Geometria

Appello I — Sessione Invernale Corso di laurea in fisica — A.A 2018/2019 Canali A – C, L – Pa, Pb – Z

Durata: 2 ore e 30 minuti

Alessandro D'Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni

25 giugno 2019

Esercizio 1. Si considerino, al variare del parametro $k \in \mathbb{C}$ le seguenti due matrici, appartenenti rispettivamente a $M_{2,3}(\mathbb{C})$ e a $M_{2,1}(\mathbb{C})$:

$$A_k = \begin{pmatrix} 1 & k & k \\ -k & 1 & 1 \end{pmatrix}, \quad b_k = \begin{pmatrix} 1 \\ 2i + k \end{pmatrix}.$$

- (i) Determinare il rango di A_k e il rango della matrice $A_k|b_k$, ottenuta aggiungendo ad A_k l'ulteriore colonna b_k , al variare di $k \in \mathbb{C}$.
- (ii) Dedurre i valori di $k \in \mathbb{C}$ per cui il sistema lineare $A_k x = b_k$ è compatibile.
- (iii) Determinare, se esistono, le soluzioni del sistema $A_{-i} x = b_{-i}$, ottenuto sostituendo al parametro k il valore -i.

Esercizio 2. Detta $\mathcal{E} = \{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 , si considerino i seguenti vettori:

$$v_1 = e_1 - e_3$$
, $v_2 = e_1 - e_2 + 2e_3$, $v_3 = e_1 - 2e_2 + 4e_3$,

 ϵ

$$w_1 = 2e_1 + e_2$$
, $w_2 = 3e_1 + e_2 + e_3$, $w_3 = e_1 + 2e_3$.

(i) Verificare che gli insiemi $\mathcal{B} = \{v_1, v_2, v_3\}$, e $\mathcal{C} = \{w_1, w_2, w_3\}$ sono basi di \mathbb{R}^3 .

(ii) Determinare la matrice del cambiamento di coordinate 1 dalla base \mathcal{B} alla base \mathcal{C} .

Esercizio 3. Sia dato l'endomorfismo $T: \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice associata nella base canonica è data da

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

- (i) Determinare gli autovalori di T e le relative molteplicità algebriche.
- (ii) Determinare gli autospazi di T.
- (iii) Trovare una base ortonormale, rispetto al prodotto scalare canonico, di autovettori per T.

Esercizio 4. Si consideri lo spazio vettoriale $\mathbb{R}[x]_{\leq 2}$ dei polinomi reali di una variabile di grado al più 2, munito del prodotto scalare definito positivo

$$\langle \langle p, q \rangle \rangle := \int_{-1}^{1} p(x)q(x) dx.$$

- (i) Scrivere la matrice associata a tale prodotto scalare, rispetto alla base canonica $\{1, x, x^2\}$.
- (ii) Determinare una base ortogonale per $\mathbb{R}[x]_{\leq 2}$, rispetto al prodotto scalare dato.
- (iii) Determinare equazioni cartesiane per il complemento ortogonale, rispetto al prodotto scalare dato, del sottospazio generato da $\{x^2\}$.

Esercizio 5. Dire, giustificandone il motivo, quali tra i seguenti sottoinsiemi di $V = M_{3,3}(\mathbb{C})$ sono sottospazi affini, indicando in particolare quali sono anche sottospazi vettoriali.

- (i) Data $B \in V$ qualunque ma fissata, $L_1 = \{A \in V \mid \operatorname{tr}(BA)^t = 0\}.$
- (ii) $L_2 = \{ A \in V \mid \operatorname{tr}(A + \operatorname{Id}_3) = 1980 \}.$
- (iii) $L_3 = \{ A \in V \mid \operatorname{tr}(A^2) = 0 \}.$

¹Per intenderci: si tratta della matrice che, moltiplicata per una colonna contenente le coordinate di un vettore nella base \mathcal{B} , fornisce come risultato le coordinate dello stesso vettore nella base \mathcal{C} .