
DOI: 10.1007/s00526-003-0194-0

Calc. Var. 18, 357–372 (2003) Calculus of Variations

I. Birindelli · E. Lanconelli

A negative answer to a one-dimensional symmetry

problem in the Heisenberg group

Received: 25 November 2002 / Accepted: 7 January 2003 /
Published online: 6 June 2003 – c© Springer-Verlag 2003

1 Introduction and main Results

Symmetry properties of solutions to semi-linear elliptic equations have been widely

studied in the last decades. In this contest, a long standing conjecture by De Giorgi

states that any global solution to the Ginzburg-Landau equation

∆u+ u(1 − u2) = 0 in R
N (N ≤ 8) (1.1)

satisfying −1 ≤ u ≤ 1 and ∂u
∂xN

> 0 is constant along hyper-planes. Recently this

conjecture was proved to be true by Ghoussoub and Gui for N = 2 ([18]) and by

Ambrosio and Cabré forN = 3 ([3]). It is still an open question forN > 3 though

Alberti, Ambrosio and Cabré generalized the result for anyC2 non-linearity (when

N ≤ 3) [1].

Under the further hypothesis that the solution u satisfies

lim
x3→±∞

u(x′, x3) = ±1 ∀x′ ∈ R
2

the proof that u is constant along hyper-planes given in [3] is somehow simpler. On

the other hand, under the hypothesis that this limit is uniform in x′, the conjecture

was known as Gibbons conjecture and it has been proved for all dimensions inde-

pendently by Barlow, Bass, Gui in [4], Berestycki, Hamel , Monneau in [5] and

Farina in [12].

In recent years symmetry and monotonicity properties of solutions to semilinear

equations have been investigated in the more general contest of the Carnot groups,

see [7, 8, 9], [2,6] and [15]. The interest in semi-linear equations in these groups

has increased as they appear in many theoretical and application fields, such as

complex geometry and mathematical models for crystal structures [11].

In [8] Prajapat and the first author studied Gibbons conjecture for the equation

∆Hnu+ f(u) = 0 in H
n, (1.2)
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where ∆Hn denotes the Kohn-Laplacian on the Heisenberg group H
n and f(u) is

a non linear term with some general hypothesis (in particular they include the case

f(u) = u(1 − u2)). They prove that the conjecture holds true for all directions

orthogonal to the center of H
n. 1 The question of whether the result holds true in

the remaining direction was raised in [8].

The aim of this paper is to prove that, with respect to the center direction of H
n,

the stronger De Giorgi conjecture is not true for the equation (1.2). This negative

answer will easily follow from next Theorem 1.1, the main result of this note.

In order to clearly state our theorem, we need to recall some known facts about

the Heisenberg space H
n and its intrinsic Laplacian ∆Hn .

First of all let us say that H
n is the Lie group whose underlying manifold is

C
n × R, n ∈ N , endowed with the group action ◦ given by

ξo ◦ ξ = (z + zo, t+ to + 2Im(z · zo)). (1.3)

Here and in the rest of the paper we identify C
n with R

2n and, setting z = x+ iy,

for the points of H
n we use the equivalent notations ξ = (z, t) = (x, y, t) ∈

R
n × R

n × R with z := (z1, . . . , zn) = (x1, y1, . . . , xn, yn). Furthermore, “ · ”

denotes the usual inner product in C
n.

The Lie Algebra of left invariant vector fields is generated by

Xi = ∂
∂xi

+ 2yi
∂
∂t
, for i = 1, . . . , n,

Yi = ∂
∂yi

− 2xi
∂
∂t
, for i = 1, . . . , n.

The intrinsic Laplacian of H
n, also called the Kohn Laplacian, is defined as

∆Hn =

n
∑

i=1

(X2
i + Y 2

i ).

It is a second order degenerate elliptic operator of Hormander type and hence it is

hypoelliptic (see e.g. [13] or [19] for more details about ∆Hn ).

With respect to the group dilation δλξ = (λz, λ2t), ∆Hn is homogeneous of

degree two in the following sense

∆Hn ◦ δλ = λ2δλ ◦∆Hn .

The Koranyi ball of center ξo and radius R is defined by

BHn(ξo, R) := {ξ such that |ξ−1 ◦ ξo|Hn ≤ R}

where

|ξ|Hn =
(

|z|4 + t2
)

1

4

is a norm with respect to the group dilation and it satisfies

|BHn(ξo, R)| = |BHn(0, R)| = CRQ

1 Very recently, in [6], the results of [8] have been extended to every sub-Laplacian on a
Carnot group.
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where Q = 2n+ 2 is the homogeneous dimension of H
n.

A fundamental solution of −∆Hn with pole at the origin is given by:

Γ (ξ) =
CQ

(|ξ|Hn)Q−2

where CQ is a positive constant.

For our purposes it is convenient to remind that the class of cylindrically sym-

metric functions is invariant with respect to the action of ∆Hn . We shall say that a

function (z, t) → u(z, t) is cylindrically symmetric if there exist a two variables

function U such that u(z, t) = U(r, t), r = |z|.
In that case we formally have that

∆Hnu(z, t) = ∂rrU +
2n− 1

r
∂rU + 4r2∂ttU.

The main result of this paper is the following:

Theorem 1.1 Let f : R → R be a locally Lipschitz continuous function satisfying

the hypotheses listed below:

(H1) f is odd,

(H2) f > 0 in ]0, 1[, f(0) = f(1) = 0,

(H3) lim
s→0

f(s)

s
= l > 0.

Then there exists a solution u to the equation:

∆Hnu+ f(u) = 0 in R
2n+1 (1.4)

satisfying |u| < 1, ∂u
∂t
> 0 and

lim
t→±∞

u(z, t) = ±1.

Moreover u is cylindrically symmetric and of class C∞ when f is C∞.

For solution u of (1.4) we mean a continuous function u such that:

1. For a suitable α > 0, u ∈ Λ2+α
loc (Hn) i.e. X2

j u and Y 2
j u, j = 1, · · · , n, exist in

the weak sense of distributions and belong to Λα
loc(H

n)
2. u satisfies (1.4) pointwise everywhere.

As in [13] we have denoted byΛα
loc(H

n) the class of functions which are locally

α-Holder continuous with respect to the intrinsic distance d in H
n defined by

d(ξ, ξ′) = |(ξ′)−1 ◦ ξ|Hn .

Using the commutators of the Lie Algebra, it is easy to see that Λ2+α
loc (Hn) is

continuously embedded in the usual C
1+ α

2

loc (R2n+1).

From Theorem 1.1 we immediately get the following corollary.

Corollary 1.1 De Giorgi’s conjecture in the t-direction is not true in H
n.
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Proof The function f(s) = s(1 − s2) satisfies all hypotheses of Theorem 1.1,

hence there exists a C∞ function u such that










∆Hnu+ u(1 − u2) = 0 in R
2n+1,

−1 < u < 1, ∂u
∂t
> 0,

lim
t→±∞

u(z, t) = ±1.

Then, if De Giorgi conjecture were true in the t direction there would existα ∈ R
2n

and ν > 0 such that u(z, t) = U(α · z + tν) for some function U : R → R.

Furthermore U would satisfy

(

|α|2 − 4ν(Jα · z) + 4r2ν2
)

U ′′ = U(U2 − 1)

where J is the classical symplectic 2n × 2n matrix. This is a contradiction since

the right hand side is constant along the hyperplanes α · z + tν = c for any c ∈ R

while the left hand side is not. ��

It is well known that De Giorgi’s conjecture has been sometimes referred to

as the ε version of Bernstein Theorem. The reason being that if u is a solution

of equation (1.1) then the rescaled energy of the blow-down of u Γ -converges

to the perimeter functional and in particular the rescaled u, L1 converges to the

characteristic function of a set E (see [20]).

Alberti, Ambrosio and Cabre’ in [1] have made rigorous this statement proving

that the limit set has minimal local perimeter. Hence by Bernstein’s theorem in

dimension N ≤ 8 it is a half-space. This is allegedly the reason why one expects

the level sets of u to be minimal.

In the last section we prove that the solution constructed in Theorem 1.1 is a

counter-example to the fact that these two properties are related.

Indeed in Proposition 3.3 we prove, using some results of Monti and Serra-

Cassano [21] and an energy estimate, that the blow-down of the solution u con-

structed in Theorem 1.1. converges to the characteristic function of a set F with

minimal perimeter (see [14] for the definition of perimeter in H
n). In fact this is

proved for any solution of (1.4) which is H
n-monotone (see the last section for the

definition).

On the other hand, the level sets of u are not of minimal perimeter since, as

shown in Proposition 3.4, there are regular graphs of minimal perimeter that are

defined in the whole space and that have cylindrical symmetry different from the

hyper-planes t = c.

Remark 1.1 It would be interesting to know whether the function constructed in

Theorem 1.1 has uniform limit with respect to z.

Remark 1.2 It is natural to consider the extension of Theorem 1.1 to the context of

Carnot groups. This will be the object of a subsequent study.

Remark 1.3 In [10] Caffarelli, Garofalo e Segala proved among other things the

following result. Let u be a classical solution to the semilinear Poisson equation

∆u = f(u) in R
n
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and assume F (u(x)) > 0, ∀x ∈ R
n, when F is an anti-derivative of f . Then if u

also satisfies the “Modica-Mortola equation”:

1

2
|∇u|2 = F (u) in R

n,

the level sets of u are hyper-planes.

A similar result holds in the Heisenberg setting too. However, the solutions to

the corresponding system of equations

∆Hnu = f(u),
1

2
|∇Hnu|2 = F (u) (1.5)

do have one-dimensional character only in directions orthogonal to the center of

the group. This result easily follows using the argument in [10] together with a

Liouville theorem in H
n.

Indeed, let u be a solution to the system (1.5) where F is an antiderivative of f
such that F (u(ξ)) > 0 ∀ξ ∈ H

n. Following [10], define

v(ξ) = H(u(ξ)) :=

∫ u(ξ)

u(0)

F (s)
1

2 ds. (1.6)

An easy computation shows that

|∇Hnv| = 1, ∆Hnv = 0. (1.7)

Then by a Liouville type theorem given in [17] one obtains that v is a polynome

of degree one with respect to δλ and therefore

v(z, t) = α · z + γ

for suitable α ∈ R
2n and γ ∈ R. Thus, by (1.6),

u(z, t) = H−1(α · z + γ)

i.e. we have obtained that the level sets of u are hyper planes parallel to the center

of the group as claimed.

Acknowledgement. We would like to thank Luigi Ambrosio for some fruitful con-

versations, specially concerning the connection between De Giorgi’s conjecture

and the minimal perimeter problem.

2 Proof of Theorem 1.1

For any R > 0 we shall denote by DR and D+
R respectively the cylinders

DR = {(z, t) ∈ R
2n+1; |z| < R, |t| < R2}

and

D+
R = {(z, t) ∈ R

2n+1; |z| < R, 0 < t < R2}.

Let ψ(t) = t
R2 .
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We shall split the proof in several steps.

First step. The semilinear Dirichlet problem

{

∆Hnu = −f(u) in D+
R ,

u(r, t) = ψ(t), on ∂D+
R .

(2.8)

has a solution u ∈ Λ2+α
loc (D+

R) ∩ Λα(D+
R) for a suitable α ∈ (0, 1). Furthermore

u is cylindrically symmetric, 0 ≤ u ≤ 1 and for any R sufficiently large,

u ≥ vo

for some function vo ≥ 0, vo �≡ 0, vo independent of R.

LetM ∈ R
+ be larger than the Lipschitz constant of f in [0, 1] and let us define

g : R → R, g(s) = f(s) +Ms.

Let T be the map formally defined by T (v) = u where u is the only solution to

the Dirichlet problem

{

∆Hnu−Mu = −g(v) in D+
R ,

u = ψ, on ∂D+
R .

(2.9)

The operator T has the following properties:

(P1) There exists α ∈ (0, 1) such that T is well defined in Λα(D+
R). Furthermore

|u(ξ) − u(ξ′)| ≤ Cd(ξ′, ξ)α(1 + sup |g(v)|) (2.10)

for any ξ, ξ′ ∈ D+
R . We also have that T (v) ∈ Λ2+α

loc (D+
R) for every v ∈ Λα(D+

R).
This statement can be proved by using standard arguments and the results in

[13,19] (see also [16, Theorem 4.1]).

(P2) T (v) is cylindrically symmetric if v is cylindrically symmetric.

Indeed suppose that u = T (v). Let S be a unitary rotation in C
n and de-

fine uS(z, t) := u(Sz, t). Since ∆Hn is invariant with respect to S , we have

∆HnuS(z, t) = ∆Hnu(Sz, t), so that uS is a solution of

{

∆HnuS −MuS = −g(v(Sz, t)) = −g(v) in D+
R ,

uS = ψ, on ∂D+
R .

Here we have used the invariance with respect to S of v, ψ and D+
R .

By the maximum principle we know that the solution of (2.9) is unique, hence

u = uS for any S , i.e. u is a function of (|z1|, |z2|, . . . , |zn|, t). Then for such

functions it is easy to see that ∆Hnu = Gu := ∆zu+ 4|z|2∂ttu and u solves

{

Gu−Mu = −g(v) in D+
R ,

u = ψ, on ∂D+
R .

Now the operatorG is invariant with respect to real rotations around the t axis and it

satisfies the maximum principle onD+
R . Then, arguing as above, we can prove that
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u(Rz, t) = u(z, t) for every rotation R in R
2n. This prove that u is cylindrically

symmetric.

(P3) T is monotone. More precisely if v1, v2 ∈ Λα(D+
R) and 0 ≤ v1 ≤ v2 ≤ 1,

then T v1 ≤ T v2.

Let us observe that with our choice of M if 0 ≤ v1 ≤ v2 then g(v1) ≤ g(v2).
Hence (P3) follows from the maximum principle for −∆Hn +M in D+

R .

(P4) If v ∈ Λα(D+
R) and 0 ≤ v ≤ 1 then 0 ≤ T (v) ≤ 1.

Indeed, since g(0) = 0, g(1) = M and 0 ≤ ψ ≤ 1 on ∂D+
R , again by the

maximum principle we obtain that T (1) ≤ 1 and T (0) ≥ 0. Now we only need to

apply property (P3) for v ∈ Λα(D+
R) such that 0 ≤ v ≤ 1.

We shall now construct a function vo ≥ 0 that plays the role of a lower barrier.

Let λo denote the principal eigenvalue of −∆Hn in D+
R and let φo > 0 be the

corresponding eigenfunction normalized by supφo = 1.

We choose and fix Ro sufficiently large that

λo ≤
l

2

where l is the limit in condition (H3). Then there exists ε ∈ (0, 1) independent of

R such that

λoεφo ≤ f(εφo).

By uniqueness of the normalized eigenfunction φo, arguing as in the proof of

(P2) we can prove that φo is cylindrically symmetric.

From now on we assume that R > Ro. Let us define

vo =

{

εφo in D+
Ro

0 in D+
R \D+

Ro
.

Standard arguments show that vo is locally Holder continuous in R
2n+1, (see e.g.

[16, Theorem 4.1], we stress that condition (4.4) in that theorem is satisfied since

D+
R is convex).

As a consequence T (vo) is well defined and since 0 ≤ vo ≤ 1 using (P4) we

get that 0 ≤ T (vo) ≤ 1. Let us now prove that vo ≤ uo := T (vo). Clearly the

inequality holds in D+
R \D+

Ro
, using (P4), hence we just have to prove it in D+

Ro
.

We have

∆Hnuo −Muo = −g(vo) = −g(εφo) ≤ −(M + λo)(εφo)

= −Mεφo +∆Hnεφo = −Mvo +∆Hnvo,

so that
{

∆Hn(uo − vo) −M(uo − vo) ≤ 0 in D+
Ro

uo ≥ vo on ∂D+
Ro
.

The maximum principle implies that uo ≥ vo in D+
Ro

.
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Now we construct the sequence of functions

vk = T k(vo), k ∈ IN.

Clearly using the properties above, all vk are cylindrically symmetric and

1 ≥ T k(vo) ≥ T (vo) ≥ vo ≥ 0 for every k ∈ IN.

Let us denote by u the pointwise limit of (vk). Then u is cylindrically symmetric ,

vo ≤ u ≤ 1, u ∈ Λα(D+
R) since, by (2.10)

|vk(ξ) − vk(ξ′)| ≤ Cd(ξ′, ξ)α

where C > 0 is independent of R. This estimate implies that the vk uniformly

converges to u in D+
R , so that u = ψ on ∂D+

R .

Furthermore in the weak sense of distributions, u satisfies

∆Hnu+ f(u) = 0 in D+
R . (2.11)

From (2.11), the Holder regularity of u and standard bootstrap argument we obtain

that u ∈ Λ2+α
loc (D+

R) and it satisfies the equation pointwise. Hence u is the required

function.

Remark 2.1 Since u is cylindrically symmetric we have that u(z, t) = U(|z|, t) and

U satisfies the semi-linear elliptic equation

∂rrU +
2n− 1

r
∂rU + 4r2∂ttU + f(U) = 0

in the open subset of R
2

ΩR := {(r, t) ∈ R
2/ 0 < r < R, 0 < t < R2}.

Moreover U is locally α
2 -Holder continuous, in the usual sense, up to ∂ΩR \

{(0, t)/ 0 < t < R2}. Then, being U(r, 0) = 0 when 0 < r < R, by classical

regularity results for elliptic equations,U is of classC
2+ α

2

loc up toΩR ∪{(r, 0)/ 0 <
r < R}.

Second step. The function constructed in the first step satisfies ∂u
∂t
> 0.

In [9] the following definition and theorem are given:

Definition 2.1 Fix η ∈ H
n. A domain Ω ⊂ H is said to be η-convex (or convex in

the direction η) if for any ξ1 ∈ Ω and any ξ2 ∈ Ω such that ξ2 = αη ◦ ξ1 for some

α > 0, we have sη ◦ ξ1 ∈ Ω for every s ∈ (0, α).
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Theorem 2.1 LetΩ be an arbitrary bounded domain of H
n which is η- convex for

some η ∈ H . Let u ∈ Λ2(Ω) ∩ C(Ω̄) be a solution of

∆Hnu+ f(u) = 0 in Ω
u = ψ on ∂Ω

}

(2.12)

where f is a Lipschitz continuous function. Assume that for any ξ1, ξ2 ∈ ∂Ω, such

that ξ2 = αη ◦ ξ1 for some α > 0, we have for each s ∈ (0, α)

ψ(ξ1) < u(sη ◦ ξ1) < ψ(ξ2) sη ◦ ξ1 ∈ Ω (2.13)

and

ψ(ξ1) < ψ(sη ◦ ξ1) < ψ(ξ2) if sη ◦ ξ1 ∈ ∂Ω (2.14)

Then u satisfies

u(s1η ◦ ξ) < u(sη ◦ ξ) (2.15)

for any 0 < s1 < s < α and for every ξ ∈ Ω.

Moreover, u is the unique solution of (2.12) inΛ2(Ω)∩C(Ω̄) satisfying (2.13).

Let us choose η = (0, 1), clearly D+
R is η-convex since:

sη ◦ ξ = (z, t+ s).

Furthermore 0 = ψ(0) ≤ u(z, t) ≤ ψ(1) = 1 and by construction ψ satisfies

(2.14). Hence we are in the hypothesis of Theorem 2.1 and u satisfies

u(z, t1) ≤ u(z, t2) for any 0 ≤ t1 ≤ t2 ≤ 1

in D+
R .

In particular we get ∂u
∂t

≥ 0.

Now since ∂
∂t

commutes with ∆Hn and f is Lipschitz continuous then the

inequality is strict, just by using the strong Maximum principle.

Third step. We extend to DR the function u of the previous step by setting

v(z, t) =

{

u(z, t) for t ≥ 0
−u(z,−t) for t ≤ 0.

Obviously v is cylindrically symmetric, −1 ≤ v ≤ 1, v ≥ vo inD+
R , v ∈ C

α

2 (DR)
and v = ψ on ∂DR. We want to prove that v satisfies

∆Hnv + f(v) = 0 in DR. (2.16)

Since f is odd, using the fact that v is odd and cylindrically symmetric it is easy to

see that v satisfies (2.16) in DR \ {t = 0}.

By Remark 2.1 at the end of the first step, we now obtain that v ∈ C2+ α

2 (DR \
{(0, 0)}) and it solves (2.16) in the same open set. Hence we just have to remove

the singularity at the origin. Let us define

w(ξ) = −

∫

DR

Γ ((ξ′)−1 ◦ ξ)f(v(ξ′))dξ′,
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whereΓ (z, t) is the fundamental solution recalled in the Introduction. Since f(v) ∈

C
α

2 (DR) and C
α

2

loc(DR) ⊂ Λ
α

2

loc(DR), then w ∈ Λ
2+ α

2

loc (DR) and satisfies

∆Hnw = f(v) in DR.

Hence

∆Hn(v + w) = 0 in DR \ {(0, 0)}.

On the other hand v + w ∈ L∞(DR). Then there exists a C∞-function h, ∆Hn

harmonic in DR such that

h = v + w in DR \ {(0, 0)}.

It follows that v solves (2.16) everywhere in DR.

This ends the third step. We shall denote uR(z, t) = v(z, t) the function con-

structed above.

Fourth step. We let R tend to infinity and obtain a global solution.

Since the functions uR are equi-bounded and solutions of (2.8) in DR, then

∆HnuR are also equi-bounded and by standard arguments, if necessary passing to

a subsequence, the uR’s locally uniformly converge to u, weak solution of

∆Hnu+ f(u) = 0 in R
2n+1. (2.17)

Furthermore

1) u is cylindrically symmetric,

2) −1 ≤ u ≤ 1,

3) u(z, t) = −u(z,−t),
4) for t ≥ 0, u(z, t) ≥ vo(z, t),
5) t �→ u(z, t) is monotone increasing.

Since f is locally Lipschitz continuous and |u| ≤ 1, it follows from (2.17) that

u ∈ Λ2+α
loc (Hn) for every α < 1. Obviously, the more regular f is, the more regular

u is; in particular u is of class C∞ when f is C∞.

Moreover, property 5) implies ∂u
∂t

≥ 0 so that, since ∂
∂t

commutes with ∆Hn ,

by the strong maximum principle either ∂u
∂t
> 0 or ∂u

∂t
≡ 0. But by 3) and 4) this

second possibility is absurd hence ∂u
∂t
> 0 .

Last step. We want to prove that

lim
t→±∞

u(z, t) = ±1.

We shall consider only the limit in +∞ since the other case follows similarly.

Let us denote uo(z) := lim
t→+∞

u(z, t). Since u is bounded and monotone in t the

limit is well defined and 0 < uo(z) ≤ 1. We want to prove that uo(z) ≡ 1.

By standard arguments (multiplying equation (2.17) by a sequence of functions

ψk(z, t) = φ(z)φk(t) where φ has compact support and suppφk =]k, k + 1[ and
∫

φkdt = 1 and letting k go to infinity) it easy to see that uo is a weak solution of

∆uo + f(uo) = 0 in R
2n.
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Clearly a bootstrap argument shows that uo is a classical solution. Moreover

uo(z) = Uo(r) with r = |z| for some function Uo solution of

U ′′
o (r) +

2n− 1

r
U ′

o(r) + f(Uo(r)) = 0, (2.18)

U ′
o(0) = 0 (2.19)

The Cauchy problem for (2.18) with initial conditions Uo(0) = 1 and U ′
o(0) = 0

has a unique solution (see e.g. [23]). Thus, since f(1) = 0, if Uo(0) = 1 then

Uo ≡ 1 and we are done. Suppose, by contradiction, that Uo(0) < 1.

It is easy to see that U ′
o < 0. Indeed integrating (2.18) one obtains:

r2n−1U ′
o(r) = −

∫ r

0

ρ2n−1f(Uo(ρ))dρ < 0, (2.20)

henceUo is strictly decreasing and has a finite non–negative limit as r → ∞. More

precisely lim
r→+∞

Uo(r) = 0. Indeed otherwise Uo(r) → k > 0 and f(Uo(r)) →

f(k) > 0 (by (H2)). This, together with (2.20) implies that |U ′
o(r)| → ∞, which is

absurd since Uo is bounded. Using hypothesis (H3) on f we obtain that for r large

Uo satisfies

U ′′
o (r) +

2n− 1

r
U ′

o(r) +K(r)Uo(r) = 0

with K(r) = f(Uo(r))
Uo(r) → l > 0.

Using the substitution Vo(r) = r
2n−1

2 Uo(r) we obtain that Vo satisfies

V ′′(r) +H(r)V (r) = 0

with H(r) = 2n−1
2 (1 − N−1

2 ) 1
r2 +K(r). Comparing with

U ′′(r) +
l

2
U(r) = 0

we obtain that Vo i.e. Uo has infinite zeros in a neighborhood of infinity, which is

absurd. This conclude the last step and the proof.

3 Minimal surfaces

The energy estimates given in this section are inspired by the work of Alberti,

Ambrosio and Cabré [1]. The novelty reside in the fact of defining the right “mono-

tonicity” condition, since the vector fields Xi and Yi don’t commute with one

another or with the classical ∂
∂xi

.

We need to introduce other vector fields that will play a crucial role i.e. the

right-invariant vector fields:

X̃i = ∂
∂xi

− 2yi
∂
∂t
, for i = 1, . . . , n,

Ỹi = ∂
∂yi

+ 2xi
∂
∂t
, for i = 1, . . . , n.
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They are obtained through the left action of ◦ e.g. for X̃1 let e1 = (1, 0, . . . , 0)
then:

X̃1u(ξ) = lim
h→0

u(he1 ◦ ξ) − u(ξ)

h

hence they commute with left-invariant vector fields and therefore with ∆Hn .

Similarly to the Euclidean case (see [1]) we want to prove three propositions

in the hypothesis that u is “monotone”, concerning the minimality of the Energy

functional.

Definition 3.1 We will say that u is H
n-monotone if either X̃iu > 0 for one of the

indices 1 ≤ i ≤ n or similarly for Ỹiu > 0 or ∂tu > 0.

Finally let F be a primitive of −f i.e. let us suppose that u is a solution of

∆Hnu− F ′(u) = 0 in H
n. (3.21)

In all this section we suppose that F ∈ C2 Then we define

E(u) =

∫

Hn

1

2
|∇Hnu|2 + F (u)dx.

Remark. If u is an H
n-monotone bounded solution of (3.21) than u is a stable

solution i.e. the second variation of E at u is semi-positive definite.

Indeed suppose that e.g. u satisfies X̃1u > 0. It is enough to remark that since

the right-invariant vector fields commute with ∆Hn the function φ = X̃1u is a

positive solution of the linearized equation

∆Hnφ = F ′′(u)φ.

Second we want to see that local minimality holds true for H
n-monotone

bounded solutions. Without loss of generality we shall suppose that X̃1u > 0.
We will denote by ξ+ = lim

s→+∞
se1 ◦ ξ , ξ− = lim

s→−∞
se1 ◦ ξ and

ū(ξ+) = lim
s→+∞

u(se1 ◦ ξ)

and similarly for u(ξ−).

Proposition 3.1 Let u be a bounded solution of (3.21) such that X̃1u > 0. Let Ω
be any bounded domain of H

n then

E(u,Ω) :=

∫

Ω

1

2
|∇Hnu|2 + F (u)dx ≤

∫

Ω

1

2
|∇Hnv|2 + F (v)

for any v ∈ C1(Ω) such that u = v on ∂Ω and satisfying u(ξ−) ≤ v(ξ) ≤ ū(ξ+)
in Ω.
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Proof The proof is very similar to the one give in [1] and we give a sketch of it for

completeness sake. It will be enough to prove the minimality when v is as in the

proposition and satisfies

u(ξ−) < v(ξ) < ū(ξ+).

Let us callA the set of such functions. Furthermore we define τ(ξ, s) to be the real

number τ such that uτ (ξ) := u(τe1 ◦ ξ) = s.
And finally we define

F(v) :=

∫

Ω

∇Hnuτ · ∇Hnv −
1

2
|∇Hnuτ |2 + F (v)dx.

for τ = τ(ξ, v(ξ)).

Claim: F is constant on A.

In order to do this we introduce the following 2n+1-dimensional vector function

φ = (φξ, φs)

φξ(ξ, s) = ∇Hnuτ

φs(ξ, s) =
1

2
|∇Hnuτ |2 − F (s)

It is easy to see that since ∇Hn commutes with the left action and hence with ∂
∂τ

,

we have ∂X1uτ

∂τ
= X1

∂uτ

∂τ
. Furthermore it is immediate that

X̃1u
τX1τ +X1u

τ = 0, X̃1u
τ ∂τ

∂s
= 1.

And hence

divH,sφ := ∇Hn · φξ + ∂sφ
s = ∆Hnuτ − F ′(s) = 0.

If we call wσ = v+σ(w− v) with w and v inA, we just need to observe that with

w − v = 0 on ∂Ω integrating by part one gets

∂σF(wσ) =

∫

Ω

φξ∇Hn(w − v) + ∂sφ
ξ∇Hnv(w − v) −

∫

Ω

∂sφ
s(w − v)

= −

∫

Ω

divHn,sφ(w − v) = 0.

and this concludes the claim.

By construction F(u) = E(u,Ω) and F(w) ≤ E(w,Ω). Hence, for w in A:

E(u,Ω) = F(u) = F(w) ≤ E(w,Ω).

This concludes the proof. ��

The next Proposition gives a bound of the energy in the Korany ball BR.
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Proposition 3.2 Let u be a bounded and H
n-monotone solution of (1.2) and sup-

pose that ū = M = maxu and u = m = minu then
∫

BR

1

2
|∇Hnu|2 + F (u) − cu ≤ CRQ−1.

with cu = min{F (s), s ∈ [m,M ]}.

Proof As seen in [1], this is just a consequence of Proposition 3.1. Take s ∈ [m,M ]
such that F (s) = cu and let φR be a cut-off function equal to one in BR−1 and

equal to zero outside of BR such that |∇HnφR| ≤ 2.

It is easy to see that vR = (1−φR)u+sφR satisfies the hypothesis in Proposition

3.1 and hence

E(u,BR) − cu|BR|

≤ E(vR, BR) − cu|BR| =

∫

BR\BR−1

1

2
|∇HnvR|2 + F (vR) − cudx

≤ C|BR \BR−1| = CRQ−1.

Before giving the next proposition, let us recall the definition of perimeter in

H
n as given e.g. in [14].

Definition 3.2 BVHn is the set of functions f ∈ L1(Ω) such that

‖∇Hnf‖(Ω)

:= sup

{
∫

Ω

f(ξ)∇Hn · φdξ; φ = (φ1, · · · , φ2n) ∈ C1
o (Ω), |φ(ξ)| ≤ 1, ∀ξ ∈ Ω

}

E ⊂ H
n has local finite perimeter if

P (E,Ω) = ‖∂E‖Hn(Ω) := ‖∇HnχE‖(Ω) < ∞

for every open bounded set Ω.

Proposition 3.3 Let u be as in Proposition 3.2 and letRi be a sequence converging

to +∞ and ui(ξ) = u(δRi
ξ).

There exists a subsequence uik
such that

1. there exists a subset G of H
n such that

lim
k→+∞

uik
= χG in L1

loc(H
n)

2. G has locally finite perimeter and G is a local minimizer.

Proof of Proposition 3.3. Let us define

ER(u,Ω) =

∫

Ω

1

2R
|∇Hnu|2 +RF (u)dx.

From Proposition 3.2

ERi
(ui, Br) = R1−Q

i E1(u,BRir) ≤ CrQ−1. (3.22)
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Monti and Serra-Cassano in [21] have proved that ER(·, Ω) Γ -converges to CF P
(·, Ω) for some constant CF depending on F .

So the coercivity property of Γ -convergence and (3.22) imply that there is a

subsequence uik
converging in L1

loc(R
2n+1) to 1G for some subset G.

Furthermore the local minimality of u i.e. Proposition 3.1 implies that G is

locally minimal i.e. P (G,Ω) ≤ P (K,Ω) for any K such that G∆K ⊂⊂ Ω.

Proposition 3.4 There exist no regular minimal surfaces in H
n that are the graph

of a regular function depending on |z| i.e. defined by t = φ(|z|) for z ∈ C
2n, with

φ �= Constant.

Proof Without loss of generality we shall write the proof for n = 1 i.e. X1 = X
and Y1 = Y .

Suppose by contradiction that such a surface exists. It is easy to see that a

smooth graph defined by t = f(x, y) that minimizes the perimeter as defined

above, satisfies the so called minimal surface equation i.e. if we denote by ν it’s

normal vector and νHn = (< ν,X >,< ν, Y >), then νHn satisfies

divHn

(

νHn

|νHn |

)

= 0, (3.23)

where divHnv = Xv1 + Y v2 for v = (v1, v2) (see e.g. [22]).

Observe that νHn = φ′(r)
r
z + 2z̄ and |νHn | =

√

(φ′)2 + 4r2. Furthermore

divHnz = 2 while divHn(z̄) = 0 and z · z̄ = 0. Hence if we call

ψ(r) =
φ′(r)

r
√

(φ′)2 + 4r2

then equation (3.23) becomes

rψ′(r) + 2ψ(r) = 0.

If ψ is not identically zero then it is given by ψ(r) = C
r2 for some constant C i.e.

φ′(r)

r
√

(φ′)2 + 4r2
=
C

r2

and this has a solution only for r ≥ |C| unless C = 0 and then φ is constant. This

concludes the proof. ��
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