Formula di Taylor

Calcolare i seguenti limiti:

1
$$\lim_{x\to 0} \frac{e-(1+x)^{1/x}}{x}$$

2
$$\lim_{x\to 0} \frac{e^{3x}\sqrt{1+2x}-1}{4x}$$

$$3 \lim_{x \to 0} \frac{\sin x - x \cos x}{x^2 \tan x}$$

4
$$\lim_{x\to 0} \frac{e^{x^2} + 2\cos x - 3}{x\sin x^3}$$

5
$$\lim_{x\to 0} \frac{\cos x - e^{x^2}}{\sin^2 x}$$

$$6 \lim_{x\to 0} \frac{e^x - e^{\sin x}}{\tan x - x}$$

7
$$\lim_{x \to 0^+} \frac{\log(1+\sqrt{x}) - \sqrt{x} + x^2 \log x}{\cos \sqrt{x} - 1}$$

8
$$\lim_{x \to +\infty} \frac{\frac{\pi}{2} - \arctan x - \frac{1}{x}}{\log(1 + e^{x^{-3}}) - \log 2}$$

9
$$\lim_{x \to 0} \frac{x \sin x - 2 + 2 \cos x}{x \ln(1+x) - x^2}$$

10
$$\lim_{x\to 0} \frac{x^2 (\ln(1+x)-x)}{x(e^x-1)-2+2\cos x}$$

11
$$\lim_{x \to 0^+} \frac{e^{x \cos x} - \log^2(1 + \sqrt{x}) - 1}{\sqrt{\sin x - x \cos x}}$$

$$12 \lim_{x \to +\infty} x \left[\left(1 + \frac{\ln 10}{x} \right)^x - 10 \right],$$

13 (*)
$$\lim_{x\to 0} \frac{\pi - 2\arcsin(\log(e-x^4))}{\pi - \arccos(x\sin x - \log(1+x^2) - 1)}$$
,

14
$$\lim_{x\to 0} \frac{\ln\left[(1+\sin^2 x)^{\cot x}\right]-x}{x^3}$$
.

15
$$\lim_{x\to 0} \frac{x^5 e^{x^3} - \log(1+x^5)}{(\sqrt{1+x^4}-1)^2}$$

16 (*)

$$\lim_{x \to +\infty} x^2 \log \left(1 + \frac{1}{\sqrt[3]{r^2}} \right) \left[\operatorname{arctg} \sqrt[3]{x+1} - \operatorname{arctg} \sqrt[3]{x-1} \right]$$

17
$$\lim_{x\to 0} f(x)$$
, $\lim_{x\to \frac{\pi}{2}^-} f(x)$, dove

$$f(x) = \frac{\left(\frac{\pi}{2} - x\right)^2 tg^2 x}{x - tg x + \left(\frac{\pi}{2} - x\right) tg^2 x}$$

18
$$\lim_{t \to +\infty} t^{\alpha} \left(\log \left(1 + \frac{3}{t^2} \right) - 3 \operatorname{sen} \frac{1}{t^2} \right), \ \alpha \in \mathbb{R}.$$

19
$$\lim_{x\to 0} \frac{\sin x - \sin(x - x^2)}{1 - e^{-x^2} - x^2}$$

 $\begin{array}{l} \textbf{20} \ \ \text{Calcolare l'ordine di infinito/infinitesimo di} \\ f(x) = (x^2 + 3x + \arctan x)^5 \left(\exp(-\frac{1}{2x^2}) - \cos(\frac{1}{x}) \right) \,, \\ \text{per } x \to +\infty \ \ (\text{qui } \exp(t) = e^t). \end{array}$

21 Trovare la derivata sesta, nel punto x=0, della funzione $f(x)=(1+\sin^2 x)^{\cos x^2}$. Fare la stessa cosa per la derivata 351-esima.

22 Si determini l'ordine di infinitesimo, per $x \to 0$, delle seguenti funzioni:

$$f(x) = \frac{1 - \operatorname{ch} x^2 + x^4}{x^3 + x} \;,$$

$$g(x) = \frac{1 - \operatorname{ch} x^2 + \alpha x^4}{x^{\alpha} + x}$$
, al variare di $\alpha > 0$.

23 Calcolare l'ordine di infinitesimo o di infinito per $x \to 0^+$ della seguente funzione, al variare di $\alpha > 0$: $\left(\frac{1 - \sqrt{1 - x}}{-1 + \sqrt{1 + x}}\right)^{\alpha} - 1$

 ${\bf 24}\,$ Calcolare gli sviluppi di MacLaurin fino all' 8^0 grado delle funzioni

$$f(x) = \ln(3 - 2e^{x^3}), \qquad g(x) = \frac{\ln(3 - 2e^{x^3})}{1 - 2\operatorname{sen} x^2}$$

25 Ordinare i seguenti infinitesimi, per $x \to 0^+$:

$$f(x) = x^{2} \ln x$$
, $g(x) = \frac{x - \sin x + x^{6}}{\sqrt{x}}$,

$$h(x) = \sqrt{1+x^2} - \sqrt[3]{1+x^2}$$
, $k(x) = x + x^2 \ln x$.

26 Ordinare i seguenti infinitesimi, per $x \to 0^+$:

$$f(x) = \frac{\operatorname{tg}^2 x}{\sqrt[3]{x}}$$
, $g(x) = x^3 - x^4 \ln x$,

$$h(x) = \frac{e^{-\frac{x^2}{2}} - \cos x}{x^{3/2}}, \quad k(x) = \sqrt{4 + 2x^2} - 2.$$

27 Al variare del parametro reale α , trovare l'ordine di infinitesimo, per $x \to 0^+$, della funzione

$$f_{\alpha}(x) = \ln(1 - \alpha x \operatorname{sen} x) - e^{-x^2} + 1;$$

1 Risposte ad alcuni esercizi

1:
$$\frac{e}{2}$$
; 2: 1; 3: $\frac{1}{3}$; 4: $\frac{7}{12}$; 5: $-\frac{3}{2}$; 6: $\frac{1}{2}$; 7: 1; 8: $-\frac{2}{3}$; 9: 0; 10: 0; 11: $\sqrt{3}$; 12: $-5 \ln^2 10$; 14: $-\frac{7}{6}$; 15: 4;

6:
$$\frac{1}{2}$$
; **7:** 1; **8:** $-\frac{2}{3}$; **9:** 0; **10:** 0

11:
$$\sqrt{3}$$
; **12:** $-5 \ln^2 10$; **14:** $-\frac{7}{6}$; **15:** 4

16:
$$\frac{2}{3}$$
; **17:** $\frac{\pi}{2}$; $\frac{2}{\pi}$;

22: *a)* Si ha

$$ch t = 1 + \frac{t^2}{2} + o(t^3)$$
 per $t \to 0$,

quindi

$$\operatorname{ch} x^2 = 1 + \frac{x^4}{2} + o(x^6)$$
 per $x \to 0$.

Pertanto

$$1 - \operatorname{ch} x^2 + x^4 = \frac{x^4}{2} + o(x^6) \sim \frac{x^4}{2}$$
.

Poiché $x^3 + x \sim x$ per $x \to 0$, si ha

$$f(x) \sim \frac{x^4}{2x} = \frac{x^3}{2}$$
.

Quindi f è un infinitesimo di ordine 3. Questa parte poteva essere svolta usando i limiti notevoli al posto della formula di Taylor.

b) Ragionando allo stesso modo si ottiene

$$1 - \operatorname{ch} x^2 + x^4 \sim \left(\alpha - \frac{1}{2}\right) x^4$$

purché $\alpha \neq 1/2$. Inoltre si ha

$$x^{\alpha} + x \sim \begin{cases} x & \text{se } \alpha > 1\\ 2x & \text{se } \alpha = 1\\ x^{\alpha} & \text{se } 0 < \alpha < 1. \end{cases}$$

Pertanto:

- se $\alpha \geq 1$, g(x) è un infinitesimo di ordine 3;
- $\bullet\,$ se 0 < α < 1, con $\alpha \neq 1/2,\, g(x)$ è un infinitesimo di ordine $4 - \alpha$;
- se $\alpha = 1/2$, i termini di ordine 4 nel numeratore si annullano, e bisogna scrivere il successivo termine dello sviluppo di Taylor:

$$\operatorname{ch} x^2 = 1 + \frac{x^4}{2} + \frac{x^8}{24} + o(x^{10}) \quad \operatorname{per} x \to 0,$$

da cui

$$g(x) \sim -\frac{x^8}{24x^{\alpha}} = -\frac{x^{15/2}}{24} \,,$$

e g(x) è un infinitesimo di ordine $\frac{15}{2}$

24:

Prima funzione: Si ha

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{6} + o(t^{3})$$
 per $t \to 0$.

Quindi

$$e^{x^3} = 1 + x^3 + \frac{x^6}{2} + o(x^8)$$
 per $x \to 0$,
 $3 - 2e^{x^3} = 1 - 2x^3 - x^6 + o(x^8)$ per $x \to 0$.

D'altra parte

$$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + o(t^3)$$
 per $t \to 0$;

utilizzando quest'ultima formula con $t = -2x^3 - x^6 +$ $o(x^8) \to 0$, e ricordando le proprietà degli "o piccoli", otteniamo

$$f(x) = \ln\left(1 + (-2x^3 - x^6 + o(x^8))\right) =$$

$$= \left(-2x^3 - x^6 + o(x^8)\right) \underbrace{-\frac{1}{2}\left(-2x^3 - x^6 + o(x^8)\right)^2 + \underbrace{\frac{1}{3}\left(-2x^3 - x^6 + o(x^8)\right)^3 + o\left(\left(-2x^3 - x^6 + o(x^8)\right)^3\right)}_{=o(x^8)} =$$

$$= -2x^3 - 3x^6 + o(x^8).$$

Poiché il polinomio $P_8(x; f)$ di Mac Laurin di grado 8 è l'unico tra i polinomi p(x) di grado ≤ 8 tale che

$$f(x) = p(x) + o(x^8) \qquad \text{per } x \to 0,$$

se ne deduce che

$$P_8(x;f) = -2x^3 - 3x^6$$

Seconda funzione: Dobbiamo cercare lo sviluppo di MacLaurin di

$$h(x) = \frac{1}{1 - 2\operatorname{sen} x^2}$$

e moltiplicarlo per quello ottenuto per f. Poiché lo sviluppo di f inizia con un termine di grado 3, basterà sviluppare h(x) fino all'ordine 5. Si ha:

$$sen t = t - \frac{t^3}{6} + o(t^4) \quad \text{per } t \to 0.$$

Quindi

$$2 \operatorname{sen} x^{2} = x^{2} - \frac{x^{6}}{3} + o(x^{8}) = x^{2} + o(x^{5}) \qquad \operatorname{per} x \to 0.$$

Ricordando che

$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + o(t^3) \quad \text{per } t \to 0,$$

e prendendo in quest'ultima formula $t=2x^2+o(x^5)\to 0$ si ottiene

$$h(x) = \frac{1}{1 - (2x^2 + o(x^5))} =$$

$$= 1 + (2x^2 + o(x^5)) + \underbrace{(2x^2 + o(x^5))^2}_{=4x^4 + o(x^5)} +$$

$$+ \underbrace{(2x^2 + o(x^5))^3}_{=o(x^5)} + \underbrace{o((2x^2 + o(x^5))^3)}_{=o(x^5)} =$$

$$= 1 + 2x^2 + 4x^4 + o(x^5).$$

Pertanto

$$\begin{split} g(x) &= f(x)h(x) = \\ &= \left(-2x^3 - 3x^6 + o(x^8)\right) \cdot \left(1 + 2x^2 + 4x^4 + o(x^5)\right) = \\ &= -2x^3 - 4x^5 - 3x^6 - 8x^7 - 6x^8 + o(x^8) \,. \end{split}$$

Dunque il polinomio cercato è

$$P_8(x;g) = -2x^3 - 4x^5 - 3x^6 - 8x^7 - 6x^8.$$

25:

Analisi di f(x): Tenuto conto che, per $x \to 0^+$, $\ln x$ tende a $-\infty$, ma più lentamente di qualunque potenza negativa di x, si ottiene che f(x) è un infinitesimo di ordine inferiore a 2, ma di ordine superiore rispetto ad ogni numero minore di 2.

Analisi di g(x): Osservato che

$$sen x = x - \frac{x^3}{6} + o(x^4) \quad \text{per } x \to 0,$$

e quindi che

$$x - \sin x + x^6 = \frac{x^3}{6} + o(x^4)$$
,

si ottiene che

$$g(x) = \frac{\frac{x^3}{6} + o(x^4)}{\sqrt{x}} \sim \frac{x^{5/2}}{6}$$

quindi g(x) è un infinitesimo di ordine $\frac{5}{2}$.

Analisi di h(x): Usando lo sviluppo

$$(1+t)^{\alpha} = 1 + \alpha t + o(t) \qquad \text{per } t \to 0,$$

si ottiene

$$h(x) = (1+x^2)^{1/2} - (1+x^2)^{1/3}$$

= 1 + $\frac{x^2}{2}$ + $o(x^2)$ - $\left(1 + \frac{x^2}{3} + o(x^2)\right) = \frac{x^2}{6} + o(x^2)$,

e quindi h(x) è un infinitesimo di ordine 2.

Analisi di k(x):

$$k(x) = x \left(1 + x \ln x \right).$$

Poiché

$$\lim_{x \to 0^+} x \ln x = 0,$$

ne segue che $k(x) \sim x$, quindi è un infinitesimo di ordine 1.

Quindi le quattro funzioni sono così ordinate in ordine crescente:

$$k(x)$$
, $f(x)$, $h(x)$, $g(x)$.