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Table of notations

⊗ convolution operator. It is preferred here to the more
usual symbol ‘∗’, as for in the majority of the literature
about mathematical seismology.

a, α exponent of the productivity law (equation (2.1)); it
holds a = α ln 10.

a(t) survivor function of the random variable with density
given by the Omori-Utsu law (equation (6.3)); it is de-
fined in (6.15).

A(t) auxiliary function defined in (6.14) as the integral of
a(x) between zero and t; if Taft is the random vari-
able distributed according to the Omori-Utsu law (equa-
tion (6.3)), it holds A(t) = E[min(Taft, t)].

AIC Akaike’s Information Criterion, defined in (2.25), for
comparing the goodness-of-fit of seismic models for a
fixed dataset.

β, b exponent of the Gutenberg-Richter law (equation (2.2));
b is the so-called b-value and holds that β = b ln 10.

b(t) cumulative function of the random variable with den-
sity given by the Omori-Utsu law (equation (6.3)); it is
defined in (6.7).

c parameter of the Omori-Utsu law (equation (2.5)).
C1, C2 constants entering in the definition of the function q(m′);

it holds C2 = 2C1.
C(·) parameter defined in (5.3).
D(z; t, τ,m0, m) auxiliary function defined in (6.31) entering in the defi-

nition of y(z; t, τ,m0, m
′).

D+(z; t, m̃,m) auxiliary function defined in (6.32) entering in the defi-
nition of y(z; t, τ,m0, m

′) and s(z; t,m0, m
′).

δ parameter defined in (6.63).
∆ parameter defined in (6.67).
η branching parameter defined in (2.18).
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ETAS Epidemic Type Aftershock Sequence model.
f(m′, m′′) auxiliary function defined in (4.36) useful to calculate

the transition probability density p(m′′|m′).
f(z,m′, m) function defined in (6.9) useful to calculate both the

probability generating function of the total number of
events in [0, τ ] and the one relative to the number of
event triggered by a generic shock in the same time in-
terval. The multiplication by this function allows us to
add the triggering event if its magnitude is larger than
the observability threshold m.

Φ(t) Omori-Utsu law (equation (2.5)); it can be interpreted
as the probability generating function of random times
at which first generation shocks independently occur,
triggered by an event occurred in t = 0.

Finter(τ) interevent time density.

F̃(m′′|m′) cumulative distribution function of the transition prob-
ability p(m′′|m′), given in (5.5).

G[·] probability generating functional, defined for a finite
point process in (1.6).

Gtr(z; τ |s,m′) probability generating function of the number of observ-
able events triggered in [0, τ ] by a spontaneous shock of
magnitude m′ occurred in s, defined in (4.22).

G(z; τ |t,m′) probability generating function of the number of observ-
able events triggered in [0, τ ] by a spontaneous shock
of magnitude m′ occurred in −t, with t ≥ 0. It holds
G(·; υ|s,m′) = Gtr(·; υ| − s,m′) for s ≥ 0.

H parameter defined in (6.55).
IA(m

′′) magnitude integral from the reference cutoff m0 to in-
finity, defined in (6.46), of the product between the
Gutenberg-Richter law (2.2), the productivity law (2.1)
and the transition probability density function (4.37)
of triggered events’ magnitude. It is also K2p(m), for
K2 the operator defined in (4.6). We impose that
IA(m

′′) = ηp(m′′).
IB(m

′′) magnitude integral from the completeness value m
to infinity, defined in (6.52), of the product be-
tween the Gutenberg-Richter law (2.2), the productiv-
ity law (2.1) and the transition probability density func-
tion (4.37) of triggered events’ magnitude. It is also
K2p(m)1[mc,∞)(m), for K2 the operator defined in (4.6).
We impose that IB(m

′′) ≈ nLp(m′′).
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κ multiplicative parameter of the productivity law (equa-
tion (2.1)).

K(·) kernel, defined in Definition 16.
K1,K2 operators acting on functions (defined in (4.5)) and mea-

sures (defined in (4.6)), respectively.
l.c.s.c. locally compact second countable. A set E is l.c.s.c. if

it is Hausdorff, each point has a compact neighborhood
(locally compactness) and there exists a countable basis
such that every open set in E is the union of the open
sets of this basis (second countable).

L parameter entering in the approximate condition that
the integral IB(m

′′) must satisfy (see page 156).
Lt(·) likelihood function defined for finite point processes in

Definition 7.
L(z; τ) auxiliary function useful to compute the probability gen-

erating function Ω(z; t) and then the probability to have
zero events with magnitude larger than mc in [0, τ ]. It
is defined as − ln(Ω(z; τ))/̟ and obtained in (6.5).

L(f)(s) Laplace transform of the function f .
L(·) Laplace functional relative to the total number of events

N(·), defined in (4.12).
Lsp(·),Ltr(·) Laplace functionals relative to the total number of spon-

taneous events N sp(·) and the total number of triggered
events N tr(·), respectively (see Section4.2).

λ(t, x, y,m|H) conditional intensity function based on the past history
Ht = {(ti, xi, yi, mi); ti < t}, completely characterizing
a space-time-magnitude point process. It is generally
defined in (1.15).

Λt random time-change for the residual analysis of the
ETAS model, defined in (2.26).

λ̄ = λ̄(mc) average rate of the whole process of observable events,
defined in (6.2).

mc threshold value of completeness magnitude.
m0 threshold value of reference magnitude.
Mk(·) kth moment measure, defined in (1.4) and (1.5) for an

extended version.
M[k](·) kth factorial moment measure, defined in (1.4).

M̂γ(·) kernel density estimator of the empirical magnitude dis-
tribution, defined in (3.1).
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(M lf
E ,M

lf
E ) canonical space of locally finite measures on (E,B(E)),

where E is a l.c.s.c. space, B(E)) is its Borel sigma-
field, M lf

E is the set of all the locally finite measures on
(E,B(E)) and M

lf
E is the relative sigma-field generated

by the collection of sets defined in (1.1).
N(t), N1(τ) counting measures for a point process: N(t) = N((0, t])

is used in Chapter 1 to indicate the number of events in
(0, t]; the same notation N(τ) is instead used in Chap-
ter 6 for the total number of events with magnitude
bigger than the completeness threshold mc, occurred in
[0, τ ]; finally, again in Chapter 6, N1(τ) is used for the
number of aftershocks in [0, τ ] with magnitude m ≥ mc.

N tr
i (R2),

N tr,n
i (R2)

number of all the triggered events generated by the spon-
taneous shock (Si = s,Mi = m) and number of all the
events in the nth generation of the latter spontaneous
shock, respectively.

N(t, τ),
Nmc=m0(t, τ),
N−(t)

three auxiliary functions useful to compute L(0; τ); it
holds N(t, τ) = Nmc=m0(t, τ).

̟ average rate corresponding to the events of the sponta-
neous component of the process.

Ω(z; τ) probability generating function of the total number N(τ)
of observable events in [0, τ ].

p, θ exponents of the two notations used for Omori-Utsu law,
respectively equations (2.5) and (6.3). It holds θ = p−1.

p(m) Gutenberg-Richter law (equation (2.2)); it is the proba-
bility density function of events’ magnitude when we do
not consider past seismicity.

p(m′′|m′) transition probability density function assumed for trig-
gered events’ magnitude; it is defined in (4.37).

ptr(m
′′) conditional probability for an event to have magnitude

m′′ given the fact that it is triggered; it is defined
in (4.26).

P{τ} probability to have zero events with magnitude larger
than mc in [0, τ ].

PGF Probability Generating Function.
Ψ(h, m̃) auxiliary function defined in (6.27) useful to compute

L(z; τ).
q(m′), s(m′) auxiliary functions entering in the definition of f(m′, m′′)

(equation (4.36)); the function q(m′) is defined in (4.35)
and holds that s(m′) = 2q(m′).
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Q̃ parameter defined in (6.68).
Q parameter defined in (6.51) and computed as the in-

tegral of the Gutenberg-Richter law between the com-
pleteness value mc and infinity. It is the probability
P{M > mc} if M is the random variable whose density
is the Gutenberg-Richter law (equation (2.2)).

̺(m) productivity law (equation (2.1)); it is the contribution
of first generation shocks triggered by an event with mag-
nitude m′.

R̂(δ) estimate of the autocorrelation function at different in-
teger values of time lag δ, defined in (3.2).

s(z; t,m0, m
′),

y(z; t, τ,m0, m
′)

auxiliary functions used for L(z; τ) in the case mc ≥ m0.
They are respectively defined in (6.35) and (6.30).

Θ(s,m) auxiliary function, defined in (4.15), for the Laplace
functional L(·).



Introduction and motivation

The study of the earthquake phenomenon represents a very important scien-
tific problem that commits a scientific community more and more extended.
Geology and physics are the main disciplines focused on the study of this
natural phenomenon. In fact, an earthquake is generally due to a stored
elastic strain energy that causes a fracture propagation along the so-called
fault plane. This sudden rupture in the Earth’s crust causes permanent de-
formation and radiation of seismic waves. Then, ground motion and wave
propagation represent two important aspects to study in order to understand
the phenomenon. Nevertheless, during the last fifty years, a mathematical
approach has been considered to support the above disciplines in the study
of earthquakes. Just like in many other fields, as for example engineering
and environmental processes, mathematical modeling allows to analyze the
seismic process at first in an ideal and easier case and then to interpret the
results obtained for the study of a more and more realistic and complex
case, to the aim of understanding completely the phenomenon. Obviously,
the latter is a very hard aim due to the complexity of the seismic process.
More precisely, earthquakes behave like a Self-Organized Criticality process
(SOC), comparable to a Sand-Pile model [Bak and Tang, 1989; Sornette and
Sornette, 1989]. In [Bak and Chen, 1991] we can read ≪the theory of self-
organized criticality states that many composite systems naturally evolve to
a critical state in which a minor event starts a chain reaction that can affect
any number of elements in the system≫. Not only one fault, but several of
them interact in the physics underneath the process, adding a component of
complexity to the already very complicated phenomenon of earthquakes de-
velopment. Furthermore, the available data are not always enough or suitable
to obtain significant results: even if the first historical earthquakes recorded
are dated back to 2100 B.C., there is a lack of description or reliability till
the middle of the 18th century. Starting from the first forerunner of modern
seismographs, designed by the English geologist John Milne in 1870, seismic
stations have been technologically gradually improved, but they can still be
refined in order to get more precise and complete data.

1



Introduction and motivation 2

Despite this very complex scenario, it is of fundamental importance to
analyze the seismic process, also in order to obtain results that could avoid
human catastrophes and allow to be prepared to this natural phenomenon
as well as possible. A mathematical approach, more precisely probabilistic
and statistical, is then very useful to this aim. Indeed, it is now of common
use the expression “statistical seismology”: it indicates the scientific field
which regards the earthquake predictions based on the statistical modeling
developed to analyze the real data, the results of which are used to evaluate
the probability of an earthquake to occur in a certain space-time-magnitude
window. In fact, let’s recall that one can associate to each shock the follow-
ing three quantities, obtained by combining the signals registered by several
seismographs located in more sites of the Earth’s surface:

• spatial location, indicated in longitude and latitude, of the epicenter.
The latter corresponds to the normal projection on the Earth’s surface
of the inner point, called hypocenter, at which the shock has occurred;
the distance between the epicenter and the hypocenter is the focal depth
of the shock;

• time instant, indicated in the data/hour format or in an absolute time
starting from a certain year of choice;

• magnitude, that measures the “size” of an earthquake. C. F. Richter
was the first to introduce the concept of seismic magnitude in 1935, on
the basis of some instrumental recordings. The Richter’s local magni-
tude scale (ML) is a base−10 logarithm scale and measures the energy
released by the earthquake at the hypocenter in the form of seismic
waves. Initially, ML measured only the energy of earthquakes occurred
in California within 600Km from the Woods-Anderson torsion seismo-
graph, but then it has been extended to earthquakes of all the distances
and all the focal depths.

The local magnitude is one of the most used scale at the moment,
together with the recently introduced Moment magnitude scale MW .
It has been defined by Hiroo Kanamori as

MW =
2

3
logM0 − 10.7,

where M0 is the seismic moment, defined by the equation M0 = ςAD,
where ς is the shear modulus of the faulted rocks, A is the area of
the rupture along the fault and D is the average displacement on A
[Fowler, 1990]. This magnitude scale is mostly used for strong shocks.
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Several other magnitude scales have been proposed, but we mention
only the duration magnitude Md, generally used for small earthquakes
and defined by

Md = a log Ts + bDs − c,

where T is the duration of the signal, D is the distance from the source
which receives the signal and (a, b, c) are constants.

For completeness of information, let’s recall that another measure of
the size of an earthquake is given by the Mercalli’s intensity scale. It
measures a shock in terms of observed damage. It is the scale which
generally indicates the size of historical earthquakes.

Locations, occurrence times, magnitudes and other earthquakes’ character-
istics, like for example the depths of the hypocenters, are recorded in the
seismic catalogs. The use of the latter could be very important to analyze
completely the phenomenon. In fact, it is fundamental to combine a math-
ematical study with an experimental analysis, in order to have both the
theoretical support and the real experimental validation of the results.

In an earthquake sequence, the events are typically divided into sponta-
neous (or background) and triggered (aftershocks). The background seismic-
ity is the component not triggered by precursory events and is usually con-
nected to the regional tectonic strain rate; on the other hand, the triggered
seismicity is the one associated with stress perturbations due to previous
shocks [Lombardi et al., 2010]. Both a triggered and a background event
may generate aftershocks. In this study, we will use the terms “triggering
event” to indicate any mother event that produces its own progeny [Saichev
and Sornette, 2005].

In any given catalog one can consider two different threshold magnitude
values. The first one is the completeness magnitude mc, that is the small-
est value such that all the events with magnitudes exceeding it are surely
recorded in the catalog. The second threshold is instead connected to the
concept of triggering: the reference magnitude m0 is the minimum value for
an event to be able to trigger its own offsprings [Helmstetter and Sornette,
2002b]. Reference magnitude is usually theoretically set less than or equal
to the completeness one [Sornette and Werner, 2005]. Indeed, even if the op-
posite inequality were verified, we could however reduce to the previous case
by excluding the data relative to observable events with magnitude less than
m0. In practice, the value of mc is estimated from the data. Instead, until
now, there isn’t a formula to estimate m0; however, the seismologists assess
that this value is supposed to be really very small and then, in particular,
smaller than mc.
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The instrument used to model seismicity is given by point processes.
These stochastic processes consist of punctual configurations in time and/or
space. In this thesis, we will discard the spatial locations of the events: we
will consider a marked point process on the line in which each element refers
to the occurrence time of a shock in the earthquake sequence and the mark
is given by the respective magnitude. More precisely, as typically done, we
will model the seismic phenomenon as a marked branching process in which,
at each generation, each event may give birth to its own aftershock activity
independently of the other mother events. As we are going to explain in a
moment, we will focus in particular on the events’ magnitudes: it seems very
natural to suppose that the aftershocks’ magnitudes are correlated with the
magnitude of the respective mother events. This hypothesis of magnitude
correlation will be supported by some statistical analyses and will consti-
tute the basis for the development of a new mathematical model for seismic
sequences, with dependent marks.

In particular, the new model we are going to propose is a modified version
of the temporal Epidemic Type Aftershock Sequence (ETAS) model, which
belongs to the class of linear, stationary, marked Hawkes processes. The
ETAS model is based on a specific branching process and actually represents
a benchmark in statistical and mathematical seismology. For the first time it
has been proposed in its pure temporal version by Ogata [Ogata, 1988], but
some years later it has been improved by considering also the spatial location
of the events [Ogata, 1998]. The process generates the events along consecu-
tive generations. At any step, each event produces, independently of the oth-
ers, a random number of aftershocks distributed as a Poisson random variable
with rate depending on the generating event’s magnitude through the produc-
tivity law. Occurrence times and magnitudes of each event are independent of
each other and are distributed according to respectively the Omori-Utsu law,
that is a power law, and the Gutenberg-Richter law, that is an exponential
law (for the above-mentioned three laws see equations (2.2), (2.5) and (2.1)).
Since it is expected that the magnitude process obeys the Gutenberg-Richter
law, the deviations from this law are interpreted like missing measurements,
then the minimum magnitude value after which there’s agreement with the
exponential decay is interpreted as the completeness threshold. In the clas-
sical ETAS model, the above-mentioned magnitudes are also independent
of past seismicity. Finally, given an event, its aftershocks are spatially dis-
tributed according to a particular model centered at it (see [Ogata, 1998]).
As already said, we will consider here only the temporal-magnitude analysis,
discarding the spatial component.

This thesis finds its motivation exactly in the property, assumed in the
standard ETAS model, according to which the magnitude of each event fol-
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lows the Gutenberg-Richter law, independently of any past event. Actually,
as said before, we find intuitive and more realistic to assume that the dis-
tribution of triggered events’ magnitude depends on the triggering events’
one, in analogy with the ETAS assumption that the number of aftershocks
depends on the mother event’s magnitude. In fact, in the recent literature
these magnitude correlations were found statistically different from zero [Lip-
piello et al., 2007a,b, 2008; Sarlis et al., 2009, 2010] and independent of the
incompleteness of the catalogs [Lippiello et al., 2012], in opposition to the
previous assumptions that the above correlations are absent or due only to
some problems of the catalogs [Corral, 2004, 2006; Helmstetter et al., 2006].

As anticipated, to the aim of finding further empirical evidences support-
ing this hypothesis, we will perform two different kinds of (time-magnitude)
analysis of four real catalogs: three Italian datasets and a Californian one.
The main problem is to determine the mother/daughter causal relations be-
tween events and the two analyses differ in this respect. From each catalog,
we then obtain the law of triggered events’ magnitude by a kernel density
method. The results show that the density of triggered events’ magnitude
varies with the magnitude of their corresponding mother events, in other
words it is a transition probability density. As the intuition suggests, the
probability of having “high” values of the triggered events’ magnitude in-
creases with the mother events’ magnitude. In addition, one can see a statis-
tically significant increasing dependence of the aftershocks’ magnitude means,
again with respect to the triggering events’ magnitude.

We will then propose a new version of the temporal ETAS model, in which
the magnitudes are correlated by means of a class of transition probability
density function for the triggered events’ magnitudes, which includes also the
case of independent magnitudes. The transition densities class is chosen in
accordance with the results of the above experimental analyses and imposing
other conditions. The most important one being that, averaging over all the
mother events’ magnitudes, we obtain again the well-validated Gutenberg-
Richter law. This property is fundamental for our study and ensures the
validity of this law at any event’s generation when ignoring past seismicity.
The explicit form of the class is given in (4.2).

The above class of transition probability densities is then tested by a sim-
ulation. More precisely, we will perform the same two types of analysis as
before for some synthetic catalogs. We illustrate only the study concerning
two of them, being the results for the other simulated datasets very simi-
lar. The two synthetic catalogs considered are obtained with two different
approaches. The first one is simulated by the classical algorithms for the
temporal ETAS. The second one is instead simulated with a new program
in which the magnitudes of the triggered events are simulated according to
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the explicit form (4.2) of the new transition probability density functions.
The results obtained for these two catalogs still support our hypothesis of
correlated magnitudes.

The distribution of the time delay between two consecutive shocks, i.e.,
the interevent time, plays a very important role in the assessment of seis-
mic hazard and scientific attention has been focused on it [Bak et al., 2002;
Corral, 2003, 2004; Davidsen and Goltz, 2004; Molchan, 2005]. Following
the Saichev and Sornette’s approach for the classical ETAS model [Saichev
and Sornette, 2007, 2013], we then study this random variable for our new
ETAS model with correlated magnitudes. Due to the characteristics of the
branching process involved and the homogeneity of the background compo-
nent, both the classical and the new ETAS model are stationary and all the
interevent times have the same distribution. Because of the incompleteness
of the catalogs, it is interesting to study the interevent time between ob-
servable events, i.e., events with magnitudes bigger than the completeness
threshold mc. Then, in order to find the density Finter(τ) of this variable,
we will consider the probability generating function (PGF), that is a very
important tool for the analysis of mathematical models in seismology [̀‘Ozel
and İnal, 2008; Saichev and Sornette, 2004, 2006a,b; Saichev et al., 2005]. In
particular, we will consider the PGF of the total number of observable events
in the time interval [0, τ ] evaluated in zero, that is the probability of having
zero observable events in the above time interval (void probability). More
precisely, we derive an approximation of the probability P{τ} of zero events
with magnitude larger than mc in [0, τ ], for small τ . Recalling that, by the
Palm equation [Cox and Isham, 2000], the density Finter(τ) is obtained by
scaling the double time derivative of P{τ}, we will then interpret the results
as an approximation of the density Finter(τ). The results we are going to
derive are a generalization of the ones obtained in [Saichev and Sornette,
2007] for the classical time-magnitude ETAS model. Indeed, on the one
hand, when the transition probability reduces to the Gutenberg-Richter law
or when mc = m0, our results coincides with those by Saichev and Sornette.
On the other hand, in our general framework, when mc > m0, the above
approximations depend explicitly on the parameters involved in the explicit
form of the transition probabilities.

This thesis is precisely structured as follows. Chapter 1 is focused on defi-
nitions, properties and examples of the point processes. We discuss also some
mathematical concepts and techniques useful to study earthquake sequences,
like the Palm theory. Some main classes of models very used in seismology
are also presented here: the Poisson process, the Hawkes processes and the
stress-release model. The Hawkes processes in particular have a relevant role,
since they represent the class to which belongs the ETAS model. Chap-
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ter 2 is focused exactly on the latter model, discussing the non-explosion
issue, the moment measures and giving a panoramic of its statistical analy-
ses. Chapter 3 is devoted to our two statistical analyses of four real catalogs.
In Chapter 4 we introduce and study our new ETAS model with correlated
magnitudes. We show the non-explosion of the process, we give the Laplace
functional equation and derive the explicit form for the class of the transition
densities. Chapter 5 is then devoted to the experimental validation of our
new model by analyzing simulated catalogs. Finally, in Chapter 6 we de-
rive the approximations, for small τ , of the probability P{τ} of zero events
with magnitude larger than mc in [0, τ ], and of the interevent time density
Finter(τ).

The thesis ends with four appendices, containing a brief review on PGF
and two classical statistical tests, some technical proofs and a public link to
the codes of all the programs used in the thesis.



Chapter 1

Mathematical background

The theoretical study of earthquake sequences is based on a robust mathemat-
ical background that allows to model and review the phenomenon through an
analytical approach. Probability and statistics theories give a strong support
in this sense. It is since the first use of the terms “Statistical Seismology”, in
1928 by Kishinouye and Kawasumi [Kishinouye and Kawasumi, 1928], that
the theoretical study of earthquakes has become a very important research
field, committing a lot of scientists worldwide.

Just like in many scientific disciplines, such as for example biology or
informatics, the mathematical tool for the modeling of seismic sequences is
represented by the point processes. This chapter is devoted to definitions,
properties, results and examples of the latter. The Palm theory will be also
discussed, in order to explain the link between point processes and the prob-
ability density function of the interevent time between consecutive shocks.
Let’s recall that this random variable has a very important meaning for seis-
mic hazard scopes and is asymptotically analyzed in this study.

Finally, a particular attention is given to those processes typically used
in seismology. Two of them have a particular relevance:

• Poisson process represents a fundamental basis for the mathematical
modeling of earthquakes;

• Hawkes processes represent the general class to which belongs the ETAS
model. The latter is a benchmark in statistical seismology; it is the
starting point of the theoretical study in this thesis, thus all Chapter 2
will be devoted to it.

For the results in this chapter one can refer to [Brémaud, 2013; Daley
and Vere-Jones, 2003, 2008].

8
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1.1 Stochastic point processes

Point processes are stochastic processes whose realizations are punctual con-
figurations in space and/or time. The points represent the events corre-
sponding to some observable phenomenon; they may be labeled with respect
to some of their features, like for example locations and/or occurrence times.

In order to define rigorously the point processes, let’s consider a measur-
able space (E,B(E)), where E is a locally compact second countable space
(l.c.s.c.) and B(E) is the Borel sigma-field on it. Let’s recall that a space
has a l.c.s.c. topology if it is a Hausdorff (or separate) space, each point has
a neighbourhood with a compact closure, and there exists a countable family
of open sets {Bn}n≥1, the countable basis, such that every open set B is the
union of the open sets of this basis. A locally compact second countable space
is in particular a complete, separable, metrizable, topological space. As an
example, we can choose (E,B(E)) = (Rk,B(Rk)), for some integer k > 0.

A measure on (E,B(E)) is said to be locally finite if it assigns a finite
mass to the relatively compact sets in E. Now, let’s indicate with M lf

E the
set of all the locally finite measures on (E,B(E)) and with M

lf
E the relative

sigma-field generated by the collection of sets

{ν ∈M lf
E s.t. ν(A) ∈ C}, A ∈ B(E), C ∈ B(R+ ∪+∞). (1.1)

Then, the measurable space (M lf
E ,M

lf
E ) is the canonical space of (locally fi-

nite) measures on (E,B(E)), and a measure ν ∈M lf
E is called a point measure

taking values in (N ∪ +∞). One of the simplest examples of point measure
is the Dirac measure δω(A) = 1A(ω), where 1A(ω) is the indicator function
having value one when ω ∈ A, zero otherwise.

Definition 1. Let (Ω,F,P) be a given probability space. The random mea-
sure (measurable mapping)

N : (Ω,F) → (M lf
E ,M

lf
E ),

defined on (E,B(E)), is a point process if N(ω) is a point measure for all
ω ∈ Ω.

Remark 1. An alternative definition of point process may be given in terms
of a sequence of finite or countably finite random variables {yi s.t. i ∈ N+},
with values in E, as stated in the following proposition.

Proposition 1. Let {yi} be a sequence of E-valued random elements defined
on a certain probability space (Ω,F,P). Suppose that there exists an event
F0 ∈ F such that P{F0} = 0 and ω /∈ F0 implies that for any bounded set
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A ∈ B(E), only a finite number of elements of {yi(ω)} lies within A. Define
N(·) to be the zero measure on F0 and otherwise set

N(A) = #{yi ∈ A}, A ∈ B(E).

Then, N(·) is a point process.

Here we use the terms “bounded set” to indicate that it is relatively
compact. The quantity N(A) is a random variable if N is a random measure.
In fact, it consists of the mapping ω → N(ω)(A), obtained by composing the
measurable mappings

ω → N(ω), ν → ν(A).

The measurability of this random variable need not to be verified for all the
sets A ∈ B(E): it is enough to consider a smaller class of sets generating this
sigma-field, as stated in the theorem below.

Theorem 1. i) For N : Ω →M lf
E to be measurable it suffices that N(I) :

Ω → (R+ ∪ +∞) is a random variable for all I ∈ H0, where H0 is a
collection of relatively compact subsets of E generating B(E), that are
closed under finite intersection and such that there exists a sequence
{En}n≥1 such that either En ↑ E, or the En’s form a partition of E.

ii) If I is the collection of subsets of M lf
E of the form {ν|ν(I) ∈ A}, where

I ∈ H0 and A ∈ B(R+ ∪+∞), then M
lf
E = σ(I).

Remark 2. A locally finite point processN can be rewritten also as
∑

n∈N δ(Xn),
for a sequence of random variables {Xn}n≥1 with values in E ∪ {a}, for a
given a /∈ E, endowed with the sigma field generated by B(E) and {a}. The
point a plays the role of infinity.

There may be situations in which one considers N({ω}) only sigma-finite,
for ω ∈ Ω. Then, we have to consider the set of the measures of all kinds
ME , where E can now be taken as an arbitrary measurable space endowed
with the sigma field E.

Definition 2. Let’s consider a random measure on (E,E) N : (Ω × E) →
(R+∪+∞). If there exists a sequence {Kn}n≥1 of measurable sets increasing
to E and such that N(ω,Kn) <∞ for all ω ∈ Ω and n ≥ 1, then the random
measure N is called sigma-finite.

Now, recalling that the singletons are sets consisting of a single element,
we give the following definition.
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Definition 3. If E contains all the singletons of E, then a point measure ν
on (E,E) is called a simple measure if

ν({e}) ∈ {0; 1}, ∀e ∈ E.

Consequently, a point process N on (E,E) is a simple process if N({ω}) is a
simple measure, for all ω ∈ Ω.

The examples of point processes are typically specified through their
finite-dimensional distributions (fidi). In order to define the latter, let’s con-
sider again the probability measure P on (Ω,F) and the random measure N
on (E,E). The probability PN := P ◦N−1, defined on (M lf

E ,M
lf
E ), is the dis-

tribution of N . Now, the fidi distributions of a point process N are specified
by consistent joint distributions

Pk(A1, . . . , Ak;n1, . . . , nk) = P{N(A1) = n1, . . . , N(Ak) = nk},

indicating the number of points falling in finite collection of bounded Borel
sets Aℓ ∈ B(E), for ℓ = 1, . . . , k and for all k ∈ N+. Here the conditions for
consistency can be expressed by

n∑

r=0

Pk(A1, . . . , Ak;n−r, r, n3, . . . , nk) = Pk−1(A1∪A2, A3, . . . , Ak;n, n3, . . . , nk)

and
lim
Ak↓∅

P1(Ak; 0) = 1,

for all the sequences {Ak}k∈N+ of bounded Borel sets.
If we suppose that E is l.c.s.c. and we consider again the collection H0

of relatively compact subsets of E, generating B(E) and closed under finite
intersection, then if I is the collection of subsets of M lf

E of the form

{ν ∈M lf
E s.t. ν(Iℓ) ∈ Aℓ, ℓ = 1, . . . , k},

where Iℓ ∈ H0 and Aℓ ∈ B(E), then I is stable under finite intersection. By
the well-known Dynkin’s Lemma, it follows that if two probability measures
agree on I, so they do on σ(I), that is equal to M

lf
E by Theorem 1. Then,

the following theorem holds.

Theorem 2. Let E be l.c.s.c. and consider the random measure N on (E,E).
Its distribution is completely characterized by the distributions of the vectors
(N(I1), . . . , N(Ik)), for all (I1, . . . , Ik) ∈ H0 and k ∈ N+, where H0 is defined
as above.
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As a consequence, the fidi distribution restricted to I as in Theorem 2,
completely characterizes a locally finite point process. This is true also for
sigma-finite point processes on a l.c.s.c. space, since this is true for the
restrictions of this point process to the sequence {Kn}n≥1 of measurable sets
increasing to E and such that N(ω,Kn) <∞, for all ω ∈ Ω and n ≥ 1, as in
Definition 2.

In many applications, the point processes considered are defined on the
real line and are stationary. The latter means that the process remains
invariant under translation, that is

Pk(A1, . . . , Ak;n1, . . . , nk) = Pk(A1 + s, . . . , Ak + s;n1, . . . , nk), ∀s ∈ R,

where
{
Aℓ + s = {t+ s, t ∈ Aℓ}

}
ℓ=1,...,k

.

Let’s conclude this section specifying that, for simplicity of notations, in
what follows we will use the terms “a point process on E” excluding the
dependence on the relative sigma field, too.

1.2 Finite point processes

Let’s consider a measurable space (E,E) and a probability space (Ω,F,P).
Let’s consider also the finite configuration space Mfc(E), consisting of the
collection of the configurations in E. A configuration x = (x1, . . . , xn) with
cardinal n ∈ N is a finite, unordered sequence of points in E, with repetitions
allowed. This means that multiple points (xi = xj , i 6= j) may belong to the
sequence. In the cases of time locations, this possibility is instead excluded.
Let Mfc(E) be the relative sigma field, generated by the mappings from x

to the cardinality of x ∩A, for all the measurable sets A ∈ E.

Definition 4. A finite point process Nfin on E is the following random
measure:

Nfin : (Ω,F) → (Mfc(E),Mfc(E)).

For such a process we can define on N the count distribution

pn = P{N(E) = n}, n ∈ N,

determining the total number of points in the process, with
∑∞

n=0 pn = 1.
Furthermore, if the total number of events is n ∈ N, we can also define the
probability distribution Πn on E(n) = E × · · · ×E︸ ︷︷ ︸

n−times

, determining the joint

distribution of the positions of the points belonging to the process. Since
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we consider unordered sequences, the latter probability distribution should
be symmetric. If it isn’t already symmetric, we can obtain this property by
introducing

Πsym
n (A1 × · · · × An) =

1

n!

∑

perm

Πn(Ai1 × · · · × Ain),

that is the symmetrized form for any partition (A1, · · · , An) of E, where the
sum is taken over the n! permutations (i1, . . . , in) of the integers (1, · · · , n). It
is important to consider also non-probability measures which, as we are going
to see, can be interpreted in terms of counting measures and are useful in
terms of conditions for a process to be simple. Let’s define then the Janossy
measures as

Jn(A1 × · · · ×An) = pn
∑

perm

Πn(Ai1 × · · · × Ain).

If the derivatives exist, we can introduce the densities of Jn(·). For example,
if E = Rd, we can define the Janossy densities as

jn(x1, . . . , xn)dx1 · · · dxn = P





The process has exactly n points,

one in each of the n distinct

infinitesimal locations dx1, . . . , dxn




.

The Janossy measure may be interpreted in terms of the count distribution
{pn}n∈N by setting

J0(E
(0)) = p0, Jn(E

(n)) = pn
∑

perm

Πn(E
(n)) = pnn!, for n ≥ 1.

Then, the normalization condition
∑∞

n=0 pn = 1 for the count distribution
becomes

∞∑

n=0

Jn(E
(n))

n!
= 1.

Now, if we consider a finite partition (A1, . . . , Ak) of E, the probability of
having respectively (n1, . . . , nk) points in the k elements of the partition, with∑k

ℓ=1 nℓ = n, is easily obtained as

P{N(A1) = n1, . . . , N(Ak) = nk} =
Jn(A

(n1)
1 × · · · ×A

(nk)
k )

n1! · · ·nk!
. (1.2)
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Furthermore, if the A1, . . . , Ak are disjoint and A is the complement of their
union, the above Janossy measure becomes

Jn(A
(n1)
1 × · · · × A

(nk)
k ) =

∞∑

ℓ=0

Jn+ℓ(A
(n1)
1 × · · · ×A

(nk)
k × A

(ℓ)
)

ℓ!
.

As anticipated before, the definition of the Janossy measures allows to
obtain a necessary and sufficient condition for a point process to be simple.
In fact, the case in which Jn(·) assigns a non-zero mass to at least one of
the diagonal sets {xi = xj}, is equivalent to a strictly positive probability of
having two coincident points at the same location. We can then state the
following proposition.

Proposition 2. i) A necessary and sufficient condition for a point pro-
cess to be simple is that the associated Janossy measure Jn(·) assigns
zero mass to all the diagonal sets {xi = xj}, for all n = 1, 2, . . . .

ii) If E = R
d, the point process is simple if the Janossy measures have

densities jn(·), for all n = 1, 2, . . . , with respect to the (nd)-dimensional
Lebesgue measure.

It is important to say that the Janossy densities play a relevant role in
the likelihood analysis of finite point processes. To discuss this issue, let’s
define at first the local Janossy measures and densities.

Definition 5. Given any bounded Borel set A, we define the local Janossy
measures localized to A as

Jn(dx1 × · × dxn;A) = P





The process has exactly n

points in A, one in each of the n

distinct locations dx1, . . . , dxn




,

for xi ∈ A, i = 1, . . . , n. If the above measures have densities, the latter are
called the local Janossy densities.

The local Janossy measures allow to define also the property of regularity.

Definition 6. A point process N defined on E = Rd is regular on a given
bounded set A ⊆ B(Rd) if, for all n ≥ 1, the local Janossy measures Jn(dx1×
· · ·× dxn;A) are absolutely continuous on A(n) with respect to the Lebesgue
measure in E(n). The point process N is regular if it is regular on all the
bounded sets A ∈ B(Rd).
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By recalling the above Proposition 2, we can deduce that a regular process
is simple.

Now, recalling that the likelihood is a function of the parameters in the
joint density and that the latter, in the case of finite processes, is simply the
probability of the points to occur exactly at locations xi in a given bounded
Borel set A, we can give the following definition.

Definition 7. The likelihood of a realization (x1, . . . , xn) of a regular point
process N , defined on a bounded set A ∈ B(Rd), is the local Janossy density
jn(x1, . . . , xn;A), with n = N(A).

1.3 Moment measures and probability gener-

ating functionals

Let’s consider a point process N defined on the l.c.s.c. space E equipped
with the Borel sigma field B(E). If the process has finite mean E

[
N(A)

]
,

for any bounded A ∈ B(E), then we can define the first (order) moment
measure, or mean measure, of the N as

M(A) =M1(A) = E
[
N(A)

]
.

This measure is finite additive since the point process is a random mea-
sure on (E,B(E)). Furthermore, if we consider an increasing monotone se-
quence of bounded Borel sets {An}, for n = 1, 2, . . . , converging to A as
n tends to ∞, we have also that limn→∞M(An) = M(A); then, M(A) is
also sigma additive. When M(·) exists, we can also define the random inte-
grals

∫
E
f(x)N(dx), for f measurable function with bounded support on E.

Recalling Remark 2, we can say that the above integral is the same mathe-
matical object of

∑
n∈N f(Xn), where the sum extends only to those indices

n such that Xn ∈ E without points “at infinity”: the value f(a), for a as in
Remark 2, is not defined. If f = 1A, for any bounded A ∈ B(E), it follows
that

M(A) = E

[∫

A

f(x)N(dx)

]
.

Linear combination and monotone limits allow to obtain the result of the
Campbell’s theorem concerning the above expected value:

E

[∫

E

f(x)N(dx)

]
=

∫

E

f(x)M(dx). (1.3)

This equation has been firstly studied by Campbell in his work in 1909 [Camp-
bell, 1909] and can be generalized in the Campbell measures, which represent
a very important object in the theory of point processes.
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The concept of first order moment measure can be extended to a generic
kth (order) moment measure. To this aim, we have to consider the measure
N (k), defined on the rectangles A1 × · · · × Ak, for bounded {Aℓ}ℓ=1,...,k ∈
B(E), given by the k-fold product of N with itself. More precisely, N (k) is
the point process consisting of all the k-tuples of points from the original
realization, with repetitions allowed and distinguishing the order. The kth

(order) moment measure is the expected value of such a process, that is

Mk(A1 × · · · × Ak) = E

[ k∏

ℓ=1

N(Aℓ)

]
. (1.4)

Just like the mean measure, the kth moment measure is finite additive in the
above k-dimensional rectangle. The Campbell’s theorem can be generalized
for this latter measure as follows.

Proposition 3. If the kth moment measure exists, then the random integrals∫
E
f(x)N(dx), for f measurable function with bounded support on E, has

finite kth moment, given by

E

[(∫

E

f(x)N(dx)

)k]
=

∫

E(k)

f(x1) · · · f(xk)Mk(dx1 × · · · × dxk).

A relation that connects first and second order measures, very often con-
sidered in the theory of point process, is the covariance measure:

C2(A× B) =M2(A× B)−M1(A)M1(B),

for disjoint bounded sets A,B ∈ B(E).

The measure Mk can be extended to arbitrary rectangle sets A
(k1)
1 ×· · ·×

A
(kr)
r , for

∑r
i=1 ki = k and ki ≥ 1, i = 1, . . . , r, where the {Ai}i=1,...,r are

disjoint bounded sets of B(E). Then, we obtain

Mk(A
(k1)
1 × · · · × A(kr)

r ) = E

[(
N(A1)

)k1 · · ·
(
N(Ar)

)kr
]
. (1.5)

The point process N (k) for which we compute the above expectation to define
Mk, may contain multiple points. In order to avoid this case, we can define
the kth factorial moment measure M[k] as

M[1](A) =M1(A) and

M[k](A
(k1)
1 × · · · × A(kr)

r ) = E

[(
N(A1)

)[k1] · · ·
(
N(Ar)

)[kr]
]
, k > 1,
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for {Ai} and ki, i = 1, . . . , r, as in (1.5). In this case, the underlying process
consists of all the k-tuples of distinct points from the original realization,
distinguishing the order but not allowing repetitions. This means that a
double point is labeled as two distinct points with the same coordinates.

In the case of finite point processes, recalling (1.2), we can write M[k] in

terms of the Janossy measures. If E

[(
N(E)

)[k]
]
< ∞ and {Ai}i=1,...,r is a

partition of E, we have that

M[k](A
(k1)
1 × · · · ×A(kr)

r ) =
∑

ui≥ki,i=1,...,r

Ju1+···+ur(A
(u1)
1 × · · · ×A

(ur)
r )∏r

i=1(ui − ki)!
.

Finally, let’s discuss about the probability generating functionals. At first,
let’s focus again on finite point processes.

Definition 8. Let U : E → C be the class of bounded, complex-valued,
Borel, measurable functions ζ(·) such that |ζ(x)| ≤ 1 for all x ∈ E. The
probability generating functional for a finite point process, defined for the
function ζ(·) is

G[ζ ] = E

[
N∏

i=1

ζ(xi)

]
, (1.6)

where the above product becomes zero if N > 0 and ζ(xi) = 0 for some i,
and becomes one if N = 0.

Let’s observe that, since ζ(·) is a bounded, complex-valued, Borel, measur-
able function, the random product

∏N
i=1 ζ(xi) is well defined for a realization

of a finite point process. Furthermore, since |ζ(x)| ≤ 1, the expected value
of the above product exists and is finite. The probability generating func-
tional may be reduced to the probability generating function by considering
a measurable partition A1, . . . , Ak of E and by setting

ζ(x) =
k∑

ℓ=1

zℓ1Aℓ
(x),

where 1A(·) is the indicator function of A and where |zℓ| ≤ 1, for ℓ = 1, . . . , k.
Then, one can easily obtain that

G

[
k∑

ℓ=1

zℓ1Aℓ
(·)
]
= E

[
k∏

ℓ=1

z
N(Aℓ)
ℓ

]
.

In the case of a general point process, the probability generating func-
tional is defined as above, provided that the functions considered are now
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defined in the space H(E), consisting of the non-negative, measurable func-
tions h(·) bounded by unity and such that h(x) = 1 outside some bounded
set. In this case, the following proposition holds.

Proposition 4. Let G[·] be the probability generating functional of a point
process with finite kth order moment measure, for k ∈ N. Then, for (1−h) ∈
H(E) and ϑ ∈ (0, 1),

G[1− ϑh] = 1 +
k∑

ℓ=1

(−ϑ)ℓ
ℓ!

∫

E(ℓ)

h(x1) · · ·h(xℓ)M[ℓ](dx1 × · · · × dxℓ) + o(ϑk).

1.4 Marked and cluster processes

In this section, we are going to present two classes of widely used processes,
both in theoretical and applied studies. The first class consists of the marked
point processes, very useful when one wants to look at a point process as part
of a more complex model. In this case, the point process itself represents
the component of the model which carries all the information about time
occurrence or spatial locations of the elements, having themselves a stochastic
evolution. The second class consists instead of the cluster point processes,
which are very important to model the locations of objects in one or three-
dimensional space. One of their main applications is seismology. In this
case, they model the locations of earthquake’s epicenters and may naturally
describe the branching evolution of seismic generations. These two classes of
processes are connected in fact, if one considers the point process associated
to the events’ (time or space) locations {xi}, not necessary simple, then this
process may have the following two interpretations:

• the underlying process (or ground process, as we are going to explain
in a moment) of a marked point process, or

• the cluster process in which the cluster centers are the locations of the
events and the cluster elements are the pairs (xi, κij), where the {κij}
represent the marks associated to the elements located in {xi}.

1.4.1 Marked processes

Let’s consider a l.c.s.c. space E and its Borel sigma field B(E). The first
important component of a marked point process is the ground process Ng,
with values in E, indicating the process of the events’ locations which can be
either their times of occurrence or their spatial positions. Let’s consider also
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another measurable space (K,B(K)), where K is again l.c.s.c. and K is the
relative sigma field.

Definition 9. Amarked point process (MPP), with locations in E and marks
in K, is a locally finite point process N consisting of the pairs (xn, κn)n∈N in
(E ×K), with the additional property that the ground process Ng(·) is itself
a point process: Ng(A) = N(A×K) <∞ for all the bounded sets A ∈ B(E).

The ground process Ng of the marked point process N is also indicated
as the marginal process of locations.

Definition 10. A multivariate (or multitype) point process is a marked point
process with mark space give by the finite set {1, 2, . . . , k}, for some k ∈ N.

Thanks to the fact that the mark space is finite, each component process
Nℓ(·) = N(· × ℓ) in the multivariate point process is locally finite and the
ground process can be written as

Ng(·) = N(· × {1, 2, . . . , k}) =
k∑

ℓ=1

Nℓ(·).

An equivalent way of defining a marked point process may be of consider-
ing a not necessary simple point process on (E,B(E)), equipped with the
sequences of K-valued random variables representing the marks.

As already specified, the MPP are widely used in applications. This
depends also on the fact that the form of the marks and the dependence rela-
tion between the ground and the mark processes may be of many types. One
important example is given by the process in which the ground component
is defined on the real line and the elements’ marks consist of some of the
features inherited by the past history of the process, up to the time of each
event considered.

The two properties of simpleness and stationarity of general point pro-
cesses can be stated for the special case of MPP as follows.

Definition 11. i) The marked point process is simple if so is the ground
process.

ii) The marked point process defined on R
d is stationary if its the proba-

bility structure remains invariant under translations in Rd.

Finally, we can give the two other definitions characterizing two important
kinds of dependence concerning the mark component of MPPs.
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Definition 12. Let’s consider a marked point process N = {xn, κn}n∈N on
(E ×K).

i) The MPP has independent marks if, given the ground process, the
marks are mutually independent random variables with distribution
depending only on the relative locations.

ii) When E = R, the MPP is said to have unpredictable marks if the
distribution of the ith mark, associated to the ith location, does not
depend on the pair {xj , κj}, for xj < xi.

In the case of MPP with independent marks, we can state the following
theorem, which concerns the structure of such a process.

Theorem 3. Let’s consider a marked point process N with independent
marks.

i) The probability structure of N is completely defined by the distribu-
tion of the ground process Ng and the mark kernel {MK(K|x) : K ∈
B(K)), x ∈ E}, which represents the distribution of the marks condi-
tioned to the location x.

ii) Let’s consider the space H(E ×K) of the measurable functions h(x, κ)
between zero and one such that h(x, κ) = 1 for all κ ∈ K and x /∈ A,
for some bounded set A. The probability generating functional for N is

G[h] = Gg[hMK
], h ∈ H(E ×K),

where Gg[·] is the probability generating functionals of Ng[·] and hMK
(x) =∫

K
h(x, κ)MK(dκ|x).

iii) The moment measure Mr of order r for N exists if and only if the
corresponding moment measure Mg

r for the ground process Ng exists.
In this case,

Mr(dx1×· · ·×dxr×dκ1×· · ·×dκr) =Mg
r (dx1×· · ·×dxr)

r∏

i=1

MK(dκi|xi).

Similar representations hold for factorial moments and covariance mea-
sure.
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1.4.2 Cluster processes

The modeling of a phenomenon through a cluster process allows to distinguish
two different components. The first one is relative to the cluster centres: they
identify the clusters themselves, are often unobserved and are modeled with
a given process Nc, whose generic realization are the points {yi} in a given
l.c.s.c. space Y . The second component is instead relative to the elements
within each cluster; it is modeled by a countable family of component point
processes N(·|yi), labeled with the centres of the clusters. Together, the two
components of above constitute the observed process. One of the applica-
tions in which this class of processes is particularly used is again seismology.
Since the earthquake sequences are often described as branching processes,
evolving in consecutive generations, it is natural to consider the ancestors, or
triggering events, as cluster centres, and the relative triggered shocks as the
elements of the clusters. In this case, the elements representing the centres
may be considered as clusters’ elements, too. In fact, there isn’t a particular
characteristic that allows to distinguish between these two kinds of elements.

In order to give a rigorous definition of the cluster process, let’s consider
the two l.c.s.c. spaces E and Y .

Definition 13. A cluster process N is a process on E such that, for any
bounded set A ∈ B(E),

N(A) =

∫

Y

N(A|y)Nc(dy) =
∑

yi∈Nc(·)

N(A|yi) <∞, almost surely (a.s.)

(1.7)
where Nc(·) is the centre process on the l.c.s.c. space Y and {N(·|y) : y ∈ Y }
is the measurable family of the component processes.

Let’s observe that the superposition of the clusters must be almost surely
locally finite, but this condition is not necessary for the individual clusters.
It could be also useful to define an independent cluster process, in which the
component processes are required to be mutually independent and then they
are supposed to come from an independent measurable family. Furthermore,
the case in which the cluster process and the component processes are defined
on the same space, one has to impose that the translated distributions N(A−
y|y) are identically distributed. This is the natural candidate for a stationary
version of the cluster process. Instead, we will say that the cluster process
has stationary components if the process relative to the cluster centres is
stationary and the distribution of the cluster elements depends only on the
relative positions between the elements themselves and the cluster centres.

The issue of existence of a cluster process is quite difficult to solve. In
fact, if the dimension of the space state increases, so does the number of
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clusters of points contributing to a given set. However, the conditions for
the existence of the process may be obtained formally when one considers
independent clusters, as stated in the following theorem.

Theorem 4. An independent cluster process exists if and only if
∫

Y

pA(y)Nc(dy) =
∑

yi∈Nc(·)

pA(yi) <∞, Πc a.s.,

for any bounded set A ∈ B(E), where pA(y) = P{N(A|y) > 0}, for y ∈ Y ,
and Πc is the probability measure of the process of cluster centres.

Remark 3. When the cluster process has stationary components, that is the
cluster centres process is stationary and the distribution of the cluster events
depends only on their distances from the relative centres, a sufficient condi-
tion for the existence of the cluster process is the finiteness of the mean cluster
size. In the case of the Poisson processes, this condition is not necessary.

Finally, let’s discuss about the moments and the probability generating
functional. If we take the conditional expectations on the cluster centres in
the first and the last members of equation (1.7), we obtain

E
[
N(A)|Nc

]
=

∑

yi∈Nc(·)

M1(A|yi) =
∫

Y

M1(A|y)Nc(dy), (1.8)

where M1(·|y) is the first moment measure of the process relative to the
elements of the cluster centred at y, if the latter exists. Since the processes
of the cluster elements form a measurable family, M1(A|y) (if exists) defines
a measurable kernel, that is a measure in A for every y and a measurable
function in y for each given Borel set A ∈ B(E). Then, by taking the
expectations of (1.8) with respect to the centres, we get

E
[
N(A)

]
=

∫

Y

M1(A|y)M c(dy),

for any bounded set A ∈ B(E), where M c(·) = E[Nc(·)] is the first moment
measure for the centres cluster process. It follows that the first moment
measure exists if and only if the latter integral is finite.

For what matter the second factorial moment measure, given the process
of the centres and the independence of the clusters, we obtain

M[2](A×B) =

∫

Y

M[2](A×B|y)M c(dy)

+

∫

Y×Y

M1(A|y1)M1(A|y2)M c
[2](dy1 × dy2), (1.9)
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where M c
[2](·) is the second factorial moment measure for the cluster centres.

Equation (1.9) includes both the possibilities that the two different points
considered, falling in the product space A×B, for A,B ∈ B(E), may belong
to the same cluster or not. Again, if the component measures exist and the
integrals in (1.9) are finite, then the second factorial moment measure exists.
Concluding, whenever the cluster process exists, if one assumes independent
clusters and consider h ∈ H(E), where we recall that the latter is the space
of non-negative, measurable functions bounded by unity and equal to one
outside some bounded set, then the probability generating functional for the
cluster process is

G[h] = E
[
G[h|Nc]

]
= Gc[Gm[h|·]],

where, for h ∈ H(E), Gm[h|y] is the probability generating functional of
N(·|y). The conditional probability generating functionals relative toN given
Nc is instead

G[h|Nc] =
∏

yi∈Nc

Gm[h|yi].

1.5 Stationary point processes on R

The point processes defined on the line are widely used in applied studies,
thanks to their simplicity and applicability. They consist of points represent-
ing the events’ occurrence times of a given phenomenon. In particular, this
is the case of the shocks in an earthquake sequence.

The characterization of such processes can be made in terms of four differ-
ent but connected well defined random variables. The first characterization
is through the counting measures N(·), that indeed count the number of
events of the process falling in a given set. More precisely, we can define the
counting measure

N(A) = #{ti ∈ A},
for any Borel subset A of the real line. This random variable is non-negative
and takes integer values, also infinite. In order to exclude the possibility of
many points occurring very close, N(·) is required also to be finite for any
bounded set. Furthermore, given an infinite sequence of mutually disjoint
sets (A1, A2, . . . ), such that A =

⋃∞
i=1Ai, it holds

N(A) = N

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

N(Ai).
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This first characterization is strictly connected to the second one. In fact,
if A = (0, t], we can write

N(t) =





N((0, t]), if t > 0

0, if t = 0

−N((t, 0]), otherwise.

Then, the point process on the line is characterized through the non-decreasing,
right-continuous, integer-valued step function N(t). Let’s specify that the no-
tation N(t) is used for the number of events in the interval (0, t]; instead, we
will use N({t}) to indicate the number of events occurred in the exact time
t.

In order to present the third way of describing a point process on R, let’s
start with the case of the positive half-line. We can consider the sequence of
increasing times

ti := inf{t > 0| N(t) ≥ i}, i = 1, 2, . . . .

Since it obviously follows that

{N(t) ≥ i} ⇔ {t ≥ ti},

it is equivalent to specify the sequence {ti}i=1,2,... or the above step function
N(t), when N((−∞, 0]) = 0. If we extend this result to the hole line, the
sequence of increasing times becomes the doubly infinite sequence

tr =

{
inf{t > 0| N((0, t]) ≥ r}, if r > 0

− inf{t > 0| N((−t, 0]) ≥ −r + 1}, if r ≤ 0,
(1.10)

with the property that t0 ≤ 0 < t1 and tr ≤ tr+1 for all r.
The last characterization can be obtained from (1.10) by setting

τr = tr − tr−1, r = 1, 2, . . . .

This sequence of intervals (interevent times) and one of the times {tr}, usually
t0, completely describe the process on the real line.

The properties of stationarity, regularity and simplicity in the case of
point processes on R can be stated as follows.

Definition 14. Let N be a point process on R. For all t ∈ R, we say that:

• the process is simple (or crude) stationary when the distribution of
N((t, t + s]) depends only on the length s and not on the location t;
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• the process is stationary when, for all bounded Borel subsets {Aℓ}ℓ=1,...,k ∈
R and k = 1, 2, . . . , the joint distribution of

{N(A1 + t), . . . , N(Ak + t)}
is independent of t;

• the process is regular when

P{N((t, t+ ε]) > 1} = o(ε);

• the process is simple when

P

{
N({t}) ∈ {0; 1}

}
= 1.

Let’s observe that crude stationary is weaker than stationary and regu-
larity guarantees simplicity. By recalling the characterization of the point
process on the line through the interevent times, we can give this further
definition.

Definition 15. A point process is interval stationary if, for every t ∈ R and
all the integers i1, . . . , it, the joint distribution of {τi1+k, . . . , τit+k} doesn’t
depend on k ∈ Z.

The moment measures in the case of point processes on the line are defined
as for the general case. In particular, the function

M(t) = E
[
N(t)

]

is non-negative and satisfies the Cauchy’s functional equation

M(t + s) =M(t) +M(s), for t, s ∈ [0,∞).

By defining the mean density asmd =M(1) = E
[
N((0, 1])

]
, it can be proved

that M(t) = mt, for t ∈ [0,∞). Furthermore, if the second moment measure
M2(t) exists and is finite and the process is ergodic, meaning that

P

{
lim
t→∞

N(t)

t
= md

}
= 1,

we have that M2(t) ∼ (mdt)
2 as t tends to infinity. This is because

lim
t→∞

var(N(t)/t) = 0

for an ergodic process N with a finite second moment.
In order to measure the rate of occurrence of a stationary point process,

we can state the following Khinchin’s existence theorem.
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Theorem 5. If N is a stationary point process, then the limit

λ = lim
t↓0

P{N(t) > 0}
t

(1.11)

exists, but may be infinite.

The above parameter is the so-called intensity of the point process. When
it is finite, we can write

P{N((t, t+ ε]) > 0} = λε+ o(ε),

for ε decreasing to zero.

1.5.1 Palm theory

The Palm theory provides a link between counting and interval properties.
In this section, we will focus on the Palm-Khinchin equations which allow to
connect the survivor function of the interevent times and the probability of
having zero events in a certain time interval. This will be very useful in the
last Chapter of this thesis where, as will be explained, we will discuss about
the explicit form of the density of the random variable associated to the time
between successive shocks, when considering a modeling of the earthquake
phenomena through a new version of the ETAS model.

Let’s start then by considering a stationary point process N defined on
the real line and with finite intensity. For such a process, the following
proposition holds.

Proposition 5. Given a stationary point process of finite intensity λ, the
limit

Qj(t) = lim
ε↓0

P{N((0, t]) ≤ j|N((−ε, 0]) > 0} (1.12)

exists for ε > 0 and j ∈ N. It is also right-continuous, non-increasing in t
with Qj(0) = 1.

It then follows that, for j = 1, 2, . . . on (0,∞),

Rj(t) = 1−Qj−1(t) = lim
ε↓0

P{N((0, t]) ≥ j|N((−ε, 0]) > 0}

are distributions, provided that limt→∞Rj(t) is not less than one. These
distributions may be interpreted in terms of the interevent times. In fact,
conditioned on the occurrence of one event in zero, the number of events



1.5 Stationary point processes on R 27

in (0, t] is bigger than j if the time of the jth event, and consequently the
interevent times till τj = tj − tj−i, has occurred before t. This means that

Rj(t) = lim
ε↓0

P

{ j∑

i=1

τi ≥ t|t0 = 0, t1 > 0, N((−ε, 0]) > 0

}
.

By induction on j, we can also prove the existence of

qj(t) = lim
ε↓0

P{N((0, t]) = j|N((−ε, 0]) > 0},

which follows directly from (1.12) for j = 0.
Now, if the process is also regular and recalling Proposition 5, we have

that

Pj(t + ε) =

j∑

i=0

P{N((0, t]) ≤ (j − i)|N((−ε, 0]) = i}

=P{N((0, t]) ≤ j} − P{N((0, t]) ≤ j, N((−ε, 0]) > 0}
+ P{N((0, t]) ≤ (j − 1), N((−ε, 0]) = 1}+ o(ε),

where
Pj(t) = P{N((0, t]) ≤ j}.

It follows that
Pj(t+ ε)− Pj(t) = −λεqj(t) + o(ε).

Then, by considering the right-hand derivative operator D+, we obtain that

D+Pj(t) = −λqj(t).

If we consider j = 0 and qj(t) continuous, so that its derivative is everywhere
defined, the latter formula becomes

dP0(t)

dt
= −λq0(t), (1.13)

that is exactly the equation we will use in Chapter 6 in order to get the
explicit form of the interevent time density.

1.5.2 Conditional intensities

In Section 1.5, we have proposed four equivalent description of point processes
on the real line. Actually, time-like evolutionary processes are naturally
described by successive conditioning. This means that at each stage, we
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condition on the past history up to the current event considered. To be
precise, let’s consider a regular point process N defined on the positive half-
line R+. The conditional intensity function λ(t|Ht), where Ht = {ti|ti < t} is
the history of the events’ occurrence times up to t, is the analogous of (1.11)
but with the conditioning on past history:

λ(t|Ht) = lim
ε↓0

P{N((t, t+ ε]) > 0|Ht}
ε

(1.14)

The conditional intensity function completely characterizes the process [Liptser
and Shiryaev, 1978]. This is the characterization we are going to use for the
model proposed in this thesis.

Remark 4. The conditional intensity function for a space-time-magnitude
process is equivalently defined as

λ(t, x, y,m|Ht) = lim
ε↓0

P{N((t, t+ ε], (x, x+ ε], (y, y + ε](m,m+ ε]) > 0|Ht}
ε

,

(1.15)
where now N((t, t+ ε], (x, x+ ε], (y, y+ ε](m,m+ ε]) is the counting measure
in the product space (t, t + ε] × (x, x + ε] × (y, y + ε] × (m,m + ε] and
Ht = {(ti, xi, yi, mi); ti < t}.

Now, given a sequence {ti}i=0,1,... of events’ occurrence times of a point
process, we can give an alternative definition of the conditional intensities
through the hazard functions. The latter are defined as

hn(t|t1, . . . , tn−1) =
pn(t|t1, . . . , tn−1)

Sn(t|t1, . . . , tn−1)
=

pn(t|t1, . . . , tn−1)

1−
∫ t
tn
pn(s|t1, . . . , tn−1)ds

,

for a sequence {ti} such that 0 < t1 < · · · < tn < . . . and where pn(·|·) and
Sn(·|·) are the conditional densities and the survivor functions of the process,
respectively. Then we can rewrite the conditional intensity piecewise as

λ(t|Ht) =

{
h1(t), if 0 < t ≤ t1

hn(t|t1, . . . , tn−1), if tn−1 < t ≤ tn, n = 2, 3, . . . .

The above definition may be extended to the whole line by considering
· · · < t−n < · · · < t1 < · · · < tn < . . . and an infinite past history:

λ(t|Ht) = hn(t|Ht) = lim
k→∞

pn(t|t−k, . . . , tn−1)

Sn(t|t−k, . . . , tn−1)
,

provided that the above limit exists.
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1.6 Point processes for earthquake modeling

As already explained, a seismic sequence can be mathematically described by
a point process. In this field, the points of the process are typically thought
to be the occurrence times of the shocks, but one can also consider marked
processes to label each event with its spatial location or magnitude, too.
Due to the complete characterization of these processes by the conditional
intensity, strictly connected to likelihood functions, one can also perform the
statistical analysis to estimate the parameters and select the model. In this
section, we will present some examples of point processes widely used for
earthquake sequence. In general, let’s say that we can distinguish between
two kinds of models: inhibitory and exciting. In the first type, the stress is
gradually accumulated till a certain time, then it is strongly released; instead,
the second type describes a situation in which each shock may potentially
produce its own progeny and the total process consists of a cascade of events.

1.6.1 Poisson processes

The Poisson process represents an archetype of point process, really very
used in many applications, among which the seismic one, where it is often
used as the null model in the hypothesis test.

Let’s consider a l.c.s.c. space E and its Borel sigma field B(E). A point
process N on E is a Poisson process with a locally finite Borel measure Λ(·)
when, for every finite sequence of disjoint bounded sets {Ai}i=1,...,n, n =
1, 2, . . . , it holds

ii) the random variables N(A1), . . . , N(An), for n = 1, 2, . . . , are mutually
independent;

i)

P{N(Ai) = ki, i = 1, . . . , n} =

n∏

i=1

[Λ(Ai)]
ki

ki!
e−Λ(Ai), (1.16)

where N(Ai) is the generic counting measure for the number of events
in Ai.

The measure Λ(·) is the parameter measure. When E = R, if Λ(A) = λℓ(A),
where ℓ(·) is the Lebesgue measure, the process is said to be homogeneous ;
if instead Λ(A) =

∫
A
λ(t)dt, it is non-homogeneous. In both the cases, the

constant or function λ is said the intensity (mean density, mean rate) of the
process. Furthermore, in the case of a Poisson process, simple stationarity



1.6 Point processes for earthquake modeling 30

ensures stationarity. Then, in this case, we will simply use the terms “sta-
tionary process” when the distribution of its number of points in a given
interval, depends only on the length of the latter.

The stationary homogeneous Poisson process on R is the typical process
used for the modeling of background events; instead, non-homogeneous sta-
tionary Poisson processes on the line are the natural candidates to model the
aftershocks sequences.

Let’s focus now on the stationary Poisson processes defined on R. Actu-
ally, a stationary Poisson process is sometimes referred to as a completely
random process, that is a random distribution of points on the line. To be
precise, we can state the following theorem.

Theorem 6. A stationary point process, with a finite and non-zero number
of point in any finite interval of the line, is a Poisson process if and only if
the numbers of points in disjoint intervals are independent random variables
(complete independence) and

P{N((0, t]) > 1} = o(t), for t ↓ 0. (1.17)

A process satisfying equation (1.17) is said orderly. When this property
is assumed for a point process, we can give a further characterization of the
Poisson process through the void probability function P{N(·) = 0}.

Theorem 7. An orderly point process N on R is a stationary Poisson process
if and only if

P{N(A) = 0} = e−λℓ(A),

for all sets A which can be represented as the union of a finite number of
finite intervals.

The same result holds for point processes on Rd, by considering a non-
atomic measure on this space as mean measure. Furthermore, we can gen-
eralize the above results for simple point processes on a complete separable
metric space E endowed with its borel sigma field B(E). In fact, the following
theorem holds.

Theorem 8. The finite-dimensional distribution of a simple point process N
on (E,B(E)) is characterized by its void probability function.

Now, in the stationary Poisson process if A = (0, t], the void probability
P{N((0, t]) = 0} = e−λt may be interpreted also like the probability that the
first point to the right of the origin occurs after t. This allows to introduce the
backward and forward recurrence times, that are the length of the intervals
between an arbitrary given point and the first events occurred before and
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after it, respectively. In general, it is easy to see that the time delay between
two consecutive events in a Poisson process is exponentially distributed, and
the interval containing the origin is Erlang distributed, i.e., it is the sum of
two i.i.d. (independent identically distributed) exponential random variables.

Among the several extensions of a Poisson process, we will briefly present
only some examples, listed below (we use the terminology in [Daley and
Vere-Jones, 2003]).

Mixed Poisson process. If we set Ai = (ai, bi] and Λ(Ai) = λ(bi− ai) in
equation (1.16), the latter can be viewed as functions of the real random
variable λ. By averaging them with respect to a given distribution for
λ, we get the fidi distribution of a new point process, that is the mixed
Poisson.

Cox process. It is also called doubly stochastic Poisson process and is
obtained by randomizing the parameter measure in a Poisson process.
More precisely, given a locally finite random measure ν on Rd, the point
process N is a Cox process directed by ν if, conditional on this random
measure, N(·|ν) is a Poisson process on Rd with parameter measure ν.
If the intensity is random but constant in time, the Cox process is the
mixed Poisson process.

Compound Poisson process. If Y1, Y2, . . . are i.i.d. non-negative integer-
valued random variables, independent of a Poisson process Nc with
mean λ, then the compound Poisson process is defined by the counting
variable

N((0, t]) =

Nc((0,t])∑

i=1

Yi.

It is the case of a marked point process with a Poisson ground process.

1.6.2 Self-exciting Hawkes processes

The Hawkes processes represent a very relevant class of models widely an-
alyzed in the literature, due to their widely use in many theoretical and
applied studies. In particular, they are very important in seismology: one of
the most used model in this field is the ETAS model, described in Chapter 2.
It is just is a special case of the marked Hawkes process on R, presented
below in this subsection. The Hawkes processes were introduced by Hawkes
in 1971 and are an example of exciting processes [Hawkes, 1971a,b; Hawkes
and Oakes, 1974].
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The self-exciting Hawkes process is a branching process constituted by
two components. The first one consists of all the “immigrants”, that are
the points without existing ancestors; the second one contains instead all
the “offsprings”, that are the elements generated by previous points. The
immigrants are modeled through a stationary homogeneous Poisson process
with constant rate λim. Then, any point of the process, occurred at a certain
time t, may produce its own progeny according to a non-homogeneous, sta-
tionary, finite Poisson process, with a mean density λof (·) that is function of
the distance between the current event considered and the relative ancestor.
All the finite point processes associated to the progenies are mutually inde-
pendent and are independent of the immigrant component; they can also be
regarded as elements of clusters whose centre are the relative ancestors. The
mean rate is assumed to have total mass less than one, guaranteeing that the
branching process is subcritical and of finite total size. Furthermore, since
the immigrant component is a stationary Poisson process, the condition of
mean cluster size finite is sufficient for the existence of the total process.

Since one can think of a cluster centre as an infected point from the
outside and of the cluster elements as the elements infected by the centre
point, the mean density λof(dt) may be considered as a measure of infectivity
at t, given an infected element at the origin. Now, if we can write λof(dt) =
λof (t)dt, then we can express the conditional intensity of the Hawkes process
as the function

λ(t|H) = λim +

∫ t

−∞

λof (t− u)N(du),

where the integral is made over all the elements occurred at ti < t, which
contribute to the risk of infection at t.

For the generalization to the multivariate case, one has to consider a point
process constituted by J different types of points. The immigrants enter in
the process from outside, are of type ℓ and form a Poisson process with rate
λ
(ℓ)
im, with ℓ = 1, . . . , J . Then, for every ℓ, k = 1, . . . , J , there is a Poisson

process of elements of type k generated by an ancestor of type ℓ at time
t. All these Poisson processes have conditional parameter measure λ

(lk)
of (·|t)

such that λ
(lk)
of (s|t) = λ

(lk)
of (s−t) and are mutually independent. Furthermore,

the eigenvalue of largest modulus of the matrix λ
(lk)
of (R) is less than one,

guaranteeing to have an a.s. finite number of progeny for any element. The
total process obtained is called the Hawkes mutually exciting point process.
The conditional intensity for the ℓth Poisson process is

λℓ(t|H) = λ
(ℓ)
im +

J∑

k=1

∫ t

−∞

λklof(t− u)Nk(du);



1.6 Point processes for earthquake modeling 33

the conditional intensity of the whole process is then obtained by superposi-
tion.

An important extension of the Hawkes process is its marked version. For
simplicity, we will treat here only the case of unpredictable marks. Now,
if we consider for example the self-exciting process, we can extend it to
a marked point process through the interpretation of the marks κi as the
“types” of the elements in the process in a multi-type branching model. In
this case, the immigrants enter in the system as a compound Poisson process
with constant rate λim and a fixed marked distribution Z(·); then, each
element may produce its own offspring according to a Poisson process with
mark rate λof(·|κ), depending only on the mark of the ancestor and on the
distance between the ancestor and the offspring considered. A typical case
is the one in which the above mark rate is magnitude separable, that is
λof (·|κ) = λof(·)Ψ(κ). Finally, the marks relative to the offsprings have the
same distribution Z(·) of the immigrants and are i.i.d. random variables. In
the case of a magnitude separable process, the imposition of having i.i.d.
marks implies that the ground process of the MPP is an ordinary Hawkes
process with immigration rate λim and infectivity measure λof(dt) · E[Ψ(κ)].
The condition E[Ψ(κ)]

∫∞

0
λof (t)dt < 1 guarantees also to have an a.s. finite

total number of progeny.

1.6.3 Stress-release models

The stress-release models are based on the elastic rebound theory, proposed
for the first time by the seismologist Harry Fielding Reid in his study of the
1906 San Francisco earthquake. They belong to the more general class of
self-correcting processes, and represent an example of inhibitory type mod-
els [Ogata and Vere-Jones, 1984; Vere-Jones, 1978; Vere-Jones and Ogata,
1984]. The conditional intensity is in this case governed by a Markov pro-
cess, generally partially observed, that is the stress level of the region under
consideration. More precisely, the probability of occurrence increases with
the stress level and abruptly decreases after that an event has occurred. If we
indicate with S(t) the stress level, that is an unobserved jump-type Markov
chain, we can write

λ(t|H) = ψ(S(t)),

where Ht = {(ti, mi); ti < t} is the past history, ψ(·) is an increasing function
and

S(t) = S(0) + at−
∑

{i|ti<t}

101.5(mi−m0),
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that is the level of stress accumulated till time t. Starting from an initial
unknown stress level S(0) > 0, the above expression for S(t) says that the
stress itself linearly increases with time, with an unknown rate a > 0, but it
depends also on the stress accumulated till t by considering all the previous
shocks occurred at times ti and with magnitudes mi. It follows that the con-
ditional intensity is fully determined by the initial value S(0), the parameters
of the model and the observations (ti, mi).

A typical form of the above function ψ(·) is

ψ(t) = ea+bt,

which characterizes the stress-release model. Its multivariate version is the
so-called linked stress-release, consisting of the model that considers the in-
teraction of stresses among a finite number of different regions. If we label
these components with the index i = 1, 2, . . . , I and we consider the stress
level of the generic ith region Si(t), then we can write, for each i,

Si(t) = Si(0) + ait−
I∑

j=1

θijXj(t),

where Si(0) is the initial stress for the ith region, ai is its rate, θij is its
proportion of stress drop transferred to the jth region and

Xj(t) =
∑

{i|ti<t,ri=j}

101.5(mi−m0),

where ri is the region where the ith events has occurred.



Chapter 2

The Epidemic Type Aftershock

Sequence model

The Epidemic Type Aftershock Sequence (ETAS) is a well-known model in
statistical seismology, widely used by the scientists to analyze the earthquake
phenomenon from a probabilistic point of view [Ogata, 1988, 1989, 1998,
1999]. As already specified, it belongs to the more general class of the self-
exciting Hawkes processes, presented in the previous chapter. More precisely,
it is a linear marked self-exciting Hawkes process. The ETAS model is based
on a specific branching process in which each event, belonging to any given
generation, may produce its own offspring independently of the other shocks.
The first version proposed by Ogata was pure temporal, but some years later
he improved the model by considering the spatial locations, too. This chapter
is focused on the derivation and the definition of the ETAS model; some of
its properties and connected studies are also discussed.

2.1 Derivation and definition of the model

The ETAS model derives from the Omori law, which describes the time decay
of the aftershocks in a sequence:

Φfirst(t) =
K

(t+ c)
, t > 0,

where K and c are constants and t is the elapsed time from the triggering
event occurred in t = 0. This law has been found by Omori to fit well
the aftershocks of the 1981 Nobi earthquake of magnitude 8 [Omori, 1894].
Nevertheless, several years later, Utsu [Utsu, 1957] found that the fit for the

35
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decay of the first order aftershocks was better expressed by

Φfirst(t) =
K

(t+ c)p
, t > 0.

This is the so-called Omori-Utsu law or modified Omori law. The value of
the parameter p has been estimated for more that 200 aftershocks sequences,
ranging from about 0.6 to 2.5, with a median value at 1.1.

Actually, the above law does not model in a good way the cases in which
the strong aftershocks themselves produce their own daughters. That is, the
sequence has secondary aftershocks, too. In fact, as already specified, the
Omori-Utsu law describes the decay only of the first generation aftershocks.
For this reason, Utsu and Ogata [Ogata, 1983; Utsu, 1970] proposed to use
the superposition of Omori-Utsu law:

Φ̄(t) =

Naft∑

i=0

1[0,t)(ti)
Ki

(t− ti + ci)pi
, t > 0,

where: 1A(x) is the indicator function having value one when x ∈ A, zero
otherwise; t0 is the occurrence time of the first triggering event; Naft is the
number of its strong triggering aftershocks, occurred at times (t1, · · · , tNaft

);
Ki, ci and pi, for i = 0, 1, · · · , Naft, are constants.

The next step was made by Ogata [Ogata, 1988, 1998], who understood
that not only the first order aftershocks, but all the events in a sequence
may produce their own offsprings. Then, he introduced self-similarity in
the modeling of earthquakes and proposed a weighted superposition of the
modified Omori functions. More precisely, he modeled the aftershock activity
through a non-stationary Poisson process, in which the occurrence rate of the
events generated by the generic ith triggering shock, occurred at ti and with
magnitude mi, was given by

Φi(t) =
κea(mi−m0)

(t− ti + c)p
, t > 0,

where the parameters (κ, a, c, p) are common to all the shocks in the sequence
and m0 is the reference magnitude. Each weight is a function of the magni-
tude of the triggering event considered. It is the so-called productivity law,
indicated from now on as

̺(m′) = κ10α(m
′−m0) = κea(m

′−m0), m ≥ m0, (2.1)

where a = α ln 10 represents the contribution of first generation shocks trig-
gered by an event with generic magnitude m′. This law tells that the number
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of the aftershocks generated by an event depends on its magnitude. Assuming
also that this number is proportional to the area S in which the aftershocks
occur, one can deduce the proportionality between area and magnitude. This
dependence is expressed in the following formula, proposed by Utsu and Seki
[Utsu and Seki, 1954]:

log S = 1.02m′ + const,

where m′ is the magnitude of the generic triggering event considered.
If, on one side, it is supposed that each aftershock gives birth to a non-

homogeneous, stationary Poisson process, independently of the other after-
shocks, on the other side, the background component is assumed to be mod-
eled by a homogeneous Poisson process, again independent of the other pro-
cesses, with a rate constant in time. It will be indicated here with ̟. Ac-
tually, some recent works have shown that the background rate may depend
on some variables, like for example the time [Lombardi et al., 2010], but for
simplicity we will not consider this case.

The spatial component has been included in the ETAS model by Ogata in
1998 [Ogata, 1998]. In this case, the background rate is considered dependent
on the spatial locations. More precisely, the spatial component relative to
the aftershocks is a function of the mother event’s magnitude m′ and of the
difference (x− x′, y − y′), between the spatial locations of the triggered and
the triggering events, respectively. Many examples has been proposed to
describe the latter function. In general, they can all be rewritten in the
common standard form

f(x− x′, y − y′|m′) = c(m′)f

(
(x− x′)2 + (y − y′)2

g(m′)

)
,

where g(·) is a certain magnitude function and c(m′) is the normalization
constant. However, we can say that the two most used forms are the following
two:

- the Gaussian form with an exponential g(·), as for example

1

2πdea(m′−m0)
exp

{
−1

2

(x− x′)2 + (y − y′)2

dea(m′−m0)

}
,

where (x′, y′) and
√
dea(m′−m0) are the location and scale parameters,

respectively (see [Zhuang et al., 2002]). Let’s notice that a is the usual
parameter of the productivity law, instead d is a parameter associated
only to the spatial function;
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- the power law form, as for example

cdq{
(x− x′)2 + (y − y′)2 + [deγ̄(m′−m0)]2

}q ,

where cdq is the normalization constant and (d, q, γ̄) are the spatial param-
eters (see [Marzocchi and Lombardi, 2009]). Let’s notice that in the latter
case, the exponential part relative to the magnitudes has a parameter differ-
ent from the one in the productivity law.

The last ingredient is given by the law describing the magnitudes. In the
ETAS, they are modeled with an exponential distribution, both in the case
of background and triggered components. More precisely, the experimental
law modeling the magnitudes of all the events in a catalog is the well-known
Gutenberg-Richter law :

p(m′) = b ln 10 · 10−b(m′−m0) = βe−β(m
′−m0), m′ ≥ m0, (2.2)

with β = b ln 10 and b is the so-called b-value. The latter is a measure of the
relative frequency of small and large earthquakes and is typically estimated
near 1. In a log scale, the b-value is the slope of the decreasing line repre-
senting the Gutenberg-Richter law. Then, the lower is this value, the higher
is the probability of having events with higher magnitudes. Let’s notice that,
according to the above law, the magnitudes are independent between them-
selves and of the characteristics of past seismicity [Gutenberg and Richter,
1944].

Now, recalling that a point process is completely characterized by its
conditional intensity, as explained in Chapter 1 (see Subsection 1.5.2), we
are ready to define the general space-time-magnitude ETAS model. It
is characterized by the following intensity, based on the history of occurrence
Ht = {(ti, xi, yi, mi); ti < t}:

λ(t, x, y,m|Ht) = ̟(t, x, y,m) +
∑

{i|ti<t}

h(t, x, y,m; ti, xi, yi, mi), (2.3)

where:

- ̟(t, x, y,m) is the intensity function of the Poisson process modeling
the background component of the sequence. In the case of the space-
time-magnitude ETAS model it supposed to be homogeneous in time
and magnitude separable, where the law for the magnitudes of this
component is the Gutenberg-Richter one. This means that we can
write ̟(t, x, y,m) = ̟(x, y)p(m).
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- h(t, x, y,m; ti, xi, yi, mi) is the response function from the ith triggered
event when ti < t. More precisely, once occurred the ith triggered event
(ti, xi, yi, mi), it is the intensity function of the Poisson process modeling
its own aftershocks. This function is stationary and separable in space
and time. Let’s recall that here stationarity means that the spatial
and the temporal functions depend only on the difference between the
current event and its mother. Then, we can write

h(t, x, y,m; ti, xi, yi, mi) = ̺(mi)Φ(t− ti)f(x− xi, y − yi|mi)p(m|mi),
(2.4)

where

Φ(t) =
p− 1

c

(
1 +

t

c

)−p
, t > 0, (2.5)

is the parametrization of the Omori-Utsu law in order to be a proba-
bility density function for the aftershocks decay. This parametrization
has already been used for the study of supercritical and subcritical
regimes in the ETAS model [Helmstetter and Sornette, 2002a; Saichev
and Sornette, 2007; Sornette and Sornette, 1999]. Furthermore, ̺(m) is
the productivity law (equation (2.1)) and the functions f(x, y|m) and
p(m|mi) are the probability densities of spatial locations and magni-
tudes.

The space-time ETAS model is derived from above by considering
the further hypothesis of independent magnitudes. Then, we can write the
magnitude transition probability density function as p(m|mi) = p(m), where
p(m) is the Gutenberg-Richter law (equation (2.2)), and the above condi-
tional intensity function (2.3), based on the history of occurrence Ht =
{(ti, xi, yi, mi); ti < t} (see also [Zhuang et al., 2002]), as

λ(t, x, y,m|Ht) =p(m)

[
̟(x, y) +

∑

{i|ti<t}

κea(mi−m0)

· p− 1

c

(
1 +

t− ti
c

)−p
f(x− xi, y − yi|mi)

]
. (2.6)

This is the conditional intensity function characterizing the space-time ETAS
model. Since the magnitudes are independent and the law p(m) is the same
both for background and triggered events, very often in the literature the
Gutenberg-Richter law does not appear in the previous formula.

Finally, if the background rate is constant and the function f(x− xi, y−
yi|mi) is not considered, one obtains the conditional intensity characterizing
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the pure temporal ETAS model:

λ(t,m|Ht) = p(m)

[
̟ +

∑

{i|ti<t}

κea(mi−m0)
p− 1

c

(
1 +

t− ti
c

)−p]
, (2.7)

where now Ht = {(ti, mi); ti < t}. Again, very often in the literature the
Gutenberg-Richter law does not appear in the previous formula and the con-
ditional intensity for the temporal ETAS is indicated with

λ(t|Ht) =
λ(t,m|Ht)

p(m)
. (2.8)

The new model we are going to propose in this thesis is a variation of the
one characterized by the intensity in (2.7). As we are going to see in Chap-
ter 4, the variation consists in the fact that the Gutenberg-Richter law is
supposed to be valid only for the background events, while the magnitude
probability density function in the case of the triggered events is a transi-
tion probability function depending on the magnitude of the mother events.
Then, the new conditional intensity coincides with the general conditional
intensity λ(t, x, y,m|Ht) in (2.3), when discarding the spatial locations, that
is

λ(t,m|Ht) = ̟p(m) +
∑

{i|ti<t}

̺(mi)Φ(t− ti)p(m|mi), (2.9)

with a particular choice of the transition function p(m|mi) (see (4.2)).
A similar variation of the temporal ETAS model is the self-similar ETAS

model [Saichev and Sornette, 2005; Vere-Jones, 2005], which is characterized
by a conditional intensity depending on the difference between the magnitude
of the triggered event m′, and the magnitude of the relative triggering shock
m, i.e.,

̺(m′)p(m|m′) = λ(m−m′).

The model we propose in Chapter 4 does not fall into the class of self-similar
ETAS models, and has the fundamental characteristics that the Gutenberg-
Richter law remains invariant with respect to the transition probability den-
sity considered for the triggered events’ magnitude. This condition is instead
not valid for the above self-similar ETAS model.

As we will see later (see Subsection 2.3.1), the parameters defining an
ETAS model are typically estimated using maximum-likelihood algorithms.

2.2 Properties

This section is devoted to the properties of the general space-time-magnitude
ETAS model, defined by the conditional intensity (2.3). In what follows, we
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are going to discuss the criticality issue and the moment properties.

2.2.1 Criticality

The concept of point process stability concerns the convergence to equilib-
rium: the problem is to see if, starting from a given process, not necessarily
stationary, there exists a stationary point process to which the initial pro-
cess converges. The condition for stability is fundamental in data analysis in
order to assess the reasonability of estimated model parameters. More pre-
cisely, it refers to a situation in which the process is non-explosive. Several
works exists in the literature studying the stability several types of Hawkes
processes (see for example [Brémaud, 1996; Brémaud et al., 2002]), but we
will focus here on the specific case of the ETAS model. In the ETAS model,
this condition is strictly connected to the sub-criticality of the process. In
fact, in terms of seismic predictions, the use of parameters specifying a su-
percritical process would lead to the overestimation of the earthquake risk in
the medium and long-term [Zhuang and Ogata, 2006; Zhuang et al., 2012].

To the aim of finding the explicit conditions for the stability of the pro-
cess, we have to study an eigenvalue problem [Saichev and Sornette, 2005;
Zhuang, 2002]. Since the spontaneous sources are modeled through a station-
ary Poisson process with i.i.d. marks, given by the magnitudes, the number
of the background shocks is finite in a given bounded time interval. Then, in
order to guarantee the non-explosion of the process, we have to check that
the average number of events generated by a triggering shock with a given
magnitude m is finite and then the relative process dies out in a finite time.

Let’s start then by considering the average number E[Nv̄] of events with
magnitude above the reference threshold m0, triggered by a spontaneous
shock occurred in v̄′ = (t′, x′, y′, m′). It is easy to see that

E[Nv̄′ ] =

∫

S

h(v̄; v̄′)1(t′,+∞)(t)E[Nv̄]dv̄ +

∫

S

h(v̄; v̄′)1(t′,+∞)(t)dv̄, (2.10)

where h(v̄; v̄′) is the intensity (2.4) of the process of events triggered by a the
shock identified by v̄′ and

S = R
2 × (−∞,+∞)× [m0,∞).

The presence of the indicator function in the previous integrals is due to the
fact that the intensity h(v̄; v̄′) is based on the history of the event in v̄ up to
its occurrence time t.

One can interpret the above integral equation (2.10) by considering the
following. If V0(v̄) = ̟(v̄) is the intensity function of the background events’
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generation Z0, then the intensity relative to the first generation Z1 is given
by

V1(v̄) =

∫

S

h(v̄; v̄′)1(−∞,t)(t
′)V0(v̄

′)dv̄′.

It easily follows that the intensity of the jth generation Zj is

Vj(v̄) =

∫

S

h(v̄; v̄′)1(−∞,t)(t
′)Vj−1(v̄

′)dv̄′ =

∫

S

h[j](v̄; v̄′)1(−∞,t)(t
′)V0(v̄

′)dv̄′,

(2.11)
where

h[1](v̄; v̄′) = h(v̄; v̄′) and h[j](v̄; v̄′) =

∫

S

h[j−1](v̄; v̄′′)h(v̄′′; v̄′)1(t′,t)(t
′′)dv̄′′.

(2.12)

Now, in order to search for the stationary solutions of equation (2.10),
let’s consider ℓ1(v̄

′) and ℓ2(v̄) the left and right eigenfunctions of h(v̄; v̄′),
respectively, corresponding to the maximum eigenvalue η:

ηℓ1(v̄
′) =

∫

S

ℓ1(v̄)h(v̄; v̄
′)1(t′,+∞)(t)dv̄ (2.13)

and

ηℓ2(v̄) =

∫

S

h(v̄; v̄′)1(−∞,t)(t
′)ℓ2(v̄

′)dv̄′, (2.14)

satisfying ∫

S

ℓ1(v̄)ℓ2(v̄)dv̄ = 1.

Let’s notice that Λ(v̄; v̄′) = ℓ1(v̄
′)ℓ2(v̄) is the projection operator of the

intensity function corresponding to η, that is
∫

S

Λ(v̄; v̄′′)h(v̄′′; v̄′)1(t′,+∞)(t
′′)dv̄′′ =

∫

S

h(v̄; v̄′′)1(−∞,t)(t
′′)Λ(v̄′′; v̄′)dv̄′′

= ηΛ(v̄; v̄′).

Then, we have that

lim
j→∞

h[j](v̄; v̄′)

ηj
= Λ(v̄; v̄′).

Consequently, it holds

lim
j→∞

Vj(v̄)

ηj
=

∫

S

Λ(v̄; v̄′)V0(v̄
′)dv̄′, (2.15)

from which one has that:
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• if η < 1, then limj→∞ Vj(v̄) = 0,

• if η = 1, then limj→∞ Vj(v̄) = const,

• if instead η > 1, then limj→∞ Vj(v̄) = ∞.

We can deduce that η is the critical parameter : when it is less than one the
process is stable, otherwise it is explosive. By looking at the result of the
limit in (2.15), which can be rewritten as

ηjℓ2(v̄)

∫

S

ℓ1(v̄
′)V0(v̄

′)dv̄′ = ηjℓ2(v̄) · constant,

it follows that the eigenfunction ℓ2(v̄) is proportional to the asymptotic in-
tensity of the population at the jth generation, when j tends to infinity. On
the other side, since it holds

lim
j→∞

∞∑

k=j

∫

S

h[k](v̄; v̄′)dv̄ = lim
j→∞

∞∑

k=j

ηk
∫

S

Λ(v̄; v̄′)dv̄

= lim
j→∞

ηj

1− η
ℓ1(v̄

′)

∫

S

ℓ2(v̄)dv̄

= lim
j→∞

ηj

1− η
ℓ1(v̄

′) · constant,

one can deduce that the eigenfunction ℓ1(v̄
′) can be interpreted as the asymp-

totic ability of a triggering event, identified by v̄′, in producing its directly
and indirectly aftershocks.

Now, recalling that (2.4) is the conditional intensity function of the gen-
eral space-time-magnitude ETAS model, the two equations (2.13) and (2.14)
become

ηℓ1(t
′, x′, y′, m′) =

∫

S

ℓ1(t, x, y,m)̺(m′)Φ(t− t′)

· f(x− x′, y − y′|m′)p(m|m′)dtdxdydm,

ηℓ2(t, x, y,m) =

∫

S

̺(m′)Φ(t− t′)f(x− x′, y − y′|m′)

· p(m|m′)ℓ2(t
′, x′, y′, m′)dt′dx′dy′dm′.

By integrating the above equations with respect to space and time, consider-
ing the eigenfunctions as functions only of the magnitudes and recalling that
p(m|m′) = p(m), we have

ηℓ1(m
′) = ̺(m′)

∫

M

ℓ1(m)p(m)dm (2.16)
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and

ηℓ2(m) = p(m)

∫

M

̺(m′)ℓ2(m
′)dm′. (2.17)

Let’s notice that the condition for the temporal integral to be finite is p > 1,
as one can easily verify. Now, from (2.16) and (2.17) it follows that

ℓ1(m
′) = A1̺(m

′)

and
ℓ2(m) = A2p(m),

where A1 and A2 are constants. By substituting the latter equalities again
in (2.16) and (2.17) and considering the reference magnitude threshold m0,
we get the critical parameter as

η =

∫ ∞

m0

p(m′)̺(m′)dm′

=

∫ ∞

m0

βe−β(m
′−m0)κea(m

′−m0)dm′

= βκ

∫ ∞

m0

e−(β−a)(m′−m0)dm′

=
βκ

β − a
, (2.18)

with β > a. Equation (2.18) has been obtained using formulae (2.1) and (2.2).
Let’s notice that the condition η < 1 implies that p > 1 and β > a. Conclud-
ing, the conditions for the non-explosion of the process are

p > 1, β > a, κ <
β − a

β
. (2.19)

As we are going to see in Chapter 4, the new version of the ETAS model we
will propose has the same conditions for the non-explosion as in the classical
case treated here.

2.2.2 First and second order moments

In Chapter 1, we have defined the first moment measure (or mean measure)
and the second order measure of a Poisson process N(·) as

M1(v̄)dv̄ = E
[
N(dt× dx× dy × dm)

]
and

M2(v̄; v̄
′)dv̄dv̄′ = E

[
N(dt× dx× dy × dm)N(dt′ × dx′ × dy′ × dm′)

]
.



2.2 Properties 45

Now, recalling that in the case of the ETAS model the number N(·) of events
in a certain space-time-magnitude interval (dt× dx× dy × dm) is a Poisson
random variable, with rate λ(t, x, y,m|Ht) defined in (2.3), it follows that

E
[
N(dt× dx× dy × dm)|Ht

]
= λ(v̄|Ht)dv̄,

where we have set again v̄ = (t, x, y,m). By using the properties of the condi-
tional expected value, equation (2.3) and the Campbell’s theorem (see 1.3 in
Chapter 1), we consequently obtain that the first moment measure becomes

M1(v̄) =
1

dv̄
E

[
E
[
N(dt× dx× dy × dm)|Ht

]]

= E
[
λ(v̄|Ht)

]

= E

[
̟(v̄) +

∑

{i|ti<t}

h(v̄; v̄i)

]

= ̟(v̄) +

∫

S

h(v̄; v̄′′)1(−∞,t)(t
′′)M1(v̄

′′)dv̄′′, (2.20)

where we recall that S is the space-time-magnitude domain defined in (2.2.1)
and v̄′′ = (t′′, x′′, y′′, m′′). Instead, for the second order measure we get

M2(v̄; v̄
′) =

1

dv̄dv̄′
E

[
E
[
N(dt× dx× dy × dm)N(dt′ × dx′ × dy′ × dm′)|Ht′

]]

=
1

dv̄dv̄′
E

[
N(dt× dx× dy × dm)E

[
N(dt′ × dx′ × dy′ × dm′)|Ht′

]]

=
1

dv̄dv̄′
E
[
N(dt× dx× dy × dm)λ(v̄′|Ht′)dv̄

′
]

=
1

dv̄dv̄′
E

[
N(dt× dx× dy × dm)

(
̟(v̄′) +

∑

{i|t′i<t
′}

h(v̄′; v̄′i)

)
dv̄′

]

=̟(v̄′)M1(v̄) +
1

dv̄dv̄′
E

[
N(dt× dx× dy × dm)

]
dv̄′

·
∫

S

h(v̄′; v̄′′)1(−∞,t′)(t
′′)N(dt′′ × dx′′ × dy′′ × dm′′)

=̟(v̄′)M1(v̄) + h(v̄′; v̄)M1(v̄)

+

∫

S∩(v̄′′ 6=v̄)

h(v̄′; v̄′′)1(−∞,t′)(t
′′)M2(v̄

′′; v̄)dv̄′′. (2.21)

Before concluding this subsection, it is interesting to look at the formula (2.20),
concerning the mean measure, in the case of a time independent background
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rate and a process crude stationary in time. By the Neumann series expan-
sion [Taylor and Lay, 1980], equation (2.20) becomes

M1(v̄) = ̟(x, y,m) +
∞∑

ℓ=1

∫

S

h[ℓ](t− t′′, x, y,m; x′′, y′′, m′′)̟(x′′, y′′, m′′)dv̄′′,

where

h[1](t− t′′, x, y,m; x′′, y′′, m′′) = h(t− t′′, x, y,m; x′′, y′′, m′′)

and

h[ℓ](t− t′′, x, y,m; x′′, y′′, m′′) =

∫

S

h[ℓ−1](t− t′′′, x, y,m; x′′′, y′′′, m′′′)

· h(t′′′ − t′′, x′′′, y′′′, m′′′; x′′, y′′, m′′)dv̄′′′.

Since there is no dependence on t, we can write M1(v̄) = M1(x, y,m). Let’s
notice that the above two formulas are the same in (2.12), with the exception
of the temporal difference in the first argument of h(·; ·).

Finally, if we furthermore consider a magnitude separable process and re-
call equation (2.4) for h(t, x, y,m; ti, xi, yi, mi), we obtain that equation (2.20)
for the mean measure becomes

M1(x, y,m) =̟(x, y)p(m) +

∫

S

̺(m′′)Φ(t− t′′)f(x− x′′, y − y′′|m′′)

· p(m|m′′)M1(x
′′, y′′, m′′)dv̄′′. (2.22)

By taking the expectations on both sides with respect to space and time,
we get the relationship between the total magnitude distribution jtot(·), the
distribution of the background events’ magnitude p(·) and the one of the
aftershocks’ magnitude p(·|·):

jtot(m) =
̟p(m)

m
+

∫

M

̺(m′′)p(m|m′′)jtot(m
′′)dm′′, (2.23)

where

̟ =

∫

R2

̟(x, y)dxdy and m =

∫

M×R2

M1(x, y,m)dxdydm.

By integrating again with respect to the magnitude, we get

m = ̟ +m

∫

M

̺(m′′)jtot(m
′′)dm′′.
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In the case of the space-time ETAS model, the total magnitude distribution
is the Gutenberg-Richter law and the minimum magnitude is the reference
one, indicated with m0. We then obtain

∫ ∞

m0

̺(m′)p(m′)dm′ = 1− ̟

m
. (2.24)

The right member of the above equation is called the branching ratio. By
definition, it is the average number of first generation triggered events per
triggering shock, but can be defined also as the proportion of triggered events
with respect to all the shocks.

Remark 5. In the case of the ETAS model, the branching ratio coincides
with the critical parameter η, as one can easily deduce by looking at the first
equality in (2.18).

2.3 Catalog simulation, parameters estimation

and residual analysis

In this section, we will discuss about the theoretical bases and the algo-
rithms concerning parameter estimation, simulation and residual analysis
of the ETAS model. They represent very useful tools for the data anal-
ysis of earthquake sequences. All the algorithms we are going to present
are specific for the temporal ETAS model or the more general space-time
ETAS. The most of them have been firstly proposed by Yoshihiko Ogata
between the ’80s and the ’90s; later, they have been refined, completed and
improved. As specified later, the Ogata’s codes belong to the “STATSEI”
software [Ogata, 2006], available online at http://www.ism.ac.jp/~ogata/
Ssg/ssg_softwaresE.html.

Before illustrating the algorithms and their underlying theories, it is im-
portant to define the so-called learning (or precursory) period. Due to the
long-living nature of the aftershock activity, it can be supposed that the
seismicity of a given period may be influenced by some shocks occurred in
a certain temporal interval preceding the above given period. In order to
take into account this effect, in the data analysis one may consider a target
interval, where performing the analysis itself, and a precursory period, which
includes the events affecting the seismicity occurred in the target interval.
The results of the analysis will obviously concern only the shocks belonging
to the latter interval. The choice of the length of the learning period is not
easy, due to the absence of a given law which can help in this sense. It
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may depend for example on the number of events in the catalog, or on the
proportion of cluster events with respect to the total shocks. However, the
precursory period influences only the analysis concerning the triggered com-
ponent and then, for example, the choice of a long learning interval improves
the estimation of the parameters concerning the triggered component, but
makes worse the estimation of the background rate.

2.3.1 Parameter estimation

The most used method for the estimation of the parameters in the ETAS
model is based on the maximum-likelihood technique. This is true both for
the temporal and the spatiotemporal settings. However, this section focuses
only on the temporal case. In fact, since the estimation in the spatiotemporal
case is a very complex issue, the relative algorithms proposed are till now not
so efficient.

The Ogata’s FORTRAN estimation program for the parameters of the
temporal ETAS, available online at http://www.ism.ac.jp/~ogata/Ssg/

ssg_softwaresE.html, is [etas.f ]. It allows to choose between two versions:
an approximated one and an exact one. The difference is in the elapsed time
when processing relative bigger catalogs: in the first version it is proportional
to the number of events N , in the second one it is proportional to N2. In
input the program requires obviously the catalog for which estimating the
ETAS parameters. Furthermore, one has to specify the starting times for the
learning and the target periods, the thresholds magnitudes and the initial set
of parameters. Starting from the latter, for each step of the parameter vector,
the program implements repeated computations of the likelihood function
and of its gradient. The squared sums of the gradients are also calculated.
The likelihood is decreasing and converges to a finite value; the iteration
procedure stops when the squared sum of the gradients approaches zero.

Given the total number of events Ntot in the precursory and target periods,
and the times tin, tend, respectively corresponding to the initial and ending
times of the target period in which the estimation is computed, the likelihood
function Ltin,tend

(ζ) for the estimation of the vector of parameters ζ is:

Ltin,tend
(ζ) =

Ntot∏

i=iin

{
λ(ti|Hti)

}
e−

∫ tend
tin

λ(t|Ht)dt,

where λ(t|Ht) is the intensity of the temporal ETAS model, given by equa-
tion (2.8), based on the history Ht. Furthermore, iin is the index of the first
event occurred in the target period. Now, by computing the logarithm of the
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likelihood function for simplicity of computation, we obtain the formula

ln [Ltin,tend
(ζ)]

=
Ntot∑

i=iin

ln
[
λ(ti|Hti)

]
−
∫ tend

tin

[
̟ +

∑

{i|ti<t}

κea(mi−m0)
p− 1

c

(
1 +

t− ti
c

)−p]
dt

=

Ntot∑

i=iin

ln
[
λ(ti|Hti)

]
−̟(tend − tin)−

iin−1∑

i=1

∫ tend

tin

κea(mi−m0)
(p− 1)cp−1

(t− ti + c)p
dt

−
Ntot∑

i=iin

∫ tend

ti

κea(mi−m0)
(p− 1)cp−1

(t− ti + c)p
dt

=

Ntot∑

i=iin

ln
[
λ(ti|Hti)

]
−̟(tend − tin)

+

iin−1∑

i=1

κea(mi−m0)cp−1
[
(tend − ti + c)1−p − (tin − ti + c)1−p

]

+

Ntot∑

i=iin

κea(mi−m0)cp−1
[
(tend − ti + c)1−p − c1−p

]

=
Ntot∑

i=iin

ln
[
λ(ti, mi|Hti)

]
−̟(tend − tin) +

Ntot∑

i=1

κea(mi−m0)cp−1(tend − ti + c)1−p

−
iin−1∑

i=1

κea(mi−m0)cp−1(tin − ti + c)1−p −
Ntot∑

i=iin

κea(mi−m0).

Once obtained the maximum likelihood estimates, one may ask how to
choose the best model when proposing several competitive ones. The tool
used for comparing the goodness-of-fit of the models for a fixed dataset is
the Akaike’s Information Criterion (AIC) [Akaike, 1974]:

AIC = −2(maximum of log − likelihood) + 2(number of parameters).
(2.25)

The model with the smaller AIC value is considered the one that shows the
better fit to the data. It is useful to say that, if one compares the models H0

and H1 with k0 and k1 parameters, respectively, then the log-likelihood ratio
statistic is

−2 ln

(
L0

L1

)
= AIC(H0)−AIC(H1) + 2|k0 − k1|,

where L0, L1 are the likelihoods of the first and the second models, respec-
tively. When H0 is a particular case included in H1, then, under the null
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hypothesis H0, the statistic −2 ln
(
L0

L1

)
is expected to follow a Chi-squared

distribution with k = k0 + k1 degrees of freedom.
Concluding, recently other methods have been proposed for the estima-

tion of the ETAS parameters, as for example the simulated annealing [Lom-
bardi, 2015]. This could be very interesting in the spatiotemporal setting, in
order to propose easier algorithms with a higher efficiency.

2.3.2 Simulation

The simulation procedure is fundamental to construct synthetic catalogs,
with which one can obtain results not influenced by any kind of “real effect”
underlying the real process. The algorithm for the temporal ETAS has been
proposed by Ogata on the basis of the thinning method for the simulation
of point processes [Lewis and Shedler, 1979; Musmeci and Vere-Jones, 1992;
Ogata, 1981, 1998]. His FORTRAN program is [etasim.f ], available online
at http://www.ism.ac.jp/~ogata/Ssg/ssg_softwaresE.html. This pro-
gram allows to choose the option of the pure temporal simulation or the
spatiotemporal one. It requires in input the set of parameters appearing in
the conditional intensity function characterizing the ETAS model. Let’s no-
tice that in the Ogata’s algorithm considered, the combination of parameters
could lead to explosive simulated data, since the program does not control
whether the non-explosion conditions β > a, p > 1 and κ < β−a

β
are verified.

The magnitudes can be either simulated by the Gutenberg-Richter law,
or can be taken from a given catalog to be specified in input. In the first
case, one has to provide the b-value and the number of events to be simu-
lated; furthermore, the Gutenberg-Richter law is used independently for all
the events in the catalog, without distinguishing between spontaneous and
triggered shocks. In the second case, the program simulates instead the same
number of events with magnitudes bigger that or equal to the completeness
threshold of the input catalog; the simulation starts after a precursory pe-
riod which depends on the same history of the input catalog itself. For the
computation of the ETAS intensity, one can also specify a value for the ref-
erence magnitude different from the threshold of completeness. In the case
of the spatiotemporal simulation, one has to give in input also a file for the
identification of the background. It consists of a grid of the area under con-
sideration, in which each cell is labeled with latitude, longitude and number
of events contained.

The simulation is organized as follows.

- Based on the choice done, the magnitudes are taken from the real
catalog given in input, or are simulated according to the exponential
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distribution given by the Gutenberg-Richter law. More precisely, in
the latter case the magnitudes are obtained by considering the usual
method for the inversion of the cumulative distribution function.

- A uniform random number between zero and one is generated to simu-
late the occurrence time, to which the event is assigned with a certain
probability. The time simulation is based on the temporal ETAS inten-
sity (2.8).

- Once the event has been assigned to a simulated time, it is labeled
as a background or a triggered shock with a certain probability. This
probability is obtained again by considering only the temporal intensity
of the model.

- If the event under consideration is labeled as spontaneous, it is spatially
collocated based on the rates of the cells in the grid given in input.

- If the event under consideration is labeled as triggered, its potential
mother shock has to be assigned to it in order to be spatially located.
This is done by considering all the contributes of the possible mother
shocks and individuating the one which gives the highest probability for
the triggered event considered. Again the intensity used in this case
is the temporal one. Once found the triggering event, the program
assigns a spatial location to the epicenter of the aftershock considered.
To this aim, it generates a random angle between 0◦C and 360◦C and
simulates the radius again by the usual method for the inversion of the
cumulative distribution function.

The simulation is done in condition of isotropy, that is without preferential
directions. Obviously, when the simulation is pure temporal, all the steps
relative to the spatial location of the epicenters are not performed.

We want to add that, in the literature, there are several works about the
simulation of the Hawkes processes, class to which belongs the ETAS model,
too [Brémaud et al., 2002; Møller and Rasmussen, 2005, 2006]. Nevertheless,
since the Ogata’a program is specific for the ETAS, this is the program used
in this thesis when we want to get the simulation of the catalogs based on
the temporal ETAS rate.

2.3.3 Residual analysis

The minimum AIC procedure allows to find the model which provides the
best fit for the earthquake process data, among some competitive models



2.3 Catalog simulation, parameters estimation and residual analysis 52

considered. Nevertheless, it remains the possibility that one or some of the
major features of the real data are not reproduced by the estimated model,
selected with the Akaike’s criterion. Then, further models with a similar AIC
value must be taken into account. To this aim, the residual analysis has been
proposed to amplify the features of the data deviating from the model. It is
a pure temporal analysis based on the following random time-change:

Λt =

∫ t

0

[
̟ +

∑

{i|ti<s}

κea(mi−m0)

(s− ti + c)p

]
ds, (2.26)

where the integrand is the time-magnitude ETAS conditional intensity with
the non-normalized Omori law given in (2.8). This integral is a monotonically
increasing function, due to the non-negativity of the integrand, and consists
of a one-to-one transformation from {ti} to {Λti}. This latter sequence of
transformed times is called residual process and is a stationary Poisson pro-
cess with rate one [Papangelou, 1972]. It follows that, if the conditional
intensity obtained with the estimated parameters is a good approximation
of the real one, then the relative transformed times should be a stationary
Poisson process. Each property of the residual process which deviates from
that expected from a stationary Poisson process, corresponds to a feature
of the real catalog not reproduced by the model considered. For the resid-
ual analysis one can consider any graphical test for complete randomness, or
stationary Poisson.

The Ogata’s FORTRAN program is [retas.f ], available on line at http:
//www.ism.ac.jp/~ogata/Ssg/ssg_softwaresE.html. This program com-
putes only the above random time-change. Instead, the FORTRAN program
[RESIDUALS ETAS.f ], written by the seismologist Anna Maria Lombardi
of the INGV, performs also two graphical tests: the Kolmogorov-Smirnov
and the Runs ones. The first one verifies if the interevent times are dis-
tributed according to an exponential law with parameter one. The second
test verifies instead if the interevent times are independent. The typical
acceptance threshold is 5%. Then, if the probabilities obtained for the con-
sidered model with the above two tests are bigger than this threshold, the
model is accepted. The program [RESIDUALS ETAS.f ] requires in input
the catalog for which performing the residual analysis, the set of parameters,
the target period and the starting time of the learning one and the magnitude
thresholds. The output consists of two files: the first one contains the data
of the input catalog with also the transformed times; the second one contains
the total number of data, the number of events expected by the model and
the results of the tests. This program is the one used for the experimental
analysis of this thesis. The analysis will be performed for real catalogs in
Chapter 3 and for simulated catalogs in Chapter 5.



Chapter 3

Experimental analysis

As explained in Chapter 2, in the classical ETAS model the Gutenberg-
Richter law is assumed to be valid both for the background events and for
the triggered ones and is independent of the characteristics of past seismicity.
More precisely, the magnitude of each shock is independent of the magnitude
of the corresponding triggering event [Zhuang et al., 2002]. However, by con-
sidering events in causal relation, for example mother/daughter, it seems
natural to assume that the magnitude of a daughter event is conditionally
dependent on the magnitude of the corresponding mother event. In order
to look for experimental evidences supporting this hypothesis, we perform
two different types of analysis of four seismic catalogs. As explained below,
in each analysis we use the kernel density estimation method to obtain the
distribution of the triggered events’ magnitudes, in order to assess its vari-
ation with the magnitude of the corresponding mother events. The main
problem for this analyses is assessing if an event is spontaneous or triggered
and, in the latter case, who is the relative triggering shock. The difference
between the two types of analysis stays in the assessment of the mother/-
daughter relation. The aim is to find some kind of relation that would model
the real combined behavior of the magnitudes of these historically connected
events. It is reasonable and natural to expect that the distribution density
of triggered events’ magnitude increases (decreases) with the mother events’
magnitude increase (decrease). Moreover, if this is true, the expected value
of the triggered events’ magnitude should also be increasing in the same way.

As very often done in practice, we assume here that the reference magni-
tude is equal to the completeness one. Then, in this chapter, we will refer
only to the latter threshold value.
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3.1 The catalogs analyzed

We analyze three Italian catalogs and a Californian one. They differ in spatial
end/or temporal extension and in the presence or not of a strong shock. The
main information of the four catalogs are the following.

1) The first catalog includes events occurred from April the 16th, 2005
till January the 25th, 2012 in the region including the whole Italy (latitude
from 35 to 48, longitude from 6 to 19). The ZMAP estimated completeness
magnitude is 2.7. However, the latter is considered too high by the seis-
mologists of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), who
suggested us to use 2.5. For the seismicity map, see Fig. 3.1.
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Figure 3.1: Seismicity map of the first catalog concerning the whole Italy from April the
16th, 2005 till January the 25th, 2012. The map has been obtained by the
Generic Mapping Tools (GMT).
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2) The second catalog includes events occurred in the portion of Abruzzo
region (Italy) corresponding to the square from latitude +41.866 to +42.866
and from longitude +12.8944 to +13.8944. This subregion includes L’Aquila.
The temporal interval is the same as for catalog one. The estimated value for
the completeness magnitude is 1.8. This catalog includes the strong shock of
magnitude 6.1 occurred in L’Aquila on April the 6th, 2009. The seismicity
map is shown in Fig. 3.2.
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Figure 3.2: Seismicity map of the second catalog concerning the square centered at
L’Aquila, from April the 16th, 2005 till January the 25th, 2012. The map
has been obtained by the Generic Mapping Tools (GMT).



3.1 The catalogs analyzed 56

3) The third catalog differs from the previous one only for the temporal
interval, which now goes from April the 16th, 2005 till April the 5th, 2009.
The value of completeness magnitude is estimated equal to 1.5. This catalog
doesn’t include strong shocks. For the seismicity map, one can see Fig. 3.3.
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Figure 3.3: Seismicity map of the third catalog concerning the square centered at L’Aquila,
from April the 16th, 2005 till April the 5th, 2009. The map has been obtained
by the Generic Mapping Tools (GMT).
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4) The fourth catalog includes events occurred from January the 1st,
1984 till December the 31th, 1991, in the portion of the Southern California
corresponding to the square from latitude +33.75 to +34.75 and from longi-
tude -117.5 to -116.5. This catalog is a portion of the waveform earthquake
catalog relocated by Hauksson et al. in 2011 [Hauksson et al., 2012; Lin
et al., 2007]. It has been given to us by the seismologists of the INGV and it
contains events with magnitudes from 2 on. This is the value estimated by
the seismologists for the completeness magnitude. To be thorough, we have
estimated again the completeness magnitude of this catalog with the ZMAP
program, obtaining again 2 (see Fig. 3.5). This ensures us that the com-
pleteness value is not bigger than this number. Even if it were smaller, the
portion of catalog used here would however be complete. Fig. 3.4 contains
the seismicity map for this catalog.
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Figure 3.4: Seismicity map of the fourth catalog concerning the Southern California, from
January the 1st, 1984 till December the 31th, 1991. The map has been obtained
by the Generic Mapping Tools (GMT).
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We have chosen the above temporal periods for the Italian catalogs since,
when we have started the study, only the data available online for these
periods had had the final revision.

In the first catalog there is the presence of events that are very distant
from each other, as can be seen from the mean values of the distances between
the events in causal relation, shown below in Section 3.3. Because of this,
we expect that in this case the above-mentioned hypothesis of magnitude
correlation is absent, or not so evident. On the other hand, we expect that
this dependence becomes far more evident for catalogs not including events
that are spatially “too” distant to each other. This is the reason for including
in the study catalogs two, three and four. More precisely, we consider the
third catalog to investigate the influence of a strong shock and the fourth one
to verify the validity of our hypothesis also for a catalog relative to a region
far away from the others and with a different seismicity.

In all the previous cases the maximum depth considered is equal to 40
km: all the events with deeper depths are excluded. This is due to the fact
that, for the latter events, one could have problems with the complete record
of the data. In fact, the deeper the hypocenter is, the lower is the precision
of the seismographs. Actually, in the examined catalogs either there are no
events deeper than 40 km or there are only a few of them, and then their
exclusion doesn’t affect the analysis.

The values of the completeness magnitude have been computed with the
ZMAP software [Wiemer, 2001]. More precisely, we have used the Shi and
Bolt uncertainty [Marzocchi and Sandri, 2003; Shi and Bolt, 1982], according
to whom the error of the b-value of the Gutenberg-Richter law is estimated

as σ̂b̂ = 2.30b̂2
√∑Nev

i=1 (mi−µ̂m)2

Nev(Nev−1)
, where Nev is the number of events and µ̂m

is the sampling average of the magnitudes mi, i = 1, . . . , Nev, which are
supposed to be identically distributed. The plots obtained by estimating
the completeness magnitude for the four catalogs considered are shown in
Fig. 3.5.

Furthermore, the magnitudes versus occurrence times plots of Fig. 3.6
show the general composition of the events in each of the four catalogs con-
sidered. Let’s focus on the second plot from the top of the above figure,
relative to L’Aquila till 2012. If we zoom a rectangle including the days just
after the strong shock, corresponding to the peak, we get Fig. 3.7, where
we can see that there are no events with a magnitude lower than about 2.5:
even if the ZMAP estimated completeness magnitude is 1.8 for this catalog,
this value is probably too low in the days just after the shock of magnitude
6.1. Then, in these days there are there are probably several events with low
magnitude (less than 2.5) and they have not been recorded.
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Figure 3.5: Frequency-magnitude distributions obtained with the ZMAP program for the
four catalogs considered. Starting with the upper-left plot and proceeding
clockwise, the plots concern the first, second, third and fourth catalogs, re-
spectively relative to the whole Italy, L’Aquila till 2012, L’Aquila till April the
5th, 2009 and the Southern California. The minimum values at which there’s
a deviation from the Gutenberg-Richter law are the completeness magnitudes.
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Figure 3.6: Times versus magnitudes of the events in the four catalogs considered. Starting
with the plot at the top and running down, the plots concern the first, second,
third and fourth catalogs, respectively relative to the whole Italy, L’Aquila till
2012, L’Aquila till April the 5th, 2009 and the Southern California.
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Figure 3.7: Zoom on the days after the strong shock on April the 6th, 2009, of the times
versus magnitudes plot relative to the second catalog, concerning L’Aquila till
2012. We can see the absence of events with small magnitudes in the period
just after this shock.

3.2 The two types of analysis

In order to have coherent and consistent data, we have excluded from the
analysis all the events in the four catalogs not measured with the local or
moment magnitude scales. Generally, the events’ magnitudes measured with
other scales are very low, very often smaller than 1. Then, the events of this
kind, not already excluded by cutting according to the completeness magni-
tude, are very few. Again, the analysis is not affected by this exceptions.

In the two types of analysis, performed for each catalog, the first step is
the same.

1. Consider four magnitude subintervals contained in the magnitude range,
from the completeness value mc to the maximum one mmax (both in-
cluded). The first and the last subintervals considered are of kind
[mc, m̄1] and [m̄2, mmax], for two chosen values m̄1 and m̄2; the two in-
termediate ones are instead suitably chosen between them; the size of
each subinterval is also chosen, for each catalog, in such a way to have
a comparable number of triggered events in all the four subintervals
considered.

We then proceed differently for the two types of analysis.

3.2.1 Algorithm 1: first analysis

The first approach consists of the following steps, repeated for each catalog.

2a. Group the events whose magnitudes belong to each of the four subin-
tervals of Step 1.
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3a. For each event Ev1,i in the first subinterval, with magnitude m1,i and
time of occurrence t1,i, find all the shocks occurring in the time in-
terval [t1,i, t1,i + δ∗]. The choice of the amplitude δ∗ is explained in
Subsection 3.2.2.

4a. Group all the magnitudes m1,i,j of all the shocks t1,i,j belonging to
all the previous time intervals, i.e., t1,i,j ∈ [t1,i, t1,i + δ∗]. If one event
belongs for example to both [t1,1, t1,1+δ

∗] and [t1,2, t1,2+δ
∗], it is counted

twice.

5a. Repeat the previous two steps for the other three magnitude subinter-
vals considered.

6a. Consider the set Gm = {m1,i,j, m2,i,j, m3,i,j, m4,i,j}i,j. Estimate the
probability density function by the kernel density estimation method.

For the MATLAB code, see the section Algorithm 1 in the file Algo-

rithms.pdf.
The kernel density estimation method is a non-parametric approach very

used in statistics [Parzen, 1962; Rosenblatt, 1956]. We proceed with this
method as follows. Firstly, for simplicity of notation, we relabel the ele-
ments of Gm as (m1, m2, . . . , mntot

) and we consider the corresponding fre-
quencies f = (f1, f2, . . . , fntot

), where ntot is the total number of events con-
sidered to be triggered as explained before. As already said, one event
can be counted more than one time and then these frequencies are not
“true”. We consider also the set m of 1000 magnitudes equispaced from
the completeness threshold to the maximum value. Then, we compute the
kernel density estimator of the empirical magnitude distribution M , for
m ∈ {mc + k(mmax −mc)/1000, k = 0, 1, ..., 1000}, as

M̂γ(m) =
1

F

ntot∑

i=1

fiK

(
m−mi

γ

)
, with F =

ntot∑

i=1

K

(
m−mi

γ

)
, (3.1)

where K(·) is known as kernel and the positive parameter γ is the bandwidth
[Parzen, 1962]. The above formula is obtained by adapting the Nadaraya-
Watson kernel for kernel regression [Scott, 1992].

For the ease of the reader, we recall the following definition.

Definition 16. A kernel K(·) is a non-negative, real-valued function such
that ∫ ∞

−∞

K(x)dx = 1, and K(x) = K(−x) ∀x ∈ R.



3.2 The two types of analysis 63

As very often done, here we use the Gaussian kernel

K(x) =
1√
2π
e−

x2

2 .

The value of the bandwidth is chosen using the leave-one-out cross-validation
method [Scott, 1992], opportunely modified and implemented by us. More
precisely, we choose the value γ that minimizes the quantity

∑ntot

i=1 |f̂i − fi|,
where

f̂i =
1

F̄i

∑

j 6=i

fjK

(
mi −mj

γ

)
, with F̄i =

∑

j 6=i

K

(
mi −mj

γ

)
.

Let’s observe that, differently from formula (3.1), the value fi doesn’t con-
tribute to f̂i.

3.2.2 Algorithm 1.1: choice of the time amplitude δ∗

The time window δ∗ is chosen here in such a way that two seismic events,
separated by a time larger than δ∗, are not in causal relation. The algorithm
consists of the following steps.

• Divide the whole time interval in daily subintervals and count the num-
ber of events that occur in each subinterval. Denote this temporal
sequence with Xt, i.e., Xt is the number of events occurred in day t..

• Starting from this temporal sequence, compute an estimate R̂(δ) of the
autocorrelation function at different integer values of time lag δ:

R̂(δ) =
1

(ns − δ)V̂

ns−δ∑

t=1

(Xt − µ̂)(Xt+δ − µ̂), (3.2)

where ns is the temporal dimension of the sample, δ = 0, 1, 2, . . . and

µ̂ =
1

ns

ns∑

t=1

Xt, V̂ =
1

ns − 1

ns∑

t=1

(Xt − µ̂)2

are the sample mean and variance, respectively [Priestley, 1982].

• Model R̂(δ) by the power law
(
1 + t

b1

)−b2
containing the two parame-

ters b1, b2, which are estimated by least squares.
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• Find the value δ∗ such that the power law model is equal to 0.05. In
the cases examined, this choice produces p-values always smaller than
0.01.

For the MATLAB code, see the section Algorithm 1.1 in the file Algo-

rithms.pdf.
The autocorrelation function is a very important tool already used in pre-

vious studies. It has been used for example to analyze seismic time sequences
like in our case [Caputo and Sebastiani, 2011], to test the climate-seismicity
[Molchanov, 2010] or in the matter of ambient seismic noise [Cezar, 2002;
Ohmi and Hirahara, 2009]. Recall that the ambient seismic noise is a rela-
tive persistent vibration of the ground, caused by ≪a diversity of different,
spatially distributed, mostly unrelated and often continuous sources [...] with-
out a defined phase spectrum≫, as defined in [Bormann, 2009].

Due to the strong shock on April the 6th, 2009, the second catalog shows a
clear non-stationary pattern. Because of this, in order to find the δ∗ value for
this catalog and then to perform the first kind of analysis, we transform the
original dataset by considering the following well-known random time-change,
already discussed in (2.26):

∫ t

0

λ(s|Ht)ds, (3.3)

where λ(·|Ht) is the time-magnitude ETAS rate for seismic events given
in (2.8) (see for example [Ogata, 1988]). It follows that, in the case of the
second catalog, even the first analysis depends on the ETAS model in the
way of transforming the occurrence times. More precisely, we obtain the cat-
alog with the transformed times by using the FORTRAN program for the
residual analysis [RESIDUALS ETAS.f ], in which we have considered as
precursory period the one that ends at the time of the last event occurred
on April the 5th, 2009. The same period has been used for the estimation of
the parameters appearing in the above rate. This estimation has been com-
puted with the FORTRAN program [etas.f ] written by Ogata and already
presented in the previous chapter (see Section 2.3.1), by which statistical
inference on the parameters of the ETAS model is performed [Ogata, 2006].
Due to the presence of the learning period, the catalog with the transformed
times concerns only the part of the original catalog starting from April the 6th,
2009. As explained before, by the transformation (3.3) the process becomes
stationary. The consequent plot of magnitudes versus occurrence times is
shown in Fig. 3.8. In this figure it can be again clearly seen that there is the
lack of events with low magnitudes, let’s say less than 2.5, in the first days
after the strong shock.
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Figure 3.8: Times versus magnitudes of the events in the second catalog, concerning
L’Aquila from April the 16th, 2005 till January the 25th, 2012, where the
times have been transformed with the random time-change (3.3).

If we consider catalogs with different magnitudes, we get different estima-
tions of the parameters c, p, κ, a of the ETAS model. It follows that, even
if the Omori-Utsu law is independent of the magnitudes, the times of occur-
rence of the process described by the ETAS model depend on the magnitudes
on the mother events, in fact in the triggered rate of the latter model the
triggering events’ magnitudes influence the temporal decay through the pro-
ductivity law. However, since δ∗ is used in the first analysis, which do not
include the ETAS modeling, the times are here completely independent with
respect to the magnitudes. Then, the value of δ∗ doesn’t depend on the
magnitude of the events considered and is taken equal for each shock in the
catalog. It differs only from catalog to catalog.

The time-correlations plots obtained for the four catalogs considered are
shown in Fig. 3.9.
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Figure 3.9: Time-correlations of the four catalogs considered. Starting with the upper-
left plot and proceeding clockwise, the plots concern the first, second, third
and fourth catalogs, respectively relative to the whole Italy, L’Aquila till 2012,
L’Aquila till April the 5th, 2009 and the Southern California.
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3.2.3 Algorithm 2: second analysis

The second type of analysis, performed again for each catalog, consists of the
following steps.

2b. Apply the FORTRAN program [etas.f ] to estimate the parameters of
the temporal ETAS model.

3b. For each event of the catalog, find the mother shock that most likely
triggered it. The method to this aim is briefly explained just below.

4b. Consider the first of the four magnitude subintervals of Step 1.

5b. Group the triggered events whose triggering shock’s magnitude belongs
to the considered subinterval. Call the set of these events’ magnitudes
M̃1.

6b. Repeat the previous step for the other three magnitude subintervals.

7b. Consider the set of all the magnitudes G̃m̃ =
{
M̃1 ∪ M̃2 ∪ M̃3 ∪ M̃4

}

to estimate the probability density function relative to triggered events’
magnitude by using the Gaussian kernel density estimation method
described above in Subsection 3.2.1. The value of the bandwidth is
determined as Subsection 3.2.1, too.

For the MATLAB code, see the section Algorithm 2 in the file Algo-

rithms.pdf.
The method we use in order to find the mother events of Step 3b, is a

variation of the Ogata’s criterion. More precisely, the latter considers as
mother of the ith event the shock occurred in the smallest time tJ such that
the ratio between the ETAS rate till tJ and the ETAS rate over all the
previous tj < ti is bigger than a uniform random number U generated in
(0, 1]; instead we consider as mother the preceding event, among p(mi)̟
and p(mi)ρ(mi)

∫ tJ−ti
0

Φ(s)ds, i ≤ J , that gives the highest contribute to the
ETAS rate.

We do not apply this analysis to the first catalog, relative to the whole
Italy. In fact, it is not meaningful to use the pure temporal ETAS model
in estimating the parameters for such a large region like the one in the first
catalog.
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3.3 Results

We present here some results obtained by the two types of the above-mentioned
analysis for the catalogs considered.

In Fig. 3.10, we plot the estimated densities of triggered events’ magni-
tude, obtained by the first type of analysis for the first catalog (whole Italy).
By looking at the four curves, one can see that there are no apparent differ-
ences among the densities. As said before, this can be explained by the fact
that there are many pairs of events that are close to each other along time,
but spatially very separated. In fact, the mean distance between the events
of the pairs in causal relation is 140 Km. The elements of these pairs are
erroneously put in relation in the analysis.
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Figure 3.10: Kernel density estimation of triggered events’ magnitude in the first catalog
(whole Italy), concerning the first type of analysis. The considered intervals
in which triggering events’ magnitudes fall are: [2.5, 2.6], [3, 3.2], [3.5, 4] and
[4.1, 5.9] (red, black, blue and magenta curves, respectively). The δ∗ value
is equal to fifteen days. The optimal bandwidth value for the Normal kernel
density estimation is 0.12, 0.11, 0.12, 0.12 for the four intervals considered,
respectively.

In Fig. 3.11, there are the estimated densities of triggered events’ magni-
tude obtained by the first and the second types of analysis (plots at the top
and at the bottom, respectively), relative to the second catalog (L’Aquila
till 2012). Here, the spatial extension of the region analyzed is far smaller
than the one of the previous catalog. Let’s recall that, in this case, the first
analysis has been applied to the dataset transformed by the random time-
change (3.3), due to the non-stationary pattern of the process caused by the
presence of the strong shock on April the 6th, 2009.
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Figure 3.11: Kernel density estimation of triggered events’ magnitude in the second catalog
(L’Aquila till 2012), concerning the first and the second types of analysis
(plots at the top and at the bottom, respectively). The considered intervals
in which triggering events’ magnitudes fall are the following. First analysis,
plot at the top: [1.8, 2.1], [2.2, 2.6], [3.3, 3.8] and [3.9, 5.9]; second analysis,
plot at the bottom: [1.8, 2.2], [2.5, 3.2], [3.6, 4.6] and [4.9, 5.9] (in both cases,
the curves are red, black, blue and magenta, respectively). The δ∗ value
is equal to one day. The optimal bandwidth value for the Normal kernel
density estimation is, respectively for the four intervals considered, equal to:
0.22, 0.33, 0.28, 0.19 in the plot at the top and 0.25, 0.26, 0.31, 0.27 in the
one at the bottom.

The means of the distances between the events of the pairs are about 7
Km and 13 Km for the first and the second types of analysis, respectively.
From the first analysis (plot at the top), one can notice that the increase of
the referential mothers’ magnitude corresponds to a qualitative variation of
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the density in agreement with our hypothesis, indeed the density increases
(decreases) for high (low) values of the magnitude when the mother event’s
magnitude increases (decreases). The results for the second analysis (plot at
the bottom) show the same qualitative variations. The learning (precursory)
period, chosen to estimate the parameters, ends at the time of the last event
occurred on April the 5th, 2009. We get

(̟, κ, c, a, p) = (0.304, 0.06, 0.104, 1.57, 1.39). (3.4)

In order to test the goodness of fit of the model with the set of parameters
used, we have performed the residual analysis for which, as explained in Sub-
section 2.3.3, it is considered the residual process obtained with the random
time-change (2.26) in order to get a stationary Poisson process with rate
one. The results of the tests, given in Tab. 3.1, show that the model slightly
underestimates the number of target events.

Table 3.1: Results of the tests obtained with the residual analysis, concerning the catalog
relative to the square centered at L’Aquila till 2012. The learning period ends
at the time of the last event occurred on April the 5th, 2009. The parameters
are the ones obtained for this learning period.

Number of events expected by the model 6138.27
Number of events without the learning period 6229
Runs test 4.48E-001
Kolmogorov-Smirnov test 5.02E-002

Only the Runs test gives back a probability bigger than 5%. The fact
that this is not true for the Kolmogorov-Smirnov test, even if the probability
has a value very little lower than 5%, could be explained by the value of
the completeness magnitude used for this catalog. As explained before, due
to the very high number of events occurred during the days just after the
strong shock on April the 6th, 2009, several events of magnitude 1.8 and a
bit more have not been recorded. This means that the real completeness
value for these days is higher than 1.8, value estimated with ZMAP. The
fact that there are some events not recorded implies that the random time-
change (2.26) doesn’t guarantee that the residual process is a Poisson with
rate one. It follows the underestimation of the number of events and the
fact that the standard exponential law is not well fitted by the interevents
between transformed times at small values (see the left plot of Fig. 3.12).
However, since the Runs test gives good results and considering that this
real catalog has a very strong shock, that implies an unusual amount of data
to be recorded for the Italian case, we think that the set of parameters chosen
can be considered good to be used in the analysis.
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Figure 3.12: Plots concerning the second catalog, relative to L’Aquila till 2012. In the left
plot the histogram of the interevent times of the transformed values is shown,
together with the standard exponential law. The fit is not good for small
values, as one can see from the non-agreement between the histogram and
the red exponential law. In the right plot one can see how much the cumula-
tive distribution function of the transformed times varies with respect to the
bisector. There’s not a really good agreement. This fact can be explained by
the fact that the value 1.8 estimated for the completeness magnitude is prob-
ably too low for the days just after the strong shock present in the catalog
considered.

In Fig. 3.13, one can see the results for the third catalog. In this case the
temporal period is shorter than for the second one and ends the day before the
strong shock on April the 6th, 2009. The means of the distances are 23 Km
and 17 Km for the first and the second types of analysis, respectively. The
behaviors of the estimated densities of the triggered events’ magnitude are
qualitatively very close to those obtained for L’Aquila till 2012 in Fig. 3.11.
This shows that our hypothesis of dependence is not related to the presence
of a strong shock. Furthermore, we can conclude according to [Lippiello et al.,
2012], that our hypothesis is not even connected to the incompleteness of the
catalog, as instead proposed by [Corral, 2006]. In fact, we obtain evidences
not only when we consider a catalog with a higher completeness magnitude
mc and with a strong shock that may cause problems with completeness in
the days just after it. The evidences are obtained also when considering a
catalog with a low mc and a law seismic activity, then without any kind of
incompleteness problem.
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Figure 3.13: Kernel density estimation of triggered events’ magnitude in the third catalog
(L’Aquila till April the 5th, 2009), concerning the first and the second types
of analysis (plots at the top and at the bottom, respectively). The considered
intervals in which triggering events’ magnitudes fall are the following. First
analysis, plot at the top: [1.5, 1.6], [1.7, 1.9], [2.4, 2.9] and [3.1, 4.1]; second
analysis, plot at the bottom: [1.5, 1.6], [1.8, 2], [2.5, 3.1] and [3.1, 4.1] (in both
cases, the curves are red, black, blue and magenta, respectively). The δ∗ value
is equal to four days. The optimal bandwidth value for the Normal kernel
density estimation is, respectively for the four intervals considered, equal to:
0.11, 0.14, 0.11, 0.15 in the plot at the top and 0.14, 0.16, 0.22, 0.15 in the
one at the bottom.
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The parameters used here are the averages over all the sets of parameters
obtained by setting the learning period to 7%, 8%, . . . , 20% (see Tab. 3.2).

Table 3.2: List of parameters obtained for the third catalog, concerning the square centered
at L’Aquila till April the 5th, 2009, by varying the precursory period. The values
are rounded to the significant decimal places. The set of initial parameters,
given in input, is (̟,κ, c, a, p) = (0.13326, 0.05636, 0.0042524, 0.50173, 0.86843).
If we change the initial values of p and ̟, or the order of magnitudes of c and
κ, the values obtained are generally very similar.

Input data Output parameters
Learning % (̟,κ,c,a,p)

7% (0.54,0.024,0.014,1.64,1.08)

8% (0.55,0.023,0.014,1.64,1.09)

9% (0.52,0.023,0.012,1.7,1.06)

10% (0.52,0.023,0.013,1.68,1.06)

11% (0.53,0.024,0.013,1.66,1.07)

12% (0.57,0.022,0.015,1.66,1.1)

13% (0.6,0.022,0.016,1.65,1.12)

14% (0.64,0.02,0.018,1.65,1.17)

15% (0.63,0.021,0.017,1.65,1.16)

16% (0.62,0.021,0.016,1.64,1.15)

17% (0.64,0.021,0.017,1.63,1.16)

18% (0.65,0.020,0.017,1.64,1.17)

19% (0.62,0.021,0.015,1.64,1.13)

20% (0.62,0.021,0.015,1.65,1.14)
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This choice is due to the absence of a very strong shock in this catalog.
We get

(̟, κ, c, a, p) = (0.5893, 0.0219, 0.0151, 1.6521, 1.1186). (3.5)

The results obtained with the sets of parameters corresponding to the dif-
ferent precursory periods show small variations from the ones in (3.5). The
residual analysis, performed for the residual process obtained with the ran-
dom time-change (2.26), is shown in Tab. 3.3.

Table 3.3: Results of the tests obtained with the residual analysis, concerning the catalog
relative to the square centered at L’Aquila till April the 5th, 2009. The param-
eters considered are the mean ones. The precursory period is set at 13%, value
at which we obtain the parameters closest to the mean ones.

Number of events expected by the model 1435.4
Number of events without the learning period 1466
Runs test 4.64E-003
Kolmogorov-Smirnov test 8.84E-001

We can see that the Runs test doesn’t give a good result: the interevents
between transformed times are not independent. This means that small val-
ues of interevent times follow small values. This could be due to the presence
in the catalog of sequences near in time, but spatially quite separated, or of
sequences not completely included in the area under examination, as can be
seen in the seismicity map of Fig. 3.3. Instead, the Kolmogorov-Smirnov test
gives back a good result, in fact in this case the probability is bigger that 5%.
Concluding with the residual analysis, the number of expected events is very
similar to that of the real target shocks. All these results are illustrated in
Fig. 3.14. In the case of this catalog, in order to give a graphical support for
the non-good result of the Runs test, this figure contains also the plot of the
interevent transformed times in logarithmic scale. We can see for example
a persistence of quite small interevent transformed times at about 250 days
(red rectangle). However, since we have to recall that we are modeling a very
complex phenomenon with a quite simple process, we can’t expect that the
results are always good for all the tests. Then, all things evaluated, we think
that the model with the set of the above mean parameters can be considered
good to fit the real case.
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Figure 3.14: Plots concerning the third catalog, relative to L’Aquila till April the 5th,
2009. In the left plot at the top, the histogram of the interevent times of
the transformed values is shown, together with the standard exponential law.
The fit is good. In the right plot at the top, one can see how much the
cumulative distribution function of the transformed times varies with respect
to the bisector. The deviation in the final part can be explained because that
period dates back to the seismic swarm preceding the strong shock occurred
on April the 6th, 2009. At the beginning and in the central part, the non
perfect agreement may be instead due to the presence of small clusters not
included by the model. However, the fit is generally good, in fact so is the
result of the Kolmogorov-Smirnov test. The plot at the bottom contains
the interevent transformed times in logarithmic scale. In the red rectangle,
indicated by the arrow, we can see a short persistent trend of small interevent
times, as we expected by looking at the non-good result for the Runs test.
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Concluding with the figures containing the estimated densities of triggered
events’ magnitude in the real catalogs, in Fig. 3.15 one can see the results
relative to the fourth catalog, that is the Californian one.
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Figure 3.15: Kernel density estimation of triggered events’ magnitude in the fourth catalog,
concerning the first and the second types of analysis (plots at the top and
at the bottom, respectively). The considered intervals in which triggering
events’ magnitudes fall are the following. First analysis, plot at the top:
[2, 2.2], [2.3, 2.39], [2.8, 3.2] and [3.3, 5.6]; second analysis, plot at the bottom:
[2, 2.25], [3.2, 3.5], [3.5, 4] and [4.6, 5.6] (in both cases, the curves are red,
black, blue and magenta, respectively). The δ∗ value is equal to one day.
The optimal bandwidth value for the Normal kernel density estimation is,
respectively for the four intervals considered, equal to: 0.11, 0.44, 0.12, 0.25
in the plot at the top and 0.18, 0.13, 0.1, 1 in the one at the bottom.
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Here, the mean of the distances is 13 Km for both the two types of analysis.
Both from the plots at the top and the bottom, respectively obtained with
the first and the second types of analysis, we get results in agreement with the
above behaviors. It follows that, even if we analyze the events of a region in
another continent, the hypothesis is still supported by the results of the two
types of analysis. The parameters are again obtained by averaging over the
sets estimated for a learning period fixed at 7%, 8%, . . . , 20% (see Tab. 3.4).

Table 3.4: List of parameters obtained for the Southern Californian catalog by vary-
ing the precursory period. The values are rounded to the significant deci-
mal places. The set of initial parameters, given in input, is (̟,κ, c, a, p) =
(0.13326, 0.05636, 0.0042524, 0.50173, 0.86843). If we change the initial values
of p and ̟, or the order of magnitudes of c and κ, the values obtained are
generally very similar.

Input data Output parameters
Learning % (̟,κ,c,a,p)

7% (0.37,0.012,0.0002,0.87,0.89)

8% (0.37,0.011,0.0002,0.9,0.89)

9% (0.39,0.011,0.0002,0.9,0.9)

10% (0.39,0.011,0.0002,0.89,0.9)

11% (0.38,0.011,0.0002,0.87,0.89)

12% (0.38,0.011,0.0002,0.89,0.9)

13% (0.39,0.011,0.00019,0.83,0.9)

14% (0.39,0.011,0.00019,0.83,0.9)

15% (0.37,0.012,0.00017,0.83,0.88)

16% (0.37,0.012,0.00018,0.83,0.89)

17% (0.37,0.012,0.00018,0.85,0.88)

18% (0.36,0.012,0.00018,0.84,0.88)

19% (0.35,0.013,0.00016,0.82,0.87)

20% (0.34,0.013,0.0002,0.86,0.86)

The catalog contains a quite strong shock of magnitude 5.6 too, but in
the Californian region these events are more frequent and the technologies
themselves are more suited to record these kind of earthquakes. Then, we
decided to proceed with the research of the parameters as for the previous
catalog. We get

(̟, κ, c, a, p) = (0.3729, 0.0116, 0.0002, 0.8579, 0.8879). (3.6)
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The values obtained for different learning periods are close to the mean values
in (3.6). The results of the residual analysis are shown in Tab. 3.5; we recall
again that this analysis considers for the residual process, obtained with the
random time-change (2.26). Both the Kolmogorov-Smirnov and the Runs
tests give back a probability bigger than 5%. The number of expected events
is also close to the real number of target events. We deduce the goodness of
fit of the model with the set of the above mean parameters (see Fig. 3.16).

Table 3.5: Results of the tests obtained with the residual analysis, concerning the South-
ern Californian catalog. The parameters considered are the mean ones. The
precursory period is set at 7%, value at which we obtain parameters really very
close to the mean ones.

Number of events expected by the model 1418.21
Number of events without the learning period 1428
Runs test 2.46E-001
Kolmogorov-Smirnov test 2.99E-001
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Figure 3.16: Plots concerning the fourth catalog, relative to Southern California. In the
left plot the histogram of the interevent times of the transformed values is
shown, together with the standard exponential law. The fit is good. In the
right plot one can see how much the cumulative distribution function of the
transformed times varies with respect to the bisector. The central part isn’t
in a really very good agreement, instead at the beginning and the end the
lines are very close. This can be explained by the fact that on July the 8th,
1986, a shock of magnitude 5.6 has occurred. Then, in the days just after,
there may have been problems with the sequence, like for example a slight
incompleteness of the catalog for magnitude 2. However, this comes under
the variability of the process.

Before proceeding with the plots containing the means, we just would like
to add that, as said before, the presence of a high magnitude event generally
implies a very high number of aftershocks. This fact could cause two opposite
behaviors. On the one hand, the dependence is more evident than for the
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catalog without a strong shock, due to the longer time-interval of consequent
activity interested and to the larger number of events to be considered in
the analysis. On the other hand, the very high number of events may induce
errors when putting events in causal relation and this could affect the results
of dependence. We suppose that the latter case concerns mainly the first
analysis, in which the relations between events are established without an
underlying model (with the exception of the catalog concerning L’Aquila
till 2012, for which we perform the random time-change (2.26) based on
the ETAS rate). These considerations may explain the small differences of
behavior between the catalogs. Nevertheless, in our opinion it is important
to notice that, even if the hypothesis of magnitude correlation is sometimes
more, sometimes less evident, it is always supported by the results obtained.

Finally, let’s consider the magnitude means. Figures 3.17 and 3.18 in the
next two pages contain the plots of the averages of triggered events’ magni-
tudes versus triggering events’ magnitudes for the first and the second types
of analysis, respectively. In each case, the four triggered magnitude averages
are normalized by the averages of these four mean values. The results of the
linear regression analysis and the error bars are also shown. The lengths of
the latter are given by the normalized mean standard errors. Concerning
Fig. 3.17, starting with the upper-left plot and proceeding clockwise, we il-
lustrate the results obtained for the first, second, third and fourth catalogs,
respectively relative to the whole Italy, L’Aquila till 2012, L’Aquila till April
the 5th, 2009 and the Southern California. In all the cases, with the excep-
tion of the first catalog as we expected, we can see a clearly increasing trend
of the means, supporting our hypothesis of magnitude correlation. The no
percentage variation in the plot of the Italian catalog are due to the pres-
ence here of many pairs of events that are close to each other along time
but spatially very separated, as said before. The elements of these pairs are
erroneously put in relation in the analysis. Concerning instead Fig. 3.18, the
plots have the same order as in Fig. 3.17, but the one relative to Italian cat-
alog is obviously absent. In fact, as already explained, this analysis has not
been performed for this catalog. Again the means have an increasing trend
in all of these three cases. The results obtained are statistically significant,
as one can see in Tab. 3.6.

Table 3.6: List of correlation coefficients R and p-values p. Catalogs from 1 to 6 refer
to the whole Italy, L’Aquila till 2012, L’Aquila till April the 5th, 2009 and
Southern California, respectively.

First analysis Second analysis

R ≃ p ≃ R ≃ p ≃
Catalog 1 0.88 0.11 / /
Catalog 2 0.99 0.004 0.94 0.05
Catalog 3 0.96 0.03 0.94 0.05
Catalog 4 0.99 0.0005 0.95 0.04
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Figure 3.17: Averages of the normalized triggered events’ magnitudes obtained with the
first analysis. Starting with the upper-left plot and proceeding clockwise, the
plots concern the first, second, third and fourth catalogs, respectively rela-
tive to the whole Italy, L’Aquila till 2012, L’Aquila till April the 5th, 2009
and the Southern California. The percentage means for the four subintervals
considered for the above four catalogs are the following. Catalog one: 0.9968,
0.9979, 1.0030, 1.0023 (corresponding to the triggering events’ magnitude
2.5434, 3.0862, 3.6798, 4.3541, respectively); catalog two: 0.7460, 0.8413,
1.0748, 1.3379 (corresponding to the triggering events’ magnitude 1.9199,
2.3491, 3.4687, 4.3342, respectively); catalog three: 0.9466, 0.9814, 1.0233,
1.0487 (corresponding to the triggering events’ magnitude 1.5433, 1.7796,
2.5770, 3.3818, respectively); catalog four: 0.8572, 0.9104, 1.0406, 1.1918
(corresponding to the triggering events’ magnitude 2.0754, 2.3000, 2.8876,
3.6415, respectively). The continuous lines correspond to the results of the
linear regression and the semi-amplitude of the error bars are the normalized
mean standard errors.



3.3 Results 81

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.9

0.95

1

1.05

1.1

1.15

Means of triggering events’ magnitude

M
ea

ns
 o

f t
rig

ge
re

d 
ev

en
ts

’ m
ag

ni
tu

de

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.9

0.95

1

1.05

1.1

1.15

Means of triggering events’ magnitude

M
ea

ns
 o

f t
rig

ge
re

d 
ev

en
ts

’ m
ag

ni
tu

de

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.9

0.95

1

1.05

1.1

1.15

Means of triggering events’ magnitude

M
ea

ns
 o

f t
rig

ge
re

d 
ev

en
ts

’ m
ag

ni
tu

de

Figure 3.18: Averages of the normalized triggered events’ magnitudes obtained with the
second analysis. Starting with the plot at the top and proceeding clock-
wise, the plots concern the second, third and fourth catalogs, respectively
relative to L’Aquila till 2012, L’Aquila till April the 5th, 2009 and the South-
ern California. The percentage means for the four subintervals considered
for the above three catalogs are the following. Catalog two: 0.9776, 0.9844,
0.9963, 1.0417 (corresponding to the triggering events’ magnitude 1.9508,
2.7277, 3.9125, 5.2333, respectively); catalog three: 0.9662, 0.9801, 0.9959,
1.0578 (corresponding to the triggering events’ magnitude 1.5433, 1.8763,
2.7056, 3.4083, respectively); catalog four: 0.9667, 0.9866, 1.0136, 1.0331
(corresponding to the triggering events’ magnitude 2.0753, 3.3309, 3.6500,
5.1000, respectively). The continuous lines correspond to the results of the
linear regression and the semi-amplitude of the error bars are the normalized
mean standard errors.
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3.4 Conclusions

Although the magnitudes of all the events are distributed according to the
Gutenberg-Richter law when not taking into account the characteristics of
past seismicity, the results obtained in this chapter with the two types of
analysis above described show that the probability density of triggered events’
magnitude changes when the mother events’ magnitude changes. This sup-
ports the hypothesis of considering a new model, that is a variation of the
classical temporal ETAS, in which the law of the triggered events’ magnitudes
depends on the triggering events’ magnitude, conditionally on knowing its
value.

The results of this chapter can be precisely summarized as follows.

Pr.1) The probability of “high” aftershocks magnitude increases with the
mother event’s magnitude. Furthermore, the triggered events’ mag-
nitude averages have an increasing trend, again with respect to the
mother events’ magnitudes. This is true for all the catalogs considered
with the exception of the whole Italian catalog. The absence of the
variation in this catalog is due to the fact that it contains many pairs
of events temporally close to each other, but spatially very separated.

Pr.2) The magnitudes are not independent from each other, but there exists
a transition probability density for the triggered events’ magnitudes.
Moreover, it has to change in shape with the triggering events’ magni-
tude: when the latter increases, it may have a relative maximum and
the higher the mother event’s magnitude,

- the higher is the relative maximum,

- the higher is the expected value.



Chapter 4

The Epidemic Type Aftershock

Sequence model with correlated

magnitudes

In this chapter, we focus on our new version of the ETAS model with corre-
lated triggered events’ magnitudes.

In Section 4.1 we write explicitly the conditional intensity function char-
acterizing the above new ETAS model. This function is then analyzed in
order to give a precise description of the process, for which we also derive the
conditions for the non-explosion. We will see that these conditions remain
the same as for the classical ETAS.

In Section 4.2 we then obtain the Laplace functional for this model: it is
a very useful tool for the study of several characteristics and properties of the
model itself, allowing to leave also open questions that could be analyzed in
future. In the first part of this section the results obtained are general, while
in the last part we derive the explicit form relative to the precise functions
of which consists the conditional intensity function written in the previous
Section 4.1.

Finally, in the last Section 4.3, we find an explicit form of the probability
density function p(·|m′) for the triggered events’ magnitude, depending on the
magnitude m′ of the corresponding mother event. The results obtained in the
previous chapter are very useful for this purpose: they allow to understand
which kind of transition function the p(·|m′) should be. More precisely, we
have to search for a function such that, when the mother events’ magnitude
m′ increases, the probability of having events with high (low) magnitudes
must increase (decrease). In addition, for high values of m′, the function
may also have a relative maximum.

83
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4.1 The conditional intensity of the new ETAS

model with correlated magnitudes

The main result of this thesis consists of the derivation of our new version of
the temporal ETAS model: the Epidemic Type Aftershock Sequence model
with correlated magnitudes. As already anticipated in Chapter 2 (see (2.9)),
it is a variation of the temporal ETAS model. In fact, in our new model we
assume that the probability density function relative to the triggered events’
magnitude is a transition probability density depending on the magnitude
of the mother events. It is nothing but the general ETAS model, character-
ized by the conditional intensity (2.3), but without considering the spatial
locations of the events, i.e., (2.9).

To rigorously define our new model, let’s give then its conditional intensity
function:

λ(t,m|Ht) =̟p(m) +
∑

{i|ti<t}

̺(mi)Φ(t− ti)p(m|mi), (4.1)

where p(m|mi) is a transition probability density.
As we are going to see in the Section 4.3, we will take the transition prob-

ability density p(·|·) depending on the parameters β, a and a new parameter
C1 ∈ [0, 1] as follows:

p(m|mi) = p(m)

[
1 + C1

(
1− 2e−(β−a)(mi−m0)

)(
1− 2e−β(m−m0)

)]
. (4.2)

Then, recalling also the explicit forms of the functions ̺(·) and Φ(·) (equa-
tions (2.1) and (2.5)), the conditional intensity function (4.1) can be rewritten
as

λ(t,m|Ht) =p(m)

{
̟ +

∑

{i|ti<t}

κea(mi−m0)
p− 1

c

(
1 +

t− ti
c

)−p[
1

+ C1

(
1− 2e−(β−a)(mi−m0)

)(
1− 2e−β(m−m0)

)]}
, (4.3)

where 0 ≤ C1 ≤ 1.
It is important to note that, clearly, the above ETAS model with corre-

lated magnitudes is a direct generalization of the classical ETAS model with
independent magnitudes: when C1 = 0, the transition probability density in
(4.2) reduces to p(m) and we get the model (2.7) in Chapter 2.

By looking at the conditional intensity function completely characterizing
the new model we are proposing (the above equation (4.3)), we can do the fol-
lowing considerations. The background component of the process is modeled



4.1 The conditional intensity of the new ETAS model with correlated

magnitudes 85

by a homogeneous Poisson process with constant rate ̟. The magnitudes
of this component are described by the well-known Gutenberg-Richter law.
Then, each event of the seismic sequence may give birth to its own cluster of
aftershocks, described by a time-stationary, non-homogeneous Poisson pro-
cess: the rate of the triggered process depends on times and magnitudes and
the time dependence is given only by the distances between the times of oc-
currence of mother/daughter events. More precisely, the rate relative to the
aftershocks component consists of:

• the normalized Omori-Utsu law

Φ(t) =
p− 1

c

(
1 +

t

c

)−p
, t > 0,

for the time decay;

• the productivity law

̺(m′) = κea(m
′−m0), m′ ≥ m0,

for the fertility of the generating event;

• a new law, given in (4.2), for the magnitudes of the triggered events. It
is a transition probability function depending on the magnitude of the
triggering events, just like the mean number of aftershocks per mother
event does. Let’s notice also that the transition probability p(·|·) is
proportional to the Gutenberg-Richter law p(m) with decay parameter
β.

As already specified, the explicit form (4.2) of the above transition prob-
ability will be obtained in Section 4.3. Let’s anticipate here just that it will
be derived in accordance with the experimental results of Chapter 3 and
imposing some further conditions it has to verify. Among these, the most
important one is that, if we average over all the possible triggering events’
magnitudes, that is if we don’t take into account the characteristics of past
seismicity, the p(·|m′) becomes again the Gutenberg-Richter law, well sup-
ported by many experimental evidences. This condition is expressed in for-
mula (4.28) (with (4.26)) of Section 4.3. Actually, if we write condition (4.28)
in the equivalent form

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′ = ηp(m′′),

(see equation (4.29) in Section 4.3), then we can deduce that p(m) is an
eigenfunction corresponding to the eigenvalue η = κ β

β−a
, as we are going
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to see in Lemma 1 below when considering the case of the operator K2

(see (4.6), (4.7) and (4.8)). More precisely, Lemma 1 gives the conditions for
the non-explosion of our process, that are obtained to be exactly the same
as for the classical time-magnitude ETAS, i.e., in the case of independent
magnitudes (see (2.19)). Furthermore, the above-mentioned Lemma 1 clearly
shows that η is the maximum eigenvalue and then one can apply Zhuang’s
method of Subsection 2.2.1 in Chapter 2 (see also [Zhuang, 2002]).

Summarizing, the new model proposed is derived through several interme-
diate requests, both theoretical and experimental, which allow to describe the
seismic sequences in a more realistic way. Our model improves the already
well constructed time-magnitude ETAS by considering the natural hypothesis
of correlated magnitudes. This new condition about the magnitudes doesn’t
complicate the statistical and theoretical analysis so much. In fact, besides
the previous parameters (̟, κ, c, a, p, β,m0), there is only one more parame-
ter to be considered. It is the constant C1 in (4.3), to be chosen non-negative
and less than or equal to one. Finally, by setting the classical conditions for
the non-explosion of the time-magnitude ETAS (see (2.19)), that are β > a,
p > 1 and κ < β−a

β
for (p, β, a, κ) the parameters of the Gutenberg-Richter,

the Omori and the productivity laws, our new model is non-explosive, and
then it represents a reasonable model for earthquakes.

Now, before analyzing the properties of the model and explaining the
reasons for our choice of p(·|m′), let’s state the just-mentioned Lemma 1 for
the non-explosion: we will give here the enunciate and a sketch of the proof,
referring to Appendix B for the complete proof.

Lemma 1. Let’s assume that the parameters (p, β, a, κ) of the ETAS model
with correlated magnitudes, completely characterized by intensity (4.1) and
transition probability (4.2), satisfy the conditions

p > 1, β > a, κ
β

β − a
< 1. (4.4)

Then, the point process is non-explosive, whatever the value of the correlation
parameter C1 ∈ [0, 1] is.

Sketch of the proof. In order to prove the non-explosion of the ETAS model
with correlated magnitudes, we have to show that, given the left and right
eigenfunctions ℓ1(m

′) and ℓ2(m) of the rate for the triggered component of
the sequence, the corresponding maximum eigenvalue η̃ is strictly less than
one. We have then to consider the equations
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η̃ℓ1(m
′) =

∫ ∞

m0

ℓ1(m)̺(m′)p(m|m′)dm,

η̃ℓ2(m) =

∫ ∞

m0

̺(m′)p(m|m′)ℓ2(m
′)dm′

as in Subsection 2.2.1 of Chapter 2, that have been obtained considering (2.13)
and (2.14) and computing the integrals with respect to space and time. At
first, let’s notice that, as for the classical ETAS, the condition for the tem-
poral integral to be finite is p > 1, that is exactly the first condition in (4.4)
for the non-explosion.

We can now introduce the two operators

K1ℓ(m
′) =

∫ ∞

m0

ℓ(m)̺(m′)p(m|m′)dm (4.5)

and

K2ℓ(m) =

∫ ∞

m0

̺(m′)p(m|m′)ℓ(m′)dm′. (4.6)

At first let’s say that, substituting the expression (4.2) for the transition
probability in the above two formulas, we find that the second condition
β > a in (4.4) has to be satisfied in order to get finite integrals. Furthermore,
for both the two operators, we find that the eigenvalues are





η̃(1) = ηa(β)C1
2β(β−a)

(2β−a)(3β−2a)

η̃(2) = ηa(β),

(4.7)

where

ηa(β) = η = κ
β

β − a
.

It follows that, in order to have η̃(1) < η̃(2) < 1, we need to impose the last
condition for the non-explosion of the process in (4.4), that is κ β

β−a
< 1.

Now, setting

̺ϑ(m) := κeϑ(m−m0) and pϑ(m) := ϑe−ϑ(m−m0),

the row eigenvectors relative to the above eigenvalues are proportional to:
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• in the case of the operator K1,




ℓ
(1)
1 (m′) ∝ ̺a(m

′)− 2̺2a−β(m
′)

ℓ
(2)
1 (m′) ∝ ̺a(m

′)− 2 C1a(3β−a)
(2β−a)[3β−2a+C1(2a−β)]

̺2a−β(m
′);

• in the case of the operator K2,




ℓ
(1)
2 (m) ∝ pβ(m)− [1− C1

β
3β−2a

]κ 2β
2β−a

p2β(m)

ℓ
(2)
2 (m) ∝ pβ(m).

(4.8)

Finally, if N tr
i (R2) is the number of all the triggered events generated by

the spontaneous shock (Si = s,Mi = m), with N tr,n
i (R2) indicating its nth

generation, we find that

E

[
N tr,n
i (R2)

∣∣∣Si = s,Mi = m
]
=K

(n)
1 1(m)

=K
(n−1)
1 ̺(m),

where 1(m) = 1[m0,∞)(m). Then, considering the evolution of the equation

ℓ(m) = ϑ1̺a(m) + ϑ2̺2a−β(m)

after n steps, i.e.,

K
(n)
1 ℓ(m) = ϑn1̺a(m) + ϑn2̺2a−β(m)

and setting

x1 = C1
a

2β − a
, y1 = C1

2a− β

3β − 2a
, z1 = x1 − y1,

we get




ϑn1

ϑn2


 =




1+y1
1−z1

[
η̃(2)
]n−1 − x1

1−z1

[
η̃(1)
]n−1

−2x1
1−z1

[
η̃(2)
]n−1

+ 2x1
1−z1

[
η̃(1)
]n−1


 .

Since

E

[
N tr
i (R2)

∣∣∣Si = s,Mi = m
]
= E

[
∞∑

n=1

N tr,n
i (R2)

∣∣∣Si = s,Mi = m

]

= ̺a(m)γ1 + ̺2a−β(m)γ2 <∞,
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where

γ1 =

∞∑

n=1

(
1 + y1
1− z1

[
η̃(2)
]n−1 − x1

1− z1

[
η̃(1)
]n−1

)
,

γ2 =

∞∑

n=1

( −2x1
1− z1

[
η̃(2)
]n−1

+
2x1

1− z1

[
η̃(1)
]n−1

)

and

E

[
N tr
i (R2)

∣∣∣Si = s
]
=

∫ ∞

m0

[γ1̺a(m) + γ2̺2a−β(m)] pβ(m)dm

= γ1

∫ ∞

m0

̺a(m)pβ(m)dm+ γ2

∫ ∞

m0

̺2a−β(m)pβ(m)dm

= η
[
γ1 +

γ2
2

]
<∞,

we deduce that the mean cluster size is finite and then, recalling Remark 3
in Chapter 1, the resulting process does not explode.

Remark 6. The same result on the finite mean cluster size can be obtained
by integrating with respect to the spontaneous event’s magnitude m already

when computing the expected values E

[
N tr,n
i (R2)

∣∣∣Si = s,Mi = m
]
. More

precisely, switching the order of integration where necessary and recalling
that ∫ ∞

m0

p(m)̺(m)p(m′|m)dm = K2p(m
′) = ηp(m′),

one obtains

E

[
N tr,1
i (R2)|Si = s

]
=

∫ ∞

m0

dmp(m)E
[
N tr,1
i (R2)

∣∣∣Si = s,Mi = m
]

=

∫ ∞

m0

dmp(m)

∫ ∞

s

dt

∫ ∞

m0

Φ(t− s)̺(m)p(m1|m)dm1

=

∫ ∞

m0

dm1

∫ ∞

m0

p(m)̺(m)p(m1|m)dm

=

∫ ∞

m0

dm1K2p(m1)

= η,
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E

[
N tr,2
i (R2)|Si = s

]
=

∫ ∞

m0

dmp(m)

∫ ∞

s

dt1

∫ ∞

m0

dm1

∫ ∞

t1

dt2

∫ ∞

m0

Φ(t1 − s)

· Φ(t2 − t1)̺(m)p(m1|m)̺(m1)p(m2|m1)dm2

=

∫ ∞

m0

dmp(m)

∫ ∞

m0

dm1

∫ ∞

m0

dm2̺(m)p(m1|m)̺(m1)p(m2|m1)

=

∫ ∞

m0

dm2

∫ ∞

m0

dm1̺(m1)p(m2|m1)K2p(m1)

=

∫ ∞

m0

dm2K
(2)
2 p(m2)

=η2

and then

E

[
N tr,n
i (R2)|Si = s

]
=ηn.

Nevertheless, the method we use in the proof of the previous lemma allows to
show that the process doesn’t explode even if the background events’ magni-
tudes are not distributed according to the Gutenberg-Richter law, but with
another law with a density q(·) such that the integrals of ̺a(m) and ̺2a−β(m),
with respect to q(m), are finite.

Independently of us, Roueff et al. analyzed similarly the non-explosion
problem for a class of locally stationary Hawkes processes [Roueff et al., 2015].
Nevertheless, they present a condition for the non-explosion (Theorem 1,
page 7 in their manuscript) that is not satisfied by our magnitude correlated
model (4.3). More precisely, they suppose that

sup
(s,m)

E
[
N tr,1
i (R2)|Si = s,Mi = m

]
< 1, (4.9)

where we recall that N tr,1
i (dt, dm) represents the marked point process of first

generation aftershocks of the spontaneous event (Si = s,Mi = m). In our
case, it holds

sup
(s,m)

E
[
N tr,1
i (R2)|Si = s,Mi = m

]
= sup

m
̺(m) = ∞,

and then Roueff’s condition, written above in (4.9), is not satisfied. For our
model (4.3) it holds instead

E[N tr,1
i (R2)] = η < 1,

for each i.
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Concluding, we want to discuss about the moment properties in the case
of the ETAS model with correlated triggered events’ magnitudes. The equa-
tions (2.20) and (2.21), derived in Subsection 2.2.2 of Chapter 2, are still
valid because they have been obtained for a general function h(·|·) represent-
ing the rate relative to the triggered component of the process, that is for the
general space-time-magnitude ETAS, to which our new model belongs. The
only thing to discuss is the branching ratio. In order to get the latter value for
the ETAS model with correlated magnitudes, we start with equation (2.22)
of the above-mentioned subsection, i.e.,

M1(x, y,m) =̟(x, y)p(m) +

∫

S

̺(m′′)Φ(t− t′′)f(x− x′′, y − y′′|m′′)

· p(m|m′′)M1(x
′′, y′′, m′′)dv̄′′,

where
S = R

2 × (−∞,+∞)× [m0,∞).

We recall that this is an equation for the first order moment M1(x, y,m),
again in the case of the general space-time-magnitude ETAS. In our case, we
are discarding the spatial component and then the above result becomes

M1(m) =̟p(m) +

∫ ∞

−∞

∫ ∞

m0

̺(m′′)Φ(t− t′′)p(m|m′′)M1(m
′′)dv̄′′.

As in Subsection 2.2.2, we take the expectation with respect to time, ob-
taining the relationship between the total magnitude distribution jtot(·), the
distribution of the background events’ magnitude p(·) and the one of the
aftershocks’ magnitude p(·|·):

jtot(m) =
̟p(m)

m
+

∫ ∞

m0

̺(m′′)p(m|m′′)jtot(m
′′)dm′′, (4.10)

where

m =

∫ ∞

m0

M1(m)dm.

Now, as already said in the current section, we are supposing that

∫ ∞

m0

p(m′′)̺(m′′)p(m|m′′)dm′′ = ηp(m),

meaning that a generic event’s magnitude, whatever generation it belongs to
and without any other information about the magnitude of the mother event,
is distributed according to the Gutenberg-Richter law. It follows that, in the
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case of our new model, the total magnitude distribution jtot(m) is exactly
the Gutenberg-Richter p(m). Then, equation (4.10) becomes

p(m) =
̟p(m)

m
+

∫ ∞

m0

̺(m′′)p(m|m′′)p(m′′)dm′′ =
̟p(m)

m
+ ηp(m);

we obtain again equation (2.24) of Subsection 2.2.2 and the branching ratio
remains equal to the one derived for the classical ETAS.

4.2 The Laplace functional

In this section we derive the Laplace functional relative to the ETAS model
with correlated magnitudes. More precisely, we will consider the general
Hawkes process with non-independent marks characterized by the conditional
intensity function defined in (4.1), but we will not use the explicit form (4.2).
Furthermore, we will use the fact that the background process is modeled as
a homogeneous Poisson.

The analysis of the Laplace functional we propose in the current section
(and subsection) is interesting, since the particular choice of our model has not
been treated before in the literature to obtain the relative Laplace functional.

Let’s start then by considering the random number N(ω, dt, dm) of all
the events in the process. If N sp(ω, dt, dm) is the total number of sponta-
neous events and N tr(ω, dt, dm) is the total number of the triggered ones, it
obviously holds

N(ω, dt, dm) = N sp(ω, dt, dm) +N tr(ω, dt, dm), (4.11)

where
N sp(ω, dt, dm) =

∑

i

δ(Si,Mi)

and

N tr(ω, dt′, dm′) =
Nsp∑

i=1

N tr
i (ω, dt′, dm′|Si,Mi).

The random number N sp(ω, dt, dm) is a homogeneous Poisson process with
rate ̟p(m)dtdm, while all the variables N tr

i (ω, dt′, dm′|Si = s,Mi = m),
representing the progenies generated by the spontaneous event occurred in
Si = s and with magnitude Mi = m, are independent marked Hawkes pro-
cesses with rate ̺(m)Φ(t′ − s)1(s,∞)(t

′)p(m′|m). It follows that the evolution
of each N tr

i (ω, dt
′, dm′|Si = s,Mi = m) is modeled again as a Hawkes process

in which:
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• the immigrants are the first generation aftershocks of the background
event (Si,Mi) and have intensity ̺(m)Φ(t′ − s)1(s,∞)(t

′)p(m′|m),

• the triggered events are the aftershocks of the background event (Si,Mi)
belonging to the generations from the second one on, with intensity
̺(m′)Φ(t′′ − t′)1(t′,∞)(t

′′)p(m′′|m′).

For the spontaneous events, we will set

S0 := sup{t ≤ 0 : N({t}) = 1},
S−1 < S0 ≤ 0 < S1 < S2 < · · · < Sn < Sn+1 · · ·

Now, setting

N(ϕ) : =

∫

R×[m0,∞)

ϕ(t,m)N(ω, dt, dm)

=

∫

R×[m0,∞)

ϕ(t,m)N sp(ω, dt, dm) +

∫

R×[m0,∞)

ϕ(t,m)N tr(ω, dt, dm),

the Laplace functional of N(ω, dt, dm) is defined, for ϕ(t,m) ≥ 0, as

L(ϕ) := E [exp{−N(ϕ)}] . (4.12)

For simplicity of notation, form now on we will omit the dependence on ω in
the random numbers.

Theorem 9. The Laplace functional of the total number of events N(dt, dm)
in the process completely characterized by the conditional intensity (4.1), is

L(ϕ) = exp

{
−
∫

R

∫ ∞

m0

(
1− e−ϕ(s,m)+log(Ltr(ϕ|s,m))

)
̟ds p(m)dm

}
(4.13)

= exp

{
−
∫

R

∫ ∞

m0

(
1− e−Θ(s,m)

)
̟ds p(m)dm

}
, (4.14)

where

Θ(s,m) =ϕ(s,m) +

∫ ∞

s

∫ ∞

m0

(
1− e−ϕ(t

′,m′)Ltr(ϕ|t′, m′)
)

· ̺(m)Φ(t′ − s)dt′p(m′|m)dm′ (4.15)

and

Ltr(ϕ|s,m) := E

[
exp{−N tr

i (ϕ|Si,Mi)}
∣∣∣Si = s,Mi = m

]

= E

[
exp

{
−
∫
ϕ(t,m)N tr

i (dt, dm|Si,Mi)

}∣∣∣Si = s,Mi = m

]
(4.16)

is the conditional Laplace functional of the number N tr
i (dt, dm|Si,Mi) of trig-

gered events generated by the spontaneous shock in (Si = s,Mi = m).
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Remark 7. Let’s notice that the results obtained in the above theorem doesn’t
take into account the explicit forms of ̺(·), Φ(·), p(·|·) and then are valid in
general.

Proof. Recalling (4.11), we have that

L(ϕ) = E

[
exp

{
−
∫
ϕ(t,m)N(dt, dm)

}]

= E

[
exp

{
−
∫
ϕ(t,m)N sp(dt, dm)−

∫
ϕ(t,m)N tr(dt, dm)

}]

= E

[
exp

{
−
∫
ϕ(t,m)N sp(dt, dm)

}
exp

{
−
∫
ϕ(t,m)N tr(dt, dm)

}]

= E

[
exp

{
−
∫
ϕ(t,m)N sp(dt, dm)

}
E

[
exp

{
−
∫
ϕ(t,m)N tr(dt, dm)

}∣∣∣N sp

]]

= E

[
exp{−N sp(ϕ)}E

[
exp{−N tr(ϕ)}

∣∣∣N sp
]]
. (4.17)

Let’s focus on the internal expected value in the final line of the previous
formula:

E

[
exp{−N tr(ϕ)}

∣∣∣N sp
]
= E

[
exp

{
−
∫
ϕ(t,m)N tr(dt, dm)

}∣∣∣N sp

]

= E

[
exp

{
−

Nsp∑

i=1

N tr
i (ϕ|Si,Mi)

}∣∣∣N sp

]

= E

[
Nsp∏

i=1

exp

{
−
∫
ϕ(t,m)N tr

i (dt, dm|Si,Mi)

}∣∣∣N sp

]

= E

[
Nsp∏

i=1

exp{−N tr
i (ϕ|Si,Mi)}

∣∣∣N sp

]

=

Nsp∏

i=1

E

[
exp{−N tr

i (ϕ|Si,Mi)}
∣∣∣N sp

]

=
Nsp∏

i=1

E

[
exp{−N tr

i (ϕ|Si,Mi)}
∣∣∣Si,Mi

]
, (4.18)

where the last two equalities follow from the independence of the processes
N tr
i (dt, dm|Si,Mi) and conditional on the knowledge of N sp.
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We then have to compute

E

[
exp{−N tr

i (ϕ|Si,Mi)}
∣∣∣Si,Mi

]

= E

[
exp

{
−
∫
ϕ(t,m)N tr

i (dt, dm|Si,Mi)

}∣∣∣Si,Mi

]
.

Actually, for any i ∈ Z, we can define the conditional Laplace functional of
N tr
i (dt, dm|Si,Mi) as in (4.16), i.e.,

(ϕ, s,m) → Ltr(ϕ|s,m) := E

[
exp{−N tr

i (ϕ|Si,Mi)}
∣∣∣Si = s,Mi = m

]

= E

[
exp

{
−
∫
ϕ(t,m)N tr

i (dt, dm|Si,Mi)

}∣∣∣Si = s,Mi = m

]
,

which is independent of i, and then

E

[
exp{−N tr

i (ϕ|Si,Mi)}
∣∣∣Si,Mi

]
= Ltr(ϕ|Si,Mi).

Nor, for every i ∈ Z, we can write

N tr
i (dt, dm|Si,Mi) = N tr,1

i (dt, dm|Si,Mi) +N tr,>1
i (dt, dm|Si,Mi),

where, given the spontaneous event occurred in Si and with magnitude Mi,
N tr,1
i (dt, dm|Si,Mi) represents the marked point process of its first generation

aftershocks and N tr,>1
i (dt, dm|Si,Mi) represents the marked point process of

its progeny belonging to the generations from the second one on. Setting
(T

(i,1)
j ,M

(i,1)
j ) the time and magnitude of the jth daughter, we have that

N tr,1
i (dt, dm|Si,Mi) =

∑

j

δ
(T

(i,1)
j ,M

(i,1)
j )

(dt, dm),

and

N tr,>1
i (dt, dm|Si,Mi) =

Ntr,1
i∑

j=1

N tr,>1
j (dt, dm|T (i,1)

j ,M
(i,1)
j ).

For j = 1, . . . , N tr,1
i , conditional on the knowledge of (Si,Mi), the random

variables {M (i,1)
j }j are independent and identically distributed according

to p(m′|Mi)dm
′ and the ones {T (i,1)

j }j consist of pure temporal point pro-
cesses with intensity ̺(Mi)Φ(t

′−Si)1(Si,∞)(t
′), independent of the magnitudes

M
(i,1)
j . Furthermore, for each j and conditional on the knowledge of (Si,Mi)

and (T
(i,1)
j ,M

(i,1)
j ), the marked point processes {N tr,>1

j (dt, dm|T (i,1)
j ,M

(i,1)
j )}j
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are independent copies of Hawkes processes with the same kind of condi-
tional intensity as for N tr

i (dt, dm|Si,Mi), that is the function ̺(m′)Φ(t′′ −
t′)1(t′,∞)(t

′′)p(m′′|m′). Then,

E

[
exp{−N tr,>1

j

(
ϕ |T (i,1)

j ,M
(i,1)
j

)
}
∣∣∣Si = s0,Mi = m0, T

(i,1)
j = s,M

(i,1)
j = m

]

= E

[
exp{−N tr,>1

j

(
ϕ |T (i,1)

j ,M
(i,1)
j

)
}
∣∣∣T (i,1)
j = s,M

(i,1)
j = m

]

=: Ltr(ϕ|s,m).

This means that we have obtained the same function Ltr(ϕ|s,m) as in (4.16).
Since we have noticed the independence of i, we can also write

E

[
exp{−N tr,>1

j

(
ϕ |T (i,1)

j ,M
(i,1)
j

)
}
∣∣∣Si,Mi, T

(i,1)
j ,M

(i,1)
j

]
= Ltr(ϕ|T (i,1)

j ,M
(i,1)
j ).

Following the same reasoning as for L(ϕ), we have that

Ltr(ϕ|s,m) := E
[
exp{−N tr,1

i (ϕ|Si,Mi)−N tr,>1
i (ϕ |Si,Mi)}|Si = s,Mi = m

]

= E

[
exp{−N tr,1

i (ϕ |Si,Mi)}E
[
exp{−N tr,>1

i (ϕ |Si,Mi)}|N tr,1
i (·, ·|Si,Mi),

Si = s,Mi = m

]∣∣∣Si = s,Mi = m

]

= E


exp{−N tr,1

i (ϕ |Si,Mi)}
Ntr,1

i∏

j=1

Ltr
j (ϕ|T (1,i)

j ,M
(1,i)
j )

∣∣∣Si = s,Mi = m




= E

[
exp

{
−
∫ (

ϕ(t,m)− log
(
Ltr(ϕ|t,m)

))
N tr,1
i (dt, dm)

}∣∣∣Si = s,Mi = m

]

= E

[
exp

{
−N tr,1

i

(
ϕ− logLtr

(
ϕ|Si,Mi

))} ∣∣∣Si = s,Mi = m
]
.

Finally, since the process N tr,1
i = {M1,i

j , T 1,i
j , j ≥ 1}, conditional on Si =

s,Mi = m, is a marked Poisson process on R × [m0,∞) with intensity
λ1,ij (dt′, dm′) = ̺(m)Φ(t′ − s)1(s,∞)(t

′)dt′p(m′|m)dm′, we can use the second
Campbell’s formula (see equation (4.20)).

It then follows that

Ltr(ϕ|s,m) = Ltr,1(ϕ− logLtr(ϕ|·, ·) |s,m),

where

Ltr,1(ψ |s,m) := E
[
exp{−N tr,1

i (ψ)}|Si = s,Mi = m
]

=exp

{
−
∫

R

∫ ∞

m0

(
1− e−ψ(t

′,m′)
)
̺(m)Φ(t′ − s)1(s,∞)(t

′) dt′ p(m′|m)dm′

}
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and
ψ := ϕ− logLtr(ϕ|·, ·).

Explicitly, we can write

− lnLtr(ϕ|s,m) :=

∫

R

∫ ∞

m0

(
1− e−[ϕ(t′,m′)−logLtr(ϕ|t′,m′)]

)

· ̺(m)Φ(t′ − s)1(s,∞)(t
′) dt′ p(m′|m)dm′

=

∫ ∞

s

∫ ∞

m0

(
1− e−ϕ(t

′,m′)
L
tr(ϕ|t′, m′)

)

· ̺(m)Φ(t′ − s) dt′ p(m′|m)dm′. (4.19)

In conclusion, we can use the obtained results for deriving L(ϕ). Recall-
ing (4.17) and (4.18), we get

L(ϕ) = E

[
exp

{
−
∫
ϕ(t,m)N sp(dt, dm)

}Nsp∏

i=1

L
tr(ϕ|Si,Mi)

]

= E

[
exp

{
−
∫
ϕ(t,m)N sp(dt, dm)

}Nsp∏

i=1

exp{log
(
Ltr(ϕ|Si,Mi)

)
]

= E

[
exp

{
−
∫
ϕ(t,m)N sp(dt, dm)

}
exp

{Nsp∑

i=1

log
(
Ltr(ϕ|Si,Mi)

)}
]

= E

[
exp

{
−N sp

(
ϕ− log

(
Ltr(ϕ|·, ·)

))}]

= L
sp
(
ϕ− log

(
L
tr(ϕ|·, ·)

))
,

where
L
sp(ϕ) := E [exp{−N sp(ϕ)}]

and then, again using the second Campbell’s formula (4.20) and equation (4.19),
it holds

− lnL(ϕ) =

∫

R

∫ ∞

m0

(
1− e−ϕ(s,m)+log(Ltr(ϕ|s,m))

)
̟ds p(m)dm

=

∫

R

∫ ∞

m0

(
1− e−Θ(s,m)

)
̟ds p(m)dm,

where

Θ(s,m) =ϕ(s,m) +

∫ ∞

s

∫ ∞

m0

(
1− e−ϕ(t

′,m′)Ltr(ϕ|t′, m′)
)

· ̺(m)Φ(t′ − s)dt′p(m′|m)dm′.
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The thesis of the theorem is then proved.

In the above proof we have mentioned the second Campbell’s formula,
which can be stated as follows.

Theorem 10. Let N be a Poisson process on Rm with mean measure ν(dx).
Let φ be a non-negative measurable function on Rm. Then, the Laplace func-
tional of the process is

L(φ) = exp

{∫ (
e−φ(x) − 1

)
ν(dx)

}
. (4.20)

4.2.1 The probability generating function obtained from

the Laplace functional

As we are going to see in Chapter 6, the probability generating function
(PGF) of the total number of events in the process with magnitude higher
than the completeness threshold mc and occurring in the temporal interval
[0; τ ], is very useful for the analysis of the time delay τ between two successive
shocks. In this subsection, our aim is to obtain an equation for the probability
generating function, starting from the Laplace functional. More precisely, we
will derive the PGF for a general time-magnitude window.

Let’s then start by considering a magnitude threshold m ≥ m0, where we
recall thatm0 is the reference magnitude, that is the minimum magnitude for
an event to trigger its own progeny. We don’t consider events with magnitude
smaller than m0 because, as we are going to see in Chapter 6, they will never
be taken into account in the analysis. Now, for every z such that |z| ≤ 1 and
τ > 0, we define

ϕ(t,m) = ϕ(t,m) := ϕz,τ,m(t,m) = − log(z)1[0,τ ](t)1[m,∞)(m). (4.21)

Recalling (4.12), it then follows that

L(ϕ) = E [exp{−N(ϕz,τ,m)}] = E

[
zN
(
[0,τ ]×[m,∞)

)]
,

where N
(
[0, τ ]× [m,∞)

)
is the total number of events with times and mag-

nitudes in [0, τ ]× [m,∞) and the probability generating function of the total
number of events of the process in [0, τ ]× [m,∞) is derived.

Now, in order to obtain the explicit expression of the above PGF, we have
to substitute (4.21) in (4.14). Firstly, anticipating the notations of Chapter 6,
we define here

Gtr(z; τ |s,m) := E

[
zN

tr
i

(
[0,τ ]×[m,∞)

)∣∣∣Si = s,Mi = m

]
= Ltr(ϕ|s,m), (4.22)
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where N tr
i

(
[0, τ ]× [m,∞)

)
is the number of events in [0, τ ]× [m,∞) triggered

by the spontaneous shock (Si,Mi).

Remark 8. Conditional on (Si = s,Mi = m), if s > τ it holds N tr
i

(
[0, τ ] ×

[m,∞)
)
= 0; then,

Gtr(z; τ |s,m) = 1 for all s > τ. (4.23)

Since

e−ϕ(t,m) = z1[0,τ ]×[m,∞)(t,m) =

{
z if t ∈ [0, τ ], m ∈ [m,∞)

1 otherwise,
(4.24)

it follows that we can write

− lnLtr(ϕ|s,m) = − lnGtr(z; τ |s,m)

=

∫ ∞

s

∫ ∞

m0

(
1− e−ϕ(t

′,m′)Ltr(ϕ|t′, m′)
)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

=

∫ ∞

s

∫ ∞

m0

(
1− z1[0,τ ]×[m,∞)(t

′,m′)Gtr(z; τ |t′, m′)
)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′.

(4.25)

Let’s notice that

1− z1[0,τ ]×[m,∞)(t
′,m′)Gtr(z; τ |t′, m′) = 0

if and only if Gtr(z; τ |t′, m′) = 1 and z1[0,τ ]×[m,∞)(t
′,m′) = 1; then, we can

discard the integral over [τ,∞) × [m,∞) in (4.25). Therefore, taking into
account also (4.23) and (4.24), we have that equation (4.25) becomes:

• if s > τ ,
− lnLtr(ϕ|s,m) = 0;

• if 0 < s ≤ τ ,

− lnLtr(ϕ|s,m)

=

∫ τ

s

∫ ∞

m0

(
1− z1[m,∞)(m

′)Gtr(z; τ |t′, m′)
)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

=

∫ τ

s

∫ ∞

m

(
1− z Gtr(z; τ |t′, m′)

)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

+

∫ τ

s

∫ m

m0

(
1−Gtr(z; τ |t′, m′)

)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′;
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• if s < 0

− lnLtr(ϕ|s,m)

=

∫ 0

s

∫ ∞

m0

(
1−Gtr(z; τ |t′, m′)

)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

+

∫ τ

0

∫ ∞

m0

(
1− z1[m,∞)(m

′)Gtr(z; τ |t′, m′)
)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

=

∫ 0

s

∫ ∞

m0

(
1−Gtr(z; τ |t′, m′)

)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

+

∫ τ

0

∫ ∞

m

(
1− z Gtr(z; τ |t′, m′)

)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′

+

∫ τ

0

∫ m

m0

(
1−Gtr(z; τ |t′, m′)

)
̺(m)Φ(t′ − s) dt′ p(m′|m)dm′.

Exactly in the same way, we can derive the Laplace functional L(ϕ).
Recalling equations (4.13), (4.22) and (4.24), we have that

− lnL(ϕ) =

∫

R

∫ ∞

m0

(
1− e−ϕ(s,m)+log(Ltr(ϕ|s,m))

)
̟ds p(m)dm

=

∫

R

∫ ∞

m0

(
1− z1[0,τ ]×[m,∞)(s,m)Gtr(z; τ |s,m)

)
̟ds p(m)dm.

Then, with the same considerations as for Ltr(ϕ|s,m), we get

• if s > τ ,
− lnL(ϕ) = 0;

• if 0 < s ≤ τ ,

− lnL(ϕ)

=

∫ τ

0

∫ ∞

m0

(
1− z1[m,∞)(m)Gtr(z; τ |s,m)

)
̟ds p(m)dm

=

∫ τ

0

∫ ∞

m

(
1− z Gtr(z; τ |s,m)

)
̟ds p(m)dm

+

∫ τ

0

∫ m

m0

(
1−Gtr(z; τ |s,m)

)
̟ds p(m)dm;
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• if s < 0

− lnL(ϕ)

=

∫ 0

−∞

∫ ∞

m0

(
1− z1[m,∞)(m)Gtr(z; τ |s,m)

)
̟ds p(m)dm

=

∫ 0

−∞

∫ ∞

m

(
1− z Gtr(z; τ |s,m)

)
̟ds p(m)dm

+

∫ 0

−∞

∫ m

m0

(
1−Gtr(z; τ |s,m)

)
̟ds p(m)dm.

We anticipate that the same result will be obtained in Section 6.1 of
Chapter 6, but with a different, less technical and more intuitive method,
based on approximation arguments.

The Laplace functional (and then in particular the probability generating
function) allows to study several aspects of the process, that could be very
relevant in terms of seismic analysis. For example, if we choose

φ(t,m) = − log(z1)1[0,τ ]×[m1,m1)(t,m)− log(z2)1[0,τ ]×[m2,m2)(t,m),

the Laplace functional becomes

E

[
z
N
(
[0,τ ]×[m1,m1)

)
1 z

N
(
[0,τ ]×[m2,m2)

)
2

]

and one could study the relation between the magnitudes belonging to two
different fixed magnitude subintervals of interest.

To our knowledge, in the literature there is only one work concerning a
similar analysis: in their manuscript of 2015, independently of us, Roueff
et al. analyze the Laplace functional of locally stationary Hawkes processes
[Roueff et al., 2015]. Nevertheless, as already explained in Section 4.1, they
present a condition for the non-explosion of their process that is not satisfied
by our magnitude correlated model (4.3).

We conclude saying that the analysis made here could be really of interest
for the study of marked Hawkes processes modeling seismic sequences.

4.3 Magnitude transition probability density

function for triggered events’ magnitude:

an explicit form

In the new ETAS model with correlated magnitudes, completely character-
ized by the conditional intensity (4.3), the law of the magnitudes relative
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to the time-stationary, non-homogeneous Poisson process modeling the after-
shocks component of a seismic sequence is given by the transition probability
p(·|·). We derive here the explicit form of the latter probability, anticipated
in (4.2), in accordance with the experimental results of Chapter 3 (see the
Properties Pr.1 and Pr.2 in Section 3.4).

To begin with, in what follows we will indicate with m′ the triggering
event’s magnitude and with ptr(m

′′) the probability for an event to have
magnitude m′′, given that it is not a spontaneous event.

Lemma 2. Let’s consider a marked branching process describing an earth-
quake sequence, in which the immigrants are modeled by a homogeneous Pois-
son process, the offsprings are modeled by a time-stationary, non-homogeneous
Poisson process and the marks are the events’ magnitudes. Then, the prob-
ability for an event to have magnitude m′′, given the fact that it isn’t an
immigrant, is

ptr(m
′′) :=

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)∫∞

m0
p(m′)̺(m′)dm′

dm′, (4.26)

where p(m′) = βe−β(m
′−m0) is the Gutenberg-Richter law, assumed valid for

the magnitudes of the immigrants, ̺(m′) = κea(m
′−m0) is the productivity law

and m0 is the reference magnitude, that is the minimum magnitude value for
an event to trigger other shocks.

Proof. Let’s consider the following three random variables:

• M ′ is the variable for the triggering events’ magnitude, distributed
according to the Gutenberg-Richter law p(·);

• N counts the number of shocks that a generic mother event triggers; it
is such that P{N = k} =

∫∞

m0
P{N = k|m′}p(m′)dm′;

• N1(J) counts how many triggered shocks among the previous N have
magnitude in the set J .

Since

N1(J)|(M ′ = m′, N = k) ∼ B

(
k, p(J |m′)

)
,

where

p(J |m′) =

∫

J

p(x|m′)dx
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and B(k, p) indicates the law of a binomial random variable with parameters
k and p, we have

P{N1(J) = q} =

∫ ∞

m0

∞∑

k=0

(
k

q

)
p(J |m′)q(1−p(J |m′))k−qP{N = k|m′}p(m′)dm′.

Let’s consider now J = [m′′, m′′ + δ) and ñ i.i.d. realizations of the tern of

variables
{
M ′

i , Ni, N
1
i

(
[m′′, m′′+δ)

)}
i=1,...,ñ

. Let’s focus on the ratio between

the sample means of the random variables N1
i (J) and Ni, for i = 1, . . . , ñ,

i.e.,
1
ñ

∑ñ
i=1N

1
i (J)

1
ñ

∑ñ
i=1Ni

.

By looking at the ratio of the expected values of the i.i.d. random variables
N1
i (J) and Ni, i.e.,

E
[
N1

1 (J)
]

E
[
N1

] =

E

[
E
[
N1

1 (J)|M ′
1, N1

]]

E

[
E
[
N1|M ′

1

]] ,

since

E

[
N1

1

(
[m′′, m′′ + δ)

)
|M ′

1 = m′, N1 = k

]
= k

∫ m′′+δ

m′′

p(x|m′)dx

and

E
[
N1|M ′

1 = m′
]
=

∞∑

k=0

kP{N = k|m′} = ̺(m′),

we can deduce that the probability measure

J → µ(J) :=

E

[
N1

1 (J)

]

E
[
N1

]

has density ptr(m
′′).

Now, we are searching for a transition probability density function p(·|m′),
i.e.,

∫ ∞

m0

p(m′′|m′)dm′′ = 1, (4.27)
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such that it holds

ptr(m
′′) = p(m′′). (4.28)

This latter condition is a focal point of this study: it corresponds to the need
of obtaining the Gutenberg-Richter law when considering the magnitudes of a
generic event, without taking into account the generation to which it belongs
and the relative characteristics of past seismicity. The requirement (4.28)
represents exactly the invariance of the Gutenberg-Richter law, weighted by
̺(m′), with respect to the transition probability density function assumed
valid for triggered events’ magnitude. More precisely, although we assume
the existence of a density of the aftershocks’ magnitude different from the
Gutenberg-Richter law, at the same time the above condition (4.28) justifies
its validity: it tells that, if we average the transition density p(m′′|m′) over
all the possible triggering events’ magnitudes m′, distributed according to
the Gutenberg-Richter law, and taking into account the productivity model,
we obtain again the Gutenberg-Richter law with the same parameter. This
shows that first generation events’ magnitude, without any other information
about the magnitude of the mother events, follows the Gutenberg-Richter law
as assumed for the background shocks’ magnitudes. In addition, this prop-
erty will be obviously true for events’ magnitude of any generation. Hence,
iterating the reasoning, a generic event’s magnitude, whatever generation it
belongs to, will be distributed according to the Gutenberg-Richter law.

Let’s focus then on the specific problem of finding a suitable density
p(m′′|m′) such that (4.28) holds. Firstly, recalling that the branching ratio η,
also defined as the average number of first generation triggered shocks N tr,1

i

per triggering event i, is independent of i and is given by

η = E[N tr,1
1 ] =

∫ ∞

m0

p(m′)̺(m′)dm′ =
βκ

β − a
,

it follows that the above condition (4.28) is equivalent to

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′ = ηp(m′′). (4.29)

Furthermore, as already anticipated, the law p(m′′|m′) must have a qualita-
tive behavior in accordance with the results of the previous Chapter 3 (see
the Properties Pr.1 and Pr.2 in Section 3.4). More precisely, the function
we are looking for should be such that, when m′ increases, the probability
of having events with high magnitudes must increase and, at the same time,
the one of having events with low magnitudes must decrease obviously. In
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addition, for high values of the mother events’ magnitudes the function may
also have a relative maximum.

In view of these considerations, the choice we adopt for p(m′′|m′) is

p(m′′|m′) = p(m′′)
[
1 + f(m′, m′′)

]
, (4.30)

with
f(m′, m′′) = −q(m′) + s(m′)

(
1− e−β(m

′′−m0)
)
. (4.31)

Remark 9. The choice of the parameter β is arbitrary and we could take any
parameter γ > 0 instead of β, obtaining similar results.

The functions q(m′) and s(m′) in (4.31) have to be found opportunely, by
imposing the following conditions:

1)
∫∞

m0
p(m′′|m′)dm′′ = 1,

2) p(m′′|m′) ≥ 0,

3) p(m′′|m′) is such that condition (4.29) is verified,

4) p(m′′|m′) has the qualitative behavior previously introduced.

Lemma 3. Let’s consider the function p(m′′|m′) defined in (4.30), with
f(m′, m′′) as in (4.31). Then, the function p(m′′|m′) is a non-negative prob-
ability density such that (4.29) holds, if and only if

• s(m′) = 2q(m′),

• |q(m′)| ≤ 1

• and ∫ ∞

m0

p(m′)̺(m′)q(m′)dm′ = 0. (4.32)

Proof. The transition probability function p(m′′|m′) is a density if and only
if
∫ ∞

m0

p(m′′)
[
1 + f(m′, m′′)

]
dm′′ = 1 ⇔

∫ ∞

m0

p(m′′)f(m′, m′′)dm′′ = 0.

By substituting the expression (4.31) chosen for f(m′, m′′), we obtain
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0 =

∫ ∞

m0

p(m′′)
[
−q(m′) + s(m′)− s(m′)e−β(m

′′−m0)
]
dm′′

= −q(m′) + s(m′)− s(m′)

∫ ∞

m0

βe−2β(m′′−m0)dm′′

= −q(m′) + s(m′)− s(m′)

2

= −q(m′) +
s(m′)

2
,

from which the first result in the lemma is proved:

s(m′) = 2q(m′).

If we substitute this latter result in equation (4.31), we get

f(m′, m′′) = q(m′)− 2q(m′)e−β(m
′′−m0)

= q(m′)
(
1− 2e−β(m

′′−m0)
)
.

Now, recalling equation (4.30), in order to have also p(m′′|m′) ≥ 0, it should
hold f(m′, m′′) ≥ −1, that is

q(m′)
(
2e−β(m

′′−m0) − 1
)
≤ 1.

Since (2e−β(m
′′−m0)−1) takes all the values in (−1, 1] as m′′ varies in [m0,∞),

the previous condition is equivalent to

|q(m′)| ≤ 1.

Finally, let’s impose the condition (4.29):

∫ ∞

m0

p(m′)̺(m′)p(m′′)
[
1 + f(m′, m′′)

]
dm′ = ηp(m′′)

m∫ ∞

m0

p(m′)̺(m′)f(m′, m′′)dm′ = 0.

For

f(m′, m′′) = q(m′)
(
1− 2e−β(m

′′−m0)
)
,
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we get

0 =

∫ ∞

m0

p(m′)̺(m′)q(m′)
(
1− 2e−β(m

′′−m0)
)
dm′

=
(
1− 2e−β(m

′′−m0)
) ∫ ∞

m0

p(m′)̺(m′)q(m′)dm′.

A sufficient condition is then given by
∫ ∞

m0

p(m′)̺(m′)q(m′)dm′ = 0.

We have now to focus on the choice of the function q(m′), such that
conditions (4.32) and |q(m′)| ≤ 1 hold. Furthermore, this function must
be such that p(m′′|m′) has the qualitative behavior in accordance with the
results of Chapter 3, as previously explained. Then, let’s begin with some
qualitative comments.

Since the function q(m′) should be such that the law p(m′′|m′) has the
qualitative behavior introduced in Properties Pr.1 and Pr.2 of Section 3.4,
we assume q(m′) to be continuous and increasing. Furthermore, we impose
that q(m′) is negative for m′ < m, for a certain m at which it becomes
zero, and positive elsewhere (see Fig. 4.1). Let’s notice that, when m′ = m,
it holds f(m′, m′′) = 0 and the transition probability density becomes the
Gutenberg-Richter law. From the fact that

f(m′, m′′) = q(m′)
(
1− 2e−β(m

′′−m0)
)
, (4.33)

as we have seen in the previous proof, one can observe that, since the function

1− 2e−β(m
′′−m0)

is always increasing, the increasing or decreasing of f(m′, ·) will be deter-
mined by the sign of q(m′). In particular, for m′ > m where q(m′) > 0, the
function f(m′, m′′) increases in m′′. For smaller (higher) values of

m′′ =
1

β
ln 2 +m0,

where 1 − 2e−β(m
′′−m0) = 0, the function f(m′, m′′) will have negative (pos-

itive) sign. Hence, the transition probability density p(m′′|m′) = p(m′′)[1 +
f(m′, m′′)] is below p(m′′) for magnitude values smaller thanm′′ = 1

β
ln 2+m0

and above it for higher magnitude values. Viceversa, for m′ < m where



4.3 Magnitude transition probability density function for triggered events’

magnitude: an explicit form 108

q(m′) < 0, the function f(m′, m′′) is decreasing in m′′. With analogous
reasonings we come to the conclusion that p(m′′|m′) is above the Gutenberg-
Richter law for values smaller than m′′ = 1

β
ln 2+m0, below for higher values.

This property reflects the difference between the latter law and our transition
probability density function: the Gutenberg-Richter law assigns a magnitude
to each event independently of its past history, instead with the law p(·|m′)
we have that stronger events generates stronger aftershocks with a higher
probability.

Remark 10. For triggered events’ magnitude values such that m′′ > 1
β
ln 2 +

m0, the factor 1 − 2e−β(m
′′−m0) is positive. Hence, fixed m′′ larger than

the just-mentioned value, since q(m′) is increasing, the function f(m′, m′′)
is increasing with respect to the first argument, too. This means that when
triggering event’s magnitude increases, so does the transition probability den-
sity function at a point m′′ > 1

β
ln 2 +m0. On the contrary, the value of the

transition probability density decreases at a value m′′ < 1
β
ln 2 +m0. Then,

there is qualitative agreement with the results obtained in Chapter 3.

To sum up, the function q(m′) must be:

• less than one in absolute value,

• increasing,

• negative for magnitudes less than a certain value m, positive otherwise,

• such that condition (4.32) is verified.

The choice we make for q(m′) is the following:

q(m′) = −C1 + C2

(
1− e−(β−a)(m′−m0)

)
, (4.34)

with β > a and where the constants C1 and C2 are obtained imposing the
above-cited conditions for q(·).
Remark 11. Again, the choice of the parameter β − a is arbitrary: we could
take any parameter ξ > 0 such that β − a > ξ instead of β − a and obtain
similar results.
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Figure 4.1: Plot of the function q(x) = C1(1 − 2 exp{−0.4648(x − 1.8)}). The value at
which the function becomes zero is m∗ = 3.2913.

Now, in order to find the constants C1 and C2, let’s consider at first equa-
tion (4.32). Recalling the expressions of p(m′) and ̺(m′), we get

0 = βκ

∫ ∞

m0

e−(β−a)(m′−m0)

[
−C1 + C2

(
1− e−(β−a)(m′−m0)

)]
dm′

= βκ

[
(−C1 + C2)

∫ ∞

m0

e−(β−a)(m′−m0)dm′ − C2

∫ ∞

m0

e−2(β−a)(m′−m0)dm′

]

= βκ

[−C1 + C2

β − a
− C2

2(β − a)

]

=
βκ

β − a

(
−C1 +

C2

2

)
,

for β > a, which is one of the conditions for the non-explosion of the process.
It then follows

C2 = 2C1.

Hence

q(m′) = C1 − 2C1e
−(β−a)(m′−m0) = C1

(
1− 2e−(β−a)(m′−m0)

)
, (4.35)

with β > a. In order to have also |q(m′)| ≤ 1, since |1− 2e−(β−a)(m′−m0)| ≤ 1,
it is enough to choose 0 ≤ C1 ≤ 1. Using that C1 ≥ 0 and β > a, one can
easily verify that the function q(·) is increasing (Fig. 4.1). Furthermore, if
C1 6= 0, the value for which q(m′) = 0 is

m′ = m =
1

β − a
ln 2 +m0.
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Figure 4.2: Functions f(m′, x) = 0.8(1−2 exp{−0.4648(m′−1.8)})(1−2 exp{−1.9648(x−
1.8)}) and f(x,m′′) = 0.8(1−2 exp{−0.4648(x−1.8)})(1−2 exp{−1.9648(m′′−
1.8)}), respectively in the left and right plots. In the left plot the value that
varies is the triggering events’ magnitude. On the other hand, in the right one
the varying value is the triggered events’ magnitude.

Since q(m′) increases, it will be positive when m′ is larger than this value
and negative elsewhere.

At this point, by substituting the expression (4.35) of q(m′) in (4.33), we
get

f(m′, m′′) = C1

(
1− 2e−(β−a)(m′−m0)

)(
1− 2e−β(m

′′−m0)
)
. (4.36)

In the left plot of Fig. 4.2 we can see the function f(m′, ·) obtained with
the values of parameters such that we get ln 2

β−a
+ m0 = 3.2913. This is the

value at which q(m′) becomes zero. These values of parameters correspond
to a real situation because they were estimated based on a real data set.
As expected, f(m′, m′′) decreases (increases) with respect to m′′ when m′

is smaller (higher) than the just-mentioned value. Furthermore, it holds
f(m′, m′′) = 0 for m′′ = ln 2

β
+m0 = 2.1527. In the right plot of Fig. 4.2 one

can observe that, for any fixed value of m′′ > 2.1527, the function f(m′, m′′)
is increasing with respect to the first variable. As expected, different values
of C1 don’t change the monotony of the function f(m′, m′′). This parameter
only controls the amplitude of the concavity, as one can see in Fig. 4.3.
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Figure 4.3: Function f(m′, x) = 0.8(1− 2 exp{−0.4648(m′− 1.8)})(1− 2 exp{−1.9648(x−
1.8)}) respectively with m′ = 2.7 and m′ = 7 in the left and right plots, for
different values of the parameter C1.

In conclusion, by substituting equations (2.2) and (4.36) in (4.30), we
obtain our proposal for the transition probability density function relative
to triggered event’s magnitude, with respect to the magnitude m′ of its own
triggering event:

p(m′′|m′) = βe−β(m
′′−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)(
1− 2e−β(m

′′−m0)
)]
,

(4.37)

for 0 ≤ C1 ≤ 1. Then, the above transition probability density function is the
product between the Gutenberg-Richter law, computed in the magnitude of
the triggered event considered, and another function of both the magnitude
of this triggered event and the one of its mother, separated.

Let’s study now the behavior of p(m′′|m′) by looking at its derivative.
Recalling equations (4.30) and (4.33), we have

dp(m′′|m′)

dm′′
=
dp(m′′)

dm′′
[1 + f(m′, m′′)] + p(m′′)

df(m′, m′′)

dm′′

= −βp(m′′)[1 + f(m′, m′′)] + p(m′′)
df(m′, m′′)

dm′′

= βp(m′′)
[
−1 − f(m′, m′′) + 2q(m′)e−β(m

′′−m0)
]

= βp(m′′)
[
−1 − q(m′) + 2q(m′)e−β(m

′′−m0) + 2q(m′)e−β(m
′′−m0)

]

= βp(m′′)
[
−1 − q(m′) + 4q(m′)e−β(m

′′−m0)
]
.

It follows that if q(m′) ≤ 0, that is m′ ≤ 1
β−a

ln 2+m0, since |q(m′)| < 1, the

density function p(m′′|m′) is always decreasing in m′′. If instead q(m′) > 0,
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that is m′ > 1
β−a

ln 2 + m0, the above-cited density increases in m′′ till a
certain maximum, reached in m∗ such that

4q(m′)e−β(m∗−m0) = 1 + q(m′) ⇔ m∗ =
1

β
ln

4q(m′)

1 + q(m′)
+m0,

and for values larger thanm∗ it decreases, in agreement with the experimental
results obtained in the previous chapter. This trend is shown in Fig. 4.4, in
which we can also verify the behavior described in Remark 10. Finally, in
Fig. 4.5 we can see how the transition probability density function varies
with the parameter C1.
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Figure 4.4: Plot of the probability density function relative to triggered events’ magnitude
when triggering events’ magnitude varies and C1 = 0.8.
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Figure 4.5: Transition probability density function p(x|m′) respectively with m′ = 2.7 and
m′ = 7 in the left and right plots, for different values of the parameter C1.



Chapter 5

The analysis of the simulated

catalogs

In the latter chapter we have proposed an explicit form of the transition
probability density function p(m′′|m′) for the triggered events’ magnitudes,
with respect to the mother events’ ones. In order to demonstrate that our
hypothesis of magnitude correlation remains true even when we consider
synthetic sets of data, not affected by any kind of “real effect” that may
influence the analysis, we analyze some pure simulated catalogs, obtained
with two different approaches. For brevity, we will show here the results
concerning only two of the simulated catalogs. We want to specify that one
of these two datasets is simulated by using the just proposed explicit form
for p(m′′|m′), as explained below. The simulation is solely temporal, in fact
we recall that this study is based only on the temporal-magnitude aspect.

5.1 The catalogs simulation

The initial step for this analysis consists of simulation. We proceed in the
following two different ways.

1. In the case of the first simulated catalog, we use the temporal version
of the FORTRAN program [etasim.f ], written by Ogata [Ogata, 1981,
1998, 2006]. It is the well-known algorithm for the simulation of seismic
catalogs presented in Chapter 2. We just modify it in the fact that the
number of events to be simulated is now random between the two input
starting and ending times, instead of being fixed at the beginning with-
out specifying the temporal interval for the simulation. We choose here
the option of simulating the magnitudes with the Gutenberg-Richter
law, instead of taking them from a given catalog. Then, we expect no

113
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evidence of our hypothesis of magnitude correlation for the synthetic
catalogs obtained, when performing the two types of analysis above
described. The input parameters for the simulation in this catalog are

β = b ln 10 = 1 ln 10 = 2.3,

(̟,κ, c, a, p) = (0.55, 0.022, 0.014, 1.7, 1.09). (5.1)

2. The second catalog is instead simulated with a program very similar
to the Ogata’s one: we have adapted it to our hypothesis of magni-
tude correlation. More precisely, we simulate only the magnitudes of
background events with the Gutenberg-Richter law. Instead, the mag-
nitudes of the triggered events are simulated with the new transition
probability density function (4.37) obtained in Chapter 4. The algo-
rithm is described in the next subsection. The input parameters for
the simulation of this catalog are

β = b ln 10 = 1 ln 10 = 2.3, C1 = 0.9,

(̟, κ, c, a, p) = (0.55, 0.022, 0.014, 0.8, 1.09). (5.2)

In both the two simulated catalogs we consider only one threshold magnitude
value, that is 1.5. Furthermore, we set a null learning period: since the
parameters are given in input and the data are simulated, the influence of
external (precursory) events affecting the seismicity in the target interval is
not considered crucial for the analysis as for the real catalogs. Since the
simulations aren’t spatial, there are no conditions on the maximum depth to
be considered.

The time-correlations are shown in Fig. 5.1, while Fig. 5.2 contains the
magnitudes versus times plots for the above two simulated catalogs.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shift

C
or

re
la

tio
n

 

 
Experimental model
Power law

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of shift

C
or

re
la

tio
n

 

 
Experimental model
Power law

Figure 5.1: Time-correlations of the two simulated catalogs. The left plot contains the
correlation of the catalog simulated with the classical Ogata’s model, while
the right one concerns the catalog simulated with our new method, based on
the hypothesis of correlation between the magnitudes of triggered events and
the ones of the corresponding mother events.
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Figure 5.2: Times versus magnitudes of the events in the simulated catalogs. The plot at
the top contains the results concerning the catalog simulated with the classical
Ogata’s model, while the one at the bottom contains the results relative to the
catalog simulated with our new method, based on the hypothesis of correlation
between the magnitudes of triggered events and the ones of the corresponding
mother events.
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5.1.1 A new algorithm for simulation

The new Algorithm for simulation is a modified version of the Ogata’s FOR-
TRAN program [etasim.f ]. It requires an input file which contains six lines
(see Tab. 5.1).

Table 5.1: Input file for the new algorithm of simulation.

ic = 0 bval
tstart tend
mc m0

̟ κ c a p
C1

idnum

The first one contains a label ic and the b-value to be given in input.
In the Ogata’s program, the label ic can be set either zero, indicating that
we want to simulate the magnitudes, or one, indicating that we want to
take the latter from a specified catalog and we want to simulate only the
times. In the case of our model, the choice ic = 1 makes no sense, since it
is fundamental for us to simulate the magnitudes imposing the hypothesis
of magnitude dependence; then, for our simulated program one must set
ic = 0. The second line of the input file has the initial and ending times
of the simulation interval; in the third line there are the completeness and
the reference magnitudes; in the fourth and fifth lines we have to write the
parameters (̟, κ, c, a, p) and C1, respectively, to be given in input; finally,
the last line is the “seed” of a uniform pseudo-random numbers generator in
[0, 1].

Once given this input text file, the algorithm generates a random number
of events between the starting and the ending times specified. Let’s set

ξj(t) =
κ

(t− timej + c)p
ea(magj−mag0)

and

C(magi) = C1

[
1− 2e−(bval ln 10−a)(magi−m0)

]
, (5.3)

where timei and magi are the time and magnitude of the ith event, respec-
tively.

Now we are ready for the algorithm. It is structured as follows.
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Step 1 Set t = 0, xint = ̟, i = 1.

Step 2 Set uint = xint.

Step 3 Generate a uniform random number U1 ∈ (0, 1). Put e = − log(U1)/uint
and t = t+ e. If t > tend, then go to Step 11. Otherwise, if i > 1 go to
Step 4, else set time1 = t and indexm1 = 0 and go to Step 9.

Step 4 Set xint = ̟. Compute xint = xint +
∑i−1

j=1 ξj(t).

Step 5 Set prob = xint/uint and generate a uniform random number U2 ∈
(0, 1). If U2 > prob go to Step 2, otherwise set timei = t.

Step 6 Set im = 0, xmint = ̟ and logic = 0. Generate a uniform random
number U3 ∈ (0, 1).

Step 7 If U3 ≥ xmint/xint, then set im = im + 1 and compute xmint =
xmint + ξim(timei). Otherwise set indexmi = im and logic = 1.

Step 8 If logic = 0 go to Step 7, else continue.

Step 9 Generate a uniform random number U4 ∈ (0, 1). If im = 0 then
magi = − log(U4)/bval +m0, else

magi =
1

bval ln 10

[
ln(2|C(magi)|)− ln

(∣∣∣1 + C(magi)

−
√
(1 + C(magi))2 − 4U4C(magi)

∣∣∣
)]

+m0.

For the derivation of this formula see Lemma 4 below.

Step 10 Set uint = xint + ξi(timei), i = i+ 1 and go to Step 3.

Step 11 Set tt = timei + e.

Let’s notice that the steps from 1 to 5 corresponds to the simulation of times.
This part doesn’t change from the Ogata’s program. The different part is the
consecutive one, in which at first we assign a mother event to the ith shock
considered. Then, we generate randomly the magnitudes in the following
way. If the mother event is of background type, we use the Gutenberg-Richter
law. Otherwise, we use the cumulative distribution function corresponding to
p(m′′|m′), in which appears the magnitude of the mother event found. For the
FORTRAN code, see the section Algorithm 3 in the file Algorithms.pdf.
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Lemma 4. Let U be a random variable uniform in (0, 1) and set

C(m′) := C1[1− 2e−(β−a)(m′−m0)].

Then, the random variable

M :=
1

β

[
ln |2C(m′)| − ln

∣∣∣1 + C(m′)−
√

(1 + C(m′))2 − 4UC(m′)
∣∣∣
]
+m0

(5.4)
has probability density function pM(m′′) given by (4.2), i.e., we have pM(m′′) =
p(m′′|m′), where

pM(m′′) = p(m′′|m′)

= βe−β(m
′′−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)(
1− 2e−β(m

′′−m0)
)]
.

Proof. Let’s compute the integral
∫ m
m0
p(m′′|m′)dm′′:

F̃m′(m) =

∫ m

m0

βe−β(m
′′−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)

·
(
1− 2e−β(m

′′−m0)
)]
dm′′

=

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)] ∫ m

m0

βe−β(m
′′−m0)dm′′

− C1

(
1− 2e−(β−a)(m′−m0)

) ∫ m

m0

2βe−2β(m′′−m0)dm′′

=(1 + C(m′))
[
1− e−β(m−m0)

]
− C(m′)

[
1− e−2β(m−m0)

]
. (5.5)

We notice that C(m′) < C1 ≤ 1. Now, the random variables F̃−1
m′ (1−U),

where F̃−1
m′ (·) is the inverse function of F̃m′(·), has the desired distribution,

since the random variable 1 − U is uniform in (0, 1). Then, in order to
compute it, we use the expression of F̃m′ obtained in the last row of (5.5):
setting x(m) = e−β(m

′−m0), and C = C(m′), for each U ∈ (0, 1), we need to
find an m such that

Cx(m)2 − (1 + C)x(m) + 1 = 1− u SSE Cx(m)2 − (1 + C)x(m) = u

Using the uniform random variable 1 − U in place of U , we find the
solutions in x = x(m):
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x1 =
1 + C −

√
(1 + C)2 − 4UC

2C
, x2 =

1 + C +
√

(1 + C)2 − 4UC

2C
.

We can easily deduce that:

• 0 < x1 < 1 for all C < 1;

• if 0 < C < 1 then x2 > 1 and if C < 0 then x2 < 0, too.

Since 0 < e−β(m−m0) < 1, we choose the first solution. Then, we get

e−β(m−m0) =
1 + C −

√
(1 + C)2 − 4UC

2C
m

m =
1

β

[
ln |2C| − ln

∣∣∣1 + C −
√

(1 + C)2 − 4UC
∣∣∣
]
+m0.

Recalling that β = b ln 10, we have thus obtained equation (5.4).

5.2 Results

We analyze here the results obtained for the two simulated catalogs. Fig. 5.3
contains the estimated densities of triggered events’ magnitude, obtained
by the first and the second types of analysis (plots at the top and at the
bottom, respectively), relative to the catalog simulated with the classical
Ogata’s model. We recall that, in this case, the magnitudes are simulated
randomly (i.e., independently of each others) with the Gutenberg-Richter
law. According to this law, triggered events’ magnitudes aren’t correlated
with their respective mothers’ magnitudes. This is reflected in the absence
of variations of the densities in the four magnitude subintervals considered,
both in the plots at the top and at the bottom (first and second types of
analysis, respectively). The results are very similar to the ones concerning
the Italian catalog.
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Figure 5.3: Kernel density estimation of triggered events’ magnitude in the catalog sim-
ulated with the classical Ogata’s model, concerning the first and the second
types of analysis (plots at the top and at the bottom, respectively). The con-
sidered intervals in which triggering events’ magnitudes fall are the following.
First analysis, plot at the top: [1.5, 1.6], [1.8, 2], [3.1, 3.6] and [4.13, 5.13]; sec-
ond analysis, plot at the bottom: [1.5, 1.65], [2, 2.4], [3.3, 3.8] and [4.23, 5.13]
(in both cases, the curves are red, black, blue and magenta, respectively). The
δ∗ value is equal to seven days. The optimal bandwidth value for the Nor-
mal kernel density estimation is, respectively for the four intervals considered,
equal to: 0.14, 0.09, 0.08, 0.11 in the plot at the top and 0.12, 0.11, 0.1, 0.1 in
the one at the bottom.
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The parameters, estimated by setting the precursory at about 10%, are

(̟, κ, c, a, p) = (0.62, 0.02, 0.013, 1.72, 1.11). (5.6)

The above parameters can be compared with the ones in (5.1), which are
used as input for the simulation.

Performing the residual analysis, for which it is considered the residual
process obtained with the random time-change (2.26) in order to get a sta-
tionary Poisson process with rate one (see Subsection 2.3.3), we obtain good
results: the probabilities for the Kolmogorov-Smirnov and the Runs tests are
bigger that 5% (see Tab. 5.2 and Fig. 5.4).

Table 5.2: Results of the tests obtained with the residual analysis, concerning the catalog
simulated with the classical Ogata’s model. The parameters considered are the
ones obtained for a precursory period set at about 10%.

Number of events expected by the model 3121.46
Number of events without the learning period 3144
Runs test 6.03E-001
Kolmogorov-Smirnov test 6.74E-001
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Figure 5.4: Plots concerning the catalog simulated with the classical Ogata’s model. In
the left plot the histogram of the interevent times of the transformed values
is shown, together with the standard exponential law. The fit is good. In the
right plot one can see how much the cumulative distribution function of the
transformed times varies with respect to the bisector. There is a very good
agreement.
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A result that instead strongly supports our hypothesis of magnitude cor-
relation is the one obtained in Fig. 5.5, where the estimated densities behaves
exactly the same as the for the real data of catalog two, three and four in
Chapter 3. This strongly supports our hypothesis.
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Figure 5.5: Kernel density estimation of triggered events’ magnitude in the catalog sim-
ulated with our conditional model, concerning the first and the second types
of analysis (plots at the top and at the bottom, respectively). The considered
intervals in which triggering events’ magnitudes fall are the following. First
analysis, plot at the top: [1.5, 1.55], [1.7, 1.8], [2.2, 2.85] and [3, 4.92]; second
analysis, plot at the bottom: [1.5, 1.7], [1.8, 2.1], [2.2, 2.9] and [3.2, 4.92] (in
both cases, the curves are red, black, blue and magenta, respectively). The δ∗

value is equal to one day. The optimal bandwidth value for the Normal kernel
density estimation is, respectively for the four intervals considered, equal to:
0.05, 0.34, 0.07, 0.18 in the plot at the top and 0.08, 0.08, 0.26, 0.28 in the
one at the bottom.
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In the above Fig. 5.5 we show the estimated densities of triggered events’
magnitude for the catalog simulated with our new model. That is, the cat-
alog in which the magnitudes are computed with the transition probability
density function (4.37). Once simulated this catalog, we estimate again the
parameters with the classical Ogata’s FORTRAN program [etas.f ], fixing
again the learning period at about 10%. We get

(̟, κ, c, a, p) = (0.58, 0.022, 0.017, 0.83, 1.12). (5.7)

The parameters in (5.7) can be compared with the one used as input for the
simulation, i.e., the ones in (5.2).

The results of the residual analysis for the stationary Poisson residual pro-
cess (with rate one), obtained by considering the random time-change (2.26),
are shown in Tab. 5.3 and Fig. 5.6. These results highlight that the set
of parameters used is good to fit the phenomenon. In fact, both for the
Kolmogorov-Smirnov and the Runs tests we obtain a probability bigger that
5%. The number of expected events is also very close to the one of the events
in the target period.

Table 5.3: Results of the tests obtained with the residual analysis, concerning the cata-
log simulated with our new model. The parameters considered are the ones
obtained for a precursory period set at about 10%.

Number of events expected by the model 2390.14
Number of events without the learning period 2387
Runs test 1.32E-001
Kolmogorov-Smirnov test 8.7E-001
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Figure 5.6: Plots concerning the catalog simulated with our new model. In the left plot the
histogram of the interevent times of the transformed values is shown, together
with the standard exponential law. The fit is good. In the right plot one can
see how much the cumulative distribution function of the transformed times
varies with respect to the bisector. There is really a very good agreement.
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Concluding, Fig. 5.7 in the next page contains the lots of the averages of
triggered events’ magnitudes versus triggering events’ magnitudes concerning
the simulated catalogs, for the first and the second types of analysis (plots
at the top and at the bottom, respectively). Red is used for the catalog
simulated with the Ogata’s model, while black for the one simulated with
our new model. As for the real cases, for each of the two catalogs considered,
the four triggered magnitude averages are normalized by the averages of
these four mean values. Furthermore, we plot again the results of the linear
regression analysis and the error bars. We recall that the lengths of the
latter are given by the normalized mean standard errors. Regarding both
the plot at the top and the one at the bottom, one can see that there is
almost no percentage variation of the triggered events’ magnitude in the
catalog simulated with the Ogata’s model. Instead, a clear increasing trend
is evident for the other simulated catalog considered.

By looking at the correlation coefficients R and p-values pval in Tab. 5.4
below, we can deduce that the results obtained are again statistically signifi-
cant.

Table 5.4: List of correlation coefficients R and p-values p. Catalog 1 and 2 are simulated
with the Ogata’s model and the with our new model, respectively.

First analysis Second analysis

R ≃ p ≃ R ≃ p ≃
Catalog 1 0.61 0.38 -0.93 0.07
Catalog 2 0.99 0.002 0.98 0.01
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Figure 5.7: Averages of the normalized triggered events’ magnitudes. The results are ob-
tained with the first and the second types of analysis (plots at the top and
at the bottom, respectively) and are relative to the catalog simulated with
the Ogata’s model (red) and the one simulated with our new model (black).
Regarding the plot at the top, the percentage means for the four subintervals
considered for the above two catalogs are the following. Catalog simulated with
Ogata’s model: 0.9856, 0.9932, 1.0194, 1.0018 (corresponding to the triggering
events’ magnitude 1.5506, 1.8931, 3.3302, 4.6113, respectively); catalog simu-
lated with our new model: 0.8256, 0.8808, 1.0508, 1.2428 (corresponding to
the triggering events’ magnitude 1.5268, 1.7467, 2.4491, 3.4779, respectively).
Regarding the plot at the bottom, the normalized means for the four subinter-
vals considered for the two catalogs are the following. Catalog simulated with
Ogata’s model: 1.0052, 1.0029, 1.0011, 0.9907 (corresponding to the triggering
events’ magnitude 1.5742, 2.163, 3.5112, 4.6786, respectively); catalog simu-
lated with our new model: 0.9349, 0.9827, 1.0067, 1.0757 (corresponding to
the triggering events’ magnitude 1.595, 1.9324, 2.4614, 3.6254, respectively).
The continuous lines correspond to the results of the linear regression and the
semi-amplitude of the error bars are the normalized mean standard errors.
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5.3 Conclusions

The results obtained with the two types of analysis for the two synthetic cat-
alogs, agree with those obtained with the same kind of analysis performed
for the real datasets. More precisely, the catalog simulated by the classical
Ogata’s model gives the same result of the one concerning the whole Italian
catalog. In the latter catalog, the results give a good evidence of magni-
tude independence, as was expected due to pairs of events temporally close,
but spatially very separated. Instead, in the case of the simulated catalog
just-mentioned, the variation is absent since it is obtained using the stan-
dard Gutenberg-Richter law, which models the magnitudes independently
and without conditioning with respect to past seismicity. On the other hand,
the results of the statistical analysis concerning the catalog simulated with
our new magnitude model show a clear evidence of the magnitude correlation,
qualitatively similar to those of the other real catalogs. In fact, the proba-
bility of triggered events with “high” magnitude increases with the mother
event’s magnitude. Regarding the triggered events’ magnitude means, we
can see again an agreement between synthetic and real data. More precisely,
the means have an increasing trend only in the case of the catalog simu-
lated with our new model. Furthermore, recalling that the explicit form of
the probability density function p(m′′|m′) obtained in Chapter 4 has been
used to simulate the magnitudes of the second synthetic catalog above de-
scribed, we deduce that this particular choice for p(m′′|m′) is good to model
the magnitudes of the triggered events in a catalog, when considering past
seismicity.



Chapter 6

Mathematical characterization

of the new ETAS model with

correlated magnitudes

In this chapter we focus on the mathematical characterization of our new
version of the ETAS model: the Epidemic Type Aftershock Sequence model
with correlated magnitudes, described in Chapter 4. As already explained in
the latter, in this model we assume that: the background events’ magnitudes
are distributed according to the Gutenberg-Richter law, that is an exponen-
tial distribution, and the magnitudes of the triggered events are modeled by
a probability density function that depends on the mother events’ magni-
tudes and with respect to which the Gutenberg-Richter law itself remains
invariant. Thanks to this property, the well-known validity of the latter law
is still respected when not taking into account past seismicity.

The theoretical analysis of the model allows to study the behavior of
the interevent times, that are the times between consecutive shocks. More
precisely, we will consider the variable associated with a single interevent time.
In fact, due to the characteristics of the branching process involved and the
homogeneity of the background component, one can deduce that interevent
times have all the same distribution. The motivation for the study of this
random variable lies in the fact that it is of interest for results concerning
seismic hazard. Indeed, in the recent literature, much attention has been
paid on the time delay between successive events [Bak et al., 2002; Corral,
2003, 2004; Davidsen and Goltz, 2004; Molchan, 2005].

In order to study the distribution of the interevent time, let’s start saying
that in what follows we will use the terms “observable events” to indicate
the shocks with a magnitude higher than the completeness threshold mc. We
recall in fact that, for each seismic catalog, one can consider a completeness
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magnitude such that, only the events with magnitude above this threshold,
are surely recorded in the catalog itself. As already explained, the complete-
ness magnitude is the minimum value after which there’s agreement with the
exponential Gutenberg-Richter law: since it is expected that the magnitude
process is well modeled by the latter law, the deviations from the exponential
decay are interpreted like missing measurements.

We will use here the notation N(τ) for the total number of observable
events in [0, τ ], zero included. Let’s notice that the same notation N(t) has
been used in Chapter 1, but to indicate the number of all the events in
(0, t]. In order not to introduce one more notation, we decided to use the
same symbol here, but we stress that in this chapter the events counted in
N(τ) are only the observable ones and zero is included in the time interval
considered. Furthermore, with the notations of Section 4.2, it holds

N(τ) = N([0, τ ]× [mc,∞)).

Now, to the aim of finding the interevent time’s distribution, let’s consider
the probability generating function (PGF) of the above random number N(τ),
that is the quantity

GN(τ)(z) = E[zN(τ)] =: Ω(z; τ). (6.1)

The value of this function in zero gives the probability P{τ} of having zero
observable events in [0, τ ]. The interevent time density is then obtained
through the Palm theory (see equation (1.13) in Subsection 1.5.1, Chapter 1)
by a double time derivative of P{τ} and scaling [Cox and Isham, 2000].

In what follows, we will assume that λ̄ is the average rate of the total
observable events and ̟ is the average rate corresponding to the events of
the spontaneous component. Since we recall that the branching ratio is the
average number of first generation aftershocks for a given triggering event
and that it is equal for both the classical ETAS and the new version of the
ETAS we are studying (see the last part of Section 4.1), it holds

λ̄ = λ̄(mc) = ̟

∫ ∞

mc

p(m)dm

∞∑

k=0

ηk =
̟

1− η

∫ ∞

mc

p(m)dm. (6.2)

Remark 12. The above expression follows because, repeating similar compu-
tations as in Remark 6, switching the integrals where necessary and recalling
that K2p(m) =

∫∞

m0
p(m′)̺(m′)p(m|m′)dm′ = ηp(m), it holds
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E

[
N tr,1
i (R× [mc,∞))|Si = s

]

=

∫ ∞

m0

dmp(m)E
[
N tr,1
i (R× [mc,∞))

∣∣∣Si = s,Mi = m
]

=

∫ ∞

m0

dmp(m)

∫ ∞

s

dt1

∫ ∞

m0

dm1̺(m)p(m1|m)1[mc,∞)(m1)

=

∫ ∞

m0

dmp(m)

∫ ∞

mc

dm1̺(m)p(m1|m)

=

∫ ∞

mc

dm1K2p(m1)

= η

∫ ∞

mc

dm1p(m1),

E

[
N tr,2
i (R× [mc,∞))|Si = s

]

=

∫ ∞

m0

dmp(m)E
[
N tr,2
i (R× [mc,∞))

∣∣∣Si = s,Mi = m
]

=

∫ ∞

m0

dmp(m)

∫ ∞

s

dt1

∫ ∞

m0

dm1

∫ ∞

t1

dt2

∫ ∞

m0

Φ(t1 − s)Φ(t2 − t1)̺(m)

· p(m1|m)̺(m1)p(m2|m1)1[mc,∞)(m2)dm2

=

∫ ∞

m0

dmp(m)

∫ ∞

m0

dm1̺(m)p(m1|m)

∫ ∞

mc

̺(m1)p(m2|m1)dm2

=

∫ ∞

mc

dm2

∫ ∞

m0

dm1K2p(m1)̺(m1)p(m2|m1)

=

∫ ∞

mc

dm2K
(2)
2 p(m2)

=η2
∫ ∞

mc

dm2p(m2)

and then

E

[
N tr,2
i (R× [mc,∞))|Si = s

]
= ηn

∫ ∞

mc

dm2p(m2).

Since the average rate of the total number of observable events is the

̟

∫ ∞

mc

dmp(m) +
∞∑

n=1

E

[
N tr,n
i (R× [mc,∞))|Si = s

]
,

the expression (6.2) is obtained.
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It is important to notice that the total average rate will be used only for
the final step concerning the derivation of the interevent time density; instead,
the average rate of the spontaneous events will be used straight away for the
derivation of the above probability generating function.

Finally, we will consider here the parametrization (2.5) in Chapter 1 of
the Omori-Utsu law for the rate of first generation triggered events from a
given earthquake, with p = θ + 1. More precisely, we will consider

Φ(t) =
θcθ

(c+ t)1+θ
, t > 0, (6.3)

with θ > 0. Let’s recall that this law can be interpreted as the probability
density function of random times at which first generation shocks indepen-
dently occur, when the mother event has occurred in t = 0.

6.1 Probability generating function for earth-

quake sequences

In this section, we want to derive the probability generating function Ω(·; τ)
of the total number N(τ) of observable events in [0; τ ].

As explained in Chapter 4, this PGF could be obtained by using the
Laplace functional (see Subsection 4.2.1). Nevertheless, we will follow here
a different approach, based on the properties of the probability generating
function. In fact, in the case of seismic modeling we are studying, the PGF
Ω(·; τ) can be obtained also without considering the Laplace functional and
following a less technical and more intuitive method, based on approximation
arguments. Obviously, the final results are the same as that obtained with
the Laplace functional. In this way, we will also have illustrated two different
approaches for the same goal.

Let’s then proceed with the derivation of the probability generating func-
tion Ω(·; τ). In what follows, we will indicate with G(·; υ|s,m′) the PGF of
the number of events with magnitude larger than mc, triggered in a generic
interval [0, υ] by a triggering event with magnitude m′ occurred in a time −s,
where s ≥ 0. Recalling the notation in Section 4.2.1 of Chapter 4, it holds

G(·; υ|s,m′) = Gtr(·; υ| − s,m′), for s ≥ 0.

This new notation will allow us to compute integrals always in positive time
intervals. We anticipate also that, as we are going to see, in what follows
the argument s in G(·; υ|s,m′) will be either positive, and then the time of
occurrence of the triggering shock will be −s, or zero.
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Theorem 11. Let’s consider the seismic process described by the ETAS
model with correlated magnitudes, completely characterized by the conditional
intensity (4.3). The probability generating function Ω(·; τ) of the total num-
ber N(τ) of observable events belonging to [0; τ ] is

Ω(z; τ) = e−̟L(z;τ), (6.4)

where

L(z; τ) =

∫ ∞

0

[
1−

∫ ∞

m0

G(z; τ |t,m′)p(m′)dm′

]
dt

+

∫ τ

0

[
1−

∫ mc

m0

G(z; t|0, m′)p(m′)dm′

− z

∫ ∞

mc

G(z; t|0, m′)p(m′)dm′

]
dt, (6.5)

and furthermore

− lnG(z; τ |t,m′)

̺(m′)
=b(t + τ)−

∫ ∞

m0

(Φ(·)⊗G(z; τ |·, m′′))(t)p(m′′|m′)dm′′

−
∫ mc

m0

(Φ(t+ ·)⊗G(z; ·|0, m′′))(τ)p(m′′|m′)dm′′

− z

∫ ∞

mc

(Φ(t + ·)⊗G(z; ·|0, m′′))(τ)p(m′′|m′)dm′′.

(6.6)

In the previous equation, ⊗ is the convolution operator and

b(t) =

∫ t

0

Φ(x)dx = 1− cθ

(c+ t)θ
. (6.7)

Before giving the proof, let’s say that the above theorem allows us to
derive the probability of having zero observable events in [0, τ ], that is our
main aim. In fact, the just-mentioned probability is obtained by substituting
equation (6.6) in (6.5) opportunely and recalling that

P{τ} = Ω(0; τ) = e−̟L(0;τ).
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In particular, it will be useful the function

− lnG(0; τ |t,m′)

̺(m′)
=b(t + τ)−

∫ ∞

m0

(Φ(·)⊗G(0; τ |·, m′′))(t)p(m′′|m′)dm′′

−
∫ mc

m0

(Φ(t+ ·)⊗G(0; ·|0, m′′))(τ)p(m′′|m′)dm′′.

(6.8)

In the next sections, we will work separately on two cases. Firstly on the
particular case mc = m0, then on the general one mc ≥ m0.

Let’s then conclude the current section by proving Theorem 11.

Proof of Theorem 11. We are interested in N(τ), that is the number of all
the observable events in [0, τ ] (spontaneous and triggered). Let’s consider
at first the observable triggered events, whose total number in [0, τ ] is indi-
cated with N1(τ). We can associate to each of them the spontaneous shock
from which the branching process reaches that event. Let’s then consider all
the spontaneous events. The triggered events can be partitioned according
to their associated spontaneous triggering shocks. More precisely, the total
number N1(τ) of observable aftershocks in [0, τ ] will be the sum of the ob-
servable shocks triggered by each spontaneous event. Let’s consider now the
following non-overlapping small subintervals of (−∞, τ ]: for all k ∈ Z, k ≤ n,

Ik = [xk−1, xk), where x0 = 0, xk − xk−1 = ∆x, ∀k < n

In = [xn−1, xn], where xn = τ.

It obviously holds that Ik ⊆ (−∞, 0) if k ≤ 0, instead Ik ⊆ [0, τ ] if k =
1, . . . , n. The probability generating function of the number N1(τ) can be
obtained as the limit, with respect to ∆x, of the corresponding probability
generating function relative to the above subintervals.

Recall now both the property of the PGF expressed in equation (A.2),
Appendix A.1, and the fact that there’s independence between the numbers of
aftershocks triggered by spontaneous events, the latter belonging to disjoint
subintervals. We can therefore deduce that, setting

N tr
k (τ) = #{triggered events in [0, τ ] with mother in Ik},

N sp
k = #{spontaneous events in Ik},

and, if sk ∈ Ik,

N tr
k,sk

(τ) = #{triggered events in [0, τ ] with mother occurred in sk},
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the PGF of the total number of observable events triggered in [0, τ ], i.e.,

N1(τ) =
∑

k≤0

N tr
k (τ) +

n∑

k=1

N tr
k (τ),

is the limit of the product between the respective probability generating
functions relative to different subintervals, i.e.,

GN1(τ)(z) = lim
∆x→0

∏

k≤0

GNtr
k
(τ)(z)

n∏

k=1

GNtr
k
(τ)(z),

Let’s focus now on GNtr
k
(τ)(z). Thanks to the properties of the probability

generating function, for ∆x tending to zero, this PGF is obtained by compos-
ing the PGF of the number N sp

k of background events occurred in the generic
subinterval considered Ik, with the PGF relative to the number N tr

k,sk
(τ) of

events in [0, τ ] triggered by just one spontaneous event, that is for example
sk, (see Proposition 6, Appendix A.1), i.e., as ∆x → 0,

GNtr
k
(τ)(z) ≈ GNsp

k
[GNtr

k,sk
(τ)(z)].

Finally, in order to obtain the probability generating function of the total
number N(τ) of observable events in [0, τ ], we have to take into account the
spontaneous events, too. Obviously, the background events to be considered
in N(τ) are only those which fall in subintervals Ik for k = 1, . . . , n, that are
Ik ⊆ [0, τ ]. In this case, for each of these events we will count all the shocks
triggered by it, plus the event itself. This latter is equivalent to multiply by
z the probability generating function of the number of events triggered in
[0, τ ] by a single spontaneous event of magnitude m′, itself belonging to [0, τ ].
More precisely, since this event has to be observable, the multiplication by z
will be done only if its magnitude is larger than the threshold mc. Therefore,
instead of the multiplication by z, we will multiply by

f(z,m′, mc) = 1[0,mc)(m
′) + z1[mc,+∞)(m

′), (6.9)

where we recall that 1A(x) is the indicator function having value one when
x ∈ A, zero otherwise.

Before proceeding, it is useful to notice that, for s ∈ [0, τ ], it holds

E

[
zNi([0,τ ]×[mc,∞))

∣∣∣Si = s,Mi = m
]
= E

[
zNi([s,τ ]×[mc,∞))

∣∣∣Si = s,Mi = m
]

= E

[
zNi([0,τ−s]×[mc,∞))

∣∣∣Si = 0,Mi = m
]

= G(z; τ − s|0, m),
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where Ni([0, τ ]× [mc,∞)) is the number of events in [0, τ ], with magnitude
in [mc,∞), triggered by the ith event occurred in Si = s and with magnitude
Mi = m. Then, when we will have to integrate the PGF

E

[
zNi([0,τ ]×[mc,∞))

∣∣∣Si = s,Mi = m
]

in [0, τ ], we will consider the integral

∫ τ

0

G(z; τ − s|0, m)ds =

∫ τ

0

G(z; t|0, m)dt,

obtained by the change of variable t = τ − s.
Let’s now compute explicitly the probability generating function Ω(·; τ) of

N(τ). As anticipated before in this section, we have to consider the number
of events with magnitude larger than mc, triggered in a generic interval [0, υ]
by a background event with magnitude m′ occurred in a time −s, where
s ≥ 0. We have already specified that G(·; υ|s,m′) is the PGF of such a
number. Recalling that the random variable associated with the number of
spontaneous events in a generic subinterval of length ∆x follows a Poisson dis-
tribution with parameter ̟∆x, we have that, for fixed −sk ∈ Ik ⊆ (−∞, 0)
and wk ∈ Ik ⊆ [0, τ ],

Ω(z; τ) = lim
∆x→0

∏

k≤0

exp

{
−̟∆x[1−G(z; τ |sk, m′)]

}

·
n∏

k=1

exp

{
−̟∆x[1 − f(z,m′, mc)G(z; τ − wk|0, m′)]

}

=exp

{
−̟

[(∫ 0

−∞

[1−G(z; τ | − t′, m′)]dt′

+

∫ τ

0

[1− f(z,m′, mc)G(z; τ − t′|0, m′)]dt′
)]}

=exp

{
−̟

[(∫ ∞

0

[1−G(z; τ |t,m′)]dt

+

∫ τ

0

[1− f(z,m′, mc)G(z; t|0, m′)]dt

)]}
. (6.10)

The formulae obtained till here are relative to observable events with mag-
nitude larger than mc, triggered by a spontaneous shock with a fixed but
generic magnitude equal to m′. In order to consider all the possible values
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for the spontaneous event’s magnitude, we have to integrate (6.10) also with
respect to m′. More precisely, this integral must be computed between m0

and infinity, in fact we recall that m0 is the minimum value for an event to
be able to trigger its own aftershocks. Furthermore, since the integration
concerns the spontaneous events’ magnitude, the density to be considered is
the Gutenberg-Richter law (equation (2.2)). Then, with abuse of notation
because of the further integral with respect tom′ not yet considered in (6.10),
we can rewrite the probability generating function Ω(z; τ) of the total number
of observable events in [0, τ ], as

Ω(z; τ) = e−̟L(z;τ),

where we have set

L(z; τ) =

∫ ∞

m0

dm′p(m′)

(∫ ∞

0

[1−G(z; τ |t,m′)]dt

+

∫ τ

0

[1− f(z,m′, mc)G(z; t|0, m′)]dt

)
. (6.11)

Let’s substitute now the above-cited function f(z,m′, mc) (equation (6.9))
in the last expression of (6.11). Recalling that the reference magnitude m0

is usually set less than or equal to the completeness one mc [Sornette and
Werner, 2005], in fact one can reduce to this situation not considering the
data relative to observable events with magnitude less than m0, we obtain

L(z; τ) =

∫ ∞

m0

dm′p(m′)

(∫ ∞

0

[1−G(z; τ |t,m′)]dt

+

∫ τ

0

[
1− [1[0,mc)(m

′) + z1[mc,+∞)(m
′)]G(z; t|0, m′)

]
dt

)

=

∫ ∞

0

[
1−

∫ ∞

m0

G(z; τ |t,m′)p(m′)dm′

]
dt

+

∫ τ

0

[
1−

∫ mc

m0

G(z; t|0, m′)p(m′)dm′

− z

∫ ∞

mc

G(z; t|0, m′)p(m′)dm′

]
dt.

At this point, we want to compute explicitly the above probability gen-
erating function Ω(·; τ). To do that, let’s find an expression for G(z; τ |t,m′)
that is, as said before, the PGF of the number of observable events in [0, τ ]
triggered by a fixed spontaneous shock with magnitude m′ occurred in −t,
where t ≥ 0. Let’s consider now any observable event triggered in [0, τ ] be-
longing to any generation from the second one on and let N2(τ) denote their
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total number. As before, we can associate it with a first generation triggered
shock occurred between the spontaneous one and the considered event itself.
The number N2(τ) will be the sum of the observable events triggered by each
first generation triggered shock. Thanks to the auto-similarity of the process,
the above-mentioned probability generating function G(z; ·|·, ·) is the same
for both a background event and a triggered one. Therefore, as previously
done, we obtain that, for fixed −sk ∈ Ik ⊆ [−t, 0) and wk ∈ Ik ⊆ [0, τ ],

G(z; τ |t,m′) = lim
∆x→0

∏

k≤0:Ik⊂[−t,0)

exp

{
Φ(−sk + t)∆x̺(m′)[G(z; τ |sk, m′′)− 1]

}

·
n∏

k=1

exp

{
Φ(wk + t)∆x̺(m′)[f(z,m′′, mc)G(z; τ − wk|0, m′′)− 1]

}
, (6.12)

where m′′ is the magnitude of the first generation triggered shock. Recall
that Φ(·) is the Omori-Utsu law and ̺(·) is the productivity one (respec-
tively equations (6.3) and (2.1)). Again, we have to average over the first
generation triggered shock’s magnitude. To this end, we integrate equa-
tion (6.12) with respect to m′′. Since any first generation triggered event
considered is also a triggering one, the just-mentioned integral must be com-
puted again between the reference magnitude m0 and infinity. Furthermore,
we have to consider now the transition probability density function of the
first generation triggered shock’s magnitude m′′ with respect to the back-
ground event’s magnitude m′. More precisely, we have to consider the model
P{m′′|m′} = p(m′′|m′) for the magnitude m′′, for which we have obtained
an explicit form in Chapter 4 (see (4.37)). Then, recalling equation (6.9)
for f(z,m′′, mc), again with abuse of notation because of the further inte-
gration with respect to first generation aftershock’s magnitude m′′, we can
rewrite (6.12) as:

− lnG(z; τ |t,m′)

̺(m′)
=

∫ ∞

m0

dm′′p(m′′|m′)

[∫ 0

−t

Φ(t+ x)[1 −G(z; τ | − x,m′′)]dx

+

∫ τ

0

Φ(t + x)[1− f(z,m′′, mc)G(z; τ − x|0, m′′)]dx

]

=

∫ ∞

m0

dm′′p(m′′|m′)

[∫ 0

−t

Φ(t + x)dx−
∫ 0

−t

Φ(t + x)G(z; τ | − x,m′′)dx

+

∫ τ

0

Φ(t + x)dx− f(z,m′′, mc)

∫ τ

0

Φ(t + x)G(z; τ − x|0, m′′)dx

]
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=

∫ ∞

m0

dm′′p(m′′|m′)

[∫ t

0

Φ(x)dx−
∫ t

0

Φ(t− x)G(z; τ |x,m′′)dx

+

∫ t+τ

t

Φ(x)dx− f(z,m′′, mc)

∫ τ

0

Φ(t + τ − x)G(z; x|0, m′′)dx

]

=

∫ ∞

m0

dm′′p(m′′|m′)

[
b(t + τ)− (Φ(·)⊗G(z; τ |·, m′′))(t)

− f(z,m′′, mc)(Φ(t+ ·)⊗G(z; ·|0, m′′))(τ)

]

=b(t + τ)−
∫ ∞

m0

(Φ(·)⊗G(z; τ |·, m′′))(t)p(m′′|m′)dm′′

−
∫ mc

m0

(Φ(t + ·)⊗G(z; ·|0, m′′))(τ)p(m′′|m′)dm′′

− z

∫ ∞

mc

(Φ(t+ ·)⊗G(z; ·|0, m′′))(τ)p(m′′|m′)dm′′.

6.2 The case mc = m0

In this section, we want to focus on the particular case mc = m0. We
will focus on this case because one can find a closed-form expression for the
probability P{τ} of having zero observable events in [0, τ ], for small values of
τ . Then, by using the Palm theory [Cox and Isham, 2000] (see equation (1.13)
in Subsection 1.5.1, Chapter 1), we derive a closed-form expression for the
density of the interevent time, again for small values of τ . The relevance of
the case mc = m0 can be understood by the following reasoning. On one side,
the reference magnitude m0 is connected to the intrinsic physical features of
soil and remains almost constant in a sufficiently long time frame. On the
other side, the completeness magnitude is related to the number of seismic
stations and their sensitivity. Then, the latter magnitude varies with seismic
stations density. Hoping for a gradual improvement of technology, both in
instrumental sensitivity and in the number of seismic stations available, we
can certainly suppose to reduce mc till it will be just equal to m0.

Setting mc = m0 in the last expression of formula (6.5), which gives the
function L(z; τ) at the exponent of Ω(z; τ), and recalling (6.4), we find that
the probability generating function Ω(z; τ), relative to the total number of
observable events in [0, τ ], is
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Ω(z; τ) = exp

{
−̟

[∫ ∞

0

[
1−

∫ ∞

m0

G(z; τ |t,m′)p(m′)dm′
]
dt

+

∫ τ

0

[
1− z

∫ ∞

m0

G(z; t|0, m′)p(m′)dm′
]
dt

]}
.

As already explained, in order to find the probability P{τ} of having zero
observable events in [0, τ ], we need to compute the above function in zero.

Theorem 12. If mc = m0 and τ is small, the probability of having zero
observable events in [0, τ ] is

P{τ} = Ω(0; τ) = e−̟L(0;τ) ≈ exp

{
−̟τ − η̟

1− η
A(τ)

}
, (6.13)

where

η =
βκ

β − a

is the branching ratio (equation (2.18)) and

A(τ) =

∫ τ

0

a(x)dx =

[
cθ(τ + c)1−θ − c

]

1− θ
, (6.14)

with

a(t) = 1− b(t) =

∫ ∞

t

Φ(x)dx =
cθ

(c+ t)θ
. (6.15)

Proof. If mc = m0 and z = 0, the function L(z; τ) in (6.5) becomes

L(0; τ) =

∫ ∞

0

[
1−

∫ ∞

m0

G(0; τ |t,m′)p(m′)dm′
]
dt+

∫ τ

0

dt (6.16)

=

∫ ∞

0

[
1−

∫ ∞

m0

G(0; τ |t,m′)p(m′)dm′
]
dt+ τ

=

∫ ∞

0

Nmc=m0(t, τ)dt + τ, (6.17)

where we have set

Nmc=m0(t, τ) := 1−
∫ ∞

m0

G(0; τ |t,m′)p(m′)dm′. (6.18)
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Let’s notice that the argument in the second temporal integral of (6.16) is
actually the constant 1. In fact, setting z = 0 and mc = m0 in the last
temporal integral of (6.5), we get

1−
∫ ∞

m0

G(0; t|0, m′)p(m′)dm′ +

∫ ∞

m0

G(0; t|0, m′)p(m′)dm′ = 1.

Then, let’s compute in z = 0 the probability generating function G(z; τ |t,m′),
relative to the number of observable events in [0; τ ] triggered by a fixed back-
ground shock with magnitude m′ occurred in −t, where t ≥ 0. Setting
mc = m0 in equation (6.8) and considering the approximation of the expo-
nential function for small τ , we obtain

G(0; τ |t,m′) = exp

{
−̺(m′)

[
b(t+ τ)

−
∫ ∞

m0

(Φ(·)⊗G(0; τ |·, m′′))(t)p(m′′|m′)dm′′

]}

≈1− ̺(m′)

[
b(t+ τ)

−
∫ ∞

m0

(Φ(·)⊗G(0; τ |·, m′′))(t)p(m′′|m′)dm′′

]
.

This approximation in Taylor series around the point zero makes sense since
the exponential argument is zero when τ = 0. In fact, G(0; 0|·, m′′) = 1. If
we substitute the previous formula in (6.18), we get for small τ that

Nmc=m0(t, τ) ≈1−
∫ ∞

m0

dm′p(m′)

{
1− ̺(m′)

[
b(t + τ)

−
∫ ∞

m0

(Φ(·)⊗G(0; τ |·, m′′))(t)p(m′′|m′)dm′′
]}

=1− 1 + b(t + τ)

∫ ∞

m0

p(m′)̺(m′)dm′ −
∫ ∞

m0

dm′p(m′)̺(m′)

·
∫ ∞

m0

(Φ(·)⊗G(0; τ |·, m′′))(t)p(m′′|m′)dm′′

=ηb(t+ τ)−
∫ ∞

m0

dm′p(m′)̺(m′)

∫ ∞

m0

dm′′p(m′′|m′)

·
∫ t

0

Φ(x)G(0; τ |t− x,m′′)dx
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switching the order of integration

=ηb(t+ τ)−
∫ t

0

dxΦ(x)

∫ ∞

m0

dm′′G(0; τ |t− x,m′′)

·
∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′

=ηb(t+ τ)−
∫ t

0

dxΦ(x)

∫ ∞

m0

G(0; τ |t− x,m′′)IA(m
′′)dm′′,

(6.19)

with

IA(m
′′) :=

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′

and

η =

∫ ∞

m0

p(m′)̺(m′)dm′ =
βκ

β − a
.

Let’s notice that the previous formula (6.19) contains the model P{m′′|m′} =
p(m′′|m′) for the magnitudes of the aftershocks. Indeed, this is the model
we hypothesize for the magnitudes of triggered events; an explicit form for
it has been proposed in Chapter 4. As we are going to explain in a moment,
this explicit form is not used in this section.

Let’s notice also that the above integral IA(m
′′) is nothing but K2p(m),

where K2 is the operator defined in the proof of Lemma 1.
We state now that the just-mentioned transition probability density func-

tion has to verify the following condition, representing a fundamental point
for this analysis:

∫∞

m0
p(m′)̺(m′)p(m′′|m′)dm′

∫∞

m0
p(m′)̺(m′)dm′

= p(m′′) ⇔ IA(m
′′) = ηp(m′′). (6.20)

It is exactly the condition (4.28) of Chapter 4, written in terms of the integral
IA(m

′′). In fact, we can recognize that the first member of the left equation
in (6.20) is the probability of an event to have magnitude m′′, given that it
has been triggered (see (4.26)). As already explained, equation (6.20) corre-
sponds to the need of obtaining the Gutenberg-Richter law when averaging
over all the triggering event’s magnitudes.

Let’s notice that the explicit form of p(m′′|m′) satisfying (6.20), found
in Chapter 4, is not used in this section. This is due to the fact that in
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the above computations the function p(m′′|m′) appears only in the integral
IA(m

′′), which reduces to ηp(m′′), as just explained. The explicit form will
be instead used in the next section.

The condition (6.20) is crucial for the aim of finding the probability P{τ}
of having zero observable events in [0, τ ]. In fact, recalling equation (6.19),
we can rewrite the approximation of Nmc=m0(t, τ) for small τ as

Nmc=m0(t, τ) ≈ηb(t+ τ)− η

∫ t

0

dxΦ(x)

∫ ∞

m0

G(0; τ |t− x,m′′)p(m′′)dm′′

=η
[
b(t + τ)− b(t)

]
+ η

[
b(t)

−
∫ t

0

dxΦ(x)

∫ ∞

m0

G(0; τ |t− x,m′′)p(m′′)dm′′

]

=η
[
b(t + τ)− b(t)

]
+ η

∫ t

0

dxΦ(x)

[
1

−
∫ ∞

m0

G(0; τ |t− x,m′′)p(m′′)dm′′

]

=η
[
b(t + τ)− b(t)

]
+ η

∫ t

0

Φ(x)Nmc=m0(t− x, τ)dx, (6.21)

where in the last equality we have used formula (6.18).
In order to obtain the expression to substitute in (6.17), let’s compute the

temporal integral of both the first and the last members of equation (6.21).
We get

∫ ∞

0

Nmc=m0(t, τ)dt ≈η
∫ ∞

0

[
b(t + τ)− b(t)

]
dt

+ η

∫ ∞

0

∫ t

0

Φ(t− x)Nmc=m0(x, τ)dxdt

switch the last two temporal integrals

=η

∫ ∞

0

[
b(t + τ)− b(t)

]
dt

+ η

∫ ∞

0

∫ ∞

x

Φ(t− x)Nmc=m0(x, τ)dtdx

=η

∫ ∞

0

[
b(t + τ)− b(t)

]
dt+ η

∫ ∞

0

Nmc=m0(x, τ)dx,

(6.22)
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where the last equality is obtained because
∫ ∞

x

Φ(t− x)dt =

∫ ∞

0

Φ(y)dy = 1.

From (6.22), we then have

∫ ∞

0

Nmc=m0(t, τ)dt ≈
η

1− η

∫ ∞

0

[
b(t+ τ)− b(t)

]
dt

=
η

1− η

∫ ∞

0

[
1− cθ

(c + t+ τ)θ
− 1 +

cθ

(c+ t)θ

]
dt

=
ηcθ

1− η

∫ ∞

0

[
1

(c+ t)θ
− 1

(c+ t+ τ)θ

]
dt

=
ηcθ

(1− η)(1− θ)

[
(c+ τ)1−θ − c1−θ

]
, (6.23)

where the second equality follows from the explicit form of the function b(t)
(see (6.7)) and the last equality is obtained because the limit of the function
(c+ t)1−θ − (c+ t+ τ)1−θ is, for t tending to infinity, always zero. In fact, if
θ > 1 it is obvious; if instead 1 > θ > 0, applying De L’Hôpital’s rule, we
have

lim
t→∞

[
(c+ t)1−θ − (c+ t + τ)1−θ

]
= lim

t→∞

1−
(
1 + τ

c+t

)1−θ

(c+ t)θ−1
= 0.

At this point, we can substitute equation (6.23) in (6.17):

L(0; τ) ≈ η

(1− η)(1− θ)

[
cθ(c+ τ)1−θ − c

]
+ τ.

Then, introducing the function A(τ) as in (6.14), we get exactly the thesis
of this theorem, i.e., for small τ ,

P{τ} = e−̟L(0;τ) ≈ exp

{
−̟τ − η̟

1− η
A(τ)

}
.

Remark 13. The probability of having zero observable events in [0, τ ], given
in (6.13), coincides with formula (32), page 6, in [Saichev and Sornette, 2007].
In fact, they derive the above formula for the case of a simplified model which
takes into account the impact of the Omori-Utsu law on recurrence times, i.e.,
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considering a model in which the ratio of the number of observable sponta-
neous events over the total number of observable events is approximately
independent of the threshold mc. This correspond to the situation in which
every triggering event is also observable, that is mc = m0, as exactly holds
in the case we are considering in the current section.

Now, as already specified, using the Palm theory (see equation (1.13) in
Subsection 1.5.1, Chapter 1) we obtain the density Finter(τ) relative to the
interevent time in the following way:

Finter(τ) =
1

λ̄

d2P{τ}
dτ 2

. (6.24)

Heuristically, we can suppose that, if

L̂(0; τ) =
η

(1− η)(1− θ)

[
cθ(c+ τ)1−θ − c

]
+ τ,

that is the approximation for L(0; τ) obtained in the previous Theorem, it
holds also

dkL(0; τ)

dτk
≈ dkL̂(0; τ)

dτk
,

for k = 1, 2. Then, we can compute then the second derivative of the above-
mentioned probability P{τ} as

dP{τ}
dτ

≈ P{τ}
[
−̟ − η̟

1− η
a(τ)

]
,

in fact
d

dτ
A(τ) =

d

dτ

∫ τ

0

a(x)dx = a(τ). (6.25)

Hence, since
d

dτ
a(τ) = − d

dτ
b(τ) = −Φ(τ),

it holds

d2P{τ}
dτ 2

≈P{τ}
[(
̟ +

η̟

1− η
a(τ)

)2
+

η̟

1− η
Φ(τ)

]

=exp

{
−̟τ − η̟

1− η
A(τ)

}[(
̟ +

η̟

1− η
a(τ)

)2
+

η̟

1− η
Φ(τ)

]
.
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In conclusion,

Finter(τ) ≈
1

λ̄
exp

{
−̟τ − η̟

1− η
A(τ)

}[(
̟ +

η̟

1− η
a(τ)

)2
+

η̟

1− η
Φ(τ)

]
.

(6.26)

We can see that this density doesn’t depend on the model we proposed for
the transition probability of triggered events’ magnitude. In fact, as we have
seen before, this transition probability “vanishes” when applying condition

IA(m
′′) = ηp(m′′).

Therefore, in the case mc = m0, in which all the events are observable, our
hypothesis of dependence doesn’t play any role. This could be justified by the
fact that, if mc = m0, all the observable events may also generate aftershocks
and there aren’t external or background sources that could influence the pro-
cess with their progeny: there is no distinction between the events that may
or may not produce their own offsprings. The proportion of triggering/trig-
gered events, on which depends the hypothesis of magnitude correlation, is
exactly the one obtained by considering only the events in the process. In-
stead, as we are going to see in the next section, if mc > m0, the number
of observable events in the process changes and consequently it changes also
the proportion of triggering/triggered shocks.

6.3 The general case mc ≥ m0

In order to find the interevent time density for the general case mc ≥ m0,
let’s define at first the function

Ψ(h(·), m̃) :=

∫ ∞

m̃

p(m′)e−̺(m
′)h(m′)dm′, (6.27)

where m̃ ≥ 0 and h(·) is a continuous function depending on some variables;
it is here considered as a function of only one of them, corresponding to the
triggering event’s magnitude m′.

Let’s focus now on the function L(z; τ), given in equation (6.5), at the
exponent of the PGF Ω(z; τ), relative to the total number of observable events
in [0, τ ] (see also (6.4)). Recalling the expression (6.6) for G(z; τ |t,m′), that
is the PGF of the number of observable events in [0, τ ] triggered by a fixed
spontaneous shock with magnitude m′ occurred in −t, where t ≥ 0, we can
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rewrite the integral
∫∞

m0
G(z; τ |t,m′)p(m′)dm′ in the right member of (6.5),

as ∫ ∞

m0

G(z; τ |t,m′)p(m′)dm′ = Ψ[y(z; t, τ,m0, m
′), m0], (6.28)

where

y(z; t, τ,m0, m
′) :=b(t + τ)−

∫ t

0

dxΦ(x)

∫ ∞

m0

G(z; τ |t− x,m′′)p(m′′|m′)dm′′

−
∫ τ

0

dxΦ(t+ τ − x)

∫ mc

m0

G(z; x|0, m′′)p(m′′|m′)dm′′

− z

∫ τ

0

dxΦ(t+ τ − x)

∫ ∞

mc

G(z; x|0, m′′)p(m′′|m′)dm′′

(6.29)

=b(t + τ)− (Φ(·)⊗D(z; ·, τ,m0, m
′))(t)

−
(
Φ(t+ ·)⊗

[
D+(z; ·, m0, m

′)−D+(z; ·, mc, m
′)
])

(τ)

− z(Φ(t + ·)⊗D+(z; ·, mc, m
′))(τ). (6.30)

In the latter equality we have set

D(z; t, τ,m0, m) :=

∫ ∞

m0

G(z; τ |t,m′)p(m′|m)dm′ (6.31)

and

D+(z; t, m̃,m) :=

∫ ∞

m̃

G(z; t|0, m′)p(m′|m)dm′. (6.32)

Let’s notice that in our case we have m̃ = m0, mc.
Similarly, the other two integrals with respect to the magnitude in the

right member of (6.5), i.e.,

∫ mc

m0

G(z; t|0, m′)p(m′)dm′ and

∫ ∞

mc

G(z; t|0, m′)p(m′)dm′,

can be expressed in terms of

∫ ∞

m0

G(z; t|0, m′)p(m′)dm′ = Ψ[s(z; t,m0, m
′), m0],

∫ ∞

mc

G(z; t|0, m′)p(m′)dm′ = Ψ[s(z; t,m0, m
′), mc],

(6.33)
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where

s(z; t,m0, m
′) :=b(t)−

∫ t

0

dxΦ(t− x)

∫ mc

m0

G(z; x|0, m′′)p(m′′|m′)dm′′

− z

∫ t

0

dxΦ(t− x)

∫ ∞

mc

G(z; x|0, m′′)p(m′′|m′)dm′′ (6.34)

=b(t)−
(
Φ(·)⊗

[
D+(z; ·, m0, m

′)−D+(z; ·, mc, m
′)
])

(t)

− z(Φ(·)⊗D+(z; ·, mc, m
′))(t). (6.35)

It follows that the formula (6.5) for the function L(z; τ) becomes

L(z; τ) =

∫ ∞

0

{
1−Ψ[y(z; t, τ,m0, m

′), m0]
}
dt

+

∫ τ

0

{
1−Ψ[s(z; t,m0, m

′), m0] + (1− z)Ψ[s(z; t,m0, m
′), mc]

}
dt.

(6.36)

As explained before, one can obtain the probability P{τ} of having zero
observable events in a temporal interval of length τ by computing the prob-
ability generating function Ω(z; τ) in zero:

P{τ} = Ω(0; τ) = e−̟L(0;τ). (6.37)

By setting z = 0 in (6.36), we easily obtain

L(0; τ) =

∫ ∞

0

{
1−Ψ[y(0; t, τ,m0, m

′), m0]
}
dt

+

∫ τ

0

{
1−Ψ[s(0; t,m0, m

′), m0] + Ψ[s(0; t,m0, m
′), mc]

}
dt

=

∫ ∞

0

N(t, τ)dt+

∫ τ

0

N−(t)dt, (6.38)

where we have set

N(t, τ) :=1−Ψ[y(0; t, τ,m0, m
′), m0] (6.39)

and

N−(t) :=1−Ψ[s(0; t,m0, m
′), m0] + Ψ[s(0; t,m0, m

′), mc]. (6.40)
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Remark 14. Recalling equations (6.28) and (6.33), it is clear that we can
rewrite the last two functions just defined in the following way:

N(t, τ) = 1−
∫ ∞

m0

G(0; τ |t,m′)p(m′)dm′ (6.41)

and

N−(t) = 1−
∫ mc

m0

G(0; t|0, m′)p(m′)dm′. (6.42)

Obviously, in the case mc = m0 we have that N(t, τ) = Nmc=m0(t, τ) and
N−(t) = 1.

At this point, in order to obtain the probability P{τ} of having zero ob-
servable events in [0, τ ], we have to find an expression for the functions N(t, τ)
and N−(t) and then to substitute the obtained results in equation (6.38).
Actually, since they are integrals rather difficult to compute, we can approx-
imate them by means of the first order Taylor power series expansion of the
function Ψ(h(·), m̃), with respect to the first argument, around the point
zero. In our case it holds m̃ = m0, mc and the function h(·) in N(t, τ) and
N−(t) (equations (6.39) and (6.40)) is respectively equal to y(0; t, τ,m0, m

′)
and s(0; t,m0, m

′) where, recalling the expressions of y(z; t, τ,m0, m
′) and

s(z; t,m0, m
′) given respectively in (6.30) and (6.35),

y(0; t, τ,m0, m
′) =b(t + τ)− (Φ(·)⊗D(0; ·, τ,m0, m

′))(t)

−
(
Φ(t + ·)⊗

[
D+(0; ·, m0, m

′)−D+(0; ·, mc, m
′)
])

(τ)

(6.43)

and

s(0; t,m0, m
′) =b(t)−

(
Φ(·)⊗

[
D+(0; ·, m0, m

′)−D+(0; ·, mc, m
′)
])

(t).

(6.44)

Let’s notice that the above-mentioned Taylor approximation makes sense
since, in both N(t, τ) and N−(t), the first argument of Ψ is small when
τ ≈ 0. In fact, we have that

• for the argument y(0; t, τ,m0, m
′), when τ = 0, it holds

y(0; t, 0, m0, m
′) =b(t)− b(t) = 0.

This follows by setting z = 0 in (6.29) and observing that, since
G(z; τ |t,m′′) is the probability generating function of the number of
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events triggered in [0, τ ] by a shock with magnitude m′, occurred t
seconds before time 0, it holds

G(0; 0|t,m′′) =1.

The latter is due to the regularity of the process and the fact that the
probability P{N(0) = 0} of having zero observable events in an interval
of length zero is equal to one;

• on the other hand, for the argument s(0; t,m0, m
′), since t ∈ [0, τ ] and

τ = 0, it holds

s(0; 0, m0, m
′) =0,

as one can easily deduce by setting z = 0 in (6.34).

Let’s compute then the above-cited expansion and the relative approxima-
tions of N(t, τ) and N−(t). Let’s start with the first function.

Lemma 5. For small τ , the function N(t, τ) in (6.38) can be approximated
as

N(t, τ) ≈ηb(t+ τ)−
∫ t

0

dxΦ(t− x)

∫ ∞

m0

G(0; τ |x,m′′)IA(m
′′)dm′′

−
∫ τ

0

dxΦ(t+ τ − x)

∫ mc

m0

G(0; x|0, m′′)IA(m
′′)dm′′, (6.45)

where Φ(·) is the Omori-Utsu law (equation (6.3)), η is the branching ratio
(equation (2.18)), b(·) is the cumulative function relative to the Omori-Utsu
law (equation (6.7)) and

IA(m
′′) :=

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′. (6.46)

Proof. Recalling (6.27), (6.39) and (6.43), it holds

N(t, τ) = 1−Ψ[y(0; t, τ,m0, m
′), m0]

=1−
∫ ∞

m0

p(m′)e−̺(m
′)y(0;t,τ,m0,m′)dm′

≈1−
[
1−

∫ ∞

m0

p(m′)̺(m′)y(0; t, τ,m0, m
′)dm′

]
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=

∫ ∞

m0

p(m′)̺(m′)dm′b(t + τ)

−
∫ ∞

m0

p(m′)̺(m′)(Φ(·)⊗D(0; ·, τ,m0, m
′))(t)dm′

−
∫ ∞

m0

p(m′)̺(m′)
(
Φ(t + ·)⊗

[
D+(0; ·, m0, m

′)−D+(0; ·, mc, m
′)
])

(τ)dm′.

(6.47)

Let’s study now separately the integrals in the last equality of the above ex-
pression (6.47). In the matter of the first, recalling the first equality in (2.18),
by definition we have

∫ ∞

m0

p(m′)̺(m′)dm′b(t + τ) = ηb(t+ τ).

For the second one, from (6.46) and (6.31), we have

∫ ∞

m0

p(m′)̺(m′)(Φ(·)⊗D(0; ·, τ,m0, m
′))(t)dm′

=

∫ ∞

m0

dm′p(m′)̺(m′)

∫ t

0

dxΦ(t− x)

∫ ∞

m0

G(0; τ |x,m′′)p(m′′|m′)dm′′

=

∫ t

0

dxΦ(t− x)

∫ ∞

m0

∫ ∞

m0

p(m′)̺(m′)G(0; τ |x,m′′)p(m′′|m′)dm′′dm′

=

∫ t

0

dxΦ(t− x)

∫ ∞

m0

dm′′G(0; τ |x,m′′)

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′

=

∫ t

0

dxΦ(t− x)

∫ ∞

m0

G(0; τ |x,m′′)IA(m
′′)dm′′.

Furthermore, if we use equation (6.32), we can compute the third integral in
the last expression of (6.47) as follows:

∫ ∞

m0

p(m′)̺(m′)
(
Φ(t+ ·)⊗

[
D+(0; ·, m0, m

′)−D+(0; ·, mc, m
′)
])

(τ)dm′

=

∫ ∞

m0

dm′p(m′)̺(m′)

∫ τ

0

dxΦ(t+ τ − x)

∫ mc

m0

G(0; x|0, m′′)p(m′′|m′)dm′′

=

∫ τ

0

dxΦ(t+ τ − x)

∫ ∞

m0

∫ mc

m0

p(m′)̺(m′)G(0; x|0, m′′)p(m′′|m′)dm′′dm′
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=

∫ τ

0

dxΦ(t+ τ − x)

∫ mc

m0

dm′′G(0; x|0, m′′)

∫ ∞

m0

p(m′)̺(m′)p(m′′|m′)dm′

=

∫ τ

0

dxΦ(t+ τ − x)

∫ mc

m0

G(0; x|0, m′′)IA(m
′′)dm′′.

Then, the thesis of the theorem can be easily derived by substituting in
equation (6.47) the results obtained.

Before proceeding with the study of the approximation of the second func-
tion N−(t) in (6.38), we focus for a moment on the approximation obtained
for N(t, τ).

Corollary 1. For small τ , it holds

∫ ∞

0

N(t, τ)dt ≈ η

1− η
(a(·)⊗N−(·))(τ), (6.48)

where a(·) is the survivor function relative to the Omori-Utsu law (equa-
tion (6.15)) and η is the branching ratio (equation (2.18)).

Proof. Let’s impose in (6.45) the crucial hypothesis IA(m
′′) = ηp(m′′), as

previously assumed before in the case mc = m0 (see the proof of Theorem 12).
We have already explained that this condition guarantees the validity of the
Gutenberg-Richter law when averaging on all triggering events’ magnitudes
and corresponds to the fact that p(m′′) is the eigenfunction corresponding to
the eigenvalue η of the operator K2 defined in (4.6). We get

N(t, τ) ≈ ηb(t + τ)− η

∫ t

0

dxΦ(x)

∫ ∞

m0

G(0; τ |t− x,m′′)p(m′′)dm′′

− η

∫ τ

0

dxΦ(t+ τ − x)

∫ mc

m0

G(0; x|0, m′′)p(m′′)dm′′

=η[b(t + τ)− b(t)]

+ η

{∫ t

0

dxΦ(x)

[
1−

∫ ∞

m0

G(0; τ |t− x,m′′)p(m′′)dm′′

]}

+ η

{∫ τ

0

dxΦ(t + τ − x)

[
−
∫ mc

m0

G(0; x|0, m′′)p(m′′)dm′′

]}

=η

∫ t+τ

t

Φ(y)dy + η

∫ t

0

Φ(x)N(t− x, τ)dx
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+ η

{∫ t+τ

t

dyΦ(y)

[
−
∫ mc

m0

G(0; t+ τ − y|0, m′′)p(m′′)dm′′

]}

=η(Φ(·)⊗N(·, τ))(t) + η

∫ t+τ

t

dyΦ(y)

[
1

−
∫ mc

m0

G(0; t+ τ − y|0, m′′)p(m′′)dm′′

]

=η(Φ(·)⊗N(·, τ))(t) + η

∫ t+τ

t

Φ(y)N−(t + τ − y)dy

=η(Φ(·)⊗N(·, τ))(t) + η

∫ τ

0

Φ(t + τ − x)N−(x)dx,

where we have used equations (6.7), (6.41) and (6.42) and in addition, in
third and last equality, we have made the change of variable y = t + τ − x.
It then follows that

N(t, τ) ≈η(Φ(·)⊗N(·, τ))(t) + η(Φ(t+ ·)⊗N−(·))(τ).

Integrating both the members with respect to time, between zero and infinity,
we get

∫ ∞

0

N(t, τ)dt ≈η
∫ ∞

0

∫ t

0

Φ(t− x)N(x, τ)dxdt

+ η

∫ ∞

0

∫ τ

0

Φ(t + τ − x)N−(x)dxdt

=η

∫ ∞

0

∫ ∞

x

Φ(t− x)N(x, τ)dtdx

+ η

∫ τ

0

∫ ∞

0

Φ(t + τ − x)N−(x)dtdx

=η

∫ ∞

0

dxN(x, τ)

∫ ∞

x

Φ(t− x)dt

+ η

∫ τ

0

dxN−(x)

∫ ∞

0

Φ(t+ τ − x)dt

=η

∫ ∞

0

N(x, τ)dx+ η

∫ τ

0

dxN−(x)

∫ ∞

τ−x

Φ(y)dy

=η

∫ ∞

0

N(x, τ)dx+ η

∫ τ

0

N−(x)a(τ − x)dx

=η

∫ ∞

0

N(x, τ)dx+ η(a(·)⊗N−(·))(τ),
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where we have used that
∫ ∞

x

Φ(t− x)dt = 1

and (6.15). We have then obtained equation (6.48).

As a consequence of Corollary 1, the function L(0; ·) in (6.38) for small τ
can be written only in terms of the function N−(·). We have indeed

L(0; τ) =

∫ ∞

0

N(t, τ)dt+

∫ τ

0

N−(t)dt

≈ η

1− η
(a(·)⊗N−(·))(τ) +

∫ τ

0

N−(t)dt. (6.49)

We are ready now to proceed with the study of the approximation of
N−(t).

Lemma 6. For t ∈ [0, τ ] and τ small, the function N−(t) in (6.38) can be
approximated as

N−(t) ≈Q+ ηb(t)

[
1− e−(β−a)(mc−m0)

]

−
∫ t

0

dxΦ(t− x)

∫ mc

m0

G(0; x|0, m′′)[IA(m
′′)− IB(m

′′)]dm′′, (6.50)

where
Q := e−β(mc−m0), (6.51)

that is P{M > mc} if M is distributed according to the Gutenberg-Richter
law (equation (2.2)); Φ(·) is the Omori-Utsu law (equation (6.3)); η is the
branching ratio (equation (2.18)); b(·) is the cumulative function relative to
the Omori-Utsu law (equation (6.7)); IA(m

′′) is the integral defined in (6.46)
and

IB(m
′′) :=

∫ ∞

mc

p(m′)̺(m′)p(m′′|m′)dm′. (6.52)

Remark 15. Recalling (6.2), we can write the average rate of the total ob-
servable events as

λ̄ =
̟Q

1− η
.
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Proof. Using (6.27), (6.40) and (6.44), we get

N−(t) = 1−Ψ[s(0; t,m0, m
′), m0] + Ψ[s(0; t,m0, m

′), mc]

=1−
∫ mc

m0

p(m′)e−̺(m
′)s(0;t,m0,m′)dm′

≈1−
[
1−

∫ ∞

mc

p(m′)dm′ −
∫ mc

m0

p(m′)̺(m′)s(0; t,m0, m
′)dm′

]

=Q +

∫ mc

m0

p(m′)̺(m′)s(0; t,m0, m
′)dm′

=Q +

∫ mc

m0

p(m′)̺(m′)dm′b(t)

−
∫ mc

m0

p(m′)̺(m′)
(
Φ(·)⊗

[
D+(0; ·, m0, m

′)−D+(0; ·, mc, m
′)
])

(t)dm′,

(6.53)

where

Q =

∫ ∞

mc

p(m′)dm′ = e−β(mc−m0).

As previously done, we study separately the integrals in the final expression
of (6.53). Recalling again equations (2.1), (2.2), (2.18), (6.32) and (6.46),
we obtain the following results:

b(t)

∫ mc

m0

p(m′)̺(m′)dm′ = b(t)

[
η − βκ

∫ ∞

mc

e−(β−a)(m′−m0)dm′

]

= b(t)

[
η − βκe−(β−a)(mc−m0)

β − a

]

= ηb(t)
[
1− e−(β−a)(mc−m0)

]
;

∫ mc

m0

p(m′)̺(m′)
(
Φ(·)⊗

[
D+(0; ·, m0, m

′)−D+(0; ·, mc, m
′)
])

(t)dm′

=

∫ mc

m0

dm′p(m′)̺(m′)

∫ t

0

dxΦ(t− x)

∫ mc

m0

G(0; x|0, m′′)p(m′′|m′)dm′′

=

∫ t

0

dxΦ(t− x)

∫ mc

m0

dm′′G(0; x|0, m′′)

∫ mc

m0

p(m′)̺(m′)p(m′′|m′)dm′

=

∫ t

0

dxΦ(t− x)

∫ mc

m0

G(0; x|0, m′′)[IA(m
′′)− IB(m

′′)]dm′′,
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where we have set

IB(m
′′) :=

∫ ∞

mc

p(m′)̺(m′)p(m′′|m′)dm′.

Let’s notice that this latter integral is exactly K2p(m)1[mc,∞)(m), where K2

is the operator defined in the proof of Lemma 1.
Substituting the obtained results in (6.53), we are then able to find the

thesis of this theorem, that is the approximated expression (6.50) of the
function N−(t).

At this point we can work on the approximation of the function N−(t) as
we made for N(t, τ) (see Corollary 1), again by imposing some conditions. In
particular, the first condition to impose is once more the crucial one for our
analysis IA(m

′′) = ηp(m′′), already used in the case mc = m0 (see the proof
of Theorem 12) and in Corollary 1. The second condition regards instead the
integral IB(m

′′), for which one can notice that its only difference with IA(m
′′)

is in the lower extreme of integration. In order to find the suitable condition
that the integral IB(m

′′) must satisfy, we have to use an explicit form of the
probability p(m′′|m′). For this purpose, we have used the function (4.37)
found in Chapter 4, i.e.,

p(m′′|m′) = p(m′′)
[
1 + f(m′, m′′)

]

= βe−β(m
′′−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)(
1− 2e−β(m

′′−m0)
)]
,

for 0 ≤ C1 ≤ 1. By substituting this explicit form in (6.52), recalling that
IB(m

′′) = K2p(m
′′)1[mc,∞)(m

′′), where K2 is the operator defined in the proof
of Lemma 1 and repeating the same computations as in the latter Lemma
(see (B.15)), we can deduce that IB(m

′′) is a linear combination of p(m) and
p2(m). More precisely, we get

IB(m
′′) =p(m′′)ηH + p(m′′)C1

[
1− 2

p(m′′)

β

]
η(H −H2)

=p(m′′)ηL1 + p2(m′′)ηL2, (6.54)

where

H := e−(β−a)(mc−m0) (6.55)

and

L1 : = H [1 + C1 − C1H ], (6.56)

L2 : =
2C1H

β
(H − 1). (6.57)
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The expression (6.54) obtained for the integral IB(m
′′) depends then on

both the Gutenberg-Richter function p(m′′) and its square. This complicates
a lot our study. However, we can observe that

∣∣1− 2e−β(m
′′−m0)

∣∣ =
∣∣∣∣1− 2

p(m′′)

β

∣∣∣∣ < 1,

C1 ≤ 1 and, for the typical values of the parameters, H ≈ 1 (then (β −
a)(mc − m0) is close to zero) and the difference H − H2 is generally small.
It follows that we can approximate IB(m

′′) with a function of kind p(m′′)ηL,
where the constant L is very close to H . More precisely, the value L can be
estimated by minimizing the difference between IB(m

′′) and p(m′′)ηL. There
are various methods which can be used to this aim. Setting Setting

z(m′′) := p(m′′)L1 + p2(m′′)L2,

we can use for example the 2-norm and then compute

argmin
L

∫ mc

m0

[z(m′′)− p(m′′)L]2dm′′. (6.58)

Since ∫ mc

m0

pk(m′′)dm′′ =
βk−1

k
[1−Qk],

as one can easily obtain recalling (2.2), we have that the above equation (6.58)
becomes

argmin
L

∫ mc

m0

[z(m′′)− p(m′′)L]2dm′′

= argmin
L

∫ mc

m0

[
(L1 − L)p(m′′) + L2p

2(m′′)
]2
dm′′

Recalling the definitions of L1, L2 (see (6.56), (6.57)), we get that the argu-
ment of the minimum is obtained in

Lmin = L1 + L2β
2
(
1−Q3

)

3
(
1−Q2

) = H + C1H(1−H)

[
1− 4

(
1−Q3

)

3
(
1−Q2

)
]

and values

L2
2β

3

[
−2

9

(
1−Q3

)2

1−Q2
+

1−Q4

4

]
= β

[
C1H(1−H)

3

]2 (1−Q
)3(

Q2 + 4Q+ 1
)

1 +Q
.
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Another approach could be a numerical one, by means for example of the
MATLAB function “nlinfit”, which estimates the best coefficient L minimiz-
ing the difference z(m′′)− p(m′′)L by least squares. This function allows to
obtain the optimal curve as close as possible to the data.

As an example, let’s consider the following parameters dataset:

β = 2.0493, a = 1.832, C1 = 0.8, m0 = 1, mc = 1.8.

If we use the 2-norm, we get that the minimum is obtained in Lmin = 0.8001
and values 2.08 ∗ 10−3. We also observe that Lmin is close to the constant
H = 0.8404, as expected. If instead we proceed by means of a numerical
algorithm consisting of the above estimation through the MATLAB function
“nlinfit”, we get the constant Lmin = 0.8032 that is close to the value obtained
with the 2-norm and then toH = 0.8404. A graphical check for the numerical
case is given in Fig. 6.1.
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Figure 6.1: Plot of the functions f(x) = Hp(x) + C1p(x)(1 − 2 p(x)
β

)H(1 − H) and

g(x) = Lp(x), where p(x) = β exp{−β(x − m0)} and (β, a, C1,m0,mc) =
(2.0493, 1.832, 0.8, 1, 1.8).

We can then proceed with the substitution in equation (6.50) of the two
conditions

IA(m
′′) = ηp(m′′)

and

IB(m
′′) ≈ ηLp(m′′), (6.59)
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for a certain constant L to be found numerically. For small τ , we have

N−(t) ≈Q+ ηb(t)[1 −H ]

− η[1− L]

∫ t

0

dxΦ(t− x)

∫ mc

m0

G(0; x|0, m′′)p(m′′)dm′′

=Q+ ηb(t)[1 −H ]− η[1− L]b(t) + η[1− L]b(t)

− η[1− L]

∫ t

0

dxΦ(x)

∫ mc

m0

G(0; t− x|0, m′′)p(m′′)dm′′

=Q− ηb(t)[H − L]

+ η[1− L]

∫ t

0

dxΦ(x)

[
1−

∫ mc

m0

G(0; t− x|0, m′′)p(m′′)dm′′

=Q− ηb(t)[H − L] + η
[
1− L

] ∫ t

0

Φ(x)N−(t− x)dx, (6.60)

where we have used equation (6.42). The error that we commit is

min

∣∣∣∣
∫ t

0

dxΦ(t− x)

∫ mc

m0

G(0; x|0, m)[IB(m)− ηLp(m)]dm

∣∣∣∣

≤ min

∫ t

0

dxΦ(t− x)

∫ mc

m0

1 · η |z(m) − Lp(m)| dm

≤ min ηb(t)

(∫ mc

m0

12dm

) 1
2
(∫ mc

m0

|z(m)− Lp(m)|2 dm
) 1

2

. (6.61)

When L = Lmin and since

1−Q =1− e−β(mc−m0) ≤ β(mc −m0)

1−H =1− e−(β−a)(mc−m0) ≤ (β − a)(mc −m0),

the last member in equation (6.61) becomes

ηb(t)
√
mc −m0

C1H(1−H)

3

√

β

(
1−Q

)3(
Q2 + 4Q+ 1

)

1 +Q

≤ ηb(t)
C1H

3

√
Q2 + 4Q+ 1

1 +Q
β2(β − a)(mc −m0)

3

≤ ηb(t)C1Hβ
2(β − a)(mc −m0)

3

and then, if (β − a)(mc −m0) is small, so is the error.
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From (6.60) we then obtain

N−(t) ≈Q− ηb(t)[H − L] + δ(Φ(·)⊗N−(·))(t), (6.62)

where

δ = η
[
1− L

]
. (6.63)

Before proceeding with the research of the function N−(t), let’s state the
following Lemma.

Lemma 7. When H ≈ 1, it holds
∫ τ

0

N−(t)dt ≈
1

1− δ

{
τ
[
Q− η[H − L]

]
+ η[H − L]A(τ)− δ(a(·)⊗N−(·))(τ)

}

(6.64)

and

(a(·)⊗N−(·))(τ) ≈
τ

δ

[
Q− η[H − L]

]
+
η[H − L]

δ
A(τ) +

[
1− 1

δ

] ∫ τ

0

N−(t)dt,

(6.65)

where a(·), A(·), (δ, Q,H) and η are defined in (6.15), (6.14), (6.63), (6.51),
(6.55), (2.18), respectively, and L is the parameter deriving from the approx-
imation of IB(m

′′) (see (6.59)).

Proof. If we integrate both the members of (6.62) with respect to time be-
tween zero and τ , recalling equations (6.14) and (6.15) we get

∫ τ

0

N−(t)dt ≈ Qτ − η[H − L]

∫ τ

0

b(t)dt + δ

∫ τ

0

∫ t

0

Φ(t− x)N−(x)dxdt

= Qτ − η[H − L]

∫ τ

0

[
1− a(t)

]
dt+ δ

∫ τ

0

∫ τ

x

Φ(t− x)N−(x)dtdx

= Qτ − η[H − L]

[
τ −

∫ τ

0

a(t)dt

]
+ δ

∫ τ

0

dxN−(x)

∫ τ−x

0

Φ(y)dy

= Qτ − η[H − L]

[
τ − A(τ)

]
+ δ

∫ τ

0

N−(x)[1 − a(τ − x)]dx

= Qτ − η[H − L]

[
τ − A(τ)

]
+ δ

∫ τ

0

N−(x)dx− δ(a(·)⊗N−(·))(τ).

Hence, it is possible to find the convolution (a(·) ⊗ N−(·))(τ) as a function
of the integral

∫ τ
0
N−(t)dt and viceversa, as stated in the Lemma.
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Using equation (6.65), we can rewrite the function L(0; τ) (equation (6.49))
only in terms of

∫ τ
0
N−(t)dt:

− lnP{τ}
̟

=L(0; τ)

≈ η

1− η

[
τ
Q− η[H − L]

δ
+
η[H − L]

δ
A(τ) +

δ − 1

δ

∫ τ

0

N−(t)dt

]

+

∫ τ

0

N−(t)dt

=

∫ τ

0

N−(t)dt
[ η

1− η

δ − 1

δ
+ 1
]
+τη

Q− η[H − L]

δ(1− η)
+
η2[H − L]

δ(1− η)
A(τ)

=
δ − 1

δ
∆

∫ τ

0

N−(t)dt+ τ
η

1− η

Q̃

δ
+
η2[H − L]

δ(1− η)
A(τ), (6.66)

where H ≈ 1 and we have set

∆ =
η

1− η
− δ

1− δ
(6.67)

and

Q̃ = Q− η[H − L]. (6.68)

Remark 16. The probability of having zero observable events in [0, τ ], given
in (6.66), can be compared with the one obtained in [Saichev and Sornette,
2007] for the classical time-magnitude ETAS model, i.e., when C1 = 0 and
therefore H = L = 1. In this case, equation (6.66) becomes

− lnP{τ}
̟

≈δ − 1

δ
∆

∫ τ

0

N−(t)dt+ τ
ηQ

(1− η)δ
,

which coincides with formula (C20) of page 24 in [Saichev and Sornette,
2007].

If we could have an expression for
∫ τ
0
N−(t)dt, using equation (6.66) (and

then (6.37)), it would be possible to find the probability of having zero ob-
servable events in [0, τ ].

To the aim of obtaining an explicit expression of the function N−(t), we
use the standard technique of Laplace transform.

Theorem 13. When H ≈ 1, it holds

N−(t) ≈
2eσt

π

∫ ∞

0

ℜ
(
Q− η[H − L]θ[(σ + iξ)c]θe(σ+iξ)cΓ(−θ, (σ + iξ)c)

(σ + iξ)[1− δθ[(σ + iξ)c]θe(σ+iξ)cΓ(−θ, (σ + iξ)c)]

)

· cos ξtdξ, (6.69)
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for σ+ iξ ∈ C, θ, c the parameters of the Omori-Utsu law (6.3) and with the
notations of Lemma 7.

Proof. Let’s compute the Laplace transform L[N−(t)](s) of the function
N−(t). Recalling equation (6.62) we get, for s ∈ C,

L[N−(t)](s) =

∫ ∞

0

e−stN−(t)dt

≈
∫ ∞

0

e−stQdt− η[H − L]

∫ ∞

0

e−stb(t)dt + δ

∫ ∞

0

e−st(Φ(·)⊗N−(·))(t)dt

=
Q

s
− η[H − L]

∫ ∞

0

e−st
[
1− a(t)

]
dt+ δ

∫ ∞

0

e−stΦ(t)dt

∫ ∞

0

e−stN−(t)dt

=
Q

s
− η[H − L]

s
+ η[H − L]

∫ ∞

0

e−sta(t)dt+ δ

∫ ∞

0

e−stΦ(t)dt · L[N−(t)](s).

We then have

L[N−(t)](s) ≈
1

1− δ
∫∞

0
e−stΦ(t)dt

[
Q− η[H − L]

s
+ η[H − L]

∫ ∞

0

e−sta(t)dt

]
.

(6.70)

Recalling (6.7) and (6.15), we get

∫ ∞

0

e−sta(t)dt =

∫ ∞

0

e−st
∫ ∞

t

Φ(x)dxdt

=

∫ ∞

0

e−st
[
1−

∫ t

0

Φ(x)dx

]
dt

=

∫ ∞

0

e−stdt−
∫ ∞

0

e−st
∫ t

0

Φ(x)dxdt

=
1

s
−
∫ ∞

0

Φ(x)

∫ ∞

x

e−stdtdx

=
1

s

[
1−

∫ ∞

0

e−sxΦ(x)dx

]
.

Consequently,

∫ ∞

0

e−stN−(t)dt ≈
1

s[1− δ
∫∞

0
e−stΦ(t)dt]

[
Q− η[H − L]

∫ ∞

0

e−stΦ(t)dt

]
.

(6.71)

Let’s notice that the above function of the complex variable s has one pole
in s = 0. Furthermore, there are no poles with real part larger than zero. In
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fact, the other factor in the denominator is never zero for ℜ(s) > 0, since
δ < 1 and

∣∣∣∣
∫ ∞

0

e−stΦ(t)dt

∣∣∣∣ ≤
∫ ∞

0

|e−stΦ(t)|dt

<

∫ ∞

0

|Φ(t)|dt

= 1.

Let’s then compute the Laplace transform of the function Φ(·) appearing
in (6.71). Recalling equation (6.3), we have

∫ ∞

0

e−stΦ(t)dt = θcθ
∫ ∞

0

e−st(t+ c)−1−θdt

= θcθ
∫ ∞

0

e−x
(
x

s
+ c

)−1−θ
1

s
dx

= θ(sc)θesc
∫ ∞

0

e−(x+sc)(x+ sc)−θ−1dx

= θ(sc)θescΓ(−θ, sc), (6.72)

where

Γ(ℓ, z) =

∫ ∞

z

e−ttℓ−1dt =

∫ ∞

0

e−(x+z)(x+ z)ℓ−1dx, | arg z| < π,

is the incomplete Gamma function (see [Bateman, 1953; Temme, 1996]).
Let’s notice that the integral in the third line of (6.72) is the explicit form of
the complex integral along the horizontal half-line starting from the complex
point sc.

Substituting the solution (6.72) in equation (6.71), we obtain

L[N−(t)](s) ≈
1

s[1− δθ(sc)θescΓ(−θ, sc)]

[
Q− η[H − L]θ(sc)θescΓ(−θ, sc)

]
.

(6.73)

Now, one possible way to find the function N−(t) consists of computing the
inverse Laplace transform through the Bromwich integral:

N−(t) =
1

2πi

∫ σ+i∞

σ−i∞

estL[N−(t)](s)ds,
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where σ is any positive number. We are going to proceed without contour
integration (see [Berberan-Santos, 2005]). We get

N−(t) =
1

2π

∫ +∞

−∞

e(σ+iξ)tL[N−(t)](σ + iξ)dξ

=
eσt

2π

∫ +∞

−∞

eiξtL[N−(t)](σ + iξ)dξ

=
eσt

2π

∫ +∞

−∞

[
L[N−(t)](σ + iξ) cos ξt+ iL[N−(t)](σ + iξ) sin ξt

]
dξ

=
eσt

2π

{∫ +∞

−∞

[
ℜ
(
L[N−(t)](σ + iξ)

)
+ iℑ

(
L[N−(t)](σ + iξ)

)]
cos ξtdξ

+ i

∫ +∞

−∞

[
ℜ
(
L[N−(t)](σ + iξ)

)
+ iℑ

(
L[N−(t)](σ + iξ)

)]
sin ξtdξ

}

=
eσt

2π

{∫ +∞

−∞

[
ℜ
(
L[N−(t)](σ + iξ)

)
cos ξt− ℑ

(
L[N−(t)](σ + iξ)

)
sin ξt

]
dξ

+ i

∫ +∞

−∞

[
ℑ
(
L[N−(t)](σ + iξ)

)
cos ξt+ ℜ

(
L[N−(t)](σ + iξ)

)
sin ξt

]
dξ

}
,

(6.74)

where

ℜ
(
L[N−(t)](σ + iξ)

)
= ℜ

(∫ ∞

0

N−(t)e
−(σ+iξ)tdt

)
=

∫ ∞

0

e−σtN−(t) cos ξtdt

(6.75)

and

ℑ
(
L[N−(t)](σ + iξ)

)
= ℑ

(∫ ∞

0

N−(t)e
−(σ+iξ)tdt

)
= −

∫ ∞

0

e−σtN−(t) sin ξtdt.

(6.76)

Since N−(t) is a real function, we have

∫ +∞

−∞

[
ℑ
(
L[N−(t)](σ + iξ)

)
cos ξt+ ℜ

(
L[N−(t)](σ + iξ)

)
sin ξt

]
dξ = 0;

actually, this also follows easily from the odd-parity of the integrand. More-
over, observing that the function

W (ξ) = ℜ
(
L[N−(t)](σ + iξ)

)
cos ξt− ℑ

(
L[N−(t)](σ + iξ)

)
sin ξt
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is of even-parity, the last expression in (6.74) becomes:

eσt

π

∫ ∞

0

[
ℜ
(
L[N−(t)](σ + iξ)

)
cos ξt−ℑ

(
L[N−(t)](σ + iξ)

)
sin ξt

]
dξ.

Finally, recalling (6.75), (6.76) and that N−(t) = 0 for t < 0, we have that

∫ +∞

−∞

[
ℜ
(
L[N−(t)](σ + iξ)

)
cos ξt+ ℑ

(
L[N−(t)](σ + iξ)

)
sin ξt

]
dξ

=

∫ +∞

−∞

∫ ∞

0

e−σxN−(x) cos ξxdx cos ξtdξ

+

∫ +∞

−∞

−
∫ ∞

0

e−σxN−(x) sin ξxdx sin ξtdξ

=

∫ ∞

0

e−σxN−(x)

∫ +∞

−∞

[cos ξx cos ξt− sin ξx sin ξt]dξdx

=

∫ ∞

0

e−σxN−(x)

∫ +∞

−∞

cos[ξ(x+ t)]dξdx

=

∫ ∞

0

e−σxN−(x)δ(x+ t)dx

= eσtN−(−t)
= 0,

where δ(y) is the Dirac function having value one when y = 0, zero otherwise.
Then, the thesis (6.69) of the theorem is obtained:

N−(t) =
2eσt

π

∫ ∞

0

ℜ
(
L[N−(t)](σ + iξ)

)
cos ξtdξ

≈2eσt

π

∫ ∞

0

ℜ
(
Q− η[H − L]θ[(σ + iξ)c]θe(σ+iξ)cΓ(−θ, (σ + iξ)c)

(σ + iξ)[1− δθ[(σ + iξ)c]θe(σ+iξ)cΓ(−θ, (σ + iξ)c)]

)

· cos ξtdξ.

One may use a numerical approach to compute the last integral and then
to find the required function N−(t). Once done this, one must integrate
it with respect to time. Then, the obtained result must be substituted in
equation (6.66). In conclusion, we have proved the following theorem.
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Theorem 14. In the case mc ≥ m0, approximatively for small τ and for
H ≈ 1, the probability of having zero observable events in [0, τ ] is

− lnP{τ}
̟

≈δ − 1

δ
∆

∫ τ

0

[
2eσt

π

·
∫ ∞

0

ℜ
(
Q− η[H − L]θ[(σ + iξ)c]θe(σ+iξ)cΓ(−θ, (σ + iξ)c)

(σ + iξ)[1− δθ[(σ + iξ)c]θe(σ+iξ)cΓ(−θ, (σ + iξ)c)]

)

· cos ξtdξ
]
dt+ τ

η

1− η

Q̃

δ
+
η2[H − L]

δ(1− η)
A(τ), (6.77)

with Q̃ and ∆ defined in (6.68) and (6.67), respectively, and the other nota-
tions as in Lemma 7.

Furthermore, we can repeat the same heuristic reasoning as in the final
part of Section 6.2, according to which, if

L̂(0; τ) =
δ − 1

δ
∆

∫ τ

0

N−(t)dt+ τ
η

1− η

Q̃

δ
+
η2[H − L]

δ(1− η)
A(τ),

that is the approximation obtained for L(0; τ) in the case mc ≥ m0, it holds
also

dkL(0; τ)

dτk
≈ dkL̂(0; τ)

dτk
,

for k = 1, 2. Consequently, we can derive the interevent time density by
computing the second derivative of the probability in (6.77), in fact

Finter(τ) =
1

λ̄

d2

dτ 2
P{τ}. (6.78)

Let’s notice that in the case mc > m0, differently from the one mc = m0,
the transition probability density function plays a role in P{τ} and then in
Finter(τ). More precisely, the parameters of the above transition probability
distribution appears in the expression (6.77) through some of the constants,
as for example δ. The reason is that, when mc = m0, all the events that we
observe may trigger its own offspring; on the other hand, when mc > m0, we
do not observe all the triggering events. For example, if we consider at first
the process obtained with the condition mc = m0 and then we increase mc,
then we get a process with a lower number of both spontaneous and triggered
events. In general, we have a different number of shocks when mc > m0 and
then a different process associated with the events. The mean number of
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events depends on the magnitudes and then, when considering a given time
interval, the higher (lower) is the number of shocks, the lower (higher) are
the distances between the events. Because of this, together with the fact that
the proportion of triggered and triggering events changes and observing that
our hypothesis of magnitude correlation is based on the proportion between
these two kinds of shocks, it is intuitive to understand that, when mc > m0,
the interevent time density explicitly depends on our hypothesis.

6.3.1 Another approximation for small τ

Because of the difficulty of the computation of both N−(t) and the interevent
time density, we simplify the case we are analyzing with a further approxi-
mation.

Theorem 15. By considering another approximation for small τ , the results
in Theorem 14 can be obtained explicitly as

− lnP{τ}
̟

≈
[
τQ̃ + η[H − L]A(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
, (6.79)

with the notations as in Theorem 14.

Proof. If we consider again τ sufficiently small, we can set a(τ − t) ≈ a(τ)
in (6.64), writing the extended integral of the convolution. We get

(1− δ)

∫ τ

0

N−(t)dt ≈τ
[
Q− η[H − L]

]
+ η[H − L]A(τ)− δ

∫ τ

0

a(τ)N−(t)dt,

from which we have
∫ τ

0

N−(t)dt ≈
1

1− δ + δa(τ)

{
τ
[
Q− η[H − L]

]
+ η[H − L]A(τ)

}
. (6.80)

The above-mentioned approximation makes sense since, if t ∈ [0, τ ] and τ is
small, so is t.

We can then conveniently substitute the expression (6.80) of
∫ τ
0
N−(t)dt

in (6.66):

− lnP{τ}
̟

≈δ − 1

δ
∆

1

1− δ + δa(τ)

{
τ
[
Q− η[H − L]

]
+ η[H − L]A(τ)

}

+ τ
Q̃

δ

η

1− η
+

η2

δ(1− η)
[H − L]A(τ)
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=
δ − 1

δ

∆Q̃τ

1− δ + δa(τ)
+
δ − 1

δ

∆

1− δ + δa(τ)
η[H − L]A(τ)

+ τ
Q̃

δ

η

1− η
+

η2

δ(1− η)
[H − L]A(τ)

=
τQ̃

δ

[
(δ − 1)∆

1− δ + δa(τ)
+

η

1− η

]

+
η[H − L]A(τ)

δ

[
(δ − 1)∆

1− δ + δa(τ)
+

η

1− η

]

=

[
τQ̃ + η[H − L]A(τ)

][ δ−1
δ
∆

1− δ + δa(τ)
+

η

(1− η)δ

]

=

[
τQ̃ + η[H − L]A(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
,

where we have used equation (6.68) and the last equality follows because

δ−1
δ
∆

1− δ + δa(τ)
+

η

(1− η)δ
=
δ − 1

δ

[
η

1− η
+

δ

δ − 1

]
1

1− δ + δa(τ)
+

η

(1− η)δ

=

[
η(δ − 1)

(1− η)δ
+ 1

]
1

1− δ + δa(τ)
+

η

(1− η)δ

=
η(δ − 1) + (1− η)δ

(1− η)δ[1− δ + δa(τ)]
+

η

(1− η)δ

=
η(δ − 1) + (1− η)δ + η(1− δ) + ηδa(τ)

(1− η)δ[1− δ + δa(τ)]

=
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]
.

In the latter calculus we have used equation (6.67). We have then ob-
tained (6.79) and the thesis of the theorem is proved.

Once again, we can heuristically derive the probability density function
Finter(τ) relative to the interevent time. More precisely, setting

L̂(0; τ) =

[
τQ̃ + η[H − L]A(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
,

that is the approximation obtained for L(0; τ) in the case mc ≥ m0 when
considering the further approximation for small τ as we are supposing in the
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current subsection, we can suppose that it holds also

dkL(0; τ)

dτk
≈ dkL̂(0; τ)

dτk
,

for k = 1, 2. Then, using (6.78) and the calculations to obtain the second
derivative of P{τ} = e−̟L(0;τ) (equation (C.1)), shown in Appendix C, we
get the following result.

Finter(τ) ≈
1

λ̄
exp

{
−
[
τQ̃ +̟η[H − L]A(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]}

·
{[(

Q̃+̟η[H − L]a(τ)

)(
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

)

+

(
τQ̃ +̟η[H − L]A(τ)

)(
Φ(τ)(δ − η)

(1− η)[1− δ + δa(τ)]2

)]2

−
[
−̟η[H − L]Φ(τ)

(
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

)

+ 2

(
Q̃ +̟η[H − L]a(τ)

)(
Φ(τ)(δ − η)

(1− η)[1− δ + δa(τ)]2

)

+

(
τQ̃ +̟η[H − L]A(τ)

)
(δ − η)Φ(τ)[(θ + 1)(δ − 1) + δa(τ)(θ − 1)]

(1− η)(τ + c)[1− δ + δa(τ)]3

]}
,

(6.81)

Remark 17. In the proof of Theorem 15, we have obtained that

∫ τ

0

N−(t)dt ≈
1

1− δ + δa(τ)

{
τ
[
Q− η[H − L]

]
+ η[H − L]A(τ)

}
. (6.82)

Now, we can compare this approximation with the one obtained in [Saichev
and Sornette, 2007] for the classical time-magnitude ETAS model, that is
when C1 = 0 and therefore H = L = 1. In this case, the above result (6.82)
becomes

∫ τ

0

N−(t)dt ≈
τQ

1− δ + δa(τ)
,

that is the approximation C(25) in Appendix C by Saichev and Sornette.
Consequently, their equation (46) of page 8 coincides with the probabil-
ity (6.79), obtained from (6.66) with the further approximation for small
τ , when C1 = 0 and then H = L = 1.
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Let’s conclude saying that, as previously discussed at the end of Sec-
tion 6.3, we notice again that in the case mc > m0 our hypothesis of a
transition probability density function for the magnitudes of triggered events
appears in the probability of having zero observable events in [0, τ ] and then
in the interevent time density Finter(τ).

6.4 Conclusions

In this chapter we theoretically analyzed our new version of the ETAS model,
where triggered event’s magnitudes are probabilistically dependent on trigger-
ing event’s ones. Thanks to the tool of the probability generating function
and the Palm theory, we obtained a closed-form approximation of density
Finter(τ) of interevent time for small values of τ . More precisely, the closed-
form is found by a linear approximation around zero of an exponential func-
tion. This is the only approximation needed for the case mc = m0. In the
general case mc ≥ m0, we have seen that it can be used the additional ap-
proximation a(τ − t) ≈ a(τ) to get the result in a closed-form. However,
without using this latter approximation, we were able to find the studied
density function in terms of the inverse Laplace transform of a suitable func-
tion. The results obtained show that our hypothesis of magnitude correlation
plays a role when we do not observe all the triggering events, as it happens
in practice. In fact, if we consider the particular case mc = m0, that is if we
observe all the events that are able to trigger, the density obtained for the
interevent time doesn’t depend on the new transition probability proposed
for triggered events’ magnitude. On the other hand, in the case m > m0,
in which not all the triggering events are observable, one can see the influ-
ence of the above-mentioned proposal on some of the constants appearing
in Finter(τ). The interevent time density then depends on the Omori-Utsu
law, on its temporal integrals and on the new transition probability density
function for triggered events’ magnitude.



Overall conclusions and future

work

In this thesis we have proposed and theoretically analyzed a new version
of the pure temporal Epidemic Type Aftershock Sequence model for earth-
quakes: the ETAS model with correlated triggered events’ magnitudes. The
version we proposed is based on a new transition probability density function
for the magnitudes of triggered events, depending on the magnitude of the
triggering shocks. More precisely, we take into account past seismicity in
terms of mother/daughter relations between events for modeling the above
magnitudes.

The process we have considered is a marked Hawkes process such that:

• the immigrants are a homogeneous Poisson process with independent
marks consisting of the magnitudes;

• each event gives birth to a non-homogeneous Poisson process, indepen-
dently of the other shocks and of the process of the immigrants, with
marks again consisting of the magnitudes, but now depending on the
magnitudes of the relative triggering events.

The conditional intensity function, completely characterizing our new model,
is given by

λ(t,m|Ht) =p(m)̟ +
∑

{i|ti<t}

̺(mi)Φ(t− ti)p(m|mi),

where ̟ is the average rate corresponding to the events belonging to the
spontaneous component of the process; p(·) is the Gutenberg-Richter law
(equation (2.2)); ̺(·) is the productivity law (equation (2.1)); Φ(·) is the
Omori law (equation (2.5)) and p(·|·) is a transition probability density func-
tion for the magnitudes of the triggered shocks. The model we propose is
very interesting, since it allows to describe seismicity in a more realistic way:
the magnitudes of the aftershocks are supposed to be correlated with the ones
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of the respective triggering events. It is important to notice that the above
hypothesis of correlation doesn’t complicate the statistical and theoretical
analysis; furthermore, as explained in Section 4.1, the conditions for the non-
explosion of the process remain the same as for the classical temporal ETAS
model: they are p > 1, β > a and κ < β−a

β
, for (p, β, a, κ) the parameters of

the Gutenberg-Richter, the Omori and the productivity laws. The Laplace
functional of the process modeled by the new ETAS model with correlated
magnitudes have been derived in Section 4.2, in order to obtain a useful tool
for the analysis of several characteristics of the model itself. To our knowl-
edge, in the literature there is only one work concerning a similar analysis
on the Laplace functional: independently of us, Roueff et al. repeat the anal-
ysis for a locally stationary Hawkes processes [Roueff et al., 2015], but they
present a condition for the non-explosion of their process not satisfied by our
magnitude correlated model.

In order to support the new hypothesis of magnitudes correlation and
then to justify the proposal of our new model, we firstly have performed
two different kinds of analysis of four seismic real catalogs: three Italian
datasets and a Californian one. The results obtained for all the catalogs,
with the exception of the one related to the whole Italy, show that our hy-
pothesis is well supported by the behavior of the real data. By looking at
the kernel density estimation of the aftershocks’ magnitudes, one can see
that when triggering events’ magnitudes increase, the probability of having
higher triggered events’ magnitudes increases, too; it instead decreases for
low values of the mother shocks’ magnitude. This behavior is not evident for
the whole Italian catalog (Fig. 3.10) because in this case the area considered
is very wide and the analysis puts in causal relation events that are tempo-
rally close, but spatially separated. The plots obtained by the two types of
analysis for the other three catalogs, show that the density of the aftershocks’
magnitudes changes in shape when the triggering events’ magnitude increases
and in some cases, for high values of the latter, it has a relative maximum
(Figures 3.11, 3.13, 3.15). The means of the aftershocks’ densities are also
increasing, as one can see from the plots obtained with the two kinds of anal-
ysis for all the catalogs, again with the exception of the whole Italian one
(Figures 3.17, 3.18). Even if there are small differences between the figures
of the catalogs relative to L’Aquila till 2012, L’Aquila till April the 5th, 2009
and the Southern California, caused for example by the different number of
events due to the presence or not of a strong shock in the data, the qualita-
tive behavior is the same. This ensures that the magnitudes dependence we
are stating is not connected to the area under examination; furthermore, it
is not induced by the occurrence of shocks with high magnitude or by some
problems of incompleteness.
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By looking at the variations of the estimated magnitude densities of trig-
gered shocks, with respect to the triggering events’ magnitudes, we can con-
clude that there is correlation between the magnitudes of events in moth-
er/daughter causal relation. However, we have to recall that the Gutenberg-
Richter law is a well-validated model for the magnitudes when not considering
past seismicity. Taking this into account and considering the experimental re-
sults obtained, we have proposed the following explicit form of the transition
probability density function p(m′′|m′) for triggered events’ magnitudes:

p(m′′|m′) = βe−β(m
′′−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)(
1− 2e−β(m

′′−m0)
)]
,

for all 0 ≤ C1 ≤ 1. It is such that, averaging over all the possible mother
events’ magnitudes, we obtain again the Gutenberg-Richter law. This means
that the latter, weighted by the productivity law ̺(m′), remains invariant
with respect to p(m′′|m′). Furthermore, again in agreement with the results
obtained for the real catalogs, we have that:

• whenm′ > 1
β−a

ln 2+m0 (m
′ < 1

β−a
ln 2+m0), the transition probability

density p(m′′|m′) is below (above) p(m′′) for magnitudes values smaller
than m′′ = 1

β
ln 2 +m0, above for higher values;

• when the triggering event’s magnitude increases, the transition proba-
bility density function increases (decreases) at a point m′′ > 1

β
ln 2+m0

(m′′ < 1
β
ln 2 +m0);

• when m′ ≤ 1
β−a

ln 2 +m0, p(m
′′|m′) is always decreasing in m′′; when

instead m′ > 1
β−a

ln 2+m0, p(m
′′|m′) increases in m′′ till a certain max-

imum, obtained in m′′ = 1
β
ln 4q(m′)

1+q(m′)
+m0 and after that it decreases.

The explicit form obtained for p(m′′|m′) is used for the explicit derivation
of the conditional intensity function characterizing the new ETAS model with
correlated triggered events’ magnitudes, i.e.,

λ(t,m|Ht) =p(m)

{
̟ +

∑

{i|ti<t}

κea(mi−m0)
p− 1

c

(
1 +

t− ti
c

)−p[
1

+ C1

(
1− 2e−(β−a)(mi−m0)

)(
1− 2e−β(m−m0)

)]}
,

where 0 ≤ C1 ≤ 1.
In order to assess the validity of the explicit form proposed for p(m′′|m′)

and to give a stronger support to our hypothesis of magnitude correlation,
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we have then performed the same two types of analysis of above for some
simulated catalogs. We have presented here the analysis concerning only
two of the latter, simulated in two different ways. The first catalog is sim-
ulated with the Ogata’s FORTRAN program [etasim.f ] for the classical
ETAS model. The second catalog is instead simulated using an algorithm
obtained by modifying the program [etasim.f ] in the magnitudes simula-
tion: the background events’ magnitudes have been simulated through the
Gutenberg-Richter law, instead the aftershocks’ ones have been simulated
with our transition probability density p(m′′|m′). We have obtained that the
results for the first synthetic catalog are similar to those concerning the whole
Italian real catalog (Fig. 5.3). This can be explained obviously by the fact
that the classical Ogata’s program takes into account only the Gutenberg-
Richter law to simulate the magnitudes of all the events, both spontaneous
and triggered. On the other hand, the results for the catalog simulated with
our new model strongly support our hypothesis of magnitude correlation. In
fact, they are very similar to the ones obtained for the three remaining real
catalogs (Fig. 5.5). Also the mean agrees with the one relative to these three
real datasets (Fig. 5.7). Since we have used our transition density p(m′′|m′)
to simulate the second synthetic catalog, but then we have performed the
analyses for this catalog using the set of parameters obtained with the clas-
sical Ogata’s FORTRAN program for estimation [etas.f ], the accordance
between these results are fundamental to justify the validity of our hypoth-
esis of magnitude correlation. Let’s notice that the results obtained for the
other simulated catalogs, not reported here, are very similar to the ones for
the two catalogs considered.

After the validation of the transition probability density p(m′′|m′), we
have mathematically studied the probability generating function formalism
of our new version of the temporal ETAS model. This theoretical analysis
allowed us to derive an expression for the interevent time density Finter(τ),
for small τ , thanks to the Palm theory. We recall that this random variable
has much importance in terms of seismic hazard. We have considered two
cases. In the first one, the completeness magnitude mc and the reference one
m0 are equal, as often happens in practice; this is a particular case. The
second case is instead the general one, in which mc ≥ m0. In both cases
we have considered the linear approximation around zero of an exponential
function. Thanks to this approximation, we have found a closed-form for
the interevent density in the case mc = m0 (equation (6.26)). The function
obtained doesn’t depend on the new hypothesis of magnitude correlation.
This can be explained because, in this case, all the observable events may
generate aftershocks and the process is not influenced by external sources.

Instead, the above exponential approximation is not enough to obtain a
closed-form for the general case. In fact, when mc ≥ m0, the density Finter(τ)
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has been obtained in terms of the inverse Laplace transform of a suitable
function. However, by considering an additional approximation, also in the
case mc ≥ m0 we have been able to obtained a closed-form approximation
for the interevent time density (equation (6.81)). In this function one can
see the “presence” of our hypothesis of magnitude correlation through some
constants. The fact that in the general case the magnitude correlations are
evident in Finter(τ) is due to the non-observability of all the triggering events.
More precisely, when mc > m0 we get a process with a different number of
events and a different proportion of triggering and triggered shocks. For
example, let’s consider the process obtained for mc = m0. It has a certain
number of events. Now, for example, by increasing mc the new process
will have a lower number of events. In general, the number of events changes,
consequently so does the proportion of background and aftershock events, the
proportion of triggered and triggering events and furthermore the interevent
time distances. Then, the final process is different. Since the transition
probability we propose concerns the mother/daughter relations, the evidence
of this probability in Finter(τ) for the general case is justified. Let’s notice
that the case in which mc = m0 is the one considered in the experimental
studies, since one doesn’t know which value assign to m0. Nevertheless, this
is not the real case. By considering these threshold magnitudes different,
we can model the phenomenon in a more precise and realistic way. This
is effectively the situation in which one can observe how our hypothesis of
magnitude correlation intervenes.

We conclude with the possible problems to work on. First of all, it could
be interesting to implement the new model and then to perform a statistical
inference study. One could use the maximum likelihood analysis to estimate
the parameters of this new version, or could try with some other technique.
Through the Akaike’s Information Criterion, one could also compare the
goodness of fit of our new model with respect to other models. Still an open
question is the asymptotic study of the interevent time density for long times,
in the case of transition magnitude probability density function. This could
be interesting in terms of extinction of the seismic sequence. Furthermore,
it would be fundamental to include the spatial component of the events. In
fact, it is a very important aspect to take into account for the mathematical
analysis of the seismic phenomenon. From a theoretical point of view, it
could be also of interest the study of other characteristics of the model pro-
posed, such that the correlations between events’ magnitudes in some fixed
subintervals, or events’ occurrence times in some fixed time windows. This
could be done with the tool of the Laplace functional.



Appendix A

A brief review on the

probability generating function

and the statistical tests for

seismic residual analysis

In this Appendix, we briefly recall some notions about the probability gen-
erating functions and the statistical tests of Kolmogorov-Smirnov and Runs.
We will present only the relative properties useful for the analysis in this
thesis.

A.1 Probability generating function and some

of its fundamental properties

The probability generating function is a very useful tool in probability theory,
in fact it completely describes the law of a random variable (see [Grimmett
and Stirzaker, 2001]). Given a non-negative random variable X , it is defined
as Gx(z) = E[zX ] and one can easily prove that

1

n!

dn

dzn
GX(z)

∣∣∣∣∣
z=0

= P{X = n}.

Among its several properties, we state here the following two, used for the
mathematical characterization of the ETAS model in this thesis.

Proposition 6. Let {X1, X2, . . . } be a sequence of independent and identi-
cally distributed random variables, with generating function GX . Let also N
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be a discrete positive random variable independent of Xi ∀i, with generating
function GN . Then, given the random variable S defined as

S =

N∑

i=1

Xi,

one has
GS(z) = GN [GX(z)]. (A.1)

Proposition 7. Given two independent random variables X and Y , it holds

GX+Y (z) = GX(z)GY (z). (A.2)

A.2 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is a non-parametric statistical test used for
the residual analysis of the ETAS model, in order to assess if the interevent
times of the process are exponentially distributed. More precisely, it is used
the one-sample Kolmogorov-Smirnov test and this is the case presented here.

Starting from a sample of i.i.d. observations (X1, . . . , Xn), we want to test
whether the X ′s have been drawn from a specified distribution F0. Then,
supposing that the unknown true distribution of the sample is FX , the null
hypothesis to test is

H0 : FX = F0.

Since the Glivenko-Cantelli theorem states that the empirical distribution
function

F̂n(x) =
#ofXi ≤ x

n
,

for all x ∈ R, approaches uniformly the true distribution FX as n increases,
it follows that the deviation between the true function and the empirical
distribution function should be small for all values of x, when n is large.
Then, a natural statistic for the accuracy of the estimate is

Dn = sup
x

|F̂n(x)− FX(x)|,

for any n. This is the Kolmogorov-Smirnov one-sample statistic. For the
Kolmogorov-Smirnov one-sample goodness-of-fit test, when the null hypoth-
esis is true, it is then expected that |F̂n(x) − F0(x)| < ε, for all x and for
large n. The null hypothesis is instead rejected in favour of

H1 : FX(x) 6= F0(x), for some x ∈ R,

for large absolute values of the above difference, that is when supx |F̂n(x) −
FX(x)| > Dn,α, for a probability (significance level) α [Gibbons and Chakraborti,
2003].
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A.3 The Runs test

The Runs test is a non-parametric statistical test used for the residual anal-
ysis of the ETAS model as the Kolmogorov-Smirnov test, but it is used to
assess whether the interevent times of the process are independent. It is a
test of randomness based on the total number or runs, that are sequences of
one or more types of elements, preceded and succeeded by a different element
or no element at all [Gibbons and Chakraborti, 2003]. If the sequence ex-
hibits some pattern of tendency of some type of element, then randomness is
violated. One way of testing randomness is to look at the number of runs in
one sequence. In particular, we can consider the randomness of runs about
the mean of the sample: we take positive sign for the data larger than the
mean of the sample, negative sign otherwise. Then, we have an ordered se-
quence of n elements, of which n1 are of type one and n2 are of type two, with
n1+n2 = n. For the test based on the total number of runs R, one needs the
probability distribution of R under the null hypothesis of randomness holds.
This probability distribution can be found as

P{R ≤ r} =





2
(
n1−1
r/2−1

)(
n2−1
r/2−1

)/(
n1+n2

n1

)
, if r is even

(
n1−1

(r−1)/2

)(
n2−1

(r−3)/2

)
+
(
n1−1

(r−3)/2

)(
n2−1

(r−1)/2

)/(
n1+n2

n1

)
, if r is odd.



Appendix B

Proof of Lemma 1

In this appendix, we prove Lemma 1 of Section 4.1 in Chapter 4. It is impor-
tant to observe that, when p(m|m′) reduces to p(m), that is C1 = 0, we are
in the case of the classical ETAS model and in fact we obtain only one eigen-
value, that is exactly η, as we have seen in Section 2.2.1 of Chapter 2. This
is expressed also in condition (4.29) of Section 4.3. Lemma (1) guarantees
that the eigenvalue η = βκ

β−a
is effectively the maximum one.

Let’s then proceed with the proof. In what follows, we will consider two
sections: in the first one, we derive the eigenvalues and the eigenvectors ob-
tained for the rate of the triggered shocks in the ETAS model with correlated
magnitudes; instead, in the second section we will obtain an expression for
the expected value of the descendants that will be proved to be finite.

B.1 Eigenvalues and eigenfunctions of the op-

erators K1 and K2

Following the reasoning in Subsection 2.2.1 of Chapter 2, let’s consider ℓ1(m
′)

and ℓ2(m), which are respectively the left and right eigenfunctions of the rate
for the triggered component of the sequence, corresponding to the maximum
eigenvalue η̃, i.e.,

η̃ℓ1(m
′) =

∫ ∞

m0

ℓ1(m)̺(m′)p(m|m′)dm, (B.1)

η̃ℓ2(m) =

∫ ∞

m0

̺(m′)p(m|m′)ℓ2(m
′)dm′. (B.2)

The aim is to show that the maximum eigenvalue is strictly less than one.
Let’s notice that the above equations have been obtained considering (2.13)

and (2.14) and computing the integrals with respect to space and time. As
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for the classical case, one can easily verify that the condition for the temporal
integral to be finite is p > 1. Then, the first condition for the non-explosion
of the process in (4.4) is obtained.

In order to find the critical parameter for the case of the ETAS model
with correlated magnitudes, we can focus either on equation (B.1) or (B.2).
In the case of the first equation (B.1), we can define the operator for functions
K1, i.e.,

K1ℓ(m
′) =

∫ ∞

m0

ℓ(m)̺(m′)p(m|m′)dm

=

∫ ∞

m0

ℓ(m)κea(m
′−m0)βe−β(m−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)

·
(
1− 2e−β(m−m0)

)]
dm. (B.3)

On the other hand, by considering the second equation (B.2), we can de-
fine the operator that maps a measure (not necessarily a probability measure)
with density ℓ(m) to a measure with density

K2ℓ(m) =

∫ ∞

m0

̺(m′)p(m|m′)ℓ(m′)dm′

=

∫ ∞

m0

κea(m
′−m0)βe−β(m−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)

·
(
1− 2e−β(m−m0)

)]
ℓ(m′)dm′. (B.4)

Let’s focus on the above first case, that is equation (B.3). Under suitable
hypothesis of integrability and setting

I(ℓ) =

∫ ∞

m0

ℓ(m)e−β(m−m0)dm, (B.5)

Ĩ(ℓ) =

∫ ∞

m0

ℓ(m)e−2β(m−m0)dm, (B.6)

equation (B.3) can be rewritten as

K1ℓ(m
′) =κβea(m

′−m0)
[
1 + C1

(
1− 2e−(β−a)(m′−m0)

) ]
I(ℓ)

− 2C1κβe
a(m′−m0)

(
1− 2e−(β−a)(m′−m0)

)
Ĩ(ℓ)

=κβea(m
′−m0)

[
I(ℓ) + C1

[
I(ℓ)− 2 Ĩ(ℓ)

]]

− 2C1κβe
−(β−2a)(m′−m0)

[
I(ℓ)− 2Ĩ(ℓ)

]
.
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The above expression shows that the eigenfunctions are necessarily of the
form

ℓ1(m
′) = α1κ e

a(m′−m0) + α2κ e
(2a−β)(m′−m0) = α1̺a(m

′) + α2̺2a−β(m
′),
(B.7)

where ̺ϑ(m
′) = κ eϑ(m

′−m0) is the productivity law of exponent parameter ϑ.
When we take

ℓ(m) = ̺ϑ(m) = κ eϑ(m−m0), with β > ϑ, (B.8)

then

I(ℓ) =

∫ ∞

m0

κe−(β−ϑ)(m−m0) dm =
κ

β − ϑ
(B.9)

and

Ĩ(ℓ) =

∫ ∞

m0

κe−(2β−ϑ)(m−m0) dm =
κ

2β − ϑ
, (B.10)

so that the operator K1 can be easily computed:

K1ℓ(m
′) =κβea(m

′−m0)

[
κ

β − ϑ
+ C1

( κ

β − ϑ
− 2κ

2β − ϑ

)]

− 2C1κβe
(2a−β)(m′−m0)

( κ

β − ϑ
− 2κ

2β − ϑ

)

=β

[
κ

β − ϑ
+ C1

ϑκ

(β − ϑ)(2β − ϑ)

]
̺a(m

′)

− 2β C1
ϑκ

(β − ϑ)(2β − ϑ)
̺2a−β(m

′).

Let’s notice that, since ϑ is equal to a or 2a−β, the condition β > ϑ reduces
to β > a. We have then obtained the second condition for the non-explosion
of the process in (4.4).

Now, it follows that a function as in (B.7) is an eigenfunction of K1, with
eigenvalue η̃, if and only if

η̃
(
α1̺a + α2̺2a−β

)
=K1(α1̺a + α2̺2a−β)(m

′)

=α1β

[
κ

β − a
+ C1

aκ

(β − a)(2β − a)

]
̺a(m

′)

− α12β C1
aκ

(β − a)(2β − a)
̺2a−β(m

′)

+ α2β

[
κ

2(β − a)
+ C1

(2a− β)κ

2(β − a)(3β − 2a)

]
̺a(m

′)

− α22β C1
(2a− β)κ

2(β − a)(3β − 2a)
̺2a−β(m

′). (B.11)
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Setting

ηa(β) = κ
β

β − a

in (B.11), we can then write

η̃
(
α1̺a + α2̺2a−β

)
=

[
α1ηa(β)

[
1 + C1

a

2β − a

]
+ α2

ηa(β)

2

[
1 + C1

2a− β

3β − 2a

]]

·̺a(m′)−
[
2α1ηa(β)C1

a

2β − a
+ α2 ηa(β)C1

2a− β

3β − 2a

]
̺2a−β(m

′).

From the above computation it follows that




η̃α1 = ηa(β)

[
1 + C1

a
2β−a

]
α1 +

ηa(β)
2

[
1 + C1

2a−β
3β−2a

]
α2

η̃α2 = −ηa(β)2C1
a

2β−a
α1 − ηa(β)C1

2a−β
3β−2a

α2.

Setting

x1 = C1
a

2β − a
, y1 = C1

2a− β

3β − 2a
, (B.12)

we have to find the solution of det(A− η̃I) = 0, where I is the identity matrix
and

A =



ηa(β) [1 + x1]

ηa(β)
2

[
1 + y1

]

−ηa(β)2x1 −ηa(β)y1


 .

Setting also η̃ = ηa(β)η, it holds

det(A− η̃I) = 0 ⇔ det(A− ηI) = 0

and then we will work with the matrix

A =




[1 + x1]
1
2

[
1 + y1

]

−2x1 −y1


 .

We have

det(A− ηI) = −(1 + x1 − η)(y1 + η) + x1(1 + y1)

= (η − (x1 − y1))(η − 1),
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from which it follows that

η(1) = x1 − y1

η(2) = 1.

As a consequence, recalling (B.12), the eigenvalues η̃(1), η̃(2) ∈ R are




η̃(1) = ηa(β) · [x1 − y1] = ηa(β)C1
2β(β−a)

(2β−a)(3β−2a)

η̃(2) = ηa(β) · 1 = ηa(β) = κ β
β−a

.

(B.13)

In order to have η̃(1) < η̃(2) < 1, we have to impose the last condition for the
non-explosion of the process in (4.4), that is κ β

β−a
< 1. Then, the conditions

for the non-explosion remain the same as for the classical ETAS, in fact we
recall that η = ηa(β) = κ β

β−a
.

The respective row eigenvectors (α1, α2) can be derived from the system




ηα1 = [1 + x1]α1 +
1
2
[1 + y1]α2

ηα2 = −2x1α1 − y1α2.

In particular, for the eigenvalue η̃ = ηa(β)(x1 − y1), that is η = (x1 − y1), we
have 




(x1 − y1)α1 = (1 + x1)α1 +
1
2
(1 + y1)α2

(x1 − y1)α2 = −2x1α1 − y1α2,

from which
α2 = −2α1.

Instead, for the eigenvalue η̃ = ηa(β), that is η = 1, we have



α1 = (1 + x1)α1 +

1
2
(1 + y1)α2

α2 = −2x1α1 − y1α2,

from which
α2 = −2

x1
1 + y1

α1,

where we recall that x1 and y1 are defined in (B.12).
Summarizing, the eigenfunctions are proportional to





ℓ
(1)
1 (m′) ∝ ̺a(m

′)− 2̺2a−β(m
′)

ℓ
(2)
1 (m′) ∝ ̺a(m

′)− 2 C1a(3β−a)
(2β−a)[3β−2a+C1(2a−β)]

̺2a−β(m
′).



B.1 Eigenvalues and eigenfunctions of the operators K1 and K2 182

Exactly as before, one can proceed starting from equation (B.2) and then
considering the operator K2 defined in (B.4), i.e.,

K2ℓ(m) =

∫ ∞

m0

̺(m′)p(m|m′)ℓ(m′)dm′

=

∫ ∞

m0

κea(m
′−m0)βe−β(m−m0)

[
1 + C1

(
1− 2e−(β−a)(m′−m0)

)

·
(
1− 2e−β(m−m0)

)]
ℓ(m′)dm′.

In this case one obtains that the integrals (B.5) and (B.6) are

I(ℓ) =

∫ ∞

m0

ea(m
′−m0) ℓ(m′)dm′,

Ĩ(ℓ) =

∫ ∞

m0

e−(β−2a)(m′−m0) ℓ(m′)dm′

and that

K2ℓ(m) =κβe−β(m−m0)
[
I(ℓ) + C1

[
I(ℓ)− 2 Ĩ(ℓ)

]

− κ2βe−2β(m−m0)C1

[
I(ℓ)− 2Ĩ(ℓ)

]
.

Then, the eigenfunctions are necessarily of the form

ℓ2(m) = α1β e
−β(m−m0) + α22β e

−2β(m−m0) = α1pβ(m) + α2p2β(m), (B.14)

where pϑ(m) = ϑ e−ϑ(m−m0) is a Gutenberg-Richter density of decay parame-
ter ϑ. Taking

ℓ(m) = pϑ(m) = ϑ e−ϑ(m−m0), with ϑ > a (and therefore β + ϑ > 2a),

the integrals in (B.9) and (B.10) become respectively

J(ℓ) =

∫ ∞

m0

ϑe−(ϑ−a)(m′−m0) dm′ =
ϑ

ϑ− a
,

J̃(ℓ) =

∫ ∞

m0

ϑe−(β+ϑ−2a)(m′−m0) dm′ =
ϑ

β + ϑ− 2a

and we obtain that

K2pϑ(m) =κ

[
ϑ

ϑ− a
+ C1

ϑ(β − ϑ)

(ϑ− a)(β + ϑ− 2a)

]
pβ(m)

− κC1
ϑ(β − ϑ)

(ϑ− a)(β + ϑ− 2a)
p2β(m). (B.15)
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Let’s notice that, since ϑ is equal to β or 2β, the condition ϑ > a reduces to
β > a.

Now, by similar computations as for K1, one can find that the eigenvalues
are 




η̃(1) = C1 ηa(β)
2(β−a)
2β−a

β
3β−2a

η̃(2) = ηa(β) = κ β
β−a

.

(B.16)

We observe that the above values are exactly the same as for the operator
K2, as expected. We have already explained for the latter operator that, in
order to have η̃(1) < η̃(2) < 1, we have to impose the third condition for the
non-explosion in (4.4). We recall again that η = ηa(β) =

κβ
β−a

.

Finally, the eigen(density)functions in the case of equation (B.2) are pro-
portional to





ℓ
(1)
2 (m) ∝ pβ(m)− [1− C1

β
3β−2a

]ηa(β)
2(β−a)
2β−a

p2β(m)

= pβ(m)− [1− C1
β

3β−2a
]κ 2β

2β−a
p2β(m)

ℓ
(2)
2 (m) ∝ pβ(m).

(B.17)

B.2 Finiteness of the mean cluster size

In the case of the operatorK1, one can analyze the eigenfunctions coefficients
when the process evolves, as in [Zhuang, 2002]. More precisely, starting from
the function ̺a(·), we can consider the evolution of the equation

ℓ(m) = ϑ1̺a(m) + ϑ2̺2a−β(m)

after n steps, i.e.,

K
(n)
1 ℓ(m) = ϑn1̺a(m) + ϑn2̺2a−β(m)

and then compute (ϑn1 , ϑ
n
2 ). To do that, we observe that we can write the

expected number of triggered events per triggering shock in terms of the
operatorK1 as follows. Using the notations as in Chapter 4, we can write that
the expected value of the number N tr

i (R2) of all the triggered events generated
by the spontaneous shock (Si = s,Mi = m), with N tr,n

i (R2) indicating its nth

generation, is

E

[
N tr
i (R2)

∣∣∣Si = s,Mi = m
]
= E

[
∞∑

n=1

N tr,n
i (R2)

∣∣∣Si = s,Mi = m

]
. (B.18)
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Now, for 1(m) = 1[m0,∞)(m), it holds

E

[
N tr,1
i (R2)

∣∣∣Si = s,Mi = m
]
=

∫ ∞

s

dt

∫ ∞

m0

Φ(t− s)̺(m)p(m′|m)dm′

=

∫ ∞

m0

̺(m)p(m′|m)dm′

= ̺(m)

= K11(m),

E

[
N tr,2
i (R2)

∣∣∣Si = s,Mi = m
]
=

∫ ∞

s

dt1

∫ ∞

m0

dm1

∫ ∞

t1

dt2

∫ ∞

m0

Φ(t1 − s)

· Φ(t2 − t1)̺(m)p(m1|m)̺(m1)p(m2|m1)dm2

=

∫ ∞

m0

dm1̺(m)p(m1|m)

∫ ∞

m0

̺(m1)p(m2|m1)dm2

=

∫ ∞

m0

dm1̺(m)p(m1|m)K11(m1)

=

∫ ∞

m0

dm1̺(m)p(m1|m)̺(m1)

=K1 (K11) (m)

=K
(2)
1 1(m)

and so on. Then,

E

[
N tr,n
i (R2)

∣∣∣Si = s,Mi = m
]
= K

(n)
1 1(m) = K

(n−1)
1 ̺(m).

Given the matrix U such that

A = UDU−1

with

D =




(x1 − y1) 0

0 1


 ,

where x1 and y1 are defined above in (B.12), we consequently have that

K
(n−1)
1 ̺(m)ℓ(m) = ηn−1[UDn−1U−1]




ϑ1

ϑ2


 =




ϑn1

ϑn2


 .

We recall that η is the branching ratio and is equal to ηa(β) =
κβ
β−a

.
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To the aim of finding explicitly



ϑn1

ϑn2


 ,

let’s start saying that U is the matrix whose columns are the eigenvectors of
the two eigenvalues (η(1), η(2)) = (x1 − y1, 1) relative to A, i.e.,

U =




1 1

−2 − 2x1
1+y1




and then

U−1 =
1

1 + y1 − x1




−x1 −1+y1
2

1 + y1
1+y1
2


 .

As a consequence, setting

z1 = x1 − y1 = C1
2β(β − a)

(2β − a)(3β − 2a))
,

one obtains

UDn−1U−1 =
1

1− z1




1 + y1 − x1z
n−1
1 −1+y1

2
(1− zn−1

1 )

−2x1(1− zn−1
1 ) (1 + y1)z

n−1
1 − x1


 .

We observe that |z1η| = z1η = η̃(1) < 1.
Finally, since ̺a corresponds to the vector




ϑ11

ϑ12


 =




1

0


 .

we obtain that



ϑn1

ϑn2


 = ηn−1(UDn−1U−1)




1

0


 =




1+y1−x1z
n−1
1

1−z1
ηn−1

−2x1(1−z
n−1
1 )

1−z1
ηn−1




=




1+y1
1−z1

[
η̃(2)
]n−1 − x1

1−z1

[
η̃(1)
]n−1

−2x1
1−z1

[
η̃(2)
]n−1

+ 2x1
1−z1

[
η̃(1)
]n−1


 .
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Now, due to the fact that both the eigenvalues η̃(1), η̃(2) are less than one,
we can conclude that the series in (B.18) is finite, i.e., setting

γ1 =
∞∑

n=1

(
1 + y1 − x1z

n−1
1

1− z1
ηn−1

)
=

∞∑

n=1

(
1 + y1
1− z1

[
η̃(2)
]n−1 − x1

1− z1

[
η̃(1)
]n−1

)
,

(B.19)

γ2 =

∞∑

n=1

(−2x1(1− zn−1
1 )

1− z1
ηn−1

)
=

∞∑

n=1

( −2x1
1− z1

[
η̃(2)
]n−1

+
2x1

1− z1

[
η̃(1)
]n−1

)
,

(B.20)

it holds

E

[ ∞∑

n=1

N tr,n
i (R2)

∣∣∣Si = s,Mi = m
]
=

∞∑

n=1

[̺a(m)ϑn1 + ̺2a−β(m)ϑn2 ]

=̺a(m)

∞∑

n=1

ϑn1 + ̺2a−β(m)

∞∑

n=1

ϑn2

=̺a(m)γ1 + ̺2a−β(m)γ2 <∞.

Consequently,

E

[
N tr
i (R2)

∣∣∣Si = s
]
=

∫ ∞

m0

[γ1̺a(m) + γ2̺2a−β(m)] pβ(m)dm

= γ1

∫ ∞

m0

̺a(m)pβ(m)dm+ γ2

∫ ∞

m0

̺2a−β(m)pβ(m)dm

= η
[
γ1 +

γ2
2

]

=
∞∑

n=1

ηn
[
1 + y1 − x1z

n−1
1

1− z1
− x1(1− zn−1

1 )

1− z1

]

=

∞∑

n=0

ηn − 1

=
η

1− η
<∞,

where the last three equalities follows from (B.19), (B.20) and the fact that
z1 = x1 − y1.

Recalling Remark 3 in Chapter 1, we can then conclude that the resulting
process does not explode, in fact the mean cluster size is finite.



Appendix C

Time derivatives of the

probability P{τ} of having zero

observable events in [0, τ ]

In this appendix we include the calculations we made to obtain the second
time derivative of the probability P{τ} = e−̟L(0;τ) in the case mc ≥ m0.
This derivative is indeed useful in order to get the interevent time density
Finter(τ) by means of equation (6.24). We notice that in this appendix we
are heuristically assuming that, if

L̂(0; τ) =

[
τQ̃ + η[H − L]A(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
,

that is the approximation obtained for L(0; τ) in the case mc ≥ m0 when
considering the further approximation for small τ , it holds also

dkL(0; τ)

dτk
≈ dkL̂(0; τ)

dτk
,

for k = 1, 2.
Let’s then proceed with the computations. Using equations (6.25) and (6.79)

we have

d

dτ

(
− lnP{τ}

̟

)
=
d

dτ
L(0; τ)

≈
[
Q̃ + η[H − L]a(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]

+

[
τQ̃ + η[H − L]A(τ)

]
d

dτ

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
.

187



188

It follows that

dP{τ}
dτ

≈− e−̟L(0;τ)

{[
Q̃+̟η[H − L]a(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]

+

[
τQ̃ +̟η[H − L]A(τ)

]
d

dτ

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]}
.

The second derivative of P{τ} with respect to τ is then

d2P{τ}
dτ 2

=
d2e−̟L(0;τ)

dτ 2
(C.1)

≈ e−̟L(0;τ)
d

dτ
̟L(0; τ)

{[
Q̃+̟η[H − L]a(τ)

][
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]

+

[
τQ̃ +̟η[H − L]A(τ)

]
d

dτ

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]}

− e−̟L(0;τ)

{
−̟η[H − L]Φ(τ)

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]

+

[
Q̃ +̟η[H − L]a(τ)

]
d

dτ

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]

+

[
Q̃ +̟η[H − L]a(τ)

]
d

dτ

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]

+

[
τQ̃ +̟η[H − L]A(τ)

]
d2

dτ 2

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]}

= e−̟L(0;τ)

{[(
Q̃ +̟η[H − L]a(τ)

)(
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

)

+

(
τQ̃ +̟η[H − L]A(τ)

)(
Φ(τ)(δ − η)

(1− η)[1− δ + δa(τ)]2

)]2

−
[
−̟η[H − L]Φ(τ)

(
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

)

+ 2

(
Q̃+̟η[H − L]a(τ)

)(
Φ(τ)(δ − η)

(1− η)[1− δ + δa(τ)]2

)

+

(
τQ̃ +̟η[H − L]A(τ)

)
(δ − η)Φ(τ)[(θ + 1)(δ − 1) + δa(τ)(θ − 1)]

(1− η)(τ + c)[1− δ + δa(τ)]3

]}
.

(C.2)
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The previous formula has been obtained using the following results:

da(τ)

dτ
=

d

dτ

[
1−

∫ τ

0

Φ(x)dx

]

= −Φ(τ);

d

dτ

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
=
d

dτ

[
δ − η + η[1− δ + δa(τ)]

δ(1− η)[1− δ + δa(τ)]

]

=
δ − η

δ(1− η)

d

dτ

[
1

1− δ + δa(τ)

]

=
Φ(τ)(δ − η)

(1− η)[1− δ + δa(τ)]2
;

in the end

d2

dτ 2

[
1− η + ηa(τ)

(1− η)[1− δ + δa(τ)]

]
=
δ − η

1− η

d

dτ

[
Φ(τ)

[1− δ + δa(τ)]2

]

=
δ − η

(1− η)[1− δ + δa(τ)]4

{
−Φ(τ)

θ + 1

τ + c
[1− δ + δa(τ)]2

+ 2Φ(τ)[1− δ + δa(τ)]δΦ(τ)

}

=
(δ − η)Φ(τ)

(1− η)[1− δ + δa(τ)]3

{
θ + 1

τ + c
[−1 + δ − δa(τ)] + 2δΦ(τ)

}

=
(δ − η)Φ(τ)

(1− η)(τ + c)[1− δ + δa(τ)]3

[
(θ + 1)(δ − 1)− δθa(τ)− δa(τ) + 2δθa(τ)

]

=
(δ − η)Φ(τ)[(θ + 1)(δ − 1) + δa(τ)(θ − 1)]

(1− η)(τ + c)[1− δ + δa(τ)]3
.

The last computation has been obtained since, recalling equation (6.3) and (6.15),
we have

dΦ(τ)

dτ
= θcθ

d

dτ
(τ + c)−θ−1

= −θcθ(θ + 1)(τ + c)−θ−2

= −Φ(τ)
θ + 1

τ + c

and

Φ(τ) =
θa(τ)

τ + c
.



Appendix D

Algorithms

The codes of the programs of the first and the second kinds of analysis, the
choice of the time amplitude δ∗ and the new simulation according to the
hypothesis of correlated magnitudes are available at https://www.dropbox.
com/s/cazsfi7kbf196bl/Algorithms.pdf?dl=0. We recall that the first
three codes have been written in MATLAB language; the latter has instead
been written in FORTRAN language.
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