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A gradient flow approach to linear Boltzmann equations

Lorenzo Bertini

(joint work with Giada Basile, Dario Benedetto)

We consider linear Boltzmann equations of the form

(1) (∂t + b(v) · ∇x)f(t, x, v) =

∫

π(dv′)σ(v, v′)
[

f(t, x, v′)− f(t, x, v)
]

where x ∈ T
d, the d-dimensional torus, π(dv) is a reference probability measure on

the velocity space V , b : V → R
d is the drift, σ(v, v′)π(dv′) is the scattering kernel

and f is the density of the one-particle distribution with respect to dxπ(dv). We
assume the detailed balance condition, i.e., σ(v, v′) = σ(v′, v). Examples of linear
Boltzmann equations of this form are the Lorentz gas [5], the evolution of a tagged
particle in a Newtonian system in thermal equilibrium [6], and the propagation of
lattice vibrations in insulating crystals [2].

Using the shorthand notation f = f(t, x, v), f ′ = f(t, x, v′), we set

ηf = ηf (t, x, v, v′) := σ(f − f ′) = σ(v, v′)
[

f(t, x, v)− f(t, x, v′)
]

and rewrite the linear Boltzmann equation (1) in the form
{

(

∂t + b(v) · ∇x

)

f(t, x, v) +
∫

π(dv′) η(t, x, v, v′) = 0

η = ηf

where η : [0, T ]× T
d × V × V → R is antisymmetric with respect to the exchange

of velocities.
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Referring to [1] for the details, given a time interval [0, T ], we rewrite the identity
η = ηf as the following inequality that expresses the decay of the entropy along
the solutions to (1),

(2) H(f(T )) +

∫ T

0

dt E(f(t)) +R(f, η) ≤ H(f(0)).

Here H is the relative entropy with respect to dxπ(dv), i,e.,

H(f) :=

∫∫

dxπ(dv) f log f,

E is the Dirichlet form of the square root of f , i.e.,

E(f) :=
∫

dx

∫∫

π(dv)π(dv′)σ(v, v′)
[
√

f ′ −
√

f
]2
,

and the kinematic term R is defined by

R(f, η) :=

∫ T

0

dt

∫

dx

∫∫

π(dv)π(dv′)Ψσ(f, f
′; η)

in which σ = σ(v, v′) and

Ψκ(p, q; ξ) = ξarcsinh
ξ

2κ
√
pq

−
[

√

ξ2 + 4κ2pq − 2κ
√
pq
]

.

Both E and R can be expressed by variational formulae that imply their lower
semi-continuity and convexity on the set of density f satisfying the entropy bound
supt∈[0,T ]H(f(t)) ≤ ℓ, ℓ > 0. It is then straightforward to prove existence and

stability of the formulation (2). Uniqueness follows from the argument in [4].

The entropy dissipation formulation (2) of (1) allows to discuss the diffusive
limit of linear Boltzmann equation, see e.g., [3], in the framework of the gradi-
ent flow formulation of the heat equation; in particular by assuming only equi-
boundedness of the entropy at the initial time.

Let ǫ > 0 be the scaling parameter and denote by (f ǫ, ηǫ) the diffusively rescaled
solution of the linear Boltzmann equation. According to the gradient flow formu-
lation, the pair (f ǫ, ηǫ) satisfies

∂tf
ǫ(t, x, v) +

1

ǫ
b(v) · ∇xf

ǫ(t, x, v) +
1

ǫ2

∫

π(dv′)ηǫ(t, x, v, v′) = 0(3)

H(f ǫ(T )) +
1

ǫ2

∫ T

0

dt E(f ǫ(t)) +
1

ǫ2
R(f ǫ, ηǫ) ≤ H(f ǫ(0)).(4)

We set

ρǫ(t, x) :=

∫

π(dv)f ǫ(t, x, v)

jǫ(t, x) :=
1

ǫ

∫

π(dv)f ǫ(t, x, v)b(v).
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Since ηǫ(t, x, v, v′) is antisymmetric with respect to the exchange of v and v′, by
integrating (3) with respect to π(dv) we deduce the continuity equation

(5) ∂tρ
ǫ +∇ · jǫ = 0.

Let H(ρ) :=
∫

dx ρ log ρ the entropy of the probability density ρ. Assuming
ρǫ(0) → ρ(0) and H(f ǫ(0)) → H(ρ(0)) we would like to take the inferior limit in
the inequality (4) deducing

(6) H(ρ(T )) +

∫ T

0

dtE(ρ(t)) +R(ρ, j) ≤ H(ρ(0)),

that corresponds to the gradient flow formulation of the heat equation for the pair
(ρ, j) satisfying the continuity equation. Here E is the Fisher information, i.e.,

E(ρ) = 2

∫

dx∇√
ρ ·D∇√

ρ

and

R(ρ, j) =
1

2

∫ T

0

dt

∫

dx
1

ρ(t)
j(t) ·D−1j(t),

where the positive definite d× d matrix D is diffusion coefficient.
This step is accomplished in [1] under suitable conditions on the scattering

kernel σ and the drift b implying homogenization of the velocity on the diffusive
scale.
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Random walk in a non-integrable random scenery time

Alessandra Bianchi

(joint work with Marco Lenci, Françoise Pène)

Anomalous diffusions are stochastic processes X(t), t ∈ R
+, having an asymptotic

variance which does not grow linearly in time, that is E(X2(t)) ∼ tδ with δ 6= 1.
This phenomenon is quite common in applications and it is especially related to
the transport in inhomogeneous material, e.g., the motion of a light particle in
an optical lattice [6, 7]. The basic mathematical models for anomalous diffusions
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are Lévy flights, which are random walks with step length provided by an i.i.d.
sequence of Lévy α-stable random variables with α ∈ (0, 2) (see [10, 5]). In this
simple case, the motion is indeed provided by an asymptotic super-diffusive be-
havior with δ = 2, for α ∈ (0, 1], and δ = 3 − α, for α ∈ (1, 2) ( Lévy scheme).
To model the motion in inhomogeneous material, one would like to take also into
account that steps are mutually correlated by their positions, which we may iden-
tify with the presence of scatterers in the media. To this aim, in [4] the so-called
Lévy-Lorentz gas were introduced. This is linear interpolation of a one-dimensional
random walk in a Lévy-type random environment, where scatterers are placed as
a renewal point process with inter-distances having a Lévy-type distribution, and
jump probabilities depend on whether the position of the walker is on a scatterer
or not.

We are then interested in providing a characterization of this process under the
quenched and annealed laws ( LLN, scaling limits, large deviation of the empirical
speed), and in determining whether (and under which law) the asymptotic behav-
ior is super-diffusive. The theory of random walks in random environments have
been intensively studied in the last forty years and many important results have
been achieved, especially for one-dimensional systems that are generally quite well
understood. Even so, classical results do not apply to this setting, mainly because
of the non-ellipticity of the environment, and a different analysis is required.

The range of α ∈ (1, 2), when inter-distances between scatterers having finite
mean but infinite variance, was first studied in [1, 8] in the annealed setting,
and then extended in the quenched setting in a recent work in collaboration with
Cristadoro, Lenci and Ligabò (see [3]), where we proved that the quenched law of
the process satisfies a classical CLT and has moments converging to the moments of
a diffusion. While the annealed CLT follows trivially from these results, there are
not sharp results on the asymptotical behavior of the annealed second moment
which is then still under debate, as the results in [1, 8] are not completely in
agreement and may lead to different conclusions.

In the present work we investigate the annealed behavior of the process for
α ∈ (0, 1), when inter-distances between scatterers having infinite mean. Under
this hypothesis, some previous works where suggesting the super-diffusivity of
the process, and in particular the results in [4] and in [1, 8] where some annealed
quantities related to the second moment were estimated and numerically simulated.
Here we confirm and extend these predictions, proving, for the first time to our
knowledge, that Lévy-Lorentz gas is super-diffusive for α ∈ (0, 1). In particular
we establish the convergence of the finite-dimensional distributions of the process
under a super-diffusive scaling with exponent 1/1 + α > 1/2, and we characterize
the scaling limit. This is explicitely given by the composition of three processes:
The α stable process obtained as the scaling limit of the Lévy environment, the
Brownian motion obtained as the scaling limit of an underlying random walk, and
the inverse of the Kesten-Spitzer process. This last process, that was introduced
in [9] as the scaling limit of random walks in random scenery, appears in this
context as the scaling limit of the sequence of time-lengths between to consecutive


