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Abstract

A class of weak wave map solutions with initial data in Sobolev space of order

s < 1 is studied. A non uniqueness result is proved for the case, when the target

manifold is a two dimensional sphere. Using an equivariant wave map ansatz a

family of self - similar solutions is constructed. This construction enables one

to show ill - posedness of the inhomogeneous Cauchy problem for wave maps.

1. Introduction

Let (M,η) be a pseudoriemannian manifold and (N, g) be a riemannian manifold.
For smooth maps u : M → N we can compute the Lagrangean density L(u) =
Trη(u∗g), i.e., the trace with respect to the metric η of the pullback through u of
the metric g. In local coordinates (xα) on M and (ua) on N we can write

L(u) = ηαβgab
∂ua

∂xα

∂ub

∂xβ

where we use the summation convention over repeated indices. A stationary map
for L is called a wave map, M is called the base manifold and N the target man-
ifold. Wave maps arise in different physical theories and are the object of active
investigation (see e.g. [2], [3], [5], [6], [7], [8], [9], [10], [12], [14], [16], [18], [20]; see
also the book [13] and the refences therein).

For simplicity, it is customary to consider the case of a flat Minkowsky M , that
is to say M = R× Rn with metric

ηαβ = diag[−1, 1, . . . , 1].

Even in this situation most of the essential difficulties of the problem are still
present. Notice that, at least in the case of compact manifolds, by Nash’ theorem
it is not restrictive to assume that N is embedded isometrically in some Rd with d
larger than the dimension k of N . Writing ∂α = ∂/∂xα, ∂α = ηαβ∂β , we are thus
interested in the stationary points of the functional

L(u) =
∫

R×Rn

gab(u)∂αua∂αu
bdx0 . . . dxn.

The corresponding Euler-Lagrange equations are

(1.1) −2∂α(gab(u)∂αub) + ∂αu
c∂αub∂agbc = 0

or equivalently

gab�u
b + ∂cgab∂αu

c∂αub − 1
2
∂agbc∂αu

c∂αub = 0

Key words and phrases. AMS Subject Classification: 35L70, 58J45, . Keywords: Wave map,
Cauchy problem, nonlinear equation, hyperbolic equation, ill-posed problem.
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where � = −∂α∂
α = ∂2

0 − ∂2
1 − · · · − ∂2

n. Writing the second sum in the following
form

∂cgab∂αu
c∂αub =

1
2
(∂cgba + ∂bgac)∂αu

c∂αub

and recalling the definition of the Christoffel symbols

Γa;bc =
1
2
(∂bga,c + ∂cga,b − ∂agb,c), Γa

bc = gaiΓi;bc

we obtain
gab�u

b + Γa;bc∂αu
c∂αub = 0

and finally

(1.2) �u` + Γ`
bc(u)∂αu

b∂αuc = 0.

This is the wave map system in local coordinates on N , which is hyperbolic in the
direction of t = x0. Thus the natural problem for (1.4) is the Cauchy problem,
with initial data at t = 0

(1.3) u(0, x) = u0(x), ut(0, x) = u1(x).

WhenN is the unit sphere in Rd with the metric induced by the Euclidean metric,
if we choose as a chart for the upper (or the lower) half sphere ud > 0 the projection
on (u1, . . . , ud−1), a direct computation gives Γ`

ij(u) = u`δij + uiuju`/(ud)2; the
equations become very symmetrical using the full set of functions (u1, . . . , ud),
indeed we obtain in a few steps

(1.4) �u+ (|ut|2 − |∇xu|2)u = 0

subject to the constraint |u| = 1. It is easy to see that if a smooth function
u(t, x) solves (1.4) and moreover satisfies the constraint at t = 0, i.e. |u(0, x)| = 1,
u(0, x) · ut(0, x) = 0, then we have |u| = 1 for all t. It is also possible to consider
system (1.4) without geometric constrains, from a purely analytical point of view.

The minimal regularity required of u in order to give a meaning to the nonlinear
term (in distributional sense) is Dt,xu ∈ L2

loc, provided |u| = 1. This can be further
relaxed if we remark that �u is parallel to u by the equation, hence we have also

u ∧�u = 0, |u| = 1

or equivalently

(1.5) ∂t(ut ∧ u) =
n∑

j=1

∂xj (uxj ∧ u),

since u · ut = u · uxj
= 0 by the condition |u| = 1. For smooth functions with norm

1, (1.5) and (1.4) are equivalent; moreover, equation (1.5) has a distributional sense
for Du ∈ L1

loc only, provided |u| = 1. Thus in the following we shall say that u is
a weak solution of equation (1.4) if Du ∈ L1

loc, |u| = 1 a.e. and u satisfies (1.5) in
the sense of distributions.

One of the basic open questions of the theory is the well posedness of the Cauchy
problem for (1.4) in two dimensions, i.e. with

u : R× R2 → S2 ⊆ R3.

In this case the local existence of smooth solutions follows by classical arguments,
while global existence meets essential difficulties. The critical space for equation
(1.5) in two dimensions is H1, which is also the energy space; thus an important
question is the well posedness of (1.5) in H1.

The aim of this paper is to investigate the behaviour of (1.4) for solutions of low
regularity, i.e., below the energy space H1×L2, and indeed to show that in general
the problem is not well posed in this situation.

Our first result is the following:
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Nonuniqueness [Theorems 3.1 and 3.2]. It is possible to construct
two weak solutions u, v : R×R2 → S2 to equation (1.4), continuous
in time with values in H1−ε(Ω) for all ε > 0 and all bounded Ω,
and also L∞ with values in the Besov space B1

2,∞, such that u ≡ v
for t < 0 and u 6≡ v for t > 0. We can construct u, v such that their
Besov norm is arbitrarily small.

Since H1 = B1
2,2, recalling Tataru’s local well posedness result in B1

2,1, we may say
that the question of local well posedness in H1 is confined in the gap between the
two Besov spaces B1

2,∞ and B1
2,1. In this regard it is necessary to mention Tao’s

result [17] showing that the well posedness holds provided the data are slightly
smoother (H1+ε ×Hε) and small in the Ḣ1 norm. See also the paper [11], where
a model (scalar) equation with the same type of nonlinearity is considered.

Our second result concerns stability of (1.4) in presence of a forcing term, namely
we consider the following Cauchy problem

�u+ (|ut|2 − |∇xu|2)u = F (t, x), u : R× R2 → S2(1.6)

u(0, x) = 0, ut(0, x) = 0(1.7)

and we prove the following result:
Ill-posedness [Theorem 4.1]. Denote by N = (0, 0, 1) the North
pole. We can construct a sequence of functions F = Fk with sup-
port in the forward light cone such that (1.6), (1.7) has a solu-
tion uk with uk − N ∈ C(R;H1+ε(R2), (ε = εk → 0), such that
uk(0, x) = N , ∂tuk(0, X) = 0 for all k. Moreover, for all T > 0 the
H1(R2) norm of uk −N at t = T diverges to +∞ while the norm
of Fk in Lp([0, T ], Lq(R2)) tends to 0 as k → ∞, provided p ≥ 1,
q ≥ 2 satisfy

1
p

+
2
q
> 2,

In other words, the solution map

(u0, u1, F ) 7→ u(t, x)

between the spaces

(1.8) H1 × L2 × LpLq → CH1,
1
p

+
2
q
> 2

is not continuous at (N, 0, 0). Notice that the “correct” energy space for the forcing
term is L1L2, and p = 1, q = 2 do not satisfy the condition 1/p + 2/q > 2. Thus
also our second result applies only in the low regularity case.

Clearly, well posedness for (1.6) is a more general problem than for the homoge-
neous equation (1.4). At least, we can say that the above result rules out existence
proofs for (1.4) based on contraction methods in the said spaces. Indeed, such
methods would imply that the solution map data 7→ solution is analytic, while the
above result shows that the map is not even locally bounded. We also mention that
even in the homogeneous case and in the critical space it is possible to prove that
the solution map is not smooth, actually not uniformly continuous; for a precise
proof we refer to the forthcoming paper [4].

The plan of the paper is the following: in Section 2 we recall the definition of
equivariant and self-similar solutions, which are necessary for the following con-
structions. The self-similar Ansatz leads to an ODE which is studied in detail in
Appendix A; in particular all the solutions are computed explicitly. Section 3 is
devoted to the non uniqueness result, while the ill posedness of the Cauchy prob-
lem with a forcing term is proved in Section 4. Appendix B collects some technical
lemmas.
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2. Equivariant and self-similar solutions

When the manifolds have rotational symmetry, two interesting classes of special
solutions arise, the equivariant and the self-similar solutions. The general construc-
tion is standard and can be found in [1], [13], [14].

We recall briefly the equivariant Anzatz. Assume that N is a smooth `-dimensi-
onal rotationally symmetric manifold defined as

N = {(φ, χ);φ ∈ [0, φ∗), χ ∈ S`−1}
(φ∗ may be +∞), with metric

(2.1) dφ2 + g(φ)2dχ2,

where dχ2 is the standard metric on S`−1. In the coordinates (φ;χ1, . . . , χ`−1),
denoting by hij the coefficients of the metric dχ2, the only nonzero Christoffel
symbols for (2.1) are

(2.2) Γφ
χiχj

= −g′(φ)g(φ)hij , Γχi

χjφ =
g′(φ)
g(φ)

δij , Γχi
χjχs

= γi
js,

where γi
js are the Christoffel symbols for the metric hij . The equivariant wave

maps are the maps u satisfying the Ansatz

(2.3) u(t, x) = (φ, χ), φ = φ(t, r), χ = χ(ω),

where (r, ω) are the spherical coordinates on Rn. Under this assumption, the equa-
tions for χ decouple and in fact we obtain that χ : Sn−1 → S`−1 must be a harmonic
map. For suitable choices of the dimensions n, ` (and of χ) further simplifications
occur. In the special case ` = n = 2 under consideration here, it is easy to see that
χ must be a rotation of degree k = 1, 2, 3, . . . of S1 into itself. With this choice the
equation for φ decouples and we obtain

(2.4) φtt − φrr −
1
r
φr +

k2

r2
g′(φ)g(φ) = 0.

This is the equivariant wave map equation.
When N is the sphere S2, the above framework corresponds to the standard

choice of coordinates (φ, χ) with φ ∈ [0, π] and χ ∈ S1. Then the metric can be
written

dφ2 + sin2 φ dχ2,

and equation (2.4) becomes

(2.5) φtt − φrr −
1
r
φr +

k2

2r2
sin(2φ) = 0.

Actually it is more convenient to embed N = S2 in R3; with the usual coordinate
system on N sinφ sinχ

sinφ sinχ
cosφ


where φ ∈ [0, π], χ ∈ [0, 2π], φ = 0 corresponding to the north pole and φ = π to
the south pole of the unit sphere. Then we can express the solution u(t, x) to (1.4)
as the vector (u1, u2, u3) with

u1 = sinφ(t, |x|) · |x|−k Re (x1 + ix2)k

u2 = sinφ(t, |x|) · |x|−k Im (x1 + ix2)k

u3 = cosφ(t, |x|);

since cosχ = cos(kω) = |x|−k Re (x1 + ix2)k, sinχ = sin(kω) = |x|−k Im (x1 +
ix2)k.
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In order to introduce the self-similar solutions, we recast the equation in the
hyperbolic coordinates

(2.6) ρ =
√
t2 − r2, τ =

r

t
;

notice that the inverse transformations are given by

(2.7) t =
ρ√

1− τ2
, r =

τρ√
1− τ2

.

Then we obtain

(2.8) ∂2
t − ∂2

r −
1
r
∂r = ∂2

ρ +
2
ρ
∂ρ −

∆H

ρ2
,

where ∆H is the Laplace operator on the hyperboloid ρ = 1

(2.9) ∆H = (1− τ2)2∂2
τ −

(1− τ2)(2τ2 − 1)
τ

∂τ .

In the new coordinates ρ, τ the equation (2.4) becomes

(2.10) ∂2
ρφ+

2
ρ
∂ρφ−

1
ρ2

∆Hφ+ k2 (1− τ2)
2τ2ρ2

sin 2φ = 0.

We can now define the self-similar solutions as the solutions which are independent
of ρ, i.e.,

φ(t, r) = ψ
(r
t

)
≡ ψ(τ).

Under this assumption the first two terms in (2.10) drop, and we obtain immediately
the following equation for ψ = ψ(τ):

(2.11) τ2(τ2 − 1)ψ′′ + τ(2τ2 − 1)ψ′ + k2 sinψ cosψ = 0.

Notice that if one could find global smooth solutions to this equation, an immediate
consequence would be a blow up result for the wave map equation (1.4); but this is
not possible, as shown in [13] (while in higher dimensions this idea is correct and
was exploited in [14]). Nevertheless it is possible to utilize the singular (i.e., not in
H1) solutions thus obtained, as we shall do in the following section.

It is not difficult to see that all solutions to (2.11) are analytic and defined for
τ 6= 0, 1; in Appendix A we give a complete study of the equation, and we represent
all its solutions using Jacobi’s elliptic functions. In the next sections, in particular,
we shall use the following special solutions:

(i) The function defined as

(2.12) ψ(τ) =

{
arcsin τ for 0 ≤ τ ≤ 1
π/2 for τ > 1

is a solution to the equation (for τ 6= 1) in the case k = 1. Notice that the
only constant solutions are the integer multiples of π/2, and that the value of the
constant chosen here for τ > 1 ensures (Hölder) continuity. The fact that (2.12) is
a solution can be verified directly, or can be obtained by setting λ = π/2, k = 1 in
the general expression (5.26).

(ii) A more general class of solutions in the case k = 1 is given by the expressions
(δ ∈]0, 1[)

(2.13) ψ(τ) =


2 arctan

[
tan λ2 ·

τ

1±
√

1− τ2

]
for 1 ≤ τ ≤ 2

am

(
δ arctan 1√

τ2 − 1

∣∣∣∣∣1δ
)

for τ > 1.

Here the two-parameter function am (τ |m) is the Jacobi amplitude in the case
m > 1; a precise definition is given in Appendix A, here we shall only need to know
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that it is an analytic periodic function of τ , with the property am (0|m) = 0, hence
(2.13) tends to 0 as τ → ∞. Again, we can ensure Hölder continuity at τ = 1
by imposing a suitable condition on the constants λ, δ. In the following section we
shall also need to compute sinψ and cosψ for ψ given by (2.13); writing

γ = tan
λ

2
we have

(2.14) sinψ(τ) =


4γτ

(1±
√

1− τ2) + γ2(1∓
√

1− τ2)
for 0 ≤ τ ≤ 1

δ · sn
(
arctan 1√

τ2−1

∣∣∣δ) for τ > 1.

and

(2.15) cosψ(τ) =


(1±

√
1− τ2)− γ2(1∓

√
1− τ2)

(1±
√

1− τ2) + γ2(1∓
√

1− τ2)
for 0 ≤ τ ≤ 1

dn
(
arctan 1√

τ2−1

∣∣∣δ) , for τ > 1

(the signs ± are the same as in (2.13), the ∓ are opposite). For the definition and
properties of the elliptic functions sn (τ |δ), dn (τ |δ) see Appendix A. These formulas
are proved in Appendix A, see Remark 5.2 and (5.29), (5.30), (5.31).

3. Low regularity self-similar solutions

Our purpose here is to construct weak solutions to the wave map equation (1.4)
from R×R2 to S2 below critical regularity. As mentioned in the Introduction, it is
convenient to transform the equation in the form of a conservation law

(3.1) ∂t(∂tu ∧ u) =
2∑

j=1

∂j(∂ju ∧ u)

in order to handle weak solutions of very low regularity; indeed if u is a locally
bounded function such that ∂u ∈ L1

loc(R × R2), all the terms in (3.1) have a well-
defined meaning in distribution sense.

Starting from a solution ψ(τ) of (2.11), we can construct a self-similar solution
to the wave map equation by setting

(3.2) u(t, x) =

u1(t, x)
u2(t, x)
u9(t, x)

 ,

with

u1(t, x) = |x|−k Re (x1 + ix2)k sin (ψ (|x|/t))

u2(t, x) = |x|−k Im (x1 + ix2)k sin (ψ (|x|/t))
u3(t, x) = cos (ψ (|x|/t)) .

We shall restrict ourselves to the case k = 1 and the special solutions examined in
the preceding section. Our first result is based on the solution (2.13); this means
simply

(3.3) u(t, x) =
1
t

 x1

x2√
t2 − |x|2


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inside the cone, and

(3.4) u(t, x) =

x1/|x|
x2/|x|

0


outside the cone.

Our aim is to prove

Theorem 3.1. The function u(t, x) defined in (3.3), (3.4) is a solution in distri-
bution sense of the wave map equation (3.1). Moreover, given any bounded open
set Ω ⊆ R2, we have

(3.5) u ∈ C(R,Hs(Ω)), ∀s < 1 and u ∈ L∞(R,B1
2,∞(Ω)).

A second solution is the function v(t, x), independent of t, defined as (3.4) every-
where; we have v ∈ C(R,B1

2,∞(Ω)) for any Ω, and v ≡ u for t ≤ 0, thus the weak
solution to (3.1) is not unique in the spaces (3.5).

Remark 3.1. Actually the solution u is continuous with values in Besov for t ≥ 0
and t ≤ 0, and has a jump at t = 0 only. We also notice that, thanks to the scaling
properties of Besov spaces, the Ḃ1

2,∞ norm of u(t, x) on the ball B(0, t) is constant
as t ↓ 0, i.e., it concentrates at 0.

Proof. We remark that the first derivatives of u in distribution sense coincide with
the derivatives a.e., which are locally integrable functions on R×R2. This follows at
once by Lemma 6.3 in the Appendix (with obvious choices); indeed, the singularities
of u are concentrated along the positive cone t = |x|, where u is Hölder continuous,
and along the line x = 0 for negative t, where it is bounded. Thus we can compute
the derivatives ut, uxj

directly by differentiating the above formulas, obtaining
locally integrable functions. A similar remark holds for v.

Outside the positive light cone, i.e. for t ≤ |x| (including negative t) we have
u ≡ v, and an explicit computation gives

(3.6) ∂tu ∧ u = ∂tv ∧ v = 0,

(3.7) ∂x1u ∧ u = ∂x1v ∧ v =

 0
0

x2/|x|2

 ,

(3.8) ∂x2u ∧ u = ∂x2v ∧ v =

 0
0

−x1/|x|2

 .

These formulas hold on the whole space R× R2 for the second solution v.
To check that v is a solution of (3.1) we may proceed directly; indeed, we have

to check that

∂x1

[
− x2

|x|2

]
+ ∂x2

[
x1

|x|2

]
= 0

in distribution sense, and this follows from the identities

∂xj |x| =
xj

|x|
(notice that these functions are locally integrable).

To check that u is a solution, it is simpler to express the equation in spherical
coordinates:

(3.9) ∂t(ut ∧ u)− ∂r(ur ∧ u)−
1
r
ur ∧ u−

1
r2
∂ω(∂ωu ∧ u) = 0.



8 PIERO D’ANCONA AND VLADIMIR GEORGIEV

Outside the light cone we have

u = (cosω, sinω, 0),

while inside it

u =
1
t
(r cosω, r sinω,

√
t2 − r2).

We can write the wedge products in a global form valid everywhere: writing for
brevity

Z(ω) =

− sinω
cosω

0


and

(3.10) w(t, r) =

{
1√

t2−r2 if r ≤ t,

0 otherwise

we find after some computations

(3.11) ut ∧ u =
r

t
w(t, r) · Z,

(3.12) ur ∧ u = −w(t, r) · Z,

while

(3.13) ∂ω(∂ωu ∧ u) = ∆ωu ∧ u =
r

t2

√
t2 − r2 · Z.

Thus, to check that u is a solution we must show that

(3.14) ∂t
rw

t
+ ∂rw +

1
r
w −

√
t2 − r2

rt2
χK = 0

in distribution sense, where χK is the characteristic function of the future light
cone K. Given any test function φ, we must show that∫

K

(
1
r
wφ− rw

t
∂tφ− w∂rφ−

√
t2 − r2

rt2
φ

)
rdrdt = 0.

This amounts to say that, writing

Kε = {(t, r) : t ≥ r + ε},

the limit of the same integral over Kε tends to zero when ε→ 0. We integrate by
parts, the integrals over Kε cancel since the solution is smooth in Kε and the terms
on the boundary t = r+ ε give (keeping into account the fact that the components
νt and νr of the normal unit vector are opposite)∫

∂Kε

(
1− r

t

)
rwφdS =

∫ ∞

0

ε

r + ε
rw(r + ε, r)φ(r + ε, r)dr → 0.

It remains now to show that the solutions belong to the stated spaces. For the
solution v this follows directly from Lemma 6.1 in Appendix B, and the remark
that the Hs norms for s < 1 are controlled by the Besov norm B1

2,∞.
Consider now the solution u; for t ≤ 0 it coincides with v, hence the same

argument applies and we obtain the Besov-valued continuity on (−∞, 0]. We now
consider the case t > 0. We know by Lemma 6.1 in Appendix B that x1/|x| is
locally in B = B1

2,∞, and this implies that also the function

x1 −
x1

|x|
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is locally in B since x1 is smooth. Then also the function

g(x) =

{
x1 − x1

|x| for |x| ≤ 1,

0 for |x| ≥ 1

is in B locally, since g(x) is Lipschitz continuous at |x| = 1. But g(x) is compactly
supported, hence g ∈ B1

2,∞(R2) globally. Recalling that the homogeneous norm
Ḃ1

2,∞(R2) is invariant for the scaling x → x/t, we obtain that the function g(x/t)
is continuous on [0,+∞) with values in B1

2,∞(R2). This implies immediately that

(3.15) u1 =
x1

|x|
+ g(x/t)

is continuous on [0,+∞) with values in B1
2,∞(Ω) for any bounded open Ω. u2 is

identical. As to u3, we only have to remark that

(3.16) u3(t, x) = λ(x/t)

where λ(x) is the function defined in Lemma 6.2 in Appendix B, which belongs to
B1

2,∞(R2), and argue as before.
Continuity with values inHs for t 6= 0 follows, since the norm of B1

2,∞ is stronger.
Continuity also at t = 0 follows from (3.15) and (3.16) since the scaling properties
of Hs for s < 1 imply that

‖g(·/t)‖Hs(R2) → 0 as t→ 0.

�

The situation does not improve if we consider small solutions. Indeed, we can
construct two different weak solutions depending on a parameter δ which are small
and coincide for t < 0.

The first solution is the self-similar solution obtained using the functions (2.13)
with the plus sign; recalling (2.14), (2.15), we have inside the light cones (i.e. for
|x| ≤ |t|)

(3.17) uj(t, x) =
2γxj

(1 + γ2)t+ (1− γ2)
√
t2 − |x|2

,

for j = 1, 2, and

(3.18) u3(t, x) =
(1− γ2)t+ (1 + γ2)

√
t2 − |x|2

(1 + γ2)t+ (1− γ2)
√
t2 − |x|2

;

here γ = tan λ
2 is a small parameter. On the other hand, outside the cones, i.e. for

|x| ≥ |t|, we have

(3.19) uj =
xj

|x|
δ sn

(
arctan

t√
|x|2 − t2

∣∣∣δ) .
for j = 1, 2, and

(3.20) u3 = dn

(
arctan

t√
|x|2 − t2

∣∣∣δ) .
Fixed δ small, we choose γ such that

(3.21)
2γ

1 + γ2
= δ · sn (π/2|δ)

to ensure continuity; recall that for δ < 1

|sn (s|δ)| ≤ 1,
∣∣∣∣ dds sn (s|δ)

∣∣∣∣ ≤ 1
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while √
1− δ2 ≤ dn (s|δ) ≤ 1,

∣∣∣∣ ddsdn (s|δ)
∣∣∣∣ ≤ δ.

so the function u(t, x) thus constructed takes its values in a δ-neighborhood of the
North pole (0, 0, 1).

The second solution v(t, x) coincides with u(t, x) for negative t and outside the
forward light cone; inside it, i.e., for t > |x|, we define it using again (2.13) but
we choose now the minus sign; in a more explicit form we obtain (see again (2.14),
(2.15))

(3.22) vj(t, x) =
2γxj

(1 + γ2)t− (1− γ2)
√
t2 − |x|2

,

for j = 1, 2, and

(3.23) v3(t, x) =
(1− γ2)t− (1 + γ2)

√
t2 − |x|2

(1 + γ2)t− (1− γ2)
√
t2 − |x|2

(compare with (3.17), (3.18)).

Remark 3.2. Notice that the solution u(t, x) takes its values in a δ-neighborhood
of the North pole (0, 0, 1); on the other hand, the second solution v(t, x) covers the
entire sphere, and for t > 0, x = 0 we have v(t, 0) = (0, 0,−1), the South pole.

Then we have:

Theorem 3.2. Consider the function u(t, x) defined by (3.17), (3.18) for |x| ≤ |t|
and by (3.19), (3.20) for |x| > |t|. Moreover, consider the function v(t, x) defined
as u(t, x) for t < |x| and by (3.22), (3.23) inside the future light cone t > |x|. Then
both u(t, x) and v(t, x) are weak solutions of the wave map equation (3.1), and have
the same regularity properties (3.5). Moreover, for any bounded Ω ⊆ R2 and t < 0
fixed we have

(3.24) ‖u(t, ·)−N‖B1
2,∞(Ω) ≡ ‖v(t, ·)−N‖B1

2,∞(Ω) = O(γ) as γ → 0

where N denotes the North pole N = (0, 0, 1).

Proof. The regularity of u, v is proved as before, and we obtain as above the con-
tinuity with values in Besov space for t > 0 and for t < 0, with a jump in t = 0 (u
is actually continuous with values in Besov also at t = 0). Also the estimate (3.24)
follows by a simple argument.

To prove that u, v solve (3.1) we begin as above by applying Lemma 6.3 in the
Appendix. The singularity of u and v is concentrated on the light cones K = {|t| =
|x|}. Choosing a ball Ω near a point of the cone different from the origin, and setting
f = u, h(t, x) = u(|x|, x), we see that assumption (6.14) of the Lemma is satisfied,
using the Hölder continuity of u near the point; thus the distributional derivative of
u on (R×R2)\(0, 0) coincides with the derivative a.e.. Now we can apply again the
Lemma choosing K = the origin, and in this case assumption (6.14) follows from
the fact that u is bounded near the origin. In conclusion, the first distributional
derivative of u on R× R2 coincides with its derivative a.e.. The argument for v is
identical.

Thus it is sufficient to prove that for any test function φ the following identity
holds: ∫ [

φtut ∧ u− φrur ∧ u+
1
r
φ ur ∧ u+

1
r2
φuωω ∧ u

]
r dr dω dt = 0
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and an analogous one for v(t, x). Now u is a function of the form

u(t, x) = u(t, r cosω, r sinω) =

cosω sinψ(r/t)
sinω sinψ(r/t)

cosψ(r/t)


and this gives, writing

Z(ω) =

− sinω
cosω

0


the identities

ut ∧ u = Z(ω)
r

t2
ψ′
(r
t

)
, ur ∧ u = −Z(ω)

1
t
ψ′
(r
t

)
, uωω ∧ u = Z(ω) sinψ cosψ.

It is not restrictive to consider test functions of the form φ(t, r)φ̃(t, ω). We are thus
reduced to prove that

(3.25)
∫ [

r

t2
ψ′
(r
t

)
φt +

1
t
ψ′
(r
t

)
·
(
φr +

1
r
φ

)
+

1
2r2

φ sin(2ψ)
]
r dr dt = 0;

recall that ψ(s) is smooth for s 6= ±1 and ψ′(s) means the derivative a.e.
Introduce now the sets

Aε = {|t| ≥ |x|+ ε},
whose boundary is made of the two cones

∂±Aε = {±t = |x|+ ε},
and

Bε = {|x| ≤ |t|+ ε},
whose boundary is made of the two sets

∂+Bε = {t = |x| − ε, t ≥ 0}, ∂−Bε = {−t = |x| − ε, t ≤ 0}.
Identity (3.25) will follow if we prove that the integral restricted to Aε∪Bε converges
to 0 as ε → 0. On Aε ∪ Bε the functions are smooth, hence we can integrate by
parts and the integrals on the interior cancel (since ψ solves the self-similar ODE
away from the singularity). Only the boundary terms remain, i.e. we must prove
that

(3.26)
∫

∂+Aε

r

t

[r
t
νt + νr

]
ψ′φdS = C

∫ ∞

0

−εr
(r + ε)2

ψ′
(

r

r + ε

)
φ(r + ε, r)dr → 0,

with a similar relation on ∂−Aε, and

(3.27)
∫

∂+Bε

r

t

[r
t
νt + νr

]
ψ′φdS =

∫ ∞

0

t+ ε

t2
εψ′

(
t+ ε

t

)
φ(t, t+ ε)dt→ 0

with a similar relation on ∂−Bε. To prove (3.26), (3.27) it is sufficient to recall that
ψ satisfies in all cases the condition

τ2(1− τ2)ψ′(τ)2 − sinψ2 = const.

whence the estimate, valid for any τ 6= ±1,

|ψ′(τ)| ≤ C

τ
√
|1− τ2|

.

This implies ∣∣∣∣ψ′( r

r + ε

)∣∣∣∣ ≤ C
(r + ε)3/2

r
√
ε

which gives (3.26), and ∣∣∣∣ψ′( t+ ε

t

)∣∣∣∣ ≤ C
t2

(t+ ε)3/2
√
ε
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which gives (3.27). The proof for v is identical. �

4. Ill posedness of the Cauchy problem

This section is devoted to the proof of the following ill-posedness result:

Theorem 4.1. There exists a sequence

hk(t, x) ∈ L1
loc(R;L2(R2))

such that:
(i) the Cauchy problem

φtt −∆φ+
sin(2φ)
2|x|2

= hk(t, x),(4.1)

φ(0, x) = 0, φt(0, x) = 0(4.2)

has a solution φk(t, x) ∈ C(R;H1+ε(R2)) ∩ C1(R;Hε(R2)), where ε = ε(k) ↓ 0 as
k →∞; moreover, both φk(t, x) and hk(t, x) are supported inside the forward light
cone t ≥ |x|, and we have the additional smoothness φk · xj/|x| ∈ C(R;H1+ε(R2));

(ii) for any T > 0 and all p, q with

(4.3)
1
p

+
2
q
> 2

we have, as k →∞,

(4.4) ‖hk‖Lp([−T,T ];Lq(R2)) → 0,

while

(4.5) ‖∇xφk(T, ·)‖L2(R2) →∞, ‖∂tφk(T, ·)‖L2(R2) →∞.

Remark 4.1. It is not difficult to obtain from this theorem an analogous result for
the general wave map equation (1.4). Indeed, set u = u(k) = (u1, u2, u3) with

u1 =
x1

|x|
sinφk, u2 =

x2

|x|
sinφk, u3 = cosφk,

with φk as in Theorem 4.1. Since φk satisfy (4.1), we obtain exactly as in the proof
of Theorems 3.1, 3.2 that u(k) is a weak solution of the equation

�u+ (|ut|2 − |∇u|2)u ≡ Fk

with

Fk = hk ·

 x1
|x| cosφ
x2
|x| cosφ
− sinφ

 .

In particular we see that

(4.6) |Fk| = |hk|
and this implies

‖Fk‖Lp([−T,T ];Lq(R2)) → 0
as for hk. Notice that when φ vanishes, u = (0, 0, 1) (the North pole), while it is
immediate to see that ∂tu(0, x) = 0. Moreover we have easily

(4.7) ‖∂tu(t, ·)‖L2(R2) ≡ ‖∂tφ(t, ·)‖L2(R2),

(4.8) ‖∇xu(t, ·)‖L2(R2) ≡ ‖∇xφ(t, ·)‖L2(R2) + ‖|x|−1φ(t, ·)‖L2(R2)

and these relations imply that, for any T > 0

‖∂tu(T, ·)‖L2(R2) →∞, ‖∇xu(T, ·)‖L2(R2) →∞
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In conclusion, we need only check that u(k) ∈ C(R,H1+ε(R2)). We recall that
H1+ε(R2) is an algebra. Thus it is standard to see that cosφ − 1, sinφ and in
general g(φ) for g smooth are continuous with values in H1+ε(R2) since φ is. To
prove that uj = sinφ · xj/|x| for j = 1, 2 are also smooth we write it as a product

uj =
xj

|x|
φ · g(φ)

with g(s) = sin s
s analytic; since g(φ), xjφ/|x| are in CH1+ε (see part (i) of the

Theorem) the proof is concluded.

Proof. We start from the family of self-similar solution constructed in Section 3
(see (2.13))

(4.9) ψ(τ, γ) = 2 arctan
(

γτ

1 +
√

1− τ2

)
.

Inside the future light cone

K = {(t, x) : t > |x|}
the function ψ(r/t, γ) satisfies the equation

�ψ +
sin(2ψ)

2r2
= 0.

Notice that if we want to prolong ψ(r.t, γ) as a (weak) solution outside K we must
resort to the functions given by (2.13) for τ > 1; but here we shall not need this
second formula.

An alternative form which will be useful in the following is

(4.10) ψ(τ, γ) = arcsin (α(τ, γ)) , α(τ, γ) =
2γτ

1 + γ2 + (1− γ2)
√

1− τ2

(obtained through the identity 2 arctan s = arcsin(2s(1 + s2)−1ref)). Moreover,
the derivative of ψ is given by

(4.11)
∂

∂τ
ψ(τ, γ) =

2γ√
1− τ2

· 1
1 + γ2 + (1− γ2)

√
1− τ2

.

We list here a few consequences of these definitions which will be useful in the
following. From (4.9), (4.11) we have immediately

(4.12)
1
2
γτ ≤ ψ(τ, γ) ≤ 2γτ ∀τ, γ ∈ [0, 1],

(4.13)
γ

2
√

1− τ2
≤ ∂

∂τ
ψ(τ, γ) ≤ 2γ√

1− τ2
∀τ, γ ∈ [0, 1].

To express the behaviour near τ = 1 more precisely we can also write (4.11) as

(4.14)
∂

∂τ
ψ(τ, γ) =

2γ
1 + γ2

1√
1− τ2

− 2γ2

1 + γ2

1− γ2

1 + γ2 + (1− γ2)
√

1− τ2

and integrating (4.14) from τ to 1 we obtain

(4.15) ψ(1, τ)− ψ(τ, γ) =
2γ

1 + γ2
[arcsin 1− arcsin τ −R(τ, γ)]

where the remainder

R(τ, γ) =
∫ 1

τ

(1− γ2) ds
1 + γ2 + (1− γ2)

√
1− s2

satisfies trivially for all τ, γ ∈ [0, 1]

(4.16) 0 ≤ R(τ, γ) ≤ (1− τ).
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Moreover, integrating the elementary identity

1√
1− s2

=
1√
2

1√
1− s

+
√

1− s√
2
√

1 + s(
√

2 +
√

1 + s)

from τ to 1 we get

arcsin 1− arcsin τ =
√

2
√

1− τ + r(τ), 0 ≤ r(τ) ≤ 1
3
(1− τ)3/2.

In conclusion,

(4.17) ψ(1, γ)− ψ(τ, γ) =
2γ

1 + γ2
[
√

2
√

1− τ −R1(τ, γ)]

where

(4.18) R1(τ, γ) ≡ R(τ, γ)− r(τ), 0 ≤ R1(τ, γ) ≤ (1− τ) ∀γ, τ ∈ [0, 1].

Now, fix an integer N (which in the end will be taken equal to 2; but it is easier
to follow the method in the general form), let γ1, . . . , γN ∈]0, 1[ be small positive
parameters to be chosen and consider a linear combination of these solutions

(4.19) Ψ(τ) =
N∑

j=1

µj · ψ(τ, γj)

where the real coefficients µj will be precised in the following. Here we impose the
condition on µj

(4.20) Ψ(1) = 0, i.e.
N∑

j=1

µj arctan γj = 0.

Notice that this implies using (4.17), (4.18)

(4.21) Ψ(τ) =
∑ µjγj

1 + γ2
j

[
−2
√

2
√

1− τ +R1(τ, γj)
]

and in particular

(4.22) |Ψ(τ)| ≤ 6
√

1− τ2

∣∣∣∣∣∑ µjγj

1 + γ2
j

∣∣∣∣∣ .
Then given small positive parameters A,B ∈]0, 1[ to be chosen we define the ap-
proximate solution as

(4.23) φ(t, r) =

{
ρ2A(1− τ)BΨ(τ) (t, r) ∈ K
0 (t, r) 6∈ K.

We are using here the hyperbolic coordinates

ρ =
√
t2 − r2, τ =

r

t

inside K, thus we can also write

φ(t, r) = (t− r)A+B(t+ r)At−B
N∑

j=1

µjψ(r/t, γj).

First of all, we check that

(4.24) φ ∈ C(R;H1+ε(R2)) ∩ C1(R;Hε(R2)) ∀0 < ε < A.

It is easy to prove, by arguments similar to those outlined in Lemma 6.2 of the
Appendix, that the function

φ(1, r) = (1− r)A+B(1 + r)A
∑

µjψ(r, γj)
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(continued as 0 for r ≥ 1) belongs to H1+ε(R2) for any ε < A + B (and ε < 1),
provided condition (4.20) holds; indeed, (4.20) implies that∑

µjψ(r, γj) =
√

1− r2(C +O(
√

1− r2))

hence near r = 1

φ(1, r) = (1− r2)A+B+1/2(C +O(
√

1− r2)).

The computations of Lemma 6.2 refer to the special case A = B = 0. Now,
introducing the scaling operators

Sλv(x) = v(λx),

we can write for t > 0

(4.25) φ(t, r) = t2AS1/tφ(1, r).

We recall the well known property (s ∈ R)

‖Sλv‖Ḣs(Rn) = λs−n/2‖v‖Ḣs(Rn).

Moreover, we remark that for v ∈ Ḣs(Rn)

λ 7→ Sλv is continuous : {λ 6= 0} → Ḣs(Rn);

this is clear for s = 0, v ∈ C∞0 by uniform convergence, follows by density for any
v ∈ L2, and this implies the general result through the isomorphism Ḣs(Rn) '
L2(|ξ|2sdξ). Thus we see that t 7→ φ(t, r), i.e., t 7→ t2AS1/tφ(1, r), is continuous
from {t 6= 0} to H1+ε, for any ε < A+B, ε < 1. It only remains to prove continuity
as t→ 0; since φ ≡ 0 for t ≤ 0, this amounts to prove that

‖φ(t, ·)‖H1+ε ≡ t2A(t · ‖φ(1, ·)‖L2 + t−ε‖φ(1, ·)‖Ḣ1+ε) → 0

which is true for ε < 2A (we have used the properties of the scaling operator S1/t).
In conclusion, φ ∈ CH1+ε provided ε < min{1, 2A,A+B}.

The proof of the second part of (4.24) is analogous.
We must also check that for j = 1, 2

(4.26)
xj

|x|
φ ∈ C(R;H1+ε(R2));

by the same rescaling as above, we need only verify that at t = 1
xj

|x|
φ(1, r) ∈ H1+ε(R2).

We already know that φ(1, r) ∈ H1+ε(R2), and since xj/|x| is smooth away from 0,
by a cutoff argument we must only prove (4.26) near x = 0. This is obvious since
by the explicit expression of φ we see that φ(1, r) = r · φ̃(r) with φ̃ ∈ C∞ near 0.

We now estimate from below the H1 norm of φ. Recall that in the following
0 ≤ r ≤ 1 since for r > 1 we have defined φ(1, r) as 0. By the definition

φ(1, r) = (1− r)A+B(1 + r)AΨ(r),

we have, using (4.11),

(4.27) ∂rφ(1, r) = I + II

where
I = −[2Ar +B(1 + r)](1− r2)A−1(1− r)BΨ(r)

and

II = (1− r2)A−1/2(1− r)B
∑ 2µjγj

1 + γ2
j + (1− γ2

j )
√

1− r2
.
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Recalling (4.22), we can bound the first term from above by

|I| ≤ 12(A+B)(1− r2)A−1/2
∑

|µj |γj

and this gives
‖I‖L2 ≤ 6(A+B)A−1/2

∑
|µj |γj .

Using again (as in (4.14)) the identity

(4.28)
1

1 + γ2 + (1− γ2)
√

1− r2
=

1
1 + γ2

− 1− γ2

1 + γ2

√
1− r2

1 + γ2 + (1− γ2)
√

1− r2

we can split the second term as

II = II1 + II2,

where
II1 = 2(1− r2)A−1/2(1− r)B

∑ µjγj

1 + γ2
j

and

II2 = −2(1− r2)A(1− r)B
∑ µj

1 + γ2
j + (1− γ2

j )
√

1− r2

1− γ2
j

1 + γ2
j

;

an elementary computation gives

‖II2‖L2 ≤ 2
∑

|µj |

provided A, γj ∈]0, 1[, while

‖II1‖L2 ≥ 1
2
(A+B)−1/2

∣∣∣∣∣∑ µjγj

1 + γ2
j

∣∣∣∣∣ .
In conclusion, we have proved that

(4.29) ‖φ(1, ·)‖Ḣ1 ≥
1

2
√
A+B

∣∣∣∣∣∑ µjγj

1 + γ2
j

∣∣∣∣∣− 6
A+B√

A

∑
|µj |γj − 2

∑
|µj |.

Finally, to estimate from below the norm of φ(t, r) it is sufficient to recall that for
t > 0

‖φ(t, ·)‖H1 ≥ t2A‖φ(1, ·)‖Ḣ1

by the scaling properties of Ḣ1(R2). A similar estimate from below holds for
‖∂tφ(t, ·)‖L2 .

We now show that the function φ constructed above is a weak solution of the
wave map equation with an appropriate forcing term. First of all, we define a
function g(t, r) as follows: g ≡ 0 outside the future light cone K, while inside K
(ρ =

√
t2 − r2, τ = r/t)

(4.30) g(t, r) = [�, ρ2A(1− τ)B ]Ψ(r/t)− ρ2A(1− τ)B
∑

µj
sin(2ψ(r/t, γj))

2r2
.

Notice that inside K we have trivially

�φ = �
(
ρ2A(1− τ)B

∑
µjψ(τ, γj)

)
= g(t, r);

our aim is to show that �φ = g in distribution sense on R× R2.
Since g ∈ L1

loc(R× R2), we must show that, for any test function χ(t, x),∫
(φ�χ− gχ) dtdx = 0.

Introducing the shifted cone

Kε = {(t, x) : t ≥ |x|+ ε}
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this is equivalent to show that∫
Kε

(φ�χ− gχ) dtdx→ 0

as ε→ 0, since g, φ vanish outside K. On Kε we can integrate by parts and use the
identity �φ = g, hence only boundary terms remain and we are left to show that∫

R2

[
−φ · (χt +

x

|x|
· ∇χ) + χ · (φt + φr)

]∣∣∣∣
t=r+ε

dx→ 0.

The first group of terms is bounded by

C

∫
Ω

|φ(r + ε, r)|rdr

(Ω = support of χ) and this quantity tends to 0 since

|φ(r + ε, r)| = εA+B(2r + ε)A(r + ε)−B |Ψ| ≤ CεA(2r + ε)A.

Thus we only have to show that

(4.31)
∫
χ · (φt + φr)|t=r+ε dx→ 0.

Recalling that
φ(t, r) = t2Aφ(1, r/t)

we have easily
φr(t, r) = t2A−1φr(1, r/t)

and
φt(t, r) + φr(t, r) = 2At−1φ(t, r) + t−1(t− r)φr(t, r),

whence

(φt + φr)|t=r+ε =
2A
r + ε

φ(r + ε, r) +
ε

r + ε
φr(r + ε, r).

The first term is easy to control, since φ = ρ2A(1− τ)BΨ and Ψ is bounded:∣∣∣∣ 2A
r + ε

φ(r + ε, r)
∣∣∣∣ = 2AεA+B (2r + ε)B

(r + ε)1+B
|Ψ| ≤ CA

εA+B

r + ε

and of course ∫
Ω

εA+B

r + ε
rdr → 0.

The second term is more difficult. Since

φr(t, r) = −[2Ar +B(t+ r)](t− r)A+B−1(t+ r)A−1t−BΨ(r/t)+

+(t− r)A+B(t+ r)At−B−1∂τΨ(r/t),

we have

φr(r + ε, r) = −[2(A+B)r +Bε]
εA+B−1(2r + ε)A−1

(r + ε)B
Ψ
(

r

r + ε

)
+

+
εA+B(2r + ε)A

(r + ε)B+1
∂τΨ

(
r

r + ε

)
;

using |Ψ| ≤ C and |∂τΨ(τ)| ≤ C(1− τ2)−1/2 (see (4.13)) we obtain

|φr(r + ε, r)| ≤ CεA+B−1(r + ε)A−B + CεA+B−1/2(r + ε)A−B−1/2

which implies
|φr(r + ε, r)| ≤ CεA−1(r + ε)A.
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Multiplying by ε(r + ε)−1 and integrating on the support of χ we thus obtain∫
Ω

ε

(r + ε)
|φr(r + ε, r)|rdr ≤ C

∫
Ω

[
εA(r + ε)A−1

]
rdr ≤ CεA → 0

and this proves our claim.
We can rewrite the equation �φ = g as follows:

(4.32) �φ+
sin(2φ)

2r2
= h(t, r)

where h(t, r) is defined as 0 outside K while, inside K,
(4.33)

h(t, r) = [�, ρ2A(1− τ)B ]Ψ(r/t) +
sin(2φ)

2r2
− ρ2A(1− τ)B

∑
µj

sin(2ψ(r/t, γj))
2r2

.

We shall now estimate the LpLq norm of h(t, r). To this end we split it as

h = h1 + h2

with

(4.34) h1 = [�, ρ2A(1− τ)B ]Ψ(r/t)

and

(4.35) h2 =
sin(2φ)

2r2
− ρ2A(1− τ)B

∑
µj

sin(2ψ(r/t, γj))
2r2

.

Notice that h1, h2 are locally integrable functions.
Consider h1 first. Using the hyperbolic coordinates ρ =

√
t2 − r2, τ = r/t, inside

the future light cone K the commutator can be written

[�, ρ2A(1− τ)A] = X + c1(ρ, τ) + c2(ρ, τ),

where X is the vector field

(4.36) X = 4Aρ2A−1(1− τ)B ∂

∂ρ
+ 2Bρ2A−2(1− τ)B+1(1 + τ)2

∂

∂τ

while c1, c2 are the functions

(4.37) c1(ρ, τ) = [2A(2A+ 1)− 2B(2B − 1)]ρ2A−2(1− τ)B ,

(4.38) c2(ρ, τ) = Bρ2A−2(1− τ)B+1[3B + 5 + (B − 1)τ − τ−1].

Applying X to Ψ which is a function of τ only, and using formula (4.14) we get

XΨ = I + II

where
I = 2Bρ2A−2(1− τ)B+1/2(1 + τ)3/2

∑ 2µjγj

1 + γ2
j

and

II = −2Bρ2A−2(1− τ)B+1(1 + τ)2
∑ 1− γ2

j

1 + γ2
j

· 2µjγj

1 + γ2
j + (1− γ2

j )
√

1− τ2
.

Moreover recalling (4.21) we have

c1Ψ = III + IV

where

III = −4
√

2[A(2A+ 1)−B(2B − 1)]ρ2A−2(1− τ)B+1/2
∑ µjγj

1 + γ2
j

and
|IV | = |c1| ·

∑
|µjγjR1| ≤ 12(A+B)ρ2A−2(1− τ)B+1

∑
|µj |γj .
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Now we have
h1 = I + II + III + IV + c2Ψ;

the sum I + III using (4.17) gives

I+III =

4ρ2A−2(1− τ)B+1/2
∑ µjγj

1 + γ2
j

[
B(1 + τ)3/2 − (A(2A+ 1)−B(2B − 1))

√
2
]
.

This term is quite dangerous, i.e. is not in L1L2 unless we impose the condition

(4.39) A = B

which ensures that the quantity in square brackets vanishes at τ = 1. With (4.39)
we get immediately

(4.40) |I + III| ≤ 16Aρ2A−2(1− τ)B+3/2
∑

|µj |γj .

The remaining terms are quite easy to handle. We have already estimated IV , for
II we have directly

|II| ≤ 8Bρ2A−2(1− τ)B+1
∑

|µj |γj

and for c2Ψ we have, recalling estimate (4.12),

|c2Ψ| ≤ 12Bρ2A−2(1− τ)B+1
∑

|µj |γj .

Summing up, we proved that (A = B)

|h1| ≤ 64Aρ2A−2(1− τ)B+1
∑

|µj |γj .

or equivalently

|h1| ≤ 64A(t− r)A+B(t+ r)A−1t−B−1
∑

|µj |γj .

Since for T > 0, and for all p, q > 0 such that

(4.41) λ ≡ 1
p

+
2
q
− 2 ≥ 0

we have

‖(t− r)A+B(t+ r)A−1t−B−1‖Lp([0,T ],Lq(t>r)) ≤
T

2A
p +λ[

2A
p + λ

]1/p
,

we obtain

(4.42) ‖h1‖Lp([−T,T ];Lq) ≤ 64T
2A
p +λA

[
2A
p

+ λ

]−1/p∑
|µj |γj .

Consider now h2, given by

h2 =
sin(2φ)

2r2
− ρ2A(1− τ)B

∑
µj

sin(2ψ(τ, γj))
2r2

.

We can certainly write

1
2

sin(2s) = s+ s3r0(s), |r0(s)| =
| cos(θ)|

12
≤ 1

where r0(s) is an entire function; thus

sin(2φ)
2r2

=
ρ2A(1− τ)B

r2
Ψ +

φ3

r2
r0(φ).

Hence recalling that Ψ =
∑
µjψ(τ, γj) we can split h2 as

h2 = I + II
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where

(4.43) I =
2
r2
ρ2A(1− τ)B

∑
µj

[
2 arctan

(
γjτ

1 +
√

1− τ2

)
− 1

2
sin(2ψ(τ, γj))

]
and

(4.44) II =
φ3

r2
r0(φ).

To estimate the quantity I we notice the following identity:

1
2

sin(2ψ(τ, γ)) = α ·
√

1− α2 = 2γτ
1− γ2 + (1 + γ2)

√
1− τ2

[1 + γ2 + (1− γ2)
√

1− τ2]2
;

this implies, by direct computation,

∂

∂τ

(
2 arctan

(
γτ

1 +
√

1− τ2

)
− 1

2
sin(2ψ(τ, γ))

)
=

=
16γ3τ3

√
1− τ2

[
1 + γ2 + (1− γ2)

√
1− τ2

]2 .(4.45)

Integrating (3.25) from 0 to τ we obtain easily

(4.46) 0 ≤ 2 arctan
(

γτ

1 +
√

1− τ2

)
− 1

2
sin(2ψ(τ, γ)) ≤ 32γ3τ3,

and plugging this into (4.43) we obtain

|I| ≤ 64
r2
ρ2A(1− τ)Bτ3

∑
|µj |γ3

j .

As to the remainder, we can use the inequality |ψ(τ, γ)| ≤ 2γτ to obtain

|φ|3 ≤ 8ρ6A(1− τ)3Bτ3
∣∣∣∑µjγj

∣∣∣3 ≤ 8N3ρ6A(1− τ)3Bτ3
∑

|µj |3γ3
j

and this implies

|II| ≤ 8N3 1
r2
ρ2A(1− τ)Bτ3

∑
|µj |3γ3

j .

In conclusion

|h2| = |I + II| ≤ 64N3 1
r2
ρ2A(1− τ)Bτ3

∑
(|µj |+ |µj |3)γ3

j ;

since
1
r2
ρ2A(1− τ)Bτ3 = (t− r)A+B(t+ r)At−B−3r

and, for T > 0,

‖(t− r)A+B(t+ r)At−B−3r‖Lp([0,T ],Lq(t>r)) ≤ 2
T

2A
p +λ[

2A
p + λ

]
where λ ≥ 0 is given by (4.41), we have proved that

(4.47) ‖h2‖Lp([−T,T ];Lq) ≤ 128N3T
2A
p +λ

[
2A
p

+ λ

]−1/p∑
(|µj |+ |µj |3)γj

3
.

In conclusion, by (4.42) and (4.47) we find
(4.48)

‖h‖Lp([−T,T ];Lq) ≤ 128N3T
2A
p +λ

[
2A
p

+ λ

]−1/p∑
|µj |γj

[
A+ γ2

j (1 + |µj |2)
]
.

We are now ready to choose the parameters. Given a small parameter a > 0 we
shall express all the other quantities in terms of it. First of all we take

(4.49) γj = tan(a · j), j = 1, 2, . . .
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so that the condition (4.20) on µj becomes
N∑

j=1

µj · j = 0;

clearly it is sufficient to take

(4.50) N = 2, µ1 = 2, µ2 = −1.

Notice that
2γj

1 + γ2
j

= sin(aj/2).

Then estimate (4.29) gives for t > 0

(4.51) ‖φ(T, ·)‖H1 ≥ TAA−1/2(2 sin(a/2)− sin(a)) ≥ CTAA−1/2a3.

Since we want this quantity to be unbounded as a→ 0, we must choose

A = aδ+6

for some δ > 0. Then estimate (4.48) gives

‖h‖LpLq ≤ CT
2A
p +λ

[
2a6+δ

p
+ λ

]−1/p

a3.

This quantity tends to 0 as a → 0 when λ > 0, i.e., when condition (4.3) holds.
This concludes the proof of our theorem.

�

5. Appendix A: The self-similar ODE

This section is devoted to a complete study of the equation

(5.1) τ2(τ2 − 1)ψ′′ + τ(2τ2 − 1)ψ′ + k2 sinψ cosψ = 0.

which governs the profile of self-similar solutions φ(t, r) = ψ(r/t) to equation (2.5).
Here k ≥ 1 is any integer.

We can express all the solutions to (5.1) in an explicit form using Jacobi elliptic
functions. These functions are usually introduced as doubly periodic meromorphic
functions with suitable additional properties; but the standard definition is only
given for restricted values the parameters, hence from our standpoint it is both too
general and too restrictive. For convenience of the reader, we construct them from
scratch in a very short but complete way.

Remark 5.1. Jacobi elliptic functions on R. Consider the system of ODEs
for the functions f, g, h : R → R

f ′ = gh(5.2)

g′ = −hf(5.3)

h′ = −m2fg(5.4)

where m is a fixed real number, subject to the initial conditions

(5.5) f(0) = 0, g(0) = 1, h(0) = 1.

It is clear that the system admits a unique C1 solution (f, g, h) which is in fact real
analytic and can be prolonged on the whole R using the first integrals of the system

(5.6) f2 + g2 = 1, m2f2 + h2 = 1, m2g2 − h2 = 1

which follow at once from the equations. The standard notation for these functions
is

f = sn (t|m), g = cn (t|m), h = dn (t|m).
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Notice that in the literature the parameter m is usually restricted to the range
[0, 1[, which is not sufficient for our purposes. It is clear by the definition that

sn (t|m) = sn (t| −m), cn (t|m) = cn (t| −m), dn (t|m) = dn (t| −m).

Squaring the equations and using the conservation laws (5.6), we obtain immedi-
ately

(5.7) f ′
2 = (1− f2)(1−m2f2),

(5.8) g′
2 = (1− g2)(1−m2 +m2g2),

(5.9) h′
2 = −(1− h2)(1−m2 − h2).

From (5.7)-(5.9) it is immediate to obtain several properties of the elliptic functions.
Consider first the case |m| < 1. Then sn (t|m) and cn (t|m) are periodic with

period 4K(m), where

(5.10) K(m) =
∫ π/2

0

ds√
1−m2 sin2 s

is called the complete integral of the first species. The couple (sn (t|m), cn (t|m))
has a behaviour similar to the couple (sin, cos), i.e., they oscillate between ±1, and
indeed we have in the special case m = 0

sn (t|0) = sin t, cn (t|0) = cos t.

Moreover the zeroes of sn (t|m) are t = 2jK(m) and those of cn (t|m) are (2j +
1)K(m), j ∈ Z. On the other hand, the function dn (t|m) has period 2K(m) and
oscillates between the values 1 and

√
1−m2, thus it is strictly positive (and is

identically 1 when m = 0). A fundamental property connecting elliptic functions
with elliptic integrals is the following: for fixed |m| < 1,

(5.11) if
∫ α

0

ds√
1−m2 sins s

= β then sinα = sn (β|m), cosα = cn (β|m).

This follows from (5.7), (5.8) through the change of variables f → sin f , g → cos g.
When |m| > 1 the behaviour changes. The function sn (t|m) oscillates between

±1/m, and indeed we have the formula

(5.12) sn (t|m) =
1
m

sn (mt|m−1)

from which we see that the period is 4K(m−1)m−1 and the zeroes 2jK(m−1)m−1.
The functions cn (t|m) and dn (t|m) exchange with each other according to the
formulas

(5.13) cn (t|m) = dn (mt|m−1), dn (t|m) = cn (mt|m−1)

so that, for |m| > 1, cn (t|m) is strictly positive, oscillates between 1 and
√

1−m−2

and has period 2K(m−1)m−1, while dn (t|m) oscillates between ±1 and has period
4K(m−1)m−1.

When |m| = 1 we have simply

(5.14) sn (t|1) = tanh t =
et − e−t

et + e−t
, cn (t|1) = dn (t|1) =

1
cosh t

=
2

et + e−t
.

We finally introduce the fourth Jacobi function called the amplitude and con-
nected to the above through the relations

(5.15) sn (t|m) = sin(am (t|m)), cn (t|m) = cos(am (t|m)).
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When |m| < 1 we can compute for |t| < K(m) (i.e., between the first zeroes of cn)

(5.16) am (t|m) = arctan
sn (t|m)
cn (t|m)

.

Actually am (t|m) extends as an analytic function for all t ∈ R; indeed, by (5.11)
we have immediately

(5.17) if
∫ α

0

ds√
1−m2 sins s

= β then α = am(β|m) (|m| < 1)

which means that am (t|m) is the inverse function of the integral to the right,
regarded as a function of α. This equivalent definition of am (t|m) is meaningful
for any t, provided |m| < 1.

When |m| > 1 we can use for all t definition (5.16), since cn (t|m) is strictly
positive then; thus am (t|m) is 4K(m−1)/m−1 periodic and oscillates between the
values ± arctan[(m2 − 1)−1/2]. Notice that also in this case am (t|m) inverts the
elliptic integral as in (5.17), but only on a finite interval:
(5.18)

if
∫ α

0

ds√
1−m2 sins s

= β then α = am (β|m) (|m| > 1, |α| < arcsin(|m|−1))

The zeroes of am (t|m) are the same of sn (t|m), that is to say 2jK(m−1)m−1.
When |m| = 1 we have

(5.19) am (t|1) = 2 arctan(et)− π

2
= 2 arctan

et − 1
et + 1

.

We are now ready to prove the

Proposition 5.1. Consider the equation

(5.20) τ2(τ2 − 1)ψ′′ + τ(2τ2 − 1)ψ′ + k2 sinψ cosψ = 0.

(i) If ψ is a solution, also jπ ± ψ are solutions, j ∈ Z. (Thus it is sufficient to
study the solutions in the range [0, π/2]). The only constant solutions are given by
ψ(τ) = jπ/2.

(ii) If ψ(τ) is a C1 solution near a point τ0 ∈]0, 1[, then ψ can be extended to an
analytic function on the whole interval ]0, 1[. Moreover, the limits

λ = lim
τ↑1

ψ(τ), µ = lim
τ↑1

ψ′(τ)
√

1− τ2

exist and characterize uniquely the solution ψ. Indeed, for λ ∈]0, π/2[ and any µ, or
for λ = 0, π/2 and µ 6= 0 (the excluded cases correspond to the constant solutions),
we can represent ψ(τ) as follows:
(5.21)

ψ(τ) =
π

2
− am

(
(1 + q0)1/2

[
q1 + sgnµ · k · arctanh

√
1− τ2

] ∣∣∣∣∣(1 + q0)−1/2

)
where

(5.22) q0 =
µ2

k2
− sin2 λ, q1 =

∫ π/2

λ

ds√
q0 + sin2 s

and sgnµ must be replaced by −1 when µ = 0.
(iii) If ψ(τ) is a C1 solution near a point τ0 > 1, then ψ can be extended to an

analytic function on the whole interval ]1,∞[. Moreover, the limits

λ = lim
τ↓1

ψ(τ), µ = lim
τ↓1

ψ′(τ)
√
τ2 − 1
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exist and characterize uniquely the solution ψ. Indeed, for λ ∈]0, π/2[ and any µ, or
for λ = 0, π/2 and µ 6= 0 (the excluded cases correspond to the constant solutions),
we can represent ψ(τ) as follows:

(5.23) ψ(τ) = am

(
q
1/2
0

[
q1 + sgnµ · k · arctan

√
τ2 − 1

] ∣∣∣∣∣q−1/2
0

)
where

(5.24) q0 =
µ2

k2
+ sin2 λ, q1 =

∫ λ

0

ds√
q0 − sin2 s

and sgnµ must be replaced by −1 when µ = 0.

Remark 5.2. Before sketching the proof, we single out a few solutions with special
properties that are used in the paper.

(a) For τ ∈]0, 1[, most of the solutions given by (5.21) have a nasty behaviour
near 0, indeed arctanh is unbounded near 1 and am (t|m) either has a linear growth
(|m| < 1) or oscillates (|m| > 1). The only good solutions are obtained when q0 = 0,
i.e., with the choice
(5.25)

λ ∈]0, π/2], µ = ±k sinλ ⇒ q0 = 0, q1 =
∫ π/2

λ

ds

sin s
= − log tan

λ

2
;

recalling (5.19) and the identities

exp(arctanh
√

1− τ2) =
1 +

√
1− τ2

τ
,

π

2
− arctanx = arctan

1
x

we obtain

(5.26) ψ(τ) = 2 arctan

[
tan

λ

2
·
(

τ

1±
√

1− τ2

)k
]

where ± = sgnµ. It is useful to compute also

(5.27) sinψ(τ) =
2γτk

(1±
√

1− τ2)k + γ2(1∓
√

1− τ2)k
, γ = tan

λ

2
,

and

(5.28) cosψ(τ) =
(1±

√
1− τ2)k − γ2(1∓

√
1− τ2)k

(1±
√

1− τ2)k + γ2(1∓
√

1− τ2)k
, γ = tan

λ

2
,

where ± = sgnµ (and ∓ = −sgnµ).
(b) The solutions for τ > 1 have a nice behaviour, and in particular they are

monotone; we shall be interested in small solutions with the property ψ → 0 as
τ →∞. Actually we have:

for any fixed k ≥ 1 and small δ > 0 we can find (unique) λ, µ
such that q0 = δ2 and the solution given by (5.23) tends to 0 as
τ → +∞. The solution is monotone decreasing for odd k and
monotone increasing for even k. In particular, for k = 1 we can
choose q1 = π/2 and the solution is given by

(5.29) ψ(τ) = am

(
δ arctan

1√
τ2 − 1

∣∣∣∣∣1δ
)
,

so that, recalling formulas (5.13),

(5.30) sinψ(τ) = δ · sn
(

arctan
1√

τ2 − 1

∣∣∣δ) ,
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(5.31) cosψ(τ) = dn
(

arctan
1√

τ2 − 1

∣∣∣δ) ,
Indeed, since q0 < 1, the amplitude function in (5.23) has a periodic behaviour,
with zeroes in the points 2jK(q1/2

0 )q1/2
0 . Recall that

K(q1/2
0 ) =

∫ π/2

0

ds√
1− q0 sin2 s

=
∫ arcsin

√
q0

0

ds√
q0 − sin2 s

,

while

q1 =
∫ λ

0

ds√
q0 − sin2 s

.

Notice that q1 ≤ K(q1/2
0 ) for small λ, µ since

λ ≤ arcsin
√
q0 = arcsin

√
sin2 λ+ µ2/k2;

more precisely, if we keep q0 fixed and change the value of λ, µ, we see that q1 takes
all the values from 0 (when λ = 0) to K(q1/2

0 ) (when µ = 0). Moreover, K(m)
is a strictly increasing function for 0 < m < 1, with K(m) ↓ π/2 as m ↓ 0 and
K(m) ↑ ∞ as m ↑ 1. Now the solution (5.23) tends to 0 as τ → ∞ provided the
argument s of am (s|q−1/2

0 ) approaches one of the zeroes, i.e., provided we can find
j ∈ Z such that

(5.32) q1 + sgnµ · kπ
2

= 2jK(q1/2
0 ).

If k > 0 is odd, we can write k = −2j + 1 for a negative integer j and choosing
µ < 0 condition (5.32) becomes

q1 =
π

2
+ |2j|

(π
2
−K(q1/2

0 )
)
.

The right hand side is slightly less than π/2 for small q0, and keeping the value of
q0 fixed we can find λ, µ such that the condition is satisfied (since q1 ranges from 0
to K(q1/2

0 ) > π/2). Thus our claim is proved for odd k. A similar argument holds
for even k (we choose now 2j = k and µ > 0).

Proof. The claims of part (i) are self-evident. We now prove (ii). It is clear that ψ
defined near τ0 ∈]0, 1[ is analytic; if we multiply the equation by ψ′ we obtain the
identity [

τ2(1− τ2)ψ′(τ)2 − k2 sin2 ψ
]′

= 0,

i.e.,
τ2(1− τ2)ψ′(τ)2 − k2 sin2 ψ = const.

A first consequence is that we can extend the solution of (5.20) ψ on the whole
interval ]0, 1[ since ψ′ must be bounded on any compact subinterval. Moreover,
setting g(

√
1− τ2) = ψ(τ), we see that the function g(s) satisfies the differential

equation

τ4g′(
√

1− τ2)2 − k2 sin2 g(
√

1− τ2) = const.

i.e.,
(1− s2)2g′(s)2 − k2 sin2 g(s) = const.

Thus we see that g(s) is an analytic function near s = 0, and this implies that both
ψ(τ) = g(

√
1− τ2) and

√
1− τ2ψ′(τ) = −τg′(

√
1− τ2) have a limit as τ ↑ 1, as

claimed. Defining λ, µ, q0, q1 as in the statement, we can write

τ2(1− τ2)ψ′(τ)2 − k2 sin2 ψ = q0k
2
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or equivalently
ψ′(τ)2

q0 + sin2 ψ
=

k2

τ2(1− τ2)
and hence

ψ′(τ)
(q0 + sin2 ψ)1/2

= ± k

τ
√

1− τ2

where ± = sgnµ. To solve this we set χ = −ψ + π/2 and obtain

χ′(τ)
(q0 + 1− sin2 χ)1/2

= ∓ k

τ
√

1− τ2
.

We can now integrate between τ and 1; for τ close enough to 1, recalling (5.17),
we obtain immediately that (5.21) holds in a left neighborhood of 1 and hence on
]0, 1[ by analyticity.

The proof of part (iii) is analogous. �

6. Appendix B: Some technical Lemmas

We recall the standard definitions

‖u‖B1
2,∞(R2) = ‖u‖L2 + sup

j∈Z
2j‖û‖L2(2j−1≤|ξ|≤2j+1),

and, for any open set Ω,

‖u‖B1
2,∞(Ω) = inf{‖u1‖B1

2,∞(R2) : u1 ∈ B1
2,∞(R2), u1 |Ω = u}

Of course B1
2,∞(Ω) can be defined as the space of restrictions to Ω of functions

in ‖u‖B1
2,∞(R2), which in turn are the temperate distributions for which the above

norm is defined and finite. For details see [19], §4.2.1.

Lemma 6.1. The function

θ(x) =
x

|x|
belongs locally to the Besov space B1

2,∞, i.e., it belongs to B1
2,∞(Ω) for any bounded

open set Ω ⊆ R2.

Proof. By the definition of B1
2,∞(Ω), it is sufficient to show that ψ(x)θ(x) is in

B1
2,∞(R2) for any cutoff function ψ ∈ C∞c (Rn). First of all we recall that the

Fourier transform of the L∞(R2) function θ(x) can be expressed as

θ̂(ξ) = P.V.
ξ

|ξ|3
= lim

ε↓0
χε

ξ

|ξ|3
, χε(ξ) = 1 for |ξ| ≥ ε, 0 elsewhere

where P.V. (meaning principal value) is exactly defined as the limit in distribution
sense at the right hand side (see e.g. [15], p.164 ff.). Thus we are led to estimate
the quantities ∥∥∥∥∥

∫
|ξ|≥ε

ψ̂(ξ − η)
η

|η|3
dη

∥∥∥∥∥
L2(2j−1≤|ξ|≤2j+1)

uniformly with respect to ε. We split the integral as follows∫
|η|≥ε

ψ̂(ξ − η)
η

|η|3
dη =

∫
1≥|η|≥ε

+
∫
|η|≥1

= Iε(ξ) + II(ξ).

The first part can be handled by the standard trick

Iε =
∫

1≥|η|≥ε

ψ̂(ξ − η)
η

|η|3
dη =

∫
1≥|η|≥ε

[ψ̂(ξ − η)− ψ̂(ξ)]
η

|η|3
dη
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since η has average 0 on the sphere. We recall now that ψ̂ is rapidly decreasing and
hence satisfies

(6.1) |∇ηψ̂(η)|+ |ψ̂(η)| ≤ CN 〈η〉−N , 〈η〉2 = 1 + |η|2

for any N ; thus by Taylor’s formula, if |η| ≤ 1,

|ψ̂(ξ − η)− ψ̂(ξ)| ≤ sup
0≤θ≤1

∣∣∣∇ηψ̂(ξ − θη)
∣∣∣ · |η| ≤ CN 〈ξ〉−N |η|

where CN is independent of ε. This gives

|Iε(ξ)| ≤ CN 〈ξ〉−N

∫
|η|≤1

|η|−1dη ≤ CN 〈ξ〉−N

whence, choosing N = 3,

(6.2) ‖Iε‖L2(2j−1≤|ξ|≤2j+1) ≤ C02−j

with C0 independent of ε.
We now estimate II(ξ), which corresponds to the integration on |η| ≥ 1. When

|ξ| ≤ 1 it is sufficient to remark that for any N

|ψ̂(ξ − η)| ≤ C〈η〉−N

and this gives immediately

(6.3) ‖II‖L2(|ξ|≤1) ≤ C.

It remains to consider the L2 norm of II(ξ) when |ξ| ∼ 2j , j ≥ 0. We can split II
as

II(ξ) =
∫
|η|≤|ξ|/2

ψ̂(ξ − η)
η

|η|3
dη +

∫
|η|≥|ξ|/2

ψ̂(ξ − η)
η

|η|3
dη = II1 + II2.

When |η| ≤ |ξ|/2 we have

|ψ̂(ξ − η)| ≤ C〈ξ − η〉−N ≤ C〈ξ〉−N

which implies

(6.4) ‖II1‖L2(2j−1≤|ξ|≤2j+1) ≤ C2−j ;

on the other hand, when |η| ≥ |ξ|/2, we have directly

|II2(ξ)| ≤ |ξ|−2

∫
|ψ̂(ξ − η)|dη ≤ C|ξ|−2

and this gives

(6.5) ‖II2‖L2(2j−1≤|ξ|≤2j+1) ≤ C2−j .

In conclusion, by (6.2), (6.4), (6.5) we obtain∥∥∥∥∥
∫
|ξ|≥ε

ψ̂(ξ − η)
η

|η|3
dη

∥∥∥∥∥
L2(2j−1≤|ξ|≤2j+1)

≤ C · 2−j

whence the result follows. �

For our second Lemma we need an alternative expression of the Besov norm (see
e.g. [15], §2.5.1): given δ > 0, which may be chosen arbitrarily,

‖u‖B1
2,∞(R2) ' ‖u‖L2 + sup

|h|≤δ

|h|−1‖∆2
hu‖L2(R2).

Here ∆2
h is the second difference operator

∆2
hf(x) = f(x+ 2h)− 2f(x+ h) + f(x),

while the first difference operator is simply

∆1
hf(x) = f(x+ h)− f(x).
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Lemma 6.2. Consider the function on R2

λ(x) =
√

1− |x|2 for |x| ≤ 1, 0 elsewhere, .

Then, given any f(s, x) ∈ C2(R+ × R2) with bounded derivatives, the composition
f(λ(x), x) belongs locally to the Besov space B1

2,∞, i.e., it belongs to B1
2,∞(Ω) for

any bounded open set Ω ⊆ R2. In particular, λ(x) itself belongs to B1
2,∞(R2).

Proof. Choose any cutoff function ψ(x), and define

g(x) = ψ(x)f(
√

1− |x|2, x).

We need a suitable estimate for ∆2
hg(x). Notice that, given any C2 function Φ(y)

on RN and any locally bounded function γ : Rn → RN , the following formulas hold:

∆1
hΦ(γ(x)) = 〈a,∆1

hγ(x)〉

where a = a(γ(x+ h), γ(x)), for a suitable C1 vector valued function a(y, z), and

∆2
hΦ(γ(x)) = 〈a,∆2

hγ(x)〉+ 〈A1∆1
hγ(x+ h),∆1

hγ(x)〉+ 〈A2∆1
hγ(x),∆

1
hγ(x)〉,

where a = a(γ(x + h), γ(x)), Aj = Aj(γ(x + 2h), γ(x + h), γ(x)), for a(y, z),
Aj(y, z, p) continuous functions of their arguments (vector- and matrix- valued re-
spectively). If we apply these formulas to g(x), since x, h run on a compact set we
get

(6.6) |∆1
hg(x)| ≤ C|∆1

hλ(x)|

and

(6.7) |∆2
hg(x)| ≤ C|∆2

hλ(x)|+ C|∆1
hλ(x)|2 + C|∆1

hλ(x+ h)|2

with C independent of x, h. We are thus reduced to estimate the differences of
λ(x). For a fixed |h| ≤ 1/4, we split R2 in the three domains |x| > 1 + 3|h|,
1 + 3|h| > |x| > 1− 3|h| and |x| < 1− 3|h|. In the first one we have simply

(6.8) ∆1
hλ(x) = ∆1

hλ(x+ h) = ∆2
hλ(x) = 0.

In the region 1 + 3|h| > |x| > 1− 3|h| we have directly

|∆1
hλ(x)| ≤ 6|h|1/2, |∆1

hλ(x+ h)| ≤ 7|h|1/2, |∆2
hλ(x)| ≤ 16|h|1/2

and since the measure of the region is 12π|h| we obtain for some constant indepen-
dent of h

(6.9)
∥∥|∆1

hλ(x)|+ |∆1
hλ(x+ h)|

∥∥
L2(1+3|h|>|x|>1−3|h|) ≤ C|h|.

(6.10) ‖∆2
hλ‖L2(1+3|h|>|x|>1−3|h|) ≤ C|h|.

In the last region |x| < 1− 3|h| some more computation is needed; notice that here
λ(x) =

√
1− |x|2. We have

∆1
h

√
1− |x|2 = − |h|2 + 2x · h√

1− |x|2 +
√

1− |x+ h|2

and this implies
|∆1

h

√
1− |x|2| ≤ 2|h|1/2;

the inequality
|∆1

h

√
1− |x+ h|2| ≤ 2|h|1/2

is analogous. Thus we have

(6.11)
∥∥∥∣∣∣∆1

h

√
1− |x|2

∣∣∣+ ∣∣∣∆1
h

√
1− |x+ h|2

∣∣∣∥∥∥
L2(|x|<1−3|h|)

≤ C|h|
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with C independent of h. In a similar way, some elementary algebra gives

(6.12) ∆2
h

√
1− |x|2 =

|h|2

m1
− 3

|h|2

m2
− 2x · h |h|

2 + 2x · h
m1 ·m2 ·m3

,

where we have introduced the quantities

m1 =
√

1− |x|2 +
√

1− |x+ h|2,

m2 =
√

1− |x|2 +
√

1− |x+ 2h|2,
m3 =

√
1− |x+ 2h|2 +

√
1− |x+ h|2.

Since |x| < 1−3|h|, we have m1 ≥ 2|h|1/2, m2 ≥ 2|h|1/2, and this allows to estimate
the first two terms in (6.12) as follows:∣∣∣∣ |h|2m1

− 3
|h|2

m2

∣∣∣∣ ≤ 2|h|3/2.

On the other hand, |x| ≤ 1− 3|h| implies

2|x+ h|2 ≤ |x|2 + |x|2 + 2|h|2 + 4|x| · |h| ≤ |x|2 + 1

whence
2− 2|x+ h|2 ≥ 1− |x|2,

and this implies

m3 ≥
1
2

√
1− |x|2,

while it is obvious that

m1 ≥
√

1− |x|2, m2 ≥
√

1− |x|2.
These inequalities give for the third term in (6.12)∣∣∣∣2x · h |h|2 + 2x · h

m1 ·m2 ·m3

∣∣∣∣ ≤ 12|h|2

(1− |x|2)3/2
.

Summing up, we have obtained on the region |x| < 1− 3|h| the inequality

|∆2
h

√
1− |x|2|2|h|3/2 +

12|h|2

(1− |x|2)3/2

and integrating with respect to x we obtain

(6.13)
∥∥∥∆2

h

√
1− |x|2

∥∥∥
L2(|x|<1−3|h|)

≤ C|h|

with C independent of h. In conclusion, (6.8), (6.9), (6.10), (6.11), (6.13) combined
with (6.7) give

‖∆2
hg‖L2(R2) ≤ C|h|

and this implies the thesis. �

The last lemma is useful to check whether the distributional derivative of a
piecewise smooth function coincides with its derivative a.e.:

Lemma 6.3. Let Ω ⊆ Rn be an open set and K ⊆ Rn be a closed set, and denote
by Kε = {x : d(x,K) < ε} the ε-neighborhood of K. Let f ∈ L1

loc(Ω) be a function,
differentiable a.e. on Ω \K with differential ∇f . Assume that

(i) ∇f is in L1
loc(Ω \K) and coincides with the distributional derivative of f on

Ω \K;
(ii) there exists a smooth function h(x) defined on a neighborhood of K such that

for any compact set B ⊆ Ω

(6.14) lim
ε↓0

1
ε

∫
Kε∩B

|f − h|dx = 0.
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Then the distributional derivative of f coincides with the function g ∈ L1
loc(Ω)

defined as ∇f on Ω \K and ∇h on K.
If in addition K has measure 0, then the distributional derivative and the deriv-

ative a.e. of f on Ω coincide.

Proof. Let ρε be a sequence of standard mollifiers with support in B(0, ε) and set

φε = ρε ∗ χ2ε

where χ2ε is the characteristic function of the set K2ε. Notice that

φε = 1 on Kε, suppφε ⊆ K4ε;

moreover, on any compact set B we have the pointwise estimate

|∇φε| = |(∇ρε) ∗ χ2ε| ≤
C(B)
ε

.

Now fix any test function φ with support in Ω; we can write

−
∫
f∇φdx =−

∫
f∇[φ(1− φε)]dx−

∫
(f − h)∇[φφε]dx−

∫
h∇[φφε]dx =

=Iε + IIε + IIIε.

By (i) we have immediately

Iε =
∫
∇f [φ(1− φε)]dx→

∫
Ω\K

gφdx

as ε→ 0. Moreover we can write

|IIε| ≤
C

ε

∫
K4ε∩B

|f − h|dx→ 0

where B is the support of φ; we have used the pointwise estimate and assumption
(ii). Finally, we have

IIIε =
∫
∇hφφεdx→

∫
K

∇hφdx =
∫

K

gφdx

and summing up we obtain the thesis. The last claim follows immediately. �
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