Probability ACSAI 2023-24 L. Bertini and V. Silvestri

Week 6

Exercise 1. (COUPON COLLECTOR) Your goal is to collect n coupons for your album. What is the probability that you will do so by buying k coupons, $k \ge n$? You may use the uniform probability measure on the k-ple of coupons you buy. [Hint: use the inclusion/exclusion principle]

Exercise 2. An urn contains a red ball and a green ball. One ball is picked at random from the urn, its colour is observed, and the ball is placed back in the urn together with a new ball of the same colour. This procedure is repeated two more times. Let R_i , for i = 1, 2, 3, denote the event "the *i*-th picked ball is red".

- 1) Compute $P(R_1|R_2)$.
- 2) Compute $P(R_3|R_2)$.
- 3) Compute $P(R_1|R_3)$.

Exercise 3. Write a random word made of 10 characters by choosing a character uniformly at random 10 times independently, from an alphabet of 26 characters. Let X be the random variable that counts the number of A's in the resulting word. What is the distribution of X? Compute E(X), that is the average number of A's in a random word of length 10. How about repeating the experiment with a word of length N?

Exercise 4. A fair 6-faced die is tossed, and let X denote the observed value.

- 1) Compute the probability distribution of X.
- 2) Compute the expected value of X.
- 3) Compute the variance of X.

Answer the above questions in the case of an *n*-faced die, $n \in \mathbb{N}$.

Exercise 5. Toss two fair 6-faced dice, and let X denote the minimum between the observed values.

- 1) Compute the probability distribution of X.
- 2) Compute the expected value of X.

Exercise 6. A box contains 10 transistors, of which 3 are broken. You check one transistor at a time (without replacement) until you find a broken one. Compute the expected value of the number of checked transistors.

Exercise 7. Show that if a random variable $X \ge 0$ takes integer values, then

$$E(X) = \sum_{k=1}^{\infty} P(X \ge k).$$

Exercise 8. Consider a multiple choice exam with the following rules. There are a total of 10 questions, and for each question there are 4 possible answers, of which exactly one is correct. The evaluation algorithms is as follows: each correct answer gets +3 marks, and each wrong answer gets -1 mark. Alice did not study, so she answers all 10 questions at random.

- 1) Compute the probability that Alice passes the exam (i.e. she scores at least 18/30).
- 2) Compute Alice's expected final grade.
- 3) Compute the variance of Alice's final grade.