1^o ESONERO DI ALGEBRA

(Studenti di Informatica — canale D'Andrea) 7 novembre 2018

С	ognome e Nome:	Matricola:
	L'iniziale del mio cognome è compresa tra A e L.	

1. Dire quali dei seguenti sottoinsiemi $H \subset G$ siano sottogruppi:

```
 \begin{array}{ll} -\tilde{G}=(\mathbb{Z},+), & H=\{0.\pm 2^n\,|\,n\in\mathbb{N}\}=\{0.\pm 1,\pm 2,\pm 4,\pm 8,\dots\};\\ -\tilde{G}=\mathrm{S}_6, & H=\{\mathrm{id},(1\,4)(2\,5)(3\,6),(1\,3\,5)(2\,4\,6),(1\,5\,3)(2\,6\,4),(1\,2\,3\,4\,5\,6),(1\,6\,5\,4\,3\,2)\};\\ -\tilde{G}=\mathbb{Z}_{13}^{\times}, & H=\{[1],[5],[8],[12]\}. \end{array}
```

e quali di tali sottogruppi siano ciclici.

Soluzione:

- Sappiamo che i sottogruppi $\neq \{0\}$ di $(\mathbb{Z},+)$ sono generati dal loro minimo elemento positivo. Poiché $1 \in H$, se H fosse un sottogruppo di $(\mathbb{Z},+)$ dovrebbe coincidere con \mathbb{Z} , ma così non è. In conclusione, H non è un sottogruppo.
- H contiene tutte e sole le potenze di $(1\,2\,3\,4\,5\,6)$ ed è pertanto il sottogruppo (ciclico) generato da tale elemento.
- Si calcola facilmente:
 - * $5^2 = 25 \equiv 12 \mod 13$; * $5^3 \equiv 12 \cdot 5 = 60 \equiv 8 \mod 13$; * $5^4 = (5^2)^2 \equiv 12^2 \equiv (-1)^2 = 1 \mod 13$.

Pertanto H è il sottogruppo di \mathbb{Z}_{13}^{\times} generato da [5]. In particolare è un sottogruppo, ed è ciclico.

- **2.** Decidere se i seguenti elementi siano moltiplicativamente invertibili in \mathbb{Z}_{105} . In caso affermativo, calcolarne inverso e ordine; altrimenti, spiegare perché non siano invertibili.
 - **-** [91];
 - **-** [43];
 - **-** [57].

Soluzione: I numeri coinvolti sono piccoli, ed è facile fattorizzarli nel prodotto di primi. Poiché $105 = 3 \cdot 5 \cdot 7$, $91 = 7 \cdot 13$, $57 = 3 \cdot 19$, mentre 43 è primo, vediamo che MCD(43, 105) = 1, mentre MCD(91, 105) = 7, MCD(57, 105) = 3. Di conseguenza, [91] e [57] non appartengono a $\mathbb{Z}_{105}^{\times}$, mentre [43] sì.

L'inverso [x] di [43] si trova producendone l'identità di Bézout, oppure calcolandone l'inverso modulo 3,5,7. Poiché

$$43 \equiv 1 \mod 3$$
, $43 \equiv 3 \mod 5$, $43 \equiv 1 \mod 7$,

ricordando che l'inverso di [3] in \mathbb{Z}_5 è [2], x dovrà essere soluzione del sistema di congruenze

$$\begin{cases} x \equiv 1 \mod 3 \\ x \equiv 2 \mod 5 \\ x \equiv 1 \mod 7. \end{cases}$$

La soluzione, per il teorema cinese dei resti, è unica modulo 105; si vede abbastanza facilmente che x=22 soddisfa il sistema. Pertanto l'inverso di [43] in \mathbb{Z}_{105} è [22].

3. Dire se i seguenti elementi x, y siano coniugati nel gruppo G:

- -x = (12)(34), y = (13)(24), $G=A_5$;
- -x = (135)(24), y = (14)(253), $G = S_5$;
- -x=s,y=sr, $G=\mathrm{D}_6$ [qui s indica una simmetria e r la rotazione di 60 gradi]; -x=[2],y=[9], $G=\mathbb{Z}_{11}^{\times}.$

Soluzione:

- I due elementi sono sicuramente coniugati in S₅ poiché hanno la stessa struttura ciclica; sono coniugati anche in A₅ poiché commutano con permutazioni dispari di S_5 . Ad esempio, x commuta con (12).
 - Volendo essere più espliciti, $(12)(34) = (124)^{-1} \circ (13)(24) \circ (124)$.
- Le due permutazioni hanno la stessa struttura ciclica, e sono quindi coniugate in S_5 .
- L'elemento s commuta con $\{1, s, r^3, sr^3\}$ e ha quindi al più $|D_6|/4 = 12/4 = 3$ coniugati. Si vede subito che $r^{-1}sr = sr^2$, mentre $r^{-2}sr^2 = sr^4$. Ma allora gli unici coniugati di s sono i tre elementi s, sr^2, sr^4 , e sr non è coniugato a s.
- Il gruppo \mathbb{Z}_{11}^{\times} è abeliano, e quindi ogni elemento ha se stesso come unico coniugato. Due elementi diversi non sono quindi coniugati.

4. Date le permutazioni $\sigma=(1\,5\,3)(2\,4\,7\,6), \tau=(3\,4\,8\,5)\in S_8$, calcolare $(\sigma\tau)^{20}$. Qual è l'ordine di $\sigma,\tau,\sigma\tau$? Sono permutazioni pari o dispari?

Soluzione:

Intanto, sia σ che τ sono permutazioni dispari. In effetti, un n-ciclo è pari se n è dispari ed è dispari se n è pari; pertanto un 3-ciclo è pari, mentre un 4-ciclo è dispari. Ma allora τ è dispari, mentre σ è prodotto di una permutazione pari e di una dispari ed è quindi dispari (le parità si sommano!). Di conseguenza $\sigma\tau$ sarà pari, in quanto prodotto di permutazioni dispari.

L'ordine di una permutazione è il minimo comune multiplo delle lunghezze dei suoi cicli disgiunti. Di conseguenza σ ha ordine 12 e τ ha ordine 4. Si calcola facilmente che $\sigma\tau=(1\,5)(2\,4\,8\,3\,7\,6)$ e quindi $\sigma\tau$ ha ordine 6. Calcolare $(\sigma\tau)^{20}$ è allora semplice:

$$(\sigma\tau)^{20} = ((\sigma\tau)^6)^3(\sigma\tau)^2 = (15)^2(248376)^2 = (287)(364).$$

5. Risolvere il sistema di congruenze

$$\begin{cases} 4x \equiv 6 \mod 14 \\ 15x \equiv 10 \mod 25 \end{cases}$$

Soluzione:

Riduciamo il sistema a forma normale. La congruenza $4x \equiv 6 \mod 14$ è compatibile, poiché $\mathrm{MCD}(4,14) = 2$ divide 6. E' allora equivalente alla congruenza $2x \equiv 3 \mod 7$, e ricordando che l'inverso di 2 modulo 7 è 4, tale congruenza è equivalente a $x \equiv 12 \equiv 5 \mod 7$.

Anche la seconda congruenza è compatibile, in quanto $\mathrm{MCD}(15,25)=5$ divide 10, ed è equivalente alla congruenza $3x\equiv 2 \mod 5$. Qui l'inverso di $3 \mod 5$ è 2, e moltiplicando entrambi i membri per 2 si ottiene $x\equiv 4 \mod 5$. Il sistema originario è quindi equivalente a:

$$\begin{cases} x \equiv 5 \mod 7 \\ x \equiv 4 \mod 5. \end{cases}$$

A questo punto, voi calcolate la soluzione in uno dei tanti modi visti a lezione; io invece mi accorgo che 19 soddisfa entrambe le congruenze del sistema, e posso utilizzare il teorema cinese dei resti per affermare che la soluzione è $x\equiv 19\mod 35$.