FORMAL DE RHAM THEORY: IRREDUCIBLE REPRESENTATIONS OF FINITE
SIMPLE LIE PSEUDOALGEBRAS

ALESSANDRO D’ANDREA

ABSTRACT. In this communication, | recall the main results [BDK1] in the classification of fi-
nite Lie pseudoalgebras, which generalize several previously known algebraic structures, and
announce some new results [BDK2] concerning their representation theory.

In questa comunicazione, elenco i principali risultati [BDK1] di classificazione delle pseudoal-
gebre di Lie finite, che generalizzano diverse strutture algebriche precedentemente note, e annun-
cio alcuni nuovi risultati [BDK2] che riguardano le loro rappresentazioni.
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1. INTRODUCTION

The aim of the present communication is that of describing a certain algebraic structure, called
Lie pseudoalgebra, and its representation theory.

The concept of Lie pseudoalgebra is a natural generalization of many algebraic structures,
such as conformal algebras [K, DK], Lie* algebras [BeDr] and Poisson algebras of hydrody-
namic type [DuN1, DuN2]. Lie pseudoalgebras structures on finitely generated modules over
a cocommutative Hopf algebra were studied in [BDK1]. Here | give an account of the results
therein, and of some more recent ones [BDK2] in the representation theory of simple Lie pseudo-
algebras obtained jointly with B. Bakalov and V. Kac.

The plan of the exposition is as follows: | will briefly recall a classical theorem [Ca, Gul, Gu2]
by E. Cartan on the classification of infinite dimensional Lie algebras of vector fields. | will then
give the definition of Lie pseudoalgebra, along with a few examples, and explain the relation
between Lie pseudoalgebras and Lie algebras of Cartan type. | will then move to describing
the classification of irreducible representations of both Lie pseudoalgebras and Lie algebras of

The author was supported in part by a prize fellowship by Clay Mathematics Institute.
1
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Cartan type [Rudl, Rud?2, Ko], via the studysafigular vectorsn some peculiar representations
calledtensor modules

In the final part of the communication, | will explain how representation theory of simple Lie
pseudoalgebras can be understood in terms of some naturally constructed complexes of modules,
that are generalizations of the de Rham complex in the special case of symplectic and contact
manifolds.

2. CARTAN’S CLASSIFICATION OF LINEARLY COMPACT SIMPLE LIE ALGEBRAS

A classical theorem of E. Cartan, whose proof was later completed by V. Guillemin, classifies
infinite dimensional linearly compact simple Lie algebras over an algebraically closed field of
zero characteristic. The condition of linear compactness is a topological translation of natural
properties of Lie algebras of vectors fields.

Let M be a manifold, andC denote the algebra of (regular) vector fieldsdn Then£ has
the following properties:

L is an infinite-dimensional Lie algebra
L possesses a filtration by order of zero at a péirg M.
The Lie bracket orf is continuous with respect to the topology induced by this filtration.

In order to translate such properties in an algebraically suitable language, we may take the
completion of £ with respect to the filtration. This is more or less equivalent to the process
of taking vector fields on a formal neighbourhood Bf A linearly compactvector space is
nothing but a vector space which is complete with respect to a filtration by subspaces of finite
codimension.

The above-mentioned theorem claims that the characterization just given captures all algebraic
properties of Lie algebras of vector fields. Its exact statement is the following:

Theorem 2.1(Cartan, Guillemin) Every linearly compact infinite dimensional simple Lie alge-
bra is isomorphic to one of the following:

— The Lie algebrd¥,, of all vector fields

= 0
A:Zai(xlw”axn)' 8LU7
i=1 ¢

— The Lie subalgebr#),, of all elements ifV,, preserving a volume form,;

— The Lie subalgebrdl,,, of all elements irfil;,, preserving a symplectic form;

— The Lie subalgebrds,, ., of all elements in5, ., preserving a contact form (up to
homotheties).

The Lie algebra$V,,, S,,, Hy, and K, are calledLie algebras of Cartan type
Let £ be the Lie algebr&l,, and L, denote the subalgebra of vector fields that have a zero of
order at least + 1. Then the filtration

£:£_1D£()D£1D...
is such thatZ;, £;] C £;;;, and
,Co/ﬁl >~ g[n

The ideall, /Ly, lies in the radical of the quotient Lie algeb£g/L;., hence acts trivially on all
irreducibleL,/Lx-modules.

The other simple Lie algebras of Cartan type have a similar structure. The quotient Lie algebra
Lo/ L is isomorphic tasl, (resp.sp,,,, csp,,) Whenl = S, (resp.Hay, Kopi1)-
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3. LIE PSEUDOALGEBRAS

Definition 3.1. An H-Lie pseudoalgebra is a moduleover a cocommutative Hopf algebfa
endowed with arf ® H-linear Lie bracket

[,]: L®L— (H® H)®y L
which isskew-symmetriand satisfies théacobi identity

In the above definitionl ® H is understood as a riglif-module via the right multiplication
by A(h) = h1y ® h(2), skew-symmetry means

la,b] = —olb, al

wheres : H® H — H® H isthe flipo(h®k) = k®h. The Jacobi identity is more complicated
to describe, as we do not have an understanding of double Lie brdekgts]], [[a,b],c] €
(H® H® H)®y Lyet. If

[a,b] = Z(fz ® gi) ®n €,

)

and
les,c] = Z(fzy ® gij) D €ij,
j
then we set
(3.1) [[a,b],c] = Z(fifij(l) & gifij(g) ® gij) @u €.
ij
Similarly, if
[C, ei] = Z(h” & kl]) & dij,
j
then we set
(32) e, bl = Y (hiy @ fikijig) ® gikijyy) @ di.

ij
Jacobi identity reads then as

[[x>y]7 Z] = [x> [y> ZH - 012[% [x> Z]]>

whereo, flips the first two tensor factors IHF ® H ® H. The name opseudoalgebrss justified

by the fact that this is a Lie algebra structure in a suitable pseudotensor category [BeDr, So].
If H is a Hopf algebra, elementsc H such thatA(p) = p ® 1 + 1 ® p are calledprimitive

or Lie-like, and span a Lie algebgg H). Elementsy € H such thatA(g) = g ® g are called

group-like and constitute a grou@(H). The following fact allows one to restrict the study of

H-Lie pseudoalgebra to the case whiéns a universal enveloping algebra.

Theorem 3.2 (Kostant) A cocommutative Hopf algebra over an algebraically closed field
of zero characteristic is isomorphic to the smash product of the universal enveloping algebra
U(p(H)) with the group algebr&[G(H)].

Indeed, aH-Lie pseudoalgebra is nothing butl&p(H))-Lie pseudoalgebra along with a
G(H)-action.

3.1. Examples.

3.1.1. H =C. InthiscaseH ® H ~ H andA : H — H ® H ~ H is the identity mapping.
Then the axioms for a Lie pseudoalgebra reduce to those of an ordinary Lie algebra.
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3.1.2. H = CJ[0]. In this case the axioms for afi-Lie pseudoalgebras are equivalent to those
for a conformal algebra as in [DK]. Indeed, if

a,b] => P(0®1,1®0) @y e,

then
[axb] =) " Pi=X 0+ Ne;

satisfies the axioms for &bracket if and only if, ] is a Lie pseudoalgebra bracket.

3.1.3. H = C|0y, ..., 0,]. The notion ofH-Lie pseudoalgebra is equivalent to that of a (linear)
Poisson algebra of hydrodynamic type as in [DuN1, DuN2]. The equivalence is shown as above
with conformal algebras, see [BDK1].

3.1.4. H = U(2). In this caseH-Lie pseudoalgebras were introduced in [BeDr], where they
were called Lie*-algebras.

4. PSEUDOALGEBRAS AND THEIRANNIHILATION ALGEBRAS.

Let us choose? = U(d) as the base Hopf algebra, wherés some finite dimensional Lie
algebra. Ifdimo = N then the topological algebrE* is isomorphic to formal power series
C|[t, ..., tn]], endowed with the formal topology.

The natural action off on H* is differential, i.e. elements @f C H act as derivations of*,
hence as (formal) vector fields on the spateof formal functions.

The Lie bracket o is a translation of the Lie bracket between the corresponding vector
fields on a manifold. There are minor sign convention problems, sasfabelian, and) =
o(tq,...,tn) € H*, then the right and left/ -actions onH* satisfy:

9i(¢) = (9)0; = —09/0L;.

In this setting, it is useful to think of a Lie pseudoalgebra as a shorthand notation for some
special kind of infinite dimensional Lie algebras.

Example 4.1.Let ¢ andy be formal series in thé/ variablesty, ..., ¢t ;. Then the Lie bracket of
vector fields satisfies:

[0 0i - 0j] = =d(¥0:) - 0 + (90;)¥ - 05 + (9¥) - [0y, 0.
We can associate with this Lie bracket, the following Lie pseudoalgebra bracket:
[0;, 0j]pseudo= —(1 ® 0;) @ 0; + (0, ® 1) @y 0; + (1 ®@ 1) ®p [0, 0]

on theH-moduleH ® d. The H-Lie pseudoalgebra thus defined is callédo).
Example 4.2.1f g is a Lie algebra, then the Lie bracket on its loop algebra

[0 © 9,9 @ h] = (¢¢) @ g, ]
corresponds to the Lie pseudoalgebra bracket

g, h]pseudoz (1®1)®u[g,h]
on theH-moduleH ® g. The H-Lie pseudoalgebra thus defined is caliea: g.

According to this shorthand convention, the pseudoalgebra axionisdoe those needed to
make sure that/* @y R is a Lie algebra.
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4.1. Annihilation algebra of a Lie pseudoalgebra. The shorthand notation hints to a more
general fact: any Lie pseudoalgelrastablishes a functor from the category of (commutative)
H-differential algebras to that df -differential Lie algebras

X—X®pylL.

The investigation of pseudoalgebras exploits this correspondence between Lie pseudoalgebras
and Lie algebras: i = H*, then the natural filtration of/* induces a filtration oiH* @y L
that makes it linearly compact.

Algebraic properties of. are connected with those éf* @y L. The study of simple Lie
pseudoalgebras can then be done by means of Cartan’s classification theorem.

The linearly compact Lie algebrd* @y L is calledLie algebra of annihilation operator®r
simply annihilation algebraassociated td,, as it is related to the algebra of (quantum) annihila-
tion operators on the Fock space of quantum states.

Example 4.3.Let H = U(d). We have seen that thé-module H @ o, endowed with the Lie
bracket

l®a,100 =118y (1e[eb) - 10y (1eb)+ (1) (18 a)

is a Lie pseudoalgebra dif, denoted by’ (). Its annihilation algebr&* @y W(0) ~ H*® 0
is then isomorphic to the Lie algebVe, of vector fields, wherév = dim 9, thus recovering the
“short-hand” motivation foiV ().

The pseudoalgebrid (v) is the new phenomenon making the theorybtlie pseudoalgebra
dramatically different from the classical theory of Lie algebras. It is a much less commutative
object than ordinary finite dimensional Lie algebra.

5. STRUCTURE OFLIE PSEUDOALGEBRAS

5.1. Primitive pseudoalgebras. Simple pseudoalgebras can be constructed from special in-
stances callegrimitive simple pseudoalgebras

Example 5.1.5(0, x) is the H-submodule of all elements’; h; ® a, from W (d) satisfying
diVX(Z hi ® a;) = Z hi(a; + x(a;)) =0,

wherey : 0 — C s atrace form, i.e. a Lie algebra homomorphism.
ThenS(0, x) is a subalgebra dfi’(v) with respect to its Lie bracket, which makes it into a
simple Lie pseudoalgebra. Its annihilation algebra is isomorphitto

Example 5.2. Lie pseudoalgebras on a free modéie of rank one are determined by the only
structure constant € H ® H such that

le,e] =a®ye.

It can be easily showed thate H ® H is necessarily of the form=r+s® 1 —1® s where
r € 0 ® 0 is skew-symmetricr ands must also satisfy some technical commutation relations.

When r is non degenerate, thetimd = 2n is an even number, anfie is denoted by
H(v, x,w). Its annihilation algebra is isomorphic to a central extension of the Lie algéhra
which can be also viewed as the Poisson algébyadetermined by the bi-vector fieldon the
spaceH * of formal power series (i.e. regular functions).

Whenr has a one-dimensional kernel on whicprojects non trivially, thelimo = 2n + 1 is
an odd number, anff e is denoted by (0, §). Its annihilation algebra is isomorphic 6, 1.
Parameterg, w andd are obtained as functions ofands.

All pseudoalgebra structures on frEemodules of rank one can be realized as subalgebras of
W () via the embedding — —r + 1 ® s.
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5.2. Current pseudoalgebras. If L is aH-Lie pseudoalgebra, and is a Hopf algebra contain-
ing H as a subalgebra, then we may construct a new Lie pseudoalgebra by akirg @ L
with the Lie bracket induced by that éf This is called the current pseudoalgebral.ofind is
denoted byCur}} L

Example 5.3. Let g be a Lie algebra, i.e. &-Lie pseudoalgebra. Then for any Hopf algebra
H we can construct the current Lie pseudoalgebma? g = H ® g. Its bracket is as given in
Example 4.2.

Let L be a finité simple H-Lie pseudoalgebra, and 1& be the smallest Hopf subalgebra of
H containing all structure constant &f ThenL is a current pseudoalgebra of a finite simple
H-Lie pseudoalgebra. Such simple pseudoalgebras of mininiaare either finite dimensional
simple Lie algebras or one of the primitivé-Lie pseudoalgebrad’(v), S(0, x), H(?, x,w),
K(0,0).

5.3. Properties of the Lie pseudoalgebral’(v). The theory of pseudoalgebras is in a sense
parallel to that of ordinary Lie algebras. Main differences are exemplified’0y). These are
its main properties:
— There are no non-zero commuting element$lii), i.e. if [a,b] = 0 thena = 0 or
b = 0. This is in contrast with ordinary Lie algebras, where every element commutes
with itself.
— The only subalgebras &% (v) are simple.
— Every primitive simple pseudoalgebra embed$lio).
— This embedding is unique. The only automorphismiifo) and of its subalgebra is
identity.

6. REPRESENTATIONTHEORY OFPRIMITIVE SIMPLE LIE PSEUDOALGEBRAS

A representation of af/-Lie pseudoalgebra is an H-moduleM endowed with arl.-action,
i.e. with a map

LoeM>a@m—a-me(HRH)®@y M
satisfying
[a,b] -m=a-(b-m)—o12b-(a-m),

where composition of actions- (b - m) is understood as in (3.1) and (3.2).

Representations of a finitd-Lie pseudoalgebrd are in bijection with (topologically) dis-
crete representations of the Lie algelfta= o x(H* ® L). In other words, a pseudoalgebra
representation of. is the same as a representation of the corresponding annihilation algebra,
along with av-module, i.e. and = U(d)-module, structure, satisfying suitable compatibility
conditions.

There are explicit formulas to obtain the action/obn the moduleV/ out of the action of the
annihilation algebra of., and vice versa. For instance{ii;} and{z;} are dual bases df and
H*, then one can recover- m,r € L,m € M as follows:

r-m = Z i ® 1) @p (x; @ r).m

Representations of finite solvable Lie pseudoalgebras follow closely the behaviour of representa-
tions of finite dimensional solvable Lie algebras: one has analogues of Lie’s and Engel’s theorem,
and every finite representation has a basis making the action upper triangular. The representation
theory of finite simple Lie pseudoalgebras is more involved.

Ia pseudoalgebra is finite if the underlyidg-module is finitely generated.
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6.1. Representations ofi’(9). The study of irreducible representations of primitive Lie pseudo-
algebras is done by studying the action of the corresponding annihilation algebras. Discrete
representations of Lie algebras of Cartan type were studied by A. Rudakov and I. Kostrikhin
[Rudl, Rud2, Ko]. However, the language of pseudoalgebras gives a different, and easier, ap-
proach to the classification of irreducible modules.

Here | list a few facts on (irreducible) representations of the pseudoal@glva Similar
statements are true for the other primitive pseudoalgebras. We will focus on distinguished ele-
ments, calledingular vectorswhose stabilizer is maximal.

— Every W (9)-module contains singular vectors.

— Anirreduciblel? (9)-module isH-linearly generated by its singular vectors.

— The L = H* ®y W (d)-action on singular vectors is particularly easy to describe.

— The space of singular vectors of a module containing no trivial submodule is a finite
dimensional vector space.

Let M be an irreducibld? (v)-module, andS C M be the finite dimensional vector space
of singular vectors. If\f is viewed as anC-module, thenS is invariant under the action of
L, C L C L, and is stable under the action of the normalixéof £, in £. The action of\/
is easily described in terms of commuting actiong @hdL,/L; ~ gl,. The representation of
W (v) obtained induced suan® gly-action to all of£ is isomorphic — as a/-module — to
the free module? ® S, and possesses a canonical projection dntdA representation of this
kind is calledtensor module

Theorem 6.1. The IV (d)-action on each singular vecterlying in an irreducible modulé/ is
such that

1®0)-s==Y (0:®1) @y p(d ®).5
(6.1) i

+(1®1)®g ((6(0) + p(ad 9)).s — 0s),

whered € 0, elements); constitute a basis o#, and o, p are commuting actions af and
gl(0) = gly-
Theorem 6.2.Every finite irreduciblé? (9)-module is a quotient of a finite tensor modéle S,

where all elements frori = 1®.S C H®.S are singular vectors, and thed gl -representation
on S describing the actioif6.1) of W' (2) on singular vectors is irreducible.

6.2. Representations of primitive pseudoalgebras of typ&, H, K. Theorem 6.2 applies to

all other primitive pseudoalgebras, the only difference being in the expression describing the
action on singular vectors. Indeed, the annihilation algebra of pseudoalgebras &f ijpE are
isomorphié to Lie algebras of typ&, H, K, and the argument described above extends verbatim
to these new cases. While the actionSgb, x) can be extended td’(2) — so that the action

of S(0, x) on singular vectors can be recovered from (6.1) — that'¢§, #) and H (9, x,w) on
singular vectors from an irreducible module can be described as follows.clfgl(d), let )°
denote its orthogonal projection (0, w). Then

Theorem 6.3. The K (9, #)-action on each singular vectorlying in an irreducible modulé//
is such that

(1®e) s=— Z(aﬁj ® 1) @u p(ry).s

(6.2) £ D09 1) @i (0 = (6(0) + pl(ad 9))).5)

—(1®1)®u (s — (¢(d) + p(ad dp)).s)
— (O ® 1) @y p(E).s

2Actually, the annihilation algebra of a pseudoalgebra of tipie a central extension df,,, but this fact plays
no major role.
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wheree is the freeH-generator ofH (0, y,w), element®); andd’ constitute bases @fdual with
respect tav = d¢, and¢, p are commuting actions @fand ofcsp y, = span(E, z;;).

Theorem 6.4. The H (0, x,w)-action on each singular vectorlying in an irreducible module
M is such that

(1®e) - s = — Z(éiéj ®1) @n p(ij).
(6.3) i Z i ®@1) @y (0's — (¢(9") + p((ad 0" + x @ 0%))).s)

(1 ®1)@n (1®¢(E).s)

wheree is the free H-generator of K (9,6), x : © — C is a trace form, elements; and o
constitute bases ofdual to each other with respectdg 9; = 9;+x(9;), andg, p are commuting
actions ofsp ; = span(x;;) and of the central extensian = span(0;, £) of o determined by the
cocyclew.

A curious consequence of (6.1) is the following. A classification of singular vectors for the
action of W/ (d) on a reducible tensor module shows that those not lying @me vectors of the
form

Zal ® plexr).s — O ® s+ 1 ® sp,
1

wheres € 1,5 C H ® S, ands is uniquely detemined from knowledge bfands. Then,
substituting this into (6.1) and imposing it to be a singular vector gives:

(6.4) pleas)p(ecd) + pl€ad)p(ee) = Opep(€ad) + dcap(€ap),

which is valid for allgl(0)-representations for which the corresponding tensor module is re-
ducible. In other words the only irreducible representationg(@f) on which the quadratic
relations (6.4) are valid are those of the foftho* ~ A " .

In the same way, (6.3) and (6.2) leads to quadratic relations that are valid for irreducible
representations af (9, w) that occur as highest weight componentg\db*. They are

(6.5) p(xap)p(zeq) + all permutations ofi, b, c,d = 0,

wherez;; = 1(9; ® &' + 97 ® 0;) are generators af (0, w).

6.3. An irreducibility criterion for tensor modules. Simple computations show that a tensor
moduleH ® S is irreducible for all actions of[(0) (resp.sp(?, w), csp(2,w)) but finitely many.

In the W (0) case, for instance, representationgi@d) not giving rise to irreducible represen-
tations of W/ (0) are all A\ powers of the contragradient representa®on The corresponding

W (2)-modules are thodappearing in the de Rham complex. Indeed, all modules of differential
forms possess an action of the Lie algebra of vector fields, which is nothing but the annihilation
algebra ofi¥(v). This translates the de Rham complex into a complek/gb)-modules, in
which the differentiall is a ¥/ (0)-homomorphism. In order to classify irreducible quotients of
non irreducible tensor modules, one needs to find singular vectéfsins not lying inU. The
differential d serve this purpose, in th&' /dQ‘~! is the only irreducible quotient of the tensor
moduleQ’ = H @ A\'0*.

3More precisely, they are “twists” of those modules, where twistingda gl(2)-module basically consists of
keeping the samg!(v)-action, while changing the-action.
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7. DE RHAM COMPLEXES AND REPRESENTATIONTHEORY

The setting we have outlined fo¥ (9)-representations extends to other primitive pseudoalge-
bras. In pretty much the same way as we have an exact sequence

Q') — QY0) — ... — Q™(0)

of reducible tensor modules fdi#’(v), all reducible tensor modules for the pseudoalgebras
K(0,6) andH (v, x,w) fall in sequences that are generalizations of the de Rham complex.
For instance, one can build up an exact complekK¢#, #)-modules

Q°0) — Q' O)/I, — ... ="0)/L, —

(71) N JnJrl N Jn+2 s J2n+17
where

Li={0An+wAyl e (0),y € ?0)}
and

JF={acQF@)0Na=wna=0}.
The modules showing up in (7.1) are the only reducible tensor modul&Sa@f)). The above
complex is completely analogous to that introduced by M. Rumin [Rum] in the context of the
geometry of contact manifolds.
One can build up a complexla Rumin in the case df (9, x, w) by taking

Q) = Q) /L — ... = Q"Q) /L, = J" — J"T — = T

wherel, = w A Q*2(0) andJ* = {a € Q*(0)|w A a = 0}.

One learns a general principle, which also applies in some way to the case of super Lie pseudo-
algebras [KRud1l, KRud2]: primitive Lie pseudoalgebras descigeemetric structures” on
formal manifolds. Reducible tensor modules for primitive Lie pseudoalgebras arise in families,
or rather complexes, which are often exact. These complexes are related to differential geome-
try, and are generalization of the de Rham complex, in the case of a particular choice of a (e.g.
symplectic or contact) geometry.
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