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Abstract. We study, in two space dimensions, the heat equation with a random potential that
is a white noise in space and time. We introduce a regularization of the noise and prove that,
by a suitable renormalization of the coupling coefficient, the covariance has a non-trivial limit
when the regularization is removed. The limit is described in terms of a two-bodyp@nber
operator with singular interaction.

1. Introduction

We consider the linear stochastic partial differential equation (SPDE)
dy, = 1Ay, dr + Ty, dW, (1.2)

wherey, = ¥, (x), t > 0,x € R?, is a scalar field ofR?, A is the LaplacianI" is a positive
constant and¥, = W,(x) is a cylindrical Wiener process whose covariance is

E(W,(x)W,(x") = min{t, £'}8(x — x'). (1.2)

Equation (1.1), often called the stochastic heat equation (SHE), arises in several physical
problems. It is satisfied by the partition function of a directed polymer in/ & (1)-
dimensional random medium modelled by the potenitialx). It is, furthermore, related
via the Cole—Hopf transformation to the Kardar—Parisi-Zhang (KPZ) equation [10] for the
random growth of interfaces and to the Burgers equation with conservative additive noise.
The problem of directed polymers in a random medium is one of the simplest problems
in the theory of disordered systems which undergo a phase transition from a strong- to
a low-disorder regime. In dimensiors > 2 the existence of a low-disorder phase has
been proven by showing that under a certain intensity of disorder, as the fluctuations of
the partition function are small, the annealed and quenched free energy are equal [8]. The
renormalization group analysis indicates thatdoe 1, 2 even a weak random environment
becomes effectively strong at long times. Whilelie= 1 the absence of a phase transition is
expected [11], inl = 2 numerical simulations indicate the existence of a phase transition [6].
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A rigorous analysis of the SHE is not trivial as the singularity of the noise
introduces small-scale singularitieslttaviolet divergences We also point out that, since
equation (1.1) contains non-trivial diffusion, the interpretation of the stochastic differential
¥, dW, presents the well known ambiguities, for example Ito or Stratonovich. The standard
approach to treat the ultraviolet divergences is the introduction of a regularization followed
by a suitable renormalization of the coupling coefficients. We thus introduce a mollification
of the Wiener process and try to prove that the solution of the corresponding regularized
(1.1), after a suitable renormalization, has a non-trivial limit when the regularization is
removed. In one space dimensieh= 1, it is not too difficult to complete the above task.
The regularized process can be expressed through a Feynman—Kac formula; after a simple
renormalization (the Wick exponential), a meaningful expression is obtained when the cut-
off is removed. The renormalized Feynman—Kac formula defines a process with continuous
(in space and time) trajectories; it solves equation (1.1) when the stochastic differential is
interpreted in the Ito sense [3]. In the analysis of (1.1) via the replica method [9] the Ito
choice corresponds to the fact that the self-interactions are ignored.

In this paper we consider the two-dimensional case; 2, where stronger ultraviolet
divergences are present. A renormalization of the coupling conEtéthen needed. We
exhibit a functionl" = I'(¢) (wheree is the cut-off), vanishing as — 0, such that the
covariance of the regularized field converges as the cut-off is removed. The limitis explicitly
described and its long-time behaviour indicates that the partition function of the directed
polymer has large fluctuations even for weak disorder, as predicted by the renormalization
group analysis. The above results are obtained by using the theory @fd8aer operators
with point interaction in two dimensions [2].

2. Notation and results

Let S(R") be the Schwartz space 6f* functions of rapid decrease; its topological dual,
the Schwartz space of distributions, $(R"). We denote byH,, (R") the Sobolev space
of orderm; we recall that its norm is defined k|, := ||[(1 — A)"/?¢||, where]|| - || is
the norm inL,(R"). The canonical pairing betwee$i(R?) and S(R?) is denoted by, -).
The paring betwee’ (R*) and S(R*) is instead indicated by(-,-)). We finally define
Q = C(R*; S'(R?)).

Let W,, + > 0, be the cylindrical Wiener process dip(R?) which is canonically
realized on the filtered probability spac®,(F, F;, P). HereF is the Borelo-algebra,F;
the canonical filtration andP is the Gaussian measure with covariance

EW,(/YWr () =t At'(f. 8) (2.1)
where f, g € S(R?) are test functions and A b = min{a, b).
We introduce a mollification o, as follows. Letj € S(R?) be a probability density
and denote by = j x j the probability density for the sum of two independgsdistributed
random variables. Far > 0, we setj,(x) := ¢/ (¢~ 1x) and define

Wi (x) == W, (je(x — ) (2.2)
its covariance is given by
EWx)Wix") =t At'J(x —x). (2.3)

For thepink noisve the informal SHE (1.1) can be written as an Ito SPDE
dyf = JAyf dr + VTy! dwy
Yo =¢. (2.9)
For simplicity we shall assume that the initial conditipre L,(R?).
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As Wf(x) is regular in the space variable, it is easy to verify that the SPDE (2.4) has
a unique global solutiony? = ¥¢(x) which is a.s. smoothd*>(R?)) in x for eachs > 0.
For f € S(R?), by setting

VECS) = / dr FCOPE () (2.5)

we regardy?, ¢ > 0 as a family of processes on the path sp@ceOur first result concerns
the weak convergence of this family.

In order to obtain the convergence result, the ‘coupling consiantinnot be kept fixed,
but has to vanish with an appropriate ratecas- 0. By renormalizationwe mean just this.
There is still, however, a ‘free’ parameter which measures the intensity of the noise, which
we call 8. Accordingly, therenormalizing functionl" will be a function of two variables,
& andp.

Theorem 2.1. Let I' = I'g(e) satisfy

1 (1 B 1 1
whereg > 0, h, := (2r)"tloge~ and
_ . 1 ' , [x — x|
A=AW) '—g/ d dx J(x)J(x)[K+|og< 7 )} 2.7)

wherex = 0.577 2157 .. is the Euler constant.
Then the finite-dimensional distributions ff°} converge weakly along subsequences.

We note that, starting from the finite-dimensional distributions in theorem 2.1, one can
obtain a process associated with the two-dimensional SHE via the standard Kolmogorov
construction.

In theorem 3.2 (see the next section) we show that the covariance of the random field
Y? converges to a non-trivial limit as — 0. In particular, any limit point ofy°} has a
second moment. The proof is based on an approximation of thé&oler operators with
point interaction in terms of scaled short-range Hamiltonians [2,theorem 1.5.5] in which
expression (2.6) is found. We note, however, that the correct forriiz0f) can also
be ‘guessed’ from formal perturbation theory in a power series of the ‘physical coupling
constant’8. This perturbation theory is related to the renormalization of the local times
of two-dimensional Brownian motion; see [7] where a detailed combinatoric analysis is
performed. In [12] a simplified approach is presented. The latter uses, however, a very
specialJ which is not of the form/ = j x j.

3. The limiting covariance

In this section we show that the covariance of the proggSsonverges as — 0. We
stress here that the convergence does not depend on the subsequence. We will use the fact
that the two-body Sclidinger operator with point interaction can be obtained as a norm
resolvent limit of scaled short-range Hamiltonians [2].

We recall first some results on the theory of Salinger operators with point interaction
in two dimensions [1, 2]. Let

G, =(-A+n"1 A>0 (3.1)
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be the resolvent of the Laplaciak on R?. Its integral kernel is given by

G.(x) =/ dr e py(x) x#0 (3.2)
0
where, fort > 0, x € R?
1 |x|2
= L 3.3
Pi(x) o eXp{ o } (3.3)

is the heat kernel.

For eachg > 0 we introduce the Schdinger operator with singular interaction at the
origin —Ag on L,>(R?). In [2] this is constructed by classifying the (one-parameter) self-
adjoint extensions of-A on the minimal domairCSO(Rz\{O}) of the infinite differential
function with compact support away from the origin. According to [2, theorem 1.5.3], its
domainD(—Ap) C L»(R?) consists of elements of the type

4
= — f1,(0)G 0 3.4
g(x) = fi(x) + Iog(A/ﬂ)fA( NG (x) x # (3.4)
where f; € Hy(R?) = D(—A) andx € R*\{8}. The above decomposition is unique. We
recall that, by Sobolev embedding,(R?) c C(R?), so thatf; (0) is meaningful.
For g8 > 0, g € D(—Ap), the operator-Ag is then defined by

Ang = —A A )
TR = AL og)

Its spectrum is given by the isolated eigenvaldg and the positive half-axes. We warn
the reader that ous is related to what is called in [2] by « = —[log(v/B/2) + «]/2r.

We finally introduce the two body-Sdbdinger operator with point interaction. Given
—Ayg it is enough to separate the free motion of the centre of mass. We adopt the so-called
passive viewpointLet R : R? x R? — R? x R? be defined by

F(0G,. (3.5)

R(x,y) =G +y),x—y) (3.6)
which induces the unitary operatdr on L,(R? x R?)
(UF)(x,y) = F(R(x,y)). (3.7)

We then introducefls as the operator of(R*) = Ly(R?) ® Ly(R?) defined on the
dense domain

DO(Hg) := U'D(~A) ® D(—Ap) (3.8)
by

Hy=U Y —3A®1+1Q —Ap)U. (3.9)
We note thatH; is closable and essentially self-adjoint Bi(Hg).

In the following proposition we summarize some results on the semigroup generated by
Ag [1,2].

Proposition 3.1. The operator—Ag generates a bounded self-adjoint semigrdﬂfﬁ =
exp{tAg} on L,>(R?). It has an integral kerneﬂ’f(x, y) whose Laplace transform is given
by

o A
Ri(x,y) = / dre ™ Pl(x,y) = Gi(x — y) +
0

log(x/B)
which is analytical in the complex half-plane Re- 8.

G,.(x)G,.(y) (3.10)
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Furthermore, the inverse Laplace transform can be expressed, fo£ 0, as

! (x24I Xl
Pzﬂ(xa y) = palx —y) +/ dr o g (b )/4TKO (21_ )

u u—1
/ du” (; (;)) (3.11)
E

which is analytic forr > 0. Herel'g is the EulerT-function andKj is the modified Bessel
function.

We introduce the semigroup generated My on L,(R*) as

et = ytedtig eMu (3.12)

where &/ is the heat semigroup ané‘e has integral kernel given by (3.11).
The main result in this section is as follows.

Theorem 3.2. Let ¢ € Lo(R?) be the initial datum for (2.4)F € L,(R*). Then for each
t e RY

lim E((; @ yi. F)) = (¢ © ¢, €' F). (3.13)

The convergence is, furthermore, uniform foin compact subsets @™*.

Remark. Theorem 3.2 is related to the aforementioned problem of the existence of a
renormalized exponential momefuar the local time of planar Brownian motion. A simple
approximation argument shows that (3.13) also holdsgfet 1, although this case is not
included in the assumptiop € L,(R?). By writing a Feynman—Kac representation for

¥/ (x), its covariance can then be expressed in terms of a local time’s exponential moment,
see [3]. Equations (3.13) and (3.11) then imply fo# 0

IimOszl(wf(O)wf(x)) = Iim E<exp{rﬂ(8) /Z dsJ.(x + «/?BS)D

_ ﬂu M
1+47(/ dr/ du T +1)p2r(x) (3.14)

whereB,, t > 0, is a planar Brownian motion started at the origin. The second term on the
right-hand side of (3.14) diverges as> oo and, therefore, indicates that in the long-time
limit the partition function of the directed polymer has large fluctuations even for ginall

Proof of theorem 3.2. Fix ¢ > 0. We note thatx - v7(x) is smooth C*) if r > 0.
Recalling thaty? solves (2.4) we can apply Ito’s formula and get

d(y; ()Y (0) = —Hgy7 ()7 () di +dN; (x, y) (3.15)

where Nf(x, y) is a martingale term andi; is the two-body Sclirdinger operator on
Lo(R? x R?) given by

Hy=-3A, — IA, —Tp(e)Je(x — y) (3.16)

which is essentially self-adjoint o>(R*) since J, € S(R?). We recall that the function
[g(e) is given by (2.6).
Let

Ci(x,y) == EW ()Y, (). (3.17)
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By taking the expectation in (3.15) we fin@’ solves

8C; = —HyCf Co=90®e. (3.18)
By a change of coordinates, we have

Hy=U'—3A®1+1®-A)U (3.19)
where—Aj is the Schodinger operator given by

—AG = —A —Ty(e) . (x).
Hence

CE=U" 0 e8UC, = e'ip® g (3.20)
and therefore

E((W; @Y, F) = (¢ @ p, e F)). (3.21)

In [2,theorem 1.5.5] it is proven that A; converges te-Ag, as an operator oh,(R?),
in the norm resolvent sense. Using the representation of the resolvent in terms of the
semigroup and the fact that and U ~* are bounded operators dn(R?) ® L,(R?) we get
that Hj converges tafg in the norm resolvent sense dip(R?) ® L»(R?). This implies

that €' converges strongly to&” in L,(R*) uniformly for 7 in compact subsets @™,
see for example [13, problem VIII1.21]. O

Remark. To extend the above argument to thepoint correlation functionsn( > 2), a

theory ofn-particle Schddinger operators with point interaction is needed. This has been
constructed in [5] where it is also shown that the operators generate a bounded semigroup.
Unfortunately, the (non-local) regularization scheme used in [5] is not compatible with our
underlying stochastic equation (2.4).

4. Convergence of the finite-dimensional distributions

In this section we obtain some uniform bounds and conclude the proof of theorem 2.1.

Lemma 4.1. For eachg > 0, T > 0 there exists a constant= c¢(8, T) such that for any
¢ € La(R?), f € Ha(R?)

limsupE(supww) < clolPIfI2 @.1)

e—0 t<T

Proof. From theorem 3.2 it follows that

lim SUpE (Y (f)°) = SUp(y ® ¢, &7 [ ® /) < suplle @ |

t<T t<T
x|le" £ @ £l < Tl f112 (4.2)

where we used the fact that*e has norm & [2].
We now want to squeeze the sup inside the expectation. Let us define

1 t
A = /O ds(y?. Af)
MECF) = (UF ) — ASCF) — (o1 f) 4.3)
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and note that by Ito’s formula/(f) is a square integrable martingale. By Doolfs
inequality we thus get

E(supwf (f)2> < 3[@, 2+ E(supAf (f)2> + 4E(M?(f)2)}

t<T t<T

[13@ f>2+E(supA8<f>2> + 12E(5(f)2) + 12E(A%(f) >} (4.9

t<T

By Cauchy—Schwartz inequality we have

t 2 T
sup[ / dswf,Af)] <7 f ds(ye, Af)?
0 0

t<T

and (4.1) follows by (4.2) and (4.4). O

Proof of theorem 2.1. Let 0< 11 < --- < t, =T and f; € SR?), i = 1,...,n. From
lemma 4.1 there exists a constantlepending om, T and{ f;}’_, such that

li FE ;
msupi( supd v () < ¢

and, therefore, by Chebyschev inequality,(f:), i =1, ..., n, is a tight family of random
variables onR"”. By Prohorov's theorem (see e g. [4]) we can thus find a subsequence
ex — 0 such that the joint distribution dfy;* (i)}, is weakly convergent. O

Our last result establishes the uniform gncontinuity (in a mean-square sense) of the
map: — ¥/ (f) for a fixed f e S(R?). More precisely, we have the following proposition.

Proposition 4.2. For eachg > 0 and any initial datunp € L»(R?), f € S(R?)
I|m limsup supE(yf, ;(f) — ¥E(f))? = 0. (4.5)

=0 50 T

Proof. Let us define
Di(F) = /0 ds (W @ 7, Hy F)).
Let§ > 0. By using the fact that/? () (defined in (4.3)) an@ (f)?— v (f)2+DE(f R f)
are martingale, we get
E{(¥fs(f) = ¥ (?IF) = B{=Di;(f ® )+ D (f ® f)

—2(A7 5 (f) — AL (DY (DIFD (4.6)
The second term on the right-hand side of (4.6) can be easily bounded by noticing that

1 T+6
AL () =~ AP < 53 /0 d (e, A

and then using (4.2).
We next bound the first term. Applying the Markov propertyygf we have

E(D; s(f ® f) = D{(f ® /)IF:} = Ey: (D§(f ® £)) = Eys (Y5 (H) = ¥f (f)?
= ((yf @y, [e — 11 ® f)) 4.7)

where we used again the fact thaf ()% — ¥§(f)? — D:(f ® f) is a martingale in the
second step and the semigroup representation for the covariangg (.21) in the last
identity.
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Taking the expectation value in (4.7), we finally get
E(D;s(f) = Dj(N) = (¢ ® ¢, [e” "™ —e" ] f ® f)). (4.8)

The result now follows using the strong convergence of the semigrotip aniformly for
¢t in compact subsets &* for the limit ¢ — 0, the boundedness of the semigroup’e
and the dominated convergence theorem for the lbmit O. O
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