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Abstract. Setting the Homogenization of Hamilton Jacobi equations in the

geometry of the Heisenberg group, we study the convergence toward a solution
of the limit equation i.e. the solution of the effective Hamiltonian, in particular

we estimate the rate of convergence. The periodicity of the fast variable and

the dilation are both taken compatibly with the group.

1. Introduction. In this work we shall consider Hamilton-Jacobi equations in-
volving a Hamiltonian which is not coercive. Precisely we shall study equations of
the following type:

u+ F (ξ, σ(ξ)∇u) = 0 in R2n+1, (1)

where σ(ξ) =
(
I 0 2yT

0 I −2xT

)
with I the identity n × n matrix and where ξ =

(x, y, t) ∈ Rn × Rn × R.
Clearly F (ξ, σ(ξ)q) is not coercive in q but we shall require that it is coercive in

p = σ(ξ)q.
We denote by ∇Hnu := σ∇u = (X1u, . . . ,Xnu, Y1u, . . . , Ynu) the so called hori-

zontal gradient in the Heisenberg group Hn = (R2n+1, ◦). Before proceeding in this
introduction we want to recall a few notions concerning the Lie group Hn. The
group action is given by

ξo ◦ ξ = (x+ xo, y + yo, t+ to + 2(x.yo − y.xo))
and ∇Hn is defined through the vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
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2 I. BIRINDELLI AND J. WIGNIOLLE

which are left invariant with respect to ◦. Furthermore they satisfy the so called
Hörmander condition i.e. they generate the whole Lie algebra of left invariant
vector fields together with their Lie bracket.

Hamilton-Jacobi equations in the Heisenberg group have already been studied
by Manfredi and Stroffolini in [11] where they give a Hopf-Lax formula for the
following equation

ut + F (σ(ξ)∇u) = 0.

For further properties concerning the Heisenberg group see the next section and
[15]. We just recall that the Heisenberg group possesses a family of dilations given
by δr(ξ) = (rx, ry, r2t) for r > 0. We shall endow H

n with the following “norm”
with respect to δ.:

|ξ|Hn :=

( N∑
i=1

(x2
i + y2

i )

)2

+ t2

1/4

and the associated distance:

dHn(ξ, η) = |η−1 ◦ ξ|Hn .
In the first part of this paper we shall establish a comparison principle for vis-

cosity sub and super-solutions for (1) under the following assumptions on F :

There exists C,C3 > 0 such that for all ξ, ξ′ ∈ Hn, p, p′ ∈ R2n:
(F1) |F (ξ′, p′)− F (ξ, p)| ≤ C(|ξ−1 ◦ ξ′|Hn + |p′ − p|)
(F2) |F (ξ, 0)| ≤ C3

(F3) lim|p|→∞ F (ξ, p) = +∞ , uniformly for ξ ∈ Hn.

Let us emphasize that p stands for the Heisenberg gradient of the solution,
hence the norm is the Euclidean norm in R2n; furthermore even if (F3) holds, for
appropriate ξ one may get F (ξ, σ(ξ)q) = 0 with q ∈ R2n+1, |q| >> 1.

Also we shall need to consider the space of Lipschitz functions with respect to
the group metric, namely:

Λ(Hn) = {u ∈ C(Hn);∃K > 0,∀ξ, η ∈ Hn, |u(ξ)− u(η)| ≤ K|η−1 ◦ ξ|Hn}.

Observe that Λ(Hn) does not coincide with the set of Lipschitz functions while the
topological equivalence of the Euclidean metric and the dHn metric implies that
C(Hn) = C(R2n+1).

Theorem 1.1. Under assumptions (F1), (F2), (F3), there exists a bounded viscos-
ity solution in Λ(Hn) for equation (1).
Moreover, we have the following comparison result: let u be a bounded sub solution
and v be a bounded super solution of (1), then u ≤ v on Hn.
In particular, the solution in L∞(Hn) ∩ Λ(Hn) of (1) is unique.

Of course the conditions on the Hamiltonian F are not the most general but our
main aim is to show the particularity of the Heisenberg group in relation with vis-
cosity solutions.
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Since we want to consider a homogenization problem, we need to introduce
a Hamiltonian depending both on slow and fast variables. Hence, we consider
H : Hn ×Hn × R2n → R that will be periodic in the second variable, in a sense to
be specified below.

In this context, we are concerned with

(Eε) uε(ξ) +H
(
ξ, δ 1

ε
ξ,∇Hnuε(ξ)

)
= 0 on Hn

where ε is a small positive parameter that will converge to zero.
The main result of this paper is to extend to the Heisenberg group the result

obtained by I. Capuzzo Dolcetta, H. Ishii [8] in the coercive case where they estimate
the rate of convergence of uε to the solution of the effective Hamiltonian. For other
results in homogenization of Hamilton Jacobi equations see e.g. Evans [9] and
Lions, Papanicolau, Varadhan [13]. More recently let us mention the works of O.
Alvarez, M. Bardi [1, 2] and M. Arisawa [3].

Here we assume that the Hamiltonian H is Hn-periodic in the second variable
with respect to the group action i.e. we suppose that

H(ξ, kei ◦ η, p) = H(ξ, η, p), for k ∈ N,∀1 ≤ i ≤ 2n (2)

with ei = (0, . . . , 1, . . . , 0) where 1 is in the i-th position.
The other conditions that we shall impose for H are morally similar to those

required previously for F . Namely, we assume that there exists C,C3, ν > 0 such
that for all ξ, ξ′, η, η′ ∈ Hn, p, p′ ∈ R2n.
(H1) |H(ξ′, η′, p′)−H(ξ, η, p)| ≤ C(|ξ−1 ◦ ξ′|Hn + |η−1 ◦ η′|Hn + |p′ − p|)
(H2) ν|p| − C3 ≤ H(ξ, η, p) ≤ ν|p|+ C3.

Following Lions, Papanicolaou, Varadhan, [13], we can formally write

uε(ξ) = uo(ξ) + εu1(ξ, δ 1
ε
ξ) + o(ε).

Since the Heisenberg vector fields are homogeneous of degree 1 with respect to the
dilation, one gets that the limit equation when ε goes to 0, satisfied by uo and u1

is

uo(ξ) +H(ξ, η,∇Hn,ξuo(ξ) +∇Hn,ηu1(ξ, η)) = 0.
It is then natural to prove that the limit problem of (Eε) is given by
(E) u(ξ) +H(ξ,∇Hnu(ξ)) = 0 on Hn

where H, the so-called effective Hamiltonian, is obtained by solving the ”cell-
problem”

(CP ) H(ξ, η, p+∇Hnv(η)) = λ on Hn

where ξ ∈ Hn and p ∈ R2n are some fixed parameters.
Indeed, there exists a unique λ = λ(ξ, p) ∈ R such that (CP ) admits a bounded,
continuous solution v. One then defines:

H(ξ, p) = λ ∀(ξ, p) ∈ Hn × R2n.

We will prove, using the method of Capuzzo-Dolcetta and Ishii [8], that the se-
quence of solutions uε of (Eε) converges uniformly on Hn to the solution u of (E);
this method will also give the rate of convergence in term of ε. Our first result is
the following:
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Theorem 1.2. Assume that H : Hn ×Hn × R2n → R is Hn-periodic in its second
variable and satisfies (H1), (H2).
Then there exists C > 0, independent of ε ∈ (0, 1), such that

sup
ξ∈Hn

|uε(ξ)− u(ξ)| ≤ Cε1/5.

There are two difficulties in this new setting. One is that, even though |.|Hn plays
a role in Hn similar to the one played by the Euclidean norm in Rn it lacks a
fundamental fact : it is not the solution of the eikonal equation |∇Hnu| = 1 but
only a sub-solution. Hence it is necessary to prove that viscosity solutions of

|∇Hnu| ≤ C
are Lipschitz with respect to the norm |.|Hn . This is done in Lemma 3.1. Since
the Carnot-Caratheodory distance as defined e.g. by Gromov is the solution of
the eikonal equation, this result is clearly related to the fact that the Carnot-
Caratheodory metric is equivalent to the metric related to the norm |.|Hn . See the
works of Monti and Serra-Cassano in [12].

Here on the other hand we don’t use the Carnot-Caratheodory metric because
it doesn’t allow explicit computations as required in the homogenization process.

The proof of Lemma 3.1 is different from the Euclidean case and it morally
uses the bracket generating property of the vector fields i.e. [Xi, Yi] = −4 ∂

∂t .
Furthermore we should emphasize that this intrinsic Lipschitzianity implies only
Hölder continuity.

The other difficulty rises from the fact that it is quite standard to prove com-
parison results for viscosity solutions by doubling the variables. In the Euclidean
setting the test function is then constructed via the smoothing factor |x−y|2 which
has the important properties that ∇x|x−y|2 = −∇y|x−y|2 see [6]. Hence it seems
natural to replace |x− y|2 with |η−1 ◦ ξ|2

Hn
but it is easy to see that

∇Hn,ξ|η−1 ◦ ξ|2
Hn 6= −∇Hn,η|η−1 ◦ ξ|2

Hn .

In fact ∇Hn,ξf(η−1 ◦ ξ) 6= −∇Hn,ηf(η−1 ◦ ξ) for any f non constant.
Hence the choice of the test functions is new and it is constructed ad hoc to this

setting.

Let us mention that the converging rate is different from the one obtained in the
coercive case by Capuzzo Dolcetta and Ishii since they obtain ε1/3; this fact seems
to be related to the technique adopted and the interesting question of knowing
whether or not it is sharp remains open.

Let us finally consider the simpler case when the dependence on ξ is only via
the matrix σ i.e. for H(ξ, η, p) = H(η, p). The rate of convergence is very much
improved with respect to Theorem 1.2 because the solution of the effective equation
is constant:

Theorem 1.3. Assume that H(ξ, η, p) is independent of ξ, Hn-periodic in η and
satisfies (H1), (H2).
Then there exists C > 0 independent of ε ∈ (0, 1) such that

sup
ξ∈Hn

|uε(ξ)− u(ξ)| ≤ Cε.
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2. Some results on periodicity in H
n. In the introduction we have already

given most of the notations and definitions concerning Hn.
We define the open ball of radius R and center ξo by

BHn(ξo, R) = {ξ ∈ Hn; dHn(ξ, ξo) < R}.
Let Q = [− 1

2 ,
1
2 )2n × [−2, 2) ∈ R2n+1. For all k ∈ Z2n, we define Qk = (k, 0) ◦ Q,

the left translated cube by k with respect to translations of Hn.
One can prove that, even though

⋃
k∈Z2n

Qk 6= H
n, {Qk}k∈Z2n generates a tiling of

H
n in the following sense

Lemma 2.1. For any ξ ∈ Hn there exists ξo ∈ Q and there exists a finite number of
left group actions generated by elements of the form (k, 0) with k ∈ Z2n that applied
to ξo give ξ.

Proof. Indeed take any ξ = (x, y, t) in Hn. First fix ki =
[
xi + 1

2

]
(where [s]

stands for the integer part of s.) hence x̃i = xi − ki ∈ [− 1
2 ,

1
2 ) and similarly for

hi =
[
yi + 1

2

]
we choose ỹi = yi − hi.

Now choose k = (k1, . . . , kn, h1, . . . , hn) clearly :

(k, 0) ◦ (x̃, ỹ, t̃) = (x, y, t̃+ 2
n∑
i=1

(hix̃i − kiỹi)).

This is true for any t̃ ∈ R.
Now let us note that for i = 1, . . . , n:

s1ei ◦ s2ei+n ◦ (−s1ei) ◦ (−s2ei+n) ◦ (x, y, τ) = (x, y, τ − 4s1s2) (3)

where ei is the i−th vector in the Euclidean base . Hence we need to find t̃ ∈ [−2, 2)
and n1 ∈ Z and n2 ∈ Z such that

t̃+ 2
n∑
i=1

(hix̃i − kiỹi)− 4n1n2 = t.

To achieved this end just choose

n1n2 =
[
t− 2

∑n
i=1(hix̃i − kiỹi)

4

]
.

This ends the proof of the Lemma 2.1.

Remark. In [7] a similar result was proved but Hn was tiled by taking the group
action of any point in Z2n+1 and not only the points of the type (k, 0).

In the introduction we said that a function defined on Hn is Hn-periodic if

f((k, 0) ◦ ξ) = f(ξ) ,∀k ∈ Z2N ,∀ξ ∈ Q.
Clearly from the considerations above it is clear that this implies that f is also
periodic in the last variable.

Consider now the set Qk dilated by a small parameter ε > 0:

Qεk = δεQk = δε((k, 0) ◦Q) = (εk, 0) ◦ (δεQ).
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The last equality comes from the fact that the dilation is well defined with respect
to the group action ◦. One easily checks that {Qεk}k∈Z2n still generates a tiling of
H
n, in the sense of Lemma 2.1 and we shall say that a function is εHn-periodic if

f((εk, 0) ◦ ξ) = f(ξ) ,∀k ∈ Z2n,∀ξ ∈ Qε.

Note finally that if ξ 7→ f(ξ) is Hn-periodic, then ξ 7→ f
(
δ 1
ε
ξ
)

is εHn-periodic.

3. Existence and comparison result for Hamilton-Jacobi equations on
H
n. In this section, we consider the equation:

γu(ξ) + F (ξ,∇Hnu(ξ)) = 0 on Hn (4)

where γ > 0 and F is a continuous function on Hn × R2n.
Let us first precise that f ∈ C1(Hn) means that the horizontal gradient ∇Hnf is
continuous on Hn. Clearly a function may be C1 in this sense but not in the usual
sense.

Following [11] we give the following

Definition 3.1. We say that u ∈ C(Hn) is a viscosity sub-solution of (4) if

∀φ ∈ C1(Hn), if ξo ∈ Hn is a point of local maximum of u− φ then:

γu(ξo) + F (ξo,∇Hnφ(ξo)) ≤ 0.

u ∈ C(Hn) is a viscosity super-solution of (4) if

∀φ ∈ C1(Hn), if ξo ∈ Hn is a point of local minimum of u− φ then:

γu(ξo) + F (ξo,∇Hnφ(ξo)) ≥ 0.

u is a viscosity solution if it is both a super and sub solution.
The formal Taylor expansion of a function u : Hn → R at the point ξo reads (see

[14]):

u(ξ) = u(ξo) + 〈∇Hnu(ξo), ξ−1
o ◦ ξ〉+ o(|ξ−1

o ◦ ξ|Hn)

where we have used the following notation: if ξ = (x, y, t) then ξ = (x, y).
This formula suggests the following definition of sub differential and super dif-

ferential adapted to our situation.

Definition 3.2. Let u ∈ C(Hn), we set

D+
Hn
u(ξo) = {p ∈ R2n; lim sup

ξ→ξo

u(ξ)− u(ξo)− 〈p, ξ−1
o ◦ ξ〉

|ξ−1
o ◦ ξ|Hn

≤ 0},

D−
Hn
u(ξo) = {p ∈ R2n; lim inf

ξ→ξo

u(ξ)− u(ξo)− 〈p, ξ−1
o ◦ ξ〉

|ξ−1
o ◦ ξ|Hn

≥ 0}.
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Remark 1. Taking ξ = ξo ◦ (hp, 0) with h ∈ R, one easily checks that

lim sup
ξ→ξo

〈p, ξ−1
o ◦ ξ〉

|ξ−1
o ◦ ξ|Hn

= |p|,

lim inf
ξ→ξo

〈p, ξ−1
o ◦ ξ〉

|ξ−1
o ◦ ξ|Hn

= −|p|.

As a consequence, if there exists C > 0 such that for all ξ ∈ Hn

|u(ξ)− u(ξo)| ≤ C|ξ−1
o ◦ ξ|Hn

then any p ∈ D+
Hn
u(ξo) or any p ∈ D−

Hn
u(ξo) satisfies |p| ≤ C.

The converse is a much more delicate matter and will be considered in Lemma 3.1.

We now give an equivalent definition for a viscosity solution of (4) in term of
sub and super differential (see [11] for a proof) :

Proposition 3.1. u ∈ C(Hn) is a viscosity solution of (4) if and only if for all
ξo ∈ Hn

∀p ∈ D+
Hn
u(ξo), γu(ξo) + F (ξo, p) ≤ 0

and
∀p ∈ D−

Hn
u(ξo), γu(ξo) + F (ξo, p) ≥ 0.

On the other hand it is possible to prove that a solution of (4) (in the sense of
definition 3.1) is a solution of (4) in the classical viscosity sense since

Proposition 3.2. Let ξo = (xo, yo, to) ∈ R2n+1 and p ∈ R2n+1 be an element of
D+f(ξo) (resp. D−f(ξo)). Then, writing p = (p1, p2, p3) ∈ Rn × Rn × R, one has:

(p1 + 2p3yo, p2 − 2p3xo) ∈ D+
Hn
f(ξo) (resp. D−

Hn
f(ξo)).

Proof: Let (p1, p2, p3) ∈ Rn × Rn × R be an element of D+f(ξo). One has:

f(ξo ◦ η) = f(xo + η1, yo + η2, to + η3 + 2(η1.yo − η2.xo))
≤ f(ξo) + p1.η1 + p2.η2 + p3(η3 + 2(η1.yo − η2.xo))
+ o(|η1|+ |η2|+ |η3 + 2(η1.yo − η2.xo)|)
= f(ξo) + (p1 + 2p3yo).η1 + (p2 − 2p3xo).η2 + p3η3 + o(|η1|+ |η2|+ |η3|)
= f(ξo) + (p1 + 2p3yo).η1 + (p2 − 2p3xo).η2 + o(|η1|+ |η2|+ |η3|1/2).

One easily checks that o(|η|Hn) = o(|η1|+ |η2|+ |η3|1/2) and then, by definition, one
deduces that (p1 + 2p3yo, p2 − 2p3xo) ∈ D+

Hn
f(ξo).

We now want to consider the proof of Theorem 1.1. We shall give a direct proof
of the comparison result because it shows the peculiarity of this Hamiltonian and
it uses tools that will be used in the proof of Theorem 1.2 in a more readable
context. Let us mention that the comparison result of Theorem 1.1 can be proved
using Proposition 3.2 and comparison results of standard viscosity solutions (see
Barles [6]). On the other hand, we skip the proof of the existence. Indeed, by the
comparison principle, it is possible to use the standard Perron’s method to get the
existence of solutions (see Ishii [10]).

The following result will be crucial in the sequel:
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Lemma 3.1. Any bounded viscosity sub solution of |∇Hnu| ≤ C satisfies

|u(ξ ◦ η)− u(ξ)| ≤ C|η|Hn

for any η ∈ Hn.
Proof of Lemma 3.1: For simplicity we shall write the proof when n = 1, but of
course the proof is identical for general n.

First step: We shall prove that for any η = (η1, η2, 0) we get

|u(ξ ◦ η)− u(ξ)| ≤ C|η|Hn := C|η|.
Let ξ = (x1, x2, x3) and

σ(ξ) =
(

1 0 2x2

0 1 −2x1

)
then |∇Hnu(ξ)| = |σ(ξ)∇u| = supq∈R2,|q|≤1 σ

T (ξ)q · ∇u.
We now fix q = (q1, q2) and we define yξ(s; q) ∈ R2n+1 the solution of{

y′ = σT q,
y(0) = ξ.

If we identify (q1, q2) = (q1, q2, 0) then yξ(s; q) = ξ ◦ sq.
u satisfies the hypothesis of Theorem 5.21 of Bardi-Capuzzo Dolcetta [4] with

λ = 0. Indeed u is a viscosity sub solution of

sup
q∈R2,|q|≤1

{σT (ξ)q · ∇u− C} ≤ 0

hence u satisfies

u(yξ(s; q))− u(yξ(t; q)) ≤ C(t− s)
for s ≤ t. By choosing −q instead of q and observing that −t ≤ −s we obtain that

|u(yξ(s; q))− u(yξ(t; q))| ≤ C|(t− s)|.
This of course holds for any unitary q ∈ R2 and hence the first step is concluded.
Second step: Now take any ξ = (x, y, t) and ξ1 = (x1, y1, t1) and let η = (x1 −

x, y1 − y, 0), hence ξ ◦ η = (x1, y1, t+ 2(yx1 − xy1). So to estimate u(ξ1)− u(ξ) we
need to estimate u(ξ1) − u(ξ ◦ η) (since we know how to estimate u(ξ ◦ η) − u(ξ))
i.e. we need to estimate u(x1, y1, t1)− u(x1, y1, τ) with τ = t+ 2(yx1 − xy1).

Without loss of generality we can suppose that τ > t1. Recalling (3) i.e.

(x1, y1, τ) ◦ s1e1 ◦ s2e2 ◦ (−s1e1) ◦ (−s2e2) = (x1, y1, τ − 4s1s2).

We can choose s1 = s2 = s and s2 = 1
4 (τ − t1).

Using the above result we obtain

u(x1, y1, t1)− u(x1, y1, τ) ≤ K(4s) = 2K(τ − t1)1/2.

Putting everything together we obtain

|u(ξ1)− u(ξ)| ≤ K(|η|+ 2(|t− t1 + 2(yx1 − xy1)|)1/2) =

= K(|(x1 − x, y1 − y)|+ 2(|t− t1 + 2(yx1 − xy1)|)1/2).
This ends the proof.
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Direct proof of Theorem 1.1: Let u and v be respectively a bounded super solution
and a bounded sub solution of (4). For ε, α ∈ (0, 1), ξ = (x, y, t) and η = (x′, y′, t′),
we define the functions:

Aε(ξ, η) =

((
(x− x′)2 + (y − y′)2

ε

)2

+ (t− t′ + 2(x′y − xy′))2

)1/2

ρ(ξ) = |ξ|2
Hn

and then

ψ(ξ, η) = v(η)− u(ξ)− 1
ε
Aε(ξ, η)− αρ(ξ).

Since ε ∈]0, 1[, one clearly has |η−1 ◦ ξ|2
Hn
≤ Aε(ξ, η); moreover, an easy calculation

gives:

|∇Hn,ξAε(ξ, η)| = |∇Hn,ηAε(ξ, η)| ≤ 2ε−1/2

(
(x− x′)2 + (y − y′)2

ε

) 1
2

≤ 2ε−1/2A1/2
ε (ξ, η), (5)

|∇Hn,ξAε(ξ, η) +∇Hn,ηAε(ξ, η)| ≤ 4ε1/2A1/2
ε (ξ, η), (6)

|∇Hn,ξρ(ξ)| ≤ 2|ξ|Hn . (7)

Since u and v are assumed to be bounded on Hn, one easily checks that ψ tends
to −∞ when |ξ|Hn , |η|Hn → ∞. Thus, ψ attains a global maximum at some point
(ξ̂, η̂) depending of course on ε and α.
Thus, ξ̂ is a minimum point for ξ 7→ u(ξ) + 1

εAε(ξ, η̂) +αρ(ξ) and since u is a super
solution of (4), we have:

γu(ξ̂) + F

(
ξ̂,−1

ε
∇Hn,ξAε(ξ̂, η̂)− α∇Hn,ξρ(ξ̂)

)
≥ 0. (8)

On the other hand, η̂ is a maximum point for η 7→ v(η)− 1
εAε(ξ̂, η) and since v is

a sub solution of (4), we have:

γv(η̂) + F

(
η̂,

1
ε
∇Hn,ηAε(ξ̂, η̂)

)
≤ 0. (9)

Let C0 > 0 be such that ||u||∞, ||v||∞ ≤ C0; writing ψ(ξ̂, η̂) ≥ ψ(0, 0), one gets:

1
ε
Aε(ξ̂, η̂) + αρ(ξ̂) ≤ 4C0.

In particular, we derive:

ρ(ξ̂) = |ξ̂|2
Hn ≤ 4C0α

−1.

Then, writing ψ(ξ̂, η̂) ≥ ψ(ξ̂, ξ̂) and using Lemma 3.1, one gets:
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1
ε
Aε(ξ̂, η̂) ≤ v(η̂)− v(ξ̂) ≤M |η̂−1 ◦ ξ̂|Hn ≤MA1/2

ε (ξ̂, η̂)

which yields:

Aε(ξ̂, η̂) ≤M2ε2.

One then subtracts (8) from (9) to obtain:

γ(v(η̂)− u(ξ̂)) ≤ F

(
ξ̂,−1

ε
∇Hn,ξAε(ξ̂, η̂)− α∇Hn,ξρ(ξ̂)

)
− F

(
η̂,

1
ε
∇Hn,ηAε(ξ̂, η̂)

)
≤ C

(
|η̂−1 ◦ ξ̂|Hn + α

∣∣∣∇Hn,ξρ(ξ̂)
∣∣∣+

1
ε
|∇Hn,ξAε(ξ, η) +∇Hn,ηAε(ξ, η)|

)
≤ C

(
A1/2
ε (ξ̂, η̂) + 2α|ξ̂|Hn + 4ε−1/2A1/2

ε (ξ, η)
)

≤ C(Mε+ 4
√
C0α+ 4Mε1/2).

Finally, one derives, for all ξ, η ∈ Hn:

v(η)− u(ξ)− 1
ε
Aε(ξ, η) = lim

α→0
ψ(ξ, η)

≤ lim
α→0

ψ(ξ̂, η̂)

≤ lim
α→0

v(η̂)− u(ξ̂)

≤ γ−1C(Mε+ 4Mε1/2).

Taking ξ = η in the left-hand side and then passing to the limit when ε → 0, one
gets:

v(ξ)− u(ξ) ≤ 0 , ∀ξ ∈ Hn

and the result is proved.

4. Around the cell-problem. Theorem 1.1 in the previous section immediately
yields that, under assumptions (H1), (H2) for all ε > 0, there exists a unique
solution uε ∈ L∞(Hn) ∩ Λ(Hn) of the equation:
(Eε) uε(ξ) +H(ξ, δ 1

ε
ξ,∇Hnuε(ξ)) = 0 on Hn

with H satisfying

η 7→ H(ξ, η, p) is Hn-periodic for each (ξ, p) ∈ Hn × R2n.

From the work of Lions, Papanicolaou, Varadhan, one guesses that the limit prob-
lem of (Eε) is given by
(E) u(ξ) +H(ξ,∇Hnu(ξ)) = 0 on Hn

where H, the so-called effective Hamiltonian, is obtained by solving the ”cell-
problem”

(CP ) H(ξ, η, p+∇Hnv(η)) = λ, on Hn

where ξ ∈ Hn and p ∈ R2n are some fixed parameters.

As announced in the introduction, our first result is the following:
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Theorem 4.1. For every fixed (ξ, p) ∈ Hn×R2n, there exists a unique real number
λ = λ(ξ, p) such that (CP ) has a bounded, continuous solution v.

We then define the ”effective Hamiltonian” H by

H(ξ, p) = λ , ∀(ξ, p) ∈ Hn × R2n

and one notices that H enjoys the same structural assumptions than H.
A classical way of constructing a solution of (CP ) is to introduce the approximated
equation:

(AP ) αvα(η) +H(ξ, η, p+∇Hnvα(η)) = 0 in Hn

where ξ ∈ Hn and p ∈ R2n are fixed.
We know by the results of the previous section that there exists a unique vα ∈
L∞(Hn) ∩ Λ(Hn) solution of (AP ). The uniqueness and the invariance of ∇Hn by
left group action implies that vα is Hn-periodic.
The aim of the following proposition is to gather some estimates about the function
vα which will be useful in the next section.

Proposition 4.1. There exists C4 > 0 such that, for all ξ, ξ′, η, η′ ∈ Hn and p, p′ ∈
R

2n:
1. − supη∈Hn H(ξ, η, p) ≤ αvα(η) ≤ − infη∈Hn H(ξ, η, p).
2. |∇Hnvα(η; ξ, p)| ≤ C4(1 + |p|) in the viscosity sense.
3. |αvα(η′; ξ′, p′)− αvα(η; ξ, p)| ≤ C4(|η−1 ◦ η′|Hn + |ξ−1 ◦ ξ′|Hn + |p′ − p|).
4. |αvα(η; ξ, p) +H(ξ, p)| ≤ αC4(1 + |p|).
5. |H(ξ′, p′)−H(ξ, p)| ≤ C4(|ξ−1 ◦ ξ′|Hn + |p′ − p|).

Proof of Theorem 4.1 and Proposition 4.1: Since the constants:

−α−1 inf
η∈Hn

H(ξ, η, p) and − α−1 sup
η∈Hn

H(ξ, η, p)

are respectively super solution and sub solution of (AP ), one has:

−α−1 sup
η∈Hn

H(ξ, η, p) ≤ vα(η) ≤ −α−1 inf
η∈Hn

H(ξ, η, p). (10)

This proves 1. of Proposition 4.1 and from (H2), this implies that

α||vα||∞ ≤ ν|p|+ C3

so that

H(ξ, η, p+∇Hnvα(ξ)) ≤ ν|p|+ C3. (11)

On the other hand,

H(ξ, η, p+∇Hnvα(ξ)) ≥ ν|p+∇Hnvα| − C3 ≥ ν|∇Hnvα| − ν|p| − C3. (12)

One deduces from (11) and (12) that:

|∇Hnvα| ≤ 2
(
|p|+ C3

ν

)
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which proves 2. of Proposition 4.1.
Setting ṽα = vα−minQ vα, one has that ṽα is periodic, bounded in L∞(Hn)∩Λ(Hn).
Extracting a subsequence, one may assume that (ṽα,−αvα) converges uniformly on
H
n to some (v, λ) ∈ L∞(Hn) ∩ Λ(Hn)× R

Using the fact that ṽα solves:

αṽα + αmin
Q

vα +H(ξ, η, p+∇Hn ṽα) = 0 on Hn

and from the stability result, we get that v satisfies:

−λ+H(ξ, η, p+∇Hnv) = 0 on Hn

which proves the existence part of Theorem 4.1.
Suppose now that there exists another couple (µ,w) ∈ R×L∞(Hn)∩Λ(Hn) solution
of the cell-problem, such that λ 6= µ. We may assume that λ < µ and since v + C
is still solution of the cell-problem for any constant C, we may suppose that v > w
on Hn.
We then choose a small α such that λ+ αv ≤ µ+ αw.
v is the unique solution of

αu+H(ξ, η, p+∇Hnu) = λ+ αv (13)

while w is the unique solution of

αu+H(ξ, η, p+∇Hnu) = µ+ αw. (14)

In particular, w is a super solution of (13) and using the comparison result, we get
v ≤ w on Hn, a contradiction.
In order to prove 3., fix h, k, ξ ∈ Hn, p, l ∈ R2n and set w(η) = vα(k ◦ η;h ◦ ξ, p+ l)
which, from the left-invariance of the Heisenberg gradient, is solution of:

αw(η) +H(h ◦ ξ, k ◦ η, p+ l +∇Hnw(η)) = 0 , η ∈ Hn.
From (H1), one deduces that:

−C(|h|Hn + |k|Hn + |l|) ≤ αw(η) +H(ξ, η, p+∇Hnw(η)) ≤ C(|h|Hn + |k|Hn + |l|).

In particular, this means that:

η 7→ w(η)− C

α
(|h|Hn + |k|Hn + |l|) and η 7→ w(η) +

C

α
(|h|Hn + |k|Hn + |l|)

are respectively sub solution and super solution of (AP ).
Using the comparison result, one gets:

w(η)− C

α
(|h|Hn + |k|Hn + |l|) ≤ vα(η) ≤ w(η) +

C

α
(|h|Hn + |k|Hn + |l|) , η ∈ Hn

which may be rewritten:

|αvα(k ◦ η;h ◦ ξ, p+ l)− αvα(η; ξ, p)| ≤ C(|h|Hn + |k|Hn + |l|).
This proves 3. of Proposition 4.1.
We then claim that:
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α sup
Hn

vα ≥ −H(ξ, p).

Indeed, if it were not the case, one would have, from the viscosity point of view:

H(ξ, η, p+∇Hnvα(η)) = −αvα(η) > H(ξ, p) = λ

Hence, vα would be a super solution of the cell-problem, which would imply that
vα ≥ w on Hn, for any solution w of (CP ), from the comparison result. This leads
to a contradiction since, if w is a solution of the cell-problem, then so is w +C for
any C ∈ R.
A similar consideration shows that

α inf
Hn
vα ≤ −H(ξ, p).

Then, as a consequence of 2., one has for all η, η′ ∈ Q

|vα(η′; ξ, p)− vα(η; ξ, p)| ≤ C4(1 + |p|)|η−1 ◦ η′|Hn ≤ C4(1 + |p|)CN
which yields, using the Hn-periodicity of vα,

αvα(η; ξ, p) ≤ α inf
η′∈Hn

vα(η′; ξ, p) + αC4(1 + |p|)CN

≤ −H(ξ, p) + αC4(1 + |p|)CN
and

αvα(η; ξ, p) ≥ α sup
η′∈Hn

vα(η′; ξ, p)− αC4(1 + |p|)CN

≥ −H(ξ, p)− αC4(1 + |p|)CN .
Finally, one gets

|αvα(η; ξ, p) +H(ξ, p)| ≤ αC4(1 + |p|)CN
and 4. is proved.
From 3. and 4., one now gets, for all α > 0:

H(ξ′, p′)−H(ξ, p) ≤ C4(|ξ−1 ◦ ξ′|Hn + |p− p′|) + αC4(|p|+ |p′|)CN .
Sending α to 0, this proves 5.

5. The rate of convergence. In this section we shall prove Theorem 1.2 and
Theorem 1.3.

Let us first recall that uε, u and vα = vα(.; ξ, p) are respectively the solutions of:

(Eε) uε(ξ) +H
(
ξ, δ 1

ε
ξ,∇Hnuε(ξ)

)
= 0 , ξ ∈ Hn

(E) u(ξ) +H (ξ,∇Hnu(ξ)) = 0 , ξ ∈ Hn
(AP ) αvα(η) +H (ξ, η, p+∇Hnvα(η)) = 0 , η ∈ Hn.
For ε, δ, β, θ, λ ∈ (0, 1), ξ = (x, y, t) and η = (x′, y′, t′), we define the functions:

Aε,λ(ξ, η) =

((
(x− x′)2 + (y − y′)2

ελ

)2

+ (t− t′ + 2(x′y − xy′))2

)1/2
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ρ(ξ) = |ξ|2
Hn

and then

φ(ξ, η) = uε(ξ)− u(η)− εvεθ
(
δ 1
ε
ξ; ξ, qε(ξ, η)

)
− 1

2εβ
Aε,λ(ξ, η)− δ

2
ρ(ξ)

where qε(ξ, η) = 1
εβ
∇Hn,ξAε,λ(ξ, η).

Since ε ∈]0, 1[, one clearly has

|η−1 ◦ ξ|2
Hn ≤ Aε,λ(ξ, η) ≤ ε−λ|η−1 ◦ ξ|2

Hn ; (15)

moreover, an easy calculation gives:

|∇Hn,ξAε,λ(ξ, η)| = |∇Hn,ηAε,λ(ξ, η)| ≤ 2ε−λ/2
(

(x− x′)2 + (y − y′)2

ελ

) 1
2

≤ 2ε−λ/2A1/2
ε,λ (ξ, η), (16)

|∇Hn,ξAε,λ(ξ, η) +∇Hn,ηAε,λ(ξ, η)| ≤ 4ελ/2A1/2
ε,λ (ξ, η), (17)

|∇Hn,ξρ(ξ)| ≤ 2|ξ|Hn . (18)

In conclusion putting together (15) and (16),one has

|qε(ξ, η)| ≤ 2ε−β−λ/2A1/2
ε,λ (ξ, η) ≤ 2ε−β−λ|η−1 ◦ ξ|Hn . (19)

We shall need the following estimate

|qε(ξ, η)− qε(ξ, η′)| ≤ Cε−β |(η′)−1 ◦ η|Hn . (20)

Hence we need to prove that there exists some constant C such that

|∇Hn,η∇Hn,ξAε,λ(ξ, η)| ≤ C. (21)

This will be proved in the appendix since it is a simple but sort of long computation.
Let C > 0 be some constant such that ||u||∞, ||v||∞ ≤ C. In view of 1. of

Proposition 4.1, (H2) and (16), we have:

φ(ξ, η) ≤ 2C + ε1−θ (ν|qε(ξ, η)|+ C3)− 1
2εβ

Aε,λ(ξ, η)− δ

2
ρ(ξ)

≤ 2C + ε1−θ

(
2ν
A

1/2
ε,λ (ξ, η)

εβ+λ/2
+ C3

)
− 1

2εβ
Aε,λ(ξ, η)− δ

2
ρ(ξ).

Hence, φ attains a global maximum at some point (ξ̂, η̂) depending on the various
parameters that appear in the definition of φ.
Then, writing φ(ξ, ξ) ≤ φ(ξ̂, η̂), one gets:



HOMOGENIZATION IN THE HEISENBERG GROUP 15

uε(ξ)− u(ξ) ≤ uε(ξ̂)− u(η̂)

+ ε
(
vεθ
(
δ 1
ε
ξ; ξ, 0

)
− vεθ

(
δ 1
ε
ξ̂; ξ̂, qε(ξ̂, η̂)

))
+

+
δ

2
|ξ|2
Hn −

δ

2
|ξ̂|2
Hn . (22)

The scope now is to estimate the terms on the right hand side of (22). For this
let us state a Proposition that will be proved later.

Proposition 5.1. Let ε, β ∈ (0, 1), δ ∈ (0, 1/2) and λ ∈ (0, 1−β), θ2 ∈ (0, 1−β−λ)
then there exist some constants L, M and C5, C6 > 0, such that:

|ξ̂|Hn ≤
L

δ1/2
and

A
1/2
ε,λ (ξ̂, η̂)
εβ

≤M, (23)

u(η̂) +H(ξ̂, q̄ε(ξ̂, η̂)) ≥ −C6(εβ + ε1−θ−β−λ) (24)

where q̄ε(ξ̂, η) = − 1
εβ
∇Hn,ηAε,λ(ξ̂, η).

uε(ξ̂) +H(ξ̂, qε(ξ̂, η̂)) ≤ C5(εθ + δ1/2 + ε1−θ−β−λ). (25)

Here and in the following λ.ξ := δλξ with λ ∈ R and ξ ∈ Hn when no ambiguities
arise. From 1. of Proposition 4.1, (H2), (16) and (23), one has:

ε

(
vεθ (

1
ε
.ξ; ξ, 0)− vεθ (

1
ε
ξ̂; ξ̂, qε(ξ̂, η̂))

)
≤ ε1−θ

(
sup
η∈Hn

H(
1
ε
.ξ̂, η, qε(ξ̂, η̂))− inf

η∈Hn
H(

1
ε
.ξ, η, 0)

)
≤ ε1−θ(ν|qε(ξ̂, η̂)|+ 2C3)

≤ ε1−θ(2νMε−λ/2 + 2C3). (26)

We now want to subtract (24) from (25), but first let us remark that from 5. of
Proposition 4.1, (17) and (23),

|H(ξ̂, qε(ξ̂, η̂))−H(ξ̂, q̄ε(ξ̂, η̂))| ≤ 4C4ε
−β+λ/2A

1/2
ε,λ ≤ ε

λ/2M ′.

Now taking δ1/2 ≤ εθ, one gets the existence of C7 > 0 such that

uε(ξ̂)− u(η̂) ≤ C7(εθ + εβ + ε1−θ−β−λ + ελ/2) (27)

Using (26) and (27), (22) yields, ∀ξ ∈ Hn,:

uε(ξ)− u(ξ) ≤ C7(εθ + εβ + ε1−θ−β−λ + ελ/2) + ε1−θ(2νMε−λ/2 + 2C3) +
δ

2
|ξ|2
Hn , .

Hence, sending δ → 0, one obtains:

uε(ξ)− u(ξ) ≤ (C7 + 2νM + 2C3)(εθ + εβ + ελ/2 + ε1−θ−β−λ) ∀ξ ∈ Hn.

The optimal choice being θ = β = λ
2 = 1/5. We have thus proved that there exists

C > 0 such that:
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sup
Hn

(uε(ξ)− u(ξ)) ≤ Cε1/5.

Reversing the roles of u and uε, one gets the opposite inequality and Theorem 1.2
is proved.

Proof of Proposition 5.1: Let Co > 0 be such that ||uε||∞, ||u||∞ ≤ Co. Writing
φ(ξ̂, η̂) ≥ φ(0, 0) and proceeding as above using 1. of Proposition 4.1, and (19) one
gets:

δ

2
ρ(ξ̂) +

1
2εβ

Aε,λ(ξ̂, η̂) ≤ 4Co + 2ε1−θ(νqε(ξ̂, η̂) + C3)

≤ 4Co + 2ε1−θ(νε−β−λ|η̂−1 ◦ ξ̂|Hn + C3).

Thus, using Young’s inequality, and (15)

δ

2
|ξ̂|2
Hn ≤ 4Co + ν2ε2−2θ−β−2λ + 2C3ε

1−θ.

For 0 < θ < 1− β
2 − λ, the above inequality yields:

δ

2
|ξ̂|2
Hn ≤ 4C + 2ν2 + 2C3

and the first estimate of (23) is proved.
Writing φ(ξ̂, η̂) ≥ φ(ξ̂, ξ̂), one gets:

1
2εβ

Aε,λ(ξ̂, η̂) ≤ u(ξ̂)− u(η̂) + ε

(
vεθ (

1
ε
.ξ̂; ξ̂, 0)− vεθ (

1
ε
.ξ̂; ξ̂, qε(ξ̂, η̂)

)
.

Thus, from 3. of Proposition 4.1, (15) and (16), one deduces:

1
2εβ

Aε,λ(ξ̂, η̂) ≤ C|η̂−1 ◦ ξ̂|Hn + C4ε
1−θ|qε(ξ̂, η̂)|

≤ (C + C4ε
1−θ−β−λ2 )Aε,λ(ξ̂, η̂)

1
2 .

This conclude the proof of (23).
Proof of (24): Since φ has a maximum point at (ξ̂, η̂), one deduces that the function:

ϕ : η 7→ u(η) +
1
εβ
Aε,λ(ξ̂, η) + εvεθ

(
1
ε
.ξ̂; ξ̂, qε(ξ̂, η)

)
has a minimum point at η̂.

Subtracting to u a smooth positive function vanishing at η̂ as well as its horizontal
gradient, one may assume that ϕ has a strict minimum at η̂.
Let us set v1(η) = u(η) + 1

εβ
Aε,λ(ξ̂, η) and v2(η) = εvεθ ( 1

ε .ξ̂; ξ̂, qε(ξ̂, η)) so that
ϕ = v1 + v2.
Let r > 0 be such that v1(η) + v2(η) ≥ v1(η̂) + v2(η̂) on BHn(η̂, r) and define, for
α > 0, the function:

ψ(ξ, η) = v1(ξ) + v2(η) +
α

2
A 1
α ,λ

(ξ, η).

Let (ξα, ηα) be a minimum point of ψ on BHn(η̂, r). One has, for all ξ ∈ BHn(η̂, r):
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ψ(ξ, ξ) = v1(ξ) + v2(ξ) ≥ ψ(ξα, ηα) ≥ v1(ξα) + v2(ηα). (28)

The first inequality with ξ = ηα yields:

α

2
A 1
α ,λ

(ξα, ηα) ≤ v1(ηα)− v1(ξα)

≤ C|η−1
α ◦ ξα|Hn

and then, from (15):

α|η−1
α ◦ ξα|Hn ≤ 2C. (29)

Moreover, one may extract from (ξα), (ηα) a subsequence such that ξα → ξ∞ ∈
BHn(η̂, r) and ηα → η∞ ∈ BHn(η̂, r) when α→∞. From (29), one clearly sees that
ξ∞ = η∞.
Thus, passing to the limit in (28), one gets:

v1(ξ) + v2(ξ) ≥ v1(ξ∞) + v2(ξ∞), ∀ξ ∈ BHn(η̂, r)
which implies that ξ∞ = η̂ and that ξα → η̂, ηα → η̂ (without extracting any
subsequence).
Now, the functions:

ξ 7→ v1(ξ) +
α

2
A 1
α ,λ

(ξ, ηα) and η 7→ v2(η) +
α

2
A 1
α ,λ

(ξα, η)

have respectively a minimum point at ξα and ηα and this implies that:

α

2
∇Hn,ξA 1

α ,λ
(ξα, ηα) ∈ D−

Hn
v1(ξα) (30)

and
α

2
∇Hn,ηρ(ξα, ηα) ∈ D−

Hn
v2(ηα). (31)

Let us now note that from 3. of Proposition 4.1, one has:

|v2(η′)− v2(η)| =
∣∣∣∣εvεθ (1

ε
.ξ̂; ξ̂, qε(ξ̂, η′))− εvεθ (

1
ε
.ξ̂; ξ̂, qε(ξ̂, η))

∣∣∣∣
≤ ε1−θC4|qε(ξ̂, η′)− qε(ξ̂, η)|

and then, from (20),

|v2(η′)− v2(η)| ≤ ε1−θ−β−λC ′|η−1 ◦ η′|Hn .
Finally this together with remark 1, gives:

|α
2
∇Hn,ξA 1

α ,λ
(ξα, ηα)| ≤ C ′ε1−θ−β−λ. (32)

On the other hand, from (30) and the definition of v1, one has:

α

2
∇Hn,ξA 1

α ,λ
(ξα, ηα) + q̄ε(ξ̂, ξα) ∈ D−

Hn
u(ξα).

Since u is a solution of (E), we obtain that:
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u(ξα) +H
(
ξα,

α

2
∇Hn,ξA 1

α ,λ
(ξα, ηα) + q̄ε(ξ̂, ξα)

)
≥ 0.

Then, by 5. of Proposition 4.1 and Proposition 5.1,

u(ξα) +H(ξ̂, q̄ε(ξ̂, ξα)) ≥ −C4

(∣∣∣ξ−1
α ◦ ξ̂

∣∣∣
Hn

+ |α
2
∇Hn,ξA 1

α ,λ
(ξα, ηα)|

)
. (33)

From (32), this yields:

u(ξα) +H(ξ̂, q̄ε(ξ̂, ξα)) ≥ −C4

(∣∣∣ξ−1
α ◦ ξ̂

∣∣∣
Hn

+ C ′ε1−θ−β−λ
)
.

Thus, passing to the limit when α tends to +∞, one obtains:

u(η̂) +H(ξ̂, q̄ε(ξ̂, η̂)) ≥ −C4

(∣∣∣η̂−1 ◦ ξ̂
∣∣∣
Hn

+ C ′ε1−θ−β−λ
)

(24) is then a direct consequence of (23).

Proof of (25): First note that, adding to uε a smooth function vanishing at ξ̂
as well as its horizontal gradient, one may assume that the function:

ξ 7→ uε(ξ)− εvεθ (
1
ε
.ξ; ξ, qε(ξ, η̂))− 1

2εβ
Aε,λ(ξ, η̂)− δ

2
ρ(ξ)

has a strict maximum at ξ̂. Consider next, for α > 0, the function:

ψ(ξ, η, ζ) = uε(ξ)− εvεθ (η; ζ, qε(ζ, η̂))− 1
2εβ

Aε,λ(ξ, η̂)− δ

2
ρ(ξ) +

− α

2
(A 1

α ,λ
(ξ, ε.η) +A 1

α ,λ
(ξ, ζ)).

Arguing as in the proof of (24), there exists r > 0 and a maximum point (ξα, ηα, ζα)
of ψ on BHn(ξ̂, r) × BHn( 1

ε .ξ̂, r) × BHn(ξ̂, r) such that ξα → ξ̂, ηα → 1
ε .ξ̂, ζα → ξ̂

when α→∞.
Furthermore α|(ε.ηα)−1 ◦ ξα| ≤ C for some constant independent of α and ε.

The functions:

ξ 7→ uε(ξ)− 1
2εβ

Aε,λ(ξ, η̂)− δ

2
ρ(ξ)− α

2
(A 1

α ,λ
(ξ, ε.ηα) +A 1

α ,λ
(ξ, ζα))

and
η 7→ vεθ (η; ζα, qε(ζα, η̂))− α

2ε
A 1
α ,λ

(ξα, ε.η)

have respectively a maximum point at ξα and a minimum point at ηα. Since uε

and vεθ are respectively solutions of (Eε) and (ACP ), one may write:

u(ξα) +H (ξα,Γ) ≤ 0 (34)

with

Γ =
1
ε
.ξα, qε(ξα, η̂) +

δ

2
∇Hn,ξρ(ξα) +

α

2
(∇Hn,ξA 1

α ,λ
(ξα, ε.ηα) +∇Hn,ξA 1

α ,λ
(ξα, ζα))

and

εθvεθ (ηα; ζα, qε(ζα, η̂)) +H
(
ζα, ηα, qε(ζα, η̂)− α

2
∇Hn,ηA 1

α ,λ
(ξα, ε.ηα)

)
≥ 0. (35)

Subtracting the inequalities (34) and (35) we obtain
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u(ξα)− εθvεθ (ηα; ζα, qε(ζα, η̂))

≤ H
(
ζα, ηα, qε(ζα, η̂)− α

2
∇Hn,ηA 1

α ,λ
(ξα, ε.ηα)

)
− H (ξα,Γ) .

Using 4. of Proposition 4.1 and (H5), this implies:

u(ξα) + H(ζα, qε(ζα, η̂))− εθC4(1 + |qε(ζα, η̂)|)

≤ C4

(
|ξ−1
α ◦ ζα|Hn + |

(
1
ε
.ξα

)−1

◦ ηα|Hn + |qε(ξα, η̂)− qε(ζα, η̂)|+

+
δ

2
|∇Hn,ξρ(ξα)|+ α

2
|∇Hn,ξA 1

α ,λ
(ξα, ζα)|+

+
α

2
|∇Hn,ηA 1

α ,λ
(ξα, ε.ηα) +∇Hn,ξA 1

α ,λ
(ξα, ε.ηα)|

)
.

Let us recall that from (17)

|∇Hn,ηA 1
α ,λ

(ξα, ε.ηα) +∇Hn,ξA 1
α ,λ

(ξα, ε.ηα)| ≤ α−λ/2A 1
α ,λ

(ξα, ε.ηα)1/2

≤ α−λ|(ε.ηα)−1 ◦ ξα|
and thus, from (18) and (16):

u(ξα) + H(ζα, qε(ζα, η̂))− εθC4(1 + |qε(ζα, η̂)|) (36)

≤ C4

(
(1 + Cε−β−λ + α)|ξ−1

α ◦ ζα|Hn +

∣∣∣∣∣
(

1
ε
.ξα

)−1

◦ ηα

∣∣∣∣∣
Hn

+ δ|ξα|Hn

+α1−λ|(ε.ηα)−1 ◦ ξα|Hn
)
.

Writing ψ(ξα, ηα, ζα) ≥ ψ(ξα, ηα, ξα) and using 3. of Proposition 4.1, one gets:

α

2
A 1
α ,λ

(ξα, ζα) ≤ ε1−θ
(
εθvεθ (ηα; ξα, qε(ξα, ξ̂))− εθvεθ (ηα; ζα, qε(ζα, ξ̂))

)
≤ ε1−θC4(|ξ−1

α ◦ ζα|Hn + |qε(ξα, η̂)− qε(ζα, η̂)|)
≤ ε1−θC4(1 + Cε−β−λ)|ξ−1

α ◦ ζα|Hn
which, from the definition (15), yields:

α|ξ−1
α ◦ ζα|Hn ≤ 2ε1−θC4(1 + Cε−β−λ) ≤ C ′ε1−θ−β−λ.

Observing that the last term in (36) tends to 0 for α going to ∞ we can pass to
the limit and then we obtain:

u(ξ̂) +H(ξ̂, qε(ξ̂, η̂))− εθC4(1 + |qε(ξ̂, η̂)|) ≤ C4(C ′ε1−θ−β−λ + δ|ξ̂|Hn)

and then, from Proposition 5.1, one derives:

u(ξ̂) +H(ξ̂, qε(ξ̂, η̂)) ≤ εθC4(1 +M) + C4.C
′ε1−θ−β−λ + C4Lδ

1/2

which proves (25).

Proof of Theorem 1.3
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The proof follows the argument used in Theorem 1.2 in [8] ; since it is quite
immediate we give it here for the sake of completeness. Since H is independent of
ξ, (HJ) becomes

u(ξ) +H(∇Hnu(ξ)) = 0 on Hn

and its solution is clearly u ≡ −H(0). Let v be the unique bounded continuous
solution of the cell problem

H(ξ,∇Hnv(ξ)) = H(0) on Hn.
We then define wε(ξ) = u(ξ) + εv(δ 1

ε
ξ) which is a viscosity solution of

wε(ξ) +H(δ 1
ε
ξ,∇Hnwε(ξ)) = εv(δ 1

ε
ξ).

From the comparison result, one easily obtains that

wε − εM ≤ uε ≤ wε + εM on Hn

where M = ||v||∞ and uε is the solution of (HJε). This finally gives

||uε − u||∞ ≤ 2εM.

6. Proof of (21). Let η = (xo, yo, to) ∈ Hn.
We want to prove that |∇Hn,η∇Hn,ξAλ,ε(ξ, η)| ≤ C, for all ξ, η ∈ Hn.
Let us write A = Aλ,ε(ξ, η) := (r4

ε + t2)1/2 where r2
ε = (x−xo)2+(y−yo)2

ελ
and t =

(t− to + 2(xoy − xyo)).
We have:

Xi,ξAλ,ε(ξ, η) =
2(xi − xio)r2

ε + 2(yi − yio)t
(r4
ε + t2)1/2

:=
Ni,ξ
A

Yj,ξAλ,ε(ξ, η) =
2(yj − yjo)r2

ε − 2(xj − xjo)t
(r4
ε + t2)1/2

:=
Mj,ξ

A
.

Xi,ηAλ,ε(ξ, η) =
2(xio − xi)r2

ε + 2(yi − yio)t
(r4
ε + t2)1/2

:=
Ni,η
A

YjAλ,ε(ξ, η) =
2(yjo − yj)r2

ε − 2(xj − xjo)t
(r4
ε + t2)1/2

:=
Mj,η

A
.

Then,

Xj,ηXi,ξAλ,ε(ξ, η) =
A.Xj,ηNi,ξ −Ni,ξ.Xj,ηA

A2
=

A.Xj,ηNi,ξ −Ni,ξ.Nj,ηA
A2

=
A2.Xj,ηNi,ξ −Ni,ξ.Nj,η

A3
.

One has:

|Xj,ηNi,ξ| = |4(xi − xio)(xjo − xj)
ελ

− 2δijr2
ε − 4(yi − yio)(yj − yjo)|

≤ 2
((xi − xio)2 + (xj − xjo)2)

ελ
+ 2r2

ε + 2((yi − yio)2 + (yj − yjo)2)

≤ 10r2
ε

≤ 10A
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and similarly it is easy to see that

|Ni,ξNj,η| ≤
N2
i,ξ +N2

j,η

2
≤ 8A3.

We deduce that:

|Xj,ηXi,ξAλ,ε(ξ, η)| ≤ 10A3 + 8A3

A3
= 18.

In the same manner, one gets the other estimates.
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