FAC-SIMILE DELLA PROVA D'ESAME

(Studenti di statistica, economia e società — statistica gestionale) 21 gennaio 2019

1. Dire in quali punti sia continua e in quali differenziabile la funzione $f:\mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = \begin{cases} x + \sin(y) & \text{se } x \le y \\ y + \sin(x) & \text{se } x > y. \end{cases}$$

Soluzione: Nella regione aperta $\{(x,y) | x > y\}$, la funzione f è definita come somma di funzioni differenziabili infinite volte, ed è quindi sia continua che differenziabile; lo stesso avviene nel caso x < y. Rimane da stabilire in quali punti della forma $(a,a), a \in \mathbb{R}$, la funzione f sia continua/differenziabile.

La continuità è evidente, poiché entrambe le definizioni hanno limite $a+\sin a$ quando $(x,y)\to (a,a)$. La differenziabilità è lievemente più complicata. Provando a calcolare la derivata parziale $\partial f/\partial x$ in un punto (a,a), ad esempio, si ottiene

$$\frac{\partial f}{\partial x}(a,a) = \lim_{h \to 0} \frac{f(a+h,a) - f(a,a)}{h}.$$

L'espressione sotto limite a destra vale $(\sin(a+h)-\sin(a))/h$ quando h>0 e 1 quando h<0. Vogliamo che i limiti $h\to 0^+$ e $h\to 0^-$ esistano entrambi e coincidano; poiché

$$\lim_{h \to 0^+} \frac{f(a+h,a) - f(a,a)}{h} = \lim_{h \to 0^+} \frac{\sin(a+h) - \sin a}{h} = \cos a,$$

deve valere $\cos a=1$ affinché la derivata parziale rispetto ad x esista nel punto (a,a). In tal caso, $\partial f/\partial x(a,a)=1$. I conti per la derivata parziale rispetto ad y sono analoghi. Si conclude che le derivate parziali nel punto (a,a) esistono entrambe, e sono entrambe uguali ad 1, solo quando a è un multiplo di 2π ; per le altre scelte di a, f non è differenziabile in (a,a).

Sia allora $a=2k\pi$, con $k\in\mathbb{Z}$. Se x=a+h,y=a+k, abbiamo

$$f(x,y) = \begin{cases} a+h+\sin(a+k) \text{ quando } h \le k\\ a+k+\sin(a+h) \text{ quando } h \ge k. \end{cases}$$

Sappiamo che $\sin(a+t) = \sin(a) + \cos(a)t + o(t)$ e quindi entrambe le espressioni coincidono con $a+h+k+o(\sqrt{h^2+k^2})$. Di conseguenza, f è differenziabile nei punti (a,a) che soddisfano $\cos(a)=1$.

Ricapitolando: \hat{f} è continua ovunque. E' inoltre differenziabile in tutti i punti di \mathbb{R}^2 tranne che nei punti (a, a) che NON soddisfano $\cos(a) = 1$.

2. Calcolare le derivate parziali nel punto $P\equiv (0,0)$ della funzione $f:\mathbb{R}^2\to\mathbb{R}$ definita da

$$f(x,y) = \sqrt[3]{x^4 + y^4}$$

e dire se f sia differenziabile nel punto P.

Soluzione: Sostituendo $x=r\cos(\theta), y=r\sin(\theta)$ si ottiene $f(x,y)=r^{4/3}\sqrt{\cos^4(\theta)+\sin^4(\theta)}$. Poiché l'espressione sotto radice è limitata (ad esempio, da 2), si ottiene subito che $f(x,y)=o(r)=o(\sqrt{x^2+y^2}$ in un intorno di (0,0). Ma allora

$$f(x,y) = f(0,0) + 0 \cdot x + 0 \cdot y + o(\sqrt{x^2 + y^2}),$$

dal momento che f(0,0)=0. Questo mostra che f è differenziabile in (0,0) e che le sue derivate parziali sono entrambe nulle.

3. Calcolare il massimo e il minimo assoluti della funzione $f:\mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = x$$
 sull'ellisse $\Gamma = \{(x,y) \in \mathbb{R}^2 \mid x^2 + 2y^2 = 2\}.$

Soluzione: La regione Γ è chiusa e limitata, e la funzione continua f ha quindi massimo e minimo per il Teorema di Weierstrass. Γ è della forma $\Phi(x,y)=0$ dove $\Phi(x,y)=x^2+2y^2-2$ è una funzione differenziabile di gradiente $\nabla\Phi=(2x,4y)$, che non si annulla nei punti di Γ .

Possiamo allora adoperare il metodo dei moltiplicatori di Lagrange. I punti che sono estremali tra quelli soggetti al vincolo dovranno soddisfare

$$\begin{cases} \nabla f = \lambda \nabla \Phi \\ \Phi(x, y) = 0 \end{cases}$$

che nel nostro contesto si traducono in

$$\begin{cases} y = \lambda \cdot 2x \\ x = \lambda \cdot 4y \\ x^2 + 2y^2 = 2. \end{cases}$$

Moltiplicando le prime due equazioni si ottiene $xy(1-8\lambda^2)=0$; pertanto x=0, oppure y=0, oppure $\lambda=\pm 1/\sqrt{8}$. Quest'ultimo valore, sostituito nelle prime due equazioni, fornisce $x=\pm y\sqrt{2}$. Possiamo adesso sostituire nel vincolo.

- Se x=0, allora $y^2=1$ e otteniamo i punti $P\equiv (0,1)$, $Q\equiv (0,-1)$.
- Se y=0, allora $x^2=2$ e otteniamo i punti $R\equiv(\sqrt{2},0)$, $S\equiv(-\sqrt{2},0)$.
- Se $x=\pm y\sqrt{2}$, allora $4y^2=2$ e otteniamo $x=\pm 1$, $y=\pm 1/\sqrt{2}$, cioè i quattro punti $T_{1,2,3,4}\equiv (\pm 1,\pm 1/\sqrt{2}).$

Si vede subito che la funzione f vale 0 nei punti P,Q,R,S, mentre vale $\pm 1/\sqrt{2}$ nei punti T_i . In conclusione, il massimo e il minimo assoluti di f sono $1/\sqrt{2}$ e $-1/\sqrt{2}$.

4. Calcolare l'integrale

$$\int\int_D f(x,y)dxdy$$
 dove $D=\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2\leq 4,0\leq x\leq y\}$ e $f(x,y)=e^{x^2+y^2}.$

Soluzione:

In coordinate polari, la regione D è descritta dalle equazioni $\rho \leq 2, \pi/4 \leq \theta \leq \pi/2$. L'integrale, nelle nuove coordinate, si traduce in

$$\int \int_D e^{\rho^2} \rho \, d\rho d\theta = \left(\int_{\pi/4}^{\pi/2} d\theta \right) \left(\int_0^2 \rho e^{\rho^2} d\rho \right).$$

Svolgendo i conti, si ottiene $\pi/8 \cdot (e^4 - 1)$.