Algebra 1 – Matematica – A.A. 2021-22, I Semestre Esercizi settimanali

Settimana 3 - (consegna lunedì 18/10)

- Ex.1 (Artin 5.1.4) Dimostrare che, se f è un movimento rigido di \mathbb{R}^2 che rovescia l'orientazione, allora f^2 è una traslazione. Vale lo stesso per i movimenti rigidi di \mathbb{R}^3 ?
- Ex.2 Determinare le classi di coniugio nel gruppo $O(2,\mathbb{R})$ e nel gruppo $SO(2,\mathbb{R})$.
- Ex.3 Sia Isom(\mathbb{R}^n) is gruppo dei movimenti rigidi di \mathbb{R}^n . Per ogni $f \in \text{Isom}(\mathbb{R}^n)$ definiamo

$$\tau(f) := \inf_{x \in \mathbb{R}^n} d(x, f(x)).$$

Dimostrare che, se f, g appartengono alla stessa classe di coniugio, allora $\tau(f) = \tau(g)$. Se f è del tipo f(x) = Ax + b (con A matrice ortogonale e $b \in \mathbb{R}^n$), calcolare $\tau(f)$ in funzione di A, b.

- Ex.4 Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un movimento rigido. Dimostrare che il luogo Fix(f) dei punti di \mathbb{R}^n fissati da f è un sottospazio affine. Dimostrare che, se g è un movimento rigido coniugato ad f, allora $\dim(\text{Fix}(f)) = \dim(\text{Fix}(g))$.
- Ex.5 (Artin 5.1.1) Sia \mathcal{F} un sottoinsieme di \mathbb{R}^n e sia G il sottoinsieme del gruppo Isom(\mathbb{R}^n) dei movimenti rigidi $f: \mathbb{R}^n \to \mathbb{R}^n$ tali che $f(\mathcal{F}) = \mathcal{F}$. Dimostrare che G è un sottogruppo.
- Ex.6 (Simile a Artin 5.7.1) Sia \mathcal{T} un tetraedro regolare e \mathcal{Q} un esaedro regolare in \mathbb{R}^3 , centrati nell'origine. Dimostrare che il gruppo dei movimenti rigidi di \mathbb{R}^3 che preservano l'orientazione e che mandano \mathcal{T} (risp. \mathcal{Q}) in sé è isomorfo a A_4 (rispettivamente S_4).
- Ex.7 (Artin 5.5.9b, 5.5.11a) Determinare le orbite dell'azione del gruppo $G = GL(2, \mathbb{C})$ sull'insieme delle matrici $\mathcal{M}_{2,2}(\mathbb{C})$ per coniugio.

 Descrivere orbita e stabilizzatore della matrice diagonale con autovalori 1 e 2.
- Ex.8 (Artin 5.5.10a-b) Sia $S = \mathcal{M}_{m,n}(\mathbb{R})$ e $G = GL(m,\mathbb{R}) \times GL(n,\mathbb{R})$. Dimostrare che $(P,Q) \cdot A \mapsto PAQ^{-1}$ con $(P,Q) \in G$ e $A \in S$ definisce una azione sinistra di G su S. Descrivere la decomposizione di S in orbite.
- Ex.9 (Artin 5.6.5) Descrivere tutti i modi in cui S_3 può agire sull'insieme di 4 elementi $S = \{A, B, C, D\}$.
- Ex.10 (Artin 5.7.6) Siano H, K sottogruppi di indice finito di G. Dimostrare che anche $H \cap K$ ha indice finito in G. Mostrare con un esempio che l'indice di $H \cap K$ in H non divide necessariamente l'indice di K in G.