) be the set of zero Lebesgue-measure given by Propo-
sition 3.4.3. Observe that, in view of Proposition 3.4.3 and using the general
properties of the narrow convergence of Young measures (e.g., see [GMS],
[V]), for any f ∈ C(R) and for any t ∈ (0,∞) \ F1 we have:

f(uεk,t(·, t)) ∗⇀ f t in L∞(0, 1), (3.4.46)

where {εk,t} ⊆ {εk} is the subsequence given by Proposition 3.4.3 in corre-
spondence of any t ∈ (0,∞) \ F 1 and

f t(x) =
2∑
i=0

λti(x)f(si(v(x, t))) (3.4.47)

for a.e. x ∈ (0, 1). Here λti is the function given by Proposition 3.4.3 (i =
0, 1, 2).
Let F ⊆ (0,∞) be the set of zero Lebesgue measure given by Theorem 3.3.1
and set

F̃ := F ∪ F1.

Clearly, F̃ has Lebesgue measure |F̃ | = 0. Fix any t ∈ (0,∞) \ F̃ and define

hn(s) = n(s− t) + 1 if t− 1
n
≤ s ≤ t.

Write the viscous equalities (3.2.12) for t1 = t− 1
n , t2 = t, ε = εk,t and test

function
ψn(x, s) := hn(s)ϕ(x),

for any ϕ ∈ C1([0, 1]), ϕ ≥ 0. Moreover, assuming in (3.2.12) g ∈ C1(R)
and g′ ≥ 0, we obtain:∫ 1

0
G(uεk,t(x, t))ϕ(x)dx ≤ n

∫ t

t− 1
n

∫ 1

0
G(uεk,t)ϕdxds+

−
∫ t

t− 1
n

∫ 1

0
hn(s)g(vεk,t)vεk,tx ϕxdxds, (3.4.48)

where G is the function defined by (3.2.3) in terms of g. In view of (3.4.46)-
(3.4.47) and (3.2.15)-(3.2.16), passing to the limit as εk,t → 0 in the above
inequalities gives∫ 1

0
Gt(x)ϕ(x)dx ≤ n

∫ t

t− 1
n

∫ 1

0
G∗ϕdxds−

∫ t

t− 1
n

∫ 1

0
hng(v)vxϕxdxds,

(3.4.49)
for any ϕ ∈ C1([0, 1]), ϕ ≥ 0 and g ∈ C1(R), g′ ≥ 0. Here G∗ is the function
defined by (3.2.5) and

Gt =
2∑
i=0

λtiG(si(v)) a.e. in (0, 1) (3.4.50)
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(see (3.4.46)-(3.4.47)). On the other hand, by (3.4.7) in Lemma 3.4.2, taking
the limit as n→∞ in (3.4.49) gives∫ 1

0
Gt(x)ϕ(x)dx ≤

∫ 1

0
G∗(x, t)ϕ(x)dx

for any ϕ and g as above. This implies

Gt(x) ≤ G∗(x, t)

for a.e. x ∈ (0, 1). In an analogous way we can prove the reverse inequality,
hence for any g ∈ C1(R), g′ ≥ 0 we have:

Gt(x) = G∗(x, t) (3.4.51)

for a.e. x ∈ (0, 1), where Gt is defined by (3.4.50) and G∗ is defined by
(3.2.5). By approximation arguments, equality (3.4.51) holds for any non-
decreasing g, hence for any g ∈ BV (R). Precisely we obtain:

2∑
i=0

λti(x)
∫ si(v(x,t))

g(φ(λ))dλ =
2∑
i=0

λi(x, t)
∫ si(v(x,t))

g(φ(λ))dλ

for a.e. x ∈ (0, 1) and for any g ∈ BV (R). The above equalities implies
(3.4.43)-(3.4.45) (see Lemma 3.5.2 and Lemma 3.5.3 in the following section).

As a consequence of the above result, for any t ∈ (0,∞) \ F̃ the whole se-
quence

{
τ tεk
}

of Young measures associated to the functions uεk(·,t) converges
in the narrow topology over (0, 1) × R. Using the general properties of the
narrow convergence of Young measures, the following result holds.

Proposition 3.4.5. Let F̃ ⊆ (0,∞) be the set of zero Lebesgue-measure
given by Theorem 3.4.4. Then for any t ∈ (0,∞) \ F̃ and for any f ∈ C(R),
we have

f(uεk(·, t)) ∗⇀ f∗(·, t) in L∞(0, 1),

where f∗(x, t) is defined by (3.2.16).

3.5 Proof of results of Section 3.3.2

Most proofs of the results in Section 3.3.2 make use of the following technical
lemmas.

Let BV (R) denote the space of the functions with bounded total variation
on R.
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Lemma 3.5.1. Let v1, v2 ∈ [A,B], 0 ≤ ai ≤ 1, 0 ≤ bi ≤ 1 (i = 1, 2), such
that

a1

∫ s1(v1)

0
g(φ(s))ds+ b1

∫ s2(v1)

0
g(φ(s))ds+ (3.5.1)

+(1− a1 − b1)
∫ s0(v1)

0
g(φ(s))ds =

= a2

∫ s1(v2)

0
g(φ(s))ds+ b2

∫ s2(v2)

0
g(φ(s))ds+

+(1− a2 − b2)
∫ s0(v2)

0
g(φ(s))ds,

for any g ∈ BV (R). Then v1 = v2.

Proof. For simplicity, assume that v2 > v1 and let us distinguish the cases
v2 > 0, v2 ≤ 0.

(i) If v2 > 0, set
v := max {0, v1}

and then fix any v ∈ (v, v2). For any n ∈ N, set

gn(λ) := nχ[v,v+1/n](λ). (3.5.2)

Equality (3.5.1) with g = gn gives

a1n[s0(v + 1/n)− s0(v)] + a1n[s1(v)− s1(v + 1/n)] = (3.5.3)
= a2n[s0(v + 1/n)− s0(v)] + b2n[s2(v + 1/n)− s2(v)] +

+(1− a2 − b2)n[s0(v + 1/n)− s0(v)].

Let us take the limit as n→∞ in (3.5.3). We obtain

a1[s′0(v)− s′1(v)] = (3.5.4)
= a2s

′
0(v) + b2s

′
2(v) + (1− a2 − b2)s′0(v)

for any v ∈ (v, v2). Hence, in view of Condition (S), there holds
a1 = 0
b2 = 0
a1 + b2 = 1,

(3.5.5)

which gives an absurd. This concludes the proof in the case v2 > 0.

(ii) If v2 ≤ 0, again fix any v ∈ (v1, v2) and for any n ∈ N let gn be the
function defined by (3.5.2). Equality (3.5.1) with g = gn gives

a1n[s1(v)− s1(v + 1/n)] + b1n[s0(v)− s0(v + 1/n)] + (3.5.6)
+(1− a1 − b1)n[s0(v)− s0(v + 1/n)] =

= b2n[s0(v)− s0(v + 1/n)] + b2n[s2(v + 1/n)− s2(v)].
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Thus, we pass to the limit with respect to n→∞ in (3.5.6) and obtain

−a1s
′
1(v)− b1s′0(v)− (1− a1 − b1)s′0(v) = (3.5.7)

= −b2s′0(v) + b2s
′
2(v)

for any v ∈ (v1, v2). Again, (3.5.7) and Condition (S) imply
a1 = 0
b2 = 0
a1 + b2 = 1,

(3.5.8)

and the claim follows.

Lemma 3.5.2. Let v ∈ (A,B), 0 ≤ ai ≤ 1, 0 ≤ bi ≤ 1 (i = 1, 2), be such
that equality

a1

∫ s1(v)

0
g(φ(s))ds+ b1

∫ s2(v)

0
g(φ(s))ds+ (3.5.9)

+(1− a1 − b1)
∫ s0(v)

0
g(φ(s))ds =

= a2

∫ s1(v)

0
g(φ(s))ds+ b2

∫ s2(v)

0
g(φ(s))ds+

+(1− a2 − b2)
∫ s0(v)

0
g(φ(s))ds

holds for any g ∈ BV (R). Then a1 = a2 and b1 = b2.

Proof. In (3.5.9), choose

g(λ) := χ[v,B](λ) if v ≥ 0, (3.5.10)
g(λ) := χ[A,v](λ) if v < 0. (3.5.11)

We have:

(a1 − a2)
∫ s1(v)

s0(v)
ds = 0 if v ≥ 0, (3.5.12)

and

(b1 − b2)
∫ s2(v)

s0(v)
ds = 0 if v < 0. (3.5.13)

Thus, (3.5.12)-(3.5.13) imply{
a1 = a2 if v ≥ 0,
b1 = b2 if v < 0.

(3.5.14)
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Moreover, choosing g(λ) ≡ 1 in (3.5.9) gives

(b1 − b2)(s2(v)− s0(v)) = 0 if v ≥ 0, (3.5.15)
(a1 − a2)(s1(v)− s0(v)) = 0 if v < 0. (3.5.16)

Hence, {
b1 = b2 if v ≥ 0,
a1 = a2 if v < 0.

(3.5.17)

This concludes the proof.

Lemma 3.5.3. Let us consider equality (3.5.9) for v = A and v = B. Then,{
a1 = a2 if v = A,
b1 = b2 if v = B.

(3.5.18)

Proof. Observe that s0(A) = c = s2(A), s0(B) = b = s1(B) (see Fig.3.1).
Hence equality (3.5.9) reads

a1

∫ a

0
g(φ(s))ds+ (1− a1)

∫ c

0
g(φ(s))ds = (3.5.19)

= a2

∫ a

0
g(φ(s))ds+ (1− a2)

∫ c

0
g(φ(s))ds,

if v = A (recall that a = s1(A)), and

b1

∫ d

0
g(φ(s))ds+ (1− b1)

∫ b

0
g(φ(s))ds = (3.5.20)

= b2

∫ d

0
g(φ(s))ds+ (1− b2)

∫ b

0
g(φ(s))ds,

if v = B (recall that d = s2(B)). Equalities (3.5.19)-(3.5.20) imply (3.5.18)
and the claim follows.

Proof of Theorem 3.3.5. Let {tn} ⊆ (0,∞) be any diverging sequence.
Observe that∫ ∞

0

∫ 1

0
v2
x(x, t+ tn)dxdt =

∫ ∞
tn

∫ 1

0
v2
x(x, s)dxds,

thus, in view of (3.2.18) we have∫ ∞
0

∫ 1

0
v2
x(x, t+ tn)dxdt→ 0 as n→∞. (3.5.21)
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This implies that there exist a subsequence {tnk} and a set E ⊆ (0,∞) of
Lebesgue measure |E| = 0 such that∫ 1

0
v2
x(x, t+ tnk)dx→ 0 as k →∞ (3.5.22)

for any t ∈ (0,∞) \ E. We proceed as follows.

Step (α). For any diverging sequence {tn}, let {tnk} ⊆ {tn} and E ⊆ (0,∞)
be respectively any subsequence and any set of zero Lebesgue-measure such
that (3.5.22) holds for any t ∈ (0,∞) \E. Then we show that the sequence
{v(·, t+ tnk)} converges uniformly in (0, 1) to a constant vtn (possibly de-
pendending on the choice of the sequence {tn}) for any t ∈ (0,∞) \ E.

Step (β). We prove that the constant vtn given in Step (α) does not depend
on the choice of the diverging sequence {tn}. In other words vtn = v for any
sequence {tn}.

Proof of Step (α). Fix any diverging sequence {tn} and let {tnk} ⊆ {tn} and
E ⊆ (0,∞) be respectively any subsequence and any set of zero Lebesgue-
measure such that (3.5.22) holds for any t ∈ (0,∞) \E. Arguing by contra-
diction, suppose that we can find two subsequences {tn,1} , {tn,2} ⊆ {tnk}
and t1, t2 ∈ (0,∞) \ E, such that

lim inf
n→∞

‖v(·, t1 + tn,1)− v(·, t2 + tn,2)‖C([0,1]) > 0. (3.5.23)

Observe that by (3.5.22) we have∫ 1

0
v2
x(x, tj + tn,j)dx→ 0 (j = 1, 2). (3.5.24)

Moreover, since v(·, tj + tn,j) ∈ H1(0, 1) ⊆ C([0, 1]) and

| v(x2, tj + tn,j)− v(x1, tj + tn,j)| ≤
(∫ 1

0
v2
x(x, tj + tn,j)dx

)1/2

|x2 − x1| 1/2

(3.5.25)
for any x1 6= x2 ∈ (0, 1), we deduce by the Ascoli-Arzelà Theorem that the
sequence {v(·, tj + tn,j)} is relatively compact in C([0, 1]) for j = 1, 2 (here
use of (3.5.24) has been made). Hence, possibly passing to a subsequence,
we have

v(·, tj + tn,j)→ vj in C([0, 1]) (j = 1, 2). (3.5.26)

Observe that by (3.5.24) and (3.5.25) v1 and v2 are constant. Let us show
that:

v1 = v2 := vtn , (3.5.27)
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which is in clear contradiction with (3.5.23) and concludes the proof of Step
(α).

In this direction, first observe that the sequences {λi(·, tj + tn,j)} are uni-
formly bounded in L∞(0, 1) for j = 1, 2 and i = 0, 1, 2. Hence, eventually
passing to a subsequence, we can suppose that

λi(·, tj + tn,j)
∗
⇀ λ∗,ji in L∞(0, 1) (j = 1, 2) (3.5.28)

for some 0 ≤ λ∗,ji ≤ 1, λ∗,j1 = 1 if vj < A, λ∗,j2 = 1 if vj > B and∑2
i=0 λ

∗,j
i = 1 a.e. in (0, 1). Since by representation (3.2.1) we have

u(·, tj + tn,j) =
2∑
i=0

λi(·, tj + tn,j)si(v(·, tj + tn,j)) in (0, 1)

(for j = 1, 2), by means of (3.5.26) and (3.5.28) we obtain

u(·, tj + tn,j)
∗
⇀

2∑
i=0

λ∗,ji (·)si(vj) in L∞(0, 1) (3.5.29)

for j = 1, 2. Thus, using the above convergence and the conservation law
(3.2.24) gives

2∑
i=0

si(vj)
∫ 1

0
λ∗,ji (x)dx = Mu0 (j = 1, 2) (3.5.30)

where Mu0 is defined by (3.2.23). Let us distinguish the cases a ≤Mu0 ≤ d
and Mu0 < a, Mu0 > d.

If a ≤ Mu0 ≤ d, observe that vj < A (and vj > B) in (3.5.30) gives a
contradiction. In fact, vj < A would imply λ∗,j1 = 1 in (0, 1). Therefore
(3.5.30) would reduce to

s1(vj) = Mu0 .

On the other hand, vj < A implies s1(vj) < a, which gives an absurd since
we have assumed a ≤ Mu0 ≤ d. Clearly, with the same arguments, it is
easily seen that vj ≤ B in the case a ≤ Mu0 ≤ d. Hence, vj ∈ [A,B] for
j = 1, 2. Moreover, by (3.5.26) and (3.5.28), for any non-decreasing g and
G∗ defined by (3.2.5) in terms of g there holds

G∗(·, tj + tn, j)
∗
⇀

2∑
i=0

λ∗,ji (·)
∫ si(v

j)

g(φ(s))ds in L∞(0, 1) . (3.5.31)

On the other hand, since there exists

lim
t→∞

t ∈ (0,∞) \ F

∫ 1

0
G∗(x, t)dx =: Lg
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for any non-decreasing g (see (3.3.1) in Corollary 3.3.3), there holds

lim
n→∞

∫ 1

0
G∗(x, t1 + tn, 1)dx = lim

n→∞

∫ 1

0
G∗(x, t2 + tn, 2)dx

for any non-decreasing g, hence for any g ∈ BV (R). Using (3.5.31) the
above equality reads

2∑
i=0

(∫ 1

0
λ∗,1i (x)dx

)∫ si(v
1)

g(φ(s))ds = (3.5.32)

=
2∑
i=0

(∫ 1

0
λ∗,2i (x)dx

)∫ si(v
2)

g(φ(s))ds

for any g ∈ BV (R), thus v1 = v2 by Lemma 3.5.1. This proves equality

(3.5.27) and concludes the proof of Step (α) in the case a ≤Mu0 ≤ d.

Now suppose Mu0 < a (the case Mu0 > d can be treated in an analogous
way). Arguing as in the case a ≤ Mu0 ≤ d, it is easily seen that equation
(3.5.30) with Mu0 < a implies vj < A for j = 1, 2. Thus, since for vj < A
we have λ∗,j1 = 1 (j = 1, 2), equation (3.5.30) reduces to

s1(vj) = Mu0 . (3.5.33)

This implies v1 = v2 - namely (3.5.27) - and concludes the proof of Step (α)
also in the case Mu0 < a.

Proof of Step (β). Now suppose that there exist vt1n 6= vt2n and two diverging
sequences

{
t1n
}
,
{
t2n
}

such that

v(·, tj + tjn)→ v
tjn

in C([0, 1]) (j = 1, 2), (3.5.34)

for some t1, t2 ∈ (0,∞). Here v
tjn

is the constant given by Step (α) in

correspondence of the diverging sequence
{
tjn
}
, j = 1, 2 (see equality

(3.5.27)). Arguing as in the previous step, we can assume that, eventually
passing to a subsequence, the sequences

{
λi(·, tj + tjn)

}
converge to some

λ∗,ji ∈ L∞(0, 1) in the weak* topology of L∞(0, 1), i = 0, 1, 2 and j = 1, 2.
Again, 0 ≤ λ∗,ji ≤ 1,

∑2
i=0 λ

∗,j
i = 1, λ∗,j1 = 1 if v

tjn
< A and λ∗,j2 = 1

if v
tjn

> B. Therefore, concerning the sequence u(·, tj + tjn) (j = 1, 2)

convergenge (3.5.29) holds in correspondence of each sequence
{
tj + tjn

}
.

Consequently the conservation law (3.2.24) gives equation (3.5.30). Again,
we distinguish the cases a ≤Mu0 ≤ d and Mu0 < a, Mu0 > d.

If a ≤Mu0 ≤ d we can argue as in Step (α), proving that vt1n and vt2n satisfy
equation (3.5.32) - namely vt1n = vt2n by Lemma 3.5.1.
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On the other hand, if Mu0 < a (the case Mu0 > B is analogous) we can
proceed as in the proof of Step (α) showing that equation (3.5.30) implies
v
tjn
< A for j = 1, 2, hence s1(vt1n) = s1(vt2n) = Mu0 (recall that if v

tjn
< A

then λ∗,j1 ≡ 1 in (3.5.29)).

Finally, let us prove the last claim in Theorem 3.3.5-(ii). In this direction,
assume Mu0 < a (the case Mu0 > d can be treated in a similar way). In view
of the above remarks, there exists a nondecreasing sequence {tn} , tn →∞,
such that v(·, tn)→ φ(Mu0) in C([0, 1]), and, by our assumption, φ(Mu0) <
A. This means that, for any fixed ε > 0 small enough, there exists N > 0
such that

v(x, tn) ≤ φ(Mu0)− 2ε < A− ε, for any tn ≥ tN . (3.5.35)

Let gA ∈ C1(R) be the non-decreasing function on R, defined as follows:

gA(λ) =
{

(λ−A+ ε)2 if λ ≥ A− ε,
0 if λ < A− ε, (3.5.36)

and set

GA(λ) :=
∫ λ

s1(A−ε)
gA(φ(s))ds.

Using gA in inequality (3.2.17) with test function ϕ ≡ 1 in (0, 1), gives∫ 1

0
G∗A(x, t)dx ≤

∫ 1

0
G∗A(x, tN )dx ≡ 0, (3.5.37)

for any t ∈ (0,∞) \ F, t ≥ tN , where F is the set given by Theorem 3.3.1
(the last equality in (3.5.37) being a consequence of (3.5.35) and (3.5.36)).
Since G∗A(x, t) > 0 if v(x, t) > A−ε, by inequality (3.5.37) the claim follows.
�

The proof of Theorem 3.3.6 needs some preliminary results. The techniques
used and the results concerning the characterization of the behaviour of
the sequence {u(·, t+ tn)} defined by (3.3.6) for large values of tn are quite
different in the cases a ≤Mu0 ≤ d and Mu0 < a, Mu0 > d, respectively.

In fact, observe that if a ≤ Mu0 ≤ d we have to take into account the
behaviour of the sequences {λi(·, t+ tn)} in (3.3.6), hence in this case the
first step is to study the long-time behaviour of these sequences for any
diverging {tn} and for a.e. t > 0 (see Proposition 3.5.4 below).

On the other hand, when Mu0 < a (or Mu0 > d), in view of Theorem
3.3.5-(ii) and in view of (3.2.1), we have that (3.3.6) reduces to u(·, t+ tn) =
s1(v(·, t+ tn)) (respectively, u(·, t+ tn) = s2(v(·, t+ tn))) for large values of
tn.

To begin with, using Proposition 3.3.4 we proceed to study the long-time
behaviour of the coefficients λi. Precisely, the following proposition holds.
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Proposition 3.5.4. Let (u, v) be a weak entropy measure-valued solution
of problem (3.1.1) with initial datum u0. Assume a ≤Mu0 ≤ d, where Mu0

is defined by (3.2.23), and let v ∈ [A,B] be the constant given by Theorem
3.3.5. Then:

(i) if A < v < B, for any i = 0, 1, 2 there exists a unique λ∗i ∈ L∞(0, 1) (i =
0, 1, 2), 0 ≤ λ∗i ≤ 1,

∑2
i=0 λ

∗
i = 1 a.e. in (0, 1), such that for any diverging

and non-decreasing sequence {tn} there holds:

λi(·, t+ tnk)→ λ∗i (·) a.e. in (0, 1) (3.5.38)

for any t ∈ (0,∞) \ E, where {tnk} ⊆ {tn} and E ⊆ (0,∞) are respectively
any subsequence and any set of zero Lebesgue-measure (whose existence is
assured by Theorem 3.3.5) such that (3.3.4) holds.

(ii) if v = B, there exists a unique λ∗2 ∈ L∞(0, 1), 0 ≤ λ∗2 ≤ 1, such that for
any diverging and non-decreasing sequence {tn} there holds:

λ2(·, t+ tnk)→ λ∗2(·) a.e. in (0, 1) (3.5.39)

for any t ∈ (0,∞) \ E, where {tnk} ⊆ {tn} and E ⊆ (0,∞) are respectively
any subsequence and any set of zero-Lebesgue-measure as in (i);

(iii) if v = A, there exists a unique λ∗1 ∈ L∞(0, 1), 0 ≤ λ∗1 ≤ 1, such that
for any diverging and non-decreasing sequence {tn} there holds:

λ1(·, t+ tnk)→ λ∗1(·) a.e. in (0, 1) (3.5.40)

for any t ∈ (0,∞) \ E, where {tnk} ⊆ {tn} and E ⊆ (0,∞) are respectively
any subsequence and any set of zero Lebesgue-measure as in (i).

Proof. Let a ≤ Mu0 ≤ d, hence v ∈ [A,B] by Theorem 3.3.5. Fix any non-
decreasing diverging sequence {tn} and then fix any subsequence of {tn}
(which we will continue to denote by {tn}) and any set E ⊆ (0,∞), |E| = 0
(whose existence is assured by Theorem 3.3.5) such that v(·, t + tn) → v
in C([0, 1]) for any t ∈ (0,∞) \ E. This implies that for any fixed ε > 0
small enough, and for any t ∈ (0,∞) \ E there exists N ∈ N, in general
dependending on t and {tn}, such that:

v − ε ≤ v(x, t+ tn) ≤ v + ε (3.5.41)

for any x ∈ (0, 1) and for any n ≥ N . Let us consider separately the cases
A < v < B, v = A and v = B.

(i) Assume A < v < B. Then in view of (3.5.41) and by Proposition 3.3.4,
for any t ∈ (0,∞) \ E there holds

λ1(·, t+ tn) ≤ λ1(·, t+ tn+1) ,
λ2(·, t+ tn) ≤ λ2(·, t+ tn+1)
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for any n ≥ N (because we can suppose in (3.5.41) A + ε ≤ v − ε and
v + ε ≤ B − ε for some ε > 0 small enough). This implies that for any
t ∈ (0,∞) \ E there exists λ∗, ti ∈ L∞(0, 1) such that

λi(x, t+ tn)→ λ∗, ti (x), for a.e. x ∈ (0, 1) (i = 0, 1, 2). (3.5.42)

Let us show that the coefficients λ∗, ti do not depend on t. To this purpose,
fix t1 < t2. Suppose that

λi(·, tj + tn)→ λ
∗, tj
i (·) a.e. in (0, 1) (3.5.43)

as n → ∞ (j = 1, 2). Observe that the uniform convergence of v(tj + tn)
to v as n→∞ proved in Theorem 3.3.5 (here j = 1, 2), and (3.5.43) imply
that

G∗(·, tj + tn) ∗⇀
2∑
i=0

λ
∗, tj
i

∫ si(v)

g(φ(s))ds (3.5.44)

as n→∞, j = 1, 2. Here G∗ is any function defined by (3.2.5) in terms of
any non-decreasing g.
By (3.5.41) and in view of Proposition 3.3.4, we have

λ1(x, t2 + tn) ≥ λ1(x, t1 + tn), (3.5.45)

λ2(x, t2 + tn) ≥ λ2(x, t1 + tn) (3.5.46)

for a.e. x ∈ (0, 1) for n large enough (because we have assumed t1 < t2).
Observe that properties (3.5.45) and (3.5.46) hold in correspondence of both
the coefficients λ1 and λ2 since we have assumed A < v < B (see Proposition
3.3.4). This implies

λ∗, t21 ≥ λ∗, t11 , λ∗, t22 ≥ λ∗, t12 a.e. in (0, 1). (3.5.47)

On the other hand, for any g ∈ BV (R), there holds

lim
n→∞

∫ 1

0
G∗(x, t1 + tn)dx = lim

n→∞

∫ 1

0
G∗(x, t2 + tn)dx

(see Corollary 3.3.3), namely

2∑
i=0

(∫ 1

0
λ∗, t2i (x)dx

)∫ si(v)

g(φ(s))ds = (3.5.48)

=
2∑
i=0

(∫ 1

0
λ∗, t1i (x)dx

)∫ si(v)

g(φ(s))ds

(here use of (3.5.44) has been made). Equality (3.5.48) implies that∫ 1

0
λ∗, t1i (x)dx =

∫ 1

0
λ∗, t2i (x)dx (i = 1, 2) (3.5.49)
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(see Lemma 3.5.2), hence in view of (3.5.47) we have λ∗, t1i = λ∗, t2i (i =
0, 1, 2) and we can set:

λ∗, ti ≡ λ
∗, tn
i

in (3.5.42), the coefficients λ∗, tni possibly depending on the sequence {tn}.
Then we show that the coefficients λ∗, tni are independent of the sequence

{tn}. To this purpose, suppose that there exist
{
t1n
}
,
{
t2n
}

, non-decreasing,
such that

λi(x, t+ tjn)→ λ∗, ji (x) for a.e. x ∈ (0, 1), t ≥ 0 (j = 1, 2). (3.5.50)

Assume that
lim inf
n→∞

(t2n − t1n) ≥ 0,

and fix any t1, t2 ∈ R+, such that

lim inf
n→∞

(t2 + t2n − t1 − t1n) > 0. (3.5.51)

Thus, for n large enough, t2 + t2n ≥ t1 + t1n. It follows that, arguing as above
we obtain λ∗, 1i = λ∗, 2i in (0, 1) (i = 0, 1, 2) and the claim follows.

(ii) Assume that v = A (the case v = B is analogous). Again, by (3.5.41)
and in view of Proposition 3.3.4, for any t ∈ (0,∞) \ E, there exists λ∗, t1 ∈
L∞(0, 1) such that

λ1(x, t+ tn)→ λ∗, t1 , for a.e. x ∈ (0, 1). (3.5.52)

Then we fix t1 < t2 and show that there holds λ∗, t11 ≡ λ∗, t21 . To begin with,
observe that (3.5.41) and Proposition 3.3.4 give

λ1(x, t2 + tn) ≥ λ1(x, t1 + tn) (3.5.53)

for n large enough, hence

λ∗, t21 ≥ λ∗, t11 a.e. in (0, 1) (3.5.54)

(because v = A < B and t1 < t2). On the other hand, the same arguments
used in (i), Corollary 3.3.3 and Lemma 3.5.3 give:∫ 1

0
λ∗, t11 dx =

∫ 1

0
λ∗, t21 dx, (3.5.55)

hence λ∗, t11 = λ∗, t21 .
Finally, arguing as in the case A < v < B, it is easily seen that the coefficient
λ∗1 does not depend on the sequence {tn}.
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Proof of Theorem 3.3.6. Fix any non-decreasing diverging sequence {tn}
and then fix any subsequence of {tn} (which we will continue to denote
by {tn}) and any set E ⊆ (0,∞), |E| = 0 (whose existence is assured by
Theorem 3.3.5) such that v(·, t+ tn)→ v in C([0, 1]) for any t ∈ (0,∞) \E.

(i) Assume a ≤ Mu0 ≤ d. Then for any t ∈ (0,∞) \ E we have λi(·, t +
tn) → λ∗i (·) a.e. in (0, 1), where λ∗i ∈ L∞(0, 1) are the functions uniquely
determined by Proposition 3.5.4. Thus, in view of representation (3.3.6)
u(·, t+tn)→ u(·) a.e. in (0, 1) and for any t ∈ (0,∞)\E, where u ∈ L∞(0, 1)
is the function defined by (3.3.7).

(ii) Now consider the case Mu0 < a (if Mu0 > d we proceed in an analogous
way). By definition (3.2.1) and Theorem 3.3.5-(ii), we have

u(·, t+ tn) = s1(v(·, t+ tn)) in (0, 1) (3.5.56)

for large values of tn. Thus u(·, t + tn) → s1(φ(Mu0)) = Mu0 uniformly in
[0, 1] for any t ∈ (0,∞)\E by the uniform convergence v(·, t+ tn)→ φ(Mu0)
(see equality (3.3.5)). �

Proof of Theorem 3.3.7. Fix any k > 0 and consider any non-decreasing
sequence {tn} ⊆ Bk \ F , tn →∞ as n→∞. In view of definition (3.2.33),

sup
n∈N

∫ 1

0
v2
x(x, tn)dx < k. (3.5.57)

Arguing as in the proof of Theorem 3.3.5 it is easily seen that (3.5.57) implies
that, eventually up to a subsequence, there holds

v(·, tn)→ w in C([0, 1]), (3.5.58)

for some w ∈ C([0, 1]). On the other hand, we can find two non-decreasing
and diverging sequences

{
s1
n

}
,
{
s2
n

}
such that s1

n ≤ tn ≤ s2
n , |tn− sjn| ≤ 1

and v(·, sjn) → v uniformly in [0, 1] (j = 1, 2). Writing inequalities (3.2.17)
first between s1

n and tn, then between tn and s2
n gives∫ 1

0
G∗(x, s1

n)ϕ(x)dx−
∫ 1

0
G∗(x, tn)ϕ(x)dx ≥

∫ tn

s1n

∫ 1

0
g(v)vxϕxdxdt,∫ 1

0
G∗(x, tn)ϕ(x)dx−

∫ 1

0
G∗(x, s2

n)ϕ(x)dx ≥
∫ s2n

tn

∫ 1

0
g(v)vxϕxdxdt

for any g ∈ C1(R), g′ ≥ 0, ϕ ∈ C1([0, 1]), ϕ ≥ 0 and G∗ defined by
(3.2.5). We take the limit as n → ∞ in the above inequalities and obtain
(for a.e. x ∈ (0, 1))

2∑
i=0

λi(x)
∫ si(w(x))

g(φ(s))ds =
2∑
i=0

λ∗i (x)
∫ si(v)

g(φ(s))ds
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for any g ∈ C1(R), g′ ≥ 0 (hence for any g ∈ BV (R)). Here, for any
i = 0, 1, 2, λ∗i is the function given by Proposition 3.5.4 and λi is some
function such that

λi(·, tn) ∗⇀ λi(·) in L∞(0, 1)

(eventually up to a subsequence). By Lemma 3.5.1 we obtain

w(x) = v for any x ∈ [0, 1].

Thus, the the whole sequence {v(·, tn)} converges to v in the strong topology
of C([0, 1]) - namely (3.3.10) follows. Concerning the sequence {u(·, tn)} we
have to distinguish the cases a ≤Mu0 ≤ d and Mu0 < a, Mu0 > d.

(i) Assume a ≤Mu0 ≤ d. Observe that, in view of the uniform convergence
(3.3.10) we can use Proposition 3.3.4 and obtain

λi(x, tn+1) ≥ λi(x, tn), if A < v < B (i = 1, 2),
λ1(x, tn+1) ≥ λ1(x, tn), if v = A,

λ2(x, tn+1) ≥ λ2(x, tn), if v = B

for a.e. x ∈ (0, 1) and for n large enough. Hence, arguing as in the proof of
Theorem 3.3.6 gives:

λi(x, tn+1)→ λ∗i (x), if A < v < B (i = 1, 2),
λ1(x, tn+1)→ λ∗1(x), if v = A,

λ2(x, tn+1)→ λ∗2(x), if v = B

for a.e. x ∈ (0, 1), where the coefficients λ∗i are uniquely determined by
Proposition 3.5.4. Observe that the above convergences and (3.3.10) imply
(3.3.11) and this concludes the proof in the case a ≤Mu0 ≤ d.

(ii) Now assume Mu0 < a (if Mu0 > d the claim follows by similar argu-
ments). Recall that in this case v = φ(Mu0) < A (see (3.3.5) in Theo-
rem 3.3.5). Moreover, in view of Theorem 3.3.5-(ii) again, there holds
v(·, tn) ≤ AMu0

< A in (0, 1) for n large enough. Hence

u(x, tn) = s1(v(x, tn)) for any x ∈ (0, 1). (3.5.59)

Observe that for any x ∈ (0, 1) there holds

| s1(v(x, tn))−Mu0 | ≡ | s1(v(x, tn))− s1(φ(Mu0))| ≤ (3.5.60)
≤ CMu0

‖ v(·, tn)− φ(Mu0)‖ C([0,1])

where
CMu0

:= ‖ s′1‖ L∞(φ(Mu0 )−ε,φ(Mu0 )+ε) <∞
for some fixed ε > 0, small enough. In fact, by assumption Mu0 < a we can
choose ε such that φ(Mu0) + ε < A (recall that s′1(A) = +∞), hence

‖ s′1‖ L∞(φ(Mu0 )−ε,φ(Mu0 )+ε) <∞.
Since the right-hand side in (3.5.60) approaches zero as n→∞, the uniform
convergence (3.3.12) holds. �
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Chapter 4

Long-time behaviour of
two-phase solutions

4.1 Introduction

In this chapter we consider the Neumann initial-boundary value problem for
the equation

ut =
[
φ(u)

]
xx

in Q := (−1, 1)× (0,∞) (4.1.1)

where the function φ satisfies the following assumption

(H1)


φ′(u) > 0 if u ∈ (−∞, b) ∪ (c,∞),
φ′(u) < 0 if u ∈ (b, c),
B := φ(b) > φ(c) =: A, φ(u)→ ±∞ as u→ ±∞,
φ′′(b) 6= 0, φ′′(c) 6= 0.

(4.1.2)

We also denote by a ∈ (−∞, b) and d ∈ (c,∞) the roots of the equation
φ(u) = A, respectively φ(u) = B (see Fig.4.1).

In view of the non-monotone character of the non-linearity φ, equation
(4.1.1) is of forward-backward parabolic type, since it is well-posed forward
in time at the points where φ′ > 0 and it is ill-posed where φ′ < 0. In this
connection, we denote by

S1 := {(u, φ(u)) | u ∈ (−∞, b)} ≡ {(s1(v), v) | v ∈ (−∞, B)}

and
S2 := {(u, φ(u)) | u ∈ (c,∞)} ≡ {(s2(v), v) | v ∈ (A,∞)}

the stable branches of the equation v = φ(u), whereas

S0 := {(u, φ(u)) | u ∈ (b, c)} ≡ {(s0(v), v)) | v ∈ (A,B)}

is referred to as the unstable branch.
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Figure 4.1: Assumption (H1).

4.1.1 Motivations and related problems

Equation (4.1.1) with a function φ satisfying assumption (H1) natu-
rally arises in the theory of phase transitions. In this context, u represents
the phase field and equation (4.1.1) describes the evolution between stable
phases. With a non-linearity φ of a different shape, in particular for a φ
which vanishes at infinity, equation (4.1.1) describes models in population
dynamics ([Pa]), image processing ([PM]) and gradient systems associated
with non-convex functionals ([BFG]).

The initial-boundary value problem for equation (4.1.1) (either under
Dirichlet or Neumann boundary conditions) has been widely addressed in
the literature. Most techniques consist in modifying the (possibly) ill-posed
equation (hence the boundary conditions) with some regularization which
leads to a well-posed problem. A natural question is whether the approxi-
mating solutions define a solution (in some suitable sense, depending on
the regularization itself) of (4.1.1) as the regularization parameter goes to
zero. Many regularizations of equation (4.1.1) have been proposed and in-
vestigated (see [BBDU], [NP], [Sl]). Among them, let us mention the pseu-
doparabolic or Sobolev regularization

ut = ∆φ(u) + ε∆ut, (4.1.3)

which has been studied in [NP] for the corresponding Neumann initial-
boundary value problem in QT := Ω × (0, T ), for any T > 0. In [Pl1] it
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is shown that the limiting points of the family of the approximating so-
lutions (uε, φ(uε)) are weak entropy measure-valued solutions (u, v) of the
Neumann initial-boundary value problem in QT for the original equation
(4.1.1). Precisely, it is shown that the couple (u, v) obtained in the limit
ε→ 0 satisfies the following properties:

(i) u ∈ L∞(QT ), v ∈ L∞(QT ) ∩ L2((0, T );H1(Ω)) and

u =
2∑
i=0

λisi(v)

for some λi ∈ L∞(QT ), 0 ≤ λi ≤ 1 and
∑2

i=0 λi = 1;

(ii) the couple (u, v) solves in the weak sense the equation

ut = ∆v in D′(QT ); (4.1.4)

(iii) the couple (u, v) satisfies the following class of entropy inequalities:∫ ∫
QT

[G∗ψt − g(v)∇v∇ψ + g′(v)|∇v|2ψ]dxdt+

+
∫

Ω
G(u0)ψ(x, 0)dx ≥ 0

for any ψ ∈ C1(QT ), ψ ≥ 0, ψ(·, T ) ≡ 0. Here, for any g ∈ C1(R), g′ ≥ 0,

G(λ) :=
∫ λ

g(φ(s))ds

and

G∗ =
2∑
i=0

λiG(si(v)).

Actually, uniqueness in the class of weak entropy measure-valued solutions
to the Neumann initial-boundary value problem for equation (4.1.1) is un-
known, albeit this class seems a natural candidate in this sense, in view of
the entropy inequalities (see also [H] and [Z] for general results of nonunique-
ness). A natural question is whether uniqueness can be recovered by intro-
ducing some additional constraints. To this purpose, two-phase solutions
have been introduced in [EP] and investigated in [MTT2] (see also [MTT]).
Roughly speaking, a two-phase solution of the Neumann initial-boundary
value problem associated to equation (4.1.1) in QT = (−1, 1) × (0, T ) is a
weak entropy measure-valued solution (u, v) (in the sense of [Pl1]) which
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describes transitions only between stable phases. Such solutions exhibit a
smooth interface ξ : [0, T ]→ [−1, 1] such that

u = s1(v) in {(x, t) ∈ QT | − 1 ≤ x < ξ(t)}
u = s2(v) in {(x, t) ∈ QT | ξ(t) < x ≤ 1} ,

where s1 and s2 denote the first and the second stable branch of the equation
v = φ(u). It is worth observing that the interface ξ evolves obeying admissi-
bility conditions which follows from the entropy inequalities (see Definition
4.2.1 in Subsection 4.2.1).

Uniqueness and local existence of two-phase solutions of the Cauchy
problem for equation (4.1.1) under assumption (H1) has been proved in
[MTT2] (the proof of similar results for the Neumann initial-buondary value
problem was outlined in [MTT]). Actually, global existence of such solutions
is not known, albeit it is plenty addressed.

Assuming global exixtence, we investigate the long-time behaviour of
two-phase solutions to the Neumann initial-boundary value problem for
equation (4.1.1), proving asymptotic results concerning both v(·, t) and the
interface ξ(t).

4.2 Mathematical framework and results

4.2.1 Properties and Basic Estimates

Consider the initial-boundary value problem
ut =

[
φ(u)

]
xx

in (−1, 1)× (0,∞) := Q,[
φ(u)

]
x

= 0 in {−1, 1} × (0,∞),
u = u0 in (−1, 1)× {0} ,

(4.2.1)

where u0 ∈ L∞(−1, 1) satisfies the following assumption

(A)
{
u0 ≤ b in (−1, 0) , u0 ≥ c in (0, 1) ,
φ(u0) ∈ C([−1, 1]).

Following [MTT], we give the definition of two-phase solutions to problem
(4.2.1).

Denote by C2,1(Q) the set of functions f ∈ C(Q) such that fx, fxx, ft ∈
C(Q).
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Definition 4.2.1. By a two-phase solution of problem (4.2.1) we mean any
triple (u, v, ξ) such that:

(i) u ∈ L∞(Q), v ∈ L∞(Q) ∩ L2((0, T );H1(−1, 1)) for any T > 0 and
ξ : [0,∞)→ [−1, 1], ξ ∈ C1([0,∞)), ξ(0) = 0;

(ii) set

V1 := {(x, t) ∈ Q | − 1 ≤ x < ξ(t) , t ∈ [0,∞)} , (4.2.2)
V2 := {(x, t) ∈ Q | ξ(t) < x ≤ 1 , t ∈ [0,∞)} (4.2.3)

and
γ := ∂V1 ∩ ∂V2 = {(ξ(t), t) | t ∈ (0,∞)} . (4.2.4)

Then, u ∈ C2,1(V1) ∩ C2,1(V2), v(·, t) ∈ C([−1, 1]) for any t ≥ 0, and there
holds

u = si(v) a.e. in Vi (i = 1, 2); (4.2.5)

(iii) for any t ≥ 0 there exist finite the limits

lim
η→0

vx(ξ(t)± η, t) := vx(ξ(t)±, t); (4.2.6)

(iv) for any T > 0 set QT := (−1, 1) × (0, T ). Then for any T > 0 there
holds: ∫ ∫

QT

[uψt − vxψx]dxdt+
∫ 1

−1
u0(x)ψ(x, 0)dx = 0 ; (4.2.7)

for any ψ ∈ C1(QT ), ψ(·, T ) ≡ 0 in [−1, 1];

(v) for any g ∈ C1(R), set

G(λ) :=
∫ λ

g(φ(s))ds; (4.2.8)

then, for any T > 0 and under the assumption g′ ≥ 0, the entropy inequali-
ties ∫ ∫

QT

[G(u)ψt − g(v)vxψx − g′(v)v2
xψ]dxdt+ (4.2.9)

+
∫ 1

−1
G(u0(x))ψ(x, 0)dx ≥ 0

hold for any ψ ∈ C1(QT ), ψ ≥ 0 and ψ(·, T ) ≡ 0 in (−1, 1).
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Remark 4.2.1. Observe that, in view of Definition 4.2.1, the following
properties hold.
(i) The function v( . , t) ∈ H1(−1, 1) for any t ≥ 0. Moreover, the couple
(u, v) is a classical solution of{

ut =
[
φ(u)

]
xx

in Vi,

u = u0 in V i ∩ {t = 0}

(i = 1, 2);
(ii) the Rankine-Hugoniot condition

ξ′ = − [vx]
[u]

(4.2.10)

holds a.e. on γ. Here [h] := h(ξ(t)+, t)−h(ξ(t)−, t) denotes the jump across
γ of any piecewise continuous function h;
(iii) by the entropy inequalities (4.2.9), it follows that

ξ′[G(u)] ≥ −g(v)[vx] a.e. on γ,

for any G defined by (4.2.8) in terms of g ∈ C1(R), g′ ≥ 0. Observe that
the above condition implies that

ξ′ ≥ 0 if v = A,
ξ′ ≤ 0 if v = B,
ξ′ = 0 if v 6= A, v 6= B.

(4.2.11)

Namely, jumps between the stable phases s1 and s2 occur only at the points
(x, t) where the function v(x, t) takes the values A (jumps from s2 to s1) or
B (jumps from s1 to s2).

Uniqueness and local existence of two-phase solutions have been studied in
[MTT2] for the Cauchy problem, under suitable assumptions on the initial
datum u0 and for a piecewise function φ. In [MTT] uniqueness of two-
phase solutions to the Neumann initial-boundary value problem for equation
(4.1.1) is proven. As already stated in the introduction, actually no resut
concerning global existence of two-phase solutions (either for the Cauchy
problem or for the Neumann initial-boundary value problem) is known, al-
beit it is plenty object of investigation. However, assuming global existence,
the long-time behaviour of two-phase solutions to problem (4.2.1) presents
very nice features and novelties with respect to the general case of weak
entropy measure-valued solutions (see Chapter 3). Let us give more details.

To begin with, some a-priori estimates are in order. For any initial datum
u0 set

Mu0 :=
1
2

∫ 1

−1
u0(x)dx. (4.2.12)
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By the homogeneous Neumann boundary conditions in (4.2.1), we deduce
the following result.

Proposition 4.2.1. Let u0 ∈ L∞(−1, 1) and let (u, v, ξ) be the two-phase
solution of problem (4.2.1) with initial datum u0. Then the following con-
servation law holds

1
2

∫ 1

−1
u(x, t)dx ≡Mu0 (4.2.13)

for any t ≥ 0.

On the other hand, in view of the entropy inequalities (4.2.9), we obtain
the two following results, whose role will be crucial in the latter.

Proposition 4.2.2. Let (u, v, ξ) be a two-phase solution of problem (4.2.1)
and for any g ∈ C1(R), let G be the function defined by (4.2.8). Then:

(i) for any t1 < t2 and for any ϕ ∈ C1([−1, 1]), ϕ ≥ 0, there holds∫ 1

−1
G(u(x, t1))ϕ(x) dx−

∫ 1

−1
G(u(x, t2))ϕ(x) dx ≥ (4.2.14)

≥
∫ t2

t1

∫ 1

−1
[g(v)vxϕx + g′(v)v2

xϕ]dxdt

for any g ∈ C1(R), g′ ≥ 0;

(ii) there exists

Lg := lim
t→∞

∫ 1

−1
G(u)(x, t)dx (4.2.15)

for any non-decreasing g.

Proposition 4.2.3. Let (u, v, ξ) be a two-phase solution of problem (4.2.1).
Then there exists C > 0 such that∫ ∞

0

∫ 1

−1
v2
x(x, t)dxdt ≤ C. (4.2.16)

4.2.2 Long-time behaviour

In the latter we denote by (u, v, ξ) any two-phase solution of problem (4.2.1).
We begin by the following proposition.
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Proposition 4.2.4. Let (u, v, ξ) be the two-phase solution of problem (4.2.1)
with initial datum u0 and let Mu0 be defined by (4.2.12). Then there exists
a unique constant v∗ such that for any diverging sequence {tn} there exist a
subsequence {tnk} ⊆ {tn} and a set E ⊆ (0,∞) of Lebesgue measure |E| = 0,
so that:

v(·, t+ tnk)→ v∗ in C([−1, 1]) (4.2.17)

for any t ∈ (0,∞) \ E. Moreover,

(i) A ≤ v∗ ≤ B if and only if a ≤Mu0 ≤ d;

(ii) if Mu0 < a (respectively Mu0 > d) then v∗ = φ(Mu0) and for any ε > 0
there exists T > 0 such that v(·, t) < A − ε (respectively v(·, t) > B + ε) in
[−1, 1] for any t ≥ T .

The first step in the investigation of the long-time behaviour of two-phase
solutions of problem (4.2.1) is the study of the interface ξ(t) as t diverges.
This is the content of the following theorem.

Theorem 4.2.5. Let (u, v, ξ) be the two-phase solution of problem (4.2.1)
with initial datum u0, let Mu0 be defined by (4.2.12) and let v∗ be the constant
given by Proposition 4.2.4. Then, there exists

lim
t→∞

ξ(t) =: ξ∗. (4.2.18)

Moreover,

(i) if A < v∗ < B there exists T > 0 such that ξ(t) = ξ∗ for any t ≥ T ;
(ii) if v∗ < A (respectively, v∗ > B) then ξ∗ = 1 (respectively, ξ∗ = −1)
and there exists T > 0 such that ξ(t) = 1 (respectively, ξ(t) = −1) for any
t ≥ T .

Remark 4.2.2. As a consequence of Proposition 4.2.4 and Theorem 4.2.5,
when considering initial data u0 of problem (4.2.1) with mass

Mu0 < a (or Mu0 > d),

there exists T > 0 such that for any t ≥ T there holds:

u(·, t) = s1(v(·, t)) (u(·, t) = s2(v(·, t))

in [−1, 1] (here (u, v, ξ) is the two-phase solution of (4.1.1) with initial datum
u0).

Now our aim is to estabilish whether, for any two-phase solution (u, v, ξ)
of (4.2.1), there exists the limit as t→∞, in some suitable topology, of the
families v(·, t) and u(·, t). In this direction, for any k ∈ N consider the sets

Bk :=
{
t ∈ (0,∞) |

∫ 1

−1
v2
x(x, t)dx < k

}
, (4.2.19)
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and

Ak := (0,∞) \Bk =
{
t ∈ (0,∞) |

∫ 1

−1
v2
x(x, t)dx ≥ k

}
. (4.2.20)

Observe that, Ak+1 ⊆ Ak, |Ak| ≤ C/k by estimate (4.2.16), hence∣∣∣∣∣
∞⋂
k=1

Ak

∣∣∣∣∣ = lim
k→∞

|Ak| = 0.

The following theorem describes the long-time behaviour of the function
v(·, t) along any diverging sequence {tn}.

Theorem 4.2.6. Let (u, v, ξ) be the two-phase solution of problem (4.2.1)
with initial datum u0, let Mu0 be defined by (4.2.12) and let v∗ be the constant
given by Proposition 4.2.4. For any k ∈ N, let Bk, Ak ⊆ (0,∞) be the sets
defined by (4.2.19) and (4.2.20), respectively. Then,

(i) for any diverging sequence {tn} ⊆ Bk there holds

v(·, tn)→ v∗ in C([−1, 1]); (4.2.21)

(ii) for any diverging sequence {tn} ⊆ Ak there holds

v(·, tn)→ v∗ in Lp(−1, 1) (4.2.22)

for any 1 ≤ p <∞.

The next step is the investigation of the long-time behaviour of the
function u(·, t). Since by (4.2.2)-(4.2.5) in Definition 4.2.1

u(·, t) = χ(−1,ξ(t))s1(v(·, t)) + χ(ξ(t),1)s2(v(·, t)) in (−1, 1),

we have to take into account the asymptotic behaviour of the interface ξ(t)
(here χE denotes the characteristic function of any set E ⊆ (−1, 1)). There-
fore, combining Theorem 4.2.5 and Theorem 4.2.6 we show that the u(·, t)
approaches the function u∗, where

u∗ =
{
χ(−1,ξ∗)s1(v∗) + χ(ξ∗,1)s2(v∗) if a ≤Mu0 ≤ d
Mu0 if Mu0 < a, Mu0 > d,

(4.2.23)

as t→∞. This is the content of the following theorem.
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Theorem 4.2.7. Let (u, v, ξ) be the two-phase solution of problem (4.2.1)
with initial datum u0. Let Mu0 be defined by (4.2.12), let ξ∗ be the constant
given by Theorem 4.2.5 and let u∗ be the function defined by (4.2.23). For
any k ∈ N, let Bk, Ak ⊆ (0,∞) be the sets defined by (4.2.19) and (4.2.20),
repectively. Then,

(i) for any diverging sequence {tn} ⊆ Bk there holds

u(x, tn)→ u∗ for any x ∈ [−1, 1] \ {ξ∗} (4.2.24)

if a ≤Mu0 ≤ d; otherwise

u(·, tn)→ u∗ ≡Mu0 in C([−1, 1]) (4.2.25)

if Mu0 < a, Mu0 > d;

(ii) for any diverging sequence {tn} ⊆ Ak there holds

u(·, tn)→ u∗ in Lp(−1, 1) (4.2.26)

for any 1 ≤ p <∞.

Remark 4.2.3. Convergences in Theorem 4.2.6-(ii) and Theorem 4.2.7-(ii)
hold also in the weak* topology of the space L∞(−1, 1).

4.3 Proofs of Section 4.2.1

Proof of Proposition 4.2.1. Fix any t > 0 and for any n ∈ N set

htn(s) =
{

1 if t ∈ [0, t),
−n(s− t− 1

n) if s ∈ [t, t+ 1
n ].

(4.3.1)

Choosing
ψn(x, s) := htn(s)

as test function in the weak formulation (4.2.7) gives

n

∫ t+ 1
n

t

∫ 1

−1
u(x, t)dx =

∫ 1

−1
u0(x)dx,

hence (4.2.13) in the limit n→∞. This concludes the proof. �

Proof of Proposition 4.2.2 (i) Consider any t1 < t2 and for any n ∈ N
set

hn(t) =


n(t− t1 + 1

n) if t ∈ [t1 − 1
n , t1],

1 if t ∈ (t1, t2),
−n(t− t2 − 1

n) if t ∈ [t2, t2 + 1
n ].
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Fix any ϕ ∈ C1([−1, 1]), ϕ ≥ 0 and choose

ψn(x, t) := hn(t)ϕ(x)

as test function in the entropy inequalities (4.2.9). We obtain

n

∫ t1

t1−1/n
dt

∫ 1

−1
G(u)ϕdx− n

∫ t2+1/n

t2

dt

∫ 1

−1
G(u)ϕdx ≥

≥
∫ t2+1/n

t1−1/n

∫ 1

−1
hn[g(v))vxϕx + ϕg′(v)v2

x]dxdt,

for any g ∈ C1(R), g′ ≥ 0. Hence, taking the limit as n→∞ in the previous
inequality gives (4.2.14).

(ii) Observe that choosing ϕ(x) ≡ 1 in inequalities (4.2.14) gives∫ 1

−1
G(u(x, t1))dx ≥

∫ 1

−1
G(u(x, t2))dx (4.3.2)

for any t1 ≤ t2 and for any g ∈ C1(R), g′ ≥ 0 (recall that G is defined
in terms of g by (4.2.8)). By standard arguments of approximation with
smooth functions, the assumption g ∈ C1(R) can be dropped. Inequalities
(4.3.2) imply that the map

t 7→
∫ 1

−1
G(u(x, t))dx

is nonincreasing in (0,∞) for any non-decreasing g, hence the claim follows.
�

Proof of Proposition 4.2.3. Let us choose in inequalities (4.2.14) g(λ) =
λ and ϕ(·) ≡ 1 in [−1, 1]. We obtain∫ T

0

∫ 1

−1
v2
x(x, t)dxdt ≤

∫ 1

−1
I(u0)dx−

∫ 1

−1
I(u(x, T ))dx, (4.3.3)

where

I(λ) :=
∫ λ

φ(s)ds.

Since u ∈ L∞(Q) (see Definition 4.2.1-(i)) and T > 0 is arbitrary, inequali-
ties (4.3.3) imply estimate (4.2.16). �
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4.4 Proofs of Section 4.2.2

Most proofs of the results in Section 4.2.2 need the following technical
results.

Let BV (R) denote the space of real functions which have bounded total
variation on R.

Proposition 4.4.1. Let v1, v2 ∈ [A,B] and ξ1, ξ2 ∈ [−1, 1] be such that

(ξ1 + 1)
∫ s1(v1)

0
g(φ(s))ds+ (1− ξ1)

∫ s2(v1)

0
g(φ(s))ds =

= (ξ2 + 1)
∫ s1(v2)

0
g(φ(s))ds+ (1− ξ2)

∫ s2(v2)

0
g(φ(s))ds,

for any g ∈ BV (R). Then, v1 = v2 and ξ1 = ξ2.

The proof of Proposition 4.4.1 is almost the same as in [ST] (see also Chapter
3), thus we omit it.

In order to prove Proposition 4.2.4, we begin by the following proposition.

Proposition 4.4.2. Let (u, v, ξ) be the two-phase solution of problem (4.2.1)
with initial datum u0 and let Mu0 be defined by (4.2.12). Then, there exists
a unique constant v∗ such that

v(·, tn)→ v∗ in C([−1, 1]) (4.4.1)

for any diverging sequence {tn} such that∫ 1

−1
v2
x(x, tn)dx→ 0 as n→∞. (4.4.2)

Proof. Observe that for any diverging sequence {tn} satisfying (4.4.2) there
exists a constant k > 0 such that:

|v(x2, tn)− v(x1, tn)| ≤
(∫ 1

−1
v2
x(x, tn)dx

)1/2

|x2 − x1|1/2 ≤

≤ k1/2|x2 − x1|1/2, (4.4.3)

for any x1, x2 ∈ [−1, 1] and for any n ∈ N large enough. Moreover,

‖v(·, tn)‖C([−1,1]) ≤ C. (4.4.4)

(see Definition 4.2.1-(i)). Estimates (4.4.3) and (4.4.4) imply that the se-
quence {v(·, tn)} is equi-continuous and uniformly bounded in C([−1, 1]).
We proceed in two steps.

153



(α) First we show that the sequence {v(·, tn)} converges uniformly [−1, 1]
to a constant vtn , possibly depending on {tn}.
(β) Then we prove that vtn is independent of the choice of the sequence
{tn}. In other words there exists a unique v∗ ∈ R such that (4.4.1) holds.

(α) Suppose that there exist two subesequences
{
t1n
}
,
{
t2n
}
⊆ {tn} such

that
lim inf
n→∞

‖v(·, t1n)− v(·, t2n)‖C([−1,1]) ≥ δ (4.4.5)

for some δ > 0. On the other hand, we can assume that (eventually passing
to subsequences)

v( . , tjn)→ vj in C([−1, 1]), (j = 1, 2) (4.4.6)

for some constants v1, v2 ∈ [−1, 1] (here use of (4.4.2) and (4.4.3) has been
made). Moreover, we can suppose that

ξ(tjn)→ ξj as n→∞ (j = 1, 2). (4.4.7)

Let us show that
v1 = v2 := vtn , ξ1 = ξ2 = ξtn . (4.4.8)

In view of Definition 4.2.1-(ii) we have:

G(u(·, tjn)) = χ
(−1,ξ(tjn))

G(s1(v(·, tjn))) + χ
(ξ(tjn),1)

G(s2(v(·, tjn))) , (4.4.9)

hence by (4.4.6)-(4.4.7) there holds

G(u(·, tjn)) ∗⇀ χ(−1,ξj)G(s1(vj)) + χ(ξj ,1)G(s2(vj)) (j = 1, 2) (4.4.10)

for any G defined by (4.2.8) in terms of any g ∈ BV (R). Therefore,

lim
n→∞

∫ 1

−1
G(u(x, tjn))dx =

= (ξj + 1)G(s1(vj)) + (1− ξj)G(s2(vj)) (j = 1, 2).

On the other hand, for any G defined by (4.2.8) in terms of any g ∈ BV (R),
by (4.2.15) there holds

lim
n→∞

∫ 1

−1
G(u(x, t1n))dx = lim

n→∞

∫ 1

−1
G(u(x, t2n))dx ,

namely:

(ξ1 + 1)G(s1(v1)) + (1− ξ1)G(s2(v1)) =
= (ξ2 + 1)G(s1(v2)) + (1− ξ2)G(s2(v2)) .
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The above equality implies (4.4.8) (see Proposition 4.4.1) which is in clear
contradiction with (4.4.5).

(β) Now assume that there exist two diverging sequences
{
t1n
}

and
{
t2n
}

satisfying (4.4.2) such that

v( . , tjn)→ vj in C([−1, 1]), (j = 1, 2) (4.4.11)

for some constants v1, v2. Moreover, we can suppose that

ξ(tjn)→ ξj as n→∞, (4.4.12)

Arguing as in Step (α) gives equality

(ξ1 + 1)G(s1(v1)) + (1− ξ1)G(s2(v1)) =
= (ξ2 + 1)G(s1(v2)) + (1− ξ2)G(s2(v2))

for any G defined by (4.2.8) in terms of any g ∈ BV (R). This implies v1 = v2

(see Proposition 4.4.1) and the claim follows.

Proof of Proposition 4.2.4. For any diverging sequence {tn}, set

vtn(x, t) := v(x, t+ tn) for x ∈ [−1, 1], t ≥ 0.

Since ∫ ∞
0

∫ 1

−1
(vtn)2

x(x, t)dxdt =
∫ ∞
tn

∫ 1

−1
v2
x(x, s)dxds→ 0

as n → ∞ (see (4.2.16)), there exist a subsequence {tnk} ⊆ {tn} and a set
E ⊆ (0,∞) of Lebesgue measure |E| = 0 such that:∫ 1

−1
v2
x(x, t+ tnk)dx→ 0

for any t ∈ (0,∞) \ E. Hence, by Proposition 4.4.2 convergence (4.2.17)
follows.

Fix any {tn} , tn → ∞ such that v(·, tn) converge uniformly to v∗ in
[−1, 1]. The conservation law (4.2.13) implies

(1 + ξ∗)s1(v∗) + (1− ξ∗)s2(v∗) = 2Mu0 (4.4.13)

where Mu0 is defined by (4.2.12) and ξ∗ is some value in [−1, 1] such that,
eventually up to a subsequence, ξ(tn)→ ξ∗. Thus:
(i) if a ≤Mu0 ≤ d, suppose v∗ < A (hence ξ∗ = 1), so that (4.4.13) reduces
to

a > s1(v∗) = Mu0 ,
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which gives an absurd. Analogously we can show that v∗ ≤ B. Hence
v∗ ∈ [A,B] in this case.
If Mu0 < a (the case Mu0 > d is analogous), suppose that v∗ ≥ A. Again,
in view of (4.4.13), we obtain

2a ≤ (ξ∗ + 1)s1(A) + (1− ξ∗)s1(A) ≤
≤ (ξ∗ + 1)s1(v∗) + (1− ξ∗)s2(v∗) = 2Mu0 ,

which gives a contradiction.
(ii) Finally, let us prove the last claim of Proposition 4.2.4 (again in the case
Mu0 < a). In this direction, fix any {tn} , tn →∞ such that

v(·, tn)→ v∗ in C([−1, 1]).

It follows that, for any ε > 0 small enough, there exists n ∈ N, such that

v(·, tn) ≤ v∗ − 2ε ≤ A− ε (4.4.14)

for any n ≥ n. Set
T := tn,

and

gA−ε(s) :=
{

0 if s ≤ A− ε,
> 0 if s > A− ε .

Assume that gA−ε is non-decreasing on R. Observe that

GA−ε(λ) :=
∫ λ

s1(A−ε)
gA−ε(φ(s))ds =

{
0 if λ ≤ s1(A− ε),
> 0 if λ > s1(A− ε) .

(4.4.15)
In view of (4.2.14), for any t ≥ T we obtain

0 ≤
∫ ξ(t)

−1
GA−ε(s1(v(x, t)))dx+

∫ 1

ξ(t)
GA−ε(s2(v(x, t)))dx ≤

≤
∫ 1

−1
GA−ε(s1(v(x, T )))dx = 0 (4.4.16)

(here use of Definition 4.2.1-(ii), (4.4.14) and (4.4.15) has been made), which
implies v(·, t) ≤ A− ε for any t ≥ T . This concludes the proof. �

The following Lemma gives properties of monotonicity in time of the inteface
ξ(t).

Lemma 4.4.3. Let (u, v, ξ) be the two-phase solution of problem (4.2.1)
with initial datum u0 and let v∗ be the constant given by Proposition 4.4.2.
Then there exists T > 0 such that the map

t 7→ ξ(t)
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for t ≥ T is:

(i) non-decreasing if v∗ < B;
(ii) non-increasing if v∗ > A.

Proof. (i) Assume v∗ < B. Consider any sequence {tn} , tn →∞, such that

v(·, tn)→ v∗ in C([−1, 1])

(here use of Proposition 4.2.4 has been made). Since v∗ < B, there exists
n ∈ N such that v(·, tn) ≤ B for any n ≥ n. Set

T := tn;

write inequality (4.2.14) for ϕ ≡ 1 in [−1, 1] and

gAB(s) =
{

0 for s ≤ B,
> 0 for s > B

where gAB is non-decreasing. Using Definition 4.2.1-(ii), for any t ≥ T , we
have ∫ ξ(t)

−1
GAB(s1(v(x, t)))dx+

∫ 1

ξ(t)
GAB(s2(v(x, t)))dx ≤ (4.4.17)

≤
∫ ξ(T )

−1
GAB(s1(v(x, T )))dx+

∫ 1

ξ(T )
GAB(s2(v(x, T )))dx = 0,

by our choice of T and by the uniform convergence of v(·, tn) to v∗ in [−1, 1]
(here GAB is defined by (4.2.8) in correspondence of gAB). On the other
hand, observe that the non-negative function

GAB(λ) :=
∫ λ

0
gAB(φ(s))ds

is strictly positive for any λ > s2(B), thus inequality (4.4.17) implies

v(·, t) ≤ B for any t ≥ T. (4.4.18)

Next, for any ρ > 0, set

gρ(s) :=
{

0 if s < B − ρ,
ρ−1/2 if B − ρ ≤ s ≤ B .

Set

Gρ(λ) :=
∫ λ

0
gρ(φ(s))ds
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and consider the entropy inequalities (4.2.14) for g = gρ and t2 ≥ t1 ≥ T .
We obtain(∫ ξ(t1)

−1
Gρ(s1(v(x, t1)))ϕ(x)dx+

∫ 1

ξ(t1)
Gρ(s2(v(x, t1)))ϕ(x)dx

)
+

−
(∫ ξ(t2)

−1
Gρ(s2(v(x, t2)))ϕ(x)dx+

∫ 1

ξ(t2)
Gρ(s2(v(x, t2)))ϕ(x)dx

)
≥

≥
∫ t2

t1

∫ 1

−1
gρ(v(x, t))vx(x, t)ϕx(x)dxdt =

= −
∫ t2

t1

∫ 1

−1
ϕxx(x)

(∫ v(x,t)

0
gρ(s)ds

)
dxdt (4.4.19)

for any ϕ ∈ C1
c (−1, 1), ϕ ≥ 0. Concerning the right-hand side of (4.4.19),

we have ∣∣∣∣∣
∫ t2

t1

∫ 1

−1
ϕxx(x)

(∫ v(x,t)

0
gρ(s)ds

)
dxdt

∣∣∣∣∣ = (4.4.20)

=

∣∣∣∣∣
∫ t2

t1

∫
{v(x,t)≥B−ρ}

ρ−1/2(v(x, t)−B + ρ)ϕxx(x)dxdt

∣∣∣∣∣ ≤
≤ ρ1/2

∫ t2

t1

∫ 1

−1
|ϕxx(x)|dx→ 0

as ρ→ 0 (here use of (4.4.18) has been made). Next, observe that, for any
t ≥ T , there holds∫ ξ(t)

−1
Gρ(s1(v(x, t)))ϕ(x)dx+

∫ 1

ξ(t)
Gρ(s2(v(x, t)))ϕ(x)dx =

=
∫ ξ(t)

−1
χ{v(x,t)<B−ρ}(x, t)

(∫ s1(B−ρ)

s0(B−ρ)
ρ−1/2ds

)
dx+

+
∫ ξ(t)

−1
χ{v(x,t)≥B−ρ}(x, t)

(∫ s1(v(x,t))

s0(B−ρ)
ρ−1/2ds

)
dx+

+
∫ 1

ξ(t)
χ{v(x,t)≥B−ρ}(x, t)

(∫ s2(v(x,t))

s2(B−ρ)
ρ−1/2ds

)
dx; (4.4.21)

Since φ′′(b) 6= 0 (see Assumption (H1)), it follows that

lim
ρ→0

∫ ξ(t)

−1
Gρ(s1(v(x, t)))ϕ(x)dx+

∫ 1

ξ(t)
Gρ(s2(v(x, t)))ϕ(x)dx =

= −C
∫ ξ(t)

−1
[2χ{v(x,t)<B}(x, t) + χ{v(x,t)=B}(x, t)]ϕ(x)dx, (4.4.22)
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for some C > 0, depending on the value φ′′(b). Thus, in view of (4.4.20)-
(4.4.22), taking the limit as ρ→ 0 in (4.4.19) gives∫ ξ(t1)

−1
[2χ{v(x,t1)<B} + χ{v(x,t1)=B}]ϕ(x)dx ≤ (4.4.23)

≤
∫ ξ(t2)

−1
[2χ{v(x,t2)<B} + χ{v(x,t2)=B}]ϕ(x)dx,

for any ϕ ∈ C1
c (−1, 1), ϕ ≥ 0. Ruling out of contradiction, suppose that

ξ(t2) < ξ(t1), fix any x ∈ (ξ(t2), ξ(t1)) and observe that (4.4.23) implies

0 < 2χ{v(x,t1)<B}(x, t1) + χ{v(x,t1)=B}(x, t1) ≤ 0,

which gives an absurd. Hence, ξ(t2) ≥ ξ(t1) for any t2 ≥ t1 ≥ T .

(ii) The case v∗ > A can be treated in a similar way

Proof of Theorem 4.2.5. Let us distinguish the cases A < v∗ < B,
v∗ = A, v∗ = B and v∗ < A, v∗ > B.
(i) If A < v∗ < B, in view of Lemma 4.4.3 there exists T > 0 such that
ξ(t1) ≤ ξ(t2) ≤ ξ(t1) for any t2 ≥ t1 ≥ T . Hence for any t ≥ T the function
ξ(t) is constant and the claim folows.

(ii) In the case v∗ = A (v∗ = B), in view of Lemma 4.4.3 there exists T > 0
such that the map t 7→ ξ(t) is non-decreasing (non-increasing) on (T,∞)
and again (4.2.18) holds.

(iii) If v∗ < A, by Proposition 4.2.4-(ii) there exists T > 0 such that
v(·, t) < A in [−1, 1] for any t ≥ T . Hence, in view of Definition 4.2.1-
(ii), u(·, t) = s1(v(·, t)) - namely, ξ(t) = 1 - for any t ≥ T .

(iv) In the case v∗ > B, by Proposition 4.2.4-(ii) there exists T > 0 such
that v(·, t) > B in [−1, 1] for any t ≥ T . Hence, in view of Definition 4.2.1-
(ii), u(·, t) = s2(v(·, t)) - namely, ξ(t) = −1 - for any t ≥ T . . �

Proof of Theorem 4.2.6. Let v∗ and ξ∗ be the constants given by Propo-
sition 4.2.4 and Theorem 4.2.5, respectively. Fix any k ∈ N and consider
any {tn} ⊆ Bk. We have

sup
n∈N

∫ 1

−1
v2
x(x, tn)dx ≤ k, (4.4.24)

hence

|v(x2, tn)− v(x1, tn)| ≤
(∫ 1

−1
v2
x(x, tn)dx

)1/2

|x2 − x1|1/2 ≤

≤ k1/2|x2 − x1|1/2, (4.4.25)
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for any x1, x2 ∈ [−1, 1]. Moreover,

‖v(·, tn)‖C([−1,1]) ≤ C (4.4.26)

(see Definition 4.2.1-(i)). Estimates (4.4.25) and (4.4.26) imply that the
sequence {v(·, tn)} is equi-continuous and uniformly bounded in C([−1, 1]),
thus there exists ṽ ∈ C([−1, 1]) such that, eventually passing to a subse-
quence, there holds

v(·, tn)→ ṽ in C([−1, 1]).

Let us show that
ṽ ≡ v∗ in [−1, 1]. (4.4.27)

To this purpose, we can find two sequences
{
t1n
}
,
{
t2n
}

such that

v(·, tin)→ v∗ in C([−1, 1]), (i = 1, 2)

and
t1n ≤ tn ≤ t2n, |tn − tin| ≤ 1

for any n ∈ N, i = 1, 2 (here use of Proposition 4.2.4 has been made). Then,
in view of inequalities (4.2.14), we obtain(∫ 1

−1
G(u(x, t1n))ϕ(x)dx−

∫ 1

−1
G(u(x, tn))ϕ(x)dx

)
≥

≥
∫ tn

t1n

∫ 1

−1
g(v(x, t))vx(x, t)ϕx(x)dxdt, (4.4.28)

and (∫ 1

−1
G(u(x, tn))ϕ(x)dx−

∫ 1

−1
G(u(x, t2n))ϕ(x)dx

)
≥

≥
∫ t2n

tn

∫ 1

−1
g(v(x, t))vx(x, t)ϕx(x)dxdt, (4.4.29)

for any G defined by (4.2.8) in terms of any g ∈ C1(R), g′ ≥ 0, and for any
ϕ ∈ C1([−1, 1]), ϕ ≥ 0. In view of estimate (4.2.16), there holds∣∣∣∣∣

∫ tin

tn

∫ 1

−1
v2
x(x, t)dxdt

∣∣∣∣∣→ 0,

thus, passing to the limit as n→∞ in (4.4.28) and (4.4.29) gives∫ ξ∗

−1
G(s1(v∗))ϕ(x)dx+

∫ 1

ξ∗
G(s2(v∗))ϕ(x)dx ≤

≤
∫ ξ∗

−1
G(s1(ṽ(x)))ϕ(x)dx+

∫ 1

ξ∗
G(s2(ṽ(x)))ϕ(x)dx ≤

≤
∫ ξ∗

−1
G(s1(v∗))ϕ(x)dx+

∫ 1

ξ∗
G(s2(v∗))ϕ(x)dx.
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Observe that the above equality implies

s1(v∗) = s1(ṽ(x)) for any x ∈ (−1, ξ∗),

and
s2(v∗) = s2(ṽ(x)) for any x ∈ (ξ∗, 1).

Since s1 and s2 are strictly monotone functions, (4.4.27) follows.

(ii) Fix any k > 0 and any sequence {tn} ⊆ Ak. If

sup
n∈N

∫ 1

−1
v2
x(x, tn)dx <∞

we can argue as in the proof of (i). Therefore suppose

sup
n∈N

∫ 1

−1
v2
x(x, tn)dx =∞.

In this case the sequence {v(·, tn)} need not be relatively compact in the
strong topology of C([−1, 1]). However, by means of Propositin 4.2.4 we
can find two sequences

{
t1n
}
,
{
t2n
}

such that

v(·, tin)→ v∗ in C([−1, 1]), (i = 1, 2)

and
t1n ≤ tn ≤ t2n, |tn − tin| ≤ 1

for any n ∈ N, i = 1, 2,. Arguing as above gives∫ 1

−1
G(u(x, t1n))ϕ(x)dx−

∫ 1

−1
G(u(x, tn))ϕ(x)dx ≥

≥
∫ tn

t1n

∫ 1

−1
g(v(x, t))vx(x, t)ϕx(x)dxdt, (4.4.30)

and ∫ 1

−1
G(u(x, tn))ϕ(x)dx−

∫ 1

−1
G(u(x, t2n))ϕ(x)dx ≥

≥
∫ t2n

tn

∫ 1

−1
g(v(x, t))vx(x, t)ϕx(x)dxdt, (4.4.31)

for any g ∈ C1(R), g′ ≥ 0, and for any ϕ ∈ C1([−1, 1]), ϕ ≥ 0 (here G is
defined by (4.2.8)). Thus, passing to the limit as n→∞ gives

lim
n→∞

∫ 1

−1
G(u(x, tn))ϕ(x)dx = (4.4.32)

=
∫ ξ∗

−1
G(s1(v∗))ϕ(x)dx+

∫ 1

ξ∗
G(s2(v∗))ϕ(x)dx.
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Observe that in view of Definition 4.2.1, we have∫ 1

−1
G(u(x, tn))ϕ(x)dx = (4.4.33)

=
∫ ξ(tn)

−1
G(s1(v(x, tn)))ϕ(x)dx+

∫ 1

ξ(tn)
G(s2(v(x, tn)))ϕ(x)dx

and, for any δ > 0 we can assume

ξ∗ − δ < ξ(tn) < ξ∗ + δ

for n large enough (by Theorem 4.2.5). Thus, by (4.4.32) and (4.4.33) we
have

lim
n→∞

∫ ξ∗−δ

−1
|s1(v(x, tn))|pϕ(x)dx =

∫ ξ∗−δ

−1
|s1(v∗)|pϕ(x)dx

for any ϕ ∈ C1
c (−1, ξ∗ − δ) and p > 1 (here we have choosen g(s) =

p−1|s1|(p−1)(s) in (4.4.32)) and

lim
n→∞

∫ 1

ξ∗+δ
|s2(v(x, tn))|pϕ(x)dx =

∫ 1

ξ∗+δ
|s2(v∗)|pϕ(x)dx

for any ϕ ∈ C∞c (ξ∗ + δ, 1) and p > 1 (here we have choosen g(s) =
p−1|s2|(p−1)(s)). In other words, by the arbitrariness of δ, we have proven
that

s1(v(·, tn))→ s1(v∗) in Lp(−1, ξ∗), (4.4.34)

and
s2(v(·, tn))→ s2(v∗) in Lp(ξ∗, 1), (4.4.35)

As a consequence of the above convergences, we obtain

v(·, tn)→ v∗ in Lp(−1, 1),

for any 1 ≤ p <∞, and the claim (4.2.22) follows. �

Proof of Theorem 4.2.7. For any diverging sequence {tn}, in view of
Definition 4.2.1 we have

u(x, tn) = χ(−1,ξ(tn))s1(v(x, tn)) + χ(ξ(tn),1)s2(v(x, tn)). (4.4.36)

(i) Assume {tn} ⊆ Bk, where Bk is the set defined by (4.2.19) for any k ∈ N.
Since v(·, tn) → v∗ in C([−1, 1]) by Theorem 4.2.6-(i) and ξ(tn) → ξ∗ by
Theorem 4.2.5, taking the limit as n→∞ in (4.4.36) gives

u(x, tn)→ u∗
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for any x ∈ [−1, 1]\ ξ∗, the function u∗ being defined by (4.2.23). Moreover,
if Mu0 < a (respectively Mu0 > d) v∗ = φ(Mu0) (see Proposition 4.2.4-(ii))
and equation (4.4.36) reduces to

u(x, tn) = s1(v(x, tn)) (u(x, tn) = s2(v(x, tn)))

for n ∈ N large enough (see Remark 4.2.2). Therefore u(·, tn) → Mu0

uniformly in [−1, 1] by Theorem 4.2.6-(i).

(ii) Now asume {tn} ⊆ Ak, where Ak is the set defined by (4.2.20). In this
case v(·, tn) → v∗ in Lp(−1, 1) for any 1 ≤ p < ∞ (see Theorem 4.2.6-(ii))
and ξ(tn) → ξ∗ (see Theorem 4.2.5), hence passing to the limit in (4.4.36)
gives (4.2.26) and the claim follows. �

163



Bibliography

[B] H. Brezis, “Analyse Fonctionnelle”, Masson Editeur, Paris, 1983.

[BBDU] G. I. Barenblatt, M. Bertsch, R. Dal Passo & M. Ughi, A degener-
ate pseudoparabolic regularization of a nonlinear forward-backward heat
equation arising in the theory of heat and mass exchange in stably strat-
ified turbulent shear flow, SIAM J. Math. Anal. 24 (1993), 1414–1439.
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