8. ottobre 2020

Ultima lesione.

- Se $n>0$ ì un inters, allora esistono p_{1}, \ldots, p_{k} primi tali che $u=p_{1} p_{2} \cdots p_{k}$.
Atteasire! $u=1$ farisce $k=0$ (il proditto uuto far 1). Se non n pince, wettete $n>1$.
Inoltre $p_{1} p_{2} \ldots p_{k}=q_{1} \cdots q_{e} \quad$ (tutci: fratori sono pumi $\Rightarrow k=l$ e $p_{i}=q_{i} \forall_{i}$ a nseuo di rixdinare i fattori positivi) a 2° meubro.
In qenerale si prefecisce scrivere
$n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{h}^{\alpha_{h}} \quad$ dove i p_{i} sono puim (posititi) distanti e $\alpha_{i} \geqslant 1$.

Passando dalk fattorizzaiono mica in \mathbb{N} a quella in \mathbb{Z} succedono cose un po' strane:
(1) Gei inrectibili vanno trattatio a parte. ($\ln \mathbb{Z}$, sono ± 1). e creans una forma di indetenninazione in titte 1 ultro defnizion:
NB. In un anelle, a divide u invectible \Rightarrow a invertibile Dim: a|u mol dire $u=a x \Longrightarrow 1=a\left(x u^{-1}\right) \Rightarrow$ a invectibile.
Mantrai 1 è invectibile, inverso di invectibile è invectibilo, prodotte di inrectibali è invectibile, divisore di invectibile é inv. μ è inv. $\Longleftrightarrow(u)=(1)$
(2) Se pè pinno, nor lo è piui di ogri pu, dove n è imectible. $\ln \mathbb{Z}, \pm p$ suno da consideave antrambi prim, ed esecerial. weate LO STESSO PRIMO! Il ternine conretto è "primi associat.".
Def dipino plab\Rightarrow pla opp plb si rifomela con $a b \in(p) \Rightarrow a \in(p) \circ b \in(p)$. Prické $(p)=(-p)$ non $\ddot{\text { ce modo }}$ di favorire p vispetto $a-p$.
(3) Poiché nei ragionamenti di divisibilità elenanti associati non sono distinguibili, il "MASSIMO" di MCD va nifomenlato in altwo modo.
"MASSIMO" = ogni atto divisore comue divide it MCD.
$\operatorname{MCD}(12,15)=3$ si pûs scrivere auckz $\operatorname{MCD}(12,15)=(-3)$ poictie le due affomazion si traducons $(12)+(15)=(3)=(-3)$.
(4) Dal puritu di vista delle divisibilitá, 0 è l'eleraerto PIUGRANDE DI TUTT: $2|4| 8|16| 32|\ldots| 0$.
Pertanto $\operatorname{MCD}(0,0)=0$ ha seuso, anche so 0 rembra, mueicuraite, più piecolo.

Congneure e invectibilita modulo N.
Def: $a \equiv b \bmod N \stackrel{\text { def }}{\leftrightarrows} b-a \in(N)$.
E una relazione di equivalenza! (sull'insiene \mathbb{Z}).
$a \equiv a \bmod N \Longleftrightarrow O \in(N)$

$$
\begin{aligned}
& a \equiv b \text { ? } \bmod N \quad \Longleftrightarrow \quad b-a \in(N) \\
& b \equiv a ? \bmod N \quad a-b \in(N) \\
& \text { "-(b-a) } \\
& a \equiv b \bmod N \\
& b \equiv e \bmod N \quad c-b \in(N) \\
& a \equiv e \bmod N \\
& c-a=(c-b)+(b-a) \in(N)
\end{aligned}
$$

Sono le proprestá di sotto gruppo e quindi fuxionaués!

Quante classi di congneuza mod N ho?
Cass nom interessoenti

- $N=0$. La rel. è l'uguagliaura $a \equiv b \bmod (0) \Longleftrightarrow a=b$,

Ho infinite class di equiroluza. L'insiene quoriente è (execuriathente) \mathbb{Z}.

- $N=1$ Cgui intero è equivalante a ogui attro. Ho uíviea classe di equiraleuza,
- $N=2: \quad a \equiv b \bmod 2 \Longleftrightarrow b-a$ è pair $\Longleftrightarrow a$ eb homo la stess α paitá.
2 classi di congrenco

$$
\begin{aligned}
& \text { classi di congrenki } \\
& {[0]=\{\text { pain } \quad[1]=\{\text { dispai }\}}
\end{aligned}
$$

In generde? $a={\underset{C N}{n}+r}_{\infty}^{N} \quad 0 \leq r<N>1$
(N)

$$
r \in\{0,1,2, \ldots, N-1\}
$$

Ogir elerento è in uns
delle dassi $[0],[1],[2], \ldots[N-1]$ dhe si diancue CLASSI DI RESTO.
e sonotutte divege

$$
\begin{aligned}
& \text { tutte divege } \\
& \begin{array}{l}
{[a]=[b] \Longleftrightarrow}
\end{array} \quad \begin{array}{l}
b-a \in(N) \\
0 \leq a, b<N
\end{array} \\
& a-b \in(N)
\end{aligned} \quad \begin{aligned}
& \text { wo }|b-a|<N \\
& \text { wnltiplo di } N \text {, }
\end{aligned}
$$

$\mathbb{Z} / \equiv \bmod N$ possiede N elerrenti a mens due $b-a=0$.

Di solito si indiea elenerti di (N) ugnalk
a 0 ". a $0^{\prime \prime}$.

NB: So somuare e moltiplicare gli elementi di ldea $[a]+[b] \stackrel{\text { def }}{=}[a+b]$ i beu defirita?

$$
\begin{aligned}
& a+h N+b+k N=(a+b)+(h+k) N \\
& \begin{aligned}
& {[a] \cdot[b] \stackrel{\text { def }}{=}[a b] } \\
&(a+h N)(b+k N)=a b+a N+b h N+h k N^{2}= \\
&=a b+(a k+b h+h k N) N
\end{aligned}
\end{aligned}
$$

Quester operaini soddisfans h propuieta che sodde fores in \mathbb{Z}. Com, ass. dishib, esistena dio el, esitenza di im,

$$
\begin{aligned}
& \text { Es } \ln \mathbb{Z} /(5) \quad-[1]=[-1]=[4] \\
& {[2]+[4]=[6]=[1] \quad!} \\
& {[a]=[b] \text { in } \mathbb{Z} /(\mathbb{4}) \Longleftrightarrow a \equiv b \text { mod } N .}
\end{aligned}
$$

$\mathbb{Z} /(N)$ è ue avello comentatio con unita.
Importante Non ie necessaviawente un dominio d'integnita In $\mathbb{Z} /(6) \quad[2] \cdot[3]=[0]$, wa $[2] \neq[0],[3] \neq[0]$.
$\mathbb{Z} /(5)$ è ue dominio d'integiitu. ANZI E UN CAMPO!

$$
[1] \cdot[1]=[1] \quad[2] \cdot[3]=[1] \quad[4] \cdot[4]=[1]
$$

Oqui elementu $\neq[0]$ ha un inves moltiplieatito.

Quali sono gli elenerti invectibili di $\mathbb{Z} /(N)$? (5)

- Se $\operatorname{MCD}(a, N)=1$, allora $[a]$ è irratibile in $2 /(N)$

Dim: Rézat!

$$
I=h a+k N
$$

$\Rightarrow \quad$ ha $1 a 1 \bmod N$

$$
\begin{aligned}
& \Leftrightarrow[h a]=[1] \quad \text { in } \mathbb{Z} /(N) \\
& \Longleftrightarrow[h][a]=[1] \text { in } \mathbb{Z} /(N)
\end{aligned}
$$

- Se $\operatorname{MCD}(a, N) \neq 1$, allora. [a] non è invectibile in $\mathbb{Z}(N)$.

Dim: x esistech $[h]+\ldots .[a][h]=[1]$, alloro ha $\equiv 1 \bmod N$ cise ha $-1=k N$ perqualche $\Rightarrow 1=h a-K N$. $k \in \mathbb{Z}$
$010 \quad 011,01 \rightarrow 011$

Se $\operatorname{MCD}(a, N)=d$, allon $d / h a$, $a \mid K i v \cdots \cdots$ $d \neq 1$ conduce a un assurdo.

- [a] è invectibile in $\mathbb{Z} /(N) \Longleftrightarrow \operatorname{MCD}(a, N)=1$

Consegreera: ; $x N$ è composto, $\mathbb{Z}(N)$ non è un doninio d'integita : $N=a b \Longrightarrow[a] \cdot[b]=[0]$
$[0]^{x}[0]$
Peì, $x ~ N=p$ è puins, $\mathbb{Z} /(p)$ è addiritura un eampo!
$[a] \neq[0] \Rightarrow \operatorname{MCD}(a, p)=1 \Rightarrow[a]$ invectibile
$1 \leqslant a \leqslant p-1 \quad$ (RCORDARE: Campo \Rightarrow diminis d'integritá)

Applicazion
Risoluzione di congneure lineai
$a x \equiv b \bmod (N)$
S'e per caso $\operatorname{Med}(a, N)=\Phi$ lo so cisolvere,
Se $[a] \cdot[b]=[1]$ allora

$$
\begin{aligned}
{[a] \cdot[x] } & =[b] \\
{[h][a][x] } & =[h][b] \\
{[1][x] } & =[b h] \quad x \equiv b h \bmod N .
\end{aligned}
$$

Es: $3 x \equiv 4 \bmod 5$ èinvegu di $3 \bmod 5$ $3 \cdot 2 \equiv 1 \bmod 5^{\circ}$.
$23 x \equiv 2.4 \bmod 5$

$$
x \equiv 8 \equiv 3 \bmod 5
$$

Verifica $\quad 3 \cdot 3=9 \equiv 4 \bmod 5$. E re $\operatorname{med}(a, N) \neq 1$?

Es: $2 x \equiv 3$ mod 0
non ba soluzione!

$$
\begin{array}{l|l}
2 & 4 \\
3 & 0 \\
4 & 2 \\
5 & 4
\end{array}
$$

$2 x \equiv 4 \bmod 6$

$$
\begin{equation*}
x \equiv 2 \bmod 6 \tag{717}
\end{equation*}
$$

ma anche
$x \equiv 5 \bmod 6$
(Fatto) $a x \equiv b \bmod N$ ha soluzive
$\Longrightarrow \operatorname{MeD}(a, N)$ divide b.
Dim: Diciamo $d=\operatorname{MeD}(a, N)$.
Se x_{0} è una solwiore, allora $a x_{0} \equiv b \bmod N$

$$
\Rightarrow b-a x_{0}=h N \Rightarrow b=a x_{0}+h N \text {. }
$$

$M a d|a, d| N \Rightarrow d \mid a x_{0}+h N=b$.
Evero arche il viceversal Premessa: Se $\operatorname{MCD}(a, N)=d$ allor $\operatorname{MCD}(a / d, N / d)=1$.
$a x \equiv b \bmod N$ ha soluzione non appeua $\operatorname{MCD}(a, N)$ divide b
Dim: $a x \equiv b \bmod N$ esatamente quando esiste $h \in \mathbb{Z}$ tale che $b-a x=h N \Rightarrow b=a x+h N$.
Ora $d=\operatorname{MCD}(a, N)$ divide b. Scuivo $b / d=B \quad a / d=A$ sono interi

$$
\begin{aligned}
& d \cdot B=d \cdot A x+d \cdot h^{N} / d \\
& B=A x+h^{N} / d \\
& A x \equiv B \quad \bmod N / d
\end{aligned}
$$

Quindi $a x \equiv b \bmod N$ è equivalente a

$$
\frac{a}{d} x \equiv \frac{b}{d} \bmod \frac{N}{d} \quad \text { e } \operatorname{Mci}\left(\frac{a}{d}, \frac{N}{d}\right)=1
$$

la so nisolvere!

Es: $2 \times \equiv 4 \bmod 86 \operatorname{MCD}(2,6)$ divide 4?
\uparrow $2^{\prime \prime}$
$x \equiv 2 \bmod 3$
(In effetti avero $x \equiv 2,5 \bmod 6$, cicè $x \equiv 2 \bmod 3$).
Riassinnto: Devo nisolver $a x \equiv b \bmod N$.
$\operatorname{MCD}(a, N)$ divide b no La congrienza non ainette
$d^{\prime \prime}$
socuziun in \mathbb{Z} mica mad N / d (0 in attre panole, ho d soluzion in $\mathbb{Z}(N)$).

Riomangors due cose prima di procedlere othe
(1) Piccollo terrema di Fermat
(2) Teorema cincte dei rest.

Piccolo teorema di Fermat.
Prenessa : $(x+y)^{2}=x^{2}+2 x y+y^{2}$

$$
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

$$
(x+y)^{n}=?
$$

Risposta: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{m-i} y^{i}$

$$
\binom{n}{i} \text { è un coefficiente binimiale } \begin{gathered}
1 \\
11 \\
1 / 2! \\
1221 \\
1331 \\
1464.1 \\
1561051
\end{gathered}
$$ per induzione.

ES: $(x+y)^{5}=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}$.
tutt muttipli di 5. E un caso?
Si 1441 non suns tatti multipli di 4 .
No $\binom{p}{i}$ è reue pre multiplo di p te $-i \neq 0, p$ è pün
$\binom{p}{i}=\frac{p!}{i!(p-i)!\text { qui conpare un fattore } p \text { prims }}$

Piccole twrena di Femat. Se p è prino, allora $a^{P} \equiv a$ mad P per ogii $a \in \mathbb{Z}$.
OsS: $p=2$ ovio. $p>2$ basta dinostrailo pe $a \in \mathbb{N}$.

Dimosto p divide $a^{p}-a$ per induione su a. (10) $a=0 \quad p$ divide $O^{p}-0=0$ ok.
Passo induttio
So de $a^{p}-a$ è multiplo di p. Evea de $(a+1)^{p}-(a+1)$ è aucora uulti)do di p?

$$
(a+1)^{p}-(a+1)=
$$

$$
\begin{aligned}
& =\binom{a^{r}+\binom{Y}{1} a^{r}+\binom{r}{2} a^{\prime}+\cdots+\binom{1}{p-1} a+1}{-a} \\
& \text { di liplo } p \text { multipli dip } \\
& \text { doK, }
\end{aligned}
$$

Teorena cinese dei resti
Tra 1000 e 2000 soldati in piazsa d'armi.
In FILA PER 3! (ve avoura 1)
IN FILA PER 5 ! (won he aramiano)
IN FILA RER 7 ! (ve avawa 1)
IN FILA PER 11! (ve arousano 3)
Quauti sono?

$$
\begin{cases}x \equiv 1 & \bmod 3 \\ x \equiv 0 & \bmod 5 \\ x \equiv 1 & \bmod 7 \\ x \equiv 3 & \bmod 11\end{cases}
$$

$x=1+3 h$. Sostitises in $x \equiv 0 \bmod 5$

$$
l+3 h \equiv 0 \quad \bmod 5
$$

$3 h \equiv 4 \bmod 5$ nottiplies per 2
$h \equiv 3 \bmod 5$
$h=3+5 k$. Risostitusco

$$
\begin{aligned}
x & =1+3(3+5 k)= \\
& =10+15 k
\end{aligned}
$$

Sostithisco in $x \equiv 1 \bmod 7$.

$$
\begin{array}{r}
10+15 k \equiv 1 \quad \bmod 7 \\
k \equiv 5 \quad \bmod 7 \quad k=5+7 l \\
x=10+15(5+7 e)=85+105 l
\end{array}
$$

Sostitrisw in $x \equiv 3 \bmod 11$

$$
\begin{aligned}
& 85+105 l \equiv 3 \quad \bmod 11 \\
& 105 l \equiv-82 \bmod 11 \\
& 6 l \equiv 6 \quad \bmod 11 \\
& l \equiv 1 \quad \bmod 11 \quad l=1+11 \mathrm{~m} \\
& x=85+105(1+114 \mathrm{~m})= \\
& =190+1155 \mathrm{~m} \quad x \equiv 190 \quad \bmod 1155 \\
& \quad x=194,134 \%, 24102500
\end{aligned}
$$

Sino 1345.
Funziona seupre?

$$
\left\{\begin{array}{l}
x \equiv a \quad \bmod m \tag{12}\\
x \equiv \bmod \mu
\end{array} \quad \operatorname{MCD}(m, n)=1 .\right.
$$

amette rempre UN'UNICA siluaine modulo men.
2 dimostrazioni.
(1) faccio come primae ariico in fondo
(2) $\mathbb{Z} /(m n) \xrightarrow{f} \mathbb{Z} /(m) \times \mathbb{Z} /(n)$

$$
[x]_{m n} \longmapsto\left([x]_{m},[x]_{n}\right)
$$

f è iniettiva. $\left([x]_{m},[x]_{n}\right)=\left([y]_{m},[y]_{n}\right)$ mol dire $\left\{\begin{array}{l}x \equiv y \\ \bmod m \\ x \equiv y\end{array} \bmod n \Rightarrow m\right.$, dividono $y-x$
$\Rightarrow m n$ divide $y-x \Rightarrow x \equiv y \bmod m n$ $\operatorname{MCD}(n, n)=1$

$$
[x]_{m n}^{\Perp}=[y]_{m n} .
$$

$\cdots-\mathbb{Z}, \operatorname{lin} \mathbb{Z}, \times \mathbb{Z} /$, hannomn
ivia sia /(mn) we '(m)'(n) elementi
$\Rightarrow f$ è arcle suiettiva! FNE,

Ossernazione: vedreuw in regnito cho f è un isonurfismo di a nelli.

Ultime osservazion:

- La divisibilita si verifica a partire dalla fattorizgazione in primi
Se sappiomo che a divide b, allora perqualche c Se $\sigma^{*}=u p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} \quad$ e $c=v q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q^{\beta_{l}}$, allosa

$$
b=a c=(u v) p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}} q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{e}^{\beta e}
$$

Pertaulo (a neew di associati) i prini cle compaiono in a devono compaire aucle in b, con un'esponente uaggine o ugnde (potrebbers comparire ande velle fattorizgazive di e). Evero anche il viceversa se tutte i piniccle compaiono nelle fattoingaime in pini di a cempaiono auclec in b, li racolgo tutli a sinistra e quello cle mi riname ì ure tale che $b=a c$.
Ne seque due R MCD (a, b) wa volta note le fattorizznisi, si ottione prendendo i prini in conme (sempre a weus di associati) al nunimo esponante welle dre fatterizsasini e moltiplicuerdo

