ALGEBRA I: ESERCIZI SUGLI ANELLI

Usate liberamente l'assioma della scelta e i risultati che abbiamo dimostrato usandolo.

- (1) Siano $I, J \subset A$ ideali di A. Mostrare che sono ideali
 - $I \cap J$;
 - $I + J = \{i + j \mid i \in I, j \in J\};$
 - l'insieme IJ delle somme finite di prodotti $ij, i \in I, j \in J$;
 - $\bullet \ I: J = \{a \in A \mid aJ \subset I\}.$
- (2) Mostrare che se $I, J \subset A$ sono ideali tali che I + J = A allora
 - $IJ = I \cap J$;
 - per ogni scelta di $a, b \in A$ esiste $x \in A$ tale che $x a \in I, x b \in J$.
- (3) Calcolare, nell'anello \mathbb{Z} , gli ideali $I \cap J$, I + J, IJ, I : J se I = (4), J = (6).
- (4) Se $I \subset A$ è un ideale, il radicale di I è il sottoinsieme $\sqrt{I} = \{a \in A \mid a^n \in I \text{ per qualche n} > 0\}$.
 - Mostrare che \sqrt{I} è un ideale di A;
 - Calcolare $\sqrt{(432)}$ nell'anello \mathbb{Z} .
- (5) Dare un esempio di dominio d'integrità di caratteristica finita con un numero infinito di elementi.
- (6) Sia A un insieme che soddisfa tutti gli assiomi di anello commutativo con unità con l'eccezione della commutatività della somma. Mostrare allora che la somma è comunque commutativa, calcolando (1+1)(x+y)in due modi diversi.
- (7) Dimostrare che un omomorfismo di anelli non nullo $\phi: K \to A$ è necessariamente iniettivo se K è un campo.
- (8) Si consideri l'anello (non commutativo) A delle matrici 2×2 a coefficienti razionali. Mostrare che gli unici ideali bilateri di A sono (0) e A.
- (9) Sia A un anello (non necessariamente commutativo) e $I \subset A$ un suo ideale sinistro. Mostrare che r(I) = $\{x \in A \mid xi = 0 \text{ per ogni } i \in I\}$ è un ideale bilatero di A.
- (10) Sia A un anello commutativo con unità e $S \subset A$ un suo sottoinsieme moltiplicativo, ovvero tale che
 - 0 ∉ S;
 - $st \in S$ per ogni scelta di $s, t \in S$.

Definiamo su $A \times S$ la relazione $(a, s) \sim (b, t)$ se esiste $v \in S$ tale che v(at - bs) = 0.

Mostrare che \sim è una relazione di equivalenza e che le operazioni [(a, s)] + [(b, t)] = [(at + bs, st)]; [(a, s)][(b,t)] = [(ab,st)] sono ben definite e forniscono su $(A \times S)/\sim$ una struttura di anello commutativo con unità.

- (11) Descrivere l'anello quoziente $\mathbb{Z}[x]/(x^3+x^2+1,x^2+x)$.
- (12) Determinare gli ideali massimali degli anelli
 - $\mathbb{R} \oplus \mathbb{R}$;

 - $\mathbb{R}[x]/(x^2)$; $\mathbb{R}[x]/(x^2-3x+2)$; $\mathbb{R}[x]/(x^2+x+1)$.
- (13) Calcolare il massimo comun divisore nell'anello $\mathbb{Q}[x]$ dei polinomi $x^3 6x^2 + x + 4$ e $x^5 6x + 1$.
- (14) Mostrare che, per ogni campo K, esistono infiniti polinomi irriducibili monici a coefficienti in K.
- (15) Mostrare che sono irriducibili in $\mathbb{Q}[x]$ i polinomi
 - $x^3 + 6x + 12$; $8x^3 6x + 1$;

 - $x^3 + 6x^2 + 7$;
 - $x^5 3x^4 + 3$.
- (16) Scomporre il polinomio $x^5 + 5x + 5$ nel prodotto di fattori irriducibili in $\mathbb{Q}[x]$ e $\mathbb{F}_2[x]$.
- (17) Scoporre $x^3 + x + 1$ nel prodotto di fattori irriducibili in $\mathbb{F}_p[x]$, per p = 2, 3, 5.
- (18) Scomporre nel prodotto di elementi primi gli interi di Gauss 1 3i, 10, 6 + 9i.
- (19) Sia $p \in \mathbb{Z}$ un elemento primo. Dimostrare che p è primo in $\mathbb{Z}[\sqrt{3}]$ se e solo se il polinomio $x^2 3$ è irriducibile in $\mathbb{F}_p[x]$.
- (20) Siano d, d' interi distinti liberi da quadrati². Mostrare che $\mathbb{Q}[\sqrt{d}]$, $\mathbb{Q}[\sqrt{d'}]$ sono sottoanelli distinti di \mathbb{C} .

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI ROMA – "LA SAPIENZA" E-mail address: dandrea@mat.uniromal.it

¹La caratteristica di un dominio è l'ordine additivo dell'elemento 1.

²cioè non divisibili per p^2 per alcuna scelta di p primo.