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ABSTRACT. — In this paper we consider problems of the type

Agu+ h(z)u? <0, in D C R+, (0)

uw >0 in D, '
where Ap is the Heisenberg Laplacian, D is an unbounded domain and
h is a non negative function.

We prove that, under suitable conditions on h, p and D, the only
solution of (1) is u = 0.
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RESUME. — Dans ce travail nous considérons des problemes du type

Agu+ h{z)u? <0, dans D C R2"H, )
(= dans D,

ol Ay est le Laplacien de Heisenberg, D est un domaine non borné et
h est une fonction positive.

Nous démontrons que sous certaines hypothéses sur h, p et D, la seule
solution de (1) est « = 0.
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1. INTRODUCTION

In this paper we establish some Liouville type theorems for positive
functions = satisfying, for example,

(1.1)

Agu+ h(§)u? <0 in D,
u >0 in D,

where D is an unbounded domain of the Heisenberg group H". We recall
that H™ is the Lie group (IR?"*! o) equipped with the group action

§po& = (93 +Zo, Yy + Yo, t+1lo+ 22(%‘1/0, - yilvo,))a (1.2)

i=1

for € :== (1, ...\ Ty Y1s--s Yn, t) = (x, y, t) € R?*! and Ay is the
subelliptic Laplacian on H™ defined by

AH:ER:XE-H/?

i=1

with

0 o
X; = Bz, + 22/1&,
0 5]

T oy Mg
It is easy to check that Ay is a degenerate elliptic operator satisfying the
Hormander condition of order one (see Section 2).

As an example of our results for the case where D = H™ we prove
that, under some conditions on the non negative coefficient 2 and suitable
restriction on the power p, any non negative smooth solution « of (1.1) is
identically zero. More precisely, denoting by ) = 2n + 2 the homogeneous
dimension of H™ and by [£|y the intrinsic distance of the point £ to the
origin (see [6], [7]), namely

1

€ = (Z(w? +y)? +t2)z, (1.3)

i=1
we have:
THEOREM 1.1. — Let u be a non negative solution of
Agu(§) + al¢[guP(§) <0 in H, (1.4)
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where a is a positive constant and v > —2.

Then, if 1 < p < 35, u = 0.

A generalized version of this theorem is proved in section 3 below, where
also several variants covering the cases when the equation holds in a half
space or some “cone” in H™ are considered (see Theorem 3.2, 3.3, 3.4).

Let us point out that a common feature of our results is that we do not
impose any condition on the behaviour of u for large |£|g, thus allowing
u to be, a priori, singular at infinity.

Therefore our results can be viewed as the analogues, in the present
degenerate elliptic setting, of previous ones due to Gidas-Spruck [10] for
the uniformly elliptic case. However, our method of proof is rather inspired
by [1], where Liouville type results are established for non negative solutions
of

Au+ al|z]"u? <0

in a cone of R™.

We wish to mention that non existence results for non negative solutions
of semilinear equations on the Heisenberg group have been obtained
previously by Garofalo-Lanconelli in [8]. Note, however, that the theorems
in [8], based on Rellich-Pohozaev identities, differ considerably from those
in the present paper since they require global integrability conditions on
and on the gradient of u. (see also [5] for similar results in the uniformly
elliptic case).

Finally, we point out that the Liouville theorems presented here are the
basic tools for obtaining an a priori bound in the sup norm for solutions
of the Dirichlet problem

Agu+ f(,u) =0 in Q C R+, (1.5)
u=0 on Jf2, "

under some growth conditions on f. This can be done using a blow up
technique on the lines of [10], [1], [2] and will be the object of a separate

paper [3].

2. PRELIMINARY FACTS

In this section we collect for the convenience of the reader some known
facts about the Heisenberg group H™ and the operator Ay which will be
useful later on. For their proof and more informations we refer for example
to [6], [7], {81, [12], [13].
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As mentioned in the introduction the Heisenberg group H™" is the Lie
group whose underlying manifold is IR*"*™! (n > 1), endowed with the
group action,

ool = («T + Zo, Y+ yo, o+ 2 Z(-’lhi?lo, — Y, ))
=1

fOl‘E—(J’l,.. 'y Tny Y150+ oy Yn, ) —(l l/at)
The corresponding Lie Algebra of left- mvar1ant vector fields is generated
by X;, Y forie =1,...,n,and T = a_

It is easy to check that X; and Y, satisfy [X,.Y;] = —4T%¢,,
(X, X;] = [V3,Y;] = 0 for any 4,5 € {1,...,n}. Therefore, the vector
fields X;, Y; (i = 1,...,n) and their first order commutators span the

whole Lie Algebra. Hence, the Hormander condition of order one holds

true for Ag (see [13]); this implies its hypoellipticity (i.e. if Agu € C>

then u € C™ (see [13])) and the validity of the maximum principle (see [4]).
An intrinsic metric can be defined on H" by setting

dg(&n) =y~ o€l

where | - |g has been defined in (1.3), see [6]. Clearly in this metric the
open ball of radius R centered at £, is the set:

Bu(&,r)y={ne H" : dg(n,&,) < r}.

It is also important to observe that £ — |£|g is homogeneous of degree one
with respect to the natural group of dilations (see [6], [7]):

6a(€) = Az, Ay, A%t). (2.1)
Since the base {X;,Y;, T'} is obtained by the standard one {5>- d‘J 21
using the transformation
Ly 0 2y
B=10 I, -2z
0 0 1

whose determinant is identically 1, it follows that the Lebesgue measure
is the Haar measure on H".

This fact, together with the homogeneity property of |£|y described
above, implies that

|Bu (€., R)| = |Bu(0,1)|RY, (2.2)
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where (Q = 2n + 2 is the homogeneous dimension of H™ (see [12]) and
| - | denotes the Lebesgue measure.

To conclude this section we recall some simple properties of Ay . Observe
first that

~o0 o 0? 0? 92
=2 g2 Tyt — 4w 4(z2? + y?)—.
S ; o7 T agz T Wigmar  igga T T W) gp

It is easy to check that the operator Ay is homogeneous of degree 2
with respect to the dilation 6, defined in (2.1), namely

AH(é,\) = /\Q(SA(AH);

also, for any fixed £°, by the left invariance of the vector fields X;, Y;
with respect to the group action we have:

Ag(u(€of)) = (Agu)(€°c€)  VEe H™

The next remark concerns the action of Ay on functions u depending only
on p := |€|g. It is easy to show that

Pu Q—10u
Agu(p :w{‘— ——} 2.3
wu(p) 977 PRy (2.3)
where the function ¢ is defined by
G
0 = Z2UII) 9,8 frezo, @
where with V zu we denote the vector field (X,u, Y;u), fori =1,... n.

It is useful to observe that

L, 0 2
S T . - n y
Apg =div(c" oV) with o = (0 I, —237)'

3. LIOUVILLE TYPE THEOREMS

In this section we will generalize to the Heisenberg group some Liouville
type results which hold for positive solutions of superlinear equations
associated to the laplacian, see [1], [2], [10].

THEOREM 3.1. — Let u be a non negative solution of

Apu(§) + f(&u(€)) <0 in H, (3.1)
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where f is a non negative function satisfying

f(&,u) > h(Hu” (32)

for some function h(§) > 0 such that, for |¢|y large,

h(€) = Kl&ly

for some K > 0 and v > -2 .

Ifl<p§g—f;—,thenu20.
Before the proof let us introduce a cut-off function ¢ which will be

used throughout this section. Consider ¢r(p) := ¢(%), where p := |{|y.
R > 0, and ¢ satisfies:

e C®0,+x), 0<p<I,

1
¢=1 on [0, 5},
p=0 0? (1, +00), (3.3)
_C 9
R~ 0p
P¢r
dp?

<0,

C

S m for some constant C' > ().

and ’
Proof. — Set, for B > 0,
l ) g : 1 1
Ip = / h(€)upp?de  with — + = = 1. (3.4)
" D q

Observe that I > 0. Moreover, by equation (3.1) and (3.2)

Ir < / f& u)ophde < —/ A gudhd; (3.5)
J By (0,R)

By (OR)

hence an integration by parts yields,
= [ wauides [ uVaeh) vndha,
B (0,R) OBy (0,R)
—/ ¢§{VH’UJ . VHdHZn S ‘—/ ’U,AH( (}lz)df
9By (0,R) Bu(0,R)

+/ quf)‘f{l(ﬂ}gv}{/) rvgdHy, < —/ uA g (pk)dE,
dBy(0,R) By (0,R)
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where v (§) = o(£)v(€) and v is the normal to 9Q; dH,, denotes the
2n-dimensional Hausdorff measure. On the other hand, as observed in
Section 2 (see (2.3)),

Aot = gzt + 2 20| (35)

pdp

Thus we get, using the hypoteses on ¢r and denoting by Yy :=
Bg(0,R) \ Br(0,3),

Ir

IA

- / w [qqs;';%ﬁ;,é L9 . qus‘;?.%} de
ZRr

C -
< ﬁ/ uhpd de.

Hence, the Holder inequality yields:

s | [y e[ we W' e
JER /By (0,R)

Choosing R > 0 sufficiently large, in ¥, h satisfies h > ¢ K p”. Therefore,

In < 0[/ u”hqb‘,’?df} "R(F+E-2) (3.8)
Zr

as 0 < ¢ < 1. Then,

1—-1
P

Iy © < CR(F+3-2),

Hence, if 1 < p < g+2, letting & — +4oc, we obtain

I:.= / hu?dé = 0.
JHn

This implies u = 0 for p large, since h is strictly positive outside of a set
of measure zero and u is @ priori non negative.

The claim follows now by the maximum principle (see [4]). In fact,
choose R > 0 in such a way that, for p > R, h > 0. Then, © = 0 on the
complementary of B (0, R), as we proved. Hence, u satisfies:

>0 in By (0, R+ ¢),
Apu <0 in By(0,R +6),

u={ for R<p< R+6,
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for some 6 > 0. Therefore, by the maximum principle, since u is not strictly
positive, v has to be identically zero.

If p = %, we obtain, by (3.7), that I is finite and that the right hand
side of (3.7) tends to zero when R goes to infinity. This yields / = 0 and
we can conclude as above.

Remark 3.1. - If h = K > 0, we get by the previous theorem that, for
1<p< QJi_z the unique solution of

Agu+ Ku? <0 in H" (3.9)

is u = 0.

Remark 3.2. — The upper bound of the exponent p is optimal. Indeed,
we claim that the function v(p) = C.(1 + p?)~% witha = Q — 2 — ¢ and
a suitable choice of C. is a positive solution of

Agu(§) +P(§)p"u”(§) <0 in H", (3.10)
for p > QM
Indeed, let u(p) (14 p?)~%. Then wu satisfies:
2 —
CApu= — [d Q-1 Bu]
p Op

= pa(l +p*)"EFIQ(L + p?) — (a + 2)p°]
= pa(l +p*)"F[HQ - o - 2) + Q)]
> pa(Q —a —2)(1 + p2)~ G+, (3.11)

Hence, if we impose that

o
—9 &
Q >, p2

N2

> (= +1), (3.12)

0| R

we can choose ¢ = ((Q — o — 2))51—1 and v = cu satisfies:
y _—Ll 2\—p& 421 W]
~Ap 2 P(e(Q — a - 2))7T (14 ) PEHE > g,

Now just choose & = Q — 2 — ¢ then (3.12) holds if p > Q“ < for
any ¢ positive.

The idea of the function v was taken from Ramon Soranzo (personal
communication to LB.) who gave a similar counterexample for the
Laplacian.
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The next result concern the case where the unbounded domain D is
an half-space.

THEOREM 3.2. — Let D C H"™ be the set

D:{SEHn : Zaia:,;+biyi+d>0,

i=1

with (a,b) € R" x R™\ {0},d € R }
Let u be a non negative solution of

where [ is as in Theorem 3.1 with v > —1.

If1<p< &, thenu=0inD.

A similar result is valid for half-spaces which do not contain the %-
direction or for particular cones. However, the upper bound of the exponent
p is lower than in the previous case.

The following results hold:

THEOREM 3.3. — Let D C H" be the set

D= {ﬁEH" : Zaiwi+b.;yi+ct+d>0},

i=1

fora,beR", ce R\ {0}, de R,

and let u be a non negative solution of

Agu(€) + f(€,u(€)) € 0 in D, (3.14)

with f as in theorem 3.1 and v > 0.
Then, if 1 <p < %5, w=0in D.

THEOREM 3.4. — Let X be the cone
Y = {f e H" : Z((llx’l)i - b.,-yi)(b,-wi + aiy,-) > 0},
4=1

and let u be a non negative solution of

Agu(€) + f(6,u(€)) <O in %, (3.15)

with [ as in theorem 3.1 and v > 0.
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Fl<p< L u=0in 3%
The proofs of theorems 3.2, 3.3, 3.4 follow from the next lemma.

LEMMA 3.1. — Let D C H™ be an unbounded domain. Assume that 1)
satisfies:

Ayn>0 in D,
n=20 on dD,

and let u be a non negative solution of

{7;>0 in D,

Agu(é) + f(&u(€)) <0 in D, (3.16)

with f as in Theorem 3.1. Then, for

Ip = / h&)ul R dE,
JDp

z+g
n

the following estimate holds
1 C =g 4 ‘
In < I\ 1 n'pp v dg YIVun - Vupl'p™ dE
Qp
(3.17)

for R > 0 large enough, where D := By (0, R)N D, Qg := (Bu(0,R) \
Bu(0,%)) N D, and q is the conjugate exponent of p.

Jog

Proof. — From equation (3.16), assumption (3.2) and the divergence’s
theorem we get:

Ip < — / ul g (nlp%)dE + / uNV g (n?e%) - vudH,,
JDpg JoDgr
- / 1oLV au - vydHs,.
JODp

Moreover, since ¢g = 0 on dBy(0,R), n = 0 on 3D, and ¢ > 1, the
integrals on the boundary of Dy vanish and therefore,

Ir < —/D ul g ((ndr)?)dE.

Thus, using the properties of ¢ and observing that, by the hypoteses
made on 7,

Ap(n?) =qlqg = D" 2| Vun|> + g1 Agn > 0 (3.18)
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it results:

In< - / wnftA () dE — 2 / V(1) - Vs ($L)dE.

Qr
Using the properties of ¢p, as in the proof of Theorem 3.1 we obtain

C

unqv/)(f)‘}{ldf + = / u’r/q_lf:/u/)‘};lVHn -Vgpde. (3.19)
Sy

C
Ip <
I R

= R2
R Ja,

Thus, the Holder inequality yields:

clr A Rk
I < ﬁ[/ 'l/)p71tp(71(/)R)(q_””df] U nqrﬁpTdE}
Qg Qr
I (a-Dp aw Dot g
+ R Yo u (o) d¢ |VH"1 Vap|iypp™ d§
- L/Qp g
L/ —~a q
(5[ o]
¢ o= ] ‘
+ 5[ oIV TapltpFde| "), (3.20)
Qr

for £ > 0 large enough. The statement is proved.

Proof of Theorem 3.2. — Consider, without loss of generality, the half
space {x; > 0}.

The claim is proved by using the estimate (3.17) applied to D = {z; > 0}
and n = x.

Indeed, by the maximum principle, to show that » = 0, it is enough
to check that

Ig = / hu?¢priaidé — 0 when R — oo, (3.21)
- {.E[>U}

where ¢p is as in (3.3).
If Dg := By(0,R)N {x; > 0}, then (3.17) becomes:

1 1

(O e )P C L
I < I (ﬁ [/Q T{hp7 df] +E[ o Y|V uplip™> dﬁ} )
. R ’ R

Therefore, as 0 < vy < 1 and z; < CR in Qp, for p < g‘:’ we get:

1 -~
Ip < CIZRFHE-D), (3.22)
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and we can conclude using the same arguments as in Theorem 3.1.

Proof of Theorem 3.3. — As in the proof of Theorem 3.2, the claim is
proved using the estimate (3.17) of Lemma 3.1 withn = A-x+ B -y+ct+d
and DR = BH((),R) NnD.

Let us consider the integral

Ip ::/ huf prTndE, (3.23)
D

where ¢g is as in (3.3). By (3.17), using the fact that

n < CR* (3.24)
[Van| = |(A+ 2cy, B —2cz)] < CR
we obtain:
[ C Doly 1y g ¢ q,— g
In < If\ 7 nppTrdEl + 5 YIVan - Vapllp™ dE
S?R QR
< CIZRGHD). (3.25)

Ifl<p< ng we can conclude as in the previous cases.

Proof of Theorem 3.4. — This result follows from the estimate (3.17)
by choosing 1 := Y-, (a;x; — b;y;)(b;x; + a;y;) and D := ¥. Since the
function 7 has the same behaviour as the function 7 chosen in the proof of
Theorem 3.3, we can conclude in the same way.

Remark 3.3. — Let us observe that, instead of inequality (3.17), one can
similarly obtain

L 1 g % 1 _q . %
<1 (7 [/ doniae| | [ o319 Vgl "),
(3.26)
provided f satisfies (3.2) for some h > 0 such that the right hand side
of (3.26) exists.

Consequently, if h verifies:

Y
i —_— P Q-1 =
Rl—l»Too T /; h™?(pw)p~""dp=10

where w = ﬁ then the conclusion of Theorem 3.2 holds true. Similar
conditions on h and p can be given for Theorems 3.3 and 3.4.
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For the sake of completeness, we will also prove a Liouville theorem for
bounded solutions of Az = 0 in the whole space H”.

THEOREM 3.5. — If u is a bounded function such that Agu = 0 in the
whole space H", then w is a constant.

The proof is based on the following representation formula for Heisenberg
harmonic functions. This formula can be proved easily by using the
divergence’s theorem, see e.g. Gaveau ([9]) for details.

LemMA 3.2, — Let w satisfy Agw = 0 in H". Then, for any £ € H™,
C -
w©) =38 [ wimmn (3.27)
B (¢,R)

where o is defined in (2.4), and Co = |Bg(€,1)|71.

Proof of Theorem 3.5. — Let us first prove that % = 0. Observe that, in
view of the Hormander condition, the vector field 7' = % commutes with

X;and Y, ie. T(X;) = Xi(T) and T(Y;) = Y;(T). Hence,
Ag(Tw)=T(Agw) = 0.

Therefore, applying the previous lemma, we get:
Oow Co ow
o= Sy
ot Re Bu(§,R) ot
CQ 0g/}
R? Jp,e.m) Ot

C
(m)w(n)dn + —g— wipvydHa,,
R% Joy(e.m)

where 1, is the ¢-component of the exterior unit normal vector to By (&, R).

Since )
09| _ 1wl _ 1
ot pt T p?
el 1t < 1
V| = o < ==,
T 203 = p|Vp|
from (2.2) we obtain that
Jw Cllwl| e
i < 7™
ot (€)| - R?

for any £ € H™ and for any R > 0. Thus, letting R go to infinity, we get
%—’f(é) = 0 for any £ € H™. Then, w is a bounded solution of

n P
Pw  Pw  Qw

=0 in R™".
— Ox? + oy? + ot?

Therefore it has to be constant by the classical Liouville theorem (see
e.g. [L1]).
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