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Abstract. We study, in two space dimensions, the heat equation with a random potential that
is a white noise in space and time. We introduce a regularization of the noise and prove that,
by a suitable renormalization of the coupling coefficient, the covariance has a non-trivial limit
when the regularization is removed. The limit is described in terms of a two-body Schrödinger
operator with singular interaction.

1. Introduction

We consider the linear stochastic partial differential equation (SPDE)

dψt = 1
21ψt dt +

√
0ψt dWt (1.1)

whereψt = ψt(x), t > 0, x ∈ Rd , is a scalar field onRd , 1 is the Laplacian,0 is a positive
constant andWt = Wt(x) is a cylindrical Wiener process whose covariance is

E(Wt(x)Wt ′(x
′)) = min{t, t ′}δ(x − x ′). (1.2)

Equation (1.1), often called the stochastic heat equation (SHE), arises in several physical
problems. It is satisfied by the partition function of a directed polymer in a (d + 1)-
dimensional random medium modelled by the potentialẆt (x). It is, furthermore, related
via the Cole–Hopf transformation to the Kardar–Parisi–Zhang (KPZ) equation [10] for the
random growth of interfaces and to the Burgers equation with conservative additive noise.
The problem of directed polymers in a random medium is one of the simplest problems
in the theory of disordered systems which undergo a phase transition from a strong- to
a low-disorder regime. In dimensionsd > 2 the existence of a low-disorder phase has
been proven by showing that under a certain intensity of disorder, as the fluctuations of
the partition function are small, the annealed and quenched free energy are equal [8]. The
renormalization group analysis indicates that ford = 1, 2 even a weak random environment
becomes effectively strong at long times. While ind = 1 the absence of a phase transition is
expected [11], ind = 2 numerical simulations indicate the existence of a phase transition [6].
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A rigorous analysis of the SHE is not trivial as the singularity of the noise
introduces small-scale singularities (ultraviolet divergences). We also point out that, since
equation (1.1) contains non-trivial diffusion, the interpretation of the stochastic differential
ψt dWt presents the well known ambiguities, for example Ito or Stratonovich. The standard
approach to treat the ultraviolet divergences is the introduction of a regularization followed
by a suitable renormalization of the coupling coefficients. We thus introduce a mollification
of the Wiener process and try to prove that the solution of the corresponding regularized
(1.1), after a suitable renormalization, has a non-trivial limit when the regularization is
removed. In one space dimension,d = 1, it is not too difficult to complete the above task.
The regularized process can be expressed through a Feynman–Kac formula; after a simple
renormalization (the Wick exponential), a meaningful expression is obtained when the cut-
off is removed. The renormalized Feynman–Kac formula defines a process with continuous
(in space and time) trajectories; it solves equation (1.1) when the stochastic differential is
interpreted in the Ito sense [3]. In the analysis of (1.1) via the replica method [9] the Ito
choice corresponds to the fact that the self-interactions are ignored.

In this paper we consider the two-dimensional case,d = 2, where stronger ultraviolet
divergences are present. A renormalization of the coupling constant0 is then needed. We
exhibit a function0 = 0(ε) (whereε is the cut-off), vanishing asε → 0, such that the
covariance of the regularized field converges as the cut-off is removed. The limit is explicitly
described and its long-time behaviour indicates that the partition function of the directed
polymer has large fluctuations even for weak disorder, as predicted by the renormalization
group analysis. The above results are obtained by using the theory of Schrödinger operators
with point interaction in two dimensions [2].

2. Notation and results

Let S(Rn) be the Schwartz space ofC∞ functions of rapid decrease; its topological dual,
the Schwartz space of distributions, isS ′(Rn). We denote byHm(Rn) the Sobolev space
of orderm; we recall that its norm is defined by‖φ‖m := ‖(1− 1)m/2φ‖, where‖ · ‖ is
the norm inL2(Rn). The canonical pairing betweenS ′(R2) andS(R2) is denoted by(·, ·).
The paring betweenS ′(R4) and S(R4) is instead indicated by((·, ·)). We finally define
� := C(R+;S ′(R2)).

Let Wt , t > 0, be the cylindrical Wiener process onL2(R2) which is canonically
realized on the filtered probability space (�,F ,Ft ,P ). HereF is the Borelσ -algebra,Ft
the canonical filtration andP is the Gaussian measure with covariance

E(Wt(f )Wt ′(g)) = t ∧ t ′(f, g) (2.1)

wheref, g ∈ S(R2) are test functions anda ∧ b = min{a, b}.
We introduce a mollification ofWt as follows. Letj ∈ S(R2) be a probability density

and denote byJ = j ∗j the probability density for the sum of two independentj -distributed
random variables. Forε > 0, we setjε(x) := ε−2j (ε−1x) and define

Wε
t (x) := Wt(jε(x − ·)) (2.2)

its covariance is given by

E(Wε
t (x)W

ε
t ′ (x
′)) = t ∧ t ′Jε(x − x ′). (2.3)

For thepink noiseẆ ε
t the informal SHE (1.1) can be written as an Ito SPDE

dψε
t = 1

21ψ
ε
t dt +

√
0ψε

t dWε
t

ψε
0 = ϕ. (2.4)

For simplicity we shall assume that the initial conditionϕ ∈ L2(R2).
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As Wε
t (x) is regular in the space variable, it is easy to verify that the SPDE (2.4) has

a unique global solutionψε
t = ψε

t (x) which is a.s. smooth (C∞(R2)) in x for eacht > 0.
For f ∈ S(R2), by setting

ψε
t (f ) :=

∫
dx f (x)ψε

t (x) (2.5)

we regardψε, ε > 0 as a family of processes on the path space�. Our first result concerns
the weak convergence of this family.

In order to obtain the convergence result, the ‘coupling constant’0 cannot be kept fixed,
but has to vanish with an appropriate rate asε→ 0. By renormalizationwe mean just this.
There is still, however, a ‘free’ parameter which measures the intensity of the noise, which
we call β. Accordingly, therenormalizing function0 will be a function of two variables,
ε andβ.

Theorem 2.1. Let 0 = 0β(ε) satisfy

0β(ε) = 1

hε
+
(

1

4π
log

β

2
+ A

)
1

h2
ε

+ o
(

1

h2
ε

)
(2.6)

whereβ > 0, hε := (2π)−1 logε−1 and

A = A(J ) := 1

2π

∫
dx dx ′J (x)J (x ′)

[
κ + log

( |x − x ′|√
2

)]
(2.7)

whereκ = 0.577 2157. . . is the Euler constant.
Then the finite-dimensional distributions of{ψε} converge weakly along subsequences.

We note that, starting from the finite-dimensional distributions in theorem 2.1, one can
obtain a process associated with the two-dimensional SHE via the standard Kolmogorov
construction.

In theorem 3.2 (see the next section) we show that the covariance of the random field
ψε
t converges to a non-trivial limit asε → 0. In particular, any limit point of{ψε} has a

second moment. The proof is based on an approximation of the Schrödinger operators with
point interaction in terms of scaled short-range Hamiltonians [2, theorem I.5.5] in which
expression (2.6) is found. We note, however, that the correct form of0β(ε) can also
be ‘guessed’ from formal perturbation theory in a power series of the ‘physical coupling
constant’β. This perturbation theory is related to the renormalization of the local times
of two-dimensional Brownian motion; see [7] where a detailed combinatoric analysis is
performed. In [12] a simplified approach is presented. The latter uses, however, a very
specialJ which is not of the formJ = j ∗ j .

3. The limiting covariance

In this section we show that the covariance of the processψε
t converges asε → 0. We

stress here that the convergence does not depend on the subsequence. We will use the fact
that the two-body Schrödinger operator with point interaction can be obtained as a norm
resolvent limit of scaled short-range Hamiltonians [2].

We recall first some results on the theory of Schrödinger operators with point interaction
in two dimensions [1, 2]. Let

Gλ := (−1+ λ)−1 λ > 0 (3.1)
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be the resolvent of the Laplacian1 on R2. Its integral kernel is given by

Gλ(x) =
∫ ∞

0
dt e−λtp2t (x) x 6= 0 (3.2)

where, fort > 0, x ∈ R2

pt(x) := 1

2πt
exp

{
−|x|

2

2t

}
(3.3)

is the heat kernel.
For eachβ > 0 we introduce the Schrödinger operator with singular interaction at the

origin −1β on L2(R2). In [2] this is constructed by classifying the (one-parameter) self-
adjoint extensions of−1 on the minimal domainC∞0 (R2\{0}) of the infinite differential
function with compact support away from the origin. According to [2, theorem I.5.3], its
domainD(−1β) ⊂ L2(R2) consists of elementsg of the type

g(x) = fλ(x)+ 4π

log(λ/β)
fλ(0)Gλ(x) x 6= 0 (3.4)

wherefλ ∈ H2(R2) = D(−1) andλ ∈ R+\{β}. The above decomposition is unique. We
recall that, by Sobolev embedding,H2(R2) ⊂ C(R2), so thatfλ(0) is meaningful.

For β > 0, g ∈ D(−1β), the operator−1β is then defined by

−1βg = −1fλ − 4πλ

log(λ/β)
fλ(0)Gλ. (3.5)

Its spectrum is given by the isolated eigenvalue−β and the positive half-axes. We warn
the reader that ourβ is related to what is calledα in [2] by α = −[log(

√
β/2)+ κ]/2π .

We finally introduce the two body-Schrödinger operator with point interaction. Given
−1β it is enough to separate the free motion of the centre of mass. We adopt the so-called
passive viewpoint. Let R : R2× R2 7→ R2× R2 be defined by

R(x, y) := ( 1
2(x + y), x − y) (3.6)

which induces the unitary operatorU on L2(R2× R2)

(UF)(x, y) = F(R(x, y)). (3.7)

We then introduceHβ as the operator onL2(R4) = L2(R2) ⊗ L2(R2) defined on the
dense domain

D0(Hβ) := U−1D(−1)⊗D(−1β) (3.8)

by

Hβ := U−1(− 1
41⊗ 1+ 1⊗−1β)U. (3.9)

We note thatHβ is closable and essentially self-adjoint onD0(Hβ).
In the following proposition we summarize some results on the semigroup generated by

1β [1, 2].

Proposition 3.1. The operator−1β generates a bounded self-adjoint semigroupP
β
t =

exp{t1β} on L2(R2). It has an integral kernelPβt (x, y) whose Laplace transform is given
by

Rλ(x, y) =
∫ ∞

0
dt e−λtP βt (x, y) = Gλ(x − y)+ 4π

log(λ/β)
Gλ(x)Gλ(y) (3.10)

which is analytical in the complex half-plane Reλ > β.



The two-dimensional stochastic heat equation 619

Furthermore, the inverse Laplace transform can be expressed, forx, y 6= 0, as

P
β
t (x, y) = p2t (x − y)+

∫ t

0
dτ

1

2πτ
e−(|x|

2+|y|2)/4τK0

( |x‖y|
2τ

)
×
∫ ∞

0
du
βu(t − τ)u−1

0E(u)
(3.11)

which is analytic fort > 0. Here0E is the Euler0-function andK0 is the modified Bessel
function.

We introduce the semigroup generated byHβ on L2(R4) as

e−tHβ := U−1 et1/4⊗ et1βU (3.12)

where et1/4 is the heat semigroup and et1β has integral kernel given by (3.11).
The main result in this section is as follows.

Theorem 3.2. Let ϕ ∈ L2(R2) be the initial datum for (2.4),F ∈ L2(R4). Then for each
t ∈ R+

lim
ε→0

E(((ψε
t ⊗ ψε

t , F ))) = ((ϕ ⊗ ϕ, e−tHβF )). (3.13)

The convergence is, furthermore, uniform fort in compact subsets ofR+.

Remark. Theorem 3.2 is related to the aforementioned problem of the existence of a
renormalized exponential momentfor the local time of planar Brownian motion. A simple
approximation argument shows that (3.13) also holds forϕ = 1, although this case is not
included in the assumptionϕ ∈ L2(R2). By writing a Feynman–Kac representation for
ψε
t (x), its covariance can then be expressed in terms of a local time’s exponential moment,

see [3]. Equations (3.13) and (3.11) then imply forx 6= 0

lim
ε→0

Eϕ=1(ψ
ε
t (0)ψ

ε
t (x)) = lim

ε→0
E

(
exp

{
0β(ε)

∫ t

0
dsJε(x +

√
2Bs)

})
= 1+ 4π

∫ t

0
dτ
∫ ∞

0
du
βu(t − τ)u
0E(u+ 1)

p2τ (x) (3.14)

whereBt , t > 0, is a planar Brownian motion started at the origin. The second term on the
right-hand side of (3.14) diverges ast →∞ and, therefore, indicates that in the long-time
limit the partition function of the directed polymer has large fluctuations even for smallβ.

Proof of theorem 3.2. Fix ε > 0. We note thatx 7→ ψεt (x) is smooth (C∞) if t > 0.
Recalling thatψε

t solves (2.4) we can apply Ito’s formula and get

d(ψε
t (x)ψ

ε
t (y)) = −Hε

βψ
ε
t (x)ψ

ε
t (y) dt + dNε

t (x, y) (3.15)

whereNε
t (x, y) is a martingale term andHε

β is the two-body Schr̈odinger operator on
L2(R2× R2) given by

Hε
β = − 1

21x − 1
21y − 0β(ε)Jε(x − y) (3.16)

which is essentially self-adjoint onH2(R4) sinceJε ∈ S(R2). We recall that the function
0β(ε) is given by (2.6).

Let

Cεt (x, y) := E(ψε
t (x)ψ

ε
t (y)). (3.17)
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By taking the expectation in (3.15) we findCεt solves

∂tC
ε
t = −Hε

βC
ε
t Cε0 = ϕ ⊗ ϕ. (3.18)

By a change of coordinates, we have

Hε
β = U−1(− 1

41⊗ 1+ 1⊗−1ε
β)U (3.19)

where−1ε
β is the Schr̈odinger operator given by

−1ε
β = −1− 0β(ε)Jε(x).

Hence

Cεt = U−1(εt1/4⊗ et1
ε
β )UCε0 = e−tH

ε
β ϕ ⊗ ϕ (3.20)

and therefore

E(((ψε
t ⊗ ψε

t , F ))) = ((ϕ ⊗ ϕ, e−tH
ε
β F )). (3.21)

In [2, theorem I.5.5] it is proven that−1ε
β converges to−1β , as an operator onL2(R2),

in the norm resolvent sense. Using the representation of the resolvent in terms of the
semigroup and the fact thatU andU−1 are bounded operators onL2(R2)⊗L2(R2) we get
thatHε

β converges toHβ in the norm resolvent sense onL2(R2) ⊗ L2(R2). This implies

that e−tH
ε
β converges strongly to e−tHβ in L2(R4) uniformly for t in compact subsets ofR+,

see for example [13, problem VIII.21]. �

Remark. To extend the above argument to then-point correlation functions (n > 2), a
theory ofn-particle Schr̈odinger operators with point interaction is needed. This has been
constructed in [5] where it is also shown that the operators generate a bounded semigroup.
Unfortunately, the (non-local) regularization scheme used in [5] is not compatible with our
underlying stochastic equation (2.4).

4. Convergence of the finite-dimensional distributions

In this section we obtain some uniform bounds and conclude the proof of theorem 2.1.

Lemma 4.1. For eachβ > 0, T > 0 there exists a constantc = c(β, T ) such that for any
ϕ ∈ L2(R2), f ∈ H2(R2)

lim sup
ε→0

E

(
sup
t6T

ψε
t (f )

2

)
6 c‖ϕ‖2‖f ‖2

2. (4.1)

Proof. From theorem 3.2 it follows that

lim
ε→0

sup
t6T

E(ψε
t (f )

2) = sup
t6T
((ϕ ⊗ ϕ, e−tHβ f ⊗ f )) 6 sup

t6T
‖ϕ ⊗ ϕ‖

×‖e−tHβ f ⊗ f ‖ 6 eβT ‖ϕ‖2‖f ‖2 (4.2)

where we used the fact that et1β has norm eβt [2].
We now want to squeeze the sup inside the expectation. Let us define

Aεt (f ) := 1

2

∫ t

0
ds(ψε

s ,1f )

Mε
t (f ) := (ψε

t , f )− Aεt (f )− (ϕ, f ) (4.3)
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and note that by Ito’s formulaMε
t (f ) is a square integrable martingale. By Doob’sL2

inequality we thus get

E

(
sup
t6T

ψε
t (f )

2

)
6 3

[
(ϕ, f )2+E

(
sup
t6T

Aεt (f )
2

)
+ 4E(Mε

T (f )
2)

]
6 3

[
13(ϕ, f )2+E

(
sup
t6T

Aεt (f )
2

)
+ 12E(ψε

T (f )
2)+ 12E(AεT (f )

2)

]
. (4.4)

By Cauchy–Schwartz inequality we have

sup
t6T

[ ∫ t

0
ds(ψε

s ,1f )

]2

6 T
∫ T

0
ds(ψε

s ,1f )
2

and (4.1) follows by (4.2) and (4.4). �

Proof of theorem 2.1. Let 0 6 t1 6 · · · 6 tn = T and fi ∈ S(R2), i = 1, . . . , n. From
lemma 4.1 there exists a constantc depending onn, T and{fi}ni=1 such that

lim sup
ε→0

E

(
sup
t6T

n∑
i=1

ψε
t (fi)

2

)
6 c

and, therefore, by Chebyschev inequality,ψε
ti
(fi), i = 1, . . . , n, is a tight family of random

variables onRn. By Prohorov’s theorem (see e.g. [4]) we can thus find a subsequence
εk → 0 such that the joint distribution of{ψεk

ti (fi)}ni=1 is weakly convergent. �

Our last result establishes the uniform (inε) continuity (in a mean-square sense) of the
mapt 7→ ψε

t (f ) for a fixedf ∈ S(R2). More precisely, we have the following proposition.

Proposition 4.2. For eachβ > 0 and any initial datumϕ ∈ L2(R2), f ∈ S(R2)

lim
δ→0

lim sup
ε→0

sup
t6T

E(ψε
t+δ(f )− ψε

t (f ))
2 = 0. (4.5)

Proof. Let us define

Dε
t (F ) :=

∫ t

0
ds((ψε

s ⊗ ψε
s ,H

ε
βF )).

Let δ > 0. By using the fact thatMε
t (f ) (defined in (4.3)) andψε

t (f )
2−ψε

0(f )
2+Dε

t (f⊗f )
are martingale, we get

E{(ψε
t+δ(f )− ψε

t (f ))
2|Ft } = E{−Dε

t+δ(f ⊗ f )+Dε
t (f ⊗ f )

−2(Aεt+δ(f )− Aεt (f ))ψε
t (f )|Ft }. (4.6)

The second term on the right-hand side of (4.6) can be easily bounded by noticing that

|Aεt+δ(f )− Aεt (f )|2 6
1

2
δ

∫ T+δ

0
dt (ψε

t , 1f )
2

and then using (4.2).
We next bound the first term. Applying the Markov property ofψε

t we have

E{Dε
t+δ(f ⊗ f )−Dε

t (f ⊗ f )|Ft } = Eψεt (D
ε
δ (f ⊗ f )) = Eψεt (ψ

ε
δ (f )

2)− ψε
t (f )

2

= ((ψε
t ⊗ ψε

t , [e−δH
ε
β − 1]f ⊗ f )) (4.7)

where we used again the fact thatψε
t (f )

2 − ψε
0(f )

2 − Dε
t (f ⊗ f ) is a martingale in the

second step and the semigroup representation for the covariance ofψε
t (3.21) in the last

identity.
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Taking the expectation value in (4.7), we finally get

E{Dε
t+δ(f )−Dε

t (f )} = ((ϕ ⊗ ϕ, [e−(t+δ)H
ε
β − e−tH

ε
β ]f ⊗ f )). (4.8)

The result now follows using the strong convergence of the semigroup e−tH ε
β uniformly for

t in compact subsets ofR+ for the limit ε → 0, the boundedness of the semigroup e−tHβ
and the dominated convergence theorem for the limitδ→ 0. �
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