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ABSTRACT. The concept of Lie pseudoalgebra over a cocommutative Hopf algebra, introduced
in [BDK], is a generalization of that of a Lie algebra. The basic motivating example is provided
by the algebra underlying Operator Product Expansion of fields in a vertex algebra, i.e. in the
chiral part of a Conformal Field Theory. I give a short introduction to the algebraic structures of
vertex algebras and pseudoalgebras, introduce the basic tools used in the theory, and list the main
results of the theory of finite Lie pseudoalgebras. A few applications are given.
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Algebraic properties of chiral quantum fields in a Conformal Field Theory in dimension two
have been recently axiomatized in the notion ofvertex algebra. This concept has undergone
mathematical investigation because of its relevance in Representation Theory – see for instance
Borcherds’ work [B] on the Moonshine conjecture.

However vertex algebra are hard to handle, mostly because they are huge objects. The lan-
guage in which they are often described is that of conformal algebras, or Operator Product Ex-
pansion. In this talk I give a short introduction to conformal algebra and pseudoalgebras, their
higher dimensional generalization. I begin by defining vertex algebras, and show how this no-
tion motivates that of conformal algebras. I will then briefly sketch the recent results that have
provided a structure theory of conformal algebras and their representations, and show how these
results generalize to a broader algebraic structure encompassing both Lie algebras and conformal
algebras.

The standard introductory reference on vertex algebras is [K]. Results on conformal algebras
mainly refer to [DK] for classification, [CK] for representation, and [BKV] for cohomology.
Pseudoalgebras are introduced in [BD] and studied in [BDK].

1. VERTEX ALGEBRAS

What is a commutative algebra? We would typically answer by saying it is a vector space
endowed with an associative and commutative bilinear product. However, my ultimate goal is
that of defining vertex algebras: I will therefore give a less usual definition which has a definite
vertex flavour. As far as I am concerned, a commutative algebra – “overC” will be understood
throughout – is a vector spaceA endowed with a linear map

Y : A→ EndA

The author was partially supported by Clay Mathematics Institute.
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satisfying

(1.1) [Y (a), Y (b)] = 0 for all a, b ∈ A.
MoreoverA contains an element1 with the property that

(1.2) Y (1) = idA Y (a)1 = a.

How do we understand this as the usual definition of a commutative algebra? We can define
a product onA by a · b = Y (a)b; then1 is the multiplicative identity, due to (1.2), whereas
associativity and commutativity follow from (1.1). Indeed

ab = Y (a)Y (b)1 = Y (b)Y (a)1 = ba

and
a(bc) = a(cb) = Y (a)Y (c)b = Y (c)Y (a)b = c(ab) = (ab)c.

In other words we have defined a commutative algebra via the collection of left multiplications
by its elements{Y (a), a ∈ A}.

In a vertex algebra settingA is the Fock space, and its elements arephysical stateswhereas
their images underY are the (quantum)fieldsacting onA. Thus,Y establishes astate-field
correspondence, which is indeed injective by (1.2). An interesting property of multiplication
operatorsY (a) is that every endomorphism ofA commuting with allY (a) also is multiplication
by some element. Letφ ∈ EndA, [φ, Y (a)] = 0 for all a ∈ A. Then we haveφ(a) = φ(Y (a)1) =
Y (a)(φ(1)) = Y (a)Y (φ(1))1 = Y (φ(1))Y (a)1 = Y (φ(1))(a). In other wordsφ coincides with
Y (φ(1)).

Our point of view is that a vertex algebra is a commutative algebra where we have replaced
products by functions of an indeterminatez. However, to make the whole thing interesting, we
must allow these functions to be singular. Indeed, in a vertex algebra we endow the vector space
V with a correspondence

Y : V → (EndV )[[z, z−1]]

with the property thatY (a, z) acts as afieldonV . A formal distributionφ(z) ∈ (EndV )[[z, z−1]]
is a field ifφ(z)v lies insideV ((z)) - i.e. if it has finitely many negative powers ofz - for every
v ∈ V . Fields of the formY (a, z) are called vertex operators. Commutativity is replaced by a
locality axiom. For alla, b ∈ V we have:

(1.3) (z − w)N [Y (a, z), Y (b, w)] = 0

for N sufficiently large. AsY (a, z) andY (b, w) are formal distributions, this does not force
their commutator to be zero. We will see that the commutator ofY (a, z) andY (b, w) can be
expressed as a linear combination of Diracδ distributions. The unit element in a vertex algebra
is calledvacuum, and is denoted by1. It satisfies:

(1.4) Y (1, z) = idV Y (a, z)1 = a mod zV [[z]].

This is the core of the definition of a vertex algebra, but before we are done, a last remark is
needed. We would like a field satisfying locality with respect to all of ourY (a, z) to be a vertex
operator as well, in analogy with the case of commutative algebras. Indeed this is not guaranteed
by the definition of a vertex algebra we have just sketched. In fact,d

dz
Y (a, z) is clearly local

with respect to all vertex operators, but it might fail to be a vertex operator, unless we explicitly
impose it to be. We denote byTa the element ofV such that:

Y (Ta, z) =
d

dz
Y (a, z).

Definition 1.1. A vertex algebra is a vector spaceV endowed with

• a linear mapY : V → (EndV )[[z, z−1]] — thestate-field correspondence,
• an element1 ∈ V — thevacuum,
• a linear endomorphismT : V → V — thetranslation operator
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such that:
(i) all Y (a, z) are pairwise local fields
(ii) Y (1, z) = idV , Y (a, z)1 = a mod zV [[z]], for all a ∈ V
(iii) Y (Ta, z) = [T, Y (a, z)] = d

dz
Y (a, z), for all a ∈ V .

The difference between a commutative algebra and a vertex algebra is encoded in the locality
axiom. Indeed,a(z, w) is killed by multiplication by(z − w)N if and only if a(z, w) can be
expressed as [K]:

(1.5) a(z, w) =
N−1∑
j=0

aj(w)δ(j)(z − w),

for some choice of formal distributionsaj(w), where

δ(z − w) =
1

w

∑
k∈Z

( z
w

)k

is the Dirac delta distribution andδ(j)(z − w) is its j-th derivative with respect tow.
Once this is established, it is easy to check that if(z − w)N [Y (a, z), Y (b, w)] equals0 then

expressinga(z, w) = [Y (a, z), Y (b, w)] as in (1.5), all coefficientsaj(w) are indeed fields, and
are also local with respect to all vertex operators. In other words they are vertex operators
themselves. One may eventually prove that if

(1.6) Y (a, z) =
∑

j

z−j−1aj

then:

(1.7) [Y (a, z), Y (b, w)] =
∑

j

Y (aj(b), w)
δ(j)(z − w)

j!
.

The above expression1 (or rather, an equivalent formula used by physicists) is traditionally called
Operator Product Expansion (OPE) of the fieldsY (a, z) andY (b, w). It encodes the commuta-
tion structure of the “commutative algebra”V . Indeed interesting vertex algebras are typically
huge objects. They commonly arise in the fashion of graduate vector spaces of exponential
growth, and their theory encompasses that of affine Kac-Moody algebras, unimodular lattices,
and so forth. A classification of simple vertex algebras is clearly hopeless.

The algebraic structure underlying OPE (which is introduced in [K] and studied in [DK] under
the name of “conformal algebra”) is instead much tamer. First of all, there are small interesting
instances of such structures. Secondly, a broad class of vertex algebras can be defined in terms of
conformal algebras by means of a universal envelope construction. Thirdly, every vertex algebra
is also a conformal algebra, and we hope that the study of a vertex algebra structure can be made
easier and more insightful by first studying the underlying conformal algebra.

Lastly, the conformal algebra underlying a vertex algebra measures, in a way, how far the
vertex algebra is from being a commutative algebra. Indeed, when all OPE of fields are trivial,
the structure of a vertex algebra collapses to that of a commutative algebra with a derivation.
In this talk, I will expose the structure theory of conformal algebras and pseudoalgebras, their
higher dimensional generalization.

2. CONFORMAL ALGEBRAS

It can be proved that every family of pairwise local fields acting on some vector spaceV
can be embedded inside a vertex algebra. In other words the vertex algebra structure captures
all algebraic properties of families of local fields containing the identity field and closed under
normally ordered product and coefficients of the OPE.

1thej! denominator is just a convenient normalization.
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If we retain the OPE and discard the normally ordered product, our formal distributions do
not need to be fields anymore. In fact, the field property was only used in order to define the
normally ordered product (by avoiding divergence problems). Indeed, the action itself of the
formal distributions on the vector spaceV becomes unnecessary: all that is needed is just a
family of formal distributions satisfying locality.

If we axiomatize the structure of OPE, then we obtain something calledconformal algebra,
which can be characterized by properties that are remindful of the axioms for a Lie algebra. A
conformal algebra is meant to be a familyF of local formal distributions with coefficients in
some Lie algebrag (even though our final definition will not mentiong). F will be closed under
C[∂] linear combination, where

(∂a)(z) =
d

dz
a(z)

whenevera(z) ∈ F . Moreover, we requireF to contain all formal distributions showing up
as coefficients of the OPE of any two elements ofF – in other wordsF must be OPE closed.
Indeed ifa(j)b denotes thej-th coefficient in the expression

(2.1) [a(z), b(w)] =
∑

j

(a(j)b) (w) · δ
(j)(z − w)

j!

for the commutator of two local formal distributionsa(z), b(z) ∈ g[[z, z−1]], then setting:

(2.2) [a λb] =
∑

j

λj

j!
a(j)b,

makes[a λb] a polynomial expression inλ with coefficients inF , which satisfies the following
properties:

(C1) [∂a λb] = −λ[a λb] [a λ∂b] = (∂ + λ)[a λb],
(C2) [a λb] = −[b −∂−λa],
(C3) [a λ[b µc]] = [b µ[a λc]] + [[a λb] λ+µc].

Definition 2.1. A conformal algebra is aC[∂]-moduleL, endowed with aλ-bracket[λ] : L⊗L→
L[λ] satisfying the properties (C1-3).

Apart from axiom (C1), which is justC-linearity of some kind, the other two axioms are very
similar to skew-symmetry and Jacobi identity in a Lie algebra. We will see later that a conformal
algebra is in fact a Lie algebra in a different multilinear sense than usual.

Notice also that the Lie algebrag is never mentioned in the above definition. Its structure is
encoded inside the conformal algebra. The Lie algebrag can be recovered as a certain quotient
of a universal Lie algebra attached to the conformal algebraF , called theLie algebra of Fourier
coefficientsof F . In fact, denote byA(L) theC-linear span of symbolsai wherea ∈ L, i ∈ Z,
and take its quotient by relations(λa + µb)n = λan + µbn and(∂a)n = −nan−1. ThenA(L)
becomes a Lie algebra with the bracket:

(2.3) [am, bn] =
∑

j

(
m

j

)
(a(j)b)m+n−j.

This Lie bracket is engineered in such a way that theA(L)-valued formal distributions defined
as:

a(z) =
∑

i

aiz
−i−1

satisfy precisely the OPE encoded in the conformal algebraL. Moreover theC[∂]-module struc-
ture onL induces a derivationd(an) = (∂a)n = −nan−1 of A(L), which is therefore a differ-
ential Lie algebra. There is a canonical projectionA(L) → g, so thatA(L) is the largest Lie
algebra having a set of linear generators which can be assembled into formal distribution having
the desired OPE.
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Conformal (super)algebra structures on finitely generatedC[∂]-modules have been extensively
considered by physicists. The most common examples are the following.

Example 2.2 (Current conformal algebras). Let g be a Lie algebra overC. We can define a
conformal algebra onL(g) = C⊗ g by setting

[1⊗ g λ1⊗ h] = 1⊗ [g, h]

for all g, h ∈ g and extending by axiom (C1). The conformal algebraL(g) has no nontrivial
ideals if and only ifg is simple. The Lie algebraA(L(g)) is linearly generated by elements
gi, g ∈ g, i ∈ Z, the Lie bracket being

[gm, hn] = [g, h]m+n.

The Lie algebraA(L) is therefore isomorphic to the affinizationg[z, z−1] of g.

Example 2.3(Virasoro conformal algebra). Let V = C[∂]x be a free module of rank one. Then

[xλx] = (∂ + 2λ)x

defines a conformal algebra structure. A linear basis for the Lie algebraA(V ) is given by ele-
mentsxi satisfying the Lie bracket:

[xm, xn] = (m− n)xm+n−1.

This is isomorphic to thecenterless Virasoro Lie algebraC[z, z−1]d/dz of regular vector fields
onC∗ via the mapxm 7→ −zmd/dz. The conformal algebraV is simple.

It can be shown that with any differential commutative associative algebraD one can associate
a differential Lie algebraAD(L). The Lie algebra of Fourier coefficients ofL is then obtained
for D = C[z, z−1]. Indeed, any conformal algebra establishes a functor from the category of
differential commutative algebras to the category of differential Lie algebras.2

The interplay between theC[∂]-module structure and theλ-bracket on one side, and the Lie
algebraA(L) on the other, gives a powerful tool for the study of conformal algebras. In [DK] a
classification of all simple conformal algebras on finitely generatedC[∂]-module is established.

Theorem 2.4.A complete list of finite simple conformal algebras is as follows:
1) the Virasoro conformal algebraV ,
2) all current conformal algebrasL(g), whereg if a simple finite dimensional Lie algebra.

The classification is obtained by studying theannihilation Lie algebraA+(L) of L, i.e. the
subalgebra ofA(L) spanned by elementsai with non-negativei. One can build up a filtration on
A+(L), and consider the completion ofA+(L) with respect to it. The result is a linearly compact
topological Lie algebra, which can be studied by means of Cartan’s classical classification of
infinite Lie algebras of vector fields (see [DK], [G1], [G2] for the statement on linearly compact
infinite dimensional Lie algebras satisfying a descending chain condition by means of which we
employ Cartan’s result). A correspondence between ideals ofL and ideals of the corresponding
annihilation algebra, together with a reconstruction functor providing a conformal algebra model
to all interesting linearly compact Lie algebras, proves the classification result.

The point I want to stress here is that the Lie algebra bracket (2.3) has a definite Hopf algebra
flavour. If we writea(ti)b instead ofa(i)b, andtna instead ofan, Equation (2.3) becomes:

(2.4) [tma, tnb] =
∑

j

(
m

j

)
(tn · tm−j)a(tj)b,

which is a close relative of the comultiplication structure

∆(tm) =
∑

j

(
m

j

)
tm−j ⊗ tj

2This is remindful of the definition of group schemes, if we understand differential Lie algebras as formal differ-
ential Lie groups.
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on the bialgebraC[∂]. This hints to a generalization of conformal algebras which will be in-
troduced in the sequel. As a last remark on conformal algebras, I notice that associative or
commutative conformal algebras could be defined similarly. Lie conformal algebras are our
main example of such structures just because of their connection to vertex algebras.

3. CONFORMAL ALGEBRAS AND L IE∗ ALGEBRAS

The usual definition of a vertex algebras is far from being coordinate free. The setting is
that of formal distributions that are expressed in terms of Laurent power series inz andz−1.
Moreover the whole theory has a kind of arithmetic flavour, as fields are required to be closed
under derivation but not under multiplication by regular functions. Above all, the theory is forced
to be set overC∗, due to its nature. A more geometric definition of vertex algebras has been
undertaken by Beilinson and Drinfeld in [BD]. Their definition uses some algebraic geometry,
together withD-modules over algebraic varieties, and is rather hard to read. The setting is nicer,
but the structure loses much of its algebraic flavour.

They also construct OPE algebras over vertex algebras. A toy model of such OPE algebras
is also introduced, which is more algebraic, and closely resembles the structure of a conformal
algebra. Letd be a finite-dimensional Lie algebra,H = U(d) its universal enveloping algebra.
A Lie∗ algebra structure on anH-moduleL is anH ⊗H linear map:

[ , ] : L� L→ (H ⊗H)⊗H L

satisfying skew-symmetry and Jacobi identity. ByL� L, I mean the tensor productL⊗ L seen
as a (left)H ⊗ H-module. The target space is the tensor product ofH ⊗ H with L via the left
H-module structure ofL and the right diagonalH module structure ofH⊗H: (h⊗k)⊗H αx =
(h ⊗ k)∆(α) ⊗H x. (H ⊗ H) ⊗H L is then naturally anH ⊗ H-module, and we ask[ , ] to be
H ⊗ H-linear. Skew-symmetry axiom is easy to explain whereas the Jacobi identity is slightly
more involved. Skew-symmetry of the Lie bracket is replaced by

[a, b] = −σ[b, a],

where the right hand side is obtained by applying the flipσ : H⊗H → H⊗H, σ(h⊗k) = k⊗h
on the first⊗H factor.

Before explaining Jacobi identity let us see how conformal algebras become an instance of
such a structure. Letd = C∂ be an abelian Lie algebra. ThenU(d) is nothing else butC[∂]. We
now rewrite OPE in a different fashion. For instance, the OPE of a Virasoro formal distribution
has been written as

(3.1) [L(z), L(w)] = ∂L(w)δ(z − w) + 2L(w)δ′w(z − w).

Notice we take derivative of both coefficients and of theδ(z − w) term. Indeed, it is possible
to reexpress OPE using only derivatives of the whole product. In fact, as

∂

∂z
(a(w) · δ(z − w)) = a(w) · δ′z(z − w) = −a(w) · δ′w(z − w)

and
∂

∂w
(a(w) · δ(z − w)) = a′(w) · δ(z − w) + a(w) · δ′w(z − w),

we can write:

(3.2) (∂a)(w) · δ(z − w) = a′(w) · δ(z − w) =

(
∂

∂z
+

∂

∂w

)
(a(w) · δ(z − w)).

With this understanding, the OPE (3.1) becomes:

[L(z), L(w)] =

(
∂

∂z
+

∂

∂w

)
(L(w) · δ(z − w))− 2

∂

∂z
(L(w) · δ(z − w))

=

(
∂

∂w
− ∂

∂z

)
(L(w) · δ(z − w)).
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If we agree on writing∂ ⊗ 1 for ∂/∂z and1 ⊗ ∂ for ∂/∂w, then setting[L ∗ L] = (1 ⊗ ∂ −
∂ ⊗ 1)⊗H L gives the Lie∗-algebra incarnation of the Virasoro conformal algebra. The general
correspondence between aλ-bracket and a Lie∗-bracket is the following. If

(3.3) [x λy] =
∑

i

Pi(∂, λ)zi,

then:

(3.4) [x ∗ y] =
∑

i

Pi(∂ ⊗ 1 + 1⊗ ∂,−∂ ⊗ 1)⊗H zi.

Notice that(h ⊗ k) ⊗H αx = (h ⊗ k)∆(α) ⊗H x in this context is nothing but (3.2). Our aim
is now to reformulate all of the constructions made in the case of conformal algebras in the new
Lie∗ setting, and obtain a classification of the latter structures as well.

4. PSEUDO-LINEAR ALGEBRA AND PSEUDOALGEBRAS

As with conformal algebras, Lie∗ algebras are just the Lie manifestation of a deeper phenom-
enon. We will set up the basic linear algebra underlying such algebraic structure, and will then
define Lie, associative, commutative algebras in the new environment.

Definition 4.1. ([BD]) A pseudotensor categoryis a class of objectsM together with vector
spacesLin({Li}i∈I ,M) whose elements are calledpolylinear maps. There is an action of the
symmetric groupsSI permuting them. Moreover polylinear maps can be composed as follows.

For any surjection of finite setsπ : J � I and a collection{Nj}j∈J , we have the compositions
rules of polylinear maps given by maps

Lin({Li}i∈I ,M)⊗
⊗
i∈I

Lin({Nj}j∈Ji
, Li) → Lin({Nj}j∈J ,M),(4.1)

φ× {ψi}i∈I 7→ φ ◦ (⊗i∈Iψi) ≡ φ({ψi}i∈I),(4.2)

whereJi = π−1(i) for i ∈ I.
The composition maps have the following properties:

Associativity: If K � J , {Pk}k∈K is a family of objects andχj ∈ Lin({Pk}k∈Kj
, Nj),

thenφ
({
ψi({χj}j∈Ji

)
}

i∈I

)
=

(
φ({ψi}i∈I)

)
({χj}j∈J) ∈ Lin({Pk}k∈K ,M).

Unit: For any objectM there is an elementidM ∈ Lin({M},M) such that for anyφ ∈
Lin({Li}i∈I ,M) one hasidM(φ) = φ({idLi

}i∈I) = φ.
Equivariance: The compositions (4.1) are equivariant with respect to the natural action of

the symmetric group.

A standard example of a pseudotensor category, is the category of vector spaces endowed with
multilinear maps. The example which interest us more is given by the construction of Beilinson
and Drinfeld [BD].

LetH be a cocommutative bialgebra with a comultiplication∆. We introduce a pseudotensor
categoryM∗(H) whose objects are leftH-modules but with another pseudotensor structure:

(4.3) Lin({Li}i∈I ,M) = HomH⊗I (�i∈ILi, H
⊗I ⊗H M).

Here�i∈ILi is the tensor product of theH-modulesLi viewed as anH⊗n-module. For a surjec-
tion π : J � I, the composition of polylinear maps is defined as follows:

(4.4) φ
(
{ψi}i∈I

)
= ∆(π)

(
φ
)
◦

(
�i∈Iψi

)
.

Here∆(π) is the functor associating to the leftH⊗I-moduleM theH⊗J -moduleH⊗J ⊗H⊗I M ,
whereH⊗I acts onH⊗J via the iterated comultiplication determined byπ.

Explicitly, let nj ∈ Nj (j ∈ J), and write

(4.5) ψi

(
⊗j∈Ji

nj

)
=

∑
r

gr
i ⊗H lri , gr

i ∈ H⊗Ji , lri ∈ Li,
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where, as before,Ji = π−1(i) for i ∈ I. Let

(4.6) φ
(
⊗i∈I l

r
i

)
=

∑
s

f rs ⊗H mrs, f rs ∈ H⊗I , mrs ∈M.

Then, by definition,

(4.7)
(
φ
(
{ψi}i∈I

))(
⊗j∈Jnj

)
=

∑
r,s

(⊗i∈Ig
r
i )∆

(π)(f rs)⊗H mrs,

where∆(π) : H⊗I → H⊗J is the iterated comultiplication determined byπ. For example, if
π : {1, 2, 3} → {1, 2} is given byπ(1) = π(2) = 1, π(3) = 2, then∆(π) = ∆⊗ id; if π(1) = 1,
π(2) = π(3) = 2, then∆(π) = id⊗∆.

The symmetric groupSI acts among the spacesLin({Li}i∈I ,M) by simultaneously permuting
the factors in�i∈ILi andH⊗I . This is the only place where we need the cocommutativity ofH;
for example, the permutationσ12 = (12) ∈ S2 acts on(H ⊗H)⊗H M by

σ12

(
(f ⊗ g)⊗H m

)
= (g ⊗ f)⊗H m,

and this is well defined only whenH is cocommutative.

Definition 4.2. An algebrain a pseudotensor categoryM is an objectA in M endowed with a
bilinear mapµ ∈ Lin({A,A}, A). We will say thatµ is anassociative productif

µ(µ(·, ·), ·) = µ(·, µ(·, ·)).
The productµ is commutativeif

µ = σ12µ.

Similarly, aLie algebrain M is an objectL endowed with a bilinear mapβ ∈ Lin({L,L}, L)
satisfyingskew-symmetry

β = −σ12β

and theJacobi identity

β(β(·, ·), ·) = β(·, β(·, ·)) + σ12β(·, β(·, ·)).

I will call a (resp. Lie, associative, commutative) algebra inM∗(H) a (resp. Lie, associative,
commutative)H-pseudoalgebra.

Remark4.3. We already have many examples of pseudoalgebras, as we obtain the standard
notion of algebras overC whenH = C and their conformal algebraic analogues forH = C[∂].

As we mentioned before, (Lie, associative, commutative) conformal algebras actually rep-
resent functors from the category of differential algebras to that of (resp. Lie, associative,
commutative) differential algebras. This is true forH-pseudoalgebras as well. LetY be an
H-differential commutative associative algebra. This means thatY is an associative algebra to-
gether left and right actions ofH on it. These actions satisfyh.(fg) = (h(1)f)(h(2)g), and simi-
larly for the right action, where we use Sweedler’s notation for the coproduct∆(h) = h(1)⊗h(2)

onH.
WheneverL is a pseudoalgebra, then we can set up onAYA = Y ⊗H A anH-differential

algebra by
(x⊗H a)(y ⊗H b) =

∑
i

(xfi)(ygi)⊗H ei

if µ(a, b) =
∑

i(fi ⊗ gi) ⊗H ei. This product turns out to be associative, commutative or Lie
whenµ is of the corresponding type in the pseudotensor category sense. In particularX = H∗

is naturally a commutative associativeH-differential algebra, and we callAXA theannihilation
algebraof A, in analogy with the conformal algebra case. Indeed, whenH = C[∂], we obtain
X = H∗ = C[[t]]. Then the isomorphisms betweenAXA and the completion of the annihilation
Lie algebraA+A constructed in the previous section is given byti⊗Ha 7→ ai and the requirement
(∂a)n = −nan−1 follows from the definition of the rightH-action onX.
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The natural formal topology onX induces a corresponding topology onAXA wheneverA
is a finitely generatedH-module (see [BDK]).AXA is a linearly compact vector space with
respect to this topology. In caseA is a LieH-pseudoalgebra, we can again use Cartan’s result on
simple linearly compact Lie algebras. I introduce now the most remarkable instance of simple
Lie pseudoalgebra.

Example 4.4 (W (d)). Let H = U(d), L = H ⊗ d. TheH-moduleL becomes a LieH-
pseudoalgebra – denotedW (d) – when endowed with the pseudobracket

[1⊗ a ∗ 1⊗ b] = (1⊗ 1)⊗H (1⊗ [a, b])− (1⊗ a)⊗H (1⊗ b) + (b⊗ 1)⊗H (1⊗ a).

Example 4.5(Current pseudoalgebras). Let d′ ⊂ d be Lie algebras,H = U(d),H ′ = U(d′). We
can induce anH ′-pseudoalgebra structure from anH ′-moduleL′ to theH-moduleL = H⊗H′ L
via

[1⊗H′ a ∗ 1⊗H′ b] =
∑

i

(fi ⊗ gi)⊗H (1⊗H′ ci)

if [a ∗ b] =
∑

i(fi ⊗ gi) ⊗H ci in L′. L is called thecurrent pseudoalgebrainduced from the
pseudoalgebraL′. L is then simple wheneverL′ is simple.

Notice that this is abelian whenH = C, and gives the Virasoro conformal algebra when
H = C[∂]. The Lie pseudoalgebraW (d) has several interesting properties [BDK]. First of
all, it is simple, and allH-pseudoalgebras, that are not current pseudoalgebras over a finite
dimensional Lie algebra, uniquely occur as subalgebras ofW (d). I call thempseudoalgebras
of vector fields. They areprimitive simple Lie pseudoalgebraswhen they cannot be obtained as
current pseudoalgebras.

The correspondence between a pseudoalgebra and its annihilation algebra provides a clas-
sification of primitive simple Lie pseudoalgebras corresponding to the four series of Cartan
type simple Lie algebras. In particular,W (d) is the unique pseudoalgebra corresponding to
the Lie algebraWN , N = dim d. As far as other types are concerned, there are usually several
pseudoalgebras attached to the same Lie algebra. In typesH andK, all corresponding primitive
pseudoalgebras are indeed freeH-modules of rank one. They are characterized by the following
statement.

Theorem 4.6. LetH = U(d) and letL = Hx be a Lie pseudoalgebra which is free of+ rank
one as anH-module. If[x, x] = α ⊗H x, α ∈ H ⊗H we haveα = r + s⊗ 1− 1⊗ s for some
r ∈ d ∧ d, s ∈ d.
L is a primitive simple LieH-pseudoalgebra, then eitherdim d is even, andr is non-degenerate,

in which caseL is of typeH, or dim d = 2N + 1 is odd, andr is of rank2N , and its support
generatesd modulos, in which caseL is of typeK.

Remark4.7. Not all values ofr ands give a Lie pseudoalgebra structure onL. Indeed, they must
satisfy the identities:

[r,∆(s)] = 0,

[r12, r13] + r12s3 + cyclic permutations= 0.

Notice that the latter equation generalizes the classical Yang Baxter Equation and reduce to it
whens = 0.

Theorem 4.8.A complete list of finite primitive simple LieH-pseudoalgebras is as follows:
1)W (d)
2) The subalgebrasS(d, χ) = {

∑
i hi ⊗ di|

∑
hi(di + χ(di)) = 0} of W (d), whereχ is a

trace form3 ond.
3) The primitive simple Lie pseudoalgebras of typeH andK listed in Theorem4.6.

3i.e. a Lie algebra homomorphismχ : d → C.
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5. PSEUDO-LINEAR ALGEBRA AND REPRESENTATION THEORY

When we have a bilinear map between vector spaces,φ : U ⊗ V → W , the specializations
φu(v) = φ(u, v) turn out to be linear maps. In a pseudotensor category, this is no more the case.
However, in a pseudoalgebra left multiplications by elements are maps of such a type, so such
specializations are worth considering. I call thempseudolinear maps:

Definition 5.1. LetM,N beH-modules. Thenφ : M → (H ⊗H)⊗H N is a pseudolinear map
if φ(hm) = (1⊗ h)φ(m).

The collection of all pseudolinear maps fromM to N can be given anH-module structure
via (hφ)(m) = (h ⊗ 1)φ(m). The set of all pseudolinear map fromM to itself is denoted by
CendM , and is never finitely generated overH unlessH = C or M is torsion (in which case
there is no nonzero pseudolinear map).

Composition as defined in the pseudotensor categoryM endowsCendM (M a finitely gen-
eratedH-module) with an associative pseudoalgebra structure – with respect to ordinary com-
position – and a Lie pseudoalgebra structure denotedgcM – with respect to a naturally defined
commutator. WhenM is infinitely generatedCendM andgcM are ill behaved.4 It is natural to
define the concept of representation of an associative (resp. Lie) pseudoalgebraA on a moduleV
as a pseudoalgebra homomorphismA→ Cend(V ) (resp.A→ gcV ). Remarkably enough, rep-
resentation theory of solvable and nilpotent Lie pseudoalgebras is identical to the Lie theoretic
case.

Theorem 5.2(Lie Theorem). LetS be a solvable Lie pseudoalgebra acting on a finitely gener-
atedH-moduleV . Then there exists a commoneigenvectorfor the action ofS onV .

In other words the action ofS onV can be put in an upper triangular form. This also implies
that if there are no zero weights, the moduleV must be free.

Theorem 5.3([BDK]) . If N is a nilpotent Lie pseudoalgebra acting on a finitely generatedH-
moduleV thenV can be decomposed in a direct sum of generalized weight submodules for the
action ofN .

Notice that the above statements are trivially true for ordinary linear endomorphisms on a
finite-dimensional vector space. However this is no longer the case in the pseudoalgebraic set-
ting, and a pseudolinear mapφ ∈ CendV can be put in upper triangular case only if it generates
a solvable subalgebra〈φ〉 ⊂ gcV . Moreover a decompositioǹa la Jordan ofV into direct sum
of generalized eigenspaces only holds for pseudolinear maps generating a nilpotent subalgebra.

Irreducible representations for finite simple conformal algebras have been determined [CK].
Complete reducibility fails, and conformal algebras, and pseudoalgebras in general, have a rich
cohomology theory [BKV]. The study of irreducible representations of finite primitive Lie
pseudoalgebra is in progress.

6. APPLICATIONS OF CONFORMAL ALGEBRAS AND PSEUDOALGEBRAS.

We introduced conformal algebras because they provided a tool for studying the surface of a
vertex algebra structure. In particular the analysis of a vertex algebra can be initially restricted
to that of the underlying conformal algebra, which will then give big constraints on what kind
of normally ordered product can extend the particular conformal algebra structure. This strategy
can be used in particular on vertex algebras defined on finitely generatedC[∂]-modules, as pretty
much everything is known of such conformal algebras. In [D] the following statement is proved.

Theorem 6.1. LetV be a finitely generatedC[∂]-module, endowed with a vertex algebra struc-
ture. Then5 if the minimal conformal subalgebra〈x〉 of V containing some given elementx is

4Indeed, the natural composition and commutator do not make them into pseudoalgebras.
5Under the technical condition thatV contain no strongly nilpotent element, see below.
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solvable, it follows that the adjoint action ofx (on the conformal algebraV ) is nilpotent. In
particular 〈x〉 is nilpotent.

This result hints at the fact that conformal algebras underlying vertex algebras behave more
regularly – at least under some finiteness assumption. Representation theory of affine Kac-
Moody algebras and of the Virasoro algebra can be used to prove that no finite vertex algebra can
have a simple conformal algebra as a subquotient. Therefore the underlying conformal algebra
needs to be solvable. Then the above theorem can be used to give a nilpotence characterization
of the conformal algebra underlying a finite vertex algebra.

An elementa in a vertex algebraV is calledstrongly nilpotentif there is some integern
such that the product of vertex operatorsY (ai, zi) is zero as soon as at leastn of theai equal
a. Strongly nilpotent elements form an idealN of the vertex algebraV , which is obviously
nilpotent. The idealN is thenilpotent radicalof V , andV is reduced if its nilpotent radical
equals zero. Notice thatV/N is always reduced. Then one has:

Theorem 6.2. The conformal algebra underlyingV/N is always nilpotent. In other words,V
is always the extension of a nilpotent conformal algebra byN , which is nilpotent as a vertex
algebra (hence also as a conformal algebra). In particular, a reduced finite vertex algebra
always has nilpotent OPE structure.

The classification of finite Lie pseudoalgebras has a surprising application. When we have
H = C[x1, ..., xn], the structure of a Lie pseudoalgebra is equivalent to that of a linearPoisson
bracket of hydrodynamic type. Such a structure had been studied rather extensively (see [DN1],
[DN2] and the other references in [BDK]). The classification of simple and semisimple Lie
pseudoalgebras gives as a byproduct a classification of simple and semisimple linear Poisson
brackets of hydrodynamic type. This result is described in [BDK] along with a description of
central extensions of such structures, which turn out to be physically relevant.
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[G1] V. Guillemin, A Jordan-Ḧolder decomposition for a certain class of infinite dimensional Lie algebras,J.
Diff. Geom.2 (1968) 313–345.

[G2] V. Guillemin, Infinite-dimensional primitive Lie algebras, J. Diff. Geom.4 (1970), 257–282.
[K] V. G. Kac, Vertex algebras for beginners, University Lecture Series,10. American Mathematical Society,

Providence, RI, 1996. Second edition 1998.

DIPARTIMENTO DI MATEMATICA , UNIVERSITÀ DI ROMA I – “L A SAPIENZA”
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