Esercizi della prova intermedia di Geometria 1 15 aprile 2019

1. Nello spazio euclideo standard \mathbb{E}^3 si considerino i punti

$$P = (2, 4, 1), \quad Q = (1, 2, 2), \quad R = (3, 3, 1).$$

- (a) Mostrare che i tre punti non sono allineati.
- (b) Determinare l'equazione cartesiana del piano che li contiene.
- (c) Calcolare l'area del triangolo di vertici P, Q, R.
- (d) L'insieme S dei punti X tali che

$$dist(X, P) = dist(X, Q) = dist(X, R)$$

- è un sottospazio affine? In ogni caso, determinare delle equazioni soddisfatte da tutti e soli i punti di S.
- (e) Esiste una sfera di raggio 3 passante per P,Q ed R? Se sì, dire quante ce ne sono e determinarne le coordinate dei centri; altrimenti, dimostrare che una tale sfera non esiste.
- 2. Consideriamo nel piano euclideo standard \mathbb{E}^2 l'omotetia $H_{C,\lambda}$ di centro $C=(c_1,c_2)$ e rapporto $\lambda \neq 0$, e la traslazione T_v di vettore $v=(v_1,v_2)$.
 - (a) Calcolare $H_{C,\lambda} \circ T_v(x_1, x_2)$.
 - (b) Determinare in quali casi $H_{C,\lambda} \circ T_v$ è ancora un'omotetia.
 - (c) Determinare in quali casi la composizione di due omotetie $H_{C,\lambda}$ e $H_{C',\lambda'}$ è ancora un'omotetia.
 - (d) Dimostrare o confutare con un controesempio la seguente asserzione: "l'insieme S formato da tutte le omotetie $H_{C,\lambda}$ del piano (di centro C qualsiasi e rapporto qualsiasi $\lambda \neq 0$) e da tutte le traslazioni T_v del piano e chiuso rispetto all'operazione di composizione".
 - (e) In quali casi due omotetie $H_{C,\lambda}$ e $H_{C',\lambda'}$ commutano?
- 3. Consideriamo nel piano euclideo standard \mathbb{E}^2 la rotazione antioraria $R_{C,\vartheta}$ di centro $C=(c_1,c_2)$ e di angolo ϑ , e la traslazione T_v di vettore $v=(v_1,v_2)$.
 - (a) Calcolare $R_{C,\vartheta} \circ T_v(x,y)$.
 - (b) Determinare in quali casi $R_{C,\vartheta}$ e T_v commutano.
 - (c) Determinare le coordinate del centro C della rotazione $T_v \circ R_{O,\vartheta}$. Spiegare inoltre con un argomento di geometria come si trova tale punto a partire da v, e perché è il centro della rotazione.
 - (d) Dimostrare o confutare con un controesempio la seguente asserzione: "l'insieme S formato da tutte le rotazioni $R_{C,\vartheta}$ del piano (di centro C qualsiasi e angolo ϑ qualsiasi) è chiuso rispetto all'operazione di composizione".
 - (e) In quali casi due rotazioni $R_{C,\vartheta}$ e $R_{C',\vartheta'}$ commutano?