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1 Introduction

We denote by Hn the vector space R
2n+1 endowed with the group action:

ξ′ ◦ ξ =

(
x+ x′, y + y′, t+ t′ + 2

n∑
i=1

(xiy
′
i − yix

′
i)

)

where ξ := (x1, . . . , xn, y1, . . . , yn, t) := (x, y, t). Hn, called the Heisenberg group,
is a Lie group and the corresponding Lie Algebra of left-invariant vector fields is
generated by the following vector fields



Xi = ∂

∂xi
+ 2yi

∂
∂t ,

Yi = ∂
∂yi

− 2xi
∂
∂t ,

T = ∂
∂t ,
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for i = 1, . . . , n. The second order self-adjoint operator:

∆H :=
n∑

i=1

(Xi)2 + (Yi)2 (1)

i.e.

∆H =
n∑

i=1

∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(x2

i + y2
i )
∂2

∂t2

is usually called the Heisenberg Laplacian. Let us define the “norm” in Hn intro-
duced by Folland and Stein, see [6]:

|ξ|H =


( n∑

i=1

x2
i + y2

i

)2

+ t2




1
4

.

Using the group action, the “intrinsic” distance in Hn is defined by: d(ξ1, ξ2) =
|ξ−1

2 ◦ ξ1|H . The homogeneous dimension of Hn is Q = (2n + 1) + 1 = 2n + 2.
It is a known fact that if u is a non negative superharmonic function in R

N and
u ∈ C2 then there exists a constant C such that

u(x) ≥ C|x|2−N ,

for any x such that |x| ≥ 1 it is less known that there are equivalent results for
superharmonic functions in cones. Indeed suppose u is a positive superharmonic
function in a cone Σ ⊂ R

n with e.g. vertex the origin, let λ1 be the principal
eigenvalue of −∆ restricted to Σ intersection with the unit sphere, then for any
α > 0 such that α(α + n − 2) > λ1 and for any cone Σo strictly contained in Σ,
there exists a positive constant C such that

u(x) ≥ C|x|2−N−α, (2)

for any x ∈ Σo such that |x| ≥ 1, see e.g. [3]. Let us recall that if φ is the eigen-
function corresponding to λ1 then v = |x|2−n−αφ is a positive harmonic function
in the cone Σ, null on the boundary of Σ. In this paper we shall prove similar
results in the Heisenberg space, and we shall deduce some Liouville theorems for
L1 superharmonic functions in some half spaces. Our main result in the whole
space and in half spaces reads as follows

Theorem 1.1 If u is a non negative ∆H superharmonic function in Hn i.e
u ∈ C2 and

−∆Hu ≥ 0 in Hn

then, if u is not identically zero, there exists a constant C such that

u(ξ) ≥ C|ξ|2−Q
H , (3)
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for any ξ such that |ξ|H ≥ 1. Suppose ν is a non trivial C2 non negative ∆H

superharmonic function in Σ = {ξ : t > 0} i.e.

ν ≥ 0 and − ∆Hν ≥ 0 ∈ Σ

then there exists ε > 0 and δ > 0 such that, for any 0 < ε < ε and any 0 < δ < δ,
there exists a constant C such that

ν(ξ) ≥ C|ξ|−Q−ε
H ,

for any ξ ∈ Dδ := {ξ : t > δ(x2 + y2)}.

Remark 1.2 For simplicity we have stated Theorem 1.1 for the whole space
and the half space t ≥ 0. However, as was pointed out to us by F. Uguzzoni,
∆H is invariant with respect to the linear application T defined by T (x, y, t) =
(y, x,−t). Since the image through T of the half space t ≥ 0 is the half space
t ≤ 0, Theorem 1.1 holds also there. Furthermore if Γ := {ξ : a · x + b · y + ct >
d with c �= 0} then there exists ξo ∈ Hn such that

ξo ◦ Γ = {ξ : t > 0} or ξo ◦ Γ = {ξ : t < 0}.
Hence, by the invariance of the ∆H with respect to the group action ◦, Theorem 1.1
holds true for any half space Γ.

Remark 1.3 However, for half spaces Γx := {ξ ∈ Hn such that a ·x+ b · y ≥ 0},
we cannot prove any similar result, in fact it would be interesting to know if the
result is still true.

Let S1 = {ξ : |ξ|H = 1} and φ = t
ρ2 , we can define the radialized ν by

ν#(ρ) :=
∫

Σ∩S1

ν(ρ, θ)φ(θ)h(θ)dθ,

where θ are the coordinates on S1 and h(θ) = x2+y2

ρ2 . We obtain this other growing
condition

Proposition 1.4 Suppose ν is a non negative Hn super harmonic function in Σ
then there exists C > 0 such that

ν#(ρ) ≥ Cρ−Q

for any ρ > 1.

Clearly, since φh ≤ 1, Proposition 1.4 implies

Corollary 1.5 Suppose ν is a non negative ∆H superharmonic function in a
half-space Γ such that ν ∈ C2 ∩ L1(Γ) then ν ≡ 0.
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F. Uguzzoni in [14] proved that in the half-spaces Γx (i.e. those not covered by
corollary 1.5), the only non negative L1, ∆H superharmonic functions is the trivial
one (see also [12] for more recent results). Other non-existence theorems have been
given in [1] and [2] for semi-linear equations in the Heisenberg group. Those results
differ completely in nature with corollary 1.5 because there the solutions are not
required to decay at infinity. Other non existence results for semi-linear equations
where given by E. Lanconelli and F. Uguzzoni (see e.g. [11]) they lead to the work
F. Uguzzoni and G. Citti in [15] where they obtain the equivalent of the famous
Bahri Coron result in the setting of the Heisenberg group. Another application of
Theorem 1.1 concerns higher order operators. We will say that ν is a ∆H super
polyharmonic function of order m in Σ if

(−1)s∆H
sν ≥ 0 for s = 1, . . . ,m > 1 in Σ, (4)

where ∆H
s denotes the Heisenberg laplacian applied s times.

Theorem 1.6 If 2m ≥ Q then the only non negative ∆H super polyharmonic
functions of order 2m in Hn are constants. If 2m ≥ Q + 2 then the only non
negative ∆H super polyharmonic functions in Σ are constants.

In fact we will prove that results similar to those stated above (such as Theorem 1.1
and Proposition 1.4) hold for “intrinsic cones” symmetric in x and y i.e. for

Dδ := {ξ : t > δ(x2 + y2)},
for all δ ≤ 0. The lower bound for ∆H superharmonic functions will be

ν(ξ) ≥ C|ξ|2−Q−αδ−ε
H ,

where 0 < αδ ≤ 2 is a constant that will be defined later. αδ plays the role of α in
the euclidean case as seen in (2). Indeed αδ is such that there exists some function
ψ on the unit sphere S1 = {ξ such that |ξ|H = 1} that satisfies: v(ξ) = |ξ|2−Q−αδ

H ψ
is ∆H -harmonic and positive in the cone, and zero on the boundary of the cone.
However, while in the euclidean setting α is just the solution of a second order
algebraic equation, here it is a solution of a non linear “eigenvalue” problem on
Σ ∩ S1. It is easy to see that for δ = 0 (i.e. in half spaces) αδ = 2, hence the
statement of 1.1.

Remark 1.7 With similar arguments and constructions, the author and
J. Prajapat in [4] have proved a maximum principle in unbounded domains
of Hn.

2 Proofs

The first part of this section is dedicated to prove the existence of αδ as defined in
the introduction, which is the core of this paper. Then we will state the theorem



Vol. 9, 2003 The Heisenberg group: estimates and Liouville theorems 5

concerning the growths of superharmonic function in cones i.e. the generaliza-
tion to cones of Theorem 1.1. We begin by introducing some notions and some
notations. We will denote by

BH(η, r) = {ξ ∈ R
2n+1 : d(ξ, η) < r} (5)

the Heisenberg ball, also called “Boule de Korànyi”, which will play the role of the
euclidean ball in Hn. Clearly the vector fields Xi, Yi and T are homogeneous with
respect to the distance d(., .) of degree −1, −1, −2, respectively. Therefore, if we
consider in this metric the polar coordinates ρ = d(ξ, 0) and θ the coordinates on
∂BH(0, 1), we can define, see e.g. Jerison in [9], the differential operators on the
unit Heisenberg sphere S1 ≡ ∂BH(0, 1) Rα

i , Sα
i and Z by:

Xi(u(θ)ρα) = Rα
i (u(θ))ρα−1,

Yi(u(θ)ρα) = Sα
i (u(θ))ρα−1,

T (u(θ)ρα) = Z(u(θ))ρα−2.

Of course,
Rα

i = R̂i + αai,

Sα
i = Ŝi + αbi,

Z = Ẑ + αρTρ,

where ai ≡ Xi(ρ), bi ≡ Yi(ρ) and R̂i, Ŝi, Ẑ are vector fields on the Heisenberg
sphere (they are null on constant functions) satisfying [R̂i, Ŝi] = −4Ẑ. We consider
the differential operator Lα defined in the following way:

∆H(u(θ)ρα) = [Lα(u(θ))]ρα−2. (6)

Clearly,

Lα =
n∑

i=1

Rα−1
i Rα

i + Sα−1
i Sα

i

=
n∑

i=1

R̂2
i + Ŝ2

i + (2α− 1)(aiR̂i + biŜi)

+ α(α− 1)(a2
i + b2i ) + α(R̂iai + Ŝibi).

On the other hand, to determine (R̂iai + Ŝibi), we can use the fact that ∆Hρ
2 =

2Q
∑n

i=1(a
2
i + b2i ), and therefore:

2Q
n∑

i=1

(a2
i + b2i ) = L2(1) =

n∑
i=1

2(a2
i + b2i ) + 2(R̂iai + Ŝibi).
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Hence, we obtain
n∑

i=1

(R̂iai + Ŝibi) = (Q− 1)
n∑

i=1

(a2
i + b2i ) (7)

i.e.

Lαu =
n∑

i=1

R̂2
i u+ Ŝ2

i u+ (2α− 1)(aiR̂i + biŜi)u+ α(Q− 2 + α)hu, (8)

where h =
∑n

i=1(a
2
i + b2i ) = x2+y2

ρ2 . We can define the following 2n+ 1 functions
on S1:

φi
1(θ) :=

xi

ρ
, φi

2(θ) :=
yi

ρ
,

φ(θ) :=
t

ρ2 .

Clearly, since
Xi(t) = 2yi and Yi(t) = −2xi,

using the definitions of the vector fields on S1 we obtain

Xi(ρ2φ) = ρ(R̂iφ+ 2aiφ) = 2ρφi
2, Yi(ρ2φ) = ρ(Ŝiφ+ 2biφ) = −2ρφi

1. (9)

Hence,
R̂iφ = −2aiφ+ 2φi

2(θ), Ŝiφ = −2biφ− 2φi
1. (10)

Similarly, it is easy to prove that, since Xi(yi) = 0 and Yi(xi) = 0

R̂iφ
i
2 = −2aiφ

i
2, and Ŝiφ

i
1 = −2biφi

1. (11)

Let us prove the following

Proposition 2.1 There exists δ > 0 such that, for any δ < δ, there exist α =
α(δ) > 0 and uα(φ) ∈ C2 such that v = ραuα(φ) satisfies{

∆Hv = 0 in Dδ := {ξ : t > δ(x2 + y2)},
v > 0 in Dδ, v = 0 on ∂Dδ.

(12)

Proof. Let v(ρ, φ) = ραu(φ) with α and u to be determined. Using (6) and (8),
we get that

∆Hv = ρα−2
n∑

i=1

(R̂2
i u+ Ŝ2

i u+ (2α− 1)(aiR̂i + biŜi)u+ α(Q− 2 + α)hu)

= ρα−2
n∑

i=1

(u′′((R̂iφ)2 + (Ŝiφ)2) + u′((R̂2
i + Ŝ2

i )φ

+ (2α− 1)(aiR̂i + biŜi)φ) + α(Q− 2 + α)hu).
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(10) implies:

n∑
i=1

(aiR̂i + biŜi)φ = −2hφ+ 2
n∑

i=1

aiφ
i
2 − biφ

i
1 = hφ(−2 + 2) = 0. (13)

Again from (10), (11), (7) and from the fact that aiφ
i
2 − biφ

i
1 = φ(a2

i + b2i ) one
gets

n∑
i=1

(R̂2
iφ+ Ŝ2

i φ) = −2Qhφ. (14)

Hence, using (14) and (13), we obtain that v satisfies:

∆Hv = ρα−2(4(1 − φ2)u′′(φ) − 2Qφu′(φ) + α(Q− 2 + α)u(φ)). (15)

In order to prove Proposition 2.1 we have to find a function u that satisfies the
following equation

{
Lαu(φ) = 0, u > 0 for δ√

1+δ2 < φ ≤ 1
u = 0 for φ = δ√

1+δ2 ;

where the operator Lαu(φ) = (1 − φ2)u′′(φ) − 1
2Qφu

′(φ) + 1
4α(Q − 2 + α)u(φ)

is a Jacobi operator (see Jerison [10]). From standard results, the solutions of
Lαu(φ) = 0 are hypergeometric series, precisely:

uα(φ) = F

(
−α

2
,
Q− 2 + α

2
,
Q

4
,
1
2
(1 − φ)

)
. (16)

Let us recall that

F (a, b, c, x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!

where (a)k =
∏k−1

j=0 (a+ j). Observe that uα(1) = 1, hence uα is regular in 1 and
positive in a left neighborhood of 1. We have to check that for each δ ≤ δ there
exists α such that uα( δ

(1+δ2)
1
2
) = 0. Before going ahead, to simplify notations let

us introduce β := −α
2 and x := 1

2 (1 − φ) i.e.:

uα(φ) = F

(
β, n− β,

n+ 2
2

, x

)
≡ G(β, x).
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In terms of G, we have that G(β, 0) = 1 and we want to prove Claim: For each
β ∈ [−1, 0), there exists xβ ∈ [ 12 , 1) such that G(β, x) > 0 for x ∈ [1, xβ) and
G(β, xβ) = 0. First observe that G(−1, x) = 1 − 2x, therefore

x−1 =
1
2
. (17)

Second observation, since

G(β, x) = 1 +
∞∑

k=1

(β)k(n− β)k

(n+2
2 )k

xk

k!
,

it is easy to see that

∂G

∂x
= β

( ∞∑
k=1

(β + 1)k−1(n− β)k

(n+2
2 )k

xk−1

(k − 1)!

)
.

Therefore if −1 < β < 0 then ∂G
∂x < 0 for x > 0. Furthermore limx→1G(β, x) =

−∞, hence there exits 0 < xβ < 1 such that G(β, xβ) = 0. The first part of the
claim is proved. Using the fact that G is monotone decreasing if G(β, 1

2 ) > 0 then
we will know that 1

2 < xβ < 1 which proves the claim. Let us compute G(β, 1
2 ).

It is easy to see that

G

(
β,

1
2

)
= 1 + β

(
n− β

n+ 2

)
+ β

[ ∞∑
k=2

IkJk

]
(18)

where

Ik =
k−1∏
j=0

(
n− β + j

n+ 2j

)

and for k ≥ 3

J2 =
β + 1

2
; Jk = (β + 1)(β + 2)

[
(β + 3) . . . (β + k − 1)

k!

]
.

Clearly for −1 < β < 0, Ik ≤ 1 and for k ≥ 3

Jk ≤ (β + 1)(β + 2) · 1
k(k − 1)

.

Recalling that
+∞∑
k=3

1
k(k − 1)

=
1
2
,
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and using the above inequalities, (18) becomes

G

(
β,

1
2

)
≥ 1 + β + β

(β + 1)
2

+ β(β + 1)(β + 2)
1
2

i.e.

G

(
β,

1
2

)
=

1
2
(1 + β)(2 + 3β + β2) > 0

for −1 < β < 0. This proves the claim. Coming back to uα(φ), we have found
that, for α = 2, u2(φ) = φ and for any 0 < α < 2 there exists a value φα < 0 such
that uα(φα) = 0. Furthermore limα→0 φα = −1 Now that we have defined φα, let
αδ be such that

φα

(1 − φ2
α)

1
2

= δ i.e. φα =
δ

(1 + δ2)
1
2
.

For any δ ≤ 0, 0 < α(δ) ≤ 2 is the required value. We have proved Proposition
2.1 for δ ≤ 0. Now, as mentioned above, we have that G(−1, 1

2 ) = 0 and after
some tedious computation it is easy to see that

∂G

∂β

(
−1,

1
2

)
=

1
4

(
1 +

1
n+ 1

)
− 1

4

∞∑
k=2

k−1∏
j=0

(
(n+ j)

(n+ 2j + 1)

)
1

k(k − 1)
.

Therefore

∞∑
k=2

k−1∏
i=0

(n+ i)
(n+ 2i+ 1)

1
k(k − 1)

≤
∞∑

k=2

1
k(k − 1)

= 1 < 1 +
1

n+ 1
.

We have proved that ∂G
∂β (−1, 1

2 ) > 0 and by the implicit function theorem, there
exist ε > 0 and γ > 0 such that for any β ∈ (−1 − ε,−1 + ε) there exists
x(β) ∈ ( 1

2−γ, 1
2+γ) such thatG(β, x(β)) = 0. Furthermore, since ∂G

∂x (−1, x) = −2
we get that x′(−1) > 0 i.e. x(β) < 1

2 for β ∈ (−1 − ε,−1). Recalling that
φ(x) = 1− 2x, let δ := 2γ√

1−4γ2
. We have just proved that for any 0 < δ < δ there

exists α ∈ (2, 2 + 2ε) such that φα = δ√
1+δ2 satisfies uα(φα) = 0. This completes

the proof of Proposition 2.1.

Theorem 2.2 Suppose ν is a non negative ∆H superharmonic function in Dδ =
{ξ : t ≥ δ(x2 + y2)} with δ ≤ 0 i.e.

ν ≥ 0 and − ∆Hν ≥ 0 ∈ Dδ
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then, if ν is not identically zero, there exists ε > 0 and δ > 0 such that, for any
α ∈ (α(δ), 2 + ε) and any δo ∈ (δ, δ), there exists a constant C such that

ν(ξ) ≥ C|ξ|2−Q−α
H ,

for any ξ ∈ Dδo
such that |ξ|H ≥ 1.

Remark 2.3 Since α(0) = 2, it is clear that the second part of Theorem 1.1 is
just a corollary of Theorem 2.2 with α = 2 + ε.

Remark 2.4 We have stated the theorem only for cones Dδ. Clearly, using the
linear application T defined in Remark 1.2, Theorem 2.2 holds in any cone Cδ =
{ξ : t ≤ δ(x2 + y2)} for δ ≥ 0. Similarly if D is an unbounded domain such that
for some ξo ∈ Hn and δ ∈ R:

ξo ◦D = Dδ (resp.ξo ◦D = Cδ)

then if δ ≤ 0 (resp. ≥ 0), the equivalent lower bound holds true for D.

Proof. Let us choose ε and δ as in Proposition 2.1, hence α(δo) is well defined.
Then there are two possible cases: Case 1: α(δo) ≤ α Case 2: α(δo) > α. Let
us consider Case 1. Let δ′ such that δo > δ′ > δ i.e. Dδo

⊂ Dδ′ ⊂ Dδ. Let
us choose v(ρ, φ) = ρ2−Q−α(δ′)uα(δ′)(φ). Now clearly, from (15), if Lαu = 0 then
L2−Q−αu = 0, hence ∆Hv(ρ, φ) = 0. Let Ω = Dδ′ ∩{|ξ|H = 1} and let us consider

w = ν − τv, where τ =
infΩ ν
supΩ v

. We are in the hypothesis that ν is not identically

zero hence, by the maximum principle, ν > c > 0 in Ω and therefore τ > 0.
Clearly w satisfies {−∆Hw ≥ 0 in Dδ′ ∩ {|ξ|H ≥ 1},

w = u > 0 in ∂Dδ′ ∩ {|ξ|H ≥ 1}
and by definition of τ

w ≥ 0 in Ω.

Furthermore since α ≤ 2 + ε, lim|ξ|H→∞ w ≥ 0. We can apply the maximum
principle and we obtain w ≥ 0 in Dδ′ ∩ {|ξ|H ≥ 1}. We have proved that for
ξ ∈ Dδo ,

ν(ξ) ≥ Cρ2−Q−α(δ′)

where C = τ inf
Dδo

uα, this completes the Case 1. In the Case 2 i.e. α(δo) > α, we

choose δ′ such that α = α(δ′), hence δo > δ′ > δ. Now we can proceed as in the
first case. This completes the proof of Theorem 2.2.

Remark 2.5 By choosing v = ρ2−Q and repeating the above argument, we obtain
the first part of Theorem 1.1.
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Again, since we have defined α(δ) for “intrinsic cones”, we will state and prove a
more general version of Theorem 1.6.

Theorem 2.6 If 2m ≥ Q + α(δ) then the only non negative ∆H polyharmonic
function in Dδ are constants.

Here again the second claim of Theorem 1.6, is just Theorem 2.6 with δ = 0 and
α0 = 2. While the first claim is proved exactly as Theorem 2.6, using the fact
that superharmonic functions in Hn satisfy (3). Before proving Theorem 2.6, let
us introduce the notion of “radialized” function in Dδ, precisely we will consider
the weighted spherical mean. Suppose ν is a function locally measurable in Dδ,
ρ := |ξ|H then we will call

ν#(ρ) :=
∫

Dδ∩S1

ν(ρ, θ)uα(δ)(θ)h(θ)dθ,

where uα(δ) is defined in Lemma 2.1. In the euclidean setting analogous functions
have been considered to prove Liouville theorems for semi-linear equations in
cones, see e.g. [3], [13]. We will prove now the following proposition, which is the
generalization to cones of Proposition 1.4.

Proposition 2.7 Suppose ν is a non negative ∆H superharmonic function in Dδ

then there exists C > 0 such that

ν#(ρ) ≥ Cρ2−Q−α(δ)

for any ρ > 1.

To prove this result we will use the following

Lemma 2.8 For M ≤ 0, suppose ν is a regular solution of

−∆Hν(ξ) = f(ξ) in Dδ, (19)

then the following equality holds true

−(ρQ−1+2αδ(ρ−αδν#(ρ))′)′ = ρQ−1+αδ

∫
Dδ∩S1

f(ρ, θ)uαδ
(θ)dθ, (20)

where uαδ
is defined in (16).

Proof of Lemma 2.8. Suppose Ω is a regular subset of S1, then for u and v in C1

and v = 0 on the boundary of Ω, following Jerison in [9] (proof of Proposition 3.1),
it is easy to see that:∫

Ω
R̂iuvdθ = −

∫
Ω
uR̂ivdθ + (Q− 1)

∫
Ω
uvaidθ, (21)
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and similarly for Ŝi. On the other hand from the definitions of ∆H , R̂i and Ŝ1 it
is easy to see that

∆Hv = h

(
∂2v

∂ρ2 +
Q− 1
ρ

∂v

∂ρ

)
+

2
ρ

n∑
i=1

(aiR̂i + biŜi)
∂v

∂ρ

+
1
ρ2

(
n∑

i=1

R̂2
i v + Ŝ2

i v − (aiR̂iv + biŜiv)

)
.

Using (21), after a long but easy computation, we obtain for any ν ∈ C2 and any
v ∈ C2 independent of ρ such that v = 0 on the boundary of Ω∫

Ω
∆Hνvdθ =

[∫
Ω
νvhdθ

]
ρρ

+
Q− 1
ρ

[∫
Ω
νvhdθ

]
ρ

+ − 2
ρ

[∫
Ω
ν

n∑
i=1

(aiR̂iv + biŜiv)hdθ

]
ρ

+
1
ρ2

(∫
Ω
ν

n∑
i=1

R̂2
i v + Ŝ2

i v − (4n+ 1)(aiR̂iv + biŜiv)

)
.

Clearly, from what we have seen above,
n∑

i=1

(aiR̂iuαδ
(φ) + biŜiuαδ

(φ)) = 0. So, in

particular, if ν is a solution of (19) and v = uαδ
and Ω = Dδ ∩ S1, we obtain∫

Ω
∆Hνuαδ

dθ =
∂2ν#
∂ρ2 +

Q− 1
ρ

∂ν#
∂ρ

+
1
ρ2

(∫
Ω
ν((1 − φ2)u′′

αδ
(φ) − 1

2
Qu′

αδ
(φ))4hdθ

)
.

Finally, since uαδ
is a solution of Lαδ

uαδ
= 0, we have∫

Dδ∩S1

f(ρ, θ)uαδ
dθ =

∂2ν#
∂ρ2 +

Q− 1
ρ

∂ν#
∂ρ

− αδ(αδ +Q− 2)
ρ2 ν#. (22)

Let us recall the simple observation that for any a, b ∈ R

ρb−a
(
ρa(ρ−bν#)′)′ = ν′′

# +
(a− 2b)

r
ν′
# +

b(b+ 1 − a)
r2

ν#. (23)

Then (20) is a consequence of (22) and (23) where we have chosen b = αδ and
a = Q− 1+2αδ. Proof of Proposition 2.7. We are in the hypotheses that ν is not
identically zero, hence in Dδ it is positive. From Lemma 2.8 if ν is a positive ∆H

superharmonic function in Dδ then

−(ρQ−2+2αδ(ρ−αδν#)′)′ ≥ 0. (24)
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Let us state now the following simple fact, see [5] Lemma 2.1: if v is a non
negative solution of (rav′)′ ≤ 0 in (R,+∞) for some R ≥ 0 and for some a > 1
and v′(R) ≤ 0 then

then v′(r) ≤ 0 and rv′(r) + (a− 1)v(r) ≥ 0 ∀r ≥ R. (25)

Therefore in particular (25) holds true for v(ρ) := ρ−αδν#(ρ). Let us integrate
(24) and use (25), we obtain for ρ2 ≥ ρ1:

(Q− 2 + 2αδ)ρ
Q−2+2αδ

2 (ρ−αδ
2 ν#(ρ2)

≥ −ρQ−1+2αδ

2 (ρ−αδ
2 ν#(ρ2))′ ≥ −ρQ−1+2αδ

1 (ρ−αδ
1 ν#(ρ1))′ := C

We have proved that for ρ ≥ 1 there exists C > 0 such that

ν#(ρ) ≥ Cρ2−Q−αδ .

End of Proposition 2.7’s proof. Proof of Theorem 1.6. We argue by contradiction.

Let ν be a positive function satisfying (4). Let us call (u0, u1, . . . , um−1) the vector
of functions defined by

u0 = ν, −∆u0 = u1, −∆u1 = u2, . . . , −∆um−1 ≥ 0inDδ. (26)

Applying Lemma 2.8 to (26) we obtain

−(ρQ−1+2αδ(ρ−αδui#)′)′ ≥ ρQ−1+αδui+1#(ρ). (27)

for i = 0, . . . ,m−2 and −(ρQ−1+2αδ(ρ−αδum−1#)′)′ ≥ 0. Let vi(ρ) = ρ−αδui#(ρ).
Clearly from (25), the functions vi are decreasing for i = 0, . . . ,m− 1. Therefore
the following limit exists and is finite:

lim
ρ→∞ vi(ρ) = v∞,i ≥ 0.

In particular it follows that, for i = 0 . . .m− 2:

−(ρQ−1+2αδ(vi(ρ) − v∞,i)′)′ ≥ ρQ−1+2αδvi+1(ρ)

Therefore using (25), the fact that vi are decreasing and reasoning as in the proof
of Proposition 2.7 we obtain:

vi(ρ) − v∞,i ≥ Cρ2vi+1(ρ).

It follows that for ρ > 0,

vo(ρ) − v∞,o ≥ Cρ2(m−1)vm−1(ρ).
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Applying proposition 2.7 we know that for some positive constant C

vm−1(ρ) ≥ Cρ2−Q−2αδ .

Hence
vo(ρ) − v∞,o ≥ Cρ2m−Q−2αδ . (28)

We have reached a contradiction since by assumption 2m ≥ Q+2αδ while the left
hand side of (28) goes to zero.

Acknowledgment I would like to thank Thierry Paul and Francesco Uguz-
zoni for very useful conversations. The main proofs of this paper were completed
while the author was visitng the University of Cergy Pontoise with a Bourse de
longue durée hence she would like to thank the Laboratoire for its kind hospitality.
A preliminary version of these results appeared in a preprint of that same
Laboratoire.

References

[1] I. BIRINDELLI, I. CAPUZZO DOLCETTA, A. CUTRI, Liouville
theorems for semilinear equations on the Heisenberg group, Annales de
l’I.H.P.-Analyse non linéaire, 14 (1997), 295–308.
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