ALGEBRAIC ASPECTS OF OPERATOR PRODUCT EXPANSION IN A
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ABSTRACT. The concept of Lie pseudoalgebra over a cocommutative Hopf algebra, introduced
in [BDK], is a generalization of that of a Lie algebra. The basic motivating example is provided

by the algebra underlying Operator Product Expansion of fields in a vertex algebra, i.e. in the
chiral part of a Conformal Field Theory. | give a short introduction to the algebraic structures of
vertex algebras and pseudoalgebras, introduce the basic tools used in the theory, and list the main
results of the theory of finite Lie pseudoalgebras. A few applications are given.
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Algebraic properties of chiral quantum fields in a Conformal Field Theory in dimension two
have been recently axiomatized in the notionveftex algebra This concept has undergone
mathematical investigation because of its relevance in Representation Theory — see for instance
Borcherds’ work [B] on the Moonshine conjecture.

However vertex algebra are hard to handle, mostly because they are huge objects. The lan-
guage in which they are often described is that of conformal algebras, or Operator Product Ex-
pansion. In this talk | give a short introduction to conformal algebra and pseudoalgebras, their
higher dimensional generalization. | begin by defining vertex algebras, and show how this no-
tion motivates that of conformal algebras. | will then briefly sketch the recent results that have
provided a structure theory of conformal algebras and their representations, and show how these
results generalize to a broader algebraic structure encompassing both Lie algebras and conformal
algebras.

The standard introductory reference on vertex algebras is [K]. Results on conformal algebras
mainly refer to [DK] for classification, [CK] for representation, and [BKV] for cohomology.
Pseudoalgebras are introduced in [BD] and studied in [BDK].

1. VERTEX ALGEBRAS

What is a commutative algebra? We would typically answer by saying it is a vector space
endowed with an associative and commutative bilinear product. However, my ultimate goal is
that of defining vertex algebras: | will therefore give a less usual definition which has a definite
vertex flavour As far as | am concerned, a commutative algebra — “@/ewill be understood
throughout — is a vector spaceendowed with a linear map

Y:A—EndA

The author was partially supported by Clay Mathematics Institute.
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satisfying

(1.1) [Y(a),Y(b)] =0foralla,be A.
MoreoverA contains an elementwith the property that

(1.2) Y (1) =1idy Y(a)l = a.

How do we understand this as the usual definition of a commutative algebra? We can define
a product onA by a - b = Y(a)b; then1 is the multiplicative identity, due to (1.2), whereas
associativity and commutativity follow from (1.1). Indeed

ab=Y(a)Y(b)1 =Y (b)Y (a)l = ba

and

a(bc) = a(ch) =Y (a)Y(c)b =Y (c)Y (a)b = c(ab) = (ab)c.
In other words we have defined a commutative algebra via the collection of left multiplications
by its elementgY (a),a € A}.

In a vertex algebra setting is the Fock space, and its elements pingsical statesvhereas
their images undeY” are the (quantumijieldsacting onA. Thus,Y establishes state-field
correspondencewhich is indeed injective by (1.2). An interesting property of multiplication
operatory’(a) is that every endomorphism af commuting with allY’(a) also is multiplication
by some element. Let € Endy, [¢, Y (a)] = 0foralla € A. Thenwe have(a) = ¢(Y (a)l) =
Y(a)(¢(1)) =Y (a)Y(p(1))1 =Y (6(1))Y(a)l =Y (¢(1))(a). In other wordsp coincides with
Y (9(1)).

Our point of view is that a vertex algebra is a commutative algebra where we have replaced
products by functions of an indeterminateHowever, to make the whole thing interesting, we
must allow these functions to be singular. Indeed, in a vertex algebra we endow the vector space
V with a correspondence

Y :V — (EndV)[[z,27!]]

with the property that'(a, ) acts as &ieldon V. A formal distributiong(z) € (End V)|[z, 27']]

is a field if o(z)v lies insideV ((2)) - i.e. if it has finitely many negative powers of for every

v € V. Fields of the formY'(a, z) are called vertex operators. Commutativity is replaced by a
locality axiom. For alla, b € V' we have:

(1.3) (z —w)N[Y(a,2),Y(b,w)] =0

for N sufficiently large. AsY (a,z) andY (b, w) are formal distributions, this does not force
their commutator to be zero. We will see that the commutatadr @f, ) andY (b, w) can be
expressed as a linear combination of Disagistributions. The unit element in a vertex algebra
is calledvacuum and is denoted by. It satisfies:

(1.4) Y(1,2) =idy Y(a,2)1 =a mod zV[[z]].

This is the core of the definition of a vertex algebra, but before we are done, a last remark is
needed. We would like a field satisfying locality with respect to all of B, =) to be a vertex
operator as well, in analogy with the case of commutative algebras. Indeed this is not guaranteed
by the definition of a vertex algebra we have just sketched. In %M(a, z) is clearly local

with respect to all vertex operators, but it might fail to be a vertex operator, unless we explicitly
impose it to be. We denote yu the element o/ such that:

Y(Ta,z) = diZY(a,z).
Definition 1.1. A vertex algebra is a vector spateendowed with

e alinearmap : V — (End V)[[z,27!]] — thestate-field correspondence
e an element € V — thevacuum
e alinear endomorphisi : V' — V' — thetranslation operator
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such that:
() all Y(a, ) are pairwise local fields
(i) Y(1,2) =idy, Y(a,2z)1 =a mod 2V|[[2]], foralla € V

(i) Y(Ta,z) = [T,Y(a,2)] = LY (a, 2), foralla € V.

The difference between a commutative algebra and a vertex algebra is encoded in the locality
axiom. Indeedga(z,w) is killed by multiplication by(z — w)® if and only if a(z,w) can be
expressed as [K]:

=2

(1.5) a(z,w) = 4 al (w)oW (z — w),

for some choice of formal distributionsg (w

1 Z\k
0z —w)=— (—)
(2 —w) = — kezz "
is the Dirac delta distribution and”) (z — w) is its j-th derivative with respect to.
Once this is established, it is easy to check that if- w)™[Y (a, 2), Y (b, w)] equals) then
expressing:(z,w) = [Y(a, z), Y (b,w)] as in (1.5), all coefficients’ (w) are indeed fields, and
are also local with respect to all vertex operators. In other words they are vertex operators
themselves. One may eventually prove that if

, Where

~— o

(1.6) Y(a,z) = Z 2,
then:

@) (5 — w
(1.7) [Y(a,2),Y(bw)] = ZY(aj(b), w)‘s(j—!).

The above expressid(or rather, an equivalent formula used by physicists) is traditionally called
Operator Product Expansion (OPE) of the fieYfis, ) andY (b, w). It encodes the commuta-

tion structure of the “commutative algebr&”. Indeed interesting vertex algebras are typically
huge objects. They commonly arise in the fashion of graduate vector spaces of exponential
growth, and their theory encompasses that of affine Kac-Moody algebras, unimodular lattices,
and so forth. A classification of simple vertex algebras is clearly hopeless.

The algebraic structure underlying OPE (which is introduced in [K] and studied in [DK] under
the name of “conformal algebra”) is instead much tamer. First of all, there are small interesting
instances of such structures. Secondly, a broad class of vertex algebras can be defined in terms of
conformal algebras by means of a universal envelope construction. Thirdly, every vertex algebra
is also a conformal algebra, and we hope that the study of a vertex algebra structure can be made
easier and more insightful by first studying the underlying conformal algebra.

Lastly, the conformal algebra underlying a vertex algebra measures, in a way, how far the
vertex algebra is from being a commutative algebra. Indeed, when all OPE of fields are trivial,
the structure of a vertex algebra collapses to that of a commutative algebra with a derivation.
In this talk, | will expose the structure theory of conformal algebras and pseudoalgebras, their
higher dimensional generalization.

2. CONFORMAL ALGEBRAS

It can be proved that every family of pairwise local fields acting on some vector $pace
can be embedded inside a vertex algebra. In other words the vertex algebra structure captures
all algebraic properties of families of local fields containing the identity field and closed under
normally ordered product and coefficients of the OPE.

1thej! denominator is just a convenient normalization.
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If we retain the OPE and discard the normally ordered product, our formal distributions do
not need to be fields anymore. In fact, the field property was only used in order to define the
normally ordered product (by avoiding divergence problems). Indeed, the action itself of the
formal distributions on the vector spaée becomes unnecessary: all that is needed is just a
family of formal distributions satisfying locality.

If we axiomatize the structure of OPE, then we obtain something catietbrmal algebra
which can be characterized by properties that are remindful of the axioms for a Lie algebra. A
conformal algebra is meant to be a famftyof local formal distributions with coefficients in
some Lie algebrg (even though our final definition will not mentigy). F' will be closed under
C[0] linear combination, where

(@0)(z) = ()

whenevera(z) € F. Moreover, we requird”’ to contain all formal distributions showing up
as coefficients of the OPE of any two elementsFof in other wordsF must be OPE closed.
Indeed ifa(;)b denotes thg-th coefficient in the expression

U (z —w
(2.1) (), bw)] = S (ayt) (w) - =)
- !
for the commutator of two local formal distribution$z), b(z) € g[[z, z~!]], then setting:
2\
(22) [a ,\b] = Z ﬁa(j)b,

J
makes[a 0] a polynomial expression in with coefficients inF', which satisfies the following
properties:

(Cl) [8@ )\b] = —/\[CL )\b] [CL /\ab] = (8 + )\)[(l )\b],
(C2) [(l Ab] = —[b _3_)\(1],
(C3) [axlbuc]] = [bulaxd]] + [[axb] x+ucl.

Definition 2.1. A conformal algebra is &[0]-moduleL, endowed with a-bracket,] : L& L —
L[\ satisfying the properties (C1-3).

Apart from axiom (C1), which is jusE-linearity of some kind, the other two axioms are very
similar to skew-symmetry and Jacobi identity in a Lie algebra. We will see later that a conformal
algebrais in fact a Lie algebra in a different multilinear sense than usual.

Notice also that the Lie algebgais never mentioned in the above definition. Its structure is
encoded inside the conformal algebra. The Lie algglran be recovered as a certain quotient
of a universal Lie algebra attached to the conformal algéhrealled thelie algebra of Fourier
coefficientf F. In fact, denote byA(L) the C-linear span of symbols; wherea € L,i € Z,
and take its quotient by relatiorida + ub),, = Aa,, + pb, and(da),, = —na,_1. Then A(L)
becomes a Lie algebra with the bracket:

m
(23) [ama bn] = Z (] ) (a(j)b>m+nfj~
j
This Lie bracket is engineered in such a way thattt{é )-valued formal distributions defined

as.
a(z) = Z a;z""!

satisfy precisely the OPE encoded in the conformal algébidoreover theC[0]-module struc-

ture onL induces a derivatiod(a,,) = (da), = —na,_; of A(L), which is therefore a differ-

ential Lie algebra. There is a canonical projectidf.) — g, so thatA4(L) is the largest Lie
algebra having a set of linear generators which can be assembled into formal distribution having
the desired OPE.
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Conformal (super)algebra structures on finitely gener@{étmodules have been extensively
considered by physicists. The most common examples are the following.

Example 2.2 (Current conformal algebras) et g be a Lie algebra ove€. We can define a
conformal algebra oii(g) = C ® g by setting

M®g\x1®h =1®[g,h]

for all g, h € g and extending by axiom (C1). The conformal algebfg) has no nontrivial
ideals if and only ifg is simple. The Lie algebrad(L(g)) is linearly generated by elements
gi,g € g,1 € Z, the Lie bracket being

[gma hn] = [97 h]m+n
The Lie algebrad(L) is therefore isomorphic to the affinizatigfz, '] of g.

Example 2.3(Virasoro conformal algebra) et V' = C[0]x be a free module of rank one. Then
[z)x] = (0 +2\)z

defines a conformal algebra structure. A linear basis for the Lie algébra is given by ele-
mentsz; satisfying the Lie bracket:

[Ty @] = (M — 1) Tpyn1.

This is isomorphic to theenterless Virasoro Lie algeb@[z, z~1]d/dz of regular vector fields
onC* via the mapr,, — —z"d/dz. The conformal algebr¥ is simple.

It can be shown that with any differential commutative associative algelmae can associate
a differential Lie algebrad,(L). The Lie algebra of Fourier coefficients 6fis then obtained
for D = Cl[z,27']. Indeed, any conformal algebra establishes a functor from the category of
differential commutative algebras to the category of differential Lie algebras.

The interplay between th€[0]-module structure and the-bracket on one side, and the Lie
algebraA(L) on the other, gives a powerful tool for the study of conformal algebras. In [DK] a
classification of all simple conformal algebras on finitely generé&tgéd-module is established.

Theorem 2.4. A complete list of finite simple conformal algebras is as follows:
1) the Virasoro conformal algebr¥,
2) all current conformal algebrag(g), whereg if a simple finite dimensional Lie algebra.

The classification is obtained by studying tenihilation Lie algebrad (L) of L, i.e. the
subalgebra ofA(L) spanned by elements with non-negative. One can build up a filtration on
A, (L), and consider the completion &f, (L) with respect to it. The result is a linearly compact
topological Lie algebra, which can be studied by means of Cartan’s classical classification of
infinite Lie algebras of vector fields (see [DK], [G1], [G2] for the statement on linearly compact
infinite dimensional Lie algebras satisfying a descending chain condition by means of which we
employ Cartan’s result). A correspondence between idealsasfd ideals of the corresponding
annihilation algebra, together with a reconstruction functor providing a conformal algebra model
to all interesting linearly compact Lie algebras, proves the classification result.

The point | want to stress here is that the Lie algebra bracket (2.3) has a definite Hopf algebra
flavour. If we writea b instead ofu;yb, andt”a instead ofa,,, Equation (2.3) becomes:

(2.4) [t™a,t"b] = Z (m> (t" - tmfj)a(tj)b,
» J
J
which is a close relative of the comultiplication structure
m . .
A(t™) = B R
“=3(})

2This is remindful of the definition of group schemes, if we understand differential Lie algebras as formal differ-
ential Lie groups.
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on the bialgebreC[0]. This hints to a generalization of conformal algebras which will be in-
troduced in the sequel. As a last remark on conformal algebras, | notice that associative or
commutative conformal algebras could be defined similarly. Lie conformal algebras are our
main example of such structures just because of their connection to vertex algebras.

3. CONFORMAL ALGEBRAS AND LIE* ALGEBRAS

The usual definition of a vertex algebras is far from being coordinate free. The setting is
that of formal distributions that are expressed in terms of Laurent power seriearid > ..
Moreover the whole theory has a kind of arithmetic flavour, as fields are required to be closed
under derivation but not under multiplication by regular functions. Above all, the theory is forced
to be set ovefC*, due to its nature. A more geometric definition of vertex algebras has been
undertaken by Beilinson and Drinfeld in [BD]. Their definition uses some algebraic geometry,
together withD-modules over algebraic varieties, and is rather hard to read. The setting is nicer,
but the structure loses much of its algebraic flavour.

They also construct OPE algebras over vertex algebras. A toy model of such OPE algebras
is also introduced, which is more algebraic, and closely resembles the structure of a conformal
algebra. Leb be a finite-dimensional Lie algebr&, = U(0) its universal enveloping algebra.

A Lie* algebra structure on alf-moduleL is anH ® H linear map:

[,]: LKL — (H® H)®y L

satisfying skew-symmetry and Jacobi identity. B L, | mean the tensor produét® L seen

as a (left)H ® H-module. The target space is the tensor produdi @b H with L via the left
H-module structure of and the right diagonal module structure of @ H: (h® k) @y ax =
(h®k)A(a) @ z. (H® H) @y L is then naturally arf ® H-module, and we ask ] to be

H ® H-linear. Skew-symmetry axiom is easy to explain whereas the Jacobi identity is slightly
more involved. Skew-symmetry of the Lie bracket is replaced by

[a,b] = —olb, a],
where the right hand side is obtained by applying thedflipi @ H — HR® H, oc(h®k) = k®h
on the firstg ; factor.
Before explaining Jacobi identity let us see how conformal algebras become an instance of
such a structure. Let= C0 be an abelian Lie algebra. Théf{(d) is nothing else but[0]. We

now rewrite OPE in a different fashion. For instance, the OPE of a Virasoro formal distribution
has been written as

(3.1) [L(2), L(w)] = OL(w)d(z — w) + 2L(w)d,,(z — w).
Notice we take derivative of both coefficients and of tlie — w) term. Indeed, it is possible
to reexpress OPE using only derivatives of the whole product. In fact, as
g(a(w) (2 —w)) = a(w) - 52(z —w) = —a(w) - §,(z —w)
z

and 3
Foo(a(w) -5z —w)) = a'(w) - 6(z —w) + a(w) - 5,z — w).

we can write:
(3.2) (Da)(w) - 8(z —w) = d'(w) - §(z —w) = (% + %) (a(w) - 6(z — w)).
With this understanding, the OPE (3.1) becomes:

) L)) = (47 + 0 ) (Bw) - = w) = 257 (L) -3(: ~ w)

_ (% _ %) (L(w) - 6(z — w)).
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If we agree on writing) ® 1 for 9/0z and1 ® 0 for 0/0w, then settingL « L] = (1® 0 —
0 ® 1) @y L gives the Lié-algebra incarnation of the Virasoro conformal algebra. The general
correspondence betweendracket and a Liebracket is the following. If

(3.3) [z \y] = ZP (0, \)z;,
then:
(3.4) [yl =) PO®1+1©0,-0®1) @y 2.

Notice that(h ® k) @y ax = (h ® k)A(«) @y x in this context is nothing but (3.2). Our aim
is now to reformulate all of the constructions made in the case of conformal algebras in the new
Lie* setting, and obtain a classification of the latter structures as well.

4. PSEUDO-LINEAR ALGEBRA AND PSEUDOALGEBRAS

As with conformal algebras, Liealgebras are just the Lie manifestation of a deeper phenom-
enon. We will set up the basic linear algebra underlying such algebraic structure, and will then
define Lie, associative, commutative algebras in the new environment.

Definition 4.1. ([BD]) A pseudotensor categoig a class of objectd/1 together with vector
spaced.in({L;}c;, M) whose elements are call@dlylinear maps There is an action of the
symmetric groups$; permuting them. Moreover polylinear maps can be composed as follows.

For any surjection of finite sets: J — I and a collectioq N, } ;< ;, we have the compositions
rules of polylinear maps given by maps

(4.1) Lin({Li}ier, M) @ Q) Lin({N;} e, Li) — Lin({N;}jes, M),
i€l
(4.2) ¢ X {thi}ier — ¢ 0 (Qierti) = 6({i}ier),
whereJ; = 7 1(i) fori € I.
The composition maps have the following properties:
Associativity: If K — J, {P.}rex is a family of objects and; € Lin({ Py }rex;, N;),

theno ({vi({x;}jen) bier) = (6({#i}ier)) ({xs}jes) € Lin({ Pi}rerc, M).

Unit: For any object)M there is an elemeritl,; € Lin({M}, M) such that for any) €
Lin({L;}ier, M) one hasdy (¢) = ¢({idr, }ier) = ¢.

Equivariance: The compositions (4.1) are equivariant with respect to the natural action of
the symmetric group.

A standard example of a pseudotensor category, is the category of vector spaces endowed with
multilinear maps. The example which interest us more is given by the construction of Beilinson
and Drinfeld [BD].

Let H be a cocommutative bialgebra with a comultiplicatidbnWe introduce a pseudotensor
categoryM*(H ) whose objects are leff-modules but with another pseudotensor structure:

(4.3) Lin({L;}icr, M) = Homper(Ric; L, H¥ @5 M).

HereX,.;L; is the tensor product of thE-modulesL; viewed as ari{®"-module. For a surjec-
tiont: J — I, the composition of polylinear maps is defined as follows:

(4.4) o ({ti}ier) = A (9) o (Ricrt).

Here A(™ is the functor associating to the |gft®’-module/ the H®/-module H®’ & jor M,
where H®! acts onH®’ via the iterated comultiplication determined by
Explicitly, letn; € N; (j € J), and write

(45) % Rjes; n] Zgz ®Hl gf S H®Ji, l: €L,
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where, as before]; = 7~ 1(i) fori € I. Let
(4.6) P (Rierl]) = Zf” @y m", free H®, m™ e M.

s

Then, by definition,
(4.7) (O({i}ier) ) (®iemy) = D (®icrg)) AT (f7) @u m"™,

7,8

where A™: g®l — [%/ s the iterated comultiplication determined by For example, if
7:{1,2,3} — {1,2}is given byr(1) = 7(2) = 1, 7(3) = 2, thenA™ = A ®id; if 7(1) = 1,
m(2) = 7(3) = 2, thenA™ =id ®A.

The symmetric group; acts among the spacem({L; };c;, M) by simultaneously permuting
the factors irX,¢; L; and H*!. This is the only place where we need the cocommutativitif pf
for example, the permutation, = (12) € S, actson(H ® H) @y M by

o12((f®@g)@um) =(9® f) @um,
and this is well defined only wheH is cocommutative.

Definition 4.2. An algebrain a pseudotensor categat is an objectd in M endowed with a
bilinear mapu € Lin({A, A}, A). We will say thatu is anassociative produdt

M(N('? ')’ ) = M('v M('v ))
The produciu is commutativef
M= 012/t
Similarly, aLie algebrain M is an objectZ. endowed with a bilinear mag € Lin({L, L}, L)
satisfyingskew-symmetry
f=—01203
and theJacobi identity

5(6(7 )7 ) - 6(76(7 )) + 0125('75('7 ))

I will call a (resp. Lie, associative, commutative) algebra\iti (H) a (resp. Lie, associative,
commutative)H -pseudoalgebra.

Remark4.3. We already have many examples of pseudoalgebras, as we obtain the standard
notion of algebras ovef whenH = C and their conformal algebraic analogues fbr= C|0).

As we mentioned before, (Lie, associative, commutative) conformal algebras actually rep-
resent functors from the category of differential algebras to that of (resp. Lie, associative,
commutative) differential algebras. This is true fHrpseudoalgebras as well. L&t be an
H-differential commutative associative algebra. This means¥thiatan associative algebra to-
gether left and right actions df on it. These actions satisfy(fg) = (ha)f)(h)g), and simi-
larly for the right action, where we use Sweedler’s notation for the copraiUet = h) ® h(a)
onH.

WheneverL is a pseudoalgebra, then we can set upM = Y ®y A an H-differential
algebra by

(z @u a)(y ©u b) = Z(xfi)(ygi) Qu €

if u(a,b) = > ,(fi ® ¢;) @u e;. This product turns out to be associative, commutative or Lie
wheny is of the corresponding type in the pseudotensor category sense. In parkicelat *

is naturally a commutative associatitedifferential algebra, and we call y A theannihilation
algebraof A, in analogy with the conformal algebra case. Indeed, wHen C[J], we obtain

X = H* = C[[t]]. Then the isomorphisms betwegn; A and the completion of the annihilation
Lie algebraA, A constructed in the previous section is giventtwy; a — a; and the requirement
(Oa),, = —na,_, follows from the definition of the right/-action onX.
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The natural formal topology oX induces a corresponding topology gt A wheneverA
is a finitely generatedi-module (see [BDK])..Ax A is a linearly compact vector space with
respect to this topology. In caskis a Lie H-pseudoalgebra, we can again use Cartan’s result on
simple linearly compact Lie algebras. | introduce now the most remarkable instance of simple
Lie pseudoalgebra.

Example 4.4(W()). Let H = U(®), L = H ® 2. The H-module L becomes a LieH-
pseudoalgebra — denot&d(d) — when endowed with the pseudobracket

MIRaex1b=101)y (1®a,b)—(180a¢) @y (1) +(b®1)y (1R a).

Example 4.5(Current pseudoalgebrad)etd’ C 0 be Lie algebrasid = U(v), H' = U(d'). We
can induce art{’-pseudoalgebra structure from AfrmoduleL’ to the H-modulel = H Qg L
via

L@y ax1@u b =Y (fi®g) @ (1@ c)

1

if [axb] =5 .(fi ®g)®@ucinL. Lis called thecurrent pseudoalgebranduced from the
pseudoalgebrd’. L is then simple whenevdr' is simple.

Notice that this is abelian wheH = C, and gives the Virasoro conformal algebra when
H = C|0]. The Lie pseudoalgebrd’(v) has several interesting properties [BDK]. First of
all, it is simple, and allH-pseudoalgebras, that are not current pseudoalgebras over a finite
dimensional Lie algebra, uniquely occur as subalgebrdd’ af). | call thempseudoalgebras
of vector fields They areprimitive simple Lie pseudoalgebragen they cannot be obtained as
current pseudoalgebras.

The correspondence between a pseudoalgebra and its annihilation algebra provides a clas-
sification of primitive simple Lie pseudoalgebras corresponding to the four series of Cartan
type simple Lie algebras. In particuldl/(?) is the unique pseudoalgebra corresponding to
the Lie algebrdV,, N = dimd. As far as other types are concerned, there are usually several
pseudoalgebras attached to the same Lie algebra. In fy@esl K, all corresponding primitive
pseudoalgebras are indeed fréemodules of rank one. They are characterized by the following
statement.

Theorem 4.6.Let H = U(0) and letL. = Hx be a Lie pseudoalgebra which is free of+ rank
one as and-module. Ifjz, 2] = a®p r,a € H® Hwe haven =r +s® 1 — 1 ® s for some
rE€VAD, s ED.

L is a primitive simple Lig{-pseudoalgebra, then eithéim 0 is even, and is non-degenerate,
in which caseL is of typeH, or dim?d = 2N + 1 is odd, andr is of rank2N, and its support
generate® modulos, in which casel. is of typekK.

Remark4.7. Not all values of- ands give a Lie pseudoalgebra structure bnindeed, they must
satisfy the identities:

[r,A(s)] =0,
[r12,713] + r1283 + cyclic permutations= 0.

Notice that the latter equation generalizes the classical Yang Baxter Equation and reduce to it
whens = 0.

Theorem 4.8. A complete list of finite primitive simple Li¢-pseudoalgebras is as follows:
1) W (o)
2) The subalgebras(v, x) = {>_, ki ® d;| > hi(d; + x(d;)) = 0} of W (d), wherey is a
trace forn¥ ono.
3) The primitive simple Lie pseudoalgebras of typand K listed in Theorend.6.

Si.e. aLie algebra homomorphisg: o — C.
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5. PSEUDO-LINEAR ALGEBRA AND REPRESENTATION THEORY

When we have a bilinear map between vector spaged,/ ® V' — W, the specializations
ou(v) = ¢(u, v) turn out to be linear maps. In a pseudotensor category, this is no more the case.
However, in a pseudoalgebra left multiplications by elements are maps of such a type, so such
specializations are worth considering. | call thpseudolinear maps

Definition 5.1. Let M, N be H-modules. Thew : M — (H ® H) ®y N is a pseudolinear map
if p(hm) = (1 ® h)p(m).

The collection of all pseudolinear maps frabh to NV can be given arf{-module structure
via (h¢)(m) = (h ® 1)¢(m). The set of all pseudolinear map frai to itself is denoted by
Cend M, and is never finitely generated ovBrunlessd = C or M is torsion (in which case
there is no nonzero pseudolinear map).

Composition as defined in the pseudotensor categdrgndowsCend M (M a finitely gen-
eratedH-module) with an associative pseudoalgebra structure — with respect to ordinary com-
position — and a Lie pseudoalgebra structure dengtéd — with respect to a naturally defined
commutator. Wher/ is infinitely generated’end M andgc M are ill behaved. It is natural to
define the concept of representation of an associative (resp. Lie) pseudoalgebsamodulé”
as a pseudoalgebra homomorphidm- Cend (V) (resp.A — gc V). Remarkably enough, rep-
resentation theory of solvable and nilpotent Lie pseudoalgebras is identical to the Lie theoretic
case.

Theorem 5.2(Lie Theorem) Let .S be a solvable Lie pseudoalgebra acting on a finitely gener-
ated H-moduleV'. Then there exists a commeigenvectofor the action ofS onV'.

In other words the action &f on 1V can be put in an upper triangular form. This also implies
that if there are no zero weights, the modulenust be free.

Theorem 5.3([BDK]). If N is a nilpotent Lie pseudoalgebra acting on a finitely generdied
moduleV thenV can be decomposed in a direct sum of generalized weight submodules for the
action of V.

Notice that the above statements are trivially true for ordinary linear endomorphisms on a
finite-dimensional vector space. However this is no longer the case in the pseudoalgebraic set-
ting, and a pseudolinear map< Cend V' can be put in upper triangular case only if it generates
a solvable subalgebr@) C gc V. Moreover a decompositiaé la Jordan of” into direct sum
of generalized eigenspaces only holds for pseudolinear maps generating a nilpotent subalgebra.

Irreducible representations for finite simple conformal algebras have been determined [CK].
Complete reducibility fails, and conformal algebras, and pseudoalgebras in general, have a rich
cohomology theory [BKV]. The study of irreducible representations of finite primitive Lie
pseudoalgebra is in progress.

6. APPLICATIONS OF CONFORMAL ALGEBRAS AND PSEUDOALGEBRAS

We introduced conformal algebras because they provided a tool for studying the surface of a
vertex algebra structure. In particular the analysis of a vertex algebra can be initially restricted
to that of the underlying conformal algebra, which will then give big constraints on what kind
of normally ordered product can extend the particular conformal algebra structure. This strategy
can be used in particular on vertex algebras defined on finitely genétalpchodules, as pretty
much everything is known of such conformal algebras. In [D] the following statement is proved.

Theorem 6.1. LetV be a finitely generate@|0]-module, endowed with a vertex algebra struc-
ture. TheA if the minimal conformal subalgebré&) of V' containing some given elemenis

4Indeed, the natural composition and commutator do not make them into pseudoalgebras.
SUnder the technical condition th&t contain no strongly nilpotent element, see below.
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solvable, it follows that the adjoint action af (on the conformal algebrd’) is nilpotent. In
particular (x) is nilpotent.

This result hints at the fact that conformal algebras underlying vertex algebras behave more
regularly — at least under some finiteness assumption. Representation theory of affine Kac-
Moody algebras and of the Virasoro algebra can be used to prove that no finite vertex algebra can
have a simple conformal algebra as a subquotient. Therefore the underlying conformal algebra
needs to be solvable. Then the above theorem can be used to give a nilpotence characterization
of the conformal algebra underlying a finite vertex algebra.

An elementa in a vertex algebrd/ is calledstrongly nilpotentf there is some integen
such that the product of vertex operatdféa;, z;) is zero as soon as at leasof the a; equal
a. Strongly nilpotent elements form an idedl of the vertex algebrd’, which is obviously
nilpotent. The idealV is thenilpotent radicalof V/, andV is reduced if its nilpotent radical
equals zero. Notice th&t/N is always reduced. Then one has:

Theorem 6.2. The conformal algebra underlying/N is always nilpotent. In other word$;

is always the extension of a nilpotent conformal algebraNgywhich is nilpotent as a vertex
algebra (hence also as a conformal algebra). In particular, a reduced finite vertex algebra
always has nilpotent OPE structure.

The classification of finite Lie pseudoalgebras has a surprising application. When we have
H = C|xy, ..., z,], the structure of a Lie pseudoalgebra is equivalent to that of a |iP@ason
bracket of hydrodynamic typ&uch a structure had been studied rather extensively (see [DN1],
[DN2] and the other references in [BDK]). The classification of simple and semisimple Lie
pseudoalgebras gives as a byproduct a classification of simple and semisimple linear Poisson
brackets of hydrodynamic type. This result is described in [BDK] along with a description of
central extensions of such structures, which turn out to be physically relevant.

REFERENCES

[BKV] B. Bakalov, V. G. Kac, and A. A. VoronovCohomology of conformal algebra€omm. Math. Phys200
(1999), 561-598.

[BD] A. Beilinson and V. Drinfeld,Chiral algebras preprint

[BDK] B. Bakalov, A. D’Andrea and V. G. KacTheory of finite pseudoalgebraadv. Math.162(2001), 1-140.

[B] R. E. BorcherdsVertex algebras, Kac-Moody algebras, and the Mon$fesc. Natl. Acad. Sci. USA83
(1986) 3068-3071.

[CK] S.-J.Cheng and V. G. Ka&onformal ModulesAsian J. Mathl (1997), no. 1, 181-19Frratum Asian
J. Math.2 (1998), no. 1, 153-156.

D] A. D’Andrea, Nilpotence properties of finite vertex algebraspreparation.
[DK] A.D’Andrea and V. G. Kac,Structure theory of finite conformal algebre&electa Math. (N.S3 (1998),
no. 3, 377-418.

[DN1] B. A. Dubrovin and S. P. Novikowoisson brackets of hydrodynamic ty(ftussian), Dokl. Akad. Nauk
SSSR279(1984), no. 2, 294-297. English translation in Soviet Math. D83&k1984), no.2, 651-654.

[DN2] B. A. Dubrovin and S. P. Novikowlydrodynamics of weakly deformed soliton lattices. Differential geom-
etry and Hamiltonian theoryRussian), Uspekhi Mat. Nauk4 (1989), no. 6(270), 29-98, 203. English
translation in Russian Math. Surve$4 (1989), no.6, 35-124.

[G1] V. Guillemin, A Jordan-Hbdlder decomposition for a certain class of infinite dimensional Lie algehras,
Diff. Geom.2 (1968) 313—345.

[G2] V. Guillemin, Infinite-dimensional primitive Lie algebrag. Diff. Geom.4 (1970), 257-282.

K] V. G. Kac, Vertex algebras for beginnerbniversity Lecture Seried,0. American Mathematical Society,
Providence, RI, 1996. Second edition 1998.

DIPARTIMENTO DI MATEMATICA , UNIVERSITA DI ROMA | — “L A SAPIENZA”
E-mail addressdandrea@mat.uniromal.it



