STRUCTURE THEORY OF FINITE CONFORMAL ALGEBRAS

ALESSANDRO D’ANDREA AND VICTOR G. KAC

To Victor Guillemin on hi$0*" birthday

CONTENTS
1. Introduction 1
2. Basic definitions 2
3. Conformal linear algebra 5
4. The annihilation algebra 10
5. Simple conformal algebras 13
6. The Killing form 16
7. Semi-simple conformal algebras 19
8. Representation theory 21
References 30

1. INTRODUCTION

After the seminal paper [BPZ] of Belavin, Polyakov and Zamolodchikov, conformal field
theory has become by now a large field with many remarkable ramifications to other fields of
mathematics and physics. A rigorous mathematical definition of the “chiral part” of a conformal
field theory, called a vertex (= chiral) algebra, was proposed by Borcherds [Bo] more than ten
years ago and continued in [DL], [FHL], [FLM], [K], [L] and in numerous other works. How-
ever, until now a classification of vertex algebras, similar, for example, to the classification of
finite-dimensional Lie algebras, seems to be far away.

In the present paper we give a solution to the special case of this problem when the chiral
algebra is generated by a finite number of quantum fields, closed under the operator product
expansion (in the sense that only derivatives of the generating fields may occur). In this situation
the adequate tool is the notion otanformal algebrgK] which, to some extent, is related to a
chiral algebra in the same way a Lie algebra is related to its universal enveloping algebra.

At the same time, the theory of conformal algebras sheds a new light on the problem of clas-
sification of infinite-dimensional Lie algebras. About thirty years ago one of the authors posed
(and partially solved) the problem of classification of sim@lgraded Lie algebras of finite
Gelfand-Kirillov dimension [K1]. This problem was completely solved by Mathieu [M1]-[M3]
in a remarkable tour de force. The point of view of the present paper is that the condition of lo-
cality (which is the most basic axiom of quantum field theory) along with a finiteness condition,
are more natural conditions, which are also much easier to handle.

In this paper we develop a structure theory of finite rank conformal algebras. Applications
of this theory are two-fold. On the one hand, the conformal algebra structure is an axiomatic
description [K] of the operator product expansion (OPE) of chiral fields in a conformal field
theory [BPZ]. Hence the theory of finite conformal algebras provides a classification of finite
systems of fields closed under the OPE. On the other hand, the category of finite conformal
algebras is (more or less) equivalent to the category of infinite-dimensional Lie algebras spanned
by Fourier coefficients of a finite number of pairwise local fields (or rather formal distributions)
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2 A. D’ANDREA AND V. G. KAC

that are closed under the OPE [K],[K3]. Hence the theory of finite conformal algebras provides
a classification of these finite “formal distribution Lie algebras”.

The main idea is to develop a structure theory of finite conformal algebras which is parallel
to that of finite-dimensional Lie algebras over through the interplay of formal distribution Lie
algebras with their “annihilation algebras”. As the latter are filtered Lie algebras in the sense of
E. Cartan, we can use the well developed techniques of Cartan’s theory.

Using the powerful Cartan-Guillemin theorem [G] (see also [B]) and a conformal analogue of
the Killing form, we obtain a classification of finite simple and semi-simple conformal algebras
(Theorems 5.1 and 7.1). We also prove conformal analogues of the Lie theorem (Theorem 8.4)
and of the Cartan-Jacobson theorem (Theorem 8.6) using a result on filtered Lie algebras from
[CK].

Some of the conformal analogues of the finite-dimensional Lie algebra theory fail, however.
For example, itis not true that a semi-simple conformal algebra is a direct sum of simple ones (cf.
Theorem 7.1). The conformal analogues of the Levi theorem and the Weyl complete reducibility
theorem fail as well (see [KW], [BKV], [CKW]). This reflects the fact that the cohomology of
simple conformal algebras [BKV] with non-trivial coefficients is highly non-trivial.

Another new important feature of conformal algebra theory is the fact that the conformal ana-
logue ofgl,, which we call the general conformal algebra and denotgdyy is infinite. It
is actually the conformal algebra associated to the Lie algebra of refyubarN-matrix val-
ued differential operators 0B (Example 4.3); its central extension, denotediBy), ., plays
an important role in physics. In this paper we develop the relevant conformal linear algebra.
This is undoubtedly just the beginning of a “conformal commutative algebra” and a “conformal
algebraic geometry”, which we are planning to develop in future publications.

Unless otherwise specified, all vector spaces, linear maps and tensor products are considered
over the field of complex numbefs We useZ . to denote the set of non-negative integers.

We would like to thank B.Bakalov, S.-J. Cheng and M.Wakimoto for many discussions and
collaboration.

2. BASIC DEFINITIONS

We start by defining the basic objects we want to consider. VL&t a (possibly infinite-
dimensional) vector space. fArmal distributionwith values inV" is a power series of the form

a(z) = Zanz_"_l,
nez
wherea,, € V. The vector space of these series is denotet Iy, z~!]]. Such series are called
formal distributions since we have a stand&rdalued pairing withC|z, z—!] which is given by
(a,p) = res.a(z)p(z)

whereres.a(z) = qay is the coefficient of:~! andp is a Laurent polynomial in. Of course
we havea, = (a,2"). Vectorsa, are also calledrourier coefficientof a(z) and completely
determine it. A formal distribution(z, w) in two variables is similarly defined as a series of the

form
Z am,nz—m—lw—n—17

mneL

and the space of these series is denoted’fy, 2!, w, w™!]]. Suppose now we have vector
spaced/, V,W. Any linear mapx : U ® V' — W induces a map

a:Ulz,z7 Y@ V[w,w ] — W[z,z " ww ).

If u € Ullz, 2], v € V[[w,w!]] are formal distributions, the pair, v) is called alocal pair
whenever for somé&/ € Z,:

(z —w)Va(u(z) @ v(w)) = 0.
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Let g be a Lie algebra, and let b be g-valued formal distributions. If we choose our bilinear
mapa to be the Lie brackel, ] : g ® g — g, then(a, b) is a local pair if for soméV € Z, :

(2 = w)"a(2), b(w)] =0,

where we denoted |(a(z)®b(w)) by [a(z), b(w)]. Itis clear that in this casg, a) is also a local
pair: we will saya andb are mutually local. When considering locality of formal distributions
with values in a Lie algebra, we will always assume it is with respelt|to

Definition 2.1. Let g be a Lie algebra, and a family of mutually local formal distributions
with values ing. The pair(g, F) is aformal distribution Lie algebraf g is spanned by Fourier
coefficients of formal distributions frors.

Remark 2.1. Every Lie algebra can be trivially made into a formal distribution Lie algebra by
choosingF = {g(z)|g € g} whereg(z) =3, ., 9 2", but we will be mostly concerned with
Lie algebras that are spanned by Fourier coefficientsfofite number of formal distributions.
Also, this formal distribution Lie algebra is not maximal (see Definition 2.4 below).

The Diracdelta distributionis theC—valued formal distribution
(2.1) d(z,w) = Z R
nez

It will often be denoted by (z — w). This notation is consistent with taking derivatives since
0.0(z —w) = —0,,0(z — w). The delta distribution enjoys the property

(z —w)d(z —w) = 0.
In general we shall have

(z —w)"0pd(z —w) =0,

if m > n.

The converse is also true in some sense(4f w) is a distribution such thdt —w)" a(z, w) =
0, then there exist formal distribution$ (w) such that [K]:

(2.2) a(z,w) = Z a™(w)oMo(z — w).
n=0

Here and further we use notatief) = 2" /n!. Furthermore, the™ are uniquely determined:
(2.3) a"(w) =res.(z —w)"a(z,w).

In this way we know that ifa, b) is a local pair, we can then find formal distributions denoted
by (a(n)b)(w) such that

N-1

(2.4) da(2) @ b(w)) = 3 (ab) (w)d8(z — w).

n=0
The formal distributionu,,b is C-bilinear ina andb and it is called the—th productof a andb.
It is not generallyC[0]-bilinear ina andb, as from (2.3) we have:

(2.5) (0a)(n)b = —na(n,l)b, a(n)ab = 8(&@)5) + na(n,l)b.
In particular,d is a derivation of alk-th productsz,,b.

Definition 2.2. Let g be a Lie algebra. A spacg of g—valued formal distributions in is called
aconformal familyif it is closed under derivativé, and all the bilinear products, just defined.

One knows [K] that if(g, F) is a formal distribution Lie algebra we can always inclulén
the minimal conformal familyF. Note thatF can be viewed as@[d]-module, where the action
of 3 is given by(da)(z) = 0.a(z). The formal distribution Lie algebra is callditite if F is a
finitely generatedC[0]-module.
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Proposition 2.1. [K] The Lie algebra axioms fgr and the very definition aof ,,,0 translate into
the following properties:

(C1) agmyb = 0 forn >> 0,

(C2) (8@)(n)b = —na(n_l)b, a(n)c?b = 8(a(n)b) + na(n_l)b,

(C3) am)b = — Z;io(_l)nﬂa(j)(b(nﬂ)a)'

(C4) ) (binye) = by (amye) = 7t () (@()D) mpn—g) -
Note that either of formulas (C2) follows from the other one and (C3).

Definition 2.3. A (Lie) conformal algebras a C[0]-moduleR, endowed with a family oC—
bilinear products,,,n € Z., satisfying axioms (C1)-(C4). A conformal algebkais called
finite if R is a finitely generated[0]-module. Therank of a conformal algebra, denoted
by rkR, is its rank as &[0]-module (recall that this is the dimension o¥&0), the field of
fractions ofC[0], of C(0) ®cg R).

Example 2.1(Virasoro algebra and Virasoro conformal algebrBlje centerles¥irasoro alge-
bra Uect C* is the Lie algebra of algebraic vector fields @ri. It is spanned by vector fields
t"0;,n € Z. TheYect C*—valued formal distribution

L(z) == (t"0)z""

nez
satisfies

(2.6) [L(z2), L(w)] = 0 L(w)d(z — w) + 2L(w)d., (2 — w)

and is therefore local to itself. Th€[0]-module generated b¥(z) is closed under all the
products, and thus forms a conformal family. The corresponding conformal algébia the
free C[0]-module on the generatérwith products

(2.7) L(O)L = 0L, L(l)L =2L, L(j)L =0 forj > 1.
They uniquely extend to a conformal algebra structure by (C2).

Example 2.2(Current algebras and current conformal algebréibe centerlessurrent algebra
associated to the Lie algebgas the spacg|t,t~!] = g C[t, '] endowed with the Lie bracket

I:gtm’ htn] = [g) h]tm+n? g7 h E g? m’ n 6 Z
Theg[t,t!]-valued formal distributions

g(z) =) (gt"=""""

nez
defined for everyy € g satisfy the following commutation relations:
(2.8) [9(2), h(w)] = [g, h](w)d(z — w)

and are therefore local to each other. THejo|-linear span is closed under all products, and
is therefore a conformal family. The conformal algebra describing this structure is given by the
C[o]-moduleCurg = C[0] ® g with the products

(2.9) gwoyh = [g, h], giyh =0 fori >0, g,heg,

where we identifiegy with the subspace d@urg spanned by elements® ¢, g € g as we will
often do. The above products extend by (C2) to a unique conformal algebra structure. The
conformal algebr&urg is called thecurrent conformal algebrassociated tg.

Remark 2.2. WhenR is a freeC[0]-module, and the products are defined on &[0]-basis

for R in such a way that (C1),(C3) and (C4) hold, there is a unique extension of these products
to a conformal algebra structure f&, obtained via (C2), and it is easy to show that (C1) and
(C4) also hold for this extension. We shall often describe conformal algebras structures on free
C[0]-modules by giving the products on a fix€]-basis.
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The notions of subalgebras, ideals, quotients and homomorphisms of conformal algebras are
obvious. Note that, due to (C3), any left or right ideal is actually a two-sided ideal.

As we have seen, any formal distribution Lie algefyra¥) gives rise to a conformal algebra
R = F. Conversely, to any given conformal algeldtave may canonically associate a formal
distribution Lie algebréie R with a conformal family isomorphic té& as follows ([K], [K3]).
Let

(2.10) Lie R = R[t,t7']/(0 + 0y R[t,t ],
let a,, denote the image aft” in Lie R, and define a bracket by
m
(2.11) famb] = 3 ( | )<a<j)b>m+n_j
JELy J

fora,b € R,m,n € Z.

This bracket is a well-defined Lie bracket and the fanfityz) = 3=, a,2 " '[a € R}
spanstie R and is a conformal algebra isomorphicRovia a(z) — a. Furthermore, sincé and
d; commute, the derivatiod;, of R[t, '] induces a derivation dfie R.

Definition 2.4. The pair(£ie R, R) is called themaximalformal distribution algebra associated
to the conformal algebr&.

Remark 2.3. [K], [K3] The correspondence which associates to a conformal alg&btiae
collection of quotients of Lie R, R) by ideals with a trivial intersection witlR is bijective.

In particular, the axioms of a conformal algebfaencode all the algebraic properties of the
conformal family forgie R. Axiom (C3) is equivalent to skew-simmetry and axiom (C4) to the
Jacobi identity for the Lie algebr@ie R.

Remark 2.4. Since we know that the Jacobi identity on any triple of elements from a Lie algebra,
together with skew-simmetry, give the Jacobi identity on all permutations of the triple, once (C1)-
(C3) are established, it is enough to check (C4) on a triple of elements from a conformal algebra,
in order for it to hold on all permutations of that triple. ThereforeRiis a freeC[0]-module on
generatorga’,i = 1...n} and product&én)aﬂ' are defined for all < j andn € Z, in such a way

that (C3) holds for = b = ' and (C4) holds for = a’,b = a’, c = a* with i < j < k, we can
extend them by (C2) and (C3) to a unique conformal algebra structure. for

3. CONFORMAL LINEAR ALGEBRA
From now on,A will denote the ringC[0] of polynomials in the indeterminate

Definition 3.1. A conformal linear mapbetweenA-modulesV andW is a map¢ : V —
A[N] ® 4 W that isC—linear and such that

(3.1) 6 Ov = (9 + \)(¢ v).

We will often abuse the notation by writing: V' — W any time it is clear from the context
that¢ is conformal linear. We will also write, instead ofp to emphasize the dependencepof
on \. The set of all conformal linear maps frovto IV is denoted byChon{V, W) and is made
into an.A—module via

(3.2) (09)r0 = —Adxv.
We shall writeCendV for Chom(V, V).
Example 3.1. Let F' be a vector space and [€t = A ® F' be the corresponding free module

over A. A conformal linear map : V' — V is uniquely determined by its values or® F'. In
fact

dA(p(9)v) = p(0 + A\)(pav), v € F
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determines the value @f, on any element of’ from its value onl ® F’, and everyEnd F'-valued
polynomiala(0, \) gives rise to such a conformal linear map via:
OAv = a(0, \)v.

We can therefore identifChom(V, V') with the space of alEndF'-valued polynomials ird
and)\. Let {m;} be a basis oEndF; then the polynomials:;, m;9, m;0?, ... are easily shown
to be and-basis of EndF)[0, A]. HenceChom(V, V') is an infinite rankA—module and—basis

of which is given by conformal linear magg’, 7}, 77, ... such that:

(T})av = 0'(myv), v € F.
Leta(z), u(w) be a local pair of formal distributions; we set

a\u = Z A

neEZy

Then we get by (C2):
(3.3) (Oa)\u = —Aayu, axOu = (04 \)(aru).

Example 3.2.Let A be an associative algebid,an A-module andv : A®V — V the action of
AonV. If Vis anA-module of formal distributions with values i, and7’(z) is an A-valued
formal distribution local to all distributions frodd with respect to the action induced bythen

T,\U = Z )\(n)T(n)U
nely

defines a conformal linear map frobto itself. Furthermore, iff is the set of allA-valued
formal distributions that are local to all memberslgfthen the mapr : 7 — CendV, mapping
T to the conformal linear map it defines, commutes with the actiahai both spaces, i.e. itis
A-linear.

Let us now define, fou, b in a conformal algebr#, the A-bracket
(3.4) [axd] =Y AMagb.
nely
Then axioms (C1)-(C4) are equivalently rephrased as follows:
(C1) [arb] € AN @4 R,

(C2) [Ga)\b] —)\[a,\b} [a,\ﬁb] = (8—1— )\)[a,\b],
(C3) [CL A b} [b —O0—\ CL]
(C4) lan[bucl] = [bulaxd] = [laxb] xud,

forall a,b,c € R. The right-hand side of axiom (C3) —resp. (C4) — means an expression similar
to (3.4), i.e. we replacg by —0— X (resp. by\+ 1). Axiom (C4) is an equality itd[\, ] @ 4 R.

Example 3.3.Everya € R defines a conformal linear magla : R — R by
(ada)rb = [a,b], b€ R.
In fact (C2) and (C3) imply:
[ax (0b)] = =[(9b) —o—xa] = (=0 = A)[b_s-ra] = (0 + A)[axb]

Definition 3.2. Let R be a conformal algebra. Then a conformal linear MdapR — R is a
conformal derivatiorof R if

(3.5) d)\[a/# b] = [(dka) Ap b] + [a,u (dkb)]'

By (C4) ada is a conformal derivation oR for everya € R. All derivations of this kind are
calledinner.

A remarkable instance of a non-inner conformal derivation is the following.
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Example 3.4(Semi-direct sum o¥ir andCurg). Let Curg be the current conformal algebra
associated to the finite-dimensional Lie algepr@efine a conformal linear map : Curg —
Curg by dig = (0 + \)g for everyg € g C Curg. This is a conformal derivation since

[(dX9) as B + g5 (dLh)] —plg, h] + g2 (0 + p)h]
—plg, h] + (8 + A+ p)lg, ]
(3 + Mg, hl
= dL [g B ]

This derivation satisfies

[d" 5\ d"] = (0 + 2)\)d"
and allows us to define a semi-direct sunMafandCur g, called thestandardsemi-direct sum.
The A-moduleVir & Curg can in fact be given a conformal algebra structure by

L being the standard generator\éf, g, h € g. This A-bracket is translated in terms of thg
products as follows:

L(O)L = 8L, L(l)L = 2L, L(o)g = 89,

Loyg=9 9gnl=g9, goh=Ignl,
where only the non-zero products bfand elements fromg C Curg have been given.

Example 3.5. The A\-bracket orCendV" given by
(3.6) [0 7 Y]uv = OA(Yu-rv) = Yu-r(da0)

defines a conformal algebra structure @andV” since it satisfies properties (C1)-(C4). This
is called thegeneral conformal algebran V' and is denoted bgcV. The setDer R of all
conformal derivations of a conformal algelkas a subalgebra ajc R.

If V = A" is a freeA-module of rankV, thengcV is also denoted bgc,. We have already
seen that the action of a conformal maploms determined by its action on a#—basis ofl” via
the compatibility relation

PA(p(0)v) = p(0 + A)¢av,
so that the conformal linear maf#§® acting as(7’}"),v = 0™ Av, A € EndV,v € V, have the
following A—brackets:

LAY —i m irpmAn—i
(3.7) THATE =D (i)A’T}E” - ( i)(—a—» T,
1€Z 4

as one can easily check by applying both sides tovaayl” and using Equation (3.6).
Let nowV be anA-module,

=> Nv, € AN @4V,
=0
wherev; € V. Define(v) to be theA—submodule of” spanned by all coefficients of v. The
following lemma will be very useful.

Lemma 3.1. If p(\) = >_7", piA" € A[)] is a polynomial whose leading coefficient does not
depend ord (i.e. is a complex number different from zero), thien) = (v).

Proof. We show, by induction on, that allv,,_,, lie in (pv). Let

m—4n

\) = Z N (pv);.
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Then(pv)msn = pmv, and hence,, € (pv). Suppose now,,_; € (pv) for all i < h; we want
to show thatw,,_;_; also lies in(p v). We have that
(pv)m+n7h71 = PmUn—h—1 T Pm-1VUn—h + .- T Pm—nh—1Vn € <p U>'
But by inductive hypothesis, all terms but the first one in the right hand side already lie there.
Hencep,,v,,_1_1, andv,,_,_1, also lie in(p v). The other inclusiorp v) C (v) is trivial. O

Thetorsionof a conformal algebr&, denotedior R is the torsion of thed—moduleR, namely
the submodule of all elementgor which there exists a non-zepos A such thap(9)r = 0. The
following proposition shows that the torsion does not play any significant role in the conformal
algebra structure.

Proposition 3.1. The torsion TorR always lies in theenterZ(R) = {r € R|[r ,s] = 0forall s €
R} of R.

Proof. Lett € Tor R. Then there is a non-zejo< A killing ¢t and we have:
0=1[0x7]=[p@)tarr] =p(=A)[tar]

for all » € R. This proves(p(—\)[t,r]) = 0, hence by Lemma 3.4t , r]) = 0, which shows

[tAr] =0 for everyr € R. O

Remark 3.1. The above proof actually shows thatdfis a conformal linear map such that
p(0)¢ = 0 for a non-zerg € A, theng = 0.

In view of Proposition 3.1 the—bracket of a conformal algebra defines an adjoint map
ad : R — Der R C gcR whose kernel is the center & and which is a homomorphism of
conformal algebras. Thus all finite rank centerless conformal algebras can be embedded as finite
rank conformal subalgebras g€, .

Proposition 3.2. A conformal linear map : V' — W always maps ToV to zero.

Proof. Sayv € V is torsion. Then there is a non-zese A such thap(9)v = 0. Then

0 = dr(p(Q)v) = p(0 + A)(drv).
Use now Lemma 3.1 to conclude thatw = 0. OJ

We now classify all conformal algebras that are free of rank oné-asodules. This is a joint
result with M. Wakimoto.

Proposition 3.3. Let R = Ax be a conformal algebra that is free of rank one as&Amodule.
Then eitherR is commutative, i.e. th&-bracket is0, or it is isomorphic to Vir.

Proof. Axioms (C4) and (C3) give the following relations:

(3.8) [2a [z )] = [z o xa]] = [z 3 2] app 2],

(3.9) waa] = —[z _o-sal.

Let us sefx , x| = a(0, A\)x for some polynomiak. Then (3.8) is equivalent to
(3.10) a(0,\)a(0+ A\, p) —a(0, )a(0 + p, A) = a(0, A + p)a(—=XA — p, A).
Let

a(d,)) =Y a;(\)d'
=0
with a,, # 0. Then, assuming > 1, if we equate terms of degrée — 1 in 9, we get
n(A — p)an(Nan(p) =0
obtaining a contradiction. S@0, \) = a(\)d + B()) is linear ind. If we putA = pin (3.10),
we get
a(0,2X)a(—2X,\) =0,
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which means3(\) = 2A\a()\), thereforea(0, A) = «(A)(0 + 2A). Plugging this into (3.9), we
get thata is a constant. Up to changingby a complex multiple we can make(tor 1. In the
first case we have the trivial product, in the second the Virasoro algebra. OJ

The analogy between ordinary linear algebra and conformal linear algebra is very suggestive
of the importance of other remarkable constructions. We have already seen that the family of all
conformal maps between twé-modules can itself be given as+-module structure. The notion
of associative algebra (and of Lie algebra) are modelled on the algebra of linear maps between
vector spaces. It is natural to try to extend this construction to the conformal case.

Say we have conformal linear maps: V. — W andvy : U — V whereU,V,W are A—
modules. We would like to define the notion of the compositio @ind) resulting in a new
conformal linear map fron to 1. Conformal linearity implies

Pr0v = (0 + N)(drv), Y, 0u = (0 + p)(Y,u),
so that the obvious composition would satisfy

OA(Puu) = (9 + A+ p)(oa(Puu)-

Our composition must therefore be a conformal map indexell-by.:. The natural choice is:

(3.11) (oY) arput = Oa(Yuu)

for all w € U. This is the only possible choice to be compatible with replagingyy 0¢ or ¢
by 0v. This composition satisfies (3.3), and defines@sndl” a structure of an associative
conformal algebra as defined below:

Definition 3.3. An A-module A is anassociative conformal algebrid it is endowed with a
A—product
ARA>a®@b—abe A\ ®4A
such that for alk, b, ¢ € A the following two axioms hold:
(A1) (Oa)\b = —Aayb, ax0b = (0 + \)ayb,
(A2) ax(byc) = (axb)rgpc.

The next step is taking the commutatorAnin order to define the analogue of the notion of a
Lie algebra. The properties we want to retain of the commutator in an associative algebra are the
bilinearity in the arguments, that we know translates as (C2), and skew-simmetry (C3). There is
a unique reasonable choice:

(3.12) [Tyl = 22y — y-o-a7.
It follows from Remark 3.2 below (and it is not difficult to show directly using Remark 3.3) that

this A\-bracket defines a (Lie) conformal algebra structuredonlit is also easy to see that the
A-bracket defined by (3.6) coincides with the one defined by (3.12).

Remark 3.2. A formal distribution associative algebfd, F) gives rise to a conformal associa-
tive algebraF in the same way as in the Lie case. Similarly one constructs the maximal formal
distribution associative algebfalg R, R) attached to an associative conformal algeRrarhe
correspondence betweéhandAlg R is the same as described by Remark 2.3 in the Lie case.
Furthermore, passing from a formal distribution associative algebr#) to the Lie algebra

(A F) (obtained fromA by imposing the bracket:, b] = ab — ba) corresponds to passing from
the A\-producta,b on F to the A\-bracket (3.12).

Remark 3.3. The following properties always hold in an associative conformal algebra:
ax(b-o—uc) = (axb)-o-pc,
afaf)\<b,uc) = (afafub)—awf,\ca

a—g-A(b-g—C) = (a_p1,-rb)—a-pcC.
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4. THE ANNIHILATION ALGEBRA

We have seen in Section 2 how one can associate to a formal distribution Lie algebra a con-
formal algebra. We have also inverted this construction, i.e. to a given conformal algeea
have associated its maximal formal distribution Lie algelgta R, R). Let now R be a finite
conformal algebra. Then we may find a free complementasubmoduleR; to Tor R:

R=R;®TorR,

whereR; = A® g, andg C R is a finite-dimensional subspace. Then we have the identification
[K]

(4.1) LieR=g[t,t '@ (TorR) ¢!
with the following brackets (cf. (2.11)):

(4.2) [y 0] =) (m) (@) D)msn—j;

JEL+ J
(4.3) [Cie R, (TorR)t™ '] =0,
wherea, b € g, m,n € Z, a,, stands fout™, and we use the rule
(4.4) (0a)ym = —may,_1,a € R,m € Z.
Recall also thatie R admits a derivatio® defined by
(4.5) d(a,) = —na,_1,a € R,n € 7.

Thus, £ie R may be viewed as a generalization of a current Lie algebra. We have the following
corollaries of the above remarks and Remark 2.3.

Proposition 4.1. Let (g, F) be a formal distribution Lie algebra with a conformal famify,
which is a free4-module on a basi®. Suppose that all elements, a € B, n € Z, are linearly
independent. Thefy, F) is isomorphic to the maximal formal distribution algebra associated to
the conformal algebr&F. A similar statement is true for formal distribution associative algebras.

Proposition 4.2. Let R be a finite conformal algebra and ¢t~} be a finite set of generators
for R (as an.4-module). Letg,, be the linear span ofa$,i > m}; then we have a “quasi-
filtration” of £y:

(46) £0DL1 DL D
by subspaces; of finite codimension satisfying
(£, £;] C £y, for somes € Z,

and
[87 '87,] - 21’—17
foralli,j € Z—weletg; = £, if j < 0.

Proof. We have:
[a® ) a Zpaﬁ d,\)a’, somepg‘ﬂ.

Let s be the highest degree of the polynomlﬁqé. The statement clearly follows from (2.11).
O

Remark 4.1. One can use the family£,,} to define a topology oifie R)_ by setting{<,,}

to be a basis of neighbourhoods of zero. The quasi-filtratin} depends on the choice of the
set of generators faRk, but the topology it induces of), is independent of that choice. The Lie
bracket ong, and the action of are clearly continuous.
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Definition 4.1. Theannihilation algebraassociated to a conformal algelitas the subalgebra
(LieR)_ = £y = {anla € R,n > 0}

of the Lie algebretie R, topologized as in Remark 4.1. Obvioug|gie R)_ is 0-invariant. The
semi-direct suniLie R)~ = Cox(Lie R)_ is called theextended annihilation algebra

Equations (4.1)-(4.5) show thatie R)_ is nothing bufg[t] with the Lie bracket (4.2). We can
now describe (extended) annihilation algebras in all important examples.

Example 4.1. Consider the Virasoro conformal algebra, and letL be its standard generator.
Then by Proposition 4.1¢ie Vir is isomorphic tdlect C* under the identificatio.; = —t79,.
The associated annihilation algebra is the Lie subalgebra spannéd,bwith ; > 0. In
other words,(£ie Vir)_ ~ YectC. Its topology is the one induced from the standard filtration
{£, = t"C[t]0,} of Vect C. Sinced acts on it as-add;, we see thatLie Vir)~ is isomorphic to
the direct sum offect C and the one-dimensional Lie algelftéo + 0;).

Example 4.2.The Lie algebréeCie Cur g, whereCur g is the current conformal algebra associated
to a complex Lie algebrg, is isomorphic tog[t, t~!] = g @c C[t,t'] where we identified;,
with ¢gt". The corresponding annihilation algebra is its positive pgit its topology being the
one induced by the standard filtrati¢g,, = ¢"g[t|}, ando acts on this as-0;.

Example 4.3. Let Diff C* be the associative algebra of algebraic differential operatofs*on
Its elements are of the form .
=0

wherep; € C[t,t!]. A basis forDiff C* is given by{t™d"|m € Z,n € Z, }, and the product
is given by the usual composition of operators. Denotébiyf C*)y the algebré&EndC" ®
Diff C* of EndC”-valued differential operators ofi*. It acts naturally on the vector space
CN ® Cl[t, t!]. The(Diff (CX)N—vaIued formal distributions

ZAtn k—nl

nez
act on the family
v(z) = Z(vt”)z‘"‘l =vi(z —t),v e C",

nez
of CV-valued formal distributions. Sinc&;(z) = A§(z — t)(—0,)%, J% andv are local under
composition, explicitly:

JE () v(w) = Ad(z — t)(—0) v é(w —t)
= Av ok (6(z — t)6(w — 1))

= Au Xk: (’:) OF=16(w — £)06(2 — w)

1=0

io( )ak i Av(w)dl 5(z — w).

HenceJ% induces a conformal linear map gf @ CV to itself, given in terms oA—product as
k
E\ .

) = NOF 7 Av = (0 + \)F Aw.

i =32 () reraw = 0+ vt an
Since theJ}’s act locally on an4—module, they are local to each other with respect to\the
product orCendA"™. If {m;} is a basis oEndC", then the formal distributiong’, form a basis
of Cend A" over A (this is the same as to say that polynomi@lst+ \)* form an.4-basis for
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C[0, \]) and Fourier coefficients of all théﬁli are linearly independent, hence by Proposition 4.1
the associative algebrg CendA” (see Remark 3.2) is isomorphic Biff C*)y. Simplicity
of (Diff C*)y then implies simplicity oCend. A" as an associative conformal algebra.

The same is true fagc,,: the Lie algebréatie gc, is isomorphic to the Lie algebi@iff C*)y
of EndC”-valued algebraic differential operators @t. The annihilation algebra &end.A"Y
(resp.gcy) is obviously isomorphic to the polynomial part @iff C*), with the usual product
(resp. Lie bracket).

Remark 4.2. The J}j’s constitute an alternative basis fgc, to the one considered in Exam-
ple 3.1.

Now we discuss some properties of annihilation algebras that will turn out useful in the sequel.
Introduce the following generating series of elements@it 2)_: ay = 3, ;. A™a,. Then
we have an equivalent form of (2.11) and (4.4):

(47) [a,\,b“] = [a,\b],\ﬂ“

(48) (aa),\ = —)\CL)\.
Replacingu: by i — A, we getfa , b],, = [ax, b,—,] or, equivalently

T (m
(49) (a(m)b)n - Z(_l)”ﬂ‘] ( . ) [aja bm-i—n—j]
=0 J
Lemmad4.l.a, = 0ifand only ifa € Tor R.

Proof. By (4.1) and (4.8) ifa ¢ Tor R, thena,, # 0 for n sufficiently large, and it: € Tor R
thena,, = 0 for all non-negative:. O]

Lemma 4.2. A torsionless conformal algebr& is commutative if and only if its annihilation
algebra(Lie R)_ is commutative.

Proof. If the A-bracket is0, (Lie R)_ is trivially commutative. Suppose nofie R)_ is a com-
mutative Lie algebra. From (4.7), we det, b],.,, = 0 which showsa , b] € Tor R because of
Lemma 4.1. 0J

An idealj C (£ie R)_ is said to beregular if there is some ideal ¢ R whose Fourier
coefficients spair thenj is stable under the action of

Lemma 4.3. If R is a torsionless conformal algebra, then evérgtable idealy of (Lie R)_
that is not contained in the center c€ie R)_ contains a non-zero regular subideal.

Proof. Suppose there is an € R such thata,, € J for all m € Z,. Then (4.9) shows that
(a@b); € Jforallb € R,4,5 € Z,. Hence the ideal ofLie R)_ generated bya,,,m € Z, },
which is clearly contained ify, is (Lie J)_ where/J is the ideal ofR generated by.

Therefore, we are only left with proving that there is suchvar€hoose an element, € J
not lying in the center of £ie R)_. There exists a maximalsuch that all thez;,j < i lie
in the center ofy. It is clear by (4.9) thatr;yy = O forall j < ¢,y € R, so that by (2.11)
(%5, Ym] = (2@)y)m, fOr allm. Soa = x(;y is the element we are looking for. O

Remark 4.3. The proof of Lemma 4.3 actually shows that the idg8le R)_, [(Lie R)_, J]] is
always regular. It also follows from (2.11) and (4.9), as well as the proof of Lemma 4.3, that
whena andb are regular ideals, the idegl, b] is also regular. In particular, id (resp. b) is
spanned by all Fourier coefficients af(resp.B) for idealsA, B of a conformal algebr#, then

[a, b] is regular, and is induced kA, B]) (see Lemma 3.1).

Definition 4.2. The completedresp. completed extendgannihilation algebra of a conformal
algebraR, denoted Lie R)_ (resp. (Lie R)~), is the completion of Lie R)_ (resp. (Lie R)™)
with respect to its topology.
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For example, the completed annihilation algebrador g is g[[¢]], while that forVir is C[[¢]]0:.
In both cases the topology is induced by filtering with respect to the power series degree in
There is aconformal modul@ction of(£ie R)_ on R given byr,,.s = r,)s, which we will call
the adjoint conformal representation @t (see Section 8). Since for amye R, £,.r = 0 for

k >> 0, this action extends to the WhoaﬁTeE),.

—

Lemma4.4.Letx € (Lie R)_, r € R. Then we have:

(o)

(4.10) o, ra] = Y (=0) V2 ) s,
=0
and
(4.11) (1), = i[a(i)x,rnJri].
1=0

Proof. It is enough to show (4.10) for = a,,, a € R,m € Z,. Density of(£ie R)_ along
with convergence of both sides in (4.10) will give the general statement. Inflegd,,| and

ZieZ+ ((—3)(i)am -T)n+i both equal

m
> ( .)(aw)mn—m
JELy J
sincea;.r = a()r. The second equality then follows by substituting (4.10) in the right-hand side
of (4.11). O

Proposition 4.3. Let R be a torsionless conformal algebra, and jebe a 0-stable ideal of

—

(Lie R)_ such that N (Lie R)_ = 0. Thenj is central in(Lie R)_.

Proof. Let x € j,r € R. Then because of (4.11)z.r), lies inj. But z.r belongs toR,
hence(x.r), also lies in(Lie R)_. This shows thatz.r), € jN (Lie R)_ = 0, and sinceR is
torsionlessyg.r must equal. Thusz.r = 0 for all x € j,r € R, which means, by Lemma 4.4,

o —

thatx € j is always central ifie R)_. O

5. SMPLE CONFORMAL ALGEBRAS

We now want to undertake the task of studying simple conformal algebras through the prop-
erties of the corresponding annihilation algebras; throughout this section, annihilation algebras
will always be considered along with their topology.

Definition 5.1. A conformal algebrar is simpleif it is non-commutative and has no non-trivial
ideals.

It is clear thatVir is simple, and thaCur g is simple if and only ifg is a simple Lie algebra.

Remark 5.1. In consideration of Proposition 3.1, any simple conformal algébraust be tor-
sionless.

The final goal of this section is the proof of the following

Theorem 5.1. A finite simple conformal algebra is isomorphic either to Vir or to the current
conformal algebra Cug associated to a simple finite-dimensional Lie algefpra

We shall divide the proof in several steps. The most important result we are going to exploit
is the Cartan-Guillemin theorem [G] (see also [B]):

Theorem 5.2. Let £ be a linearly compact Lie algebra having an open subalgebra containing
no ideals oft. Then:
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(a) Every non-commutative minimal closed ideata$ of the formS = S ® C[[t, ta, ..., t,]],
for somer € Z, and some simple Lie algebfa(the simple Lie algebr#'is either finite-
dimensional or one of the complete Cartan type Lie algebras Sy, Hy, Ky; See e.g.
[G1] or [K1]).

(b) There exists a descending family of closed ideald of

such that each quotief¥t, /Jx+1,0 < k < n, is either commutative or isomorphic &
described in (a), in which case there are no closed ideals strictly betgieandJ,. ;1.

Recall that dinearly compacwector space is a topological vector space which is the topologi-
cal product of discrete finite dimensional vector spaces. The linearly compact Lie algebra we will

—

apply Theorem 5.2 to i€ie R)~, which is the topological product &0 and£;/£;.1,7 > 0.

—

Lemma 5.1. If R is a finite conformal algebra, theftie R)~ has a subalgebra of finite codi-

—

mension containing no ideals ofie R)~.
Proof. By (4.1) we can assumg to be torsionless. Use Proposition 4.2 with.drbasis ofR.

—

The closure ofg; in (L£ie R)~ does not contain any ideal 0Lie R)—, and is clearly of finite
codimension. O

—

We can therefore apply Theorem 5.2(t6ie R)~. It is also easy to find out what the non-
commutative quotients in (5.1) fg£ie R)~ can be.

Lemma 5.2. (£ie R)~ is a Lie algebra of growth< 1 (see[GK], [K1] for the definition of
growth=Gelfand-Kirillov dimension of a Lie algebra and its properties).

Proof. Let {a®, o = 1...n} be a set of generators of tbe-moduleR. Then the elemeni8, a2,
with o = 1,..., N,m € Z, span the Lie algebréLie R)~. Consider a finite subset of this
set of elements, so that faf, € X we havem < M, where) is a positive integer. Then, due
to (2.11), commutators of lengthd n of elements fromX produce linear combinations of the
a® with m < Mn and the total number of these elements is at mds{m, which is a linear
function inn, hence the growth dftie R)~ is at most one. O

The growth of(£ie R)~ is certainly not less than the growth of the graded algebra associated to

(Lie R)~ with its standard filtration, and the same applies to all subquotients. Therefore the only
possible non-commutative quotients in (5.1) have an associated graded algebra of growth at most
one. Sincdl; is the only complete Cartan type Lie algebra that contains a dense subalgebra of
growth one, and all finite dimensional Lie algebras have growth zero, we obtain:

—

Lemma 5.3. The only non-commutative quotients showing up in (5.1) for the Lie aldete¢ar) -
are isomorphic taUect C, g or g|[t]], whereg is a simple finite-dimensional Lie algebra.

Lemma 5.4. If R is a finite conformal algebra with no non-zero commutative ideals, #han
(5.1) can be chosen to be non-commutative.

Proof. Supposej,, to be commutative; then it must be central, otherwise Lemma 4.3 would give
a commutative ideal oR.

If 3, is central, therjj,,_; is a central extension ¢f = J,,_1/J. by J, that we may assume
without loss of generality to be non-trivial: indeed, if it were trivial, then either; would be
commutative, ofy would be a non-commutative minimal ideal. $9_; is non-commutative,
andyJ,_1 N (Lie R)_, which is nonzero by Proposition 4.3, contains a non-zero regular tdeal
(Lemma 4.3).

If J is commutative, thefy,_; is solvable, andJ,,_1,3J,_1] lies insideJ,. Then either is
a commutative regular ideal, or it is non-commutative, in which das¢ # 0 is still regular
(Remark 4.3) and commutative, since it is central §ie R)_. But from Lemma 4.2 every
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commutative regular ideal corresponds to a commutative ideal of the conformal algetbes
giving a contradiction.

If J is non-commutative, then by Lemma 5.3 it is isomorphic to one of the foIIO\AﬂT/EgRC,
g or g[[t]], whereg is a simple finite-dimensional Lie algebra. But those Lie algebras have no
non-trivial (continuous) central extensions. 8q_;,J,_1] is a closed ideal isomorphic
hence minimal. O

Let us now classify all surjective continuous derivationg[¢f] andDect C.
Lemma 5.5. If & = g[[t]], thend = —0, up to a continuous automorphism of

Proof. All continuous derivation® of & are of the formd = a(t)0;+adg(t), a(t) € Cl[[t]], g(t) €
al[t] (cf. [K2], Ex. 7.4).

Surjectivity forces:(0) # 0: sincedz(t) = a(t)a'(t) + [g(t), z(t)], computing everything at
0, and assuming(0) = 0, we get(dx(t))|=o = [9(0),z(0)]. Sinced is surjective, all possible
elements ofy must show up in the forrfy(0), 2(0)] for somez(0). But this is clearly impossible
if g is finite-dimensional. If(0) # 0, the differential equation

c(t)~'¢(t) = a(t)'ady(t) € adg][{]]

always has a solutiont) € (AdG)[[t]], whereG is the Lie group with Lie algebrg. But this
is exactly the condition foe(¢)dc(t)~! to be equal tau(t)d,. Therefored can be conjugated to
it; the automorphism mapping identically, and sending — — [ a(¢)~*dt clearly conjugates
a(t)0; to —0y. O]

Lemmab5.6.1f G = m, theno = —add, up to a continuous automorphism.

Proof. Itis a well-known fact that all continuous derivations®fre inner:0 = ada(t)d;, a(t) €
C[[t]]. Also 0 is surjective if and only ifz(0) # 0. If so, 0 is conjugated te-0; by the automor-
phism sending — — [ a(t)~'dt. O

Corollary 5.1. If R is a simple finite conformal algebra, thégie R)_ is isomorphic to either
Vect C or g[t], whereg is a finite dimensional simple Lie algebra.

—

Proof. R has no commutative ideals so, by Lemma 5&¢ R)_ has a minimal non-commutative
closed idealy. J cannot be central henge= J N (£ie R)_ # 0, by Proposition 4.3j must be
dense iy because of minimality of and it must be all of £i¢ R)_ since otherwise Lemma 4.3
would give a strict ideal of?, which is simple. Sincéfie R)_ is clearly infinite-dimensional,
the case of a simple finite-dimensional Lie algebra is ruled out.

Now, (Lie R)_ is exactly the subspace of all elements on whidhcts nilpotently, and since
we know we can conjugate the actiondfo —0, (Lemmas 5.5, 5.6) itis clear thagie R)_ will
be isomorphic to eitheBect C or g[t], whereg is a finite dimensional simple Lie algebra. [

Our classification will be proved as soon as we show that the extended annihilation algebra
completely describes the conformal algebra structure.

Proposition 5.1. Let R and S be torsionless finite conformal algebras and: (£ie R). —
(Lie S)- be a homomorphism of topological Lie algebras compatible with the action Bien
there is a unique homomorphism of conformal algelras? — S inducinge.

Proof. We are going to show that as soon¢ass a continuous linear map which is compatible

with the action ofd, we can find a unique inducing it. This will prove the statement since

(4.9) shows how to recover the conformal algebra structure from the Lie algebra structure of the

annihilation algebra. Uniquenessofvill then show that) is a homomorphism aft-modules.
SincesS has no torsion, by Lemma 4.1 for every choiceraf R there is at most ong € §

such thats; = ¢(r;) for everyi. Let us fix a basigs'} of S and consider an elemente R.
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Because of the compatibility ef with the action o0, there always exist numbem‘;such that

n

n! .
52 o) = S S
7=0 1 ’

for everyn € Z, . Then set

(5.3) o(r) = Z s
JEL+
The formal elemen(r) is such thaté(r)),, = é(r,) forall n € Z, . Because of continuity of
¢, for everyr € R, ¢(r;) lies in £, for i >> 0 (see (4.6)). But this forces(r) to be polynomial
in & and therefore to belong 8. Then, due to uniquenessofr) the mapr — ¢(r) is A-linear.
Moreoverg clearly induces. O

We are now able to classify all finite simple conformal algebra.

Proof of Theorem 5.1We already know tha¥ir andCur g, whereg is a finite dimensional sim-
ple Lie algebra, are simple conformal algebras. We want to show they are the only ones.
Let R be a simple conformal algebra. Then Corollary 5.1 sho@is R)_ is isomorphic to
eitherYect C or g[t] with the topology induced by the standard filtrations and thagan be
assumed to act asd;. So we get-compatible continuous isomorphisms betwégie R)_ and
either(Lie Vir)_ or (L£ie Curg)_, resulting by Proposition 5.1 in isomorphisms®fvith either
Vir or Curg. This concludes the proof. O

The correspondence between conformal algebras and formal distribution Lie algebras (Re-
mark 2.3) implies the following corollary of Theorem 5.1.

Corollary 5.2. A finite simple (i.e. without non-trivial regular ideals) formal distribution Lie
algebra is isomorphic either to the Virasoro Lie algebra or to a quotient of a current Lie algebra
g[t,t~1] with g a finite-dimensional simple Lie algebra.

6. THE KILLING FORM

The next step towards a complete structure theory of conformal algebras is the classification
of semi-simple algebras. In the theory of finite-dimensional Lie algebras we can rely on the
inestimable use of the Killing form. It is evident we need an analogous notion in the conformal
algebra case, but the very notion of trace of a conformal linear map is ill-defined. Life would be
much easier if we were handling the usubllinear maps.

Definition 6.1. Let M be a finite rank4A—module andl” : M — M an A-linear map. Let
K = C(0) be the field of fractions afd and letM = K ® 4 M. ThenT extends by linearity to
aC-linear mapMy — My and thetraceof 7" on M is defined agry,T" = Try;, Tk.

Remark 6.1. This trace inherits all standard properties of a trace on a vector space. In particular
TryyAB = Try,BA. Furthermore, ifM is a free module, theiir,, 7T is equal to the sum of
elements on the diagonal of any matrix representatiah. dklso Try, T = Tr; ror 1.

In spite of the fact that conformal linear maps are Adetinear, one obviously has:

Proposition 6.1. Let ¢* be conformal linear maps); indeterminates. Then the composition
O3, 03, - - - P4 is A-linear wheneved . )\, = 0.

In this way, the trace of the composition of conformal linear maps is well-defined as soon as
the \’'s add up to 0. The analogue of the commutativity property of trace in this case is:

Proposition 6.2. Let M be an.A—module of finite rank, and fgr(0) € A let s.p(9) = p(d + ¢).
If ¢ € CendM, then one has

(6.1) Trugy, 03, - -- 0% = s, Trudy, ... % oy,
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Proof. We may assume thadt/ is a free.A-module (see Remark 6.1). Choose.&rbasis{m'}
of M. Then there is a unique conformal linear mMapM — M such thatlym® = m‘ for all 4.
The compositionl, I_, is always the identity.

LetT be anAd—linear map onV/. Thenl,TI_) is A-linear and we have:
(62) Try LTI ) = S)\TrMT,

as can be easily shown by adding up elements on the diagonal of the matrix representation of the
composition. Proposition follows now by noticing that Remark 6.1 implies:
Tr gy, 03, - - On, = Trar (O3, Lx) D 03, - 9%, = Truln, 63, - O% o3, Lo,
]

We are now able to define our “Killing form”.

Definition 6.2. Let R be a finite conformal algebra. Th€lling form of R is the C-bilinear
pairing

(x|y)x = Trr(adz)x(ady)-x.
Due to (6.1), the Killing form satisfies

(6.3) (2]y)x = sx(yl)-r.
It is also clear by definition that
(6.4) (Oz|y)r = —(2]0y)r = —A(z[y)a.

Example 6.1.Let R = Vir = AL. Then the Killing form is
(L|L)y = (0 — XN)(0+ 2)).
Example 6.2.1f R = Curg, g, h € g C Curg then
(glh)x = r(glh),
wherek is the Killing form of the Lie algebra.

Remark 6.2. Notice that the Killing form of a simple conformal algebra is always non-degenerate.

For a subalgebrd of R set/* = {z € R| (z|I)» = 0}. Due to (6.3) we gef* = {z €
R| (I|x)y = 0}, and due to (6.4)[* is an.A-submodule. The following example shows tiat
does not need to be an ideal Bfeven ifI is.

Example 6.3. Let R be the semi-direct sum &fir andCur g, whereg is semi-simple, given by
Lyr = d%r as in Example 3.4. Then

(glh)x = r(glh), (LIL)x = (0= A)(0+2X), (Llg)x=0
for everyg, h € g. ThereforeCurg is an ideal ofR, Curg® = Vir but Vir is not an ideal.
What is instead true is thdt is always a subalgebra.

Proposition 6.3. Let R be a conformal algebra anfl C R an ideal. Then'+ is a subalgebra of
R.

Proof. Leta € I,b,c € I+. Then, sincd is closed undeh—bracket with every element at,
we have:
(laxblle)rsu = ([axc][b), = (cllaxb])-r—p = 0.
Vanishing of the first term implies
(6.5) Trr aday adb,adc_y_,, = Trp add, adaradc_,_,,
while that of the other two shows
Trg aday adc_,_, adb, =

(6.6) = Trg adc_,_, aday adb, = Trp adc_,_, adb, ada,.
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We want to show thafa|[b , c]), = 0, that is:
(6.7) Trg aday adb, adc_,_, = Tr aday adc_,_, adb,,.
But we know from Proposition 6.2 and (6.6) that
Trg aday adc_,_, adb, =
= s)Trg adc_,_, adb, aday = s,Trp aday adc_,_, adb,.
This shows that the polynomidry aday adc_,_,, adb, is independent of. The rest of the

proof follows easily. Using Proposition 6.2, independencdigf ada, adc_,_, adb, with
respect ta), and (6.5) we obtain:

Trg aday adc_,_, adb, =
= Trg adb, aday adc_,_, = Trp aday adb, adc_,_,,,
establishing (6.7). O
Remark 6.3. All properties of the Killing form extend to the trace form in any finRemodule.

The subalgebrd! does not even need to be a complementary submoduleNevertheless
one has:

Proposition 6.4. Let I C R be an ideal isomorphic to either Vir or Cgr for a simple finite-
dimensional Lie algebrg. ThenRk = I+ ¢ I as.A-modules.

In order to prove this statement, we need a classification of all conformal derivations (see
Definition 3.2) ofVir andCurg.

Lemma 6.1. Every conformal derivatiod of the conformal algebra Vir is inner.

Proof. Let us assume that\L = a(9, \)L wherea € C[9, \]. We writea = > | a;(\)d". If
d is a conformal derivation, it needs to satisfy{L , L] = [L, (d\L)] + [(d\L) x+, L]. This is
equivalent to saying that

(O +A+2u)a(0,\)L = a(0+ p, \)(0 +2p) L + a(—X — 1, \)(O + 2X + 2u) L.

Assuming alla;’s are non-zero and equating terms of degrei@ O in both sides, we get, if

n > 1, (A = nu)a,(N) = 0. This shows that,,(\) = 0, a contradiction. Therefore the degree

of a(0, A) in 0 can be at most one. In this case, substituting into the derivation requirement, one
getsap(A) = 2Xa;(A), henced, L = a;(A\)(9 + 2M\) L, which is an inner derivation induced by

the elementi; (—0) L. O]

Lemma 6.2. Let g be a simple finite-dimensional Lie algebra. Then every conformal derivation
d of Curg is of the formp(9)d* + d whered is inner andd” is as in Example 3.4.

Proof. Setdyg = >y,
Then (3.5) tells us that

(6.8) Z 0'dy([g,h]) =D (=X — p)'[dyg, h] + (0 + p)'[g, dih).

%

d'di(g), for everyg € g, whered; areC-linear maps ofj to C[\] ® g.

Settingu = 0, switching the roles of andh and adding up, one gets:
> 9 ([g.dyh] + [hodigl) =D (=N (g, dih] + [h, dyg)).

The right hand side does not dependiience all coefficients of non-zero powersiahust
be 0. This means théf g, 1] + [d}h, g] = 0 for everyi > 0 and everyg, h € g. If g is simple,
such a linear map can only be a multiple of the identity, as next lemma will show, Henast
be of the form:

drg = d3(g) + p(0,N)g
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for everyg € g. Butd is a conformal derivation, so it > 1 andp(9,\) = D1  pi(\)&',
equatingn — 1 degree terms in (3.5), we gepp, (1) = 0. This proves thap is of degree at
most one in.

Letd\g = p1(\)(0 + N)g, i.e. d = p,(—0)d~. This is a conformal derivation gf and the
action ofd — d’ ong is independent af. Hence, by (6.8){, — d’ is an ordinary derivation from
g to C[\] ® g and is therefore an inner conformal derivation, proving the lemma. O

Lemma 6.3. Let g be a simple finite-dimensional Lie algebra, ahd g — g a linear map. If
[Tx,y] = [z, Ty] forall x,y € g thenT is a multiple of the identity map.

Proof. Letg = €, g. be aroot space decomposition with respect to a Cartan subalgebga.
Since[Tz,z] = 0, if z € b is a regular element, théfiz lies in the centralizer of, hence in
h. This shows thaf’h C h. This means that’ preserves the root decompositiongomodulo
elements irh. In factif z € g,, then[Th,z] = [h,Tz], h € b, and since the left hand side is
a multiple ofzx, the right hand side must be too, showing tliatis a multiple ofx plus some
element fromh: Tx = c,x + h(z).

Let nowz € g,, y € gg. From[Tz,y] = [z, T'y] we obtain

calz, y] + [h(z),y] = cslz, y] + [z, h(y)].
Whena andg are unequal roots, this means

(¢a —cg)[z,y] =0, [h(x),y] =0, [z, h(y)] = 0.

Sinceg is simple, its Dynkin diagram is connected, and this allows us to show that all
cs = c are the same for all roots, 5. But [h(z),y] = 0 for all root vectorsy givesh(z) = 0.
HenceT equalscld on all g,,a # 0. It is left to show thatl" equalscld also onf. But
[Th,x] = [h,Tx] gives[Th — ch, x| = 0 as soon as is a root vector. This tells us th@th = ch
also forh € b. O

Proof of Proposition 6.4Leta € R,j € J. Then in taking(a|j), it is enough to consider the
trace overJ since this is an ideal. Elementacts onJ via a conformal derivation. But any
conformal derivation oMir is inner, and any non-inner conformal derivationQ@irg is as in
Lemma 6.2. Any element acting @5 on Cur g has a zero Killing product with it.

In any case — (alj), is equal toj — (¢|j), for somei € J, and allj € J. This, and the
fact that the Killing form is non-degenerate on simple algebras (which we need in order to show
unigueness in the choice 9f show that/ 4 J* is a direct sum decomposition. OJ

Remark 6.4. One can prove the proposition when the iddails isomorphic to the Virasoro
conformal algebra without using the Killing form. Indeed, débe the centralizer of this ideal.
It will be an ideal, and since all derivation dfare inner and its center is trivial, every element
x in our conformal algebra admits a unique decomposttiea x¢ + = ; wherez¢ lies in theC
andzx; liesin J.

Thus,C + J is a direct sum decomposition, addis shown to be a complementary ideal,
and not only a subalgebra. This argument is applicable any.fimeenterless and has no outer
derivations.

7. SEMI-SIMPLE CONFORMAL ALGEBRAS

We have all the tools we need in order to attack the problem of classification of semi-simple
conformal algebras, now. Let us start by giving the basic definitions.

Definition 7.1. Let R be a conformal algebrd,and ] its ideals. The brackef - .J] of these is
the subspace aR that is spanned by all products,j withi € I,j € J,n € Z,. Note that
this is an.A-module due to (C2) and an ideal due to (C4). In other wofds/| = ([1,J]) (see
Lemma 3.1).

Thederived conformal algebraf Ris R’ = [R- R]. We setR) = R/, R+ = (RM) n >
1. ThenR is asolvable conformal algebrd R = 0 for somen > 1. Anideall C R is
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solvableif it is solvable as a conformal algebra. Ifis an ideal ofR?, we define/' = I and
"' = [R-I"],n > 1. Ris anilpotent conformal algebri#& R" = 0 for somen > 1.
A conformal algebra? is semi-simplef it has no non-zero solvable ideals.

Recall that by (2.11) and (4.9) (see also Remark 4.3) we have for any two ideats/ of a
conformal algebrak:

(7.1) (Cie[I-J])_ = [(LieI)_, (Lie J)_].

Lemma 7.1. A conformal algebraR is solvable (resp. nilpotent) if and only if its annihilation
algebra(Lie R)_ is.

Proof. We proceed as in Lemma 4.2R is solvable (resp. nilpotent) if and only ®/Tor R

is, s0 we will assumeR to be torsionless. Due to (7.1), we haveie R™)_ = (Lie R)",
(Lie R")_ = (Lie R)". The result follows form the fact that C R, (Lie J)_ = 0 implies
J =0, whenR is torsionless (see Lemma 4.1). O

Remark 7.1. Here and further, we have denoted the subspaafe(Lie R)_ spanned by all
Fourier coefficients of members from an idelabf a conformal algebrd by (£ie .J)_. Even
though the inclusion of an idedlin a conformal algebr& is clearly injective, the map it induces

at the level of annihilation algebras might have a non-trivial kernel. However this Kenmest

be central in(Lie J)_. In fact, if ¢ were not central, Lemma 4.3 would locate a non-zero regular
subideal oft, which amounts to finding a non-zero idedlin J that is mapped to O by the
inclusionJ — R, thus obtaining a contradiction. Since one can usually reconstruct the algebraic
properties of the ideal from j, this abuse of notation should cause no confusion.

Lemma 7.2. If R is a finite semi-simple conformal algebra, then any minimal ideak a$
simple.

—

Proof. Let I be a minimal ideal of?. Then(Lie I)_ must contain a minimal closed ide&lof

—

(Lie R)~ due to finiteness of descending chains of ideals [G], and we can assume it to be non-
commutative by arguing as in Lemma 5.4. Silces not central, it has a non-zero intersection
with (£ie R)_, which must contain a non-zero regular ideadly Lemma 4.3. Minimality of/
then shows thatequals(£ie I)_. As in Corollary 5.1 is the space of all elements in the non-
commutative closed idedl on whicho acts nilpotently, and by Lemmas 5.5 and 5.6 it is clear
thati must be isomorphic to eithéfect C or g[t], whereg is a finite-dimensional simple Lie
algebra, and that can be assumed to act oas—o;.

This allows us to give a continuous embeddin@f Vect C (resp. g[t]) in Lie R which is
compatible with the action a¥. Proposition 5.1 then shows that, sinces clearly torsionless,
there is an embedding of Vir (resp.Curg) in R which is an isomorphism ontb. Thereforel
is simple as a conformal algebra. O

The main theorem we are going to prove is the following.

Theorem 7.1. Any finite semi-simple conformal algebra can be uniquely decomposed in a finite
direct sum of conformal algebras each of which is isomorphic to one of the following:

(a) Vir

(b) Curg, whereg is a simple finite-dimensional Lie algebra

(c) The semi-direct sum of Vir and Cgyr whereg is a semi-simple finite-dimensional Lie
algebra (Example 3.4).

Proof. Let R be a semi-simple conformal algebra. We prove the theorem by inductidaf
R has an ideal isomorphic ¥r then by Remark 6.4 it has a complementary ideal that centralizes
it. Therefore it splits up in a direct sum decomposition. Hence, we may assunye tloas not
contain any ideal isomorphic ¥r.

Consider all minimal idealé,, I, ..., I,, of R. They are simple by Lemma 7.2. We assumed
that no ideal ofR? is isomorphic tovir, hencel = I, + I, + ... + I, is an ideal ofR isomorphic
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to Curg, whereg is a semi-simple finite-dimensional Lie algebra. The centralizexf [ is an
ideal of R intersecting/ trivially. SinceC' must contain a minimal subidedl, = 0.

Consider the orthocomplemeht of I with respect to the Killing form. Proposition 6.4 also
applies (by induction) to direct sums of simple algebrasRkse I+ @ I as.A-modules. IfI+
had a commutative ideal, it may act on every; (hence on all off) only by inner derivations
(by Lemma 6.2), hence sincg = 0, we get4d = 0. Thus,I* is semi-simple and we can apply
the inductive assumption. Note th&t contains no currents (i.e. elementsuch thatiya = 0),
otherwiseC' # 0. So/* is a direct sum of (its) ideals isomorphic\r.

The action of all such ideals dhis either zero or the standard one (Example 3.4) since they lie
insidel* and no twoVir’s can act in a non-zero way on the sambecause of [CK], Proposition
3.1, or Proposition 8.1 below. O

As in the case of simple conformal algebras, Theorem 7.1 implies

Corollary 7.1. Afinite semi-simple formal distribution Lie algebra can be uniquely decomposed
in a finite direct sum of formal distribution Lie algebras each of which is isomorphic either
to a finite simple formal distribution Lie algebra (classified by Corollary 5.2), or to the semi-
direct sum of the Virasoro Lie algebra with a current Lie algelgfa t~!], whereg is a finite-
dimensional semi-simple Lie algebra.

8. REPRESENTATION THEORY

Definition 8.1. Let R be a conformal algebra. Then at+moduleV is arepresentatiorof R,
or an R—module if for everyr € R a conformal linear map : V' — V is defined such that
(r,se RveV):

ra(s,0) — su(rav) = [rashhguv,  (Or) v = —Aryv.

As before, we will often writer, = En€Z+ Ay r e EndV. An R-moduleV is called
finiteif it is a finitely generated4-module. Note also that a representatio?ah an.4-module
V is the same as a homomorphism (of conformal algekitas) gcV'.

Remark 8.1. Let R be a finite conformal algebra with a faithful representafios- .Av which

is free of rank one, i.e. we have an injective homomorphism of conformal alg&bragc,. By

(3.7) an elemenEnem pn(0)T" generates an infinite rank subalgebrayof as soon ag; # 0

for somei > 1. Therefore, the image dt in gc, must lie in the subalgebrd7° + AT*. This
implies that the only finite conformal algebras that have a faithful representation which is free of
rank one as aml-module are subalgebras of the standard semi-direct sum (see Example 3.4) of
Vir and a commutative current algelszar C.

It is immediate to see that a representation of a conformal algebral” is the same as a
representation of the Lie algebf&ie R)~ in V' satisfying the local nilpotency condition

(8.1) r,v = 0 for n sufficiently larger € R,v € V.

A (Lie R)~-module satisfying this condition is callednformal

This turns out to be a more convenient language for the study of representations of conformal
algebras, using which Cheng and Kac [CK] classified all irreducible representatigims®iir g
and their non-trivial semi-direct sum.

We shall often write? - V' for >, R;V. Arepresentatiofr’ of the conformal algebr& is
calledtrivial if R -V = 0. Recall that a finite-dimensional Lie algelyas calledreductiveis it
is a direct sum of a semi-simple Lie algelyfaand a commutative Lie algebta

Theorem 8.1.Letg = ¢ @ a be a reductive Lie algebra. Then any non-trivial finite rank
irreducible representation of Cyris of the formV/' (U, ¢) = A ® U, whereU is an irreducible
finite-dimensionag-module,a > a — ¢, € C[)] is a linear map such that = ¢,(0) onU and
eitherU is non-trivial or ¢ # 0, and the action of Cug on V' (U, ¢) is the unique one extending

gu = g.u, ayu = ¢g(Nu
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whereg € g C Curg,a € a C Curg,u € U andg.u denotes the action of € g’ on the
g-moduleU.

Theorem 8.2. Any non-trivial representatioly” of Vir that is free of rank one as ad-module is
of the form

Lyv = (c+ 0+ A,
whereA, ¢ € C andv is a free generator o¥/. This representation is irreducible if and only if
A is non-zero, and all irreducible representations of Vir are of this kind.

Theorem 8.3. Any non-trivial irreducible representation of the semi-direct sum of Vir andgCur
whereg is a non-zero reductive Lie algebra, is of the foimiU) = A ® U, whereU is an
irreducible finite-dimensiongl-module, and the action is the unique one extending

gu=gu, Lyw=(c+0d+ ANy,
wherec, A € C, g € g C Curg,u € U, andU is a non-trivialg-module ifA = 0.

Proposition 8.1. Let R be a direct sum of conformal algebras isomorphic to one of the following:
(i) Cur g, whereg is a non-zero reductive Lie algebra;
(ii) the standard semi-direct sum of Vir and Gyrwhereg is reductive or O.
Suppose thaR has a finite faithful irreducible representation. Théns either of type (i) or
of type (ii) whereg has at most one-dimensional center. Finite irreducible representatiofs of
are described by Theorems 8.1-8.3.

The proof of these results is the same as in [CK]. It relies on the following key lemma, that
we will occasionally use later.

Lemma 8.1. [CK] Let £ be a Lie algebra, with a distinguished eleméhand a descending
sequence of subspaces

£DL DL D..
such thafo, £,] = £, forall n > 0. LetV be ag-module and leV,, = {v € V|£,v = 0};
suppose that;,, # 0 for n sufficiently large, and se¥V to be minimal such that # 0. Then,
provided thatV > 1, AVy = A ® V. In particular, Vy is a finite-dimensional vector space
(overC)if N > 1 andV is a finitely generatedd-module.

Clearly, if £ = (£ie R)~ andV is a module over? (i.e. a conformal module ovet), the
conditions of Lemma 8.1 are satisfied (cf. Proposition 4.2).

Remark 8.2. In fact [CK] contains only classification of finite irreducible representations of
Vir. The classification of all rank onéir-modules is obtained by using Remark 8.1 or by the
following simple argument: iV = Aw is a free of rank one non-trivial representation\ir,
then it contains a minimal rank one submodule(see Corollary 8.1 below), which is clearly
irreducible. Letw = p(d)v be a generator foi’; we can assumg to be a monic polynomial.
Then by classification of irreducibles Wfr, we have:

PO+ AN)Lyv = Lyw = (c+ 0+ ANw = (c+ 0+ AX)p(0)v.

If Lyv = ¢q(0, \)v, then clearlyp(0 + \) = (c+ 0 + AX) andq(9, \) = p(9), showingA = 1
andLyv = (c+ 0)v.

What we want to investigate now is how basic results from Lie algebra representation theory
extend to the conformal algebra case. First, let us establish a few facts:

Lemma 8.2. If R is a conformal algebra andl’ is an R—module, therR acts trivially on TorV'.
Proof. R acts via conformal linear maps. Use Proposition 3.2. O

Corollary 8.1. LetVj be the intersection of all submodules of thenoduleV” having the same
rank asV. ThenR -V C V4.
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Lemma 8.3. If R is a conformal algebra and” its representation, then Tak acts trivially on
V.

Proof. Tor R acts via elements dfor (gcV'), which is is zero (Remark 3.1). O

Definition 8.2. Let R 5 r — ¢,(\) € C[)\] be aC-linear map. Ap-weight spac®f a modulel’
over a conformal algebrR& is the R-invariant subspace

Ve ={v e V]aw = ¢.(\)v,a € R}.
A non-zero vectop from V,, is called aveight vectowith weighte.
Remark 8.3. If V, # 0 (in which casep is called aveightof V), thengg,(A) = —Ada(A).

Theorem 8.4. (Conformal version of Lie’s Theorem) L&tbe a finite rank solvable conformal
algebra. Then any non-trivial irreducible finite rank conformal representatioof R is free of
rank one:V = Av, wherev is a weight vector.

In order to prove this statement, we need a simple lemma about finite solvable conformal
algebras:

Lemma 8.4.If R is a finite solvable conformal algebra, then the rank®fs strictly lower than
that of R.

This is an easy corollary of the following proposition.

Proposition 8.2. If R is a finite conformal algebra such that® = rkR thenR™ = R’ for all
n > 1.

Proof. If rkR’ = kR, thenR,)R C P(J)R for some non-zero polynomid@ < A and alln.
Hence the second derived algelit®) = [R’ - R'] contains(P(—0)P(0 + A\)[Rx\R]) which is
equal to([R,R]) by Lemma 3.1, hence tg'. O

Proof of Theorem 8.4SinceTor R always acts trivially (Lemma 8.3), we can assumo be
free as and—module. We prove the statement by induction on the ranR.diVe have

RO RYW > R® 5 o5 RO — g

with R™ non-zero and commutative. Théhacts onR™ via the adjoint representatiof,™
acting trivially. So we get a representation ®f R in R™, hence by inductive assumption
(cf. Lemma 8.4) we have a weight vectoe R™ with weight independent af (if R itself is
commutative, any vector is a weight vector of weight zero for this action). This means =
fa(A)b for all a € R. Denote byb; the subspace diCie R)_ spanned by elements,, m > i.

It is clear from (2.11) thab, is normalized by(£ie R)_. But b; kills a vectoru € V for i
sufficiently large, by local nilpotency assumption (8.1). Lebe the set of all vectors killed by
b; and letU beVy for N minimal such thai’y # (0). Because of Lemma 8.1, whe > 0, U

is a vector space of finite dimension, and it is invariant under the actipgiof?)_, sinceb is
normalized by(Lie R)_. But now we can consider the image(afie R)_ insidegl U. This will
be a solvable Lie algebra, hence we have an eigenvettpthe classical Lie's theorem (see e.g.
[S]), hencel” = Av and theorem is proved.

In the other cas&vV = 0, b kills some non-zero vectar. byv = 0. SinceAb forms an ideal,
the set of vectors killed by is a non-zero submodule &f, henceV itself. HenceR /A b acts on
V. But R/ Abis of lower rank tharR, it is still solvable, and/ is its irreducible representation.
Then theorem follows by induction. O]

Corollary 8.2. The derived algebra of a solvable conformal algeBtalways acts trivially on
an irreducible representation at.

Lemma 8.5.1f V = Av is a free of rank one representation of a solvable conformal algéhra
thenV is either trivial or irreducible.
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Proof. It follows form Remark 8.1. We also give here an alternative proo#/ I non-trivial,
there is a minimal submodulé&” of V' of rank one (Corollary 8.1). IV # V, thenWV is spanned
by a vectorw = p(9)v, with p non-constant. The modulé” is irreducible, hence it is a weight
module. We have:

P(O+ A)q(9, M) = p(d + N)sxv = saw = ¢ps(A)w = ¢5(A)p(d)v,

for some polynomiad (0, A). This givesp,(A)p(9) = p(0+ A)q(9, A). Since the polynomiaglt is
non-constant, it must have a complex zer&ubstituting: — A for 0, we getos(A\)p(c — ) = 0,
henceps(\) = 0. But this tells us that the action ¢f on W is trivial, giving a contradiction.
HencelW =V, andV is irreducible. O

Corollary 8.3. Let R be a finite solvable conformal algebra amda finite conformal module
for R. Then itis always possible to find a family of submodules

TorV=V,cViCc..cVy=V

such thatl;,, /V; is free of rank one fof > 0. The action ofR onV,,/V; is either trivial or as
in Theorem 8.4. In particula?’ is a nilpotent conformal algebra.

If V is a free A-module, then we can choose atibasis ofV in which the action ofR is
expressed via upper triangular matrices.

Corollary 8.3 implies:
Theorem 8.5.If R is a finite solvable conformal algebra, then there is a sequence of ideals
TorR=RyCR;C..CRy=R

such thatR;, |/ R; is free of rank one as ad-module. In particular, ifR is free as and-module,
it can be obtained by a sequence of extensions by commutative conformal algebras that are free
as.A-modules.

We finish by proving the useful analogue of a classical result of Lie representation theory (see
e.g. [S]) sometimes referred to as the Cartan-Jacobson theorem.

Theorem 8.6. (Conformal version of Cartan-Jacobson Theorem) Eelbe a finite conformal
algebra which has a finite irreducible faithful representatidn ThenR is isomorphic to one of
the following conformal algebras:
(i) Cur g, whereg is a non-zero reductive Lie algebra whose center is at most one-dimensional;
(ii) the standard semi-direct sum of Vir and Gyrwhereg is as in (i) or zero.

This result allows us to easily prove the conformal version of Engel’s theorem for Lie algebras.

Corollary 8.4. Let R C gcV be a finite conformal algebra, with" of finite rank. Ifa, is
nilpotent onV for anya € R andn € Z, andV # 0, then there exists a non-zervoc V' such
thatayv = 0 forall a € R.

Proof. By contradiction: suppose there is no vector killed by the wholB.dfirst of all, 1 must
be torsionless, due to Proposition 3.2.

Let us take a maximal proper submoduié (there always exists one). W = 0 thenV
is irreducible. But Theorems 8.1-8.3 and 8.6 classify all faithful irreducible representations of
conformal algebras, and no one of them is acted on by all nilpotent maps. This means that all of
R acts ag), If W # 0 andrkIW < rkV then the statement holds far by induction orrkV'.

Let us take the intersectidi, of all submodules oi” with the same rank ag. By Corol-
lary 8.1,R -V C W,.

If rkiV, = rkV, thenWW, has no submodules of the same rank’aso we can use the above
proof for Wy. If 0 < rkiW, < rkV then we have found a submodule of lower rank thgrand
we can use induction. i, = 0thenR -V = 0. O

Corollary 8.5. (Conformal version of Engel’'s Theorem)Afis a finite rank conformal algebra
and all elements of are ad -nilpotent therR is a nilpotent conformal algebra.
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Proof. By induction onrkR. Sincead R C gcR satisfies hypotheses of Corollary 8.4, there is
x # 0in R such thatR - x = 0, i.e. the centet of R is non-trivial. ButR/Z also consists
of ad-nilpotent elements and its rank is less than thaRp&incegcR is free, and the rank of
Z C gcR is therefore of rank at least one.

Inductive hypothesis shows th&{/ Z is nilpotent. But it is clear thak is nilpotent if and only
if R/Z is. O

We will divide the proof of Theorem 8.6 in several lemmas.

Lemma 8.6. If R is a finite conformal algebra having a faithful irreducible finite representation
V' then the radical of? is a commutative ideal.

Proof. Let / = RadR. Since/J is solvable, there is a € V that is a common eigenvector for
J; furthermore, we know that acts onv with weights that are independent@{Theorem 8.4).
HenceJ' = [J - J] is an ideal that killeo. But the set of all vectors killed by’ is a non-zero
submodule, so it is the wholé. By faithfulness oft’, J' = 0. OJ

Definition 8.3. Let J be a conformal algebra and [Etbe a/-module. Let] > a — ¢,(\) €
C[A] be a linear map. For a non-negative integetenote byl the subspace of all elements
of V' that are killed byn factors of the formu, — ¢,(\), wherea € J, A\ € C. Thegeneralized
weight spacef I corresponding to is

V, = U vy

n=1

(Note thath} is the ordinary weight space).

Lemma 8.7. Let V be an R-module, and let/ be an ideal ofR andV;, = (J,., V] be a
generalized weight space far Then for eachn € Z, we have:

(@) oV c Vit

(b) EachV; is J-invariant.

) R-Vy c V.

(d) V"+1 {v € Vl|(ax — ¢a(N)v € VJ foralla € J, X € C}.

(e) V¢ is an R-submodule of/.

Proof. (d) is clear. (a) is proved by induction, observing that — ¢,()\))(0v) = O((ax —
¢a(A))v)+Aarv; (d) takes care of the basis of induction, since  V, then(ay—¢,(\))(dv) =
Aayv € V. (b) is immediate since v = (ax — da(A))v + da(A)v.

Proof of (c) is as follows: Iy € V' then for allr € R, a € J,

(8.2) TAQLU — QAU = [ )\ a]yg, 0.

From this we get\(a, — ¢a(1))v — (a, — ¢a(p))rav = —[r x a]r+,v hence, sincé- , a] € J and
(a, — da(p))v € Vdf‘l, (ay — da(p))rav € V3 by inductive hypothesis and (a). (e) is implied
by (a) and (c). O

It will be useful below to set an appropriate basis in order to compare matrix representations
of the action of two elements that need to be equal.

Lemma 8.8. There exists avd-basis{vy, v}, ..., v , 01, ..., v}, , v}, ...} of Vi, such that

(8.3) = {ij Jui| deg p}(9) < n —i}.

Proof. For everyi € Z, let {v!};c,;, be aC-basis ofl; moduloV; N AV;~". We want to show
that all {+}} are linearly independent ovet. In particular, ifV is finite, then{v} is a finite set
of vectors.
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If we have a non-trivial relation between th;és, we can choose

(8.4) > PO+ > g @)y =0

with ¢; # 0 for somej, and of minimal maximal degre¢of theg;'s. Thend = 0. In fact, if
d > 0, then applying:, — ¢(\) to both sides of (8.4), one gets:

(8.5) D B0, )0+ 6a(N) D (g0 + ) — g (@) =0

i=1..N—1 J
J

for some polynomialﬁ;l. If the degree of, is m, the coefficient of\™*< in (8.5) gives a linear
relation as in (8.4) where ajl's are constant, and not all of them d@re
Once we know! = 0, (8.4) shows that = Zj qjvf’ is a non-trivialC-linear combination of

the v which lies inyéqufV*1 by construction. Bub represents a non-zero classligf / (VY N

AV¢N‘1), giving a contradiction. Therefore, thgi’s are linearly independent, and they clearly
spanV/.

We are left with showing thal;' = {3, . p(9)vj| degp} < n — i}. This is obviously true
for n = 1, and we want to establish it for allusing induction om. Every element insid%’“rl
is clearly anA-linear combination of the?,i <n + 1. Let

> B0+ 3 a@)y
i=1...N—1 7

J
be an element 0V¢"+1. We show by induction oV that polynomia@;i andg; are as desired.

Applying ay — ¢(A), A € C, one gets
S 0N+ 6a(N) (504 A) — 45(0))v)

i=1...N—1 J
J
for some choice of ponnomia}'gé, and this must lie i/*. But inductive assumption tells us that
the degree i) of ¢;(0+ \) — ¢;(0) mustbe< n — N forall A € C, hencedegg; <n-+1— N.
If so, the.A-linear combinatiory ., ¢;(9)v}" certainly belongs t(Vq[‘“, hence we are left with
proving the statement for
> o),

i=1...N—1
J

which is true by inductive assumption. O

We will refer to any basis oV, obtained in this way as tostandard basisMatrix represen-
tations of conformal linear maps are analogous to those of linear maps between vector spaces. If
A(0, ) is the matrix representing the actionafand B(9, 1) is that representing the action of
b,, then the matrix representingb,, is clearly given by the product matrix(0, \) B(0 + A, p).

We are going to consider generalized weight spaces for the actidn-oRadk on V. They
come useful, since they are fixed by the actionfof Since J is solvable, we know by the
conformal version of Lie’s theorem (Theorem 8.4) that at least one of the weight-spaces is non-
trivial. Let ¢ be the corresponding weight. Note that/ 0, since otherwisé/(b1 is R-invariant,
hencel” = AVQ}, J acts trivially onV/, and Theorem 8.6 follows from Proposition 8.1.

From now on,R will be a finite conformal algebra] its radical,V" a faithful irreducible finite
R-module such thalt” = V,, the generalized weight space with respect to the actiohfof the
weight¢ # 0, for which V) # 0.

Lemma 8.9. The rank of/ is at most one.
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Proof. Suppose thatkJ > 1. Then, by Remark 8.3py5, = —\¢,, hence we can always find

a non-zeraz € J for which ¢, = 0. Now, all elements in/ whose weight i) form an ideal

Jo of R. In fact, since the action of € R increases the filtration by one (Lemma 8.7c), and
ax—oa(N), A € C, obviously decreases it by one, their matrix representation in any fixed standard
basis is given by the following block matrices for the filtratipi;’ }:

R1 * .0
Ty = O RQ x
0 0 R,q1 =
¢a(ﬂ) Jl
0 gba(/u) J2
a, = : 0 . .
O Cba(,u) Jn—l
o ... .. 0 ¢dalp)

whereR; = R;(\) andJ; = J;(u) are independent af (cf. Lemma 8.8); then taking trace of
the matrices representing both sides of

TAQ, — QA = [T ) A

we easily get that i, is zero, thenpy, , . is also zero. The same reasoning as before shows that
Jp acts trivially onV/, a contraiction with faithfulness of the-modulel’. OJ

Once we know/ is commutative of rank one, we can consider the adjoint representation of
R/JonJ. This is a rank one representation of a semi-simple conformal algebra. We know from
Theorem 8.1 that the current part®f J must act a9, and that of all the Virasoro algebras, only
one can act non-trivially. Le¥ C R be the centralizer of in R.

Lemma 8.10. S stabilizes the filtratio{ V' }.
Proof. By definition of S, [S - J] = 0. Then using this in (8.2) gives the proof. O

This tells us that in the standard basis the matrices representing the action of elements from
S are block upper triangular for the filtratigiy}' }, with diagonal blocks independent 4f In
particular, if S/J containsVir’s, diagonal blocks in their matrix representation are trivial (by
Theorem 8.2). Hence their action is trivial 0 so S/J is a current conformal algebra by
Theorem 7.1.

Lemma 8.11. All central extensions of a finite simple conformal algeiay a free.A-module
of rank one are trivial.

Proof. Let R be a central extension of a finite simple current conformal alg€bra by a rank
one centerd. The \-bracket in such a conformal algebra is given by

(86) [g)\h] = [97}4 —I—a)\(g,h),
whereg, h € g C Curg anda, (g, h) € A[\]. Then axiom (C4) gives
(87) OO\(aﬂ [b7 CD - Oé#(b, [CL, C]) - a>\+#([a7 b], C),

and settingv, (g, h) = >, Na;(g, h):
Z )‘iai<a7 [b7 CD - Z Mjaj(ba [a’> C]) = Z(/\ + M)kak([a’ b]’ C),

k

for everya,b,c € g.
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This immediately shows; = 0 for i > 2, sinceg’ = g. Moreover:

(8.8) ap(a, [b, c]) — ap(b, [a, c]) = ap([a, ], c),
(8.9) aq(a, [b, c]) = a1([a, b], c).
Axiom (C3) is equivalent to

(8.10) ap(a,b) + ag(b,a) = day(a,b).

It follows from (8.9) and (8.10) that; is a symmetric invarian#-valued bilinear form ory,
hence it is a multiple of the Killing fornt:|-): a1 (g, h) = p(9)(g|h).

Setf3(g,h) = ap(g, h) — %3p(8)(g|h). Then (8.10) implies skew-symmetry 6fand (8.8)
translates as

A(la, 0], ¢) = Bla, [b,c]) + B(b [a, c]) = %019(8)([@, lfc).

Plugging ina = h € h,b = e,, c = e_,, for some rootr, we get:

(8.11) B0, feas o)) = 50p(@)a(M)cale ).

If h, is the bracket of root vectors,,e_, such that(e,le_,) = 1, we getf(hq, ha) =
20p(9)a(ha). But the left-hand side of (8.11) must bedue to skew-symmetry of. Hence
p = 0. This shows thaty; is 0 on the wholeg, hencen is a Lie algebra 2-cocycle fagr, so it is
trivial, since any central extension of the simple Lie alggbistrivial.

In the case of a central extension\df, axiom (C4) for the\-bracket

[LxL] = (04 2X\)L+p(0,\)
gives the following condition op:
(8.12) (O+A+2u)p(0,A) = (0 +2X + p)p(9, ) = (A — w)p(9, A + p)

Settingu = 0in (8.12) we getip(d, ) = (0 + 2X\)p(0, 0), whencep(9, \) = ¢(0)(0 + 2)), for
q(0) = 1@. ThenL + ¢(0) is a standard generator of a Virasoro conformal algebra. [

Lemma 8.12.If R is a finite semi-simple conformal algebra, then all central extensionsnf
a free.A-module of rank one are trivial.

Proof. As an .4-module, a semi-simple conformal algebkais a finite direct sungp, S; of
subalgebras; (Theorem 7.1). We can make a 2-cocyelg-, -) on R trivial on S; x S; for all .
We will call s, s; @ cross-extensions ¢f and.S;. Our goal is to prove that cross-extensions
of a 2-cocycle ok are zero if its restrictions on afl; are zero.

Without loss of generality, we can assutRdo be the (semi-direct) sum ofvo simple alge-
bras.

If R = Curgis asemi-simple current conformal algebra, one shows as in Lemma 8.1 that
is an invariant bilinear form op, hencev, (g, h) = 0 if g andh belong to distinct simple ideals.
Soq; is identically zero org, hencey, is a Lie algebra 2-cocycle an hence it is trivial (sincg
is a semi-simple Lie algebra). This takes care of cross extensions of a simple conformal algebra
by another simple conformal algebra.

Next, we need to figure out what,(L, g) can be ifL is the standard generator Wfr, and
g € Curg, with g a finite-dimensional simple Lie algebra. In a semi-direct suinwill act
trivially or in the standard way on. Then settings = L,b = g,c = h,g,h € g, In (8.7) gives
ax(L,[g,h]) = 0 as soon as&,, is zero ong x g. If we makea, zero in advance, this shows that
ax(L,g) = 0if g lies inside the derived Lie algebghwhich equalgs wheng is simple.

In order to show that also cross-extensions/wfby Vir are zero, it is enough to substitute
a= L' =c= L%in (8.7), whereL! and L? are standard generators for the two Virasoro
conformal algebras. OJ
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Remark 8.4. (a) The universal central extension of the conformal algebrhas one-dimensional
(overC) center and the corresponding cocycle is a multipledfZ, L) = \* (of course the as-
sociated formal distribution Lie algebra is the usual Virasoro algebra).

(b) The center of the universal central extensiorCair g, whereg is a finite-dimensional
semi-simple Lie algebra is canonically identified with the sp&a# all invariant bilinear forms
on g and the corresponding cocycledé(a, b) = f(a,b), f € B,a,b € g (of course, for simple
g, the associated formal distribution Lie algebra is the usual affine Kac-Moody algebra).

(c) For an arbitrary semi-simple conformal algebra the universal central extension is the obvi-
ous combination of (a) and (b).

Corollary 8.6. S = S/J & J (direct sum of conformal algebras).

If R =S,i.e.Jis centralized by the whol&, we are finished, sincg is the current conformal
algebra associated to a reductive Lie algebra with one-dimensional certez B, we need to
do some extra work.

We are in the following situationk is an extension oR?/.J by J which is trivial onS/.J, and
R/S = Vir. From now on, denote by a generator of/, by ¢ the polynomialp,, and byL a
representative iR of the standard generator for the quotient conformal alg&bia. It is clear
that we can choosé to act onS/.J in the standard way, and with no contribution.n(since
S/J is isomorphic taS’). Next, we prove:

Lemma 8.13.[L y a] = (0 + \)a.

Proof. By now we only know thatL , a] = p(9, \)a for some polynomiap € C[0, A]. Writing
down matrix representations of the action/o&nda in the standard basis

M, ..
Li(\) My .. .. ..
Li=| 0 L
. Mo
0 0 L,1(\N) M,
o(p) Ci(p) - oo
0 o(p) Colp) . . . o . .
a, = 0 )
0 o(p) Cpa(p)
0 0 o)

whereL;(A\)'s andC;(u)'s are independent af andM; (0, A)'s are linear ind (cf. Lemma 8.8),
and taking trace of matrices representing both sides of:

(8.13) [Ly, au) = p(=A — p, N)axs,
we get
(8.14) O() (D Tr(M(D,0) = Mi(0 + 1, A)) = p(=A = 1, oA + o) - tk(V).

SetM(0,\) = Tr)_, M;(0,\) and write M (0, \) = My(\) + N(A)0. Then (8.14) can be
rewritten as

(8.15) —p(L)N(A) = p(=A = p, \)p(A + p)rk(V).

Settingu = 0 in (8.15) we obtaip(—X, \)¢(A) = 0 and sincep is not identically zero,
p(=A,\) =0forall A € C. This means thai(0, \) = (0+ \)q(0, \) for some other polynomial
q. But the adjoint action of. on a defines a rank one representation of the Virasoro conformal
algebra, and we know all such (Theorem 8.2). The only possible valugarefzero and one. If
q is zero, therl centralizes/ andR = S. If ¢ = 1 then[L , a] = (0 + \)a. O
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Remark 8.5. Substitutingp(9, \) = 0 + X in (8.15) it is immediate to show that must be a
constant polynomial and/(\) = Id. Up to rescaling: by a complex multipley can therefore
be made equal to 1.

The only \-bracket we now need to take care offis, L|. In order to show it is nothing but
(0 + 2\)L, or rather, that it can be made into this form up to shifting the representatiyean
element in/, we prove the following lemma.

Lemma 8.14. L, — 0 stabilizesV;.

Proof. Using Lemma 8.13 and axioms of &imodule, we get:

(8.16) (La, 4] = —pax
Applying both sides of this equation toc V;, we get
(8.17) Lyv —s,Lyv = —p,

wheres,, is as in Proposition 6.2. Using the notation of Lemma 8.13, the left top block in the
matrix representation 6f pa,,, obtained from (8.16), must be equakt@ — C (1) L1 (). But
by (8.17) this equals te-yu, SoC; (1) L1 (A) = 0.

The way they have been obtained, itis clear that the colum@$(ef) are linearly independent
overC, otherwise we would get a linear combination of tevhich lies inV}. ThereforeL, ()
itself must be zero. This shows thAﬂ/(z} is stabilized by the action af and thatL, — 0 acts
independently 0 on a basis. OJ

Combining Lemma 8.7b, Lemma 8.10 and Lemma 8.14, we seeélmﬁtis an R-submodule
of V', hencel/ = AV¢1. So there is a basis &f of eigenvectors foe, and the action of is given
in this basis by the identity matrix.

Lemma 8.15. L can be chosen such thidt , L] = (0 + 2\)L.

Proof. The matrix representation of the actioniof in the eigenvector basis &f is 9 + C()\),
whereC' is some matrix independent of (Lemma 8.14). Up to adding té an appropriate
element; from .J, we can make the trace 6f(\) equal to zero.

Let L = L — j. Then the action ofLy, L,] — (A — )L, is given by the matrix\C'(\) —
1C (1) —(A—p)C(A+11), whose trace is clearly. This shows thatifL y L] = (0+2\)L+7',j' €
J, then the sum of elements on the diagonal of the matrix representatigrisofero. Hence
j/ =0, andL is Virasoro-like. O

End of proof of Theorem 8.8y Lemma 8.9rk.J is at most one. I/ = 0, R is semi-simple. In
view of Proposition 8.1, a finite semi-simple conformal algebra having a finite faithful irreducible
representation is as in (i) or in (ii).

If J # 0, and R centralizes/, thenR = R/J @ J is isomorphic toCurg, whereg is a
reductive Lie algebra with one-dimensional center.

If J # 0, and R does not centralizd, thenR is the standard semi-direct sum \d@f with
S = S/J @ J which is the current conformal algebra associated to a reductive Lie algebtia
one-dimensional center. O
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