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A gradient flow approach to linear Boltzmann equations

GIADA BASILE, DARIO BENEDETTO AND LORENZO BERTINI

Abstract. We introduce a gradient flow formulation of linear Boltzmann equa-
tions. Under a diffusive scaling we derive a diffusion equation by using the ma-
chinery of gradient flows.
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1. Introduction

The Boltzmann equation describes the evolution of the one-particle distribution on
position and velocity of a rarefied gas. It has become a paradigmatic equation since
it encodes most of the conceptual and technical issues in the description of the
statistical properties for out of equilibrium systems. In particular, from a mathe-
matical point of view, a global existence and uniqueness result is still lacking. In
the kinetic regime, some transport phenomena can be described by linear Boltz-
mann equations. Typical examples are the charge (or mass) transport in the Lorentz
gas [27], the evolution of a tagged particle in a Newtonian system in thermal equilib-
rium [35], and the propagation of lattice vibrations in insulating crystals [7]. Since
the evolution equations are linear, their analysis is simpler. From one side, these
equations have been derived from an underlying microscopic dynamics globally in
time [7, 8, 13, 20]. From the other side, several results on the asymptotic behavior
of the one-particle distribution have been obtained. In particular, by considering
non degenerate scattering rates, under a diffusive rescaling the linear Boltzmann
equation converges to the heat equation [3, 10, 19, 25].

In the present paper, inspired by the general theory in [2], we propose a for-
mulation of linear Boltzmann equations in terms of gradient flows. Recently there
have been some attempts to formulate the Fokker-Planck equation associated to
continuous time reversible Markov chains, equivalently homogeneous linear kinetic
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equations, as gradient flows [17, 28, 30], essentially in terms of energy variational
inequalities, and the potential applications of this approach have yet to be fully in-
vestigated. The case of homogeneous non linear Boltzmann equations is considered
in [18]. The present approach is based on an entropy dissipation inequality and can
be applied naturally to the inhomogeneous case, that appears novel. In perspective,
this approach could be adapted to the non linear, non homogeneous Boltzmann
equation.

We consider a linear Boltzmann equation of the form

(@t + b(v) · rx ) f (t, x, v) =
Z
⇡(dv0)� (v, v0)

⇥
f (t, x, v0) � f (t, x, v)

⇤
, (1.1)

where ⇡(dv) is a reference probability measure on the velocity space, b is the drift,
� (v, v0) � 0 is the scattering kernel and f is the density of the one-particle dis-
tribution with respect to dx ⇡(dv). We assume the detailed balance condition, i.e.
� (v, v0) = � (v0, v). The entropy H( f ) =

R
dx

R
⇡(dv) f log f is a Lyapunov

functional for the evolution (1.1), and the transport term do not affect its rate of
decrease. This observation will allow to formulate (1.1) as the following entropy
dissipation inequality

H
�
f (T )

�
+

Z T

0
dt E

�
f (t)

�
+R0( f )  H

�
f (0)

�
, (1.2)

where E
�
f
�

=
Z
dx

ZZ
⇡(dv)⇡(dv0)� (v, v0)

⇥p
f (x, v0) �

p
f (x, v)

⇤2 is the

Dirichlet form of the square root of f and R0 � 0 is a kinematic term that will
be defined later.

As an application of (1.2) we discuss the diffusive limit of the linear Boltz-
mann equation. This is a classical result, but the gradient flow formulation provides
a transparent proof and allows to consider more general initial conditions, which
are only required to satisfy an entropy bound. More precisely, we will show that
in the diffusive scaling limit the particle density converges to the solution of the
heat equation. The proof will be achieved by taking the limit in the rescaled en-
tropy dissipation inequality and deducing the corresponding inequality for the heat
equation.

ACKNOWLEDGEMENTS. We are grateful to Mauro Mariani for useful discussions
about gradient flows and for his comments on an earlier version of the current
manuscript.

2. A gradient flow formulation

In this section we introduce a gradient flow formulation of non-homogeneous linear
kinetic equations. Both for ease of presentation and for future use, we however first
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review the gradient flow formulation of the heat equation, that is here considered in
somewhat different setting that includes the current as a dynamical variable.

Throughout the whole paper, the space domain is the d-dimensional torus
Td := Rd/Zd and we denote by dx the Haar measure on Td . The set of Borel
probability measures on Td is denoted by P(Td) that we consider endowed with
the (metrizable) topology induced by the weak convergence. Recall finally that
the entropy is the convex lower semicontinuous functional H : P(Td) ! [0,+1]
defined by H(µ) =

R
dx ⇢ log ⇢ if dµ = ⇢ dx and H(µ) = +1 otherwise.

Heat equation

We start by an informal discussion. Consider the heat equation on Td

@t⇢ = r · Dr⇢ ,

where ⇢ is a probability density and the diffusion coefficient D is a positive sym-
metric d ⇥ d matrix. We introduce the currents as vector fields on Td , denoted by
j . Given ⇢, we define the associated current j⇢ := �Dr⇢. We can then rewrite
the heat equation as (

@t⇢ + r · j = 0
j = j⇢ .

(2.1)

We shall rewrite this system as a variational inequality that expresses the decrease
of the entropy.

Fix T > 0. On the set of paths (⇢(t), j (t)), t 2 [0, T ], satisfying the continuity
equation @t⇢ + r · j = 0 consider the action functional

I (⇢, j) =
1
2

Z T

0
dt

Z
dx

1
⇢(t)

⇥
j (t) + Dr⇢(t)

⇤
· D�1⇥ j (t) + Dr⇢(t)

⇤
,

where · denotes the inner product in Rd . This functional arises naturally by an-
alyzing the large deviation asymptotics of N independent Brownians [14, 23] and
its connection with the gradient flow formulation of the heat equation is discussed
in [1]. To be precise, the rate function in [1, 14, 23] does not include the current
as a dynamical variable but it can be extended to this case, see [12] for a similar
functional in the context of stochastic lattice gases.

Observe that I � 0 and I (⇢, j) = 0 if and only if j = j⇢ . Hence the second
equation in (2.1) is equivalent to I (⇢, j)  0. By expanding the square we deduce

Z T

0
dt

Z
dx

h1
2
1
⇢(t)

j (t)·D�1 j (t)+
1
2
1
⇢(t)

r⇢(t)·Dr⇢(t)+
1
⇢(t)

r⇢(t)· j (t)
i

 0.

(2.2)
Since (r⇢)/⇢ = r log ⇢, integrating by parts and using the continuity equation,
the last term is the total derivative of H(⇢(t)).
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We now introduce the Fisher information E as the Dirichlet form of square
root, namely

E(⇢) =
1
2

Z
dx
1
⇢

r⇢ · Dr⇢ = 2
Z
dx r

p
⇢ · Dr

p
⇢.

Let also the kinematic term R be the functional on the set the path (⇢(t), j (t))
defined by

R(⇢, j) =
1
2

Z T

0
dt

Z
dx

1
⇢(t)

j (t) · D�1 j (t),

then (2.2) reads

H(⇢(T )) +
Z T

0
dt E(⇢(t)) + R(⇢, j)  H(⇢(0)) , (2.3)

which is the gradient flow formulation of the heat equation that we will use here.
We now specify the precise formulation in which we consider a family of prob-

abilities µt (dx) = ⇢(t, x) dx , t 2 [0, T ], while the currents are the vector valued
measures J (dt, dx) = j (t, x) dt dx . Given T > 0 let C

�
[0, T ];P(Td)

�
be the

set of continuous paths on P(Td) endowed with the topology of uniform conver-
gence. Let alsoM

�
[0, T ] ⇥ Td; Rd� be the set of vector valued Radon measures

on [0, T ] ⇥ Td endowed with the weak* topology. Set S := C
�
[0, T ];P(Td)

�
⇥

M
�
[0, T ] ⇥ Td; Rd� endowed with the product topology.
Given a positive d ⇥ d matrix D, the Fisher information E : P(Td) ! [0,1]

can be defined by the variational formula

E(µ) = 2 sup
�2C2(Td )

n
�

Z
dµ e��r · Dre�

o
, (2.4)

which implies its lower semicontinuity and convexity.
The kinematic term R : S ! [0,1] admits the variational representation

R(µ, J ) = sup
w2C([0,T ]⇥Td ;Rd )

n
J (w) �

1
2

Z T

0
dt

Z
dµt w · Dw

o
, (2.5)

which implies its lower semicontinuity and convexity.
Definition 2.1. Let ⌫ 2 P(Td) with H(⌫) < +1. A path (µ, J ) 2 S is a solution
of the heat equation with initial condition ⌫ iff µ0 = ⌫ and

Z T

0
dt µt (@t�) + J (r�) = 0, � 2 C1c

�
(0, T ) ⇥ Td� (2.6)

H(µT ) +
Z T

0
dt E(µt ) + R(µ, J )  H(⌫). (2.7)
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The standard formulation of the heat equation as gradient flow of the entropy is
recovered from (2.7) by projecting on the density. Indeed, by the Benamou-Brenier
lemma [9], we deduce that if (µ, J ) is a solution to the heat equation according to
Definition 2.1, then µ = (µt )t2[0,T ] satisfies

H(µT ) +
Z T

0
dt

n
E(µt ) +

1
2
�
�µ̇t

�
�2
o

 H(⌫) , (2.8)

where
�
�µ̇t

�
� is the metric derivative of t 7! µt with respect to the Wasserstein-2 dis-

tance, namely
�
�µ̇t

�
�= limh!0 dW2

�
µt+h, µt

�
/h, where dW2 denotes theWasserstein-

2 distance on P(Td).
Conversely, let µ be a solution to (2.8) satisfying µ0 = ⌫. Introduce the func-

tional Jµ on C1
�
[0, T ] ⇥ Td; Rd� defined by Jµ(w) =

R T
0 dt µt

�
r · Dwt

�
. Since

R T
0 dt E(µt )  H(⌫), the functional Jµ extends to an element of M

�
[0, T ] ⇥

Td; Rd�, still denoted by Jµ. Using again the Benamou-Brenier lemma it is then
straightforward to check that the pair (µ, Jµ) is a solution to the heat equation in
the sense of Definition 2.1.

The previous remarks, together with the existence and uniqueness result for
the formulation (2.8) in [21], imply the following statement.

Proposition 2.2. For each ⌫ 2 P(Td), with H(⌫) < 1, there exists a unique
solution of the heat equation with initial condition ⌫.

Linear Boltzmann equations

We do not need any particular hypotheses on the velocity space V that is assumed
to be a Polish space, i.e. a metrizable complete and separable topological space. We
denote by P(Td ⇥V) the set of probabilities on Td ⇥V , that we consider endowed
with the topology of weak convergence. We suppose given a Borel probability
measure ⇡ on V , a symmetric scattering kernel � , i.e. a Borel function � : V⇥V !
[0,+1) satisfying � (v, v0) = � (v0, v), v, v0 2 V , and a drift b : V ! Rd . Given
P 2 P(Td ⇥ V), we denote byH(P) the relative entropy of P with respect to the
probability dx ⇡(dv) namely, H(P) =

RR
dx⇡(dv) f log f if dP = f dx ⇡(dv)

andH(P) = +1 otherwise.
Also in this case we start by an informal discussion. Fix T > 0. Given a path

(Pt )t2[0,T ] on P(Td ⇥ V) with dPt = f (t, x, v) dx ⇡(dv), we use the shorthand
notation f = f (t, x, v), f 0 = f (t, x, v0) and set

⌘ f = ⌘ f (t, x, v, v0) := � ( f � f 0) = � (v, v0)
⇥
f (t, x, v) � f (t, x, v0)

⇤
. (2.9)

We then rewrite the linear Boltzmann equation (1.1) in the form
(�
@t + b(v) · rx

�
f (t, x, v) +

R
⇡(dv0) ⌘(t, x, v, v0) = 0

⌘ = ⌘ f
(2.10)
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We understand that the first equation has to be satisfied weakly and we shall refer
to it as the balance equation. We are going to rewrite the condition ⌘ = ⌘ f as an
inequality that expresses the decrease of the relative entropy H. To this end, given
{ � 0 let 8{ : R+ ⇥ R+ ⇥ R ! [0,+1) be the convex function defined by

8{(p, q; ⇠) := sup
�2R

n
�⇠ � { p

�
e� � 1) � {q

�
e�� � 1

�o
,

observing that given p, q 2 R+ the map ⇠ 7! 8{(p, q; ⇠) is positive (take � = 0),
and equal to zero iff ⇠ = {(p�q). Explicitly, as few computations show,8{ reads

8{(p, q; ⇠) = ⇠
h
ash

⇠

2{ppq
� ash

{(p � q)

2{ppq

i

�
hq
⇠2 + 4{2 pq �

q⇥
{(p � q)

⇤2
+ 4{2 pq

i
,

(2.11)

where we recall that ash(z) = log(z +
p
1+ z2). We note that if { = 0 then

80(p, q; 0) = 0 while 80(p, q; ⇠) = +1 if ⇠ 6= 0.
Fix a path ( f (t), ⌘(t)), t 2 [0, T ] satisfying ⌘(t, x, v, v0) = �⌘(t, x, v0, v)

and the balance equation in (2.10). The condition ⌘(t) = ⌘ f (t), t 2 [0, T ] is
equivalent to

I( f, ⌘) :=
Z T

0
dt

Z
dx

ZZ
⇡(dv)⇡(dv0)8� ( f, f 0; ⌘)  0. (2.12)

This functional is connected with the large deviations asymptotic of a Markov chain
on V with transition rates � (v0, v)⇡(dv0), see [11,31].

We next write

8{(p, q; ⇠) = 8{(p, q; 0) + ⇠
@

@⇠
8{(p, q; 0) +9{(p, q; ⇠). (2.13)

By a few explicit computations,

8{(p, q; 0) = {
�p

p �
p
q
�2

@

@⇠
8{(p, q; 0) =

1
2
log

q
p

9{(p, q; ⇠) = ⇠ ash
⇠

2{ppq
�

hq
⇠2 + 4{2 pq � 2{p

pq
i
.

Observe that 9{ has the variational representation

9{(p, q; ⇠) = sup
�2R

n
�⇠ � 2{p

pq
⇥
ch �� 1

⇤o
. (2.14)
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In particular, 9{ � 0. Moreover, while the map (p, q; ⇠) 7! 9{(p, q; ⇠) is
convex, the map ⇠ 7! 9{(p, q; ⇠) is strictly convex. Finally,9{(p, q; ⇠) ⇠ ⇠2 for
⇠ small and 9{(p, q; ⇠) ⇠ |⇠ | log |⇠ | for ⇠ large.

Observe now that for the path ( f (t), ⌘(t)), t 2 [0, T ] satisfying the balance
equation in (2.10) we have

d
dt
H( f (t)) =

Z
dx

Z
⇡(dv) log f

h
� b(v) · rx f �

Z
⇡(dv0) ⌘(t, x, v, v0)

i

= �
Z
dx

ZZ
⇡(dv)⇡(dv0) ⌘ log f ,

since the first term is a total derivative in x . Hence, by the antisymmetry of ⌘,
Z
dx

ZZ
⇡(dv)⇡(dv0) ⌘

@

@⇠
8{( f, f 0; 0) =

d
dt
H( f (t)).

for any { > 0. Setting { = � , inserting (2.13) and integrating in time we obtain
that, for any ( f (t), ⌘(t)), t 2 [0, T ] satisfying the balance equation, it holds

H( f (T )) +
Z T

0
dt

Z
dx

ZZ
⇡(dv)⇡(dv0)

⇥
8� ( f, f 0; 0) +9� ( f, f 0; ⌘)

⇤

= H( f (0)) +
Z T

0
dt

Z
dx

ZZ
⇡(dv)⇡(dv0)8� ( f, f 0; ⌘).

(2.15)

Gathering the above computations we conclude that (2.12) can be rewritten as

H( f (T )) +
Z T

0
dt E( f (t)) +R( f, ⌘)  H( f (0)) , (2.16)

where
E( f ) =

Z
dx

ZZ
⇡(dv)⇡(dv0) � (v, v0)

⇥p
f 0 �

p
f
⇤2 (2.17)

and

R( f, ⌘) =
Z T

0
dt

Z
dx

ZZ
⇡(dv)⇡(dv0)9� ( f, f 0; ⌘). (2.18)

The inequality (2.16), formally analogous to (2.3), is the proposed gradient flow
formulation of the linear Boltzmann equation (1.1).

We now discuss the precise formulation in which we introduce the measures
dP = f (x, v) dx ⇡(dv) and 2(dt, dx, dv, dv0) = ⌘(t, x, v, v0) dt dx dv dv0. We
first specify the hypotheses on the scattering rate � and the drift b that are assumed
to hold throughout the whole paper.
Assumption 2.3.

(i) The scattering kernel is a Borel function � : V ⇥ V ! [0,+1) satisfying
� (v, v0) = � (v0, v), (v, v0) 2 V ⇥ V .
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(ii) The scattering rate � : V ! [0,+1) is defined by �(v) :=
R
⇡(dv0) � (v, v0).

We require that it has all exponential moments with respect to ⇡ namely,
⇡
⇥
e� �

⇤
< +1 for any � 2 R+.

(iii) The drift is a Borel function b : V ! Rd . We require that it has all exponential
moments with respect to ⇡ namely, ⇡

⇥
e� |b|⇤ < +1 for any � 2 R+, where

|b| is the Euclidean norm of b.

Given T > 0 let C
�
[0, T ];P(Td⇥V)

�
be the set of continuous paths onP(Td⇥V)

endowed with the topology of uniform convergence. Denote byMa
�
[0, T ]⇥Td ⇥

V⇥V
�
the set of finite Radon measures on [0, T ]⇥Td ⇥V⇥V antisymmetric with

respect to the exchange of the last two variables endowed with the weak* topology.
Set S := C

�
[0, T ];P(Td ⇥ V)

�
⇥Ma

�
[0, T ] ⇥ Td ⇥ V ⇥ V

�
endowed with the

product topology. Let also Cbe
�
[0, T ];P(Td ⇥ V)

�
the set of paths (Pt )t2[0.T ] in

C
�
[0, T ];P(Td ⇥ V)

�
such that supt2[0,T ]H(Pt ) < +1 and let finally Sbe :=

Cbe
�
[0, T ];P(Td ⇥ V)

�
⇥Ma

�
[0, T ] ⇥ Td ⇥ V ⇥ V

�

If P 2 P(Td ⇥ V) has finite entropy, the Dirichlet form of the square root E
can be defined by the variational formula

E(P) := 2 sup
�2Cb(Td⇥V)

ZZ
P(dx, dv)⇡(dv0) � (v, v0)

h
1� e�(x,v0)��(x,v)

i
. (2.19)

Note indeed the right-hand side is well defined for any � 2 Cb(Td ⇥ V) in view of
Assumption 2.3 and the basic entropy inequality P( )  H(P)+log

R
dx⇡(dv) e ,

 : Td ⇥ V ! R. The representation (2.19) corresponds to the Donsker-Varadhan
large deviation for the empirical measure of the continuous time Markov chain on
V with transition rates � (v0, v)⇡(dv0) [16]. Indeed, E(P) = sup�{�P(e��Le�)},
where

Lg(v) =
Z
⇡(dv0)� (v0, v)[g(v0) � g(v)]. (2.20)

A variational representation for the kinematic term R is obtained by combining
(2.14) with the simple observation that for p, q 2 R+ we have �2ppq =
supa>0

�
� ap � a�1q

 
. We thus let R : Sbe ! [0,+1] be the functional de-

fined by

R(P,2) := sup
⇣,↵

⇢
2(⇣ ) �

Z T

0
dt

ZZZ
Pt (dx, dv)⇡(dv0) � (v, v0)

⇥
⇥
ch ⇣(t, x, v, v0) � 1

⇤⇥
↵(t, x, v, v0) + ↵(t, x, v0, v)�1

⇤
�
,

(2.21)

where the supremum is carried out over the continuous functions ⇣ : [0, T ] ⇥ Td ⇥
V ⇥V ! R with compact support and antisymmetric with respect to the exchange
of the last two variables and the bounded continuous functions ↵ : [0, T ]⇥Td⇥V⇥
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V ! (0,+1) uniformly bounded away from zero. As before, the basic entropy
inequality implies thatR is well defined.

At this point the gradient flow formulation of the linear Boltzmann equations
is simply specified by the following entropy dissipation inequality.
Definition 2.4. Let Q 2 P(Td ⇥V) withH(Q) < +1. An element (P,2) 2 Sbe
is a solution to the linear Boltzmann equation with initial condition Q if and only if
P0 = Q and
Z T

0
dt Pt (@t� + b · rx�)=

1
2

Z
2(dt, dx, dv, dv0)

⇥
�(t, x, v)��(t, x, v0)

⇤
, (2.22)

H(PT ) +
Z T

0
dt E(Pt ) +R(P,2)  H(Q). (2.23)

for all continuous functions � : (0, T ) ⇥ Td ⇥ V with compact support and contin-
uously differentiable in the first two variables.
Remark 2.5. If (P,2) is a solution to the linear Boltzmann equation in the time
interval [0, T ] then it solves the same problem in the time interval [0, t], t  T
as well. This follows from the fact that any element (P,2) 2 Sbe satisfies, for
0  s < t  T , the inequality

H(Pt ) +
Z t

s
du E(Pu) +Rs,t (P,2[s,t]) � H(Ps) , (2.24)

where 2[s,t] is the restriction of 2 to the interval [s, t] and the kinematic termRs,t

is defined as in (2.21) with the interval [0, T ] replaced by [s, t]. This inequality
corresponds in fact to the trivial inequality I[s,t](P,2) � 0 where the action func-
tional I[s,t] is defined as in (2.12) with the interval [0, T ] replaced by [s, t]. The
actual proof of (2.24) is detailed in Appendix A.

It is of course possible to obtain a formulation only in terms of the one par-
ticle distribution. More precisely, the formulation (1.2) is obtained from (2.23)
simply by letting R0 : Cbe([0, T ];P(Td ⇥ V)) ! [0,+1] be the functional
defined by R0(P) = inf2R(P,2) where the infimum is carried out over all
2 2 Ma([0, T ] ⇥ Td ⇥ V ⇥ V) such that the pair (P,2) satisfies the balance
equation (2.22). It is however unclear to us whether R0(P) could be represented
by the metric derivative of t 7! Pt with respect to a suitable distance onP(Td⇥V).

We now state an existence and uniqueness result for the above formulation,
together with a continuous dependence on the initial condition and the coefficients.
In particular uniqueness implies that solutions to (1.1) with bounded entropy are
characterized by the gradient flow formulation in Definition 2.4.

Theorem 2.6. For each Q 2 P(Td ⇥V), withH(Q) < +1, there exists a unique
solution (P,2) to the linear Boltzmann equation with initial condition Q. Further-
more:
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(i) Set2P(dt, dx, dv, dv0) := dt � (v, v0)
⇥
Pt (dx, dv)⇡(dv0)�⇡(dv)Pt (dx, dv0)

⇤
.

Then 2 = 2P ;
(ii) Let {Qn} ⇢ P(Td ⇥ V) be such that Qn ! Q and H(Qn) ! H(Q) and

denote by (Pn,2n) 2 Sbe the solution to the linear Boltzmann equation with
initial condition Qn . Then the sequence {(Pn,2n)} converges to (P,2);

(iii) Fix Q 2 P(Td⇥V) withH(Q) < +1 and consider coefficients b, � together
with sequences bn , � n all satisfying Assumption 2.3. Denote by (Pn,2n) 2
Sbe the solution to the linear Boltzmann equation with initial condition Q and
coefficients bn , � n . If bn ! b in ⇡ probability, � n ! � in ⇡ ⇥ ⇡ probability,
and limn

�
log⇡

⇥
e� |bn�b|⇤ + log⇡

⇥
e� |�n��|

⇤ 
= 0 for any � > 0 then the

sequence {(Pn,2n)} converges to (P,2).

While uniqueness will be proven using the argument in [21], the key ingredient for
the continuity result is the following lemma. Its proof, whose details are omitted, is
achieved by truncating with continuous and bounded functions and using the basic
entropy inequality.

Lemma 2.7. Let {Pn} ⇢ P(Td ⇥V) be a sequence converging to P and satisfying
the entropy bound supnH(Pn) < +1. Then Pn(�) ! P(�) for any function �
having all exponential moments with respect to ⇡ . Moreover, if � has all exponen-
tial moments and limn log⇡

⇥
e� |�n��|

⇤
= 0 for any � > 0 then Pn(�n) ! P(�).

In view of the variational definition (2.19), this lemma readily implies that the
Dirichlet form E is lower semicontinuous on sublevel sets of the entropy. Anal-
ogously, recalling (2.21), the kinematic termR is lower semicontinuous on the sets�
(P,2) 2 Sbe : supt2[0,T ]H(Pt )  `

 
, ` 2 R+.

Proof of Theorem 2.6. We start by proving uniqueness, and in particular by show-
ing that if (P1,21) and (P2,22) are solutions then P1 = P2. Assume by con-
tradiction that there exists t 2 (0, T ] such that P1t 6= P2t and let (P̄, 2̄) =
1
2
�
P1,21

�
+ 1

2 (P
2,22). In view of Remark 2.5, by the convexity of E , R and

the strict convexity ofH

H(P̄t ) +
Z t

0
ds E(P̄s) +R0,t (P̄, 2̄) < H(Q),

which by (2.24) provides the desired contradiction. Uniqueness is now concluded
by observing that, for a given P 2 Cbe

�
[0, T ];P(Td⇥V)

�
, the map2 7! R(P,2)

is strictly convex, so that we can repeat the argument above with P1 = P2 = P
and deduce 21 = 22.

Postponing the proof of the existence, we show item (i). We write 2 =
2P + 2̃ and we observe that, in view of the balance equation (2.22), 2̃(⇣ ) = 0
if ⇣(t, x, v, v0) = z(t, x, v0) � z(t, x, v) for some function z. By choosing in the
variational formula (2.21) ⇣ = z0 � z, where z = z(t, x, v) and z0 = z(t, x, v0), we
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get

R(P,2P + 2̃) � sup
z,↵

⇢
2P(z0 � z) �

Z T

0
dt

ZZZ
Pt (dx, dv)⇡(dv0) � (v, v0)

⇥
⇥
ch(z0 � z) � 1

⇤⇥
↵(t, x, v, v0) + ↵(t, x, v0, v)�1

⇤
�

=R(P,2P),

where the last equality follows by direct computation. We conclude by uniqueness.
We next prove item (ii). Remark 2.5 implies that

lim
n!1

sup
t2[0,T ]

H(Pnt )  H(Q). (2.25)

In view of the lower semicontinuity of H and the observation after Lemma 2.7
regarding E and R, using the uniqueness it is enough to show precompactness of
the sequence {(Pn,2n)} ⇢ Sbe. Observe indeed that, by Assumption 2.3 and
Lemma 2.7, we can take the limit n ! 1 in the balance equation (2.22).

To prove precompactness of {2n}, observe that from (2.23) and the variational
representation (2.21) it follows

sup
n

sup
⇣ : k⇣k11

2n(⇣ ) < +1

and we conclude by the Banach-Alaoglu theorem.
The bound (2.25) implies, by the coercive properties of the relative entropy

and Prohorov theorem, that there exist a compact K ⇢⇢ P(Td ⇥ V) such that
Pnt 2 K for any n and t 2 [0, T ]. Hence, by Ascoli-Arzelà theorem, to prove the
precompactness of {Pn} it is enough to show that for each continuous g : Td⇥V !
R with compact support and continuously differentiable with respect to x we have

lim
�#0

sup
n

sup
|t�s|<�

�
�Pnt (g) � Pns (g)

�
� = 0. (2.26)

From the balance equation (2.22) we deduce

Pnt (g) � Pns (g) = �
Z t

s
d⌧ Pn⌧

�
b · rx g

�

�
1
2

Z

[s,t]⇥Td⇥V⇥V
2n(d⌧, dx, dv, dv0)

⇥
g(x, v) � g(x, v0)

⇤
.

By Assumption 2.3, (2.25), and the basic entropy inequality, the first term on the
right-hand side vanishes as |t � s| ! 0 uniformly in n. On the other hand, by
choosing ↵ = 1 in the variational representation (2.21),

�
�
�
Z

[s,t]⇥Td⇥V⇥V
2n(d⌧, dx, dv, dv0)

⇥
g(x, v) � g(x, v0)

⇤��
�  R(Pn,2n)

+ 2
Z t

s
d⌧

ZZZ
P⌧ (dx, dv)⇡(dv0) � (v, v0)

�
ch

⇥
g(x, v) � g(x, v0)

⇤
� 1

 
.
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Replacing g by �g with � > 0, using (2.25), Assumption 2.3, the basic entropy
inequality, and R(Pn,2n)  H(Qn), we obtain that there exists a constant C
independent on n, t, s such that

�
�
�
Z

[s,t]⇥Td⇥V⇥V
2n(d⌧, dx, dv, dv0)

⇥
g(x, v) � g(x, v0)

⇤��
�


1
�
sup
n
H(Qn) +

C
�

|t � s| exp{2� kgk1}.

By choosing � = (2kgk1)�1 log(1/|t � s|) when |t � s|  1 the bound (2.26)
follows.

In view of the second statement in Lemma 2.7, the proof of item (iii) is achieved
by the same arguments.

We finally prove the existence result. Consider first the case in which b and �
are continuous and bounded. If Q(dx, dv) = f0(x, v) dx⇡(dv) for some continu-
ous density f0 uniformly bounded away from zero, by classical results, the linear
Boltzmann equation (1.1) has a continuous solution f (t, x, v) uniformly bounded
away from zero. Set Pt (dx, dv) := f (t, x, v) dx⇡(dv) and 2(dt, dx, dv, dv0) :=
dt dx⇡(dv)⇡(dv0)� (v, v0)

⇥
f (t, x, v) � f (t, x, v0)

⇤
. It is then straightforward to

justify the informal computations presented before and deduce that (P,2) solves
the linear Boltzmann equation according to Definition 2.4. Existence in the general
case of Q satisfying the relative entropy boundH(Q) < +1 and for coefficients b
and � satisfying Assumption 2.3 is then achieved by items (ii) and (iii).

3. Diffusive limit

In this section we discuss the asymptotic behavior of linear Boltzmann equation,
showing that in the diffusive scaling limit the marginal distribution of the position
evolves according to the heat flow. This is a classical topic and has been much
investigated in the literature, see [3, 10, 19, 25] and [15] for a more general setting.
We observe that this issue has natural counterpart in probabilistic terms namely, the
central limit for additive functional of Markov chains. Indeed, the linear Boltzmann
equation (1.1) is the Fokker-Planck equation for the Markov process (Vt , Xt )where
Vt is the continuous time Markov chain on V with transition rates � (v0, v)⇡(dv0)
while Xt is the Rd -valued additive functional Xt =

R t
0 ds b(Vs). We refer to [24]

for a recent monograph on this topic.
The gradient flow formulation of linear Boltzmann equations discussed be-

fore allows a novel approach to the analysis of the diffusive limit. According to a
general scheme formalized in [33, 34], a gradient flow formulation is particularly
handy for analyzing asymptotic evolutions and it does not require a direct analysis
of the dynamics. Indeed, by comparing Definition 2.4 and Definition 2.1 we real-
ize that the balance equation (2.22) immediately leads to the continuity equation
(2.6). Moreover, taking into account the convexity and lower semicontinuity of the
entropy, in order to establish the diffusive limit we only need to prove two limiting
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variational inequalities comparing the Dirichlet form and the kinematic term for the
linear Boltzmann equation with the corresponding ones for the heat flow. We shall
prove these variational inequalities but, maybe surprisingly, the two terms exchange
their role in the diffusive limit: the Dirichlet form E leads to R while the kinematic
termR leads to the Fisher information E .

To carry out the analysis of the diffusive limit of linear Boltzmann equations
a few extra conditions, implying in particular homogenization of the velocity, are
needed. As we show in the next section, this assumptions are satisfied for few
natural models. To this end, recalling that the scattering rate � is defined by �(v) =R
⇡(dv0)� (v0, v), let ⇡̃ be the probability on V defined by

⇡̃(dv) :=
�(v)

⇡(�)
⇡(dv). (3.1)

Assumption 3.1.

(i) The drift b : V ! Rd is centered with respect to the measure ⇡ , namely
⇡(b) = 0.

(ii) The scattering rate � satisfies ⇡[� = 0] = 0.
(iii) |b|2/� has all exponential moments, i.e. ⇡[exp{� |b|2/�}] < +1 for any

� > 0.
(iv) There exists a constant C0 > 0 such that for any g 2 L2(⇡̃)

Z
d⇡̃

⇥
g � ⇡̃(g)

⇤2
 C0

ZZ
⇡̃(dv)⇡̃(dv0)

� (v, v0)

�(v)�(v0)

⇥
g(v) � g(v0)

⇤2
. (3.2)

We remark that, as in the case of phonon Boltzmann equation, in item (ii) we allow
the case in which �(v) = 0 for some v 2 V . Item (iv) corresponds to the assump-
tion that the continuous time Markov chain with transition rates � (v,v0)

�(v)�(v0) ⇡̃(dv0) has
spectral gap. The generator of this Markov chain is (K � 1I), where K is given by

�
Kg

�
(v) = ⇡(�)

Z
⇡̃(dv0)

� (v, v0)

�(v)�(v0)
g(v0). (3.3)

Observe that
�
�
L f

�
(v) = �(v)

⇥�
1I� K

�
f
⇤
(v), (3.4)

where L is the generator of the original Markov chain as defined in (2.20). We
emphasize that we do not assume the spectral gap of the generator L, in fact the
linear phonon Boltzmann equation, that will be discussed in the next section, meets
the requirements in Assumption 3.1 but its generator has no spectral gap.

Assumption 3.1 implies that there exists ⇠ 2 L2(⇡̃; Rd) such that �L⇠ = b.
Indeed, item (i) implies that b/� is centered with respect to ⇡̃ , item (ii) implies
that b/� 2 L2(⇡̃; Rd), and finally item (iii) implies that ⇠ := (1I � K )�1(b/�) 2
L2(⇡̃; Rd).

We need another technical condition on which we will rely to carry out a trun-
cation on ⇠ .
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Assumption 3.2. One of the following alternatives holds:

(i) (�L)�1b is bounded; or
(ii) there exists C < 1 such that

�
��1I � K

��1 f
�
�

1  Ck f k1, for any f such
that ⇡̃( f ) = 0.

Observe that if the map (v, v0) 7! � (v,v0)
�(v)�(v0) is continuous and bounded then alterna-

tive (ii) holds.
For notational convenience, in this section we formulate the linear Boltzmann

equation in terms of the density ( f, ⌘), where dPt = f (t) dx⇡(dv) and d2 =
⌘ dt dx⇡(dv)⇡(dv0). Indeed, the boundedness of the entropy implies the existence
of f , while the boundedness of the metric termR implies the existence of ⌘.

Let " > 0 be a scaling parameter and consider the linear Boltzmann equation
on a torus of linear size "�1, equipped with the uniform probability distribution,
on the time interval [0, "�2T ]. Under a diffusive rescaling of space and time, the
rescaled solution ( f ", ⌘") is defined on the torus of linear size one on the time
interval [0, T ]. It solves

@t f "(t, x, v) +
1
"
b(v) · rx f "(t, x, v) +

1
"2

Z
⇡(dv0)⌘"(t, x, v, v0) = 0 (3.5)

H( f "(T )) +
1
"2

Z T

0
dt E( f "(t)) +

1
"2
R( f ", ⌘")  H( f "0 ). (3.6)

We set

⇢"(t, x) :=
Z
⇡(dv) f "(t, x, v)

j"(t, x) :=
1
"

Z
⇡(dv) f "(t, x, v)b(v).

(3.7)

Since ⌘"(t, x, v, v0) is antisymmetric with respect to the exchange of v and v0, by
integrating (3.5) with respect to ⇡(dv) we deduce the continuity equation

@t⇢
" + r · j" = 0. (3.8)

Theorem 3.3. Assume that ⇢"0 ! ⇢0 in P(Td) and lim"!0H( f "0 ) = H(⇢0). Then
the sequence (⇢", j") converges in C([0, T ];P(Td))⇥M([0, T ]⇥Td; Rd) to the
solution to the heat equation as in Definition 2.1, with initial datum ⇢0 and diffusion
coefficient

D = ⇡
�
b ⌦ (�L)�1b

�
. (3.9)

Note that, by Assumption 3.1, b/� and ⇠ = (�L)�1b are in L2(⇡̃; Rd), hence the
diffusion coefficient D = ⇡(�) ⇡̃

�
(b/�) ⌦ ⇠

�
is finite.

The proof of this theorem will be achieved according to the following strategy.
We first show precompactness of the sequence {(⇢", j")}, we then consider a con-
verging subsequence (⇢", j") ! (⇢, j) and take the inferior limit in the inequality
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(3.6). By the hypothesis of the theorem, H( f "0 ) ! H(⇢0) and we prove that the
inferior limit of the left-hand side of (3.6) majorizes the left-hand side of (2.7). The
statement follows by the uniqueness in Proposition 2.2. We introduce the following
notations. If ( f ", ⌘") satisfy (3.5), (3.6), recalling (3.1), we set

f "(t, x, v) = u2"(t, x, v), u"(t, x, v) = ū"(t, x) + ũ"(t, x, v),

ū"(t, x) = ⇡̃(u"(t, x, ·)).
(3.10)

We will use the following bounds that hold uniformly for t 2 [0, T ]. By the
Cauchy-Schwarz inequality

Z
dx ū2"(t) =

1
⇡(�)2

Z
dx

✓Z
d⇡ �

p
f "(t)

◆2

⇡(�2)

⇡(�)2
. (3.11)

Moreover, by the basic entropy inequality, for each � > 0
Z
dx

Z
d⇡ f "(t)

|b|2

�

1
�
H( f "(t)) +

1
�
log⇡

⇣
exp

n
�

|b|2

�

o⌘


1
�
H( f "0 ) +

1
�
log⇡

⇣
exp

n
�

|b|2

�

o⌘
.

(3.12)

Lemma 3.4. There exists a constant C such that for any " 2 (0, 1)
Z
dx

Z
d⇡ ũ"(t)2

|b|2

�
< C, t 2 [0, T ], (3.13)

1
"2

Z T

0
dt

Z
dx

Z
d⇡̃ ũ"(t)2 < C. (3.14)

Proof. In order to prove (3.13), since ũ" =
p
f " � ū", for each t 2 [0, T ]

Z
dx

Z
d⇡̃ ũ2"(t)

|b|2

�2


2
⇡(�)

Z
dx

Z
d⇡ f "(t)

|b|2

�
+

2
⇡(�)

Z
dx ū2"(t)

Z
d⇡

|b|2

�
.

The first term on the right-hand side is bounded by (3.12), while the second term is
bounded, since b2/� has finite exponential moments, by (3.11).

Regarding (3.14), by the Poincaré inequality (3.2),

1
"2

Z T

0
dt
Z
dx

Z
d⇡̃ ũ2"(t)


C0
"2

Z T

0
dt
Z
dx

ZZ
⇡̃(dv)⇡̃(dv0)

� (v, v0)

�(v)�(v0)

⇥
u"(t, x, v) � u"(t, x, v0)

⇤2


C0
"2
⇡(�)2

Z T

0
dt E( f "(t))  CH( f "0 ),

which concludes the proof.
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Lemma 3.5. The set {(⇢", j")}"2(0,1] ⇢ C([0, T ];P(Td)) ⇥M([0, T ] ⇥ Td; Rd)
is precompact.
Proof. Given 0  s < t  T , the restriction of the measure dJ " = j" dt dx to
[s, t] ⇥ Td is denoted by J "s,t . We will prove the following bound. There exists a
constant C independent on s, t , such that for any " 2 (0, 1] and any w 2 C

�
[s, t]⇥

Td; Rd�

�
�J "s,t (w)

�
� =

�
�
�
�

Z t

s
d⌧

Z
dx j"(⌧, x) · w(⌧, x)

�
�
�
�  C

p
t � s kwk1. (3.15)

Let us first show that it implies the statement. Choosing s = 0, t = T , and applying
the Banach-Alaoglu theorem, (3.15) directly yields the precompactness of { j"}.
Since P(Td) is compact, by the Ascoli-Arzelà theorem, to prove precompactness
of {⇢"} it is enough to show that for each � 2 C1(Td)

lim
�#0

sup
"2(0,1]

sup
t,s2[0,T ]
|t�s|<�

�
�
�
�

Z
dx

⇥
⇢"(t, x) � ⇢"(s, x)

⇤
�(x)

�
�
�
� = 0. (3.16)

From the continuity equation (3.8) we deduce
Z
dx

⇥
⇢"(t, x) � ⇢"(s, x)

⇤
�(x) =

Z t

s
d⌧

Z
dx j"(⌧, x) · r�(x) = J "s,t (r�) ,

so that (3.16) follows readily from (3.15).
To prove (3.15), using the decomposition (3.10), since b has mean zero with

respect to ⇡ , by definition (3.7) of j" we get

J "s,t (w) =
1
"

Z t

s
d⌧

Z
dx

Z
⇡(dv) f "(⌧, x, v) b(v) · w(⌧, x)

=
⇡(�)

"

Z t

s
d⌧

Z
dx

Z
⇡̃(dv)

⇥
ũ2"(⌧, x, v) + 2ū"(⌧, x)ũ"(⌧, x, v)

⇤ b(v)

�(v)

· w(⌧, x).

By Young’s inequality, for each � > 0

1
"
ũ2"

|b|
�


�

2"2
ũ2" +

1
2�

ũ2"
|b|2

�2

2
"
ū" |ũ"|

|b|
�


�

"2
ũ2" +

1
�
ū2"

|b|2

�2
.

Then we obtain

|J "s,t (w)|  kwk1

(
3�
2"2

Z T

0
d⌧

Z
dx

Z
d⇡̃ ũ2" +

1
2�

Z t

s
d⌧

Z
dx

Z
d⇡̃ ũ2"

|b|2

�2

+
1
�

Z t

s
d⌧

Z
dx ū2"

Z
d⇡̃

|b|2

�2

)

.
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Using (3.14), (3.13), the fact that |b|2/� has finite exponential moments, and (3.11),
we obtain that there exists C such that

|J "s,t (w)| 
C
2

kwk1

✓
� +

t � s
�

◆
,

then (3.15) is obtained by choosing � =
p
t � s.

Lemma 3.6. Assume that ⇢" ! ⇢. Then for each t 2 [0, T ]

lim
"!0

H( f "(t)) � H(⇢(t)).

Proof. The statement is a direct consequence of the convexity and lower semicon-
tinuity of the relative entropy.

Lemma 3.7. Assume that (⇢", j") ! (⇢, j). Then

lim
"!0

1
"2

Z T

0
dt E( f "(t)) � R(⇢, j). (3.17)

Proof. Assume first that condition (ii) in Assumption 3.2 holds. Recall (3.1) and
observe that, in view of item (iii) in Assumption 3.1, b/� 2 L2(⇡̃). Choose a se-
quence {an}, an : V ! Rd , converging to b/� in L2(⇡̃), such that: an is bounded,
⇡̃(an) = 0 and |an(v)|  |b(v)|/�(v) for any n � 1. Upon extracting a subse-
quence, an ! b/� ⇡̃-a.e. Set !n := (1I � K )�1an . By thePoincaré inequality
(3.2) (1I� K )�1 is a bounded operator on the subspace of L2(⇡̃) orthogonal to the
constants; hence !n converges to ⇠ = (1I � K )�1(b/�) in L2(⇡̃). Moreover, by
condition (ii) in Assumption 3.2, for each n � 1 !n is bounded.

Fix w 2 C([0, T ] ⇥ Td; Rd). In the variational representation (2.19) for E
we chose the test function log

�
1+ "w(t, x) · !n(v)

�
, with " small enough, and we

deduce

1
2
1
"2

Z T

0
dt E( f "(t)) �

1
"

Z T

0
dt

Z
dx

Z
d⇡ f "

w · (�L)!n

1+ "w · !n
.

Since !n is bounded, by Taylor expansion we obtain

lim
"!0

1
2
1
"2

Z T

0
dt E( f "(t)) � lim

"!0

1
"

Z T

0
dt

Z
dx

Z
d⇡ f " w · (�L)!n

� lim
"!0

Z T

0
dt

Z
dx

Z
d⇡ f " w · !nw · (�L)!n.

Regarding the first term on the right-hand side, we write

1
"

Z T

0
dt

Z
dx

Z
d⇡ f " w · (�L)!n =

Z T

0
dt

Z
dx j" · w + A",n,



960 GIADA BASILE, DARIO BENEDETTO AND LORENZO BERTINI

with

A",n =
1
"

Z T

0
dt

Z
dx

Z
d⇡ f " w ·

�
(�L)!n � b

�
.

We will show that
lim
n!1

sup
">0

|A",n| = 0 (3.18)

and

lim
n!1

lim
"!0

Z T

0
dt

Z
dx

Z
d⇡ f " w · !nw · (�L)!n 

Z T

0
dt

Z
dx⇢w · Dw, (3.19)

with D given by (3.9). Then, by optimizing over w and using the variational repre-
sentation (2.5), the statement follows.

Postponing the proof of these two bounds, we consider the case that condition
(i) in Assumption 3.2 holds. Fix w 2 C

�
[0, T ] ⇥ Td; Rd�, then in the variational

representation for E we choose the test function log
�
1 + "w(t, x) · (�L)�1b(v)

�
,

with " small enough. By Taylor expansion we deduce

lim
"!0

1
2
1
"2

Z T

0
dt E( f "(t)) � lim

"!0

1
"

Z T

0
dt

Z
dx

Z
d⇡ f " w · b

� lim
"!0

Z T

0
dt

Z
dx

Z
d⇡ f " w · (�L)�1bw · b.

Recalling (3.7) and the variational representation (2.5), it suffices to show

lim
"!0

Z T

0
dt

Z
dx

Z
d⇡ f " w · bw · (�L)�1b 

Z T

0
dt

Z
dx⇢ w · Dw. (3.20)

Proof of (3.18). According to the decomposition of f " in (3.10), we write

A",n =
1
"

Z T

0
dt

Z
dx

Z
d⇡ ũ2" w ·

�
(�L)!n � b

�

+
2
"

Z T

0
dt

Z
dx

Z
d⇡ ũ" ū" w ·

�
(�L)!n � b

�
,

(3.21)

where we used that ⇡[(�L)!n � b] = 0. By Young’s inequality, for any � > 0

1
"
ũ2" |w|

1
�

�
�(�L)!n � b

�
� 

�

2"2
ũ2" +

1
2�

|w|2ũ2"
1
�2

�
�(�L)!n � b

�
�2,

2
"

1
�
ū"|ũ"| |w|

�
�(�L)!n � b

�
� 

�

"2
ũ2" +

1
�

|w|2ū2"
1
�2

�
�(�L)!n � b

�
�2.
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Then

|A",n| 
3�
2"2

Z T

0
dt

Z
dx

Z
d⇡̃ ũ2"

+
⇡[�]2

2�
kwk21

Z T

0
dt

Z
dx

Z
d⇡̃ ũ2"

1
�2

�
��(�L)!n � b

���2

+
⇡[�]2

�
kwk21

Z T

0
dt

Z
dx ū2"

Z
d⇡̃

1
�2

�
��(�L)!n � b

���2.

(3.22)

We claim that for each � > 0 the second and the third term on the right-hand side
vanishes as n ! 1 uniformly in ". Since the first term on the right-hand side can
be bounded by using (3.14), we then conclude taking the limit � ! 0.

To prove the claim, observe that, by construction of the sequence {!n},

[(�L)!n](v) = �(v)an(v) ! b(v) ⇡-a.e.
�
�(�L)!n(v) � b(v)

�
�  2|b(v)|.

(3.23)

As
R
dx ū2" is bounded uniformly in " by (3.11), we conclude by dominated conver-

gence and (3.13).

Proof of (3.19). It is enough to show that for each n

lim
"!0

Z T

0
dt

Z
dx

Z
d⇡

�
f " � ⇢"

�
w · !nw · (�L)!n = 0. (3.24)

Indeed, by construction of the sequence an

lim
n!1

⇡
�
!n ⌦ (�L)!n

�
= lim

n!1
⇡(�)⇡̃

�
!n ⌦ an

�
= ⇡(�)⇡̃

�
⇠ ⌦ b

�

�
= D.

In order to prove (3.24), by using the decomposition of f " in (3.10),

f " � ⇢" = 2ū"
⇥
ũ" � ⇡

�
ũ"

�⇤
+ ũ2" � ⇡

�
ũ2"

�
.

Since !n is bounded and |(�L)!n(v)|  |b(v)|, it suffices

lim
"!0

Z T

0
dt

Z
dx

n
ū"⇡

�
|ũ"||b|

�
+ ū"⇡

�
|ũ"|

�
⇡
�
|b|

�
+ ⇡

�
ũ2"|b|

�
+ ⇡

�
ũ2"

�
⇡
�
|b|

�o
=0.

(3.25)
By Cauchy-Schwarz, Lemma 3.4, and (3.11), we directly conclude that the first and
third term vanishes as " ! 0. To analyze the fourth term, given � > 0 we write

Z T

0
dt

Z
dx ⇡

�
ũ2"

�
=

Z T

0
dt

Z
dx ⇡

�
ũ2" �{���}

�
+

Z T

0
dt

Z
dx ⇡

�
ũ2" �{�<�}

�
.
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By (3.14), the first term on the right-hand side vanishes as " ! 0. It is therefore
enough to show that the second term vanishes as � ! 0 uniformly in ". To this end,
recalling that ũ" = u" � ū" with u2" = f ",

Z
dx

Z
d⇡ ũ2" �{�<�} =

Z
dx

Z
d⇡

�
u" � ū"

�2
�{�<�}

 2
Z
dx

Z
d⇡ f " �{�<�} + 2⇡

�
� < �

� Z
dx ū2",

and we conclude by using (3.11), the basic entropy inequality and the assumption
⇡(� = 0) = 0. To complete the proof of (3.25), we observe that by Schwartz in-
equality and (3.11) the previous argument also implies that the second term vanishes
as " ! 0.

Proof of (3.20). As before, it suffices to show that

lim
"!0

Z T

0
dt

Z
dx

Z
d⇡[ f " � ⇢"]w · bw · (�L)�1b = 0.

Since (�L)�1b is bounded, this follows from (3.25).

Lemma 3.8. Assume that (⇢", j") ! (⇢, j). Then

lim
"!0

1
"2
R( f ", ⌘") �

Z T

0
dt E(⇢(t)). (3.26)

Proof. Assume first that condition (ii) in Assumption 3.2 holds. Let an and !n as
in the previous lemma, and fix � : (0, T ) ⇥ Td ! R with compact support. In
the variational formula (2.21) we choose ↵ = 1 and ⇣(t, x, v, v0) = "r�(t, x) ·�
!n(v

0) � !n(v)
�
, then, by the antisymmetry of ⌘" with respect to the exchange of

v, v0,

1
"2
R( f ", ⌘") � �

2
"

Z T

0
dt

Z
dx r�(t, x) ·

ZZ
⇡(dv)⇡(dv0)⌘"(t, x, v, v0)!n(v)

�
2
"2

Z T

0
dt

Z
dx

ZZ
⇡(dv)⇡(dv0) f "(t, x, v)� (v, v0)

⇥
�
ch

�
"r�(t, x) ·

�
!n(v

0) � !n(v)
��

� 1
 
.

By the balance equation (3.5),

�
2
"

Z T

0
dt

Z
dx r�(t, x) ·

ZZ
⇡(dv)⇡(dv0)⌘"(t, x, v, v0)!n(v)

= �2"
Z T

0
dt

Z
dx @tr� ·

Z
d⇡ f " !n � 2

Z T

0
dt

Z
dx

Z
d⇡ f " r ·

⇥
!n · r� b

⇤
.
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Since !n is bounded, the first term on the right-hand side above vanishes as " ! 0.
Therefore, by Taylor expansion of ch,

lim
"!0

1
"2
R( f ", ⌘")

� � lim
"!0

2
Z T

0
dt
Z
dx

Z
⇡(dv) f "(t, x, v)r ·

�
!n(v) · r�(t, x) b(v)

�

� lim
"!0

Z T

0
dt
Z
dx

ZZ
⇡(dv)⇡(dv0) f "(t, x, v)� (v, v0)

⇥
h
r�(t, x) ·

�
!n(v

0) � !n(v)
�i2

.

We will show that

lim
n!1

lim
"!0

2
Z T

0
dt

Z
dx

Z
d⇡ f "r ·

⇥
!n ·r� b

⇤
 2

Z T

0
dt

Z
dx ⇢r ·

⇥
Dr�

⇤
(3.27)

and

lim
n!1

lim
"!0

Z T

0
dt
Z
dx

Z
⇡(dv)⇡(dv0) f "(t, x, v)� (v, v0)

⇥
h
r�(t, x) ·

�
!n(v

0) � !n(v)
�i2

 2
Z T

0
dt

Z
dx ⇢(t, x)r�(t, x) · Dr�(t, x).

(3.28)

Then, by optimizing over � and using the variational representation (2.4), the state-
ment follows.

Assume now that condition (i) in Assumption 3.2 holds. Then we choose as
test functions ↵ = 1 and ⇣(t, x, v, v0) = "r�(t, x) · (�L)�1

�
b(v0) � b(v)

�
, with

a smooth � : (0, T ) ⇥ Td ! Rd with compact support. Using the fact that (L)�1b
is bounded we repeat the same arguments as above and therefore we have to show
that

lim
"!0

2
Z T

0
dt

Z
dx

Z
d⇡ f "r ·

⇥
(�L)�1b ·r� b

⇤
2

Z T

0
dt

Z
dx ⇢r ·

⇥
Dr�

⇤
(3.29)

and

lim
"!0

Z T

0
dt
Z
dx

ZZ
⇡(dv)⇡(dv0) f "(t, x, v)� (v, v0)

⇥
h
r�(t, x) · (�L)�1

�
b(v0) � b(v)

�i2

 2
Z T

0
dt

Z
dx ⇢(t, x)r�(t, x) · Dr�(t, x).

(3.30)
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Proof of (3.27). We claim that for each n

lim
"!0

Z T

0
dt

Z
dx

Z
d⇡

⇥
f " � ⇢"

⇤
r·

⇥
!n · r�b

⇤
= 0,

which is proven exactly as (3.24) observing that there we used the bound
|(�L)!n|  |b|. Since ⇢" ! ⇢ and, by construction of the sequence {!n},
limn ⇡(!n ⌦ b) = D, we then conclude.

Proof of (3.28). We first show that for each n

lim
"!0

Z T

0
dt
Z
dx

Z
⇡(dv)⇡(dv0)

⇥
f "(t, x, v) � ⇢"(t, x)

⇤
� (v, v0)

⇥
h
r�(t, x) ·

�
!n(v

0) � !n(v)
�i2

= 0.

Since !n is bounded and �(v) =
R
⇡(dv0)� (v, v0), it is enough to prove that

lim
"!0

Z T

0
dt
Z
dx

Z
d⇡�

�
� f " � ⇢"

�
� = 0,

whose proof is achieved by the same arguments used in the proof of (3.19). We then
conclude by observing that

lim
n!1

ZZ
⇡(dv)⇡(dv0)� (v, v0)

�
!n(v

0) � !n(v)
�
⌦

�
!n(v

0) � !n(v)
�

= lim
n!1

2⇡
�
!n ⌦ (�L)!n

�
= 2D.

Proofs of (3.29) and (3.30). These are achieved as the proofs of (3.27) and (3.28)
with (�L)�1b instead of !n .

4. Specific examples

We consider three examples of linear Boltzmann equations and we show that they
meet the requirements in the Assumptions 2.3, 3.1 and 3.2. For all of them the con-
vergence to a diffusion is a classical result, therefore they are suitable testers for the
machinery. We emphasizes however that we do not require the initial distribution to
be in L2, as it is usual in the classical approaches, but only with finite entropy with
respect to the reference measure.
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4.1. Boltzmann-Grad limit for the Lorentz gas with hard scatterers

The first example is the linear Boltzmann equation derived for the one particle dis-
tribution in [20], starting from the Lorentz gas moving in a random array of fixed
scatterers (hard spheres), in the Boltzmann-Grad limit. Since collisions are elastic,
the kinetic energy is preserved, therefore the phase space is Td ⇥ Sd�1

|v| , d � 2,
where Sd�1

|v| is the d-dimensional sphere with radius |v|. Without loss of generality,
we assume |v| = 1. The equation then reads

@t f (t, x, v) + v · rx f (t, x, v) =
Z

Sd�1
dn̂ [n̂ · v]+

⇥
f (t, x, v0) � f (t, x, v)

⇤
, (4.1)

where v0 = v�2(v · n̂)n̂. The invariant measure is the uniform measure dn̂ on Sd�1,
the scattering rate � is equal to c, for some constant c depending on the dimension d.
In order to identify the scattering kernel, we consider here the case d = 2, referring
to Appendix B for analogous computations if d � 3. By identifying the velocity
v 2 S1 with the angle ✓ , we rewrite the previous equation as

@t f (t, x, ✓)+b(✓)·rx f (t, x, ✓) =
1
2

Z

S1
d✓ 0

�
�
� sin

✓ � ✓ 0

2

�
�
�
⇥
f (t, x, ✓ 0)� f (t, x, ✓)

⇤
,

with b(✓) = (cos ✓, sin ✓). In particular, the scattering kernel is � (✓,✓ 0)=
�
�
�sin ✓�✓

0

2

�
�
�.

Recalling the definition (3.1) of ⇡̃ , the operator K with kernel �/� is compact in
L2(⇡̃). Since 1 is a simple eigenvalue of K , then the modified chain has spectral
gap. Moreover, as shown in [6, Lemma 4.1], L�1v is bounded. Hence Assumptions
2.3, 3.1 and the alternative (i) of Assumption 3.2 hold.

4.2. Rayleigh-Boltzmann equation

The Rayleigh-Boltzmann equation, also known as linear Boltzmann equation or
Lorentz-Boltzmann equation, has been derived in the Boltzmann-Grad limit by
looking at the distribution of a tracer particle in a gas of particles (hard spheres)
in thermal equilibrium [8]. The velocity space is then Rd , d � 2, and the reference
measure is the Maxwellian distribution with temperature ��1, whose density with
respect to the Lebesgue measure is denoted by h� . The equation reads

@t f (t, x, v) + v · rx f (t, x, v)

=
Z

Rd
dv1 h�(v1)

Z

Sd�1
dn̂

⇥
n̂ · (v � v1)

⇤
+

⇥
f (t, x, v0) � f (t, x, v)

⇤
,

(4.2)

where v0 = v � n̂ · (v � v1) n̂. As shown in the Appendix B, the scattering rate is

�(v) = �

Z

Rd
dv1h�(v1)|v � v1|,
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where � is the constant given by � =
R
Sd�1dn̂[n̂ · v̂]+, in which v̂ 2 Sd�1. In

particular � is bounded away from 0 and it has linear growth for large |v|. Therefore
|v| and |v|2/�(v) have all the exponential moments with respect to h�(v) dv. In
Appendix B we identify the scattering kernel � , see (B.2). From this expression
and the properties of �, recalling the definition (3.1), it follows that K in (3.3) has a
kernel in L2(⇡̃⇥⇡̃). Hence K is compact in L2(⇡̃). Since 1 is simple eigenvalue of
K , then (1I� K ) has spectral gap. The previous statements imply that Assumptions
2.3 and 3.1 hold. The proof of alternative (i) in Assumption 3.2 is the content of
Appendix B.

4.3. Linear phonon Boltzmann equation

The equation has been derived in the kinetic limit starting from an harmonic chain
of oscillator perturbed by a stochastic conservative noise [7]. It describes the evo-
lution of the energy density of the normal modes, or phonons, identified by a wave-
number k 2 Td . The velocity space is then Td . Let ! be the dispersion relation
of the harmonic lattice, i.e. !(k) =

�
⌫ + 4

Pd
i=1 sin

2(⇡ki )
�1/2, where ⌫ � 0 is

the intensity of the pinning. A phonon with wave-number k travels with velocity
1
2⇡r!, then it is scattered. The corresponding Fokker-Planck equation reads

@t f (t,x,k)+
1
2⇡

r!(k)·rx f (t,x,k)=
Z

Td
dk0 � (k, k0)

⇥
f (t,x,k0)� f (t,x,k)

⇤
, (4.3)

where the scattering kernel has the form � (k, k0) =
Pd

i=1 sin
2(⇡ki ) sin2(⇡k0

i ) for
d � 2. In dimension one it has a slightly different form, but despite the details the
main features are that � is positive, bounded and symmetric in the exchange k, k0.
Then the invariant measure ⇡ is the Haar measure on the torus. Moreover � van-
ishes in zero, since � (k, k0) ⇠ |k|2 for small k, and the scattering rate � has the same
behavior. More precisely, � = c

Pd
i=1 sin

2(⇡ki ), for some constant c > 0. Since
@i!(k) = 2⇡ sin(2⇡ki )/!(k), i = 1, . . . , d, in order to guarantee that |r!|2/� has
exponential moments we have to restrict to the case ⌫ > 0. This corresponds to
assume that in the underlying harmonic chain the translational symmetry is broken,
due to the presence of a on-site potential (pinning). Recalling the definition (3.1) of
⇡̃ , by the properties of � and � we deduce that the operator K defined in (3.3) has a
kernel of the form p(k, k0)⇡̃(dk0), with p strictly positive and bounded. Then K is
a compact operator in L2(⇡̃), and since 1 is a simple eigenvalue, than the modified
chain has spectral gap. The previous statements imply that Assumptions 2.3 and
3.1 hold. Finally, since the modified chain satisfies the Doeblin condition, then for
each f 2 L1(Td) such that ⇡̃( f ) = 0 we have k

P
n�0 Kn f k1  ck f k1, which

implies alternative (ii) in Assumption 3.2.
In the unpinned case ⌫ = 0 the diffusion coefficient D diverges in dimension

d = 1, 2. In these cases the asymptotics of the linear phonon Boltzmann equation
is in fact a superdiffusion when d = 1 [5, 22] and a diffusion under an anomalous
scaling, i.e. with logarithmic corrections, when d = 2 [4]; see also [29] for other
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models with super-diffusive behavior. On the other hand, for d � 3 the diffusion
coefficient D is finite even if |b|2/� does not have exponential moments. Moreover,
as discussed in [4], if the initial distribution satisfies suitable integrability condi-
tions, the diffusive scaling holds. As the gradient flow approach here introduced
requires only an entropy bound on the initial condition, it does not cover this case.
It is not clear if this is just a limitation of the present approach or the diffusive limit
fails if the integrability conditions are not satisfied. Indeed, phonons with small
wave number are responsible of the ballistic transport which, in dimension one and
two, induces the superdiffusion. If the initial conditions gives enough weight to
those phonons, similar effects might occur also for d � 3.

Appendix

A. Entropy balance

We here prove (2.24). We can assume that its left-hand side is finite. Using also
that Pr has bounded entropy for each r 2 [s, t] we deduce that Pr (dx, dv) =
fr (x, v) dx ⇡(dv) and 2[s,t](dr, dx, dv, dv0) = ⌘r (x, v, v0) dr dx ⇡(dv)⇡(dv0).
Moreover, recalling the function 9 in (2.14),

Z t

s
dr E(Pr )

=
Z t

s
dr

Z
dx

ZZ
⇡(dv)⇡(dv0) � (v, v0)

hp
fr (x, v0) �

p
fr (x, v)

i2

Rs,t (P,2[s,t])

=
Z t

s
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)9� (v,v0)

�
fr (x, v), fr (x, v0); ⌘r (x, v, v0)

�

and Z t

s
dr E(Pr ) +Rs,t (P,2[s,t]) < +1. (A.1)

We claim that, for f and ⌘ as above, the following entropy balance holds

H(Pt ) �H(Ps0)

=
1
2

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0) ⌘r (x, v, v0)

⇥
log fr (x, v0) � log fr (x, v)

⇤ (A.2)

for any 0  s < s0 < t  T . Note that the last term is well defined by Leg-
endre duality and (A.1). Informally, it is deduced by choosing the test function
1I[s0,t](r) log fr (x, v) in the balance equation (2.22). The actual proof is carried out
by a truncation argument that is next detailed.
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Step 1. Approximation by space time convolutions. For n 2 N let now �n : R ! R+
be a smooth approximation of the identity with compact support contained in the
positive axis, and gn : Td ! R+ be a smooth approximation of the identity. For
0  s < s0  r  t  T , by choosing n such that the supp�n ⇢ [0, s0 � s], we
define

f nr (x, v) :=
Z
dr 0

Z
dy �n(r � r 0)gn(x � y) fr 0(y, v)

⌘nr (x, v, v0) :=
Z
dr 0

Z
dy �n(r � r 0)gn(x � y)⌘r 0(y, v, v0).

As simple to check, the pair ( f n, ⌘n) satisfies the balance equation and, by (A.1)
and convexity, there exists a constant C such that

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0) � (v, v0)

hp
f nr (x, v0) �

p
f nr (x, v)

i2

+
Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)9� (v,v0)

�
f nr (x, v), f nr (x, v0); ⌘nr (x, v, v0)

�
 C,

and
sup

r2[s0,t]
H( f nr )  sup

r2[0,T ]
H( fr )  C.

Step 2. Truncation of log. The balance equation (2.22) implies
Z
dx

Z
⇡(dv) f nt (x, v)�(t, x, v) �

Z
dx

Z
⇡(dv) f ns0 (x, v)�(s0, x, v)

�
Z t

s0
dr

Z
dx

Z
⇡(dv) f nr (x, v)

�
@r�(r, x, v) + b(v) · r�(r, x, v)

 

=
1
2

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)⌘n(r, x, v, v0)

⇥
�(r, x, v0) � �(r, x, v)

⇤

(A.3)

for all continuous functions � : [s0, t] ⇥ Td ⇥ V with compact support in V and
continuously differentiable in the first two variables. Recalling that b has exponen-
tial moments, since f n has bounded entropy and ⌘n 2 L1 we can use � bounded
instead of compactly supported.

Given 0 < � < L set

log�, L(u) =

8
><

>:

log � if 0 < u < �

log u if �  u  L
log L if u > L .

(A.4)
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By a straightforward approximation we can choose as test function in (A.3) � =
log�, L( f n), obtaining

Z
dx

Z
⇡(dv) f nt (x, v) log�, L( f

n
t (x, v))

�
Z
dx

Z
⇡(dv) f ns0 (x, v) log�, L( f

n
s0 (x, v))

�
Z t

s0
dr

Z
dx

Z
⇡(dv)1I[�,L]( f nr (x, v))

�
@r f nr (x, v) + b(v) · r f nr (x, v)

 

=
1
2

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)⌘n(r, x, v, v0)

⇥
⇥
log�, L( f

n
r (x, v)) � log�, L( f

n
r (x, v0))

⇤
.

(A.5)

We observe that
Z t

s0
dr

Z
dx

Z
⇡(dv)1I[�,L]( f nr (x, v))

�
@r f nr (x, v) + b(v) · r f nr (x, v)

 

=
Z
dx

Z
⇡(dv)

�
f nt (x, v) ^ �

�
_ L �

Z
dx

Z
⇡(dv)

�
f ns0 (x, v) ^ �

�
_ L .

(A.6)

Step 3. Removing the convolution. Since log�,L is bounded, by dominated conver-
gence we can remove regularization in space and time and we obtain

Z
dx

Z
⇡(dv) ft (x, v) log�, L( ft (x, v))

�
Z
dx

Z
⇡(dv) fs0(x, v) log�, L( fs0(x, v))

�
Z
dx

Z
⇡(dv)

�
ft (x, v) ^ �

�
_ L

+
Z
dx

Z
⇡(dv)

�
fs0(x, v) ^ �

�
_ L .

=
1
2

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)⌘(r, x, v, v0)

⇥
⇥
log�, L( fr (x, v)) � log�, L( fr (x, v

0))
⇤
.

(A.7)

Step 3. Removing the truncation of log. Here we take the limit � # 0 and L " +1
in (A.7). For the left-hand side this is accomplished by monotone convergence, in
particular it converges to H(Pt ) �H(Ps0). For the right-hand side, it is enough to
show that
1
2

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)⌘(r, x, v, v0)

⇥
n⇥
log�,L( fr (x,v))�log( fr (x,v))

⇤
�
⇥
log�,L( fr (x,v

0))�log( fr (x,v0))
⇤o (A.8)
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vanishes as � # 0 and L " +1. We apply Young inequality in the form

pq   ↵(p) +  ⇤
↵(q),

where, for ↵ � 0,

 ↵(p) = p ash
p
↵

�
q
p2 + ↵2 + ↵,  ⇤

↵(q) = ↵
�
cosh q � 1

�
.

Observe that  ↵ and  ⇤
↵ are even. By choosing ↵ = 2� (v,v0)

p
fr (x,v) fr (x,v0),

p = ⌘r (x, v, v0) and q = 1
2
⇥
log�, L( fr (x, v))� log( fr (x, v))� log�, L( fr (x, v0))+

log( fr (x, v0))
⇤
, the first term is

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0) ↵(⌘)

⇥
1� 1I[�,L]( fr (x, v))

⇤


Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)9� (v,v0)

�
fr (x, v), fr (x, v0); ⌘r (x, v, v0)

�
,

which vanishes by dominated convergence sinceR( f, ⌘) is finite. The second term
has the following expression:

Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0) ⇤

↵(q)

=
Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)

⇥
1I[0,�)( fr (x, v))1I[0,�)( fr (x, v0))

+ 1I(L ,+1)( fr (x, v))1I(L ,+1)( fr (x, v0))
⇤
� (v, v0)

�p
fr (x, v) �

p
fr (x, v0)

�2

+ 2
Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)1I[0,�)( fr (x, v))1I[�,L]( fr (x, v0))

⇥ � (v, v0)
p
fr (x, v) fr (x, v0)

⇣ p
�

p
fr (x, v)

+

p
fr (x, v)
p
�

� 2
⌘

+ 2
Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)1I[0,�)( fr (x, v))1I(L ,+1)( fr (x, v0))

⇥ � (v, v0)
p
fr (x, v) fr (x, v0)

⇣p
L fr (x, v)

p
� fr (x, v0)

+

p
� fr (x, v0)

p
L fr (x, v)

� 2
⌘

+ 2
Z t

s0
dr

Z
dx

ZZ
⇡(dv)⇡(dv0)1I[�,L]( fr (x, v))1I(L ,+1)( fr (x, v0))

⇥ � (v, v0)
p
fr (x, v) fr (x, v0)

⇣ p
L

p
fr (x, v0)

+

p
fr (x, v0)
p
L

� 2
⌘
.

We observe that the first integral on the right-hand side vanishes as � # 0, L "
+1 since

R t
s0 dr E( fr ) < +1. The term in the second integral is bounded by
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� (v,v0)
p
�
p
fr (x,v0) and the term in the third is bounded by � (v,v0)

p
�/L fr (x,v0),

then the two integrals vanish as � # 0, L " +1 since the scattering rate � has all
exponential moments and fr has finite entropy. Finally, the term in the last integral
in bounded by � (v, v0) fr (x, v0)1I(L ,+1)( fr (x, v0)), which vanishes by dominated
convergence.

Now we show that (2.24) holds. For s0 > s � 0 it follows by applying again
Young inequality with p = �⌘r (x, v, v0) and q = 1

2
⇥
log( fr (x, v))�log( fr (x, v0))

⇤

with the entropy balance (A.2). Finally the case s0 = s is achieved by the lower
semi-continuity ofH.

B. Bounds on (�L)�1b for the Rayleigh gas

We identify the scattering kernel � on the right-hand side of (4.2). Setting z =
v � v1, the collision operator in (4.2) becomes

L f (v) =
Z

Rd
dz h�(v � z)

Z

Sd�1
dn̂ [n̂ · z]+ { f (v0) � f (v)} , (B.1)

where
v0 = v � (n̂ · z) n̂.

Fixed n̂, we can write z = ↵n̂ + z?, where z? lies in the hyperplane of dimension
d � 1 orthogonal to n̂. We indicate with v? = v � (n̂ · v) n̂, the projection of v on
this hyperplane. We have [n̂ · z]+ = [↵]+, dz = d↵ dz?, and

L f (v) =
Z

Sd�1
dn̂

Z
dz?hd�1

� (v? � z?)

Z +1

0
d↵ ↵ h1�(v · n̂ � ↵){ f (v0) � f (v)},

where hk� is the Maxwellian distribution in dimension k, and now v0 = v � ↵n̂.
The integral in dz? gives 1. Choosing the new variable w = v � ↵n̂, we have
↵ = |v � w|, v · n̂ = v · (v � w)/|(v � w)|,

v · n̂ � ↵ = v · (v � w)/|(v � w)| � |v � w| = w · (v � w)/|v � w|

and dw = ↵d�1 d↵ dn̂ = |v � w|d�1 d↵ dn̂. Then

L f (v) =
Z

Rd
dwh1�(w · (v � w)/|v � w|)

1
|v � w|d�2 { f (w) � f (v)},

which is of the form (2.20) with

� (v,w) =
1

|v � w|d�2

h1�(w · (v � w)/|v � w|)

h�(w)

=

✓
�

2⇡

◆ 1�d
2 1

|v � w|d�2 exp

(
�

2
|w|2|v � w|2 � (w · (v � w))2

|v � w|2

)

=

✓
�

2⇡

◆ 1�d
2 1

|v � w|d�2 exp

(
�

2
|w|2|v|2 � (w · v)2

|v � w|2

)

.

(B.2)
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which is symmetric. We remark that for d = 3 this expression has been obtained
in [26].

In order to prove that ⇠ = �L�1v is bounded, we decompose L in the gain
and loss terms

�(L f )(v) = �(v) f (v) � (G f )(v) ,

where

�(v) = (G1)(v) =
Z

Rd
dwh�(w)� (v,w) = �

Z

Rd
dv1h�(v1)|v � v1| = �(|v|),

and �=
R
Sd�1dn̂ [n̂·v̂]+ for any unit vector v̂. Observe that (G f )(v)=�(v)(K f )(v),

with K defined in (3.3). Note that, for convexity,

�(v) � � |v|. (B.3)

We search for a bounded function � (|v|) such that ⇠(v) = v̂� (|v|). Then we have

(G⇠)(v) =
Z

Rd
dw h�(w)� (v,w)� (|w|)

w

|w|

=
Z

Rd
dw h�(w)� (v,w)

� (|w|)

|w|

⇥
(w � (v̂ · w) v̂) + (v̂ · w) v̂)

⇤

where in the last step we decomposedw into the component along v̂ and the orthog-
onal part w? = w � (v̂ · w)v̂. Since |w| and � (v,w) are invariant in the exchange
w? ! �w?, then

(G⇠)(v) = v̂

Z

Rd
dw h�(w)� (v,w)(v̂ · ŵ)� (|w|).

Since the integral is invariant under rotations of v, we can define the operator G̃
acting on functions on the positive half line by

(G̃ f )(⇢) :=
Z

Rd
dw h�(w)� (⇢v̂, w)(v̂ · ŵ) f (|w|),

so that, for ⇠(v) = v̂� (|v|), (G⇠)(v) = v̂(G̃� )(|v|). As

(G̃ f )(⇢) =
Z

w·v̂>0
dw h�(w)(� (⇢v̂, w) � � (⇢v̂,�w))(v̂ · w)� (|w|)

and, if w · v > 0, then � (v,w) � � (v,�w), the operator G̃ has positive kernel.
Setting ⌘(⇢) = �(⇢)� (⇢), we look for the solution of the equation

⇢ = ⌘(⇢) � (A⌘)(⇢), ⇢ 2 R+, (B.4)
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where

(A⌘)(⇢) =
⇣
G̃
⌘

�

⌘
(⇢) =

Z

Rd
dw h�(w)� (⇢v̂, w)(v̂ · ŵ)

⌘(|w|)

�(|w|)

=
Z

Rd
dv1 h�(v1)

Z

Sd�1
dn̂ [n̂ · (⇢v̂ � v1)]+(v̂ · v̂0)

⌘(|v0|)

�(|v0|)
,

(B.5)

in which v0 = ⇢v̂ � (n̂ · (⇢v̂ � v1))n̂. The operator A is self-adjoint with respect to
the scalar product

( f, g) =
Z

Rd
dv h�(v)

1
�(|v|)

f (|v|)g(|v|),

defined for f, g : [0,1) ! R. From the positivity of the kernel of the operator,
it follows that if f (⇢) � g(⇢) for any ⇢ � 0, then (A f )(⇢) � (Ag)(⇢) for any
⇢ � 0. Moreover, if ⌘ is continuous in [0,1), (A⌘) is continuous in [0,1) as
follow from (B.5).

By definition of �(⇢)

(A�)(⇢) =
Z

Rd
dw h�(w)� (⇢v̂, w)(v̂ · ŵ) < �(⇢)

and the inequality is strict for any ⇢ because v̂ · ŵ < 1 in a set of full measure.
Observe that, using the definition of v0,

v̂ · v̂0 =
⇢(1� (n̂ · v̂)2) + (n̂ · v1)(n̂ · v̂)
p
⇢2(1� (n̂ · v̂)2) + (n̂ · v1)2

,

which for fixed v1 converges to
p
1� (n̂ · v̂)2 when ⇢ ! +1, while [n̂ · (⇢v̂ �

v1)]+/⇢ ! |n̂ · v̂]+. By dominated convergence

lim
⇢!+1

1
⇢

(A�)(⇢) =
Z

Rd
dv1 h�(v1)

Z

Sd�1
dn̂ [n̂ · v̂]+

p
1� (n̂ · v̂)2 < � .

Since lim⇢!+1 �(⇢)/⇢ =
R
Sd�1 dn̂ [n̂ · v̂]+ = � , we then conclude that there exists

a constant 0 < z < 1 such that

(A�)(⇢) < z�(⇢)

for any ⇢ � 0. Since �(⇢) � �⇢ (see (B.3)), if ⇣ = �(1� z), then

�(⇢) � ⇣⇢ + (A�)(⇢).

Denoting by id : R+ ! R+ the identity function id(⇢) = ⇢, and iterating the above
expression, we get

� � ⇣ id+⇣ A id+A2� � · · · � ⇣
nX

k=0
Ak id+An+1�,

which implies that ⌘ =
P+1

k=0 A
k id is a well defined, positive, function, and

bounded by �/⇣ . Since ⌘ solves (B.4), then ⇠(v) = v̂⌘(|v|)/�(|v|), which is
bounded by 1/⇣ .
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