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Large Deviations for a Stochastic Model of Heat Flow

Lorenzo Bertini,1 Davide Gabrielli,2 and Joel L. Lebowitz3

Received December 17, 2004; accepted April 21, 2005

We investigate a one-dimensional chain of 2N harmonic oscillators in which
neighboring sites have their energies redistributed randomly. The sites −N and
N are in contact with thermal reservoirs at different temperature τ− and τ+.
Kipnis et al. (J. Statist. Phys., 27:65–74 (1982).) proved that this model satisfies
Fourier’s law and that in the hydrodynamical scaling limit, when N → ∞, the
stationary state has a linear energy density profile θ̄ (u), u ∈ [−1,1]. We derive
the large deviation function S(θ(u)) for the probability of finding, in the sta-
tionary state, a profile θ(u) different from θ̄ (u). The function S(θ) has strik-
ing similarities to, but also large differences from, the corresponding one of the
symmetric exclusion process. Like the latter it is nonlocal and satisfies a vari-
ational equation. Unlike the latter it is not convex and the Gaussian normal
fluctuations are enhanced rather than suppressed compared to the local equi-
librium state. We also briefly discuss more general models and find the features
common in these two and other models whose S(θ) is known.

KEY WORDS: Stationary nonequilibrium states; large deviations; boundary
driven stochastic systems.

1. INTRODUCTION

The properties of systems maintained in stationary nonequilibrium states
(SNS) by contacts with very large (formally infinite) thermal reservoirs in
different equilibrium states are of great theoretical and practical impor-
tance. These are arguably the simplest examples of nonequilibrium systems
to which the elegant, universal, and successful formalism of equilibrium
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statistical mechanics might hopefully be extended. A striking universal
feature of equilibrium systems is the Boltzmann–Einstein relation accord-
ing to which fluctuations in macroscopic observables, arising from the
grainy microscopic structure of matter, can be described fully in terms of
the macroscopic thermodynamic functions (entropy, free energy) without
any recourse to the microscopic theory. In trying to develop a similar for-
malism for SNS we have to start with the fluctuations. There has therefore
been much effort devoted to developing a mathematically rigorous fluctua-
tion theory for simple model SNS. This has led to some interesting recent
results for conservative systems in contact with particle reservoirs at differ-
ent chemical potentials.(4–7,10–12)

In particular it has been possible to obtain explicitly the large devi-
ation functionals (LDF) for some one-dimensional lattice systems. The
internal dynamics of these systems is governed by simple exclusion pro-
cesses, symmetric (SEP) or asymmetric (ASEP), while the entrance and
exit of particles at the two boundaries are prescribed by the chemical
potentials, λ±, of the right and left reservoirs. The LDF gives the log-
arithm of the probabilities of finding macroscopic density profiles ρ(u),
where u is the macroscopic space variable, different from the typical values
ρ̄(u); namely we have Prob(ρ(u))∼ exp{−NF(ρ)}, where N is the number
of lattice sites.

In the symmetric case, the situation we shall be primarily concerned
with here, the typical profile ρ̄(u) is given by the stationary solution of the
diffusion equation ∂tρ(t, u)= (1/2)∂u

(
D∂uρ(t, u)

)
, u∈ [−1,1] with bound-

ary conditions ρ̄(±1) = ρ±. The values ρ± correspond to the densities
in an equilibrium system with chemical potentials λ±. The latter can be
obtained by setting the chemical potential of both end reservoirs equal to
each other, λ+ =λ−. We note that in this equilibrium case, the function F
is simply related to the free energy of the system. For ρ+ �= ρ− and con-
stant diffusion coefficient D (that is density independent and spatially uni-
form) the profile ρ̄(u) is linear; this is the only case solved so far for the
SEP. The results for the LDF of the SEP for this SNS contained some
surprises.

The most striking of these is nonlocality: the probability of density
profiles ρA(u) and ρB(u) in disjoint macroscopic regions A and B is not
given by a product of the separate probabilities, i.e., the LDF is not addi-
tive. This is very different from the equilibrium case where the LDF is
given (essentially) by an integral of the local free energy density for the
specified profiles ρA(u) and ρB(u), and is thus automatically additive over
macroscopic regions (even at critical points). Additivity is also true for the
LDF of a system in full local thermal equilibrium (LTE), e.g., for the SNS
of the zero range process. The microscopic origin of the nonlocality of
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the LDF for the open SEP lies in the O(N−1) corrections to LTE which
extend over distances of O(N); N is number of lattice sites, which goes
to infinity in the hydrodynamical scaling limit.(1,26) So while the devia-
tions from LTE vanish in this limit their contributions to the LDF, which
involves summations over regions of size N , does not.

The effect of these O(N−1) corrections to LTE is already present at
the level of Gaussian fluctuations about ρ̄(u). These were computed by
Spohn in 1983(26) who found that the contributions from the deviations
from LTE made a finite contribution to the variance of these Gaussian
fluctuations, causing them to decrease, for the SNS of the SEP from their
LTE values. The reduction in the variance of Gaussian fluctuations can
be recovered from the LDF by setting ρ(u)= ρ̄(u)+N−1/2φ(u). In fact
in refs. 5 and 11 it is shown that F(ρ) for the SEP dominates the LDF
coming from the corresponding LTE state and therefore the fluctuations
are suppressed.

The above observations about the SEP raise many questions about
the nature of the SNS of more realistic systems. Do their LDF and Gauss-
ian fluctuations behave similarly to those of the SEP? In particular, to
what extent do the LDF for SNS play a “similar role” to free energies in
equilibrium systems? In the absence of more solved examples it is difficult
to answer these questions. It is therefore useful to find and investigate the
SNS of other model systems for which the LDF can be found and com-
pare them to that of the SEP. This is what we do in the present paper and
then discuss the limited universality of the results.

The SNS we consider here is a simple stochastic model of heat con-
duction in a crystal. It is well known (see e.g., refs. 22 and 25), that har-
monic chains do not obey Fourier’s law of heat conduction. On the other
hand, Kipnis et al.(19) introduced a model of mechanically uncoupled har-
monic oscillators in which nearest neighbor oscillators redistribute ran-
domly their energy. This system is then coupled to thermal reservoirs at
different temperatures and, thanks to the stochastic dynamics, the valid-
ity of Fourier’s law is proven. In particular the stationary energy density
θ̄ (u) is a linear profile as in the SEP. We mention that a more sophisti-
cated stochastic model of coupled harmonic oscillators has been recently
investigated. The evolution is given by superimposing the Hamiltonian
dynamics with a stochastic one in which two nearest oscillators randomly
exchange momenta. This model has two conservations laws (energy and
total length); the hydrodynamic limit is proven in ref. 2 for the equilibrium
case and in ref. 3 for nonequilibrium, Gaussian fluctuations are analyzed
in ref. 16.

In this paper we consider the Kipnis–Marchioro–Presutti model, our
main result is the derivation of the corresponding LDF, that we denote



846 Bertini et al.

by S(θ). It turns out that this function has both strong similarities and
significant differences from that of the SEP. Like for the SEP the LDF
is nonlocal and yields Gaussian fluctuations about θ̄ (u). Unlike the SEP,
however, it is obtained by minimization, rather than maximization, of a
“proto LDF” and the variance is increased compared to that obtained
from LTE. Also in contrast to the SEP the LDF, S(θ), is not convex. We
discuss these similarities and differences in Section 7, where we also give
some generalization of our and previous results to a larger class of model
systems.

2. THE MODEL AND MAIN RESULT

Following ref. 19 we consider a chain of one-dimensional harmonic
oscillators located at sites x ∈ [−N,N ] ∩ Z =: �N and described by the
canonical coordinates (qx,px). The oscillators are mechanically uncoupled
so that the Hamiltonian of the chain is H =∑

x∈�N (p
2
x +q2

x )/2. The har-
monic oscillators are however coupled by the following stochastic dynam-
ics. Every pair of nearest neighbors sites waits an exponential time of rate
one and then the corresponding oscillators exchange energy. More pre-
cisely, let (qy,py), (qy+1, py+1) be the canonical coordinates at the sites y,
y+1; when the exponential clock between y and y+1 rings then the new
values (q ′

y,p
′
y), (q

′
y+1, p

′
y+1) are distributed according to the uniform dis-

tribution on the surface of constant energy

1
2

[
(q ′
y)

2 + (p′
y)

2]+ 1
2

[
(q ′
y+1)

2 + (p′
y+1)

2]= 1
2

[
q2
y +p2

y

]+ 1
2

[
q2
y+1 +p2

y+1

]
.

Moreover the boundary site −N , respectively, +N , waits an exponential
time of rate one and then the corresponding oscillator assume an energy
distributed according to a Gibbs distribution with temperature τ−, respec-
tively, τ+. All the exponential clocks involved in the dynamics are indepen-
dent.

From a mathematical point of view it is sufficient to look only at the
local energy given by the random variables ξx := (

p2
x + q2

x

)
/2, for which

we get a closed evolution described by the following Markov process. The
state space is 	N := R

�N+ , an element of 	N is denoted by ξ := {ξx , x ∈
�N }. The infinitesimal generator of the process is the sum of a bulk gen-
erator L0 plus two boundary generators L+ and L−

LN :=N2[L0 +L− +L+
]

(2.1)

in which we have speeded up the time by the factor N2, this corresponds
to the diffusive scaling.
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The bulk dynamics L0 is defined as

L0 :=
N−1∑

x=−N
Lx,x+1,

where

Lx,x+1f (ξ) :=
∫ 1

0
dp

[
f (ξ (x,x+1),p)−f (ξ)] (2.2)

in which the configuration ξ (x,x+1),p is obtained from ξ by moving a frac-
tion p of the total energy across the bond {x, x+ 1} to x and a fraction
1−p to x+1, i.e.,

(ξ (x,x+1),p)y :=
⎧
⎨

⎩

ξy if y �=x, x+1,
p (ξx + ξx+1) if y=x,
(1−p) (ξx + ξx+1) if y=x+1.

The boundary generators L± are defined by a heat bath dynamics
with respect to thermostats at temperatures τ±, i.e.,

L±f (ξ) :=
∫ ∞

0
dr

1
τ±
e−r/τ±

[
f (ξ±N,r )−f (ξ)]

in which the configuration ξ±N,r is obtained from ξ by setting the energy
at ±N equal to r, i.e.,

(ξx,r )y :=
{
ξy if y �=x,
r if y=x.

Note that we have set the Boltzmann constant equal to one. The process
generated by (2.1), denoted by ξ(t), will be called the KMP process.

We denote by u∈ [−1,1] the macroscopic space coordinate and intro-
duce the space of energy profiles as M := {θ ∈L1([−1,1], du) : θ(u)� 0}.
We consider M equipped with the weak topology namely, θn → θ iff for
each continuous test function φ we have 〈θn, φ〉 → 〈θ, φ〉, where 〈·, ·〉 is
the inner product in L2([−1,1], du). Given a microscopic configuration ξ ∈
	N , we introduce the empirical energy πN(ξ) by mapping ξ to the macro-
scopic profile

[πN(ξ)] (u) :=
N∑

x=−N
ξx 1I[ x

N
− 1

2N ,
x
N

+ 1
2N

](u) (2.3)
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note that πN(ξ)∈M is a piecewise constant function.
In the case when τ− = τ+ = τ it is easy to show that LN is reversible

with respect to the product of exponential distributions with parameter τ ,
i.e., the invariant measure is given by the equilibrium Gibbs measure at
temperature τ ,

dµN,τ (ξ)=
N∏

x=−N

dξx

τ
e−ξx/τ . (2.4)

When ξ ∈ 	N is distributed according to µN,τ then the empirical
energy πN(ξ) concentrates, as N→∞ on the constant profile τ according
to the following law of large numbers. For each δ>0 and each continuous
test function φ=φ(u)

lim
N→∞

µN,τ

(∣∣〈πN(ξ), φ〉−〈τ, φ〉∣∣>δ
)

=0, (2.5)

where τ ∈M is the constant function with that value.
In this equilibrium case it is also easy to obtain a large deviation

principle associated at the law of large numbers (2.5). More precisely, the
probability that the empirical energy πN(ξ) is close to some profile θ ∈M
different from τ is exponentially small in N and given by a rate functional
S0

µN,τ (πN(ξ)∼ θ)
 exp
{−N S0(θ)

}
, (2.6)

where πN(ξ) ∼ θ means closeness in the weak topology of M and 

denotes logarithmic equivalence as N→∞. The functional S0 is given by

S0(θ)=
∫ 1

−1
du

[
θ(u)

τ
−1− log

θ(u)

τ

]
=

∫ 1

−1
du s0(θ(u), θ̄0), (2.7)

where θ̄0 = τ is the constant energy density profile for τ+ = τ− = τ . The
above functional can in fact be obtained as the Legendre transform of the
pressure G0(h)

S0(θ)= sup
h

[〈θ, h〉−G0(h)
]
,

where G0 is defined as

G0(h) := lim
N→∞

1
N

log EµN,τ

(
eN〈h,πN (ξ)〉

)
=−

∫ 1

−1
du log[1− τ h(u)] (2.8)
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in which EµN,τ denotes the expectation with respect to µN,τ .
If τ− �=τ+ the process generated by LN is no longer reversible and its

invariant measure µN,τ± is not explicitly known. Theorem 4.2 in ref. 19
implies however the following law of large numbers. For each δ > 0 and
each continuous φ

lim
N→∞

µN,τ±

(∣
∣〈πN(ξ), φ〉−〈θ̄ , φ〉∣∣>δ

)
=0, (2.9)

where θ̄ is the linear profile interpolating τ− and τ+, i.e.,

θ̄ (u)= τ− 1−u
2

+ τ+
1+u

2
. (2.10)

It is natural to look for the large deviations asymptotic for µN,τ± . In
the case of the SEP this program has been carried out in refs. 5, 6, 10 and
11. The main result of this paper is an expression for the large deviation
rate functional for µN,τ± analogous to the one for the SEP. The functional
we obtain is nonlocal, as is the one for the SEP, but it turns out to be
nonconvex while the one for SEP is convex. We mention that nonconvex-
ity of the rate functional also occurs for the ASEP.(12)

Without loss of generality we assume τ−<τ+ and introduce the set
Tτ± :={τ ∈C1([−1,1]) : τ ′(u)> 0 , τ (±1)= τ±}, here τ ′ is the derivative of
τ . Given θ ∈M and τ ∈Tτ± we introduce the trial functional

G(θ, τ ) :=
∫ 1

−1
du

[θ(u)
τ(u)

−1− log
θ(u)

τ(u)
− log

τ ′(u)
[τ+ − τ−]/2

]
. (2.11)

In this paper we show that the empirical energy for µN,τ± satisfies a large
deviation principle with a nonlocal, nonconvex rate functional S(θ) given
by

S(θ)= inf
τ∈Tτ±

G(θ, τ ) (2.12)

that is we have

µN,τ± (πN(ξ)∼ θ)
 exp
{−N S(θ)}. (2.13)

We note there is a very close similarity between (2.12) and the analo-
gous result for the SEP, we emphasize however that in (2.12) we minimize
over the auxiliary profile τ , while in SEP one needs to maximize. This is,



850 Bertini et al.

of course, related to the non convexity of our S versus the convexity of
the rate functional for SEP. It would be very interesting to understand this
basic difference also in terms of the combinatorial methods in refs. 10–12
besides the dynamical approach presented here.

Given θ ∈ M, we show that the minimizer in (2.12) is uniquely
attained for some profile τ(u)= τ [θ ](u); therefore S(θ)=G(θ, τ [θ ]). More-
over τ [θ ](u) is the unique strictly increasing solution of the boundary
value problem

τ 2 τ ′′

(τ ′)2
+ θ − τ =0,

τ (±1)= τ±,
(2.14)

which is the Euler–Lagrange equation δG/δτ =0 when θ is kept fixed.
We note that for θ= θ̄ the solution of (2.14) is given by τ [θ̄ ]= θ̄ there-

fore, S(θ̄)= G(θ̄ , θ̄ )= 0. On the other hand, by the convexity of the real
functions R+ �x �→x−1− log x and R+ �x �→− log x, for each θ ∈M and
τ ∈Tτ± we have G(θ, τ )�0 hence S(θ)�0. By the same argument we also
get that S(θ)= 0 if and only if θ = θ̄ . This shows that the large deviation
principle (2.13) implies the law of large numbers (2.9) and gives an expo-
nential estimate as N→∞. We finally remark that the reversible case (2.7)
is recovered from (2.11)–(2.13) in the limit τ+ −τ− →0 which impose τ(u)
constant.

2.1. Outline of the Following Sections

Our derivation of the rate functional S follows the dynamical/
variational approach introduced in refs. 4 and 5. We look first, in Section
3, at the dynamical behavior in the diffusive scaling limit in a bounded time
interval [0, T ]. In particular, we obtain a dynamical large deviation principle
which gives the exponential asymptotic for the event in which the empirical
energy follows a prescribed space–time path.

In Section 4 we introduce the quasi-potential, it is defined by the min-
imal cost, as measured by the dynamical rate functional, to produce an
energy fluctuation θ starting from the typical profile θ̄ . By the arguments
in refs. 4 and 5, the quasi-potential equals the rate functional S(θ) of
the invariant measure µN,τ± . A mathematical rigorous proof of this state-
ment for the SEP is given in ref. 7. As discussed in refs. 4 and 5, the
quasi potential is the appropriate solution of a Hamilton–Jacobi equation
which involves the transport coefficients of the macroscopic dynamics. The
derivation of the functional S is then completed by showing that (2.12)
is the appropriate solution of this Hamilton–Jacobi equation. As in the
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case of the SEP we are also able, by following this dynamical/variational
approach, to characterize the minimizer for the variational problem defin-
ing the quasi potential; this path is the one followed by the process, with
probability going to one as N → ∞, in the spontaneous creation of the
fluctuation θ . In Section 4 we also show that the functional S is not con-
vex, obtain its expression for constant profiles θ , and derive an additivity
principle analogous to the one for simple exclusion processes obtained in
refs. 11 and 12.

In the remaining part of the paper we discuss some extensions of
the previous results. In particular, in Section 5 we discuss the KMP pro-
cess in higher space dimension, d�1, and obtain an upper bound for the
quasi-potential in terms of the local equilibrium one. We note that for the
SEP it is possible to prove(5,6) an analogous lower bound. We also dis-
cuss the Gaussian fluctuations around the stationary profile θ̄ ; as for the
SEP(5,9–11,26) the correction due to nonequilibrium is given by the Green
function of the Dirichlet Laplacian. In particular, this correction is nonlo-
cal; as in the case of the SEP, this is due to the long range correlations.(19)

However, for the KMP process, the nonequilibrium enhances the Gaussian
fluctuations while in the SEP it decreases them. As the covariance of the
Gaussian fluctuations equals the inverse of the second derivative of S(θ)
at θ̄ , the enhancement of Gaussian fluctuations corresponds to the upper
bound of S(θ) in terms of the local equilibrium functional. In the analysis
in ref. 19 a crucial role is played by a process, in duality with respect to the
KMP process, in which the local variable at the site x takes integral val-
ues. In Section 6 we discuss briefly the large deviations properties of this
dual model and obtain the expression for the large deviation functional.
Finally in Section 7 we discuss the derivation of the large deviation func-
tional for generic one-dimensional nonequilibrium symmetric models with
a single conservation law. We obtain a simple condition, which is satisfied
by the zero range process, the Ginzburg–Landau dynamics, the SEP, the
KMP process and its dual, that allows the derivation of the large devia-
tion function by means of a suitable trial functional.

The discussion in this paper will be kept at the physicists level of
mathematical rigor. However, for the more mathematically inclined reader,
we shall point out the main differences and technical difficulties with
respect to the case of the SEP, which has been analyzed in full mathemat-
ical rigor.(6)

3. MACROSCOPIC DYNAMICAL BEHAVIOR

In this section we consider the KMP process in a bounded time
interval [0, T ] under the diffusive scaling limit. We discuss the law of large
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numbers (hydrodynamic limit) and the associated dynamical large devia-
tions principle for the empirical energy (2.3).

Given a continuous strictly positive energy profile θ ∈C([−1,1];R+),
we denote by νNθ the probability on 	N corresponding to a local equilib-
rium distribution (LTE) with an energy profile given by θ . It is defined as

dνNθ (ξ) :=
N∏

x=−N
dνNθ,x(ξx),

where

dνNθ,x := dξx

θ(x/N)
exp

{
− ξx

θ(x/N)

}
.

Given two probability measures ν,µ on 	N we denote by h(ν|µ) the rel-
ative entropy of ν with respect to µ, it is defined as

h(ν|µ) :=
∫
dµ(ξ)

dν(ξ)

dµ(ξ)
log

dν(ξ)

dµ(ξ)
.

We shall consider the KMP process with initial condition distrib-
uted according to the product measure νNθ0

for some energy profile θ0.
A straightforward computation then shows there exists a constant C

(depending on θ0) such that for any N we have the relative entropy bound

h(νNθ0
|νN
θ̄
)�CN, (3.1)

where θ̄ is the stationary energy profile (2.10). By the weak law of large
numbers for independent variables we also have that νNθ0

is associated to
the energy profile θ0 in the following sense. For each δ >0 and each con-
tinuous φ

lim
N→∞

νNθ0

(∣∣〈πN(ξ), φ〉−〈θ0, φ〉∣∣>δ
)

=0. (3.2)

We remark that for the SEP it is possible (and convenient, see ref. 6)
to consider deterministic initial conditions. For the KMP process, as the
“single spin space” R+ is not discrete, such initial conditions do not sat-
isfy the entropy bound (3.1), which is required in the standard derivation
(see e.g., refs. 18 and 27), of the hydrodynamic limit. For this reason we
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have chosen the initial condition distributed according to the product mea-
sure νNθ0

. We however mention the paper,(23) where the hydrodynamic limit
with deterministic initial condition is proven for some nondiscrete models.

We denote by PνNθ0
the distribution of the KMP process when the ini-

tial condition is distributed according to νNθ0
. The measure PνNθ0

is a prob-

ability on the space D([0, T ];	N) of right continuous with left limit paths
from [0, T ] to 	N . The expectation with respect to PνNθ0

is denoted by EνNθ0
.

3.1. Hydrodynamic Limit

Equation (3.2) is the law of large number for the empirical energy at
time t = 0; the hydrodynamic limit states that for each macroscopic time
t ∈ [0, T ] there exists an energy profile θ(t) such that we have the same law
of large numbers

lim
N→∞

PνNθ0

(∣∣〈πN(ξ(t)), φ〉−〈θ(t), φ〉∣∣>δ
)

=0. (3.3)

Furthermore, we can obtain the energy profile θ(t) by solving the hydrody-
namic equation. For the KMP process (as for the SEP) this is simply the
linear heat equation with boundary conditions τ±, i.e., θ(t)=θ(t, u) solves

∂t θ(t) = 1
2

θ(t),

θ(t,±1) = τ±, (3.4)

θ(0, u) = θ0(u),

where 
 is the Laplacian. Note that the stationary profile θ̄ in (2.10) is
the unique stationary solution of (3.4).

We give below a brief heuristic derivation, which is particularly sim-
ple for the KMP process, of the hydrodynamic limit. We refer to refs. 14
and 15 for a rigorous proof in the case of the so called gradient, respec-
tively, to ref. 21 for nongradient, nonequilibrium models with finite single
spin state space.

Let φ be a smooth function whose support is a subset of (−1,1);
from the general theory of Markov processes, we have that

d

dt
EνNθ0

(〈πN(ξ(t)), φ〉)=EνNθ0

(
LN 〈πN(ξ(t)), φ〉). (3.5)
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Since the support of φ is a strict subset of [−1,1], only N2L0 contributes
to LN 〈πN(ξ(t)), φ〉. A simple computation shows that, when y �=±N ,

L0ξy = 1
2

[
ξy−1 + ξy+1 −2ξy

]
, (3.6)

we thus get

LN 〈πN(ξ(t)), φ〉 = N2

2

∑

x∈�N

[
ξx−1(t)+ ξx+1(t)−2ξx(t)

] ∫ x/N+1/(2N)

x/N−1/(2N)
duφ(u)

≈ 1
2N

∑

x∈�N

Nφ(x/N) ξx(t)≈ 1

2
〈πN(ξ(t)),
φ〉,

here 
Nφ(x/N) := N2
[
φ((x − 1)/N) + φ((x + 1)/N) − 2φ(x/N)

]
is the

discrete Laplacian. The first step above comes from (3.6) and (2.3), the
second step from discrete integration by parts and last step from the
regularity of φ.

We have thus obtained the weak formulation of (3.4); it remains to
show that also the boundary condition θ(t,±1)= τ± is satisfied. For this
we need to use the boundary generators N2L±. These are Glauber like
dynamics accelerated by N2 so that the energy has well thermalized to its
equilibrium value. We get

EνNθ0
(ξ±N(t))≈ τ±. (3.7)

By a standard martingale computation one can argue that, with a negligi-
ble error as N→∞, πN(ξ(t)) becomes nonrandom. We can then remove
the expectation value in the previous equations and get (3.3).

As far as a rigorous mathematical derivation of (3.3) is concerned,
the KMP process does present additional technical problems with respect
to the models studied in refs. 14, 15 and 21 due to the unboundedness
of the single spin space. We emphasize that the entropy bounds used in
ref. 17 could not directly applied to the KMP process since it does not
have exponential moments. We refer to ref. 2, where this problem has been
solved for a different model with similar features. In particular, by using
the methods in ref. 2, it is indeed possible to show that the quadratic var-
iation of the martingale mentioned above vanishes as N→∞.
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3.2. Dynamic Large Deviations

We want next to obtain the large deviation principle associated to the
law of large number (3.3); more precisely we want to estimate the proba-
bility that the empirical energy πN(ξ(t)) does not follow the solution of
(3.4) but remains close to some prescribed path π=π(t, u). This probabil-
ity will be exponentially small in N and we look for the exponential rate.
We follow the classic procedure in large deviation theory: we perturb the
dynamics in such a way that the path π becomes typical and compute the
cost of such a perturbation.

Let H =H(t, u) be a smooth function vanishing at the boundary, i.e.,
H(t,±1)=0. We then consider the following time dependent perturbations
of the generators Lx,x+1 in (2.2)

LHx,x+1f (ξ):=
∫ 1

0
dp e[H(t,x/N)−H(t,(x+1)/N)][pξx+1−(1−p)ξx ][f (ξ (x,x+1),p)−f (ξ)].

Note that we have essentially just added a small drift N−1∇H(t, x/N) in
the energy exchange across the bond {x, x+1}. We denote by P

H

νNθ0

the dis-

tribution on the path space D([0, T ];	N) of this perturbed KMP process.
As before E

H

νNθ0

is the expectation with respect to P
H

νNθ0

.

The first step to obtain the dynamic large deviations is to derive the
hydrodynamic equation for the perturbed KMP process. We shall argue
that for each t ∈ [0, T ], each continuous φ, and each δ>0 we have

lim
N→∞

P
H

νNθ0

(∣∣〈πN(ξ(t)), φ〉−〈θ(t), φ〉∣∣>δ
)

=0, (3.8)

where θ(t)= θ(t, u) solves

∂t θ(t) = 1
2

θ(t)−∇(

θ(t)2∇H(t)),

θ(t,±1) = τ±, (3.9)

θ(0, u) = θ0(u).

The argument to justify (3.9) is similar to the previous one. Includ-
ing the effect of the perturbation, the computation following (3.6) now
becomes (as before y �=±N )
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LH0 ξy =
∫ 1

0
dp e[H(t,(y−1)/N)−H(t,y/N)][pξy−(1−p)ξy−1][(1−p)(ξy + ξy−1)− ξy

]

+
∫ 1

0
dp e[H(t,y/N)−H(t,(y+1)/N)][pξy+1−(1−p)ξy ][p (ξy+1 + ξy)− ξy

]

≈ ξy−1 + ξy+1 −2ξy
2

+ [
H(t, (y−1)/N)−H(t, y/N)]

ξyξy−1 − ξ2
y − ξ2

y−1

3

+ [
H(t, y/N)−H(t, (y+1)/N)

]−ξyξy+1 + ξ2
y + ξ2

y+1

3
.

As before, we consider a smooth function φ whose support is a strict
subset of (−1,1); then only N2LH0 contributes to LHN 〈πN(ξ(t)), φ〉 and we
get

LHN 〈πN(ξ(t)), φ〉≈ 1
N

∑

x

N2φ(x/N)

{
ξx−1(t)+ ξx+1(t)−2ξx(t)

2

+ [
H(t, (x−1)/N)−H(t, x/N)]ξx(t)ξx−1(t)− ξx(t)2 − ξx−1(t)

2

3

+ [
H(t, x/N)−H(t, (x+1)/N)

]−ξx(t)ξx+1(t)+ ξx(t)2 + ξx+1(t)
2

3

}

≈ 1
N

∑

x

ξx(t)
Nφ(x/N)

+ 1
N

∑

x

−ξx(t)ξx+1(t)+ ξx(t)2 + ξx+1(t)
2

3
∇NH(t, x/N)∇Nφ(x/N),

where ∇Nf (x/N) :=N [f ((x+1)/N)−f (x/N)] is the discrete gradient. In
the above computations we just used Taylor expansions and discrete inte-
grations by parts. With respect to the very simple case discussed before,
we face now the main problem in establishing the hydrodynamic limit: the
above equation is not closed in πN(ξ(t)), i.e., its right-hand side is not a
function of πN(ξ(t)). In order to derive the hydrodynamic equation (3.9),
we need to express −ξxξx+1 + ξ2

x + ξ2
x+1 in terms of the empirical energy

πN(ξ). This will be done by assuming a “local equilibrium” state, we refer
to refs. 6, 14, 15, 18, 21, and 27 for a rigorous justification in the context
of conservative interacting particle systems.

Let us consider a microscopic site x which is far from the boundary
and introduce a volume V , centered at x, which is very large in micro-
scopic units, but still infinitesimal at the macroscopic level. The time evo-
lution in V is essentially given only by the bulk dynamics N2LH0 ; since the
total amount of energy in V changes only via boundary effects and we are
looking at what happens after O(N2) microscopic time units, we expect
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that the system in V has relaxed to the micro–canonical state correspond-
ing to the local empirical energy πN(ξ(t))(x/N). To compute this state let
us construct first the canonical measure in V with constant temperature
τ > 0, namely the product measure dνV,τ (ξ) := ∏

x∈V τ−1 dξx e
−ξx/τ . Let

now mV,θ be the associated micro-canonical measure with energy density
θ , i.e.,

mV,θ (dξ) :=νV,τ
(
dξ

∣
∣
∣
∑

x∈V
ξx = θ |V |

)
.

We introduce the function σ(θ) defined by

σ(θ) := lim
V↑Z

EmV,θ

(− ξxξx+1 + ξ2
x + ξ2

x+1

)
, (3.10)

where we recall that EmV,θ denotes the expectation with respect to the
probability mV,θ . By the equivalence of ensembles we can compute σ(θ)
also as

σ(θ)=EνV,θ

(− ξxξx+1 + ξ2
x + ξ2

x+1

)=3 θ2.

According to the previous discussion, the system in the volume V

is well approximated by a micro–canonical state with energy density
πN(ξ(t))(x/N). As it is shown by the standard proofs in hydrodynamic lim-
its (see e.g. refs, 18 and 27) we can argue that it is possible to replace, for
N large, −ξx(t)ξx+1(t)+ ξx(t)2 + ξx+1(t)

2 with 3[πN(ξ(t))(x/N)]2. We refer
to the end of Section 3.1 for a discussion on the related technical problems.
We then obtain

d

dt
EνNθ0

(〈πN(ξ(t)), φ〉)≈ 1
2
〈πN(ξ(t)),
φ〉+〈πN(ξ(t))2∇H,∇φ〉,

(3.11)

which is the weak formulation of (3.9). The arguments to show that the
boundary conditions θ(t,±1)= τ± are satisfied and to remove the expec-
tation value are the same ones as in the derivation of (3.4).

Let π =π(t, u), (t, u)∈ [0, T ] × [−1,1] be a given path. We recall that
our task is to estimate the probability that the empirical energy πN(ξ(t))
is close to π(t) (short for π(t, u)). We write this probability in terms of
the perturbed KMP process, namely

PνNθ0

(
πN(ξ(t))∼π(t), t ∈ [0, T ]

)=E
H

νNθ0

(dPνNθ0

dP
H

νNθ0

1I{πN(ξ(t))∼π(t)}
)
. (3.12)
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Equation (3.9) tells us for which H the path π becomes typical for the
perturbed KMP process. We thus choose H(t, u) so that

∇(
π(t)2∇H(t))=−∂tπ(t)+ 1

2

π(t)

H(t,±1)=0,
(3.13)

which is essentially a Poisson equation for H (recall that π is fixed). With
this choice we have, for N large, P

H

νNθ0

(
πN(ξ(t))∼π(t)

)≈1 and to derive the

dynamical large deviation principle we only need to compute the Radon–
Nykodim derivative dPνNθ0

/dP
H

νNθ0

.

We consider first the case of a deterministic initial configuration ξ0 ∈
	N . In this case, by a standard computation in the theory of jump
Markov processes (see e.g., ref. 18, Appendix 1.7 or ref. 5, Appendix A),
we have

dPξ0

dP
H
ξ0

(ξ)= exp
{−NJ N

[0,T ](ξ,H)
}
,

where

J N
[0,T ](ξ,H) :=〈πN(ξ(T )),H(T )〉−〈πN(ξ0),H(0)〉−

∫ T

0
dt 〈πN(ξ(t)), ∂tH(t)〉

−N2
N−1∑

x=−N

∫ T

0
dt

∫ 1

0
dp

{
e[H(t,x/N)−H(t,(x+1)/N)] [p ξx+1(t)−(1−p)ξx (t)]−1

}
.

By Taylor expansion we then get

J N
[0,T ](ξ,H)≈〈πN(ξ(T )),H(T )〉−〈πN(ξ0),H(0)〉−

∫ T

0
dt 〈πN(ξ(t)), ∂tH(t)〉

−
∫ T

0
dt

1
2N

N−1∑

x=−N+1

ξx(t)
NH(t, x/N)

− 1
2

∫ T

0
dt ξ−N(t)N

[
H(t,−1+1/N)−H(t,−1)

]

+ 1
2

∫ T

0
dt ξN (t)N

[
H(t,1)−H(t,1−1/N)

]

−
∫ T

0
dt

1
2N

N−1∑

x=−N

−ξx(t)ξx+1(t)+ ξ2
x (t)+ ξ2

x+1(t)

3

[∇NH(t, x/N)
]2
.

By the same argument given in the derivation of the perturbed hydro-
dynamic equation (3.9), we can argue that it is possible to replace
−ξx(t)ξx+1(t) + ξx(t)

2 + ξx+1(t)
2 by 3[πN(ξ(t))(x/N)]2. Recalling that in
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(3.12) there is the indicator of the event in which πN(ξ(t)) is close to π(t),
we get

J N
[0,T ](ξ,H)≈J[0,T ](π) = 〈π(T ),H(T )〉−〈π(0),H(0)〉−

∫ T

0
dt 〈π(t), ∂tH(t)〉

− 1
2

∫ T

0
dt 〈π(t),
H(t)〉− 1

2

∫ T

0
dt 〈π(t)2, [∇H(t)]2〉

− 1
2

∫ T

0
dt τ−∇H(t,−1)+ 1

2

∫ T

0
dt τ+∇H(t,1),

where we used the fact that the value of π is fixed at the boundary,
π(t,±1)= τ±. Recalling that the perturbation H has been chosen as the
solution of (3.13), integration by parts shows that

J[0,T ](π)= 1
2

∫ T

0
dt 〈∇H(t),π(t)2∇H(t)〉. (3.14)

To complete the derivation of the dynamical large deviation func-
tional, we only need to consider the fluctuations of the initial condition.
Recalling that we have chosen the initial condition distributed according
to the product measure νNθ0

, a straightforward computation on product
measures (the one carried out in (2.6)–(2.8)) shows that

νNθ0

(
πN(ξ)∼π(0)

)
 exp
{−NS0(π(0)|θ0)

}
,

where S0(π(0)|θ0), which represents the contribution to the dynamic large
deviation from the initial condition, is given by

S0(π(0)|θ0)=
∫ 1

−1
du

[
π(0, u)
θ0(u)

−1− log
π(0, u)
θ0(u)

]
. (3.15)

By collecting all the computations performed we finally get the
dynamical large deviation principle

PνNθ0

(
πN(ξ(t))∼π(t), t ∈ [0, T ]

)

 exp

{−N I[0,T ](π |θ0)
}
, (3.16)

where

I[0,T ](π |θ0)=S0(π(0)|θ0)+J[0,T ](π). (3.17)
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We note again that S0(π(0)|θ0) represents the cost to create a fluctua-
tion at time zero whereas J[0,T ](π) represents the dynamical cost to follow
the path π(t) in the time interval [0, T ]. In the case of deterministic ini-
tial conditions, as the one discussed in ref. 6 for the SEP, we would have
S0(π(0)|θ0)=+∞ unless π(0)= θ0.

3.3. Remarks

We conclude this section with some remarks on the rigorous deriva-
tion of the dynamical large deviation principle (3.16). The probability esti-
mates needed are (not surprisingly) more subtle than discussed here. In
fact, while in the proof of the hydrodynamic limit it is enough to show
that we can replace −ξx(t)ξx+1(t)+ ξ2

x (t)+ ξ2
x+1(t) by 3[πN(ξ(t))(x/N)]2

with an error vanishing as N→∞, in the proof of the large deviations we
need such an error to be of o(e−CN). This statement is called super expo-
nential estimate, see refs. 18 and 20, where it is proven for the equilibrium
SEP. This estimate has been extended to the non equilibrium SEP in ref. 6.
For the KMP process there is the additional complication of a unbounded
single spin space. In ref. 13 the dynamical large deviation principle is
proven for the Ginzburg–Landau model; however for the KMP process the
situation is more troublesome because the mobility π2 is unbounded and
the reference measure is only exponentially decaying for large π . There-
fore we can regard the proof of the super exponential estimate as an open
problem for the KMP process. There is also another technical point which
requires some care. In the usual proofs of large deviations from hydrody-
namic behavior, one first obtains the lower bound for a neighborhood of
strictly positive smooth paths π and then uses approximation arguments
to extend the lower bound to any open set. The approximations argu-
ments used for the SEP (see refs. 18 and 20) for the equilibrium case and
ref. 6 for nonequilibrium, take full advantage of the fact (special for the
SEP) that J[0,T ] is a convex functional. In order to prove the dynamic
large deviation principle for the KMP process a more robust approxima-
tion method, possibly analogous to the one in ref. 24, is required.

4. THE QUASI-POTENTIAL AND ITS PROPERTIES

In this section, we introduce the quasi-potential, which measures the
minimal cost to produce a fluctuation of the energy profile in the station-
ary state, and shows that it can be obtained by solving the one-dimen-
sional nonlinear boundary value problem (2.14). We also characterize the
most probable path followed by the KMP process in the spontaneous cre-
ation of such a fluctuation. We finally show that the functional S is not
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convex and derive an additivity principle analogous to the one in refs. 11
and 12.

Given T > 0 and a strictly positive smooth θ ∈ M, we introduce the
set of energy paths which connect θ̄ to θ in a time interval [−T ,0], i.e. we
define

Eθ,T :={
π =π(t, u) : π(−T ,u)= θ̄ (u) , π(0, u)= θ(u)}, (4.1)

where we recall that the stationary energy profile θ̄ has been defined in
(2.10). Paths π ∈Eθ,T must also satisfy the boundary condition π(t,±1)=
τ±; in fact it can be shown(6) that J[−T ,0](π)=+∞ if the path π does not
satisfy this boundary condition. The quasi-potential is then defined as

V (θ) := inf
T>0

inf
π∈Eθ,T

J[−T ,0](π), (4.2)

where we recall that the functional J is given in (3.14). By the general
arguments in ref. 5, see also the rigorous proof in ref. 7 for the SEP, we
have that the rate functional S(θ) for the invariant measure µN,τ± (see
(2.13)), coincides with the quasi-potential, i.e., S(θ)=V (θ).

4.1. Solution of the Hamilton–Jacobi Equation

Recalling that the perturbation H in (3.14) solves (3.13), the varia-
tional problem (4.2) consists in minimizing the action corresponding to the
Lagrangian

L(θ, ∂t θ)= 1
2

〈∇−1(∂t θ − 1
2

θ),

1
θ2

∇−1(∂t θ − 1
2

θ)

〉
. (4.3)

The associated Hamiltonian is

H(θ,H) := sup
ζ

{〈H,ζ 〉−L(θ, ζ )
}= 1

2

〈∇H,θ2∇H 〉+ 1
2

〈
H,
θ

〉
. (4.4)

Noting that V is normalized so that V (θ̄)= 0, we obtain, by a clas-
sical result in analytic mechanics, that V (θ) solves the Hamilton–Jacobi
equation H(θ, δV

δθ
)=0, i.e.,

〈
∇ δV
δθ
, θ2∇ δV

δθ

〉
+

〈δV
δθ
,
θ

〉
=0, (4.5)
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where δV /δθ vanishes at the boundary and θ(±1)= τ±. We look for a
solution of (4.5) in the form:

δV

δθ
= 1
τ

− 1
θ

(4.6)

for some function τ = τ [θ ](u) to be determined satisfying the boundary
conditions τ(±1)= τ±. By plugging (4.6) into (4.5) and elementary com-
putations, analogous to the ones for the SEP discussed in ref. 5, we get

0 =
〈
∇
(1
τ

− 1
θ

)
, θ2∇ 1

τ

〉

= −
〈
∇(θ − τ), ∇τ

τ 2

〉
+

〈 (∇τ)2
τ 4

, (θ2 − τ 2)
〉

=
〈θ − τ
τ 4

, τ 2
τ + (θ − τ)(∇τ)2
〉
.

(4.7)

Therefore, a solution of (4.7) is obtained when τ satisfies the nonlin-
ear boundary value problem (2.14). Let us denote by τ [θ ] the solution
of (2.14); recall the definition (2.11) of the functional G(θ, τ ) and that,
since (2.14) is the associated Euler–Lagrange equation for fixed θ , we have
[δG/δτ ] (θ, τ [θ ])=0. By a direct computation we then get

δ

δθ
G(θ, τ [θ ])= δG

δθ
(θ, τ [θ ])+ δG

δτ
(θ, τ [θ ])

δτ [θ ]
δθ

= 1
τ [θ ]

− 1
θ
, (4.8)

which shows that V (θ)= G(θ, τ [θ ]) is a solution of the Hamilton–Jacobi
equation (4.5). To complete the derivation of (2.13) we next show that
V (θ) meets the criterion in ref. 5, Section 2.6, i.e., it is the “right solu-
tion” of the Hamilton–Jacobi equation, and that the infimum in (2.12) is
uniquely attained for τ = τ [θ ], the solution of (2.14).

4.2. The Exit Path

The characterization of the optimal path for the variational problem
(4.2) can be carried out according to the general scheme in ref. 6. Let
V (θ)=G(θ, τ [θ ]) and π(t), t ∈ [−T ,0] a strictly positive smooth path such
that π(0)= θ . By using that V (θ) solves Hamilton–Jacobi equation (4.5),
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a simple computation shows that

J[−T ,0](π)= 1
2

∫ 0

−T
dt

〈
∇−1

[
∂tπ − 1

2

π +∇

(
π2∇ δV

δθ
(π)

)
−∇

(
π2∇ δV

δθ
(π)

)]

× 1
π2

∇−1
[
∂tπ − 1

2

π +∇

(
π2∇ δV

δθ
(π)

)
−∇

(
π2∇ δV

δθ
(π)

)]〉

=V (θ)−V (π(−T ))+ 1
2

∫ 0

−T
dt

〈
∇−1

[
∂tπ − 1

2

π +∇

(
π2∇ δV

δθ
(π)

)]

× 1
π2

∇−1
[
∂tπ − 1

2

π +∇

(
π2∇ δV

δθ
(π)

)]〉
.

Since the last term above is positive, the optimal path π∗ for the varia-
tional problem (4.2) solves

∂tπ
∗ = 1

2

π∗ −∇

(
(π∗)2∇ δV

δθ
(π∗)

)
=−1

2

π∗ +∇

(
(π∗)2

(τ [π∗])2
∇τ [π∗]

)

,

(4.9)

where τ [π∗]= τ [π∗](t, u) denotes the solution of (2.14) with θ replaced by
π∗(t).

Let us denote by θ∗(t)= π∗(−t), t ∈ [0, T ], the time reversed of the
optimal path π∗. It is then not difficult to show, see ref. 5, Appendix B,
for the analogous computation in the case of the SEP, that θ∗(t) can be
constructed by the following procedure. Given θ = π∗(0)= θ∗(0), first let
τ0 = τ [θ ] be the solution of (2.14), then solve the heat equation with ini-
tial condition τ0, i.e., let τ(t) be the solution of

∂t τ (t) = 1
2

τ(t),

τ (t,±1) = τ±,

τ (0, u) = τ0(u)

and finally set

θ∗(t)= τ(t)− τ(t)2 
τ(t)

[∇τ(t)]2 .

Since τ(t) → θ̄ as t → ∞ we get π∗(−T ) → θ̄ as T → ∞, hence
V (π∗(−T ))→V (θ̄)=0. The identification of the solution of the Hamilton–
Jacobi equation with the quasi potential follows from the characterization
of the minimizer π∗ obtained before. In particular V (θ) satisfies the crite-
rion discussed in ref. 5, Section 2.6.
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4.3. Solution of Equation (2.14)

The existence of a solution for the nonlinear boundary value problem
(2.14) can be proven by the same strategy as in refs. 6 and 11. We write
(2.14) in the integral–differential form

τ(u)= τ− + (τ+ − τ−)

∫ u

−1
dv exp

{∫ v

−1
dw

[τ(w)− θ(w)]τ ′(w)
τ(w)2

}

∫ 1

−1
dv exp

{∫ v

−1
dw

[τ(w)− θ(w)]τ ′(w)
τ(w)2

} .

Then a solution of (2.14) is a fixed point of the integral–differential oper-
ator Kθ [τ ] defined as

Kθ [τ ] (u) := τ− + (τ+ − τ−)

∫ u

−1
dv exp

{∫ v

−1
dw

[τ(w)− θ(w)]τ ′(w)
τ(w)2

}

∫ 1

−1
dv exp

{∫ v

−1
dw

[τ(w)− θ(w)]τ ′(w)
τ(w)2

} .

We consider the case in which θ is bounded, namely we assume that
‖θ‖ := supu |θ(u)|<+∞. Recalling that τ must be strictly increasing and
such that τ(±1)= τ±, with τ−<τ+, we get

−‖θ‖τ ′

τ−τ
� (τ − θ)τ ′

τ 2
� τ ′

τ
,

which yields

τ+ − τ−
2

(τ−
τ+

)1+ ‖θ‖
τ− � d

du
Kθ [τ ](u)� τ+ − τ−

2

(τ+
τ−

)1+ ‖θ‖
τ−
.

It is now easy to show (see ref. 6 for more details) that for each θ ∈M, the
operator Kθ [τ ] maps a compact convex subset of Tτ± into itself. Hence, by
Schauder’s fixed point theorem, we conclude the proof of the existence of
solution to (2.14).

Uniqueness of solution to (2.14) can also be proved with a slight var-
iation of the argument in ref. 11. Let us consider two different increas-
ing solutions of (2.14) τ1(u) and τ2(u). If τ ′

1(−1)=τ ′
2(−1) then uniqueness

of the Cauchy problem implies τ1 = τ2. On the other hand, if τ ′
1(−1) >

τ ′
2(−1) > 0 then we denote by ū the leftmost point in (−1,1] such that
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τ1(ū)= τ2(ū). The point ū exists because τ1(1)= τ2(1) moreover we have
that τ ′

1(ū)� τ ′
2(ū). From (2.14), we get

d

du

( τ
τ ′

)
= θ

τ
,

which integrated gives

τ(u)

τ ′(u)
= τ−
τ ′(−1)

+
∫ u

−1
dv
θ(v)

τ (v)
,

we then deduce

τ1(ū)

τ ′
1(ū)

− τ2(ū)

τ ′
2(ū)

= τ−
τ ′

1(−1)
− τ−
τ ′

2(−1)
+

∫ ū

−1
dv θ(v)

[ 1
τ1(v)

− 1
τ2(v)

]
.

Since τ ′
1(−1)>τ ′

2(−1) and τ1(v)� τ2(v) for v∈ [−1, ū], the right-hand side
above is strictly negative. Recalling that τ1(ū)= τ2(ū) we get τ ′

1(ū)>τ
′
2(ū),

the desired contradiction.
In order to prove that the infimum in (2.12) is uniquely attained for

τ = τ [θ ], the solution of (2.14), we perform the change of variable τ = eϕ .
We then get the functional

G̃(θ, ϕ):=G(θ, eϕ)=
∫ 1

−1
du

[
θ(u) e−ϕ(u)−1−log θ(u)− log

ϕ′(u)
[τ+ − τ−]/2

]
, (4.10)

which is strictly convex in ϕ; this trivially implies the claim.

4.4. Nonconvexity of the Quasi-potential

As we mentioned before, in the case of the SEP the quasi-potential
can be obtained by a variational problem analogous to (2.11) where one
maximizes over the auxiliary profile.(5,6,10,11) In such a case, since the
functional G(θ, τ ) is convex in θ for fixed τ , the rate functional S(θ) is
trivially convex in θ . In the case of the KMP process we need instead to
minimize over the auxiliary profile τ , therefore there is no reason to expect
S(θ) to be convex. We now show, by an explicit computation, that the rate
functional is indeed not convex.

We mention that nonconvexity of the rate functional S has been
shown for the asymmetric exclusion process;(12) in that case however the
functional is degenerate, in the sense that there are infinitely many pro-
files for which S vanishes. Therefore the mechanism of the nonconvexity
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is somehow different from the one in the KMP process, where S(θ) van-
ishes only at θ̄ .

To prove the nonconvexity of the rate functional S we shall exhibit
profiles θ and g so that, by choosing ε small enough, we have

S(θ)=S
(

1
2

[θ + εg]+ 1
2

[θ − εg]
)
>

1
2
S(θ + εg)+ 1

2
S(θ − εg). (4.11)

Let τ =τ [θ ] be the strictly increasing solution of the boundary value prob-
lem (2.14), then by using (2.12) for ε small enough and any profile f van-
ishing at the boundaries, f (±1)=0, we have

S(θ + εg) � G(θ + εg, τ + εf )
= G(θ, τ )+ ε

∫ 1

−1
du

{(θ
τ

−1
)(g
θ

− f

τ

)
− f ′

τ ′

}

+ ε2

2

∫ 1

−1
du

{(
2
θ

τ
−1

)f 2

τ 2
+ g2

θ2
−2

gf

τ 2
+ (f ′)2

(τ ′)2

}

+o(ε2),

where we brutally Taylor expanded (2.11).
Since S(θ)=G(θ, τ ), the inequality (4.11) will follow if we show that,

for an appropriate choice of f (recall that τ=τ [θ ] is the solution of (2.14))
we can make the quadratic term in the previous equation strictly negative,
i.e.,

∫ 1

−1
du

{(
2
θ

τ
−1

)f 2

τ 2
+ g2

θ2
−2

gf

τ 2
+ (f ′)2

(τ ′)2

}

<0. (4.12)

Let us introduce the function

h(u) :=

⎧
⎪⎨

⎪⎩

τ− + 64
81
(τ+ − τ−)(1−u6) if −1�u�−1/2,

τ+ + 4
27
(τ+ − τ−)(u−1) if −1/2<u�1.

Note that h ∈ C1([−1,1]), h(±1) = τ± and h is strictly increasing. We
choose the profile θ as

θ(u)=h(u)
[
1−h(u) h

′′(u)
h′(u)2

]
. (4.13)
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Note that θ >0, i.e., θ is an allowed profile in M; the corresponding solu-
tion of the boundary value problem (2.14) is τ [θ ] =h. We further choose
f (u)= (1 − u2)h′(u) (note that f vanishes at the boundaries as required)
and g=f θ2/h2. With the above choices the left hand side of (4.12) equals

∫ 1

−1
du

{(
2
θ

h
−1

)f 2

h2
− f 2θ2

h4
+ (f ′)2

(h′)2

}

=
∫ 1

−1
du

{

−
(θ
h

−1
)2 f 2

h2
+ (f ′)2

(h′)2

}

=
∫ 1

−1
du

{

− (h
′′)2

(h′)4
f 2 + (f ′)2

(h′)2

}

=
∫ 1

−1
du

{

− (h
′′)2(1−u2)2

(h′)2
+ 1
(h′)2

[−2uh′ + (1−u2)h′′]2

}

= 4
∫ 1

−1
du

{
u2 −u(1−u2)

h′′

h′

}

= 4

{∫ 1

−1
duu2 −5

∫ −1/2

−1
du (1−u2)

}

= 4
{

2
3

− 25
24

}
<0.

This completes the proof of (4.12) and therefore of the nonconvexity of
the rate functional S.

4.5. The Rate Functional on Constant Profiles

Here we show that for constant profiles θ the boundary value prob-
lem (2.14) can be integrated; the corresponding value of the rate func-
tional S(θ) can be expressed in terms of special functions.

We use the variable ϕ = log τ ; we then have S(θ)= G̃(θ, ϕ[θ ]), where
the functional G̃ has been defined in (4.10) and ϕ[θ ] is the unique strictly
increasing solution of the boundary value problem

eϕ
ϕ′′

(ϕ′)2
+ θ =0,

ϕ(±1)= log τ±.
(4.14)

If we restrict to constant profiles θ this equation can be integrated obtain-
ing

logϕ′[θ ](u)= logϕ′[θ ](−1)+ θ
{
e−ϕ[θ ](u)− 1

τ−

}
(4.15)
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and from this

S(θ)= G̃(θ, ϕ[θ ])=2
{
−1+ θ

τ−
− log θ − logϕ′[θ ](−1)+ log

τ+ − τ−
2

}
.

From Eq. (4.15) we obtain also

ϕ′[θ ](−1)= 1
2
e
θ
τ−

∫ log τ+

log τ−
dψ e−θe

−ψ

and finally with a change of variables

S(θ)=2
[
− log

(

θ

∫ 1
τ−

1
τ+
dy
e−θy

y

)

−1+ log(τ+ − τ−)
]
. (4.16)

In particular for θ large, from (4.16) we deduce the asymptotic expansion

S(θ)=2
{
θ

τ+
+

(
log

τ+ − τ−
τ+

−1
)

+ τ+
θ

}
+O

( 1
θ2

)
. (4.17)

Recall that the equilibrium functional S0 is given in (2.7) and note
that for constant and large values of the profile θ we have S0(θ)≈2θ/τ . By
comparing this with the expansion (4.17), we see that the leading order is
the same but only the warmer thermostat matters, as it is quite reasonable
from a physical point of view.

As we showed earlier, the rate functional S is not convex. The restric-
tion of S to constant profiles obtained in (4.16) might however be con-
vex; we do not have an analytic proof of the convexity of (4.16), but rough
numerical evidences suggest this is the case.

4.6. An Additivity Principle

In ref. 11 the rate functional S was derived for the SEP by combi-
natorial techniques. It was then shown that S satisfies a suitable additiv-
ity principle which allows to construct the rate functional for a system
in a macroscopic interval [a, b] from the rate functional of subsystems in
the intervals [a, c] and [c, b], here a < c < b. More precisely, in ref. 11 is
introduced a modified rate functional S̃[a,b](τa, τb; θ) where τa , τb are the
density at the endpoints and θ = θ(u) is the density profile in [a, b]. The
additivity principle is then formulated as

S̃[a,b](τa, τb; θ)= sup
τc

{
S̃[a,c](τa, τc; θ�[a,c])+ S̃[c,b](τc, τb; θ�[c,b])

}
, (4.18)
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where θ�[a,c], respectively, θ�[c,b], denotes the restriction of the profile θ ,
which is defined on the interval [a, b], to the subinterval [a, c], respectively
[c, b]. The additivity principle (4.18) plays a crucial role in the derivation
of the rate functional for the asymmetric exclusion process. In ref. 12 the
expression of the rate functional from this principle is then deduced.

Here we show that the rate functional S for the KMP process satis-
fies an additivity principle analogous to (4.18). Here, however, we need to
minimize on the midpoint value τc. This is due to the fact that in (2.12)
we need to minimize over the auxiliary profile τ ; a direct derivation of
the additivity formula, as was done in ref. 12 for the asymmetric exclu-
sion process, would clarify the basic physical difference between the KMP
process and the SEP.

Let us consider the KMP process on the macroscopic interval [a, b],
here we denote the temperatures of the heat baths at the boundary by τa ,
τb. We then let S[a,b](τa, τb; θ) be the corresponding rate functional and
introduce

S̃[a,b](τa, τb; θ)=S[a,b](τa, τb; θ)− (b−a) log
τb− τa
b−a (4.19)

by using (2.11) and (2.12) we then get

S̃[a,b](τa, τb; θ)= inf
τ :

τ(a)=τa, τ (b)=τb

∫ b

a

du
[θ(u)
τ(u)

−1− log
θ(u)

τ(u)
− log τ ′(u)

]
,

(4.20)

where the infimum is over the strictly monotone auxiliary profiles τ(u), u∈
[a, b]. We then get the additivity principle for the KMP process:

S̃[a,b](τa, τb; θ)= inf
τc∈[τa,τb ]

{
S̃[a,c](τa, τc; θ�[a,c])+ S̃[c,b](τc, τb; θ�[c,b])

}
.

(4.21)

It is not difficult to show (see ref. 11), that the expression (2.11) and
(2.12) for the rate functional follows from the additivity rule (4.21).

4.7. Remarks

We again conclude with a few mathematical remarks. We have dis-
cussed existence and uniqueness of (2.14) only for bounded profiles θ ;
the extension to θ ∈ M should be however straightforward. Let V (θ) be
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the quasi-potential as defined by the variational problem (4.2). Since the
optimal path π∗ has been explicitly constructed, the rigorous proof of the
upper bound V (θ)� inf τ∈Tτ± G(θ, τ ) should be carried out as in ref. 6. The
proof of the lower bound V (θ)� inf τ∈Tτ± G(θ, τ ) is instead more trouble-
some. The computations presented here essentially prove this bound for
strictly positive smooth paths π , but the argument in ref. 6 to extend it
to arbitrary paths in Eθ,T takes advantages of the convexity (special for
the SEP) of the dynamical rate functional J . This problem is of course
related to the proof of the lower bound for the dynamical large deviation
principle for any open set mentioned at the end of Section 3. The iden-
tification of the quasi-potential V with the rate functional for the invari-
ant measure S has been proven for the SEP in ref. 7 although the strategy
is of wider applicability, the technical points might require some extra
effort.

5. HIGHER SPACE DIMENSIONS

The KMP process introduced in Section 2 can be easily generalized to
the case of space dimensions d >1. Let � be a smooth domain in R

d and set
�N :=Z

d ∩N�. We then define the process on 	N :=R
�N+ as follows: every

pair of nearest neighbors oscillators exchanges energy according to the rule
described in Section 2 and every oscillator at a boundary site x is in contact
with a thermostat at temperature τ̃ (x/N) for a fixed function τ̃ .

Several computations of this paper can be repeated step by step when
the model is not one-dimensional. In particular the hydrodynamic equa-
tion has still the same form (3.4) with the boundary condition θ�∂�=
τ̃ and the dynamic large deviation functional J has the same form as
(3.14). Formula (4.2) as well as the Hamilton–Jacobi equation (4.5) for the
quasi-potential holds in any dimension; we can still perform the change
of variables (4.6) and reduce (4.5)–(4.7). However the solution of the
boundary value (2.14) does not give the quasi-potential because, with
this choice, the right-hand side of (4.6) is a functional derivative only if
d=1.

However, by analyzing the variational problem (4.2), we derive an
upper bound for quasi-potential V (θ) that holds in any space dimension.
We also discuss here the Gaussian fluctuations of the empirical energy
when ξ is distributed according to the invariant measure. We shall obtain
the covariance of the Gaussian fluctuations by expanding the large devia-
tions functional S(θ) around the stationary profile θ̄ . We note that in the
one–dimensional case the arguments are easier thanks to the more explicit
form of S.
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5.1. Upper Bound for the Quasi-potential

Let us denote by θ̄ (u), u ∈� the stationary solution of (3.4) with
boundary condition θ̄ (u)= τ̃ (u), u∈ ∂�. Note that, for generic boundary
conditions τ̃ , the profile θ̄ does not have the simple form (2.10). Of course
θ̄ is still the most likely profile for the empirical energy under the invariant
measure. We also introduce the local equilibrium large deviation function

Seq(θ)=
∫

�

du

[
θ(u)

θ̄(u)
−1− log

θ(u)

θ̄(u)

]
(5.1)

and note that it coincides with the function defined in (3.15) and it is thus
the rate functional for the product measure νN

θ̄
.

When d=1 we can use (2.11) and easily obtain the upper bound

S(θ)= inf
τ∈MTτ±

G(θ, τ )�G(θ, θ̄)=Seq(θ). (5.2)

For d >1 we use a different strategy. Given a path π=π(t, u) satisfy-
ing the boundary condition π(t, u)= τ̃ (u), u∈ ∂�, a straightforward com-
putation shows that

J[−T ,0](π) = 1
2

∫ 0

−T
dt

〈
∇−1

[
∂tπ − 1

2

π

]
,

1
π2

∇−1
[
∂tπ − 1

2

π

]〉

= 1
2

∫ 0

−T
dt

〈
∇−1

[
∂tπ + 1

2

π +∇

(
π2∇ 1

θ̄

)
−
π −∇

(
π2∇ 1

θ̄

)]
,

1
π2

∇−1
[
∂tπ + 1

2

π +∇

(
π2∇ 1

θ̄

)
−
π −∇

(
π2∇ 1

θ̄

)]〉

= Seq(π(0))−Seq(π(−T ))− 1
2

∫ 0

−T
dt

〈 (∇ θ̄ )2
θ̄4

, (π − θ̄ )2
〉

+ 1
2

∫ 0

−T
dt

〈
∇−1

[
∂tπ + 1

2

π +∇

(
π2∇ 1

θ̄

)]
,

1
π2

∇−1
[
∂tπ + 1

2

π +∇

(
π2∇ 1

θ̄

)]〉
.

The quasi-potential is defined by the variational problem (4.2). Hence, to
obtain an upper bound for V (θ) it is enough to exhibit a path π which
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connects θ̄ to θ . We choose π(t)= θ̃ (−t) where θ̃ (t) solves

∂t θ̃ (t) = 1
2

θ̃(t)+∇

(
θ̃ (t)2∇ 1

θ̄

)
,

θ̃ (t, u) = τ̃ (u) , u∈ ∂�,
θ̃(0, u) = θ(u).

We note that the path π connects θ̄ to θ since θ̃ (t)→ θ̄ as t→∞. By using
the path π in the above expression for J[−T ,0](π) and letting T →∞ we get

V (θ)�Seq(θ)− 1
2

∫ 0

−∞
dt

〈 (∇ θ̄ )2
θ̄4

, [π(t)− θ̄ ]2
〉
�Seq(θ),

which shows that the upper bound V (θ) � Seq(θ) holds in any space
dimension. We also note that the above inequality is strict unless θ = θ̄ .

5.2. Gaussian Fluctuations

In the case d = 1 we can follow step by step the argument given in
ref. 11 for the SEP. We consider a small perturbation, θ = θ̄ + ε�, of the
stationary profile θ̄ , and consequently have τ [θ ] = θ̄ + εT , where, to first
order in ε, (2.14) gives

θ̄2

(∇ θ̄ )2
T −T =−�. (5.3)

The functional S(θ) has a minimum at θ̄ so that its expansion in ε is

S(θ)=S(θ̄)+ 1
2
ε2〈�,C−1�〉+o(ε2). (5.4)

The operator C is the covariance for the Gaussian fluctuations of the
empirical energy under the invariant measure µN,τ± . Since S(θ)=G(θ, τ [θ ]),
we get

〈�,C−1�〉 =
∫ 1

−1
du

{
[T (u)−�(u)]2

θ̄2(u)
+ [∇T (u)]2

[∇ θ̄ ]2

}

=
∫ 1

−1
du

{
θ̄ (u)2[
T (u)]2

[∇ θ̄ ]4
− T (u)
T (u)

[∇ θ̄ ]2

}

=
〈

T,

W

(∇ θ̄ )2
T
〉
,
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where we used Taylor expansions, integrations by parts, T (±1)= 0, and
(5.3). The operator W is defined as

W := θ̄2

(∇ θ̄ )2 1I+ (−
)−1. (5.5)

From Eq. (5.3) we get �=−W
T and this implies

〈�,C−1�〉=
〈

T,

W

(∇ θ̄ )2
T
〉
=

〈
�,

W−1

(∇ θ̄ )2�
〉

so that the covariance C is given by

C= (∇ θ̄ )2W = θ̄21I+ (∇ θ̄ )2 (−
)−1. (5.6)

The first term above is simply the covariance of the Gaussian fluctuations
of the empirical energy for local equilibrium product measure νN

θ̄
, while

the second term represents the contribution to the covariance due to the
long range correlations in the stationary nonequilibrium state. As in the
case of the SEP(5,9–11,26) this correction is given by (−
)−1, the Green
function of the Dirichlet Laplacian. Since (−
)−1>0, for the KMP pro-
cess this correction enhances the Gaussian fluctuations, while in the case
of SEP it decreases them. We also note that, by exploiting the duality of
the KMP process with the process we shall introduce in Section 6, the
expression (5.6) for the covariance could be rigorously deduced as in the
case of the SEP.(9,26)

To obtain the covariance of Gaussian fluctuations in the case d>1 we
instead argue as in ref. 5. Let us introduce the “pressure” as the Legendre
transform of the rate functional S(θ), i.e.,

G(h) := sup
θ

{〈θ, h〉−S(θ)}. (5.7)

We then get that G(h) satisfies the Hamilton–Jacobi equation dual to
(4.5), i.e.,

〈
∇h,

(δG
δh

)2∇h
〉
=

〈
∇h,∇ δG

δh

〉
, (5.8)

where h(u) satisfies the boundary conditions h(u)|∂�=0.
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Let us denote by Geq the pressure associated via (5.7) to the local
equilibrium functional Seq; we look for a solution of (5.8) in the form:

G(h)=Geq(h)+〈g,h〉+ 1
2
〈h,B h〉+o(h2) (5.9)

for some function g=g(u) and some linear operator B. From (5.4) we get

G(h)=〈θ̄ , h〉+ 1
2

〈h,C h〉+o(h2) (5.10)

hence the second derivative of G at h=0 is the covariance of the density
fluctuations. By comparing (5.9) to (5.10) we find

C= δ2Geq

δh2

∣
∣∣
h=0

+B= θ̄2 1I+B. (5.11)

By plugging (5.9) into (5.8) and expanding up to second order in h, it is
not difficult to show (see ref. 5 for the case of the SEP) that g=0 and

〈h,
B h〉=−〈
h, |∇ θ̄ |2h〉. (5.12)

The operator B therefore satisfies

1
2

[
B+B
]=−|∇ θ̄ |2. (5.13)

See ref. 26 for another derivation of this equation based on fluctuating
hydrodynamic instead of large deviations.

From (5.13) we see that if ∇ θ̄ is constant (this condition can be real-
ized by a suitable choice of the thermostat τ̃ ), the operator B has the
kernel

B(u, v)=|∇ θ̄ |2(−
)−1(u, v), (5.14)

where (−
)−1(u, v) is the Green function of the Dirichlet Laplacian in �.
The interpretation of (5.11) and (5.14) is as in the one-dimensional case
(5.6); we note the fact that B is a positive operator can also be obtained
as a consequence of the bound S(θ)�Seq(θ).
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6. THE DUAL PROCESS

The analysis in ref. 19 is based on a duality relationship between the
KMP process and another process we discuss next in the one-dimensional
case. The state space is 	N := N

�N , where N := {0,1, . . . } is the set of
natural numbers. If ξ = {ξx , x ∈�N } ∈	N , the value ξx at the site x can
therefore be interpreted as the number of particles at x. As for the KMP
process, at each bond {x, x+1} there is an exponential clock of rate one;
when it rings the total number of particles ξx + ξx+1 is redistributed uni-
formly across the bond {x, x+1}. Moreover the boundary sites ±N evolve
according to a heat bath dynamics with respect to a geometric distribution
with parameter p±. More formally, the infinitesimal generator has still the
form (2.1) but now the bulk dynamics is defined by

Lx,x+1f (ξ) := 1
ξx + ξx+1 +1

ξx+ξx+1∑

k=0

[
f (ξ (x,x+1),k)−f (ξ)], (6.1)

where the configuration ξ (x,x+1),k is defined as

(
ξ (x,x+1),k)

y
:=

⎧
⎨

⎩

ξy if y �=x, x+1,
k if y=x,
ξx + ξx+1 −k if y=x+1.

The boundary part of the generator is defined as follows

L±f (ξ) :=
∞∑

k=0

p±(1−p±)k
[
f (ξ±N,k)−f (ξ)], (6.2)

where p± ∈ (0,1) are the parameters of the reservoirs and the configura-
tion ξx,k is defined as

(
ξx,k

)
y

:=
{
ξy if y �=x,
k if y=x. (6.3)

If p+ =p− =p the dynamics is reversible with respect to the product
of geometric distributions of parameter p, i.e., the invariant measure is

µN,p(ξ)=
∏

x∈�N

[
p (1−p)ξx ]. (6.4)



876 Bertini et al.

By a computation analogous to (2.6)–(2.8), it is easy to show that when ξ
is distributed according to µN,p then the empirical density πN(ξ), which is
defined as in (2.3), satisfies a large deviation principle with the rate func-
tional

S0(θ)=
∫ 1

−1
du

{
θ(u) log

θ(u)

θ̄
+ [1+ θ(u)] log

1+ θ̄
1+ θ(u)

}
, (6.5)

where the parameter θ̄ is related to p by the relation θ̄ = ∑∞
k=0 k p(1 −

p)k = (1−p)/p.
When p+ �= p− the model is no longer reversible and the invariant

measure µN,p± is not explicitly known. In the sequel we shall assume p−>
p+. We can repeat the computations done for the KMP process and get
the hydrodynamic equation. This is still the linear heat equation with the
appropriate boundary conditions, i.e.,

∂t θ(t) = 1
2

θ(t),

θ(t,±1) = θ± = 1−p±
p±

, (6.6)

θ(0, u) = θ0(u).

As before the most likely density profile θ̄ is the stationary solution of
(6.6).

To obtain the dynamic large deviation principle we introduce a
smooth function H =H(t, u) vanishing at the boundary and consider the
following time dependent perturbation of the generator Lx,x+1 in (6.1)

LHx,x+1f (ξ) := 1
ξx + ξx+1 +1

ξx+ξx+1∑

k=0

e(ξx−k)[H(t,(x+1)/N)−H(t,x/N)]

× [
f (ξ (x,x+1),k)−f (ξ)].

The hydrodynamic equation associated to this perturbed dynamics is given
by

∂t θ(t)= 1
2

θ(t)−∇

(
θ(t)[1+ θ(t)]∇H(t)

)
(6.7)
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with the same boundary conditions as (6.6). By the same computations as
in Section 3, we get that the dynamical large deviation functional is

J[0,T ](π)= 1
2

∫ T

0
dt

〈∇H(t),π(t)[1+π(t)]∇H(t)〉, (6.8)

where H has to be obtained from the path π by using Eq. (6.7) with θ(t)
replaced by π(t).

This leads to the following Hamilton–Jacobi equation for the quasi-
potential

〈
∇ δV
δθ
, θ(1+ θ)∇ δV

δθ

〉
+

〈δV
δθ
,
θ

〉
=0, (6.9)

where δV /δθ vanishes at the boundary and θ(±1)= θ±.
We look for a solution of the form:

δV

δθ
= log

θ

1+ θ − log
F

1+F . (6.10)

By the same computations as in Section 4, we reduce the Hamilton–Jacobi
equation (6.9) to

〈 θ −F
F 2(1+F)2 , F (1+F)
F + (θ −F)(∇F)2

〉
=0. (6.11)

We thus obtain a solution of (6.9) considering the functional

V (θ)=
∫ 1

−1
du

{
θ(u) log

θ(u)

F (u)
+ [1+ θ(u)] log

1+F(u)
1+ θ(u) − log

F ′(u)
[θ+ − θ−]/2

}
, (6.12)

where F(u) has to be computed from θ(u) as the unique strictly increasing
solution of the boundary value problem

F(1+F) F
′′

(
F ′)2

+ θ −F =0,

F (±1)= θ±.
(6.13)

As for the KMP process it is possible to check that this is the right solu-
tion of the Hamilton–Jacobi equation (6.9).
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By the change of variable F = eϕ , it is easy to verify that the
right-hand side of (6.12) is strictly convex in ϕ. We therefore have, anal-
ogously to the KMP process,

V (θ)=inf
F

∫ 1

−1
du

{
θ(u) log

θ(u)

F (u)
+[1+ θ(u)] log

1+F(u)
1+ θ(u)−log

F ′(u)
[θ+ − θ−]/2

}
,

where the infimum is carried out over all strictly increasing functions F
satisfying the boundary condition F(±1)= θ±.

We mention that, by the methods in refs. 9 and 19, it is possible to
represent the invariant measure of the KMP process in terms of the dual
process here introduced. An interesting question is to derive the large devi-
ation principle (2.13) from this representation.

7. CONCLUSIONS: FEW COMMENTS ON GENERIC MODELS

For the SEP, the derivation of the rate function for the stationary
nonequilibrium state obtained in refs. 10 and 11 depends heavily on the
details of the microscopic process. On the other hand, the variational
approach in ref. 5 depends only on the macroscopic transport coefficients,
bulk diffusion D and mobility σ of the system. These are not independent
functions, they are related by the Einstein relation D(ρ) = σ(ρ)χ(ρ)−1,
where χ(ρ) is the compressibility (see e.g., ref. 27, II.2.5). The compress-
ibility is defined as χ(ρ)−1 = λ′(ρ)= f ′′

0 (ρ), where f0 is the (equilibrium)
Helmholtz free energy of the system and λ is the chemical potential. This
means in particular that while the derivation in refs. 10 and 11 is only
valid for nearest neighbor jumps, the result holds for the general SEP. In
this paper we have discussed a model, the KMP process (in fact two mod-
els if we consider also its dual process), in which the rate functional has an
expression very similar to the one for the SEP. Here we discuss what are
the essential features of the functional form of these coefficients in the der-
ivation of the rate functional S. In this section we shall consider D and σ
as given and discuss the large deviations properties of the stationary non-
equilibrium state.

We discuss only one-dimensional (symmetric) diffusive system with a
single conservation law and particle reservoirs at the boundary. Here it will
be convenient to think of the conserved quantity as the density of par-
ticles. For general models, the hydrodynamic equation is expected to be
given by a nonlinear diffusion equation with Dirichlet data at boundary.
This has been proven, e.g., in ref. 28 for some reversible models and in
refs. 14, 15 and 21 for some nonequilibrium models. The hydrodynamic
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equation has the form

∂tρ(t, u) = 1
2
∇
(
D
(
ρ(t, u)

)∇ρ(t, u)
)
,

ρ(t,±1) = ρ±, (7.1)

ρ(0, u) = ρ0(u),

where the bulk diffusion D(ρ)= σ(ρ)χ(ρ)−1 is given by a Green–Kubo
formula (see, e.g., ref. 27, II.2.2). For the KMP process, as well as for the
SEP, we simply have D=1, i.e., σ =χ .

The probability of a large deviations from the hydrodynamic behav-
ior are expected (to our knowledge for open systems this has been proven
only for the SEP(6), see however ref. 27, II.3.7 for an heuristic deriva-
tion for equilibrium lattice gas models) to have the form (3.16) and (3.17),
where the dynamical cost J[0,T ] should be of the form

J[0,T ](π)= 1
2

∫ T

0
dt 〈∇H(t), σ (π(t))∇H(t)〉 (7.2)

in which the perturbation H has to be chosen so that the fluctuation π

solves the perturbed hydrodynamic

∂tπ(t) = 1
2
∇
(
D
(
π(t)

)∇π(t)
)

−∇
(
σ
(
π(t)

)∇H(t)
)
,

π(t,±1) = ρ±, (7.3)

π(0, u) = ρ0(u)

and σ(π) is the mobility of the system. For the SEP process we have
σ(π) = π(1 − π) (note that in this case we have 0 � π � 1) while for
the KMP process, respectively, its dual, we have σ(π)= π2, respectively,
σ(π)=π(1+π).

We first mention the few examples in which it is possible to obtain
the rate function S in a closed form. The following models are however
even simpler than the SEP or the KMP process since they do not exhibit
the nonlocality of S, which reflects, at the large deviation level, the long
range correlations of the system which are expected(1,26) to be a generic
feature of nonequilibrium models.
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The easiest example is provided by independent particles. In this case
we have D constant and σ linear. The nonequilibrium state is a product
measure and it is easy to verify that S(ρ)= ∫ 1

−1duf
(
ρ(u), ρ̄(u)

)
, where

f (ρ, τ )=f0(ρ)−f0(τ )+ (ρ− τ)f ′
0(τ )=ρ log(ρ/τ)− (ρ− τ) (7.4)

and ρ̄ is the stationary solution of (7.1). Another example is the so called
zero range process (see e.g. ref. 27, II.7.1). In this case D(ρ)=�′(ρ) and
σ(ρ) = �(ρ), where the (increasing) function � depends on the micro-
scopic rates. As shown in ref. 8 the nonequilibrium state is again a prod-
uct measure and, as discussed in refs. 4 and 5, its rate function is S(ρ)=∫ 1
−1du f

(
ρ(u), ρ̄(u)

)
for f again given by (7.4) with the appropriate f0.

These examples (the first being a special case of the second) are charac-
terized by the fact that σ(ρ)=C exp{λ(ρ)}, where C>0 is a constant and
λ is the chemical potential. The Einstein formula then gives D(ρ)=σ ′(ρ).
The last example is the Ginzburg–Landau model (see e.g., ref. 27, II.7.3),
where σ is a constant while D is determined by the Einstein relation. In
this case the nonequilibrium state is still a product measure and its rate
function has the same expression as in the zero range process.

We note that for the SEP, as well as for the KMP process and its
dual, we have D(ρ) constant and σ(ρ) a second order polynomial in ρ.
We next show that an expression of the rate function S of the nonequi-
librium state can be derived under a general hypothesis. More precisely,
we shall assume that the diffusion coefficient D(ρ) and the mobility σ(ρ)
satisfy the following condition. There exists a constant a∈R such that for
any ρ �= τ

σ (ρ)−σ(τ)
∫ ρ
τ
dr D(r)

= σ ′(τ )
D(τ)

+a (ρ− τ). (7.5)

This condition, of course, identifies a rather tiny class of models that in
fact coincides with the class of all the examples discussed. We should not
expect to be able to obtain S in almost a closed form for any model. As
we shall see, the locality of the functional S corresponds to the special
case (in this class) a=0.

Let us first discuss which functions D and σ satisfy condition (7.5).
We rewrite it with ρ and τ exchanged

σ(τ)−σ(ρ)
∫ τ
ρ
dr D(r)

= σ ′(ρ)
D(ρ)

+a(τ −ρ).
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This equation together with (7.5) imply

σ ′(τ )
D(τ)

− σ ′(ρ)
D(ρ)

=2a(τ −ρ).

It is easy to see that this is equivalent to

σ ′(r)
D(r)

=2ar+ c (7.6)

with c an arbitrary constant. Condition (7.6) is a necessary condition for
the validity of (7.5). We rewrite (7.6) in the integrated form

σ(ρ)−σ(τ)=2a
∫ ρ

τ

dr rD(r)+ c
∫ ρ

τ

dr D(r)

and substitute it inside (7.5). We thus obtain

2a
∫ ρ
τ
dr rD(r)

∫ ρ
τ
dr D(r)

=a(ρ+ τ). (7.7)

A pair (σ,D) is a solution of (7.5) if and only if is a solution of (7.6) and
(7.7).

When a = 0, Eq. (7.7) is always satisfied and (7.6) becomes σ ′(r)=
cD(r). If c �=0 we have the solutions corresponding to zero range dynam-
ics (with an extra multiplicative factor c); if c= 0 we have the solutions
corresponding to Ginzburg–Landau models.

When a �=0, Eq. (7.7) becomes

2
∫ ρ

τ

dr rD(r)= (ρ+ τ)
∫ ρ

τ

dr D(r). (7.8)

We differentiate with respect to ρ and obtain

(ρ− τ)D(ρ)=
∫ ρ

τ

dr D(r)

that is satisfied if and only if D is constant. Now condition (7.6) imposes
that σ(ρ) is a second order polynomial in ρ. Hence a>0 if σ is concave
and a<0 if σ is convex. In this class of solutions fall the simple exclusion
model, the KMP model and its dual.
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To write the rate functional S we need to introduce a little more nota-
tion. We let d(ρ)=∫ ρ

0 dr D(r), since D>0 the function d is strictly increas-
ing; we denote its inverse by b. Note that the KMP process and the SEP
the function d is linear, however the current setup includes more general
cases. We finally set A(ϕ) :=σ (b(ϕ)). We next denote partial derivatives by
a subscript. Let us introduce a function of two variables f =f (ρ, τ ) such
that fρρ(ρ, τ )=D(ρ)σ(ρ)−1 =χ−1(ρ) and normalize f so that f (·, τ ) has
a minimum at τ and f (τ, τ )=0. Therefore,

f (ρ, τ )=
∫ ρ

τ

dr

∫ r

τ

dr ′
1

χ(r ′)
.

It is easy to verify that in the equilibrium case, ρ+ =ρ− = ρ̄0, the rate func-
tion S0 is simply given by S0(ρ)=

∫ 1
−1du f

(
ρ(u), ρ̄0

)
. To obtain the rate

function S in the nonequilibrium case ρ+ �=ρ− we introduce the functional
of two variables

G(ρ, ϕ) :=
∫ 1

−1
du

{
f
(
ρ(u), b(ϕ(u))

)− 1
a

log
∇ϕ(u)

∇d(ρ̄(u))
}
, (7.9)

where ρ̄ is the equilibrium profile. Note that ∇d(ρ̄(u))=D(ρ̄(u))∇u is a
constant since its divergence must vanish in the stationary state.

We claim that, under condition (7.5), the rate function S can be
expressed as S(ρ)=G(ρ, ϕ[ρ]), where, given ρ, the auxiliary function ϕ=
ϕ[ρ] is the solution of the Euler–Lagrange equation δG(ρ, ϕ)/δϕ= 0, that
is

1
a


ϕ
(∇ϕ)2

+ ρ−b(ϕ)
A(ϕ)

=0,

ϕ(±1)=d(ρ±),
(7.10)

where we used fτ (ρ, τ )= −D(τ)(ρ − τ)/σ (τ), b′(ϕ)=D(b(ϕ))−1 and the
definition of A.

The definition of the functional G and the above equation are not
really meaningful if a=0, as it is the case for the simple models in which
S is local discussed above. However, in such a case we understand (7.10)
as 
ϕ=0 whose solution is ϕ(u)=d(ρ̄(u)). Plugging it into the functional
G we get, by understanding (log 1)/0=0, the correct local functional S(ρ).
On the other hand, as soon as a �=0, the functional S is nonlocal.
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To establish the claim, we next show that the functional S solves the
Hamilton–Jacobi equation

〈
∇ δS
δρ
, σ (ρ)∇ δS

δρ

〉
+

〈δS
δρ
,∇

(
D(ρ)∇ρ

)〉
=0. (7.11)

The argument to conclude the identification of S with the quasi potential,
as defined in (4.2), is indeed essentially the one carried out in Section 4.2
and it is therefore omitted.

By the definition of S, we get δS(ρ)/δρ=δG(ρ, ϕ)/δρ=fρ(ρ, b(ϕ)) so
that the left-hand side of (7.11), after an integration by parts, reduces to

〈
fρρ(ρ, b(ϕ))∇ρ+ fρτ (ρ, b(ϕ))

D(b(ϕ))
∇ϕ,

σ (ρ)fρρ(ρ, b(ϕ))∇ρ+σ(ρ)fρτ (ρ, b(ϕ))
D(b(ϕ))

∇ϕ−D(ρ)∇ρ
〉

=
〈
fρρ(ρ, b(ϕ))∇ρ+ fρτ (ρ, b(ϕ))

D(b(ϕ))
∇ϕ,σ (ρ)fρτ (ρ, b(ϕ))

D(b(ϕ))
∇ϕ

〉

=
〈
∇d(ρ), −∇ϕ

A(ϕ)

〉
+

〈
∇ϕ, σ (ρ)

A(ϕ)2
∇ϕ

〉
,

where we used the Einstein relation σ(ρ)fρρ(ρ, b(ϕ))=D(ρ) in the first
step and fρτ

(
ρ, b(ϕ)

)=−D(b(ϕ))/A(ϕ) in the second one.
We next write ∇d(ρ)= ∇[d(ρ)− ϕ] + ∇ϕ and integrate by parts the

first term in the last expression above (recall that d(ρ) and ϕ satisfy the
same boundary conditions). We finally get that the left-hand side of (7.11)
equals

〈
d(ρ)−ϕ,∇

( ∇ϕ
A(ϕ)

)
+ σ(ρ)−A(ϕ)

d(ρ)−ϕ
1

A(ϕ)2

(∇ϕ)2
〉
.

We therefore find that the functional S solves the Hamilton–Jacobi equa-
tion (7.11) provided ϕ satisfies the equation

A(ϕ)
ϕ+
[
−A′(ϕ)+ σ(ρ)−A(ϕ)

d(ρ)−ϕ
] (∇ϕ)2 =0. (7.12)

In general, we have no reason to expect to be able to express the solution
of the functional derivative equation (7.11) by a boundary value problem
analogous to (7.12), it simply works under our special assumption.
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Up to this point we did not yet really use condition (7.5) but, to
complete the argument, we need to show that (7.12) is equivalent to the
Euler–Lagrange equation (7.10). By writing (7.5) with τ =b(ϕ) we get

σ(ρ)−A(ϕ)
d(ρ)−ϕ =A′(ϕ)+a[ρ−b(ϕ)]

and, by comparing (7.10) with (7.12), we see that they are indeed equiva-
lent under the above condition.

As we emphasized, the rate function for SEP is obtained by taking
the supremum over ϕ of G(ρ, ϕ), while for the the KMP process we need
to take the infimum. We can now realize that this depends on the sign of
a. Indeed for a>0 (as in the KMP process) the functional G(ρ, ϕ) is con-
cave in ∇ϕ while it is convex for a<0 (as in the SEP).

It is quite tempting to extend the previous derivation to a broader
class of models, possibly by a different definition of the trial functional G,
however our attempts in this direction were not successful.
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