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1. INTRODUCTION

After the seminal paper [BPZ] of Belavin, Polyakov and Zamolodchikov, conformal field
theory has become by now a large field with many remarkable ramifications to other fields of
mathematics and physics. A rigorous mathematical definition of the “chiral part” of a conformal
field theory, called a vertex (= chiral) algebra, was proposed by Borcherds [Bo] more than ten
years ago and continued in [DL], [FHL], [FLM], [K], [L] and in numerous other works. How-
ever, until now a classification of vertex algebras, similar, for example, to the classification of
finite-dimensional Lie algebras, seems to be far away.

In the present paper we give a solution to the special case of this problem when the chiral
algebra is generated by a finite number of quantum fields, closed under the operator product
expansion (in the sense that only derivatives of the generating fields may occur). In this situation
the adequate tool is the notion of aconformal algebra[K] which, to some extent, is related to a
chiral algebra in the same way a Lie algebra is related to its universal enveloping algebra.

At the same time, the theory of conformal algebras sheds a new light on the problem of clas-
sification of infinite-dimensional Lie algebras. About thirty years ago one of the authors posed
(and partially solved) the problem of classification of simpleZ-graded Lie algebras of finite
Gelfand-Kirillov dimension [K1]. This problem was completely solved by Mathieu [M1]-[M3]
in a remarkable tour de force. The point of view of the present paper is that the condition of lo-
cality (which is the most basic axiom of quantum field theory) along with a finiteness condition,
are more natural conditions, which are also much easier to handle.

In this paper we develop a structure theory of finite rank conformal algebras. Applications
of this theory are two-fold. On the one hand, the conformal algebra structure is an axiomatic
description [K] of the operator product expansion (OPE) of chiral fields in a conformal field
theory [BPZ]. Hence the theory of finite conformal algebras provides a classification of finite
systems of fields closed under the OPE. On the other hand, the category of finite conformal
algebras is (more or less) equivalent to the category of infinite-dimensional Lie algebras spanned
by Fourier coefficients of a finite number of pairwise local fields (or rather formal distributions)
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2 A. D’ANDREA AND V. G. KAC

that are closed under the OPE [K],[K3]. Hence the theory of finite conformal algebras provides
a classification of these finite “formal distribution Lie algebras”.

The main idea is to develop a structure theory of finite conformal algebras which is parallel
to that of finite-dimensional Lie algebras over through the interplay of formal distribution Lie
algebras with their “annihilation algebras”. As the latter are filtered Lie algebras in the sense of
E. Cartan, we can use the well developed techniques of Cartan’s theory.

Using the powerful Cartan-Guillemin theorem [G] (see also [B]) and a conformal analogue of
the Killing form, we obtain a classification of finite simple and semi-simple conformal algebras
(Theorems 5.1 and 7.1). We also prove conformal analogues of the Lie theorem (Theorem 8.4)
and of the Cartan-Jacobson theorem (Theorem 8.6) using a result on filtered Lie algebras from
[CK].

Some of the conformal analogues of the finite-dimensional Lie algebra theory fail, however.
For example, it is not true that a semi-simple conformal algebra is a direct sum of simple ones (cf.
Theorem 7.1). The conformal analogues of the Levi theorem and the Weyl complete reducibility
theorem fail as well (see [KW], [BKV], [CKW]). This reflects the fact that the cohomology of
simple conformal algebras [BKV] with non-trivial coefficients is highly non-trivial.

Another new important feature of conformal algebra theory is the fact that the conformal ana-
logue ofglN , which we call the general conformal algebra and denote bygcN , is infinite. It
is actually the conformal algebra associated to the Lie algebra of regularN × N -matrix val-
ued differential operators onC× (Example 4.3); its central extension, denoted byWN

1+∞, plays
an important role in physics. In this paper we develop the relevant conformal linear algebra.
This is undoubtedly just the beginning of a “conformal commutative algebra” and a “conformal
algebraic geometry”, which we are planning to develop in future publications.

Unless otherwise specified, all vector spaces, linear maps and tensor products are considered
over the field of complex numbersC. We useZ+ to denote the set of non-negative integers.

We would like to thank B.Bakalov, S.-J. Cheng and M.Wakimoto for many discussions and
collaboration.

2. BASIC DEFINITIONS

We start by defining the basic objects we want to consider. LetV be a (possibly infinite-
dimensional) vector space. Aformal distributionwith values inV is a power series of the form

a(z) =
∑
n∈Z

anz
−n−1,

wherean ∈ V . The vector space of these series is denoted byV [[z, z−1]]. Such series are called
formal distributions since we have a standardV -valued pairing withC[z, z−1] which is given by

〈a, p〉 = resza(z)p(z)

whereresza(z) = a0 is the coefficient ofz−1 andp is a Laurent polynomial inz. Of course
we havean = 〈a, zn〉. Vectorsan are also calledFourier coefficientsof a(z) and completely
determine it. A formal distributiona(z, w) in two variables is similarly defined as a series of the
form ∑

m,n∈Z

am,nz
−m−1w−n−1,

and the space of these series is denoted byV [[z, z−1, w, w−1]]. Suppose now we have vector
spacesU, V,W . Any linear mapα : U ⊗ V → W induces a map

α̃ : U [[z, z−1]]⊗ V [[w,w−1]] → W [[z, z−1, w, w−1]].

If u ∈ U [[z, z−1]], v ∈ V [[w,w−1]] are formal distributions, the pair(u, v) is called alocal pair
whenever for someN ∈ Z+:

(z − w)N α̃(u(z)⊗ v(w)) = 0.
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Let g be a Lie algebra, and leta, b beg-valued formal distributions. If we choose our bilinear
mapα to be the Lie bracket[ , ] : g⊗ g → g, then(a, b) is a local pair if for someN ∈ Z+:

(z − w)N [a(z), b(w)] = 0,

where we denoted̃[ , ](a(z)⊗b(w)) by [a(z), b(w)]. It is clear that in this case(b, a) is also a local
pair: we will saya andb are mutually local. When considering locality of formal distributions
with values in a Lie algebra, we will always assume it is with respect to[ , ].

Definition 2.1. Let g be a Lie algebra, andF a family of mutually local formal distributions
with values ing. The pair(g,F) is a formal distribution Lie algebraif g is spanned by Fourier
coefficients of formal distributions fromF .

Remark 2.1. Every Lie algebra can be trivially made into a formal distribution Lie algebra by
choosingF = {g(z)|g ∈ g}whereg(z) =

∑
n∈Z g z

−n−1, but we will be mostly concerned with
Lie algebras that are spanned by Fourier coefficients of afinite number of formal distributions.
Also, this formal distribution Lie algebra is not maximal (see Definition 2.4 below).

The Diracdelta distributionis theC–valued formal distribution

(2.1) δ(z, w) =
∑
n∈Z

znw−n−1.

It will often be denoted byδ(z − w). This notation is consistent with taking derivatives since
∂zδ(z − w) = −∂wδ(z − w). The delta distribution enjoys the property

(z − w)δ(z − w) = 0.

In general we shall have
(z − w)m∂n

wδ(z − w) = 0,

if m > n.
The converse is also true in some sense. Ifa(z, w) is a distribution such that(z−w)Na(z, w) =

0, then there exist formal distributionsan(w) such that [K]:

(2.2) a(z, w) =
N−1∑
n=0

an(w)∂(n)
w δ(z − w).

Here and further we use notationx(n) = xn/n!. Furthermore, thean are uniquely determined:

(2.3) an(w) = resz(z − w)na(z, w).

In this way we know that if(a, b) is a local pair, we can then find formal distributions denoted
by (a(n)b)(w) such that

(2.4) α̃(a(z)⊗ b(w)) =
N−1∑
n=0

(a(n)b)(w)∂(n)
w δ(z − w).

The formal distributiona(n)b is C-bilinear ina andb and it is called then–th productof a andb.
It is not generallyC[∂]-bilinear ina andb, as from (2.3) we have:

(2.5) (∂a)(n)b = −na(n−1)b, a(n)∂b = ∂(a(n)b) + na(n−1)b.

In particular,∂ is a derivation of alln-th productsa(n)b.

Definition 2.2. Let g be a Lie algebra. A spaceF of g–valued formal distributions inz is called
aconformal familyif it is closed under derivative∂z and all the bilinear products(n) just defined.

One knows [K] that if(g,F) is a formal distribution Lie algebra we can always includeF in
the minimal conformal familyF . Note thatF can be viewed as aC[∂]–module, where the action
of ∂ is given by(∂a)(z) = ∂za(z). The formal distribution Lie algebra is calledfinite if F is a
finitely generatedC[∂]-module.
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Proposition 2.1. [K] The Lie algebra axioms forg and the very definition ofa(n)b translate into
the following properties:

(C1) a(n)b = 0 for n >> 0,
(C2) (∂a)(n)b = −na(n−1)b, a(n)∂b = ∂(a(n)b) + na(n−1)b,
(C3) a(n)b = −

∑∞
j=0(−1)n+j∂(j)(b(n+j)a),

(C4) a(m)(b(n)c)− b(n)(a(m)c) =
∑m

j=0

(
m
j

)
(a(j)b)(m+n−j)c.

Note that either of formulas (C2) follows from the other one and (C3).

Definition 2.3. A (Lie) conformal algebrais aC[∂]–moduleR, endowed with a family ofC–
bilinear products(n), n ∈ Z+, satisfying axioms (C1)-(C4). A conformal algebraR is called
finite if R is a finitely generatedC[∂]-module. Therank of a conformal algebraR, denoted
by rkR, is its rank as aC[∂]–module (recall that this is the dimension overC(∂), the field of
fractions ofC[∂], of C(∂)⊗C[∂] R).

Example 2.1(Virasoro algebra and Virasoro conformal algebra). The centerlessVirasoro alge-
bra Vect C× is the Lie algebra of algebraic vector fields onC×. It is spanned by vector fields
tn∂t, n ∈ Z. TheVect C×–valued formal distribution

L(z) = −
∑
n∈Z

(tn∂t)z
−n−1

satisfies

(2.6) [L(z), L(w)] = ∂wL(w)δ(z − w) + 2L(w)δ′w(z − w)

and is therefore local to itself. TheC[∂]–module generated byL(z) is closed under all the
products(n) and thus forms a conformal family. The corresponding conformal algebraVir is the
freeC[∂]–module on the generatorL with products

(2.7) L(0)L = ∂L, L(1)L = 2L, L(j)L = 0 for j > 1.

They uniquely extend to a conformal algebra structure by (C2).

Example 2.2(Current algebras and current conformal algebras). The centerlesscurrent algebra
associated to the Lie algebrag is the spaceg[t, t−1] = g⊗C[t, t−1] endowed with the Lie bracket

[gtm, htn] = [g, h]tm+n, g, h ∈ g, m, n ∈ Z.
Theg[t, t−1]–valued formal distributions

g(z) =
∑
n∈Z

(gtn)z−n−1

defined for everyg ∈ g satisfy the following commutation relations:

(2.8) [g(z), h(w)] = [g, h](w)δ(z − w)

and are therefore local to each other. TheirC[∂]-linear span is closed under all products, and
is therefore a conformal family. The conformal algebra describing this structure is given by the
C[∂]–moduleCurg = C[∂]⊗ g with the products

(2.9) g(0)h = [g, h], g(i)h = 0 for i > 0, g, h ∈ g,

where we identifiedg with the subspace ofCurg spanned by elements1 ⊗ g, g ∈ g as we will
often do. The above products extend by (C2) to a unique conformal algebra structure. The
conformal algebraCurg is called thecurrent conformal algebraassociated tog.

Remark 2.2. WhenR is a freeC[∂]–module, and the products(n) are defined on aC[∂]–basis
for R in such a way that (C1),(C3) and (C4) hold, there is a unique extension of these products
to a conformal algebra structure forR, obtained via (C2), and it is easy to show that (C1) and
(C4) also hold for this extension. We shall often describe conformal algebras structures on free
C[∂]-modules by giving the products on a fixedC[∂]–basis.
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The notions of subalgebras, ideals, quotients and homomorphisms of conformal algebras are
obvious. Note that, due to (C3), any left or right ideal is actually a two-sided ideal.

As we have seen, any formal distribution Lie algebra(g,F) gives rise to a conformal algebra
R = F . Conversely, to any given conformal algebraR we may canonically associate a formal
distribution Lie algebraLieR with a conformal family isomorphic toR as follows ([K], [K3]).
Let

(2.10) LieR = R[t, t−1]/(∂ + ∂t)R[t, t−1],

let an denote the image ofatn in LieR, and define a bracket by

(2.11) [am, bn] =
∑
j∈Z+

(
m

j

)
(a(j)b)m+n−j

for a, b ∈ R,m, n ∈ Z.
This bracket is a well-defined Lie bracket and the family

{
a(z) =

∑
n∈Z anz

−n−1
∣∣a ∈ R}

spansLieR and is a conformal algebra isomorphic toR via a(z) 7→ a. Furthermore, since∂ and
∂t commute, the derivation∂t of R[t, t−1] induces a derivation ofLieR.

Definition 2.4. The pair(LieR,R) is called themaximalformal distribution algebra associated
to the conformal algebraR.

Remark 2.3. [K], [K3] The correspondence which associates to a conformal algebraR the
collection of quotients of(LieR,R) by ideals with a trivial intersection withR is bijective.
In particular, the axioms of a conformal algebraR encode all the algebraic properties of the
conformal family forLieR. Axiom (C3) is equivalent to skew-simmetry and axiom (C4) to the
Jacobi identity for the Lie algebraLieR.

Remark 2.4. Since we know that the Jacobi identity on any triple of elements from a Lie algebra,
together with skew-simmetry, give the Jacobi identity on all permutations of the triple, once (C1)-
(C3) are established, it is enough to check (C4) on a triple of elements from a conformal algebra,
in order for it to hold on all permutations of that triple. Therefore, ifR is a freeC[∂]-module on
generators{ai, i = 1...n} and productsai

(n)a
j are defined for alli ≤ j andn ∈ Z+ in such a way

that (C3) holds fora = b = ai and (C4) holds fora = ai, b = aj, c = ak with i ≤ j ≤ k, we can
extend them by (C2) and (C3) to a unique conformal algebra structure forR.

3. CONFORMAL LINEAR ALGEBRA

From now on,A will denote the ringC[∂] of polynomials in the indeterminate∂.

Definition 3.1. A conformal linear mapbetweenA-modulesV andW is a mapφ : V →
A[λ]⊗AW that isC−linear and such that

(3.1) φ ∂v = (∂ + λ)(φ v).

We will often abuse the notation by writingφ : V → W any time it is clear from the context
thatφ is conformal linear. We will also writeφλ instead ofφ to emphasize the dependence ofφ
onλ. The set of all conformal linear maps fromV toW is denoted byChom(V,W ) and is made
into anA–module via

(3.2) (∂φ)λv = −λφλv.

We shall writeCendV for Chom(V, V ).

Example 3.1. Let F be a vector space and letV = A ⊗ F be the corresponding free module
overA. A conformal linear mapφ : V → V is uniquely determined by its values on1 ⊗ F . In
fact

φλ(p(∂)v) = p(∂ + λ)(φλv), v ∈ F
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determines the value ofφλ on any element ofV from its value on1⊗F , and everyEndF -valued
polynomiala(∂, λ) gives rise to such a conformal linear map via:

φλv = a(∂, λ)v.

We can therefore identifyChom(V, V ) with the space of allEndF -valued polynomials in∂
andλ. Let {mj} be a basis ofEndF ; then the polynomialsmj,mj∂,mj∂

2, ... are easily shown
to be anA–basis of(EndF )[∂, λ]. HenceChom(V, V ) is an infinite rankA–module anA–basis
of which is given by conformal linear mapsT 0

j , T
1
j , T

2
j , ... such that:

(T i
j )λv = ∂i(mjv), v ∈ F.

Let a(z), u(w) be a local pair of formal distributions; we set

aλu =
∑
n∈Z+

λ(n)a(n)u.

Then we get by (C2):

(3.3) (∂a)λu = −λaλu, aλ∂u = (∂ + λ)(aλu).

Example 3.2.LetA be an associative algebra,V anA-module andα : A⊗V → V the action of
A onV . If V is anA-module of formal distributions with values inV , andT (z) is anA-valued
formal distribution local to all distributions fromV with respect to the action induced byα, then

Tλv =
∑
n∈Z+

λ(n)T(n)v

defines a conformal linear map fromV to itself. Furthermore, ifT is the set of allA-valued
formal distributions that are local to all members ofV, then the mapπ : T → CendV, mapping
T to the conformal linear map it defines, commutes with the action of∂ on both spaces, i.e. it is
A–linear.

Let us now define, fora, b in a conformal algebraR, theλ-bracket

(3.4) [a λ b] =
∑
n∈Z+

λ(n)a(n)b.

Then axioms (C1)-(C4) are equivalently rephrased as follows:

(C1) [a λ b] ∈ A[λ]⊗A R,
(C2) [∂a λ b] = −λ[a λ b], [a λ ∂b] = (∂ + λ)[a λ b],
(C3) [a λ b] = −[b −∂−λ a],
(C4) [a λ [b µ c]]− [b µ [a λ c]] = [[a λ b] λ+µ c],

for all a, b, c ∈ R. The right-hand side of axiom (C3) – resp. (C4) – means an expression similar
to (3.4), i.e. we replaceλ by−∂−λ (resp. byλ+µ). Axiom (C4) is an equality inA[λ, µ]⊗AR.

Example 3.3.Everya ∈ R defines a conformal linear mapada : R→ R by

(ada)λb = [a λ b], b ∈ R.
In fact (C2) and (C3) imply:

[a λ (∂b)] = −[(∂b) −∂−λ a] = (−∂ − λ)[b −∂−λ a] = (∂ + λ)[a λ b]

Definition 3.2. Let R be a conformal algebra. Then a conformal linear mapd : R → R is a
conformal derivationof R if

(3.5) dλ[a µ b] = [(dλa) λ+µ b] + [a µ (dλb)].

By (C4) ada is a conformal derivation ofR for everya ∈ R. All derivations of this kind are
calledinner.

A remarkable instance of a non-inner conformal derivation is the following.
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Example 3.4(Semi-direct sum ofVir andCurg). Let Curg be the current conformal algebra
associated to the finite-dimensional Lie algebrag. Define a conformal linear mapdL : Curg →
Curg by dL

λg = (∂ + λ)g for everyg ∈ g ⊂ Curg. This is a conformal derivation since

[(dL
λg) λ+µ h] + [g λ (dL

µh)] = −µ[g, h] + [g λ (∂ + µ)h]

= −µ[g, h] + (∂ + λ+ µ)[g, h]

= (∂ + λ)[g, h]

= dL
λ [g µ h]

This derivation satisfies
[dL

λ d
L] = (∂ + 2λ)dL

and allows us to define a semi-direct sum ofVir andCurg, called thestandardsemi-direct sum.
TheA–moduleVir ⊕ Curg can in fact be given a conformal algebra structure by

[L λ L] = (∂ + 2λ)L, [g λ h] = [g, h], [L λ g] = dL
λg,

L being the standard generator ofVir, g, h ∈ g. Thisλ–bracket is translated in terms of the(n)

products as follows:
L(0)L = ∂L, L(1)L = 2L, L(0)g = ∂g,

L(1)g = g, g(1)L = g, g(0)h = [g, h],

where only the non-zero products ofL and elements fromg ⊂ Curg have been given.

Example 3.5.Theλ–bracket onCendV given by

(3.6) [φ λ ψ]µv = φλ(ψµ−λv)− ψµ−λ(φλv)

defines a conformal algebra structure onCendV since it satisfies properties (C1)-(C4). This
is called thegeneral conformal algebraon V and is denoted bygcV . The setDerR of all
conformal derivations of a conformal algebraR is a subalgebra ofgcR.

If V = AN is a freeA-module of rankN , thengcV is also denoted bygcN . We have already
seen that the action of a conformal map onV is determined by its action on anA–basis ofV via
the compatibility relation

φλ(p(∂)v) = p(∂ + λ)φλv,

so that the conformal linear mapsTm
A acting as(Tm

A )λv = ∂mAv, A ∈ EndV, v ∈ V , have the
following λ–brackets:

(3.7) [Tm
A λ T

n
B] =

∑
i∈Z+

(
n

i

)
λiTm+n−i

AB −
(
m

i

)
(−∂ − λ)iTm+n−i

BA ,

as one can easily check by applying both sides to anyv ∈ V and using Equation (3.6).
Let nowV be anA-module,

v(λ) =
n∑

i=0

λivi ∈ A[λ]⊗A V,

wherevi ∈ V . Define〈v〉 to be theA–submodule ofV spanned by all coefficientsvi of v. The
following lemma will be very useful.

Lemma 3.1. If p(λ) =
∑m

i=0 piλ
i ∈ A[λ] is a polynomial whose leading coefficient does not

depend on∂ (i.e. is a complex number different from zero), then〈p v〉 = 〈v〉.

Proof. We show, by induction onh, that allvn−h lie in 〈p v〉. Let

p(λ)v(λ) =
m+n∑
j=0

λj(pv)j.
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Then(pv)m+n = pmvn and hencevn ∈ 〈p v〉. Suppose nowvn−i ∈ 〈p v〉 for all i ≤ h; we want
to show thatvn−h−1 also lies in〈p v〉. We have that

(pv)m+n−h−1 = pmvn−h−1 + pm−1vn−h + ...+ pm−h−1vn ∈ 〈p v〉.
But by inductive hypothesis, all terms but the first one in the right hand side already lie there.
Hencepmvn−h−1, andvn−h−1, also lie in〈p v〉. The other inclusion〈p v〉 ⊂ 〈v〉 is trivial. �

Thetorsionof a conformal algebraR, denotedTorR is the torsion of theA–moduleR, namely
the submodule of all elementsr for which there exists a non-zerop ∈ A such thatp(∂)r = 0. The
following proposition shows that the torsion does not play any significant role in the conformal
algebra structure.

Proposition 3.1.The torsion TorR always lies in thecenterZ(R) = {r ∈ R|[r λ s] = 0 for all s ∈
R} ofR.

Proof. Let t ∈ TorR. Then there is a non-zerop ∈ A killing t and we have:

0 = [0 λ r] = [p(∂)t λ r] = p(−λ)[t λ r]

for all r ∈ R. This proves〈p(−λ)[t λ r]〉 = 0, hence by Lemma 3.1〈[t λ r]〉 = 0, which shows
[t λ r] = 0 for everyr ∈ R. �

Remark 3.1. The above proof actually shows that ifφ is a conformal linear map such that
p(∂)φ = 0 for a non-zerop ∈ A, thenφ = 0.

In view of Proposition 3.1 theλ–bracket of a conformal algebraR defines an adjoint map
ad : R → DerR ⊂ gcR whose kernel is the center ofR and which is a homomorphism of
conformal algebras. Thus all finite rank centerless conformal algebras can be embedded as finite
rank conformal subalgebras ofgcN .

Proposition 3.2. A conformal linear mapφ : V → W always maps TorV to zero.

Proof. Sayv ∈ V is torsion. Then there is a non-zerop ∈ A such thatp(∂)v = 0. Then

0 = φλ(p(∂)v) = p(∂ + λ)(φλv).

Use now Lemma 3.1 to conclude thatφλv = 0. �

We now classify all conformal algebras that are free of rank one asA–modules. This is a joint
result with M. Wakimoto.

Proposition 3.3. LetR = Ax be a conformal algebra that is free of rank one as anA–module.
Then eitherR is commutative, i.e. theλ-bracket is0, or it is isomorphic to Vir.

Proof. Axioms (C4) and (C3) give the following relations:

(3.8) [x λ [x µ x]]− [x µ [x λ x]] = [[x λ x] λ+µ x],

(3.9) [x λ x] = −[x −∂−λ x].

Let us set[x λ x] = a(∂, λ)x for some polynomiala. Then (3.8) is equivalent to

(3.10) a(∂, λ)a(∂ + λ, µ)− a(∂, µ)a(∂ + µ, λ) = a(∂, λ+ µ)a(−λ− µ, λ).

Let

a(∂, λ) =
n∑

i=0

ai(λ)∂i

with an 6= 0. Then, assumingn > 1, if we equate terms of degree2n− 1 in ∂, we get

n(λ− µ)an(λ)an(µ) = 0

obtaining a contradiction. Soa(∂, λ) = α(λ)∂ + β(λ) is linear in∂. If we putλ = µ in (3.10),
we get

a(∂, 2λ)a(−2λ, λ) = 0,
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which meansβ(λ) = 2λα(λ), thereforea(∂, λ) = α(λ)(∂ + 2λ). Plugging this into (3.9), we
get thatα is a constant. Up to changingx by a complex multiple we can make it0 or 1. In the
first case we have the trivial product, in the second the Virasoro algebra. �

The analogy between ordinary linear algebra and conformal linear algebra is very suggestive
of the importance of other remarkable constructions. We have already seen that the family of all
conformal maps between twoA–modules can itself be given anA–module structure. The notion
of associative algebra (and of Lie algebra) are modelled on the algebra of linear maps between
vector spaces. It is natural to try to extend this construction to the conformal case.

Say we have conformal linear mapsφ : V → W andψ : U → V whereU, V,W areA–
modules. We would like to define the notion of the composition ofφ andψ resulting in a new
conformal linear map fromU toW . Conformal linearity implies

φλ∂v = (∂ + λ)(φλv), ψµ∂u = (∂ + µ)(ψµu),

so that the obvious composition would satisfy

φλ(ψµ∂u) = (∂ + λ+ µ)(φλ(ψµu)).

Our composition must therefore be a conformal map indexed byλ+ µ. The natural choice is:

(3.11) (φλψ)λ+µu = φλ(ψµu)

for all u ∈ U . This is the only possible choice to be compatible with replacingφ by ∂φ or ψ
by ∂ψ. This composition satisfies (3.3), and defines onCendV a structure of an associative
conformal algebra as defined below:

Definition 3.3. An A–moduleA is anassociative conformal algebraif it is endowed with a
λ–product

A⊗ A 3 a⊗ b 7→ aλb ∈ A[λ]⊗A A
such that for alla, b, c ∈ A the following two axioms hold:

(A1) (∂a) λb = −λaλb, aλ∂b = (∂ + λ)aλb,
(A2) aλ(bµc) = (aλb)λ+µc.

The next step is taking the commutator inA in order to define the analogue of the notion of a
Lie algebra. The properties we want to retain of the commutator in an associative algebra are the
bilinearity in the arguments, that we know translates as (C2), and skew-simmetry (C3). There is
a unique reasonable choice:

(3.12) [x λ y] = xλy − y−∂−λx.

It follows from Remark 3.2 below (and it is not difficult to show directly using Remark 3.3) that
this λ-bracket defines a (Lie) conformal algebra structure onA. It is also easy to see that the
λ-bracket defined by (3.6) coincides with the one defined by (3.12).

Remark 3.2. A formal distribution associative algebra(A,F) gives rise to a conformal associa-
tive algebraF in the same way as in the Lie case. Similarly one constructs the maximal formal
distribution associative algebra(AlgR,R) attached to an associative conformal algebraR. The
correspondence betweenR andAlgR is the same as described by Remark 2.3 in the Lie case.
Furthermore, passing from a formal distribution associative algebra(A,F) to the Lie algebra
(A,F) (obtained fromA by imposing the bracket[a, b] = ab− ba) corresponds to passing from
theλ-productaλb onF to theλ-bracket (3.12).

Remark 3.3. The following properties always hold in an associative conformal algebra:

aλ(b−∂−µc) = (aλb)−∂−µc,

a−∂−λ(bµc) = (a−∂−µb)−∂+µ−λc,

a−∂−λ(b−∂−µc) = (a−∂+µ−λb)−∂−µc.
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4. THE ANNIHILATION ALGEBRA

We have seen in Section 2 how one can associate to a formal distribution Lie algebra a con-
formal algebra. We have also inverted this construction, i.e. to a given conformal algebraR we
have associated its maximal formal distribution Lie algebra(LieR,R). Let nowR be a finite
conformal algebra. Then we may find a free complementaryA-submoduleRf to TorR:

R = Rf ⊕ TorR,

whereRf = A⊗ g, andg ⊂ R is a finite-dimensional subspace. Then we have the identification
[K]

(4.1) LieR = g[t, t−1]⊕ (TorR) t−1

with the following brackets (cf. (2.11)):

(4.2) [am, bn] =
∑
j∈Z+

(
m

j

)
(a(j)b)m+n−j,

(4.3) [LieR, (TorR) t−1] = 0,

wherea, b ∈ g,m, n ∈ Z, an stands foratn, and we use the rule

(4.4) (∂a)m = −mam−1, a ∈ R,m ∈ Z.
Recall also thatLieR admits a derivation∂ defined by

(4.5) ∂(an) = −nan−1, a ∈ R, n ∈ Z.
Thus,LieR may be viewed as a generalization of a current Lie algebra. We have the following
corollaries of the above remarks and Remark 2.3.

Proposition 4.1. Let (g,F) be a formal distribution Lie algebra with a conformal familyF ,
which is a freeA-module on a basisB. Suppose that all elementsan, a ∈ B, n ∈ Z, are linearly
independent. Then(g,F) is isomorphic to the maximal formal distribution algebra associated to
the conformal algebraF . A similar statement is true for formal distribution associative algebras.

Proposition 4.2. LetR be a finite conformal algebra and let{aα} be a finite set of generators
for R (as anA-module). LetLm be the linear span of{aα

i , i ≥ m}; then we have a “quasi-
filtration” of L0:

(4.6) L0 ⊃ L1 ⊃ L2 ⊃ ...

by subspacesLi of finite codimension satisfying

[Li,Lj] ⊂ Li+j−s for somes ∈ Z+,

and
[∂,Li] = Li−1,

for all i, j ∈ Z – we letLj = L0 if j < 0.

Proof. We have:

[aα
λ a

β] =
∑

γ

pαβ
γ (∂, λ)aγ, somepαβ

γ .

Let s be the highest degree of the polynomialspαβ
γ . The statement clearly follows from (2.11).

�

Remark 4.1. One can use the family{Lm} to define a topology on(LieR)− by setting{Lm}
to be a basis of neighbourhoods of zero. The quasi-filtration{Lm} depends on the choice of the
set of generators forR, but the topology it induces onL0 is independent of that choice. The Lie
bracket onL0 and the action of∂ are clearly continuous.
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Definition 4.1. Theannihilation algebraassociated to a conformal algebraR is the subalgebra

(LieR)− = L0 = {an|a ∈ R, n ≥ 0}
of the Lie algebraLieR, topologized as in Remark 4.1. Obviously,(LieR)− is ∂-invariant. The
semi-direct sum(LieR)− = C∂n(LieR)− is called theextended annihilation algebra.

Equations (4.1)-(4.5) show that(LieR)− is nothing butg[t] with the Lie bracket (4.2). We can
now describe (extended) annihilation algebras in all important examples.

Example 4.1. Consider the Virasoro conformal algebraVir, and letL be its standard generator.
Then by Proposition 4.1,Lie Vir is isomorphic toVect C× under the identificationLj = −tj∂t.
The associated annihilation algebra is the Lie subalgebra spanned bytj∂t with j ≥ 0. In
other words,(Lie Vir)− ' Vect C. Its topology is the one induced from the standard filtration
{Ln = tnC[t]∂t} of Vect C. Since∂ acts on it as−ad∂t, we see that(Lie Vir)− is isomorphic to
the direct sum ofVect C and the one-dimensional Lie algebraC(∂ + ∂t).

Example 4.2.The Lie algebraLie Curg, whereCurg is the current conformal algebra associated
to a complex Lie algebrag, is isomorphic tog[t, t−1] = g ⊗C C[t, t−1] where we identifiedgn

with gtn. The corresponding annihilation algebra is its positive partg[t], its topology being the
one induced by the standard filtration{Ln = tng[t]}, and∂ acts on this as−∂t.

Example 4.3. Let Diff C× be the associative algebra of algebraic differential operators onC×.
Its elements are of the form

k∑
i=0

pi(t)∂
i
t,

wherepi ∈ C[t, t−1]. A basis forDiff C× is given by{tm∂n
t |m ∈ Z, n ∈ Z+}, and the product

is given by the usual composition of operators. Denote by(Diff C×)N the algebraEndCN ⊗
Diff C× of EndCN -valued differential operators onC×. It acts naturally on the vector space
CN ⊗ C[t, t−1]. The(Diff C×)N–valued formal distributions

Jk
A(z) =

∑
n∈Z

Atn(−∂t)
kz−n−1

act on the family
v(z) =

∑
n∈Z

(vtn)z−n−1 = vδ(z − t), v ∈ CN ,

of CN -valued formal distributions. SinceJk
A(z) = Aδ(z − t)(−∂t)

k, Jk
A andv are local under

composition, explicitly:

Jk
A(z) v(w) = Aδ(z − t)(−∂t)

kv δ(w − t)

= Av ∂k
w(δ(z − t)δ(w − t))

= Av

k∑
i=0

(
k

i

)
∂k−i

w δ(w − t)∂i
wδ(z − w)

=
k∑

i=0

(
k

i

)
∂k−iAv(w)∂i

wδ(z − w).

HenceJk
A induces a conformal linear map ofA⊗ CN to itself, given in terms ofλ–product as

(Jk
A)λv =

k∑
i=0

(
k

i

)
λi∂k−iAv = (∂ + λ)kAv.

Since theJk
A’s act locally on anA–module, they are local to each other with respect to theλ–

product onCendAN . If {mi} is a basis ofEndCN , then the formal distributionsJk
mi

form a basis
of CendAN overA (this is the same as to say that polynomials(∂ + λ)k form anA-basis for
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C[∂, λ]) and Fourier coefficients of all theJk
mi

are linearly independent, hence by Proposition 4.1
the associative algebraAlg CendAN (see Remark 3.2) is isomorphic to(Diff C×)N . Simplicity
of (Diff C×)N then implies simplicity ofCendAN as an associative conformal algebra.

The same is true forgcN : the Lie algebraLie gcN is isomorphic to the Lie algebra(Diff C×)N

of EndCN -valued algebraic differential operators onC×. The annihilation algebra ofCendAN

(resp.gcN ) is obviously isomorphic to the polynomial part of(Diff C×)N with the usual product
(resp. Lie bracket).

Remark 4.2. TheJk
A’s constitute an alternative basis forgcN to the one considered in Exam-

ple 3.1.

Now we discuss some properties of annihilation algebras that will turn out useful in the sequel.
Introduce the following generating series of elements of(LieR)−: aλ =

∑
n∈Z+

λ(n)an. Then
we have an equivalent form of (2.11) and (4.4):

(4.7) [aλ, bµ] = [a λ b]λ+µ,

(4.8) (∂a)λ = −λaλ.

Replacingµ by µ− λ, we get[a λ b]µ = [aλ, bµ−λ] or, equivalently

(4.9) (a(m)b)n =
m∑

j=0

(−1)m+j

(
m

j

)
[aj, bm+n−j]

Lemma 4.1. aλ = 0 if and only ifa ∈ TorR.

Proof. By (4.1) and (4.8) ifa /∈ TorR, thenan 6= 0 for n sufficiently large, and ifa ∈ TorR
thenan = 0 for all non-negativen. �

Lemma 4.2. A torsionless conformal algebraR is commutative if and only if its annihilation
algebra(LieR)− is commutative.

Proof. If the λ-bracket is0, (LieR)− is trivially commutative. Suppose now(LieR)− is a com-
mutative Lie algebra. From (4.7), we get[a λ b]λ+µ = 0 which shows[a λ b] ∈ TorR because of
Lemma 4.1. �

An ideal j ⊂ (LieR)− is said to beregular if there is some idealJ ⊂ R whose Fourier
coefficients spanj; thenj is stable under the action of∂.

Lemma 4.3. If R is a torsionless conformal algebra, then every∂-stable idealJ of (LieR)−
that is not contained in the center of(LieR)− contains a non-zero regular subideal.

Proof. Suppose there is ana ∈ R such thatam ∈ J for all m ∈ Z+. Then (4.9) shows that
(a(i)b)j ∈ J for all b ∈ R, i, j ∈ Z+. Hence the ideal of(LieR)− generated by{am,m ∈ Z+},
which is clearly contained inJ, is (Lie J)− whereJ is the ideal ofR generated bya.

Therefore, we are only left with proving that there is such ana. Choose an elementxn ∈ J
not lying in the center of(LieR)−. There exists a maximali such that all thexj, j < i lie
in the center ofJ. It is clear by (4.9) thatx(j)y = 0 for all j < i, y ∈ R, so that by (2.11)
[xi, ym] = (x(i)y)m, for allm. Soa = x(i)y is the element we are looking for. �

Remark 4.3. The proof of Lemma 4.3 actually shows that the ideal[(LieR)−, [(LieR)−, J]] is
always regular. It also follows from (2.11) and (4.9), as well as the proof of Lemma 4.3, that
whena andb are regular ideals, the ideal[a, b] is also regular. In particular, ifa (resp. b) is
spanned by all Fourier coefficients ofA (resp.B) for idealsA,B of a conformal algebraR, then
[a, b] is regular, and is induced by〈[AλB]〉 (see Lemma 3.1).

Definition 4.2. Thecompleted(resp. completed extended) annihilation algebra of a conformal

algebraR, denoted ̂(LieR)− (resp. ̂(LieR)−), is the completion of(LieR)− (resp. (LieR)−)
with respect to its topology.
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For example, the completed annihilation algebra forCurg isg[[t]], while that forVir isC[[t]]∂t.
In both cases the topology is induced by filtering with respect to the power series degree int.
There is aconformal moduleaction of(LieR)− onR given byrn.s = r(n)s, which we will call
theadjoint conformal representation ofR (see Section 8). Since for anyr ∈ R, Lk.r = 0 for

k >> 0, this action extends to the wholê(LieR)−.

Lemma 4.4. Letx ∈ ̂(LieR)−, r ∈ R. Then we have:

(4.10) [x, rn] =
∞∑
i=0

((−∂)(i)x .r)n+i,

and

(4.11) (x.r)n =
∞∑
i=0

[∂(i)x, rn+i].

Proof. It is enough to show (4.10) forx = am, a ∈ R,m ∈ Z+. Density of(LieR)− along
with convergence of both sides in (4.10) will give the general statement. Indeed,[am, rn] and∑

i∈Z+
((−∂)(i)am .r)n+i both equal∑

j∈Z+

(
m

j

)
(a(j)r)m+n−j,

sinceak.r = a(k)r. The second equality then follows by substituting (4.10) in the right-hand side
of (4.11). �

Proposition 4.3. Let R be a torsionless conformal algebra, and letj be a ∂-stable ideal of
̂(LieR)− such thatj ∩ (LieR)− = 0. Thenj is central in ̂(LieR)−.

Proof. Let x ∈ j, r ∈ R. Then because of (4.11),(x.r)n lies in j. But x.r belongs toR,
hence(x.r)n also lies in(LieR)−. This shows that(x.r)n ∈ j ∩ (LieR)− = 0, and sinceR is
torsionless,x.r must equal0. Thusx.r = 0 for all x ∈ j, r ∈ R, which means, by Lemma 4.4,

thatx ∈ j is always central in ̂(LieR)−. �

5. SIMPLE CONFORMAL ALGEBRAS

We now want to undertake the task of studying simple conformal algebras through the prop-
erties of the corresponding annihilation algebras; throughout this section, annihilation algebras
will always be considered along with their topology.

Definition 5.1. A conformal algebraR is simpleif it is non-commutative and has no non-trivial
ideals.

It is clear thatVir is simple, and thatCurg is simple if and only ifg is a simple Lie algebra.

Remark 5.1. In consideration of Proposition 3.1, any simple conformal algebraR must be tor-
sionless.

The final goal of this section is the proof of the following

Theorem 5.1. A finite simple conformal algebra is isomorphic either to Vir or to the current
conformal algebra Curg associated to a simple finite-dimensional Lie algebrag.

We shall divide the proof in several steps. The most important result we are going to exploit
is the Cartan-Guillemin theorem [G] (see also [B]):

Theorem 5.2. Let L be a linearly compact Lie algebra having an open subalgebra containing
no ideals ofL. Then:
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(a) Every non-commutative minimal closed ideal ofL is of the formS = S ⊗̂C[[t1, t2, . . . , tr]],
for somer ∈ Z+ and some simple Lie algebraS (the simple Lie algebraS is either finite-
dimensional or one of the complete Cartan type Lie algebrasWN , SN ,HN ,KN ; see e.g.
[G1] or [K1] ).

(b) There exists a descending family of closed ideals ofL

(5.1) L = J0 ⊃ J1 ⊃ · · · ⊃ Jn ⊃ Jn+1 = 0

such that each quotientJk/Jk+1, 0 ≤ k ≤ n, is either commutative or isomorphic toS
described in (a), in which case there are no closed ideals strictly betweenJk andJk+1.

Recall that alinearly compactvector space is a topological vector space which is the topologi-
cal product of discrete finite dimensional vector spaces. The linearly compact Lie algebra we will

apply Theorem 5.2 to iŝ(LieR)−, which is the topological product ofC∂ andLi/Li+1, i > 0.

Lemma 5.1. If R is a finite conformal algebra, then̂(LieR)− has a subalgebra of finite codi-

mension containing no ideals of̂(LieR)−.

Proof. By (4.1) we can assumeR to be torsionless. Use Proposition 4.2 with anA-basis ofR.

The closure ofL1 in ̂(LieR)− does not contain any ideal of̂(LieR)−, and is clearly of finite
codimension. �

We can therefore apply Theorem 5.2 tô(LieR)−. It is also easy to find out what the non-

commutative quotients in (5.1) for̂(LieR)− can be.

Lemma 5.2. (LieR)− is a Lie algebra of growth≤ 1 (see[GK] , [K1] for the definition of
growth=Gelfand-Kirillov dimension of a Lie algebra and its properties).

Proof. Let {aα, α = 1...n} be a set of generators of theA–moduleR. Then the elements∂, aα
m

with α = 1, ..., N,m ∈ Z+ span the Lie algebra(LieR)−. Consider a finite subsetX of this
set of elements, so that foraα

m ∈ X we havem ≤ M , whereM is a positive integer. Then, due
to (2.11), commutators of length≤ n of elements fromX produce linear combinations of the
aα

m with m ≤ Mn and the total number of these elements is at mostMNm, which is a linear
function inn, hence the growth of(LieR)− is at most one. �

The growth of(LieR)− is certainly not less than the growth of the graded algebra associated to
̂(LieR)− with its standard filtration, and the same applies to all subquotients. Therefore the only

possible non-commutative quotients in (5.1) have an associated graded algebra of growth at most
one. SinceW1 is the only complete Cartan type Lie algebra that contains a dense subalgebra of
growth one, and all finite dimensional Lie algebras have growth zero, we obtain:

Lemma 5.3.The only non-commutative quotients showing up in (5.1) for the Lie algebrâ(LieR)−

are isomorphic toV̂ect C, g or g[[t]], whereg is a simple finite-dimensional Lie algebra.

Lemma 5.4. If R is a finite conformal algebra with no non-zero commutative ideals, thenJn in
(5.1) can be chosen to be non-commutative.

Proof. SupposeJn to be commutative; then it must be central, otherwise Lemma 4.3 would give
a commutative ideal ofR.

If Jn is central, thenJn−1 is a central extension ofJ = Jn−1/Jn by Jn that we may assume
without loss of generality to be non-trivial: indeed, if it were trivial, then eitherJn−1 would be
commutative, orJ would be a non-commutative minimal ideal. SoJn−1 is non-commutative,
andJn−1 ∩ (LieR)−, which is nonzero by Proposition 4.3, contains a non-zero regular idealr
(Lemma 4.3).

If J is commutative, thenJn−1 is solvable, and[Jn−1, Jn−1] lies insideJn. Then eitherr is
a commutative regular ideal, or it is non-commutative, in which case[r, r] 6= 0 is still regular
(Remark 4.3) and commutative, since it is central in(LieR)−. But from Lemma 4.2 every
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commutative regular ideal corresponds to a commutative ideal of the conformal algebraR, thus
giving a contradiction.

If J is non-commutative, then by Lemma 5.3 it is isomorphic to one of the following:̂Vect C,
g or g[[t]], whereg is a simple finite-dimensional Lie algebra. But those Lie algebras have no
non-trivial (continuous) central extensions. So[Jn−1, Jn−1] is a closed ideal isomorphic toJ,
hence minimal. �

Let us now classify all surjective continuous derivations ofg[[t]] andV̂ect C.

Lemma 5.5. If S = g[[t]], then∂ = −∂t up to a continuous automorphism ofL.

Proof. All continuous derivations∂ of S are of the form∂ = a(t)∂t+adg(t), a(t) ∈ C[[t]], g(t) ∈
g[[t]] (cf. [K2], Ex. 7.4).

Surjectivity forcesa(0) 6= 0: since∂x(t) = a(t)x′(t) + [g(t), x(t)], computing everything at
0, and assuminga(0) = 0, we get(∂x(t))|t=0 = [g(0), x(0)]. Since∂ is surjective, all possible
elements ofg must show up in the form[g(0), x(0)] for somex(0). But this is clearly impossible
if g is finite-dimensional. Ifa(0) 6= 0, the differential equation

c(t)−1c′(t) = a(t)−1adg(t) ∈ adg[[t]]

always has a solutionc(t) ∈ (AdG)[[t]], whereG is the Lie group with Lie algebrag. But this
is exactly the condition forc(t)∂c(t)−1 to be equal toa(t)∂t. Therefore∂ can be conjugated to
it; the automorphism mappingg identically, and sendingt 7→ −

∫
a(t)−1dt clearly conjugates

a(t)∂t to−∂t. �

Lemma 5.6. If S = V̂ect C, then∂ = −ad∂t up to a continuous automorphism.

Proof. It is a well-known fact that all continuous derivations ofS are inner:∂ = ada(t)∂t, a(t) ∈
C[[t]]. Also ∂ is surjective if and only ifa(0) 6= 0. If so,∂ is conjugated to−∂t by the automor-
phism sendingt 7→ −

∫
a(t)−1dt. �

Corollary 5.1. If R is a simple finite conformal algebra, then(LieR)− is isomorphic to either
Vect C or g[t], whereg is a finite dimensional simple Lie algebra.

Proof. R has no commutative ideals so, by Lemma 5.4,̂(LieR)− has a minimal non-commutative
closed idealJ. J cannot be central hencej = J ∩ (LieR)− 6= 0, by Proposition 4.3.j must be
dense inJ because of minimality ofJ and it must be all of(LieR)− since otherwise Lemma 4.3
would give a strict ideal ofR, which is simple. Since(LieR)− is clearly infinite-dimensional,
the case of a simple finite-dimensional Lie algebra is ruled out.

Now, (LieR)− is exactly the subspace of all elements on which∂ acts nilpotently, and since
we know we can conjugate the action of∂ to−∂t (Lemmas 5.5, 5.6) it is clear that(LieR)− will
be isomorphic to eitherVect C or g[t], whereg is a finite dimensional simple Lie algebra. �

Our classification will be proved as soon as we show that the extended annihilation algebra
completely describes the conformal algebra structure.

Proposition 5.1. Let R and S be torsionless finite conformal algebras andφ : (LieR)− →
(LieS)− be a homomorphism of topological Lie algebras compatible with the action of∂. Then
there is a unique homomorphism of conformal algebrasφ̃ : R→ S inducingφ.

Proof. We are going to show that as soon asφ is a continuous linear map which is compatible
with the action of∂, we can find a uniquẽφ inducing it. This will prove the statement since
(4.9) shows how to recover the conformal algebra structure from the Lie algebra structure of the
annihilation algebra. Uniqueness ofφ̃ will then show that̃φ is a homomorphism ofA-modules.

SinceS has no torsion, by Lemma 4.1 for every choice ofr ∈ R there is at most ones ∈ S
such thatsi = φ(ri) for everyi. Let us fix a basis{si} of S and consider an elementr ∈ R.
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Because of the compatibility ofφ with the action of∂, there always exist numberscij such that

(5.2) φ(rn) =
n∑

j=0

∑
i

(−1)n−j n!

j!
cin−js

i
j,

for everyn ∈ Z+. Then set

(5.3) φ̃(r) =
∑
j∈Z+

cij∂
jsi.

The formal element̃φ(r) is such that(φ̃(r))n = φ(rn) for all n ∈ Z+. Because of continuity of
φ, for everyr ∈ R, φ(ri) lies inL1 for i >> 0 (see (4.6)). But this forces̃φ(r) to be polynomial
in ∂ and therefore to belong toS. Then, due to uniqueness ofφ̃(r) the mapr 7→ φ̃(r) isA-linear.
Moreoverφ̃ clearly inducesφ. �

We are now able to classify all finite simple conformal algebra.

Proof of Theorem 5.1.We already know thatVir andCurg, whereg is a finite dimensional sim-
ple Lie algebra, are simple conformal algebras. We want to show they are the only ones.

Let R be a simple conformal algebra. Then Corollary 5.1 shows(LieR)− is isomorphic to
eitherVect C or g[t] with the topology induced by the standard filtrations and that∂ can be
assumed to act as−∂t. So we get∂-compatible continuous isomorphisms between(LieR)− and
either(Lie Vir)− or (Lie Curg)−, resulting by Proposition 5.1 in isomorphisms ofR with either
Vir or Curg. This concludes the proof. �

The correspondence between conformal algebras and formal distribution Lie algebras (Re-
mark 2.3) implies the following corollary of Theorem 5.1.

Corollary 5.2. A finite simple (i.e. without non-trivial regular ideals) formal distribution Lie
algebra is isomorphic either to the Virasoro Lie algebra or to a quotient of a current Lie algebra
g[t, t−1] with g a finite-dimensional simple Lie algebra.

6. THE K ILLING FORM

The next step towards a complete structure theory of conformal algebras is the classification
of semi-simple algebras. In the theory of finite-dimensional Lie algebras we can rely on the
inestimable use of the Killing form. It is evident we need an analogous notion in the conformal
algebra case, but the very notion of trace of a conformal linear map is ill-defined. Life would be
much easier if we were handling the usualA–linear maps.

Definition 6.1. Let M be a finite rankA–module andT : M → M anA–linear map. Let
K = C(∂) be the field of fractions ofA and letMK = K ⊗AM . ThenT extends by linearity to
aK-linear mapMK →MK and thetraceof T onM is defined asTrMT = TrMKTK.

Remark 6.1. This trace inherits all standard properties of a trace on a vector space. In particular
TrMAB = TrMBA. Furthermore, ifM is a free module, thenTrMT is equal to the sum of
elements on the diagonal of any matrix representation ofT . Also TrMT = TrM/Tor MT .

In spite of the fact that conformal linear maps are notA–linear, one obviously has:

Proposition 6.1. Let φi be conformal linear maps,λi indeterminates. Then the composition
φ1

λ1
φ2

λ2
. . . φn

λn
isA–linear whenever

∑
i λi = 0.

In this way, the trace of the composition of conformal linear maps is well-defined as soon as
theλ’s add up to 0. The analogue of the commutativity property of trace in this case is:

Proposition 6.2. LetM be anA–module of finite rank, and forp(∂) ∈ A let scp(∂) = p(∂+ c).
If φi ∈ CendM , then one has

(6.1) TrMφ
1
λ1
φ2

λ2
. . . φn

λn
= sλ1TrMφ

2
λ2
. . . φn

λn
φ1

λ1
.
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Proof. We may assume thatM is a freeA-module (see Remark 6.1). Choose anA–basis{mi}
of M . Then there is a unique conformal linear mapI : M → M such thatIλmi = mi for all i.
The compositionIλI−λ is always the identity.

Let T be anA–linear map onM . ThenIλTI−λ isA–linear and we have:

(6.2) TrMIλTI−λ = sλTrMT,

as can be easily shown by adding up elements on the diagonal of the matrix representation of the
composition. Proposition follows now by noticing that Remark 6.1 implies:

TrMφ
1
λ1
φ2

λ2
. . . φn

λn
= TrM(φ1

λ1
I−λ1)Iλ1φ

2
λ2
. . . φn

λn
= TrMIλ1φ

2
λ2
. . . φn

λn
φ1

λ1
I−λ1

�

We are now able to define our “Killing form”.

Definition 6.2. Let R be a finite conformal algebra. TheKilling form of R is theC-bilinear
pairing

(x|y)λ = TrR(adx)λ(ady)−λ.

Due to (6.1), the Killing form satisfies

(6.3) (x|y)λ = sλ(y|x)−λ.

It is also clear by definition that

(6.4) (∂x|y)λ = −(x|∂y)λ = −λ(x|y)λ.

Example 6.1.LetR = Vir = AL. Then the Killing form is

(L|L)λ = (∂ − λ)(∂ + 2λ).

Example 6.2. If R = Curg, g, h ∈ g ⊂ Curg then

(g|h)λ = κ(g|h),
whereκ is the Killing form of the Lie algebrag.

Remark 6.2. Notice that the Killing form of a simple conformal algebra is always non-degenerate.

For a subalgebraI of R setI⊥ = {x ∈ R| (x|I)λ = 0}. Due to (6.3) we getI⊥ = {x ∈
R| (I|x)λ = 0}, and due to (6.4),I⊥ is anA-submodule. The following example shows thatI⊥

does not need to be an ideal ofR even ifI is.

Example 6.3. LetR be the semi-direct sum ofVir andCurg, whereg is semi-simple, given by
Lλr = dL

λr as in Example 3.4. Then

(g|h)λ = κ(g|h), (L|L)λ = (∂ − λ)(∂ + 2λ), (L|g)λ = 0

for everyg, h ∈ g. Therefore,Curg is an ideal ofR, Curg⊥ = Vir butVir is not an ideal.

What is instead true is thatI⊥ is always a subalgebra.

Proposition 6.3. LetR be a conformal algebra andI ⊂ R an ideal. ThenI⊥ is a subalgebra of
R.

Proof. Let a ∈ I, b, c ∈ I⊥. Then, sinceI is closed underλ−bracket with every element ofR,
we have:

([a λ b]|c)λ+µ = ([a λ c]|b)µ = (c|[a λ b])−λ−µ = 0.

Vanishing of the first term implies

(6.5) TrR adaλ adbµadc−λ−µ = TrR adbµ adaλadc−λ−µ,

while that of the other two shows
TrR adaλ adc−λ−µ adbµ =

= TrR adc−λ−µ adaλ adbµ = TrR adc−λ−µ adbµ adaλ.
(6.6)
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We want to show that(a|[b µ c])λ = 0, that is:

(6.7) TrR adaλ adbµ adc−λ−µ = Tr adaλ adc−λ−µ adbµ.

But we know from Proposition 6.2 and (6.6) that

TrR adaλ adc−λ−µ adbµ =

= sλTrR adc−λ−µ adbµ adaλ = sλTrR adaλ adc−λ−µ adbµ.

This shows that the polynomialTrR adaλ adc−λ−µ adbµ is independent of∂. The rest of the
proof follows easily. Using Proposition 6.2, independence ofTrR adaλ adc−λ−µ adbµ with
respect to∂, and (6.5) we obtain:

TrR adaλ adc−λ−µ adbµ =

= TrR adbµ adaλ adc−λ−µ = TrR adaλ adbµ adc−λ−µ,

establishing (6.7). �

Remark 6.3. All properties of the Killing form extend to the trace form in any finiteR-module.

The subalgebraI⊥ does not even need to be a complementary submodule toI. Nevertheless
one has:

Proposition 6.4. Let I ⊂ R be an ideal isomorphic to either Vir or Curg, for a simple finite-
dimensional Lie algebrag. ThenR = I⊥ ⊕ I asA–modules.

In order to prove this statement, we need a classification of all conformal derivations (see
Definition 3.2) ofVir andCurg.

Lemma 6.1. Every conformal derivationd of the conformal algebra Vir is inner.

Proof. Let us assume thatdλL = a(∂, λ)L wherea ∈ C[∂, λ]. We writea =
∑n

i=1 ai(λ)∂i. If
d is a conformal derivation, it needs to satisfydλ[L µ L] = [L µ (dλL)] + [(dλL) λ+µ L]. This is
equivalent to saying that

(∂ + λ+ 2µ)a(∂, λ)L = a(∂ + µ, λ)(∂ + 2µ)L+ a(−λ− µ, λ)(∂ + 2λ+ 2µ)L.

Assuming allai’s are non-zero and equating terms of degreen in ∂ in both sides, we get, if
n > 1, (λ − nµ)an(λ) = 0. This shows thatan(λ) = 0, a contradiction. Therefore the degree
of a(∂, λ) in ∂ can be at most one. In this case, substituting into the derivation requirement, one
getsa0(λ) = 2λa1(λ), hencedλL = a1(λ)(∂ + 2λ)L, which is an inner derivation induced by
the elementa1(−∂)L. �

Lemma 6.2. Letg be a simple finite-dimensional Lie algebra. Then every conformal derivation
d of Curg is of the formp(∂)dL + d whered is inner anddL is as in Example 3.4.

Proof. Setdλg =
∑

i∈Z+
∂idi

λ(g), for everyg ∈ g, wheredi
λ areC-linear maps ofg to C[λ]⊗ g.

Then (3.5) tells us that

(6.8)
∑

i

∂idi
λ([g, h]) =

∑
i

((−λ− µ)i[di
λg, h] + (∂ + µ)i[g, di

λh]).

Settingµ = 0, switching the roles ofg andh and adding up, one gets:∑
i

∂i([g, di
λh] + [h, di

λg]) =
∑

i

(−λ)i([g, di
λh] + [h, di

λg]).

The right hand side does not depend on∂, hence all coefficients of non-zero powers of∂ must
be 0. This means that[di

λg, h] + [di
λh, g] = 0 for everyi > 0 and everyg, h ∈ g. If g is simple,

such a linear map can only be a multiple of the identity, as next lemma will show, henced must
be of the form:

dλg = d0
λ(g) + p(∂, λ)g
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for everyg ∈ g. But d is a conformal derivation, so ifn > 1 andp(∂, λ) =
∑n

i=0 pi(λ)∂i,
equatingn − 1 degree terms in (3.5), we getnµpn(µ) = 0. This proves thatp is of degree at
most one in∂.

Let d′λg = p1(λ)(∂ + λ)g, i.e. d′ = p1(−∂)dL. This is a conformal derivation ofg and the
action ofd− d′ ong is independent of∂. Hence, by (6.8),dλ − d′ is an ordinary derivation from
g to C[λ]⊗ g and is therefore an inner conformal derivation, proving the lemma. �

Lemma 6.3. Let g be a simple finite-dimensional Lie algebra, andT : g → g a linear map. If
[Tx, y] = [x, Ty] for all x, y ∈ g thenT is a multiple of the identity map.

Proof. Letg =
⊕

α gα be a root space decomposition with respect to a Cartan subalgebrah = g0.
Since[Tx, x] = 0, if x ∈ h is a regular element, thenTx lies in the centralizer ofx, hence in
h. This shows thatTh ⊂ h. This means thatT preserves the root decomposition ofg modulo
elements inh. In fact if x ∈ gα, then[Th, x] = [h, Tx], h ∈ h, and since the left hand side is
a multiple ofx, the right hand side must be too, showing thatTx is a multiple ofx plus some
element fromh: Tx = cαx+ h(x).

Let nowx ∈ gα, y ∈ gβ. From[Tx, y] = [x, Ty] we obtain

cα[x, y] + [h(x), y] = cβ[x, y] + [x, h(y)].

Whenα andβ are unequal roots, this means

(cα − cβ)[x, y] = 0, [h(x), y] = 0, [x, h(y)] = 0.

Sinceg is simple, its Dynkin diagram is connected, and this allows us to show that allcα =
cβ = c are the same for all rootsα, β. But [h(x), y] = 0 for all root vectorsy givesh(x) = 0.
HenceT equalsc Id on all gα, α 6= 0. It is left to show thatT equalsc Id also onh. But
[Th, x] = [h, Tx] gives[Th− ch, x] = 0 as soon asx is a root vector. This tells us thatTh = ch
also forh ∈ h. �

Proof of Proposition 6.4.Let a ∈ R, j ∈ J . Then in taking(a|j)λ it is enough to consider the
trace overJ since this is an ideal. Elementa acts onJ via a conformal derivation. But any
conformal derivation ofVir is inner, and any non-inner conformal derivation ofCurg is as in
Lemma 6.2. Any element acting asdL onCurg has a zero Killing product with it.

In any casej 7→ (a|j)λ is equal toj 7→ (i|j)λ for somei ∈ J , and allj ∈ J . This, and the
fact that the Killing form is non-degenerate on simple algebras (which we need in order to show
uniqueness in the choice ofi), show thatJ + J⊥ is a direct sum decomposition. �

Remark 6.4. One can prove the proposition when the idealJ is isomorphic to the Virasoro
conformal algebra without using the Killing form. Indeed, letC be the centralizer of this ideal.
It will be an ideal, and since all derivation ofJ are inner and its center is trivial, every element
x in our conformal algebra admits a unique decompositionx = xC + xJ wherexC lies in theC
andxJ lies inJ .

Thus,C + J is a direct sum decomposition, andC is shown to be a complementary ideal,
and not only a subalgebra. This argument is applicable any timeJ is centerless and has no outer
derivations.

7. SEMI-SIMPLE CONFORMAL ALGEBRAS

We have all the tools we need in order to attack the problem of classification of semi-simple
conformal algebras, now. Let us start by giving the basic definitions.

Definition 7.1. LetR be a conformal algebra,I andJ its ideals. The bracket[I · J ] of these is
the subspace ofR that is spanned by all productsi(n)j with i ∈ I, j ∈ J, n ∈ Z+. Note that
this is anA-module due to (C2) and an ideal due to (C4). In other words[I · J ] = 〈[IλJ ]〉 (see
Lemma 3.1).

Thederived conformal algebraof R isR′ = [R ·R]. We setR(1) = R′,R(n+1) = (R(n))′, n ≥
1. ThenR is a solvable conformal algebraif R(n) = 0 for somen ≥ 1. An ideal I ⊂ R is
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solvableif it is solvable as a conformal algebra. IfI is an ideal ofR, we defineI1 = I and
In+1 = [R · In], n ≥ 1. R is anilpotent conformal algebraif Rn = 0 for somen ≥ 1.

A conformal algebraR is semi-simpleif it has no non-zero solvable ideals.

Recall that by (2.11) and (4.9) (see also Remark 4.3) we have for any two idealsI andJ of a
conformal algebraR:

(7.1) (Lie [I · J ])− = [(Lie I)−, (Lie J)−].

Lemma 7.1. A conformal algebraR is solvable (resp. nilpotent) if and only if its annihilation
algebra(LieR)− is.

Proof. We proceed as in Lemma 4.2.R is solvable (resp. nilpotent) if and only ifR/TorR
is, so we will assumeR to be torsionless. Due to (7.1), we have:(LieR(n))− = (LieR)

(n)
− ,

(LieRn)− = (LieR)n. The result follows form the fact thatJ ⊂ R, (Lie J)− = 0 implies
J = 0, whenR is torsionless (see Lemma 4.1). �

Remark 7.1. Here and further, we have denoted the subspacej of (LieR)− spanned by all
Fourier coefficients of members from an idealJ of a conformal algebraR by (Lie J)−. Even
though the inclusion of an idealJ in a conformal algebraR is clearly injective, the map it induces
at the level of annihilation algebras might have a non-trivial kernel. However this kernelk must
be central in(Lie J)−. In fact, if k were not central, Lemma 4.3 would locate a non-zero regular
subideal ofk, which amounts to finding a non-zero idealK in J that is mapped to 0 by the
inclusionJ → R, thus obtaining a contradiction. Since one can usually reconstruct the algebraic
properties of the idealJ from j, this abuse of notation should cause no confusion.

Lemma 7.2. If R is a finite semi-simple conformal algebra, then any minimal ideal ofR is
simple.

Proof. Let I be a minimal ideal ofR. Then ̂(Lie I)− must contain a minimal closed idealI of
̂(LieR)− due to finiteness of descending chains of ideals [G], and we can assume it to be non-

commutative by arguing as in Lemma 5.4. SinceI is not central, it has a non-zero intersection
with (LieR)−, which must contain a non-zero regular ideali by Lemma 4.3. Minimality ofI
then shows thati equals(Lie I)−. As in Corollary 5.1,i is the space of all elements in the non-
commutative closed idealI on which∂ acts nilpotently, and by Lemmas 5.5 and 5.6 it is clear
that i must be isomorphic to eitherVect C or g[t], whereg is a finite-dimensional simple Lie
algebra, and that∂ can be assumed to act oni as−∂t.

This allows us to give a continuous embeddingφ of Vect C (resp. g[t]) in LieR which is
compatible with the action of∂. Proposition 5.1 then shows that, sinceI is clearly torsionless,
there is an embedding̃φ of Vir (resp.Curg) in R which is an isomorphism ontoI. ThereforeI
is simple as a conformal algebra. �

The main theorem we are going to prove is the following.

Theorem 7.1.Any finite semi-simple conformal algebra can be uniquely decomposed in a finite
direct sum of conformal algebras each of which is isomorphic to one of the following:

(a) Vir
(b) Curg, whereg is a simple finite-dimensional Lie algebra
(c) The semi-direct sum of Vir and Curg, whereg is a semi-simple finite-dimensional Lie

algebra (Example 3.4).

Proof. LetR be a semi-simple conformal algebra. We prove the theorem by induction onrkR. If
R has an ideal isomorphic toVir then by Remark 6.4 it has a complementary ideal that centralizes
it. Therefore it splits up in a direct sum decomposition. Hence, we may assume thatR does not
contain any ideal isomorphic toVir.

Consider all minimal idealsI1, I2, ..., In of R. They are simple by Lemma 7.2. We assumed
that no ideal ofR is isomorphic toVir, henceI = I1 + I2 + ...+ In is an ideal ofR isomorphic
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to Curg, whereg is a semi-simple finite-dimensional Lie algebra. The centralizerC of I is an
ideal ofR intersectingI trivially. SinceC must contain a minimal subideal,C = 0.

Consider the orthocomplementI⊥ of I with respect to the Killing form. Proposition 6.4 also
applies (by induction) to direct sums of simple algebras, soR = I⊥ ⊕ I asA-modules. IfI⊥

had a commutative idealA, it may act on everyIi (hence on all ofI) only by inner derivations
(by Lemma 6.2), hence sinceC = 0, we getA = 0. Thus,I⊥ is semi-simple and we can apply
the inductive assumption. Note thatI⊥ contains no currents (i.e. elementsa such thataλa = 0),
otherwiseC 6= 0. SoI⊥ is a direct sum of (its) ideals isomorphic toVir.

The action of all such ideals onIi is either zero or the standard one (Example 3.4) since they lie
insideI⊥ and no twoVir’s can act in a non-zero way on the sameIi because of [CK], Proposition
3.1, or Proposition 8.1 below. �

As in the case of simple conformal algebras, Theorem 7.1 implies

Corollary 7.1. A finite semi-simple formal distribution Lie algebra can be uniquely decomposed
in a finite direct sum of formal distribution Lie algebras each of which is isomorphic either
to a finite simple formal distribution Lie algebra (classified by Corollary 5.2), or to the semi-
direct sum of the Virasoro Lie algebra with a current Lie algebrag[t, t−1], whereg is a finite-
dimensional semi-simple Lie algebra.

8. REPRESENTATION THEORY

Definition 8.1. Let R be a conformal algebra. Then anA–moduleV is a representationof R,
or anR–module, if for every r ∈ R a conformal linear mapr : V → V is defined such that
(r, s ∈ R, v ∈ V ):

rλ(sµv)− sµ(rλv) = [r λ s]λ+µv, (∂r)λv = −λrλv.

As before, we will often writerλ =
∑

n∈Z+
λ(n)rn, rn ∈ EndV . An R-moduleV is called

finite if it is a finitely generatedA-module. Note also that a representation ofR in anA-module
V is the same as a homomorphism (of conformal algebras)R→ gcV .

Remark 8.1. LetR be a finite conformal algebra with a faithful representationV = Av which
is free of rank one, i.e. we have an injective homomorphism of conformal algebrasR→ gc1. By
(3.7) an element

∑
n∈Z+

pn(∂)T n generates an infinite rank subalgebra ofgc1 as soon aspi 6= 0

for somei > 1. Therefore, the image ofR in gc1 must lie in the subalgebraAT 0 + AT 1. This
implies that the only finite conformal algebras that have a faithful representation which is free of
rank one as anA-module are subalgebras of the standard semi-direct sum (see Example 3.4) of
Vir and a commutative current algebraCurC.

It is immediate to see that a representation of a conformal algebraR in V is the same as a
representation of the Lie algebra(LieR)− in V satisfying the local nilpotency condition

(8.1) rnv = 0 for n sufficiently large, r ∈ R, v ∈ V.
A (LieR)−-module satisfying this condition is calledconformal.

This turns out to be a more convenient language for the study of representations of conformal
algebras, using which Cheng and Kac [CK] classified all irreducible representations ofVir,Curg
and their non-trivial semi-direct sum.

We shall often writeR · V for
∑

j∈Z+
RjV . A representationV of the conformal algebraR is

calledtrivial if R · V = 0. Recall that a finite-dimensional Lie algebrag is calledreductiveis it
is a direct sum of a semi-simple Lie algebrag′ and a commutative Lie algebraa.

Theorem 8.1. Let g = g′ ⊕ a be a reductive Lie algebra. Then any non-trivial finite rank
irreducible representation of Curg is of the formV (U, φ) = A ⊗ U , whereU is an irreducible
finite-dimensionalg-module,a 3 a 7→ φa ∈ C[λ] is a linear map such thata = φa(0) onU and
eitherU is non-trivial orφ 6= 0, and the action of Curg onV (U, φ) is the unique one extending

gλu = g.u, aλu = φa(λ)u
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whereg ∈ g′ ⊂ Curg, a ∈ a ⊂ Curg, u ∈ U and g.u denotes the action ofg ∈ g′ on the
g-moduleU .

Theorem 8.2.Any non-trivial representationV of Vir that is free of rank one as anA-module is
of the form

Lλv = (c+ ∂ + ∆λ)v,

where∆, c ∈ C andv is a free generator ofV . This representation is irreducible if and only if
∆ is non-zero, and all irreducible representations of Vir are of this kind.

Theorem 8.3.Any non-trivial irreducible representation of the semi-direct sum of Vir and Curg,
whereg is a non-zero reductive Lie algebra, is of the formV (U) = A ⊗ U , whereU is an
irreducible finite-dimensionalg-module, and the action is the unique one extending

gλu = g.u, Lλu = (c+ ∂ + ∆λ)u,

wherec,∆ ∈ C, g ∈ g ⊂ Curg, u ∈ U , andU is a non-trivialg-module if∆ = 0.

Proposition 8.1.LetR be a direct sum of conformal algebras isomorphic to one of the following:
(i) Cur g, whereg is a non-zero reductive Lie algebra;
(ii) the standard semi-direct sum of Vir and Curg, whereg is reductive or 0.
Suppose thatR has a finite faithful irreducible representation. ThenR is either of type (i) or

of type (ii) whereg has at most one-dimensional center. Finite irreducible representations ofR
are described by Theorems 8.1-8.3.

The proof of these results is the same as in [CK]. It relies on the following key lemma, that
we will occasionally use later.

Lemma 8.1. [CK] Let L be a Lie algebra, with a distinguished element∂ and a descending
sequence of subspaces

L ⊃ L0 ⊃ L1 ⊃ ...

such that[∂,Ln] = Ln−1 for all n > 0. LetV be aL-module and letVn = {v ∈ V |Lnv = 0};
suppose thatVn 6= 0 for n sufficiently large, and setN to be minimal such thatVN 6= 0. Then,
provided thatN ≥ 1, AVN = A ⊗ VN . In particular, VN is a finite-dimensional vector space
(overC) if N ≥ 1 andV is a finitely generatedA-module.

Clearly, if L = (LieR)− andV is a module overR (i.e. a conformal module overL), the
conditions of Lemma 8.1 are satisfied (cf. Proposition 4.2).

Remark 8.2. In fact [CK] contains only classification of finite irreducible representations of
Vir. The classification of all rank oneVir-modules is obtained by using Remark 8.1 or by the
following simple argument: ifV = Av is a free of rank one non-trivial representation ofVir,
then it contains a minimal rank one submoduleW (see Corollary 8.1 below), which is clearly
irreducible. Letw = p(∂)v be a generator forW ; we can assumep to be a monic polynomial.
Then by classification of irreducibles ofVir, we have:

p(∂ + λ)Lλv = Lλw = (c+ ∂ + ∆λ)w = (c+ ∂ + ∆λ)p(∂)v.

If Lλv = q(∂, λ)v, then clearlyp(∂ + λ) = (c + ∂ + ∆λ) andq(∂, λ) = p(∂), showing∆ = 1
andLλv = (c+ ∂)v.

What we want to investigate now is how basic results from Lie algebra representation theory
extend to the conformal algebra case. First, let us establish a few facts:

Lemma 8.2. If R is a conformal algebra andV is anR–module, thenR acts trivially on TorV .

Proof. R acts via conformal linear maps. Use Proposition 3.2. �

Corollary 8.1. LetV0 be the intersection of all submodules of theR-moduleV having the same
rank asV . ThenR · V ⊂ V0.
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Lemma 8.3. If R is a conformal algebra andV its representation, then TorR acts trivially on
V .

Proof. TorR acts via elements ofTor (gcV ), which is is zero (Remark 3.1). �

Definition 8.2. LetR 3 r 7→ φr(λ) ∈ C[λ] be aC-linear map. Aφ-weight spaceof a moduleV
over a conformal algebraR is theR-invariant subspace

Vφ = {v ∈ V | aλv = φa(λ)v, a ∈ R}.
A non-zero vectorv from Vφ is called aweight vectorwith weightφ.

Remark 8.3. If Vφ 6= 0 (in which caseφ is called aweightof V ), thenφ∂a(λ) = −λφa(λ).

Theorem 8.4. (Conformal version of Lie’s Theorem) LetR be a finite rank solvable conformal
algebra. Then any non-trivial irreducible finite rank conformal representationV ofR is free of
rank one:V = Av, wherev is a weight vector.

In order to prove this statement, we need a simple lemma about finite solvable conformal
algebras:

Lemma 8.4. If R is a finite solvable conformal algebra, then the rank ofR′ is strictly lower than
that ofR.

This is an easy corollary of the following proposition.

Proposition 8.2. If R is a finite conformal algebra such that rkR′ = rkR thenR(n) = R′ for all
n ≥ 1.

Proof. If rkR′ = rkR, thenR(n)R ⊂ P (∂)R for some non-zero polynomialP ∈ A and alln.
Hence the second derived algebraR(2) = [R′ · R′] contains〈P (−∂)P (∂ + λ)[RλR]〉 which is
equal to〈[RλR]〉 by Lemma 3.1, hence toR′. �

Proof of Theorem 8.4.SinceTorR always acts trivially (Lemma 8.3), we can assumeR to be
free as anA–module. We prove the statement by induction on the rank ofR. We have

R ⊃ R(1) ⊃ R(2) ⊃ ... ⊃ R(n+1) = 0

with R(n) non-zero and commutative. ThenR acts onR(n) via the adjoint representation,R(n)

acting trivially. So we get a representation ofR/R(n) in R(n), hence by inductive assumption
(cf. Lemma 8.4) we have a weight vectorb ∈ R(n) with weight independent of∂ (if R itself is
commutative, any vector is a weight vector of weight zero for this action). This means[a λ b] =
fa(λ)b for all a ∈ R. Denote bybi the subspace of(LieR)− spanned by elementsbm,m ≥ i.
It is clear from (2.11) thatbi is normalized by(LieR)−. But bi kills a vectoru ∈ V for i
sufficiently large, by local nilpotency assumption (8.1). LetVj be the set of all vectors killed by
bj and letU beVN for N minimal such thatVN 6= (0). Because of Lemma 8.1, whenN > 0, U
is a vector space of finite dimension, and it is invariant under the action of(LieR)−, sincebN is
normalized by(LieR)−. But now we can consider the image of(LieR)− insideglU . This will
be a solvable Lie algebra, hence we have an eigenvectorv by the classical Lie’s theorem (see e.g.
[S]), henceV = Av and theorem is proved.

In the other caseN = 0, b kills some non-zero vectorv: bλv = 0. SinceA b forms an ideal,
the set of vectors killed byb is a non-zero submodule ofV , henceV itself. HenceR/A b acts on
V . ButR/A b is of lower rank thanR, it is still solvable, andV is its irreducible representation.
Then theorem follows by induction. �

Corollary 8.2. The derived algebra of a solvable conformal algebraR always acts trivially on
an irreducible representation ofR.

Lemma 8.5. If V = Av is a free of rank one representation of a solvable conformal algebraR,
thenV is either trivial or irreducible.
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Proof. It follows form Remark 8.1. We also give here an alternative proof. IfV is non-trivial,
there is a minimal submoduleW of V of rank one (Corollary 8.1). IfW 6= V , thenW is spanned
by a vectorw = p(∂)v, with p non-constant. The moduleW is irreducible, hence it is a weight
module. We have:

p(∂ + λ)q(∂, λ)v = p(∂ + λ)sλv = sλw = φs(λ)w = φs(λ)p(∂)v,

for some polynomialq(∂, λ). This givesφs(λ)p(∂) = p(∂+λ)q(∂, λ). Since the polynomialp is
non-constant, it must have a complex zeroc. Substitutingc−λ for ∂, we getφs(λ)p(c−λ) = 0,
henceφs(λ) = 0. But this tells us that the action ofS onW is trivial, giving a contradiction.
HenceW = V , andV is irreducible. �

Corollary 8.3. LetR be a finite solvable conformal algebra andV a finite conformal module
for R. Then it is always possible to find a family of submodules

Tor V = V0 ⊂ V1 ⊂ ... ⊂ VN = V

such thatVi+1/Vi is free of rank one fori ≥ 0. The action ofR onVi+1/Vi is either trivial or as
in Theorem 8.4. In particular,R′ is a nilpotent conformal algebra.

If V is a freeA-module, then we can choose anA-basis ofV in which the action ofR is
expressed via upper triangular matrices.

Corollary 8.3 implies:

Theorem 8.5. If R is a finite solvable conformal algebra, then there is a sequence of ideals

TorR = R0 ⊂ R1 ⊂ ... ⊂ RN = R

such thatRi+1/Ri is free of rank one as anA-module. In particular, ifR is free as anA-module,
it can be obtained by a sequence of extensions by commutative conformal algebras that are free
asA-modules.

We finish by proving the useful analogue of a classical result of Lie representation theory (see
e.g. [S]) sometimes referred to as the Cartan-Jacobson theorem.

Theorem 8.6. (Conformal version of Cartan-Jacobson Theorem) LetR be a finite conformal
algebra which has a finite irreducible faithful representationV . ThenR is isomorphic to one of
the following conformal algebras:

(i) Cur g, whereg is a non-zero reductive Lie algebra whose center is at most one-dimensional;
(ii) the standard semi-direct sum of Vir and Curg, whereg is as in (i) or zero.

This result allows us to easily prove the conformal version of Engel’s theorem for Lie algebras.

Corollary 8.4. Let R ⊂ gcV be a finite conformal algebra, withV of finite rank. Ifan is
nilpotent onV for anya ∈ R andn ∈ Z+ andV 6= 0, then there exists a non-zerov ∈ V such
thataλv = 0 for all a ∈ R.

Proof. By contradiction: suppose there is no vector killed by the whole ofR. First of all,V must
be torsionless, due to Proposition 3.2.

Let us take a maximal proper submoduleW (there always exists one). IfW = 0 thenV
is irreducible. But Theorems 8.1-8.3 and 8.6 classify all faithful irreducible representations of
conformal algebras, and no one of them is acted on by all nilpotent maps. This means that all of
R acts as0, If W 6= 0 andrkW < rkV then the statement holds forW by induction onrkV .

Let us take the intersectionW0 of all submodules ofV with the same rank asV . By Corol-
lary 8.1,R · V ⊂ W0.

If rkW0 = rkV , thenW0 has no submodules of the same rank asV , so we can use the above
proof forW0. If 0 < rkW0 < rkV then we have found a submodule of lower rank thanV , and
we can use induction. IfW0 = 0 thenR · V = 0. �

Corollary 8.5. (Conformal version of Engel’s Theorem) IfR is a finite rank conformal algebra
and all elements ofR are ad -nilpotent thenR is a nilpotent conformal algebra.
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Proof. By induction onrkR. SinceadR ⊂ gcR satisfies hypotheses of Corollary 8.4, there is
x 6= 0 in R such thatR · x = 0, i.e. the centerZ of R is non-trivial. ButR/Z also consists
of ad-nilpotent elements and its rank is less than that ofR, sincegcR is free, and the rank of
Z ⊂ gcR is therefore of rank at least one.

Inductive hypothesis shows thatR/Z is nilpotent. But it is clear thatR is nilpotent if and only
if R/Z is. �

We will divide the proof of Theorem 8.6 in several lemmas.

Lemma 8.6. If R is a finite conformal algebra having a faithful irreducible finite representation
V then the radical ofR is a commutative ideal.

Proof. Let J = RadR. SinceJ is solvable, there is av ∈ V that is a common eigenvector for
J ; furthermore, we know thatJ acts onv with weights that are independent of∂ (Theorem 8.4).
HenceJ ′ = [J · J ] is an ideal that killsv. But the set of all vectors killed byJ ′ is a non-zero
submodule, so it is the wholeV . By faithfulness ofV , J ′ = 0. �

Definition 8.3. Let J be a conformal algebra and letV be aJ-module. LetJ 3 a 7→ φa(λ) ∈
C[λ] be a linear map. For a non-negative integern denote byV n

φ the subspace of all elements
of V that are killed byn factors of the formaλ − φa(λ), wherea ∈ J, λ ∈ C. Thegeneralized
weight spaceof V corresponding toφ is

Vφ =
∞⋃

n=1

V n
φ .

(Note thatV 1
φ is the ordinary weight space).

Lemma 8.7. Let V be anR-module, and letJ be an ideal ofR and Vφ =
⋃

n≥1 V
n
φ be a

generalized weight space forJ . Then for eachn ∈ Z+ we have:
(a) ∂V n

φ ⊂ V n+1
φ .

(b) EachV n
φ is J-invariant.

(c)R · V n
φ ⊂ V n+1

φ .
(d) V n+1

φ = {v ∈ V | (aλ − φa(λ))v ∈ V n
φ for all a ∈ J, λ ∈ C}.

(e)Vφ is anR-submodule ofV .

Proof. (d) is clear. (a) is proved by induction, observing that(aλ − φa(λ))(∂v) = ∂((aλ −
φa(λ))v)+λaλv; (d) takes care of the basis of induction, since ifv ∈ V 1

φ , then(aλ−φa(λ))(∂v) =

λaλv ∈ V 1
φ . (b) is immediate sinceaλv = (aλ − φa(λ))v + φa(λ)v.

Proof of (c) is as follows: Ifv ∈ V n
φ then for allr ∈ R, a ∈ J ,

(8.2) rλaµv − aµrλv = [r λ a]λ+µv.

From this we getrλ(aµ−φa(µ))v−(aµ−φa(µ))rλv = −[r λ a]λ+µv hence, since[r λ a] ∈ J and
(aµ − φa(µ))v ∈ V n−1

φ , (aµ − φa(µ))rλv ∈ V n
φ by inductive hypothesis and (a). (e) is implied

by (a) and (c). �

It will be useful below to set an appropriate basis in order to compare matrix representations
of the action of two elements that need to be equal.

Lemma 8.8. There exists anA-basis{v1
1, v

1
2, ..., v

1
k1
, v2

1, ..., v
2
k2
, v3

1, ...} of Vφ such that

(8.3) V n
φ = {

∑
i,j

pi
j(∂)vi

j| deg pi
j(∂) ≤ n− i}.

Proof. For everyi ∈ Z+ let {vi
j}j∈Ji

be aC-basis ofV i
φ moduloV i

φ ∩ AV i−1
φ . We want to show

that all{vi
j} are linearly independent overA. In particular, ifVφ is finite, then{vi

j} is a finite set
of vectors.
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If we have a non-trivial relation between thevi
j ’s, we can choose

(8.4)
∑

i=1...N−1
j

pi
j(∂)vi

j +
∑

j

qj(∂)vN
j = 0

with qj 6= 0 for somej, and of minimal maximal degreed of the qj ’s. Thend = 0. In fact, if
d > 0, then applyingaλ − φ(λ) to both sides of (8.4), one gets:

(8.5)
∑

i=1...N−1
j

p̃i
j(∂, λ)vi

j + φa(λ)
∑

j

(qj(∂ + λ)− qj(∂))vN
j = 0

for some polynomials̃pi
j. If the degree ofφa ism, the coefficient ofλm+d in (8.5) gives a linear

relation as in (8.4) where allqj ’s are constant, and not all of them are0.
Once we knowd = 0, (8.4) shows thatv =

∑
j qjv

N
j is a non-trivialC-linear combination of

thevN
j which lies inAV N−1

φ by construction. Butv represents a non-zero class inV N
φ /(V N

φ ∩
AV N−1

φ ), giving a contradiction. Therefore, thevi
j ’s are linearly independent, and they clearly

spanVφ.
We are left with showing thatV n

φ = {
∑

i,j p
i
j(∂)vi

j| deg pi
j ≤ n − i}. This is obviously true

for n = 1, and we want to establish it for alln using induction onn. Every element insideV n+1
φ

is clearly anA-linear combination of thevi
j, i ≤ n+ 1. Let∑

i=1...N−1
j

pi
j(∂)vi

j +
∑

j

qj(∂)vN
j

be an element ofV n+1
φ . We show by induction onN that polynomialspi

j andqj are as desired.
Applying aλ − φ(λ), λ ∈ C, one gets∑

i=1...N−1
j

p̃i
j(∂, λ)vi

j + φa(λ)
∑

j

(qj(∂ + λ)− qj(∂))vN
j

for some choice of polynomials̃pi
j, and this must lie inV n

φ . But inductive assumption tells us that
the degree in∂ of qj(∂ + λ)− qj(∂) must be≤ n−N for all λ ∈ C, hencedeg qj ≤ n+ 1−N .

If so, theA-linear combination
∑

j qj(∂)vN
j certainly belongs toV n+1

φ , hence we are left with
proving the statement for ∑

i=1...N−1
j

pi
j(∂)vi

j,

which is true by inductive assumption. �

We will refer to any basis ofVφ obtained in this way as to astandard basis. Matrix represen-
tations of conformal linear maps are analogous to those of linear maps between vector spaces. If
A(∂, λ) is the matrix representing the action ofaλ andB(∂, µ) is that representing the action of
bµ, then the matrix representingaλbµ is clearly given by the product matrixA(∂, λ)B(∂ + λ, µ).

We are going to consider generalized weight spaces for the action ofJ = RadR onV . They
come useful, since they are fixed by the action ofR. SinceJ is solvable, we know by the
conformal version of Lie’s theorem (Theorem 8.4) that at least one of the weight-spaces is non-
trivial. Let φ be the corresponding weight. Note thatφ 6= 0, since otherwiseV 1

φ isR-invariant,
henceV = AV 1

φ , J acts trivially onV , and Theorem 8.6 follows from Proposition 8.1.
From now on,R will be a finite conformal algebra,J its radical,V a faithful irreducible finite

R-module such thatV = Vφ, the generalized weight space with respect to the action ofJ for the
weightφ 6= 0, for whichV 1

φ 6= 0.

Lemma 8.9. The rank ofJ is at most one.
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Proof. Suppose thatrkJ > 1. Then, by Remark 8.3,φ∂a = −λφa, hence we can always find
a non-zeroa ∈ J for which φa = 0. Now, all elements inJ whose weight is0 form an ideal
J0 of R. In fact, since the action ofr ∈ R increases the filtration by one (Lemma 8.7c), and
aλ−φa(λ), λ ∈ C, obviously decreases it by one, their matrix representation in any fixed standard
basis is given by the following block matrices for the filtration{V n

φ }:

rλ =


∗ . . . . . . .
R1 ∗ . . . . .
0 R2 ∗ . .
...

... ... ...
0 . . . 0 Rn−1 ∗



aµ =


φa(µ) J1 . . . . . . . .

0 φa(µ) J2 . . . . . .
... 0

... . ..

0
... φa(µ) Jn−1

0 . . . . . 0 φa(µ)


whereRi = Ri(λ) andJi = Ji(µ) are independent of∂ (cf. Lemma 8.8); then taking trace of
the matrices representing both sides of

rλaµ − aµrλ = [r λ a]λ+µ

we easily get that ifφa is zero, thenφ[r λ a] is also zero. The same reasoning as before shows that
J0 acts trivially onV , a contraiction with faithfulness of theR-moduleV . �

Once we knowJ is commutative of rank one, we can consider the adjoint representation of
R/J onJ . This is a rank one representation of a semi-simple conformal algebra. We know from
Theorem 8.1 that the current part ofR/J must act as0, and that of all the Virasoro algebras, only
one can act non-trivially. LetS ⊂ R be the centralizer ofJ in R.

Lemma 8.10.S stabilizes the filtration{V n
φ }.

Proof. By definition ofS, [S · J ] = 0. Then using this in (8.2) gives the proof. �

This tells us that in the standard basis the matrices representing the action of elements from
S are block upper triangular for the filtration{V n

φ }, with diagonal blocks independent of∂. In
particular, ifS/J containsVir’s, diagonal blocks in their matrix representation are trivial (by
Theorem 8.2). Hence their action is trivial onV , so S/J is a current conformal algebra by
Theorem 7.1.

Lemma 8.11. All central extensions of a finite simple conformal algebraR by a freeA-module
of rank one are trivial.

Proof. LetR be a central extension of a finite simple current conformal algebraCurg by a rank
one centerA. Theλ-bracket in such a conformal algebra is given by

(8.6) [g λ h] = [g, h] + αλ(g, h),

whereg, h ∈ g ⊂ Curg andαλ(g, h) ∈ A[λ]. Then axiom (C4) gives

(8.7) αλ(a, [b, c])− αµ(b, [a, c]) = αλ+µ([a, b], c),

and settingαλ(g, h) =
∑

i λ
iαi(g, h):∑

i

λiαi(a, [b, c])−
∑

j

µjαj(b, [a, c]) =
∑

k

(λ+ µ)kαk([a, b], c),

for everya, b, c ∈ g.
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This immediately showsαi = 0 for i ≥ 2, sinceg′ = g. Moreover:

(8.8) α0(a, [b, c])− α0(b, [a, c]) = α0([a, b], c),

(8.9) α1(a, [b, c]) = α1([a, b], c).

Axiom (C3) is equivalent to

(8.10) α0(a, b) + α0(b, a) = ∂α1(a, b).

It follows from (8.9) and (8.10) thatα1 is a symmetric invariantA-valued bilinear form ong,
hence it is a multiple of the Killing form(·|·): α1(g, h) = p(∂)(g|h).

Setβ(g, h) = α0(g, h) − 1
2
∂p(∂)(g|h). Then (8.10) implies skew-symmetry ofβ and (8.8)

translates as

β([a, b], c)− β(a, [b, c]) + β(b, [a, c]) =
1

2
∂p(∂)([a, b]|c).

Plugging ina = h ∈ h, b = eα, c = e−α for some rootα, we get:

(8.11) β(h, [eα, e−α]) =
1

2
∂p(∂)α(h)(eα|e−α).

If hα is the bracket of root vectorseα, e−α such that(eα|e−α) = 1, we getβ(hα, hα) =
1
2
∂p(∂)α(hα). But the left-hand side of (8.11) must be0 due to skew-symmetry ofβ. Hence
p = 0. This shows thatα1 is 0 on the wholeg, henceα0 is a Lie algebra 2-cocycle forg, so it is
trivial, since any central extension of the simple Lie algebrag is trivial.

In the case of a central extension ofVir, axiom (C4) for theλ-bracket

[L λ L] = (∂ + 2λ)L+ p(∂, λ)

gives the following condition onp:

(8.12) (∂ + λ+ 2µ)p(∂, λ)− (∂ + 2λ+ µ)p(∂, µ) = (λ− µ)p(∂, λ+ µ)

Settingµ = 0 in (8.12) we get∂p(∂, λ) = (∂ + 2λ)p(∂, 0), whencep(∂, λ) = q(∂)(∂ + 2λ), for
q(∂) = p(∂)

∂
. ThenL+ q(∂) is a standard generator of a Virasoro conformal algebra. �

Lemma 8.12. If R is a finite semi-simple conformal algebra, then all central extensions ofR by
a freeA-module of rank one are trivial.

Proof. As anA-module, a semi-simple conformal algebraR is a finite direct sum
⊕

i Si of
subalgebrasSi (Theorem 7.1). We can make a 2-cocycleαλ(·, ·) onR trivial on Si × Si for all i.
We will call αλ|Si×Sj

a cross-extensions ofSi andSj. Our goal is to prove that cross-extensions
of a 2-cocycle onR are zero if its restrictions on allSi are zero.

Without loss of generality, we can assumeR to be the (semi-direct) sum oftwo simple alge-
bras.

If R = Curg is a semi-simple current conformal algebra, one shows as in Lemma 8.11 thatα1

is an invariant bilinear form ong, henceα1(g, h) = 0 if g andh belong to distinct simple ideals.
Soα1 is identically zero ong, henceα0 is a Lie algebra 2-cocycle ong, hence it is trivial (sinceg
is a semi-simple Lie algebra). This takes care of cross extensions of a simple conformal algebra
by another simple conformal algebra.

Next, we need to figure out whatαλ(L, g) can be ifL is the standard generator ofVir, and
g ∈ Curg, with g a finite-dimensional simple Lie algebra. In a semi-direct sum,L will act
trivially or in the standard way ong. Then settinga = L, b = g, c = h, g, h ∈ g, in (8.7) gives
αλ(L, [g, h]) = 0 as soon asαλ is zero ong× g. If we makeαλ zero in advance, this shows that
αλ(L, g) = 0 if g lies inside the derived Lie algebrag′ which equalsg wheng is simple.

In order to show that also cross-extensions ofVir by Vir are zero, it is enough to substitute
a = L1, b = c = L2 in (8.7), whereL1 andL2 are standard generators for the two Virasoro
conformal algebras. �



STRUCTURE THEORY OF FINITE CONFORMAL ALGEBRAS 29

Remark 8.4. (a) The universal central extension of the conformal algebraVir has one-dimensional
(overC) center and the corresponding cocycle is a multiple ofαλ(L,L) = λ3 (of course the as-
sociated formal distribution Lie algebra is the usual Virasoro algebra).

(b) The center of the universal central extension ofCurg, whereg is a finite-dimensional
semi-simple Lie algebra is canonically identified with the spaceB of all invariant bilinear forms
ong and the corresponding cocycle isαf

λ(a, b) = f(a, b), f ∈ B, a, b ∈ g (of course, for simple
g, the associated formal distribution Lie algebra is the usual affine Kac-Moody algebra).

(c) For an arbitrary semi-simple conformal algebra the universal central extension is the obvi-
ous combination of (a) and (b).

Corollary 8.6. S = S/J ⊕ J (direct sum of conformal algebras).

If R = S, i.e.J is centralized by the wholeR, we are finished, sinceS is the current conformal
algebra associated to a reductive Lie algebra with one-dimensional center. IfR 6= S, we need to
do some extra work.

We are in the following situation:R is an extension ofR/J by J which is trivial onS/J , and
R/S = Vir. From now on, denote bya a generator ofJ , by φ the polynomialφa, and byL a
representative inR of the standard generator for the quotient conformal algebraR/S. It is clear
that we can chooseL to act onS/J in the standard way, and with no contribution inJ (since
S/J is isomorphic toS ′). Next, we prove:

Lemma 8.13. [L λ a] = (∂ + λ)a.

Proof. By now we only know that[L λ a] = p(∂, λ)a for some polynomialp ∈ C[∂, λ]. Writing
down matrix representations of the action ofL anda in the standard basis

Lλ =


M1 . . . . . . . . .
L1(λ) M2 . . . . . .

0 L2(λ)
...

...
. .. ... Mn−1

0 . . . 0 Ln−1(λ) Mn



aµ =


φ(µ) C1(µ) . . . . . . . . . .

0 φ(µ) C2(µ) . . . . . . .
... 0

... ...

0
... φ(µ) Cn−1(µ)

0 . . . . . . 0 φ(µ)

 ,

whereLi(λ)’s andCi(µ)’s are independent of∂ andMi(∂, λ)’s are linear in∂ (cf. Lemma 8.8),
and taking trace of matrices representing both sides of:

(8.13) [Lλ, aµ] = p(−λ− µ, λ)aλ+µ

we get

(8.14) φ(µ)(
∑

i

Tr(Mi(∂, λ)−Mi(∂ + µ, λ)) = p(−λ− µ, λ)φ(λ+ µ) · rk(V ).

SetM(∂, λ) = Tr
∑

iMi(∂, λ) and writeM(∂, λ) = M0(λ) + N(λ)∂. Then (8.14) can be
rewritten as

(8.15) −µφ(µ)N(λ) = p(−λ− µ, λ)φ(λ+ µ)rk(V ).

Settingµ = 0 in (8.15) we obtainp(−λ, λ)φ(λ) = 0 and sinceφ is not identically zero,
p(−λ, λ) = 0 for all λ ∈ C. This means thatp(∂, λ) = (∂+λ)q(∂, λ) for some other polynomial
q. But the adjoint action ofL on a defines a rank one representation of the Virasoro conformal
algebra, and we know all such (Theorem 8.2). The only possible values ofq are zero and one. If
q is zero, thenL centralizesJ andR = S. If q = 1 then[L λ a] = (∂ + λ)a. �
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Remark 8.5. Substitutingp(∂, λ) = ∂ + λ in (8.15) it is immediate to show thatφ must be a
constant polynomial andN(λ) = Id. Up to rescalinga by a complex multiple,φ can therefore
be made equal to 1.

The onlyλ–bracket we now need to take care of is[L λ L]. In order to show it is nothing but
(∂ + 2λ)L, or rather, that it can be made into this form up to shifting the representativeL by an
element inJ , we prove the following lemma.

Lemma 8.14.Lλ − ∂ stabilizesV 1
φ .

Proof. Using Lemma 8.13 and axioms of anR-module, we get:

(8.16) [Lλ, aµ] = −µaλ+µ

Applying both sides of this equation tov ∈ V 1
φ , we get

(8.17) Lλv − sµLλv = −µv,
wheresµ is as in Proposition 6.2. Using the notation of Lemma 8.13, the left top block in the
matrix representation of−µaλ+µ, obtained from (8.16), must be equal to−µ−C1(µ)L1(λ). But
by (8.17) this equals to−µ, soC1(µ)L1(λ) = 0.

The way they have been obtained, it is clear that the columns ofC1(µ) are linearly independent
overC, otherwise we would get a linear combination of thev2

j which lies inV 1
φ . ThereforeL1(λ)

itself must be zero. This shows thatAV 1
φ is stabilized by the action ofL and thatLλ − ∂ acts

independently of∂ on a basis. �

Combining Lemma 8.7b, Lemma 8.10 and Lemma 8.14, we see thatAV 1
φ is anR-submodule

of V , henceV = AV 1
φ . So there is a basis ofV of eigenvectors fora, and the action ofa is given

in this basis by the identity matrix.

Lemma 8.15.L can be chosen such that[L λ L] = (∂ + 2λ)L.

Proof. The matrix representation of the action ofLλ in the eigenvector basis ofV is ∂ + C(λ),
whereC is some matrix independent of∂ (Lemma 8.14). Up to adding toL an appropriate
elementj from J , we can make the trace ofC(λ) equal to zero.

Let L̃ = L − j. Then the action of[L̃λ, L̃µ] − (λ − µ)L̃λ+µ is given by the matrixλC(λ) −
µC(µ)−(λ−µ)C(λ+µ), whose trace is clearly0. This shows that if[L̃ λ L̃] = (∂+2λ)L̃+j′, j′ ∈
J , then the sum of elements on the diagonal of the matrix representation ofj′ is zero. Hence
j′ = 0, andL̃ is Virasoro-like. �

End of proof of Theorem 8.6.By Lemma 8.9,rkJ is at most one. IfJ = 0, R is semi-simple. In
view of Proposition 8.1, a finite semi-simple conformal algebra having a finite faithful irreducible
representation is as in (i) or in (ii).

If J 6= 0, andR centralizesJ , thenR = R/J ⊕ J is isomorphic toCurg, whereg is a
reductive Lie algebra with one-dimensional center.

If J 6= 0, andR does not centralizeJ , thenR is the standard semi-direct sum ofVir with
S = S/J⊕J which is the current conformal algebra associated to a reductive Lie algebrag with
one-dimensional center. �
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Math. IHES 5-19 (1966)

[FHL] I.B.Frenkel, Y.-Z.Huang and J.Lepowsky,On axiomatic approaches to vertex operator algebras and mod-
ules,Mem. AMS, 104 No.494, (1993)

[FLM] I.B.Frenkel, J.Lepowsky and A.Meurman,Vertex operator algebras and the monster,New York, Acad-
emic Press, 1988
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