
FORMAL DE RHAM THEORY: IRREDUCIBLE REPRESENTATIONS OF FINITE
SIMPLE LIE PSEUDOALGEBRAS

ALESSANDRO D’ANDREA

ABSTRACT. In this communication, I recall the main results [BDK1] in the classification of fi-
nite Lie pseudoalgebras, which generalize several previously known algebraic structures, and
announce some new results [BDK2] concerning their representation theory.

In questa comunicazione, elenco i principali risultati [BDK1] di classificazione delle pseudoal-
gebre di Lie finite, che generalizzano diverse strutture algebriche precedentemente note, e annun-
cio alcuni nuovi risultati [BDK2] che riguardano le loro rappresentazioni.
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1. INTRODUCTION

The aim of the present communication is that of describing a certain algebraic structure, called
Lie pseudoalgebra, and its representation theory.

The concept of Lie pseudoalgebra is a natural generalization of many algebraic structures,
such as conformal algebras [K, DK], Lie* algebras [BeDr] and Poisson algebras of hydrody-
namic type [DuN1, DuN2]. Lie pseudoalgebras structures on finitely generated modules over
a cocommutative Hopf algebra were studied in [BDK1]. Here I give an account of the results
therein, and of some more recent ones [BDK2] in the representation theory of simple Lie pseudo-
algebras obtained jointly with B. Bakalov and V. Kac.

The plan of the exposition is as follows: I will briefly recall a classical theorem [Ca, Gu1, Gu2]
by E. Cartan on the classification of infinite dimensional Lie algebras of vector fields. I will then
give the definition of Lie pseudoalgebra, along with a few examples, and explain the relation
between Lie pseudoalgebras and Lie algebras of Cartan type. I will then move to describing
the classification of irreducible representations of both Lie pseudoalgebras and Lie algebras of
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Cartan type [Rud1, Rud2, Ko], via the study ofsingular vectorsin some peculiar representations
calledtensor modules.

In the final part of the communication, I will explain how representation theory of simple Lie
pseudoalgebras can be understood in terms of some naturally constructed complexes of modules,
that are generalizations of the de Rham complex in the special case of symplectic and contact
manifolds.

2. CARTAN ’ S CLASSIFICATION OF L INEARLY COMPACT SIMPLE L IE ALGEBRAS

A classical theorem of E. Cartan, whose proof was later completed by V. Guillemin, classifies
infinite dimensional linearly compact simple Lie algebras over an algebraically closed field of
zero characteristic. The condition of linear compactness is a topological translation of natural
properties of Lie algebras of vectors fields.

Let M be a manifold, andL denote the algebra of (regular) vector fields onM . ThenL has
the following properties:

L is an infinite-dimensional Lie algebra
L possesses a filtration by order of zero at a pointP ∈M .
The Lie bracket onL is continuous with respect to the topology induced by this filtration.

In order to translate such properties in an algebraically suitable language, we may take the
completion ofL with respect to the filtration. This is more or less equivalent to the process
of taking vector fields on a formal neighbourhood ofP . A linearly compactvector space is
nothing but a vector space which is complete with respect to a filtration by subspaces of finite
codimension.

The above-mentioned theorem claims that the characterization just given captures all algebraic
properties of Lie algebras of vector fields. Its exact statement is the following:

Theorem 2.1(Cartan, Guillemin). Every linearly compact infinite dimensional simple Lie alge-
bra is isomorphic to one of the following:

— The Lie algebraWn of all vector fields

A =
n∑

i=1

ai(x1, ..., xn) · ∂

∂xi

;

— The Lie subalgebraSn of all elements inWn preserving a volume form;
— The Lie subalgebraH2n of all elements inW2n preserving a symplectic form;
— The Lie subalgebraK2n+1 of all elements inW2n+1 preserving a contact form (up to

homotheties).

The Lie algebrasWn, Sn, H2n andK2n+1 are calledLie algebras of Cartan type.
LetL be the Lie algebraWn andLk denote the subalgebra of vector fields that have a zero of

order at leastk + 1. Then the filtration

L = L−1 ⊃ L0 ⊃ L1 ⊃ ...

is such that[Li,Lj] ⊂ Li+j, and

L0/L1 ' gln.

The idealL1/Lk lies in the radical of the quotient Lie algebraL0/Lk, hence acts trivially on all
irreducibleL0/Lk-modules.

The other simple Lie algebras of Cartan type have a similar structure. The quotient Lie algebra
L0/L1 is isomorphic tosln (resp.sp2n, csp2n) whenL = Sn (resp.H2n,K2n+1).
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3. LIE PSEUDOALGEBRAS

Definition 3.1. An H-Lie pseudoalgebra is a moduleL over a cocommutative Hopf algebraH
endowed with anH ⊗H-linear Lie bracket

[ , ] : L⊗ L→ (H ⊗H)⊗H L

which isskew-symmetricand satisfies theJacobi identity.

In the above definition,H ⊗H is understood as a rightH-module via the right multiplication
by ∆(h) = h(1) ⊗ h(2), skew-symmetry means

[a, b] = −σ[b, a]

whereσ : H⊗H → H⊗H is the flipσ(h⊗k) = k⊗h. The Jacobi identity is more complicated
to describe, as we do not have an understanding of double Lie brackets[a, [b, c]], [[a, b], c] ∈
(H ⊗H ⊗H)⊗H L yet. If

[a, b] =
∑

i

(fi ⊗ gi)⊗H ei,

and

[ei, c] =
∑

j

(fij ⊗ gij)⊗H eij,

then we set

(3.1) [[a, b], c] =
∑
ij

(fifij(1) ⊗ gifij(2) ⊗ gij)⊗H eij.

Similarly, if

[c, ei] =
∑

j

(hij ⊗ kij)⊗ dij,

then we set

(3.2) [c, [a, b]] =
∑
ij

(hij ⊗ fikij(1) ⊗ gikij(2))⊗H dij.

Jacobi identity reads then as

[[x, y], z] = [x, [y, z]]− σ12[y, [x, z]],

whereσ12 flips the first two tensor factors inH⊗H⊗H. The name ofpseudoalgebrais justified
by the fact that this is a Lie algebra structure in a suitable pseudotensor category [BeDr, So].

If H is a Hopf algebra, elementsp ∈ H such that∆(p) = p ⊗ 1 + 1 ⊗ p are calledprimitive
or Lie-like, and span a Lie algebrap(H). Elementsg ∈ H such that∆(g) = g ⊗ g are called
group-like, and constitute a groupG(H). The following fact allows one to restrict the study of
H-Lie pseudoalgebra to the case whenH is a universal enveloping algebra.

Theorem 3.2 (Kostant). A cocommutative Hopf algebra over an algebraically closed fieldk
of zero characteristic is isomorphic to the smash product of the universal enveloping algebra
U(p(H)) with the group algebrak[G(H)].

Indeed, aH-Lie pseudoalgebra is nothing but aU(p(H))-Lie pseudoalgebra along with a
G(H)-action.

3.1. Examples.

3.1.1. H = C. In this caseH ⊗ H ' H and∆ : H → H ⊗ H ' H is the identity mapping.
Then the axioms for a Lie pseudoalgebra reduce to those of an ordinary Lie algebra.
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3.1.2. H = C[∂]. In this case the axioms for anH-Lie pseudoalgebras are equivalent to those
for a conformal algebra as in [DK]. Indeed, if

[a, b] =
∑

i

Pi(∂ ⊗ 1, 1⊗ ∂)⊗h ei,

then

[aλb] =
∑

i

Pi(−λ, ∂ + λ)ei

satisfies the axioms for aλ-bracket if and only if[ , ] is a Lie pseudoalgebra bracket.

3.1.3. H = C[∂1, ..., ∂n]. The notion ofH-Lie pseudoalgebra is equivalent to that of a (linear)
Poisson algebra of hydrodynamic type as in [DuN1, DuN2]. The equivalence is shown as above
with conformal algebras, see [BDK1].

3.1.4. H = U(d). In this caseH-Lie pseudoalgebras were introduced in [BeDr], where they
were called Lie*-algebras.

4. PSEUDOALGEBRAS AND THEIRANNIHILATION ALGEBRAS.

Let us chooseH = U(d) as the base Hopf algebra, whered is some finite dimensional Lie
algebra. Ifdim d = N then the topological algebraH∗ is isomorphic to formal power series
C[[t1, ..., tN ]], endowed with the formal topology.

The natural action ofH onH∗ is differential, i.e. elements ofd ⊂ H act as derivations onH∗,
hence as (formal) vector fields on the spaceH∗ of formal functions.

The Lie bracket ond is a translation of the Lie bracket between the corresponding vector
fields on a manifold. There are minor sign convention problems, so ifd is abelian, andφ =
φ(t1, ..., tN) ∈ H∗, then the right and leftH-actions onH∗ satisfy:

∂i(φ) = (φ)∂i = −∂φ/∂ti.

In this setting, it is useful to think of a Lie pseudoalgebra as a shorthand notation for some
special kind of infinite dimensional Lie algebras.

Example 4.1.Let φ andψ be formal series in theN variablest1, ..., tN . Then the Lie bracket of
vector fields satisfies:

[φ · ∂i, ψ · ∂j] = −φ(ψ∂i) · ∂j + (φ∂j)ψ · ∂j + (φψ) · [∂i, ∂j].

We can associate with this Lie bracket, the following Lie pseudoalgebra bracket:

[∂i, ∂j]pseudo= −(1⊗ ∂i)⊗H ∂j + (∂j ⊗ 1)⊗H ∂i + (1⊗ 1)⊗H [∂i, ∂j]

on theH-moduleH ⊗ d. TheH-Lie pseudoalgebra thus defined is calledW (d).

Example 4.2. If g is a Lie algebra, then the Lie bracket on its loop algebra

[φ⊗ g, ψ ⊗ h] = (φψ)⊗ [g, h]

corresponds to the Lie pseudoalgebra bracket

[g, h]pseudo= (1⊗ 1)⊗H [g, h]

on theH-moduleH ⊗ g. TheH-Lie pseudoalgebra thus defined is calledCur g.

According to this shorthand convention, the pseudoalgebra axioms forL are those needed to
make sure thatH∗ ⊗H R is a Lie algebra.
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4.1. Annihilation algebra of a Lie pseudoalgebra. The shorthand notation hints to a more
general fact: any Lie pseudoalgebraL establishes a functor from the category of (commutative)
H-differential algebras to that ofH-differential Lie algebras

X 7→ X ⊗H L.

The investigation of pseudoalgebras exploits this correspondence between Lie pseudoalgebras
and Lie algebras: ifX = H∗, then the natural filtration ofH∗ induces a filtration onH∗ ⊗H L
that makes it linearly compact.

Algebraic properties ofL are connected with those ofH∗ ⊗H L. The study of simple Lie
pseudoalgebras can then be done by means of Cartan’s classification theorem.

The linearly compact Lie algebraH∗ ⊗H L is calledLie algebra of annihilation operators, or
simplyannihilation algebraassociated toL, as it is related to the algebra of (quantum) annihila-
tion operators on the Fock space of quantum states.

Example 4.3. Let H = U(d). We have seen that theH-moduleH ⊗ d, endowed with the Lie
bracket

[1⊗ a, 1⊗ b] = (1⊗ 1)⊗H (1⊗ [a, b])− (1⊗ a)⊗H (1⊗ b) + (b⊗ 1)⊗H (1⊗ a),

is a Lie pseudoalgebra onH, denoted byW (d). Its annihilation algebraH∗⊗H W (d) ' H∗⊗ d
is then isomorphic to the Lie algebraWN of vector fields, whereN = dim d, thus recovering the
“short-hand” motivation forW (d).

The pseudoalgebraW (d) is the new phenomenon making the theory ofH-Lie pseudoalgebra
dramatically different from the classical theory of Lie algebras. It is a much less commutative
object than ordinary finite dimensional Lie algebra.

5. STRUCTURE OFL IE PSEUDOALGEBRAS

5.1. Primitive pseudoalgebras.Simple pseudoalgebras can be constructed from special in-
stances calledprimitive simple pseudoalgebras.

Example 5.1.S(d, χ) is theH-submodule of all elements
∑

i hi ⊗ ai fromW (d) satisfying

divχ(
∑

i

hi ⊗ ai) =
∑

i

hi(ai + χ(ai)) = 0,

whereχ : d → C is a trace form, i.e. a Lie algebra homomorphism.
ThenS(d, χ) is a subalgebra ofW (d) with respect to its Lie bracket, which makes it into a

simple Lie pseudoalgebra. Its annihilation algebra is isomorphic toSN .

Example 5.2. Lie pseudoalgebras on a free moduleHe of rank one are determined by the only
structure constantα ∈ H ⊗H such that

[e, e] = α⊗H e.

It can be easily showed thatα ∈ H⊗H is necessarily of the forme = r+s⊗1−1⊗s where
r ∈ d⊗ d is skew-symmetric.r ands must also satisfy some technical commutation relations.

When r is non degenerate, thendim d = 2n is an even number, andHe is denoted by
H(d, χ, ω). Its annihilation algebra is isomorphic to a central extension of the Lie algebraH2n,
which can be also viewed as the Poisson algebraP2n determined by the bi-vector fieldr on the
spaceH∗ of formal power series (i.e. regular functions).

Whenr has a one-dimensional kernel on whichs projects non trivially, thedim d = 2n+ 1 is
an odd number, andHe is denoted byK(d, θ). Its annihilation algebra is isomorphic toK2n+1.
Parametersχ, ω andθ are obtained as functions ofr ands.

All pseudoalgebra structures on freeH-modules of rank one can be realized as subalgebras of
W (d) via the embeddinge 7→ −r + 1⊗ s.
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5.2. Current pseudoalgebras. If L is aH-Lie pseudoalgebra, and̄H is a Hopf algebra contain-
ingH as a subalgebra, then we may construct a new Lie pseudoalgebra by takingL̄ = H̄ ⊗H L
with the Lie bracket induced by that ofL. This is called the current pseudoalgebra ofL, and is
denoted byCurH̄

H L.

Example 5.3. Let g be a Lie algebra, i.e. aC-Lie pseudoalgebra. Then for any Hopf algebra
H we can construct the current Lie pseudoalgebraCurH

C g = H ⊗ g. Its bracket is as given in
Example 4.2.

Let L̄ be a finite1 simpleH̄-Lie pseudoalgebra, and letH be the smallest Hopf subalgebra of
H̄ containing all structure constant ofL̄. ThenL̄ is a current pseudoalgebra of a finite simple
H-Lie pseudoalgebraL. Such simple pseudoalgebras of minimalH are either finite dimensional
simple Lie algebras or one of the primitiveH-Lie pseudoalgebrasW (d), S(d, χ), H(d, χ, ω),
K(d, θ).

5.3. Properties of the Lie pseudoalgebraW (d). The theory of pseudoalgebras is in a sense
parallel to that of ordinary Lie algebras. Main differences are exemplified byW (d). These are
its main properties:

— There are no non-zero commuting elements inW (d), i.e. if [a, b] = 0 thena = 0 or
b = 0. This is in contrast with ordinary Lie algebras, where every element commutes
with itself.

— The only subalgebras ofW (d) are simple.
— Every primitive simple pseudoalgebra embeds inW (d).
— This embedding is unique. The only automorphism ofW (d) and of its subalgebra is

identity.

6. REPRESENTATIONTHEORY OFPRIMITIVE SIMPLE L IE PSEUDOALGEBRAS

A representation of anH-Lie pseudoalgebraL is anH-moduleM endowed with anL-action,
i.e. with a map

L⊗M 3 a⊗m 7→ a ·m ∈ (H ⊗H)⊗H M

satisfying

[a, b] ·m = a · (b ·m)− σ12b · (a ·m),

where composition of actionsa · (b ·m) is understood as in (3.1) and (3.2).
Representations of a finiteH-Lie pseudoalgebraL are in bijection with (topologically) dis-

crete representations of the Lie algebraL̃ = d n(H∗ ⊗ L). In other words, a pseudoalgebra
representation ofL is the same as a representation of the corresponding annihilation algebra,
along with ad-module, i.e. anH = U(d)-module, structure, satisfying suitable compatibility
conditions.

There are explicit formulas to obtain the action ofL on the moduleM out of the action of the
annihilation algebra ofL, and vice versa. For instance, if{hi} and{xi} are dual bases ofH and
H∗, then one can recoverr ·m, r ∈ L,m ∈M as follows:

r ·m =
∑

i

(hi ⊗ 1)⊗H (xi ⊗H r).m.

Representations of finite solvable Lie pseudoalgebras follow closely the behaviour of representa-
tions of finite dimensional solvable Lie algebras: one has analogues of Lie’s and Engel’s theorem,
and every finite representation has a basis making the action upper triangular. The representation
theory of finite simple Lie pseudoalgebras is more involved.

1A pseudoalgebra is finite if the underlyingH-module is finitely generated.
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6.1. Representations ofW (d). The study of irreducible representations of primitive Lie pseudo-
algebras is done by studying the action of the corresponding annihilation algebras. Discrete
representations of Lie algebras of Cartan type were studied by A. Rudakov and I. Kostrikhin
[Rud1, Rud2, Ko]. However, the language of pseudoalgebras gives a different, and easier, ap-
proach to the classification of irreducible modules.

Here I list a few facts on (irreducible) representations of the pseudoalgebraW (d). Similar
statements are true for the other primitive pseudoalgebras. We will focus on distinguished ele-
ments, calledsingular vectors, whose stabilizer is maximal.

— EveryW (d)-module contains singular vectors.
— An irreducibleW (d)-module isH-linearly generated by its singular vectors.
— TheL̃ = H∗ ⊗H W (d)-action on singular vectors is particularly easy to describe.
— The space of singular vectors of a module containing no trivial submodule is a finite

dimensional vector space.
Let M be an irreducibleW (d)-module, andS ⊂ M be the finite dimensional vector space

of singular vectors. IfM is viewed as anL̃-module, thenS is invariant under the action of
L1 ⊂ L ⊂ L̃, and is stable under the action of the normalizerN of L0 in L̃. The action ofN
is easily described in terms of commuting actions ofd andL0/L1 ' glN . The representation of
W (d) obtained induced suchd ⊕ glN -action to all ofL̃ is isomorphic — as anH-module — to
the free moduleH ⊗ S, and possesses a canonical projection ontoV . A representation of this
kind is calledtensor module.

Theorem 6.1. TheW (d)-action on each singular vectors lying in an irreducible moduleM is
such that

(1⊗ ∂) · s =−
∑

i

(∂i ⊗ 1)⊗H ρ(∂∗i ⊗ ∂).s

+ (1⊗ 1)⊗H ((φ(∂) + ρ(ad ∂)).s− ∂s),

(6.1)

where∂ ∈ d, elements∂i constitute a basis ofd, and σ, ρ are commuting actions ofd and
gl(d) = glN .

Theorem 6.2.Every finite irreducibleW (d)-module is a quotient of a finite tensor moduleH⊗S,
where all elements fromS = 1⊗S ⊂ H⊗S are singular vectors, and thed⊕glN -representation
onS describing the action(6.1)ofW (d) on singular vectors is irreducible.

6.2. Representations of primitive pseudoalgebras of typeS,H,K. Theorem 6.2 applies to
all other primitive pseudoalgebras, the only difference being in the expression describing the
action on singular vectors. Indeed, the annihilation algebra of pseudoalgebras of typeS,H,K are
isomorphic2 to Lie algebras of typeS,H,K, and the argument described above extends verbatim
to these new cases. While the action ofS(d, χ) can be extended toW (d) — so that the action
of S(d, χ) on singular vectors can be recovered from (6.1) — that ofK(d, θ) andH(d, χ, ω) on
singular vectors from an irreducible module can be described as follows. Ifψ ∈ gl(d), let ψsp

denote its orthogonal projection tosp(d, ω). Then

Theorem 6.3. TheK(d, θ)-action on each singular vectors lying in an irreducible moduleM
is such that

(1⊗ e) · s =−
∑
ij

(∂i∂j ⊗ 1)⊗H ρ(xij).s

+
∑

i

(∂i ⊗ 1)⊗H (∂is− (φ(∂i) + ρ((ad ∂i)sp)).s)

− (1⊗ 1)⊗H (∂0s− (φ(∂0) + ρ(ad ∂0)).s)

− (∂0 ⊗ 1)⊗H ρ(E).s

(6.2)

2Actually, the annihilation algebra of a pseudoalgebra of typeH is a central extension ofH2n, but this fact plays
no major role.
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wheree is the freeH-generator ofH(d, χ, ω), elements∂i and∂i constitute bases ofd dual with
respect toω = dθ, andφ, ρ are commuting actions ofd and ofcspN = span〈E, xij〉.

Theorem 6.4. TheH(d, χ, ω)-action on each singular vectors lying in an irreducible module
M is such that

(1⊗e) · s = −
∑
ij

(∂̄i∂̄j ⊗ 1)⊗H ρ(xij).s

+
∑

i

(∂̄i ⊗ 1)⊗H (∂is− (φ(∂i) + ρ((ad ∂i + χ⊗ ∂i)sp)).s)

+ (1⊗ 1)⊗H (1⊗ φ(E).s)

(6.3)

wheree is the freeH-generator ofK(d, θ), χ : d → C is a trace form, elements∂i and ∂i

constitute bases ofd dual to each other with respect toω, ∂̄i = ∂i+χ(∂i), andφ, ρ are commuting
actions ofspN = span〈xij〉 and of the central extensiond′ = span〈∂i, E〉 of d determined by the
cocycleω.

A curious consequence of (6.1) is the following. A classification of singular vectors for the
action ofW (d) on a reducible tensor module shows that those not lying inS are vectors of the
form ∑

l

∂l ⊗ ρ(ekl).s− ∂k ⊗ s+ 1⊗ s0,

wheres ∈ 1, S ⊂ H ⊗ S, ands0 is uniquely detemined from knowledge ofk ands. Then,
substituting this into (6.1) and imposing it to be a singular vector gives:

(6.4) ρ(eab)ρ(ecd) + ρ(ead)ρ(ecb) = δbcρ(ead) + δcdρ(eab),

which is valid for allgl(d)-representationsρ for which the corresponding tensor module is re-
ducible. In other words the only irreducible representations ofgl(d) on which the quadratic
relations (6.4) are valid are those of the form

∧i
d∗ '

∧N−i
d.

In the same way, (6.3) and (6.2) leads to quadratic relations that are valid for irreducible
representations ofsp(d, ω) that occur as highest weight components of

∧i
d∗. They are

(6.5) ρ(xab)ρ(xcd) + all permutations ofa, b, c, d = 0,

wherexij = 1
2
(∂∗i ⊗ ∂j + ∂∗j ⊗ ∂i) are generators ofsp(d, ω).

6.3. An irreducibility criterion for tensor modules. Simple computations show that a tensor
moduleH ⊗ S is irreducible for all actions ofgl(d) (resp.sp(d, ω), csp(d, ω)) but finitely many.
In theW (d) case, for instance, representations ofgl(d) not giving rise to irreducible represen-
tations ofW (d) are all

∧
powers of the contragradient representationd∗. The corresponding

W (d)-modules are those3 appearing in the de Rham complex. Indeed, all modules of differential
forms possess an action of the Lie algebra of vector fields, which is nothing but the annihilation
algebra ofW (d). This translates the de Rham complex into a complex ofW (d)-modules, in
which the differentiald is aW (d)-homomorphism. In order to classify irreducible quotients of
non irreducible tensor modules, one needs to find singular vectors inH ⊗ S not lying inU . The
differentiald serve this purpose, in thatΩi/dΩi−1 is the only irreducible quotient of the tensor
moduleΩi = H ⊗

∧i
d∗.

3More precisely, they are “twists” of those modules, where twisting ad ⊕ gl(d)-module basically consists of
keeping the samegl(d)-action, while changing thed-action.
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7. DE RHAM COMPLEXES AND REPRESENTATIONTHEORY

The setting we have outlined forW (d)-representations extends to other primitive pseudoalge-
bras. In pretty much the same way as we have an exact sequence

Ω0(d) → Ω1(d) → ...→ Ωn(d)

of reducible tensor modules forW (d), all reducible tensor modules for the pseudoalgebras
K(d, θ) andH(d, χ, ω) fall in sequences that are generalizations of the de Rham complex.

For instance, one can build up an exact complex ofK(d, θ)-modules

Ω0(d) → Ω1(d)/I1 → ...→Ωn(d)/In →
→ Jn+1 → Jn+2 → ...→ J2n+1,

(7.1)

where
Ik = {θ ∧ η + ω ∧ γ|β ∈ Ωk−1(d), γ ∈ Ωk−2(d)}

and
Jk = {α ∈ Ωk(d)|θ ∧ α = ω ∧ α = 0}.

The modules showing up in (7.1) are the only reducible tensor modules ofK(d, θ). The above
complex is completely analogous to that introduced by M. Rumin [Rum] in the context of the
geometry of contact manifolds.

One can build up a complex̀a la Rumin in the case ofH(d, χ, ω) by taking

Ω0(d) → Ω1(d)/I1 → ...→ Ωn(d)/In ' Jn → Jn+1 → ...→ J2n,

whereIk = ω ∧ Ωk−2(d) andJk = {α ∈ Ωk(d)|ω ∧ α = 0}.
One learns a general principle, which also applies in some way to the case of super Lie pseudo-

algebras [KRud1, KRud2]: primitive Lie pseudoalgebras describe“geometric structures” on
formal manifolds. Reducible tensor modules for primitive Lie pseudoalgebras arise in families,
or rather complexes, which are often exact. These complexes are related to differential geome-
try, and are generalization of the de Rham complex, in the case of a particular choice of a (e.g.
symplectic or contact) geometry.

REFERENCES

[BDK1] B. Bakalov, A. D’Andrea, and V. G. Kac,Theory of finite pseudoalgebras, Adv. Math. 162 (2001),
1–140.

[BDK2] , Irreducible representations of primitive simple Lie pseudoalgebras, in preparation.
[BeDr] A. Beilinson and V. Drinfeld,Chiral algebras, preprint.
[Ca] E. Cartan,Les groupes de transformation continus, infinis, simples, Ann. Sci. ENS,26 (1909), 93–161.
[DK] A. D’Andrea and V. G. Kac,Structure theory of finite conformal algebras, Selecta Math. (N.S.)4

(1998), no. 3, 377–418.
[DuN1] B. A. Dubrovin and S. P. Novikov,Poisson brackets of hydrodynamic type(Russian), Dokl. Akad. Nauk

SSSR279(1984), no. 2, 294–297. English translation in Soviet Math. Dokl.30 (1984), no.2, 651-654.
[DuN2] B. A. Dubrovin and S. P. Novikov,Hydrodynamics of weakly deformed soliton lattices. Differential

geometry and Hamiltonian theory(Russian), Uspekhi Mat. Nauk44 (1989), no. 6(270), 29–98, 203.
English translation in Russian Math. Surveys44 (1989), no.6, 35–124.
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