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1. INTRODUCTION

One of the algebraic structures that has emerged recently in the study of the operator product
expansions of chiral fields in conformal field theory is that bfeaconformal algebrgK]. Recall
that this is a modulé. over the algebra of polynomiafS[d] in the indeterminaté, endowed
with a C-linear map
LRL—-CA®L, a®br la\b],
satisfying axioms similar to those of a Lie algebra (see [DK, K]).
Choosing a set of generatofs' } ;< of the(C[a]-moduleL we can write:

[a'a’] = ZQ? (A, D)a

whereQ?’ are some polynomials ik andd. The commutators of the corresponding chiral fields
{a*(2) }ses then are:

[a'(z ZQ (8., 0:)(a*(1)8(2 — w))]i—u -

Letting P/ (x,y) = Q7 (—z,z + y), we can rewrite this in a more symmetric form

[a'(2), @7 (w)] = Y B (92, 00)(a"(w)s(z — w)).

k
We thus obtain aitf = C[0]-bilinear map (i.e., a map df ® H-modules):

(1.1) L®L—-(HH)®y L, a®b— [axb
(whereH acts onH ® H via the comultiplication mag\(0) = 0 ® 1 + 1 ® 0), defined by

[a’ * a’] :Zp,jj(a®1,1®a) ®p a®.
k

Hence the notion of a-bracket|a,b] is equivalent to the notion of abracket[a * 0], as in-
troduced by Beilinson and Drinfeld [BD]. For example, the Virasoro conformal algébra-
C[0]¢ with [¢,¢] = (0 4 2\)¢ corresponds to the Virasorebracket

(1.2) () =(120-0®1)®cp (.

A Lie pseudoalgebras a generalization of the notion of a Lie conformal algebra for which
C|0] is replaced by the Hopf algeb¥é = U (d), whereo is a finite-dimensional Lie algebra and
U(0) is its universal enveloping algebra. It is defined as&module L endowed with ar -
bilinear map (1.1) subject to certain skew-symmetry and Jacobi identity axioms (see [BD, BDK]
and Section 2.2 below). The nampseudoalgebras motivated by the fact that this is an algebra
in a pseudotensor category, as introduced in [L, BD]. Accordinglyxtheacket is also called a
pseudobracket.

In [BDK] we gave a complete classification of finite (i.e., finitely generated ad-anodule)
simple Lie pseudoalgebras. In order to state the result, we introduce a generalization of the
Virasoro pseudoalgebra (1.2) defined for= C|[0), to the casé? = U(d), whered is any finite-
dimensional Lie algebra. This is the Lie pseudoalgébii@) = H ® 0 with the pseudobracket

(1®a)*x(1®b)]=1®1)%r (1®[a,b)+(b®1)®r (1®a) —(1®a) @y (1®Db).

It is shown in [BDK] that all subalgebras of the Lie pseudoalgébi@) are simple and, along
with current Lie pseudoalgebrésir g = H ® g with pseudobracket

(l®a)x(1@b)]=(1e1) @ [a,b],

whereg is a simple finite-dimensional Lie superalgebra, they form a complete list of finite simple
Lie pseudoalgebras.

The notion of a Lie pseudoalgebra is intimately related to the more classical notion of a differ-
ential Lie algebra. Lef be a Lie pseudoalgebra, and ¥ebe a commutative associative algebra
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with compatible left and right actions of the Hopf algelifa Then we define a Lie algebra
Ay L =Y ®y L with the obvious leftf-module structure and the following Lie bracket:

[z ®@ma,y®pb] = Z (zfi)(yg:)) @mci, i [axb]= Z (fi ® 9i) Qm ;.

The main tool in the study of Lie pseudoalgebras and their representationsaisriindation
algebraAx L, whereX = H* is the commutative associative algebra dual to the coalg€bra
In particular a module over a Lie pseudoalgebria the same as a “conformal” module over the
extended annihilation Lie algebvax .4 x L (see [BDK] and Section 2.3 below).

The annihilation algebra of the Lie pseudoalgebr&o) turns out to be isomorphic to the
linearly compact Lie algebra of all formal vectors fields on a Lie group whose Lie algebra is
This leads to a formalism of pseudoforms, similar to the usual formalism of differential forms,
which allows us to define three series of subalgebi@s x), H (2, x,w) and K (2, 6) of W (?).

The annihilation algebras of the simple Lie pseudoalgebras), S(o, x,w), H(?, x,w) and
K (0, 0) are isomorphic to the four series of Lie—Cartan linearly compact Lie algébrasSy,
Py (which is an extension aff ; by al-dimensional center) andl y, whereN = dim 0.

However, the Lie pseudoalgebrés, x), H (0, x,w) and K (2, 0) depend on certain parame-
tersy, w andé due to inequivalent actions ofon the annihilation algebra [BDK]. It is shown
in [BDK] that these series of subalgebras along with their current generalizations, associated to
subalgebras df, exhaust all subalgebras @f (9).

The main goal of the present paper is to give a complete list and an explicit construction of all
irreducible finite modules over the Lie pseudoalgeltg®) andS (v, x). Representation theory
of the seried7 (0, x,w) and K (9, #) will be treated in sequel papers.

The simplest example of a nontrivilll (9)-module is the modul@°(?) = H (of rank1 over
H) given by:

(fRa)xg=—(f®ga)@y1l, f,geH,a€D.
The corresponding module over the annihilation Lie algebra is just the representation of the Lie
algebra of all formal vector fields in the space of formal power series. As in the latter case, the
W (0)-moduleQ(d) is the first member of the pseudo de Rham complex

0—Q%0) % Q') S - L V),

whereQ"(d) = H ® Q", Q" = A\"0*, andN = dim ? (see Section 5.2).
The W (0)- modulesQ”( ) of pseudodifferential forms are special casedevisor modules
T7(U) = H ® U overWW(0), associated to anyt 9-moduleU, given by:

13 (10d)+(10u)=(101)0y (1® (add;)u Z i (1® elu)

—(1®0)®@r (1®u),

where{d;} is a basis ob ande! 9, = §/0; (see Section 4.3). Thed*(d) = 7 (Q").
Furthermore, for a finite-dimensionadmoduleIl we define thewisting of 7 (U) by IT by
T(II,U) = H® (II®U) and by adding the terfl ® 1) ® 4 (1 ® d;u) in the right-hand side of

(1.3). Then we have thE-twisted pseudo de Rham complexidf(2)-modules:

0 — 7(IL, Q%) 2 7(1, QY &% ... 40, 7 (11, V)

(see Section 5.3).
The first main result of the present paper (Theorem 6.6) states that:

(a) TheW (v)-module7 (I, U) is irreducible if and only ifll andU are irreducible and/
is not isomorphic to one of thgl o-modules?” = A" 0* for n > 1;

(b) TheW (v)-submodulel7 (11, ™) of 7 (IT, 2"*') is irreducible, provided thdt is irre-
ducible, forall0 <n < N —1;
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(c) The irreduciblél (v)-modules listed in (a) and (b) exhaust all irreducible finit€o)-
modules.

The corresponding result fof(0, x) is Theorem 7.6. We also describe the structure of submod-
ules of thelV(9)- and.S (0, x)-modules7 (II, ") (Lemmas 6.12 and 7.10).

As in the Lie algebra case, the main part of the problem is the computation of singular vectors.
However, in the Lie pseudoalgebra framework the calculations are much simpler. In particular,
we obtain simpler and more transparent proofs of the results of Rudakov [R1, R2].

In the case when = ko is 1-dimensional, the Lie pseudoalgebi& ko) is isomorphic to the
Virasoro pseudoalgebrdir with the pseudobracket (1.2). Now Theorem 6.6 states that every
irreduciblelV (kd)-module is of the forn¥ (I1, k), wherell is an irreduciblékd-module andk
is the trivial gl,-module. The moduleH arel-dimensional ovek and are uniquely determined
by the eigenvalue € k of 0. Thus we recover the classification result of [CK].

Note that the category of representations of a Lie pseudoalgebra is not semisimple in general,
i.e., complete reducibility of modules does not hold. To study extensions of modules, as well as
central extensions and infinitesimal deformations of Lie pseudoalgebras, one definesology
of Lie pseudoalgebras (see [BKV, BDK]). The cohomology of the Virasoro conformal algebra
Vir was computed in [BKV]. The cohomology &F (0) and its subalgebras will be computed in
a future publication.

2. BASIC DEFINITIONS

In this section, we review some facts and notation from [BDK], which will be used throughout
the paper. We will work over an algebraically closed fieldf characteristi®. Unless otherwise
specified, all vector spaces, linear maps and tensor products will be consideréd vewill
denote byZ, the set of non-negative integers.

2.1. Preliminaries on Hopf Algebras. Let H be a Hopf algebra with a coprodudt, a counit
¢, and an antipod&'. We will use the following notation (cf. [Sw]):

(2.2) A(h) = hay ® h), heH,
(2.2) (A ®id)A(h) = (i[d®@A)A(R) = ha)y ® hiz) @ h),
(2.3) (S®@id)A(h) = h—1) ® h), eftc.

Note that notation (2.2) uses coassociativityaf The axioms of antipode and counit can be
written as follows:

(2.4) h—1yh2) = hayh(-2) = €(h),

(2.5) ehm)he) = hwelhe) = h,

while the fact thatA is a homomorphism of algebras translates as:
(2.6) (f9)y ® (f9)e) = fugn) @ f9e), fi9 € H.
Equations (2.4) and (2.5) imply the following useful relations:

(2.7) h—nyh@) @ h@) =1 h = hayh—g) ® h).

Let X = H* := Homy(H, k) be the dual off. Recall thatH acts onX by the formula
(h,f € H,x,y € X):

(2.8) (hx, f) = (z,S(h)f),
so that
(2.9) h(zy) = (hayz)(h2)y)-

Moreover,X is commutative wheit/ is cocommutative. Similarly, one can define a right action
of H on X by

(2.10) (zh, f) = (x, fS(h)),
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and then we have

(2.11) (xy)h = (xhq))(Yh)-
Associativity of H implies thatX is an H-bimodule, i.e.,
(2.12) flxg) = (fr)g,  figeH, veX

Throughout the papef/ = U(0) will be the universal enveloping algebra of a finite-dimensional
Lie algebrap. In this case,

(2.13) Ala)=a®1+1®a, S(a)=—a, a€;
henceA is cocommutative and? = id. SetN = dim d and fix a basi§9;},—1_x of 0. Then
(2.14) o) =9l 9 Jiy) - - -y I =(iy,...,in) € ZY,
is a basis offf (similar to the Poinc@&—Birkhoff-Witt basis). Moreover, it is easy to see that
(2.15) Ay =Y @™,

J+K=I

For a multi-index! = (iy,...,iy), let|/| =i, + --- 4+ iy. Recall that the canonical increasing
filtration of H = U(9) is given by
(2.16) F? U(d) = span, {0 | |I| < p}, p=0,1,2,...

and does not depend on the choice of basig. drhis filtration is compatible with the structure
of Hopf algebra (see, e.g., [BDK, Section 2.2] for more details). We have:H = {0},
FPH=k,F'H=koo.

We define a filtration off ® H in the usual way:

(2.17) F'HeH)= > FHoFH.

i+j=n
The following lemma, which is a reformulation of [BDK, Lemma 2.3], plays an important role
in the paper. (This lemma holds for any Hopf algebfg

Lemma 2.1. (i) The linear maps
HoH—-HQH, [feg—(fol)A(g)

and
HeoH—H®H, f@gr (1® f)Ag)

are isomorphisms of vector spaces. These isomorphisms are compatible with the fi{&atit)n
(i) For any H-moduleV/, the linear maps

HRV - (HeH)®yV, h@v—(h®l)®yuv
and
HeV - (H®H)®yV, h@v— (1®h) @
are isomorphisms of vector spaces. In addition, we have
(FPHRk) g V=F'HRH) gV =(keF"H) oyV.

Let us define elements; € X by (z;,0)) = §/, where, as usualj = 1if I = J and
6{ = 0if I # J. Then (2.15) implies jzx = z s, x; hence,

(2.18) rr = (2 (™) I=(i1,...,iy) € ZY,
where
(2.19) T = x.,, g =(0,...,0,1,0,...,0), i=1,...,N.
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Therefore, X can be identified with the rin®@y = k[[t!,...,t"]] of formal power series iV
indeterminates. We have a ring isomorphism
(2.20) p: X = On, ') =t plzr) =tr,

wheret; is given by a formula similar to (2.18).

LetF, X = (F” H)* be the set of elements frofd = H* that vanish orf”” H. Then{F, X'}
is a decreasing filtration ok such thatt ; X = X, X/Fy X ~ k, Fy X/F; X ~ ?*. Under
the isomorphism (2.20), the filtratiof¥', X } becomes

(2.21) F,On = (..., t")P" Oy, p=—-1,0,1,....
This filtration has the following properties:
(2.22) (F, X)F,X)CFpp X, oF,X)CF, X, (F,X)0CF,1X.

We can consider’ as elements df*; then{z'} is a basis ob* dual to the basi$d;} of 0, i.e.,
(', 0;) = &,

We define a topology ok by considering F,, X'} as a fundamental system of neighborhoods
of 0. We will always consideX with this topology, whileH andd with the discrete topology.
Then X is linearly compact (see [BDK, Chapter 6]), and the multiplicationko&ind the (left
and right) actions od on it are continuous (see (2.22)).

Example 2.1. Wheno is commutative, its left and right actions dhy coincide and are given
by d; — —0/ot' fori =1,... N.

The following lemma is well known (see also [Re, Section 6]).

Lemma 2.2. Letc}; be the structure constants ofin the basis{9; }, so that[0;, 9;] = >~ ;0.
Then we have the following formulas for the left and right actions oh X :

! = =7 — Z ¢ 2F mod F; X,

k<i

0, = —0) + Z ¢ a¥ mod F; X .

k>i

In particular,

Ot — 290, = — Z czkxk mod F; X
k

is the coadjoint action ob on?* ~ Fy X/ F; X.

Proof. We will prove the first equality. The second one is proved in the same way, while the
third follows from the other two. If we expregsz’ in the basig{zx } of X, we have

&-xj = Z AT < Qg = <81x3,8(K)>,
Kezl

whered™) are from (2.14). Since we are interestedjm’ mod F; X, we need to computey
only for | K| < 1, i.e., only foro) = 1 or 9%) = 9. Using (2.8), we obtain
(027, 1) = — (a7, 0;) = =07,
(0:27, 0) = — (27, 0;0,) = — (a7, 0h0;) — (27, [0;,04]) .
If i < k, thend; 0y is (up to a constant) an element of the basis (2.14)@&agd # 9;; hence,

(x9,0,0r) = 0. If i > k, then by the same argumefat’, 9,0;) = 0, while (a7, [0;, dk]) = ;.
This completes the proof. OJ
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2.2. Pseudoalgebras and Their Representationdn this subsection, we recall the definition
of a pseudoalgebra from [BDK, Chapter 3]. L&be a (left) H-module. Apseudoproducbn A
is an H-bilinear map

(2.23) ARA—- (H®H)®@y A, a®br— axb,

where we use the comultiplicatiah: H — H ® H to define(H ® H) @y A. A pseudoalgebra
is a (left) H-module A endowed with a pseudoproduct (2.23). The name is motivated by the
fact that this is an algebra in a pseudotensor category, as introduced in [L, BD] (see [BDK,
Chapter 3]).

In order to define associativity of a pseudoproduct, we extend it fiamA — H*? @4 Ato
(H*? 95 A)®@ A — H®¥ @y Aand toA ® (H®?> @y A) — H®® @y A by letting:

(2.24) (h@pa)«b=>Y (h®1)(A®id)(g)@uci,

(2.25) ax(h@yb) =) (1®h)(idoA)(g) @ ¢,

whereh € H*?, a,b € A, and

(2.26) axb=> g®yc  With g € H? ¢ € A
Then the associativity property is given by the usual equality{(iif @ A):
(2.27) (axb)xc=ax*(bxc).

The main objects of our study are Lie pseudoalgebras. The corresponding pseudoproduct is
conventionally callegpbseudobracketnd denoted by * b]. A Lie pseudoalgebrés a (left) H-
module equipped with a pseudobracket satisfying the following skew-commutativity and Jacobi
identity axioms:

(2.28) bxal =—(0c ®pyid)[ax?],
(2.29) [[axb]xc]=[ax*x[bxc]] — ((6 ®id) ®g id) [b* [a * c]] .

Here,o: H ® H — H ® H is the permutation of factors, and the compositiffas« b] * |,
la * [b* c]] are defined using (2.24), (2.25).

Remark2.1 Let A be an associative pseudoalgebra with a pseudopraductDefine a pseudo-
bracket onA as the commutator

(2.30) [axb] =a*xb— (0 @yid)(bxa).
Then, with this pseudobracket,is a Lie pseudoalgebra.

Example 2.2. For anyk-algebraA, let its associatedurrent H-pseudoalgebra b€ur A =
H ® A with the pseudoproduct

(2.31) (f®a)x(g®b)=(f®g)®n (1®ab).
Then theH -pseudoalgebr&ur A is Lie (or associative) iff th&-algebraA is.

The definitions of modules over Lie (or associative) pseudoalgebras are obvious modifications
of the above. Amoduleover a Lie pseudoalgebra is a left H-module V' together with an
H-bilinear map

(2.32) LV - (H®H)®gV, a®uv—a*xv
that satisfiesd,b € L,v € V)
(2.33) [axbl*v=ax(bxv)— ((c®id) @y id) (b* (a *xv)).

An L-moduleV will be calledfiniteif it is finite (i.e., finitely generated) as a-module. The
trivial L-module is the sef0}.

A subspacél C V is anL-submoduleéf it is an H-submodule and. « W C (HR H) @y W.
(Here L x W is the linear span of all elementst w, wherea € L andw € W.) A submodule
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W c V is calledproperif W # V. An L-moduleV is irreducible (or simplg if it does not
contain any nontrivial propek-submodules and « V' # {0}.

Let U andV be twoL-modules. Amags: U — V is ahomomorphisnof Z-modules if3 is
H-linear and it satisfies

(2.34) ([d®@id) @y B)(a*u) = ax* u), acl,uelU.

Remark2.2. (i) Let V' be a module over a Lie pseudoalgelirand letlV be anH-submodule
of V. By Lemma 2.1(ii), for each € L, v € V, we can write

a*v:Z(a(U@)l)@HU’[, v eV,

N
ezl

where the elements, are uniquely determined byandv. ThenWW C V' is anL-submodule iff
it has the property that alf, € W whenever € . This follows again from Lemma 2.1(ii).
(if) Similarly, for eacha € L, v € V, we can write

a*sz(l@@a))@HU}', v eV,

Iezy
andW is anL-submodule iffv] € W whenever € .

Example 2.3. Let L be a Lie pseudoalgebra, and Etbe anZ-module, which is finite di-
mensional(over k). Then the action of. on V' is trivial, i.e., L «+ V' = {0}. Indeed, since
dim H = oo, every element € V is torsion, i.e., such thdtv = 0 for some nonzerad € H.
Then the statement follows from [BDK, Corollary 10.1].

2.3. Annihilation Algebras of Lie Pseudoalgebras.For a Lie H-pseudoalgebrd, we set
A(L) = X ®y L, where as befor& = H*. We define a Lie bracket ofi = A(L) by the
formula (cf. [BDK, Eqg. (7.2)]):

(235) [z®ma,y®ybl = Z (xfi)(yg:)) @mci, i [axb]= Z (fi ® gi) ®m ci.

Then/L is a Lie algebra, called trennihilation algebraof L (see [BDK, Section 7.1]). We define
a left action ofH on L in the obvious way:

(2.36) h(xr ®y a) = hx ®p a.

In the case{ = U (0), the Lie algebra acts onl by derivations. The semidirect sufh= 2 x £
is called theextended annihilation algebra

Similarly, if V' is a module over a Lie pseudoalgeldrawe let A(V) = X ®y V, and define
an action ofC = A(L) on A(V) by:

(2.37) (z @y a)(y ®uv) = Z (xfi)(yg:) @m vy, If axv= Z (fi ® gi) @n vi -

We also define art/-action on.A(V) similarly to (2.36). ThenA(V) is an £-module [BDK,
Proposition 7.1].

When L is a finite H-module, we can define a filtration of as follows (see [BDK, Sec-
tion 7.4] for more details). We fix a finite-dimensional vector subspbg®f L such that
L = HL,, and set

(2.38) F,L={s®@pacl|zeF, X, ac Ly}, p>—1.
The subspaces, £ constitute a decreasing filtration 6f satisfying
(2.39) F,LF, L] CFpp e L, F,L)CF, 1L,

where/ is an integer depending only on the choicelgf Notice that the filtration just defined
depends on the choice &f, but the topology it induces does not [BDK, Lemma 7.2]. We set
L,=F,.L,sothafl,, L,| C L,,. In particular,C, is a Lie algebra.
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We also define a filtration of by letting F_; L=LCL, F, L= F, L for p > 0, and we set
E = FPHL An £-moduleV is calledconformalif everyv € V is killed by some’,; in other

words, if V is a topologicalC-module when endowed with the discrete topology.
The next two results from [BDK] will play a crucial role in our study of representations (see
[BDK], Propositions 9.1 and 14.2, and Lemma 14.4).

Proposition 2.1. Any modulel” over the Lie pseudoalgebra has a natural structure of a
conformalZ-module, given by the action efon V" and by

(2.40) (r®@pga)-v= Z (z,S(figi-1)) gipyvi, 1 axv= Z (fi ® 9;) @m v
forac L,xe X,veV.

Conversely, any conformal-moduleV has a natural structure of aii-module, given by

(2.41) axv=> (S(@)®1)@n ((z;®4a)-v).

Ier
Moreover,V is irreducible as an.-module iff it is irreducible as ar-module.

Lemma 2.3. Let L be a finite Lie pseudoalgebra andbe a finiteL-module. Forp > —1 — ¢,
let

ker,V={veV|L,v=0}

so that, for exampléer_;_,V = ker V andV = | Jker, V. Then all vector spacdsr, V/ ker V
are finite dimensional. In particular, iker V' = {0}, then every vector € V' is contained in a
finite-dimensional subspace invariant undgy.

3. PRIMITIVE LIE PSEUDOALGEBRAS OFTYPEW AND S
Here we introduce the main objects of our study: phienitive Lie pseudoalgebrad’ (v) and
S(9, x) and their annihilation algebra®’ andsS (see [BDK, Chapter 8]).

3.1. Definition of W (d) and S(,x). We define the Lie pseudoalgeblé(o) as the freeH-
moduleH ® 0 with the pseudobracket

[(f@a)+(g@b)] = (f©g)@u (1©]a,b])

—(f®ga) @y (1@b) + (fo®@g)@u (1®a).
There is a structure of & (0)-module onH given by:
(3.2) (f®a)xg=—(f®ga)@u1.

Let x be a trace form on, i.e., a linear functional frord to k that vanishes ofv, d]. Define
an H-linear mapdiv¥: W(d) — H by the formula:

(3.1)

(3.3) divX (Z h; ® 01') = Z hi(9; + x(95))
Then
(3.4) S, x) :=={s e W(d) | div¥s =0}

is a subalgebra of the Lie pseudoalgebrgo). It was shown in [BDK, Proposition 8.1] that
S(0, x) is generated ovel by the elements

(3.5) Sap := (a+ x(a)) @b — (b+ x(b)) ®a—1® [a, b for a,bed.

Pseudobrackets of the elemensjgs are explicitly calculated in [BDK, Proposition 8.1]. Notice
that whendimd > 2, S(9, x) is not free as arf-module, because the elemegjs satisfy the
relations [BDK, Eq. (8.23)].
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Remark3.1 If dimd = 1, thenS(9, x) = {0}. If dimd = 2, the Lie pseudoalgebr&(v, x) is
free as arff-module and it is isomorphic to a primitive Lie pseudoalgebra of tysee [BDK],
Section 8.6 and Example 8.1).

Irreducible modules over primitive Lie pseudoalgebras of tipwill be studied in a sequel
paper. From now on, whenever we consider the Lie pseudoalg&brg), we will assume that
dimd > 2.

3.2. Annihilation Algebra of W (0). LetW = A(W (0)) be the annihilation algebra of the Lie
pseudoalgebrd/ (v). SincelW (v) = H ® 2, we havelV = X @y (H ® ) = X ® 0, SO we can
identify YV with X ® 9. Then the Lie bracket (2.35) W becomesi{,y € X, a,b € 0):

(3.6) [T ®a,y®b =2y la,b] —x(ya) @b+ (zb)y ® a,

while the left action (2.36) off on W is given by:h(z ® a) = hxz ® a. The Lie algebra acts
on W by derivations. We denote By the extended annihilation algetya< W, where

(3.7) 0,r®al =0x®a, 0,a €0, xe€X.

We choosel, = k ® » as a subspace &% (d) such thatiV'(v) = HL,, and we obtain the
following filtration of W:

(3.8) W,=F,W=F,X®yLi=F,X®0.

This is a decreasing filtration of/, satisfyingV_; = W and (2.39) for/ = 0. Note that
W/Wy ~k®0~0dandW,/W, ~0*®0.

Let us fix a basi9;},—1.n of 0, and letz’ € X be given by (2.19). We can view' as
elements ob*; then{z'} is a basis ob* dual to the basi§d;} of 2. Lete! € gld be given by
elOp = &) 0;; in other words¢! corresponds t6; ® 27 under the isomorphismid ~ d ® v*.

Lemma 3.1. In the Lie algebrayV = X ® 0, we have the following
(27 ® 0,1 ® 0] = =61 ®0; mod W,
(27 ® 05, 2" @ Ok = 6L 27 @ O —5%@’ ® 0; mod W;.
Proof. This follows from (3.6) and Lemma 2.2. OJ
Corollary 3.1. Forz € Fy X, a € 0, the map
r®a mod W) — —a® (r mod Fy X)

is a Lie algebra isomorphism froi,, /)W, tod ®0* ~ gl0. Under this isomorphism, the adjoint
action of W, /W, on W /W, coincides with the standard action @fd ond.

Proof. The above map takes ® d; mod W, to —e! € gl. O

The action ofl¥(9) on H induces a corresponding action of the annihilation algébra-
AW (0)) on A(H) = X given by (2.37):
(3.9) (r®@a)y = —x(ya), x,y€X, ac€d.
Recall from Section 2.1 that we have a ring isomorphismX — Oy, which is compatible with
the corresponding filtrations and topologies (see (2.20), (2.21)). Siacks onX by continuous

derivations, the Lie algebrd’ acts onX by continuous derivations. Hence, (3.9) defines a Lie
algebra homomorphism

(3.10) ©: W — Wy suchthat o(Ay) = ¢(A)p(y) for Ae W, ye X,

whereWWy is the Lie algebra of continuous derivationsf;.
There is a natural filtration df’y given by

(3.11) F,Wy = {D € Wy | D(F,,Oy) C Fpy, Oy foralln}, p>-1.
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Explicitly, by (2.21), we have

N
(3.12) F, Wy = {; fi%
The filtration (3.11) has the following important property fore Wy:
(3.13) [D,F,Wy] CFpn Wy <= DeF,Wy.
Proposition 3.1. (i) We have
plx®a) =p(@)p(l®a), reX,a€n,

fi € FpON} :

@(1@81):—% mod F()WN, Z:1,,N

(i) The homomorphisifB.10)is an isomorphism ang(W,) = F, Wy for all p > —1.

Proof. Part (i) follows from (3.10) and Lemma 2.2. Part (ii) follows from (i) and (3.8), (3.12).
O

The adjoint action of the Euler vector field
Al
3.14 E::§ t'— e FoW
( ) - ot € FoWn

decomposedl/y as a direct product of eigenspadés;.; (j > —1), on which the action ot is
multiplication byj. One clearly has:

(3.15) F, Wy = H Wiy FpWn/Fpa Wy = Wiy,

Jjzp
Notice thatiVy,, = ker(ad £) is a Lie algebra isomorphic tgl,, and each spacl’y., is a
module oveiVy .

Definition 3.1. The preimage = ¢ !(F) € W, of the Euler vector field (3.14) under the
isomorphism (3.10) will be called theuler elemenbf W.

By Proposition 3.1 and Corollary 3.1, we have:

N
(3.16) E=-) 2'®0 mod W, ie, modW;=Id€ glo~Wy/W.
=1
3.3. The Normalizer N,y. In this subsection, we study the normalizenf, (p > 0) in the

extended annihilation algebd. These results will be used later in our classification of finite
irreduciblel? (2)-modules.

We denote byd the adjoint action od on itself (or onH = U(0)), and bycoad the coadjoint
action ofo on X = H*. Foro € 0, we will also considend 0 as an element gfl 0. Note that,
by (2.8), (2.10), we have

(3.17) (coad 0)z = 0x — x0, 0€ev, reX.
Sincead 0 preserves the filtration (2.16) d¥, it follows thatcoad 0 preserves the filtration
{F, X} of X.
Lemma 3.2. (i) For 0,a € v andx € X, the following formula holds i
0+1®0,x®al = (coad )z ®@a+x® [0,a.

In particular, the adjoint actionob +1® 0 € WonW c W preserves the filtratiogV, }.
(i) The adjoint action ob+1®0 onW /W, coincides with the standard action afl 0 € gl
ond ~ W/W.
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Proof. Part (i) follows from (3.6)—(3.8), (3.17), and the above observationdhat 0 preserves
the filtration{F, X'} of X. Part (ii) is obvious from (i). O

It is well known that all derivations ofVy are inner. SincéV ~ W,y ando acts on)V by
derivations (see (3.7)), there is an injective Lie algebra homomorphism

(3.18)  ~4:0— W suchthat [0,A] = [v(d),4], H€cdoCW,AeWCW.

Definition 3.2. For 9 € 0, letd = 9 —7(0) € W, where~ is given by (3.18). Led =
(id —’y)(b) C W andN,y = 54— Wy CW.

Proposition 3.2. (i) The space is a subalgebra oW centralizingW, i.e., [0, W] = {0}. The
mapd — 0 is a Lie algebra isomorphism fromto 2.

(if) The spaceVyy is a subalgebra ofV, and it decomposes as a direct sum of Lie algebras,
Ny =0 B W,.

Proof. It follows from (3.18) that[g, Al =0foralld € v, A€ W. Thenforo, 0’ € v, we have
0,01 =10 +7(9).9' +~(9)] = 0.9 + 1(9),4(9)]

which implies[5, 5’] = [0, 0] sincev is a Lie algebra homomorphism. This proves (i). Part (ii)
follows from (i) and Definition 3.2. O

Lemma 3.3. For everyd € 0, the elemend + 1 ® 9 — 0 € w belongs toW,. Its image in
Wo/Wi coincides withad 0 € glo ~ Wy /W.

Proof. Firstnote thab + 1® 9 — 0 = ~v(0) +1® 0 belongs taV. By (3.18) and Lemma 3.2(i),
the adjoint action of this element drV preserves the filtratiog)V, }. Therefore, by (3.13),
7v(9) + 1 ® 9 belongs toW,. By (3.18) and Lemma 3.2(ii), its image W, /W, coincides with
ad 0. O

Proposition 3.3. For everyp > 0, the normalizer ofV, in the extended annihilation algeb@
is equal tO./yZV. In particular, it is independent gf. There is a decomposition as a direct sum of

subspacesyV = 0 & Ny.

Proof. First, to show thatV = 2 @ Ay, we have to check thaty = 0 0 @ W) is a direct
sum of subspaces. This follows from Definition 3.2, Lemma 3.3 and the fackithatdo & W,
W = (k ®0) & W, as vector spaces.

Next, it is clear thatV, normalizesV, , becaus&®, W,| = {0} and)W,, W,] € W,. Assume
that an elemend € © normalizes)V,. By (3.7), we obtain that in this cag¥F, X) C F, X.
However, one can deduce from Lemma 2.2 #@t, X') = F,_; X, which is strictly larger than
F, X. This contradiction shows that the normalized§ is equal taVyy. O

In order to understand the irreducible representations,9f we need the following lemma,
which appeared (in the more difficult super case) in [CK, Erratum].

Lemma 3.4. Let g be a finite-dimensional Lie algebra, and i@t C g be either a simple Lie
algebra or al-dimensional Lie algebra. Let be a subspace of the radical @f stabilized by
ad go and having the property that, ] = 0 for a € I impliesa = 0. Then[ acts trivially on
any irreducible finite-dimensionatmodulel’.

Proof. By Cartan—Jacobson’s Theorem (see, e.g., [Se, Theorem VI.5.1]), @veryad g acts
by scalar multiplication of'. LetJ = {a € I | a(V') = 0}. Then|go, I] C J.

Now, if g, is simple, then/ is ag,-submodule of and, by complete reducibility, = .J & J+
asgo-modules for some complemerit. Hence /gy, J1| = 0, soJ+ = 0 andl = J.

If insteadg, = ke is 1-dimensional, thene, I] C J. If J # I, thenade: I — J is not
injective, which is a contradiction. We conclude thiat 1. OJ
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An N,y,-moduleV will be calledconformalif it is conformal as a module over the subalgebra
Wy C Ny, i.e., if every vectow € V' is killed by someW,,.

Proposition 3.4. The subalgebraV, c N,y acts trivially on any irreducible finite-dimensional
conformal Ny,-module. Irreducible finite-dimensional conformysl,-modules are in one-to-
one correspondence with irreducible finite-dimensional modules over the Lie alygpray; ~

0 D glo.

Proof. A finite-dimensional vector spadé is a conformal\;,-module iff it is an/Nj,-module
on whichW, acts trivially for somep > 0, i.e., iff it is a module over the finite-dimensional Lie
algebrag = Ny /W, =0 @ Wy /W,).

We will apply Lemma 3.4 forl = W;/W, andg, = k€ mod W, C W,/W,, where
E € W is the Euler element (see Definition 3.1). Note that Rad g and[€, I] C I, because
Wi, W;] € Wiy, for all 4, 5. The adjoint action of is injective onI, becaused E is injective
onFy Wy/F,Wx = f;} W (see (3.15)). We conclude thatacts trivially on any finite-
dimensional conformalN,y-module. Hence, we can take= 1. Theng = 2 & (W,/W,) ~
2 @ glo, sinced ~ v andW,/ W, ~ glo. O

3.4. Annihilation Algebra of S(?,x). Assume thatV = dimd > 2. In this subsection, we

study the annihilation algebr& = A(S(0,x)) := X ®g S(9,x) of the Lie pseudoalgebra

S(0, x) defined in Section 3.1. Our treatment here is more detailed than in [BDK, Section 8.4].
We choose

(3.19) Lo = spang {sa | a,b € 0} C S(0, )

as a subspace such tht&p, x) = H Ly, where the elements,, are given by (3.5). We obtain a
decreasing filtration of:

(320) Sp = Fp+1 S= Fp+1 X QH LOa p Z _27

satisfyingS_, = S and (2.39) for = 1. Then[S,,,S,] C S, for all n, p.
The canonical injection of the subalgelfé, x) into W (d) induces a Lie algebra homomor-

phism.: S — W. Explicitly, we have:
( ) L<$®H8):thi®ai€WEX®0
3.21
for z€X,s=Y h®decSOx)CWO) =H®?.

Here, as before, we identity) = X @y W (d) with X ® 0.
We define a magiv*: W — X by the formula (cf. (3.3)):

(3.22) aiv* (3 yi @) = 3 5l + x(0)).

It is easy to see that

(3.23) div¥[4, B] = A(div¥ B) — B(divX 4), A, BeW,
where the action ofV on X is given by (3.9). This implies that

(3.24) S={AeW]| divi A =0}

is a Lie subalgebra ofV. It was shown in [BDK, Section 8.4] tha is isomorphic to the Lie
algebra of divergence-zero vector fields

N

=, 0 of;
(3.25) Sy = {Zl fiz € Wi ‘ Zl = 0} .

Lemma 3.5.1f N = dimd > 2, the map(3.21)is an embedding of Lie algebrasS — S.
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Proof. It follows from (3.3), (3.21) and (3.22) that
x(div¥ s) = div¥u(z @y s), reX,seW(@).

Therefore,(S) is contained inS. Next, note that forV > 2, S is isomorphic taSy by [BDK,
Theorem 8.2(i)]. It is well known that the Lie algeb$a is simple; hence$ is simple. Since
is a nonzero homomorphism, it must be injective. OJ

Remark3.2 WhenN = dim 0 = 2, the Lie algebra is isomorphic ta?,, which is an extension
of S, = H, by al-dimensional center (cf. Remark 3.1). In this case, the homomorphism (3.21)
has al-dimensional kernel.

We will prove in Proposition 3.5 below that, in faet,S) = S. Recall that we have a Lie
algebra isomorphismy: W = Wy, given by (3.10). However, although ~ Sy C Wy, the
imagep(S) C Wy is not equal toSy in general. Instead, we will show that the imagesGf)
andSy coincide in the associated graded algebré/af (see Proposition 3.6 below).

Lemma 3.6. For everyp > —1, we have
O(SNF,W) C (SyNF,Wy) +F, Wy.

Proof. Take an elementt = ) y; ® 0, € F, W; then eachy, € F, X. By Proposition 3.1,
we havep(A4) = Y fie(l1 ® 9;), wheref; = ¢(y;) € F,On. Sincep(l ® 9;) = —d/ot"
mod FoWy, we havep(4) = =3 f;9/0t" mod F, 1 Wy. It follows from (3.22) and
Lemma 2.2 thap(div¥ A) = — 3" 9f;/0t" mod F,Oy. If A€ SNF, W, thenY_ 0f; /0t =
0 mod F,Opy. Then there exist elemenyfs € F,Op such thatfz = fi mod Fpiy ON
andY" 0f;/0t' = 0. This means thatl := — Y f,0/0t' € Sy NF, Wy andp(A) = A
mod F,y1 Wi ]

Consider the associated graded/df

(3.26) grw = @ gr, W, gr, W =F,W/F, . W.

p=-1

Note that, by (3.8), we havg, W = (gr, X)®d. Similarly, we haverr, Wy = SN (gr, On)0/0t".
The mapsp: X — Oy andep: W — Wy (see (2.20), (3.10)) preserve the corresponding fil-
trations and induce mapg ¢: gr X — grOy andgry: grWW — grWy. Note also that the
mapdiv*: W — X takesF, W to F,_; X, and hence induces a mgpdiv*: grW — gr X

of degree—1. The same is true for the mapv: Wy — Oy given bydiv(>_ f;0/0t") =

S~ af;/0t'. From the proof of Lemma 3.6 we deduce:

Corollary 3.2. The above maps satisfy

<Zyz®8> Z( @)(ZZ’)%; g €gr X

=1
and
grpogrdivd = grdivogrep.

The Lie algebraS has a filtration (3.20), whil&§ C W has one obtained by restricting the
filtration (3.8) ofW. Using Lemma 3.6, we can prove thas compatible with the filtrations.

Proposition 3.5. Let S be the annihilation algebra of (0, x), and letS c W be defined by
(3.24) Then fordimd > 2, the map(3.21)is an isomorphism of Lie algebras S = S such
that.(S,) = SN W, forall p > —1.
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Proof. It is clear from definitions that
U(Sy) =Fpi1 X @ span{spp} CF, X @y (k®0)=F, X®@0=W,.

In addition,.(S) C S by Lemma 3.5; hence(S,) C SNW,.
Conversely, letd € SNW,. By Lemma 3.6, we canfind € SyNF, Wy such thatp(A) = A
mod F,.; Wy. Any element ofSy N F, Wy can be written in the form
N

L 0fy 0 0fy 0
A=) Giae awor:  JuEFmOn.

i,0=1
Now consider the following element &f,:

N
A= — Z Yij QH 58,0, » Yij = ¢7l(fij) cFpn X.
ij=1
Then we havel € S, andi(4) = A mod W, ;.

Let A, = A — (A); thenA; € SNW,,; andA — A, € «(S,). By the above argument, we
can find an eleme, € S, such that(A4,) = A, mod W, . Let A, = A; — 1(A,); then
Ay € SNW, 2 andA; — A,y € 1(S,41). Continuing this way, we obtain a sequence of elements
A, € SNW,, suchthatd, — A,; € 1(S,1n) foralln > 0, whereA, := A. The sequence
A, converges t® in W andA — A,, € «(S,) for all n > 0; therefore A € «(S,).

This proves that(S,) = S N W,. Takingp = —1, we get:(S) D «(S_;) = S, because
W_, =W D 8. Now Lemma 3.5 implies thatis an isomorphism. O

Recall that any ring automorphismof Oy induces a Lie algebra automorphigmof Wy =
Der Oy such thaty(Ay) = ¥(A)(y) for A € Wy, y € On. Any b € Aut Oy preserves
the filtration, becausg, Oy is the unique maximal ideal @, andF, Oy = (F, On)Pt for
p > 0 (see (2.21)). Then it follows from (3.11) thatpreserves the filtratiofit', Wy }.

Proposition 3.6. There exists a ring automorphismof Oy such that the induced Lie algebra

automorphism) of Wy satisfiesp(S) = ¥ (Sy) and
(327) (T/} — ld)(Fp WN) C Fp+1 Wha, p>—1.

Proof. In [BDK, Remark 8.2] the image»(S) is described as the Lie algebra of all vector
fields annihilating a certain volume form. But any two volume forms are related by a change
of variables, i.e., by a ring automorphism@4,, and the subalgebi&y corresponds to the stan-
dard volume formdt! A --- A dt". Hence, there exists an automorphignof Oy such that

©(S) = ¥(Sy). Due to Corollary 3.2, we can choogesuch that
Y(t') =t mod F, Oy, i=1,...,N,
i.e., such thagr ) = id. Since the latter is equivalent to (3.27), this completes the proof.(J

Corollary 3.3. The Lie algebra isomorphism~—¢c: S = Sy mapsS, onto Sy N F, Wy for
all p > —1. In particular,§_, =S_, = S.

Proof. By Proposition 3.5,(S,) = SNW,. Then under the isomorphisgt W — Wy, we have
ou(S,) = ©(S) N F, Wy. But, by Proposition 3.65(S) = ¢(Sy) andy(F, Wy) = F, Wy;
henceyu(S,) = Y (Sy NF, Wy). O

Recall thatlVy ., is the subspace d¥ on which the adjoint action of the Euler vector field
(3.14) is multiplication by. We letSy., = Sy NWy.,. SinceSy is preserved byd E, it admits
a decomposition similar to (3.15):
(3.28) Sy NE, Wy =[] Svi. (S NF,Wy)/(Sy NFpps Wiy) 2 Sy

Jjzp

The following facts about the Lie algebfa, C Wy are well known.
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Lemma 3.7. (i) The Lie algebraSy. is isomorphic tos(y.

(i) For everyp > —1, the Sy, c-moduleSy., is isomorphic to the highest component of the
sly-modulek™ @ (SP*! kN)*. In particular, Sy, has no trivial components in its decomposition
as a sum of irreduciblel-modules.

(iif) The normalizer ofSy in Wy is Sy @ kE.

Definition 3.3. We letE = ¢(E) € Wy andé = ¢ '(E) € W, whereE is the Euler vector
field (3.14),p is from (3.10) and) is from Proposition 3.6.

Combining the above results with (3.16), we obtain the following corollary.

Corollary 3.4. (i) The Lie algebraS,/S; is isomorphic tos[d.
(i) For everyp > —1, the(S,/S:)-moduleS,/S,1 has no trivialsl 9-components.
(iii) The normalizer ofS in Wis S + k€.
(iv) £ belongs toWV, and its image inV, /W, coincides withid € glo ~ W,/ W;.

3.5. The Normalizer Ns. In this subsection, we study the normalizer&f (p > 0) in the

extended annihilation algeb® = o x S. We will use extensively the results and notation of
Sections 3.3 and 3.4, and we will identifywith the subalgebr& of W (see Proposition 3.5).
Recall that the filtratiod S, } of S has the propertiesS_, = S_; = S and[S,,. S,] C S,y

fgr all n, p. In addition, by Corollary 3.4, we havey, = Sy + kE + Wi, where the element
E € W, is from Definition 3.3.

Lemma 3.8. For everyd € o, we havel ® 0 — (x(9)/N)E € 8 + W.

Proof. As before, lef{9;};-1._n be a basis 0d, and letz* € X be given by (2.19). Denote by
cfj the structure constants ofin the basig0;}, and lety; = x(9;) for short. Using (3.5), (3.21)
and Lemma 2.2, we compute fok j:

L(QTi Rp Sai,aj) = Xﬁ?i ® 8j — le’i ® & — l’i ® [82, 8]] + :BZ& &® @j — xi('?j ® @-
:Xixi®aj—Xin®ai—Z cf]xz®8k—1®(9]

k
+ Z chat ®0; — Z c;kxk ® 0; mod W .
k>i k>j

From here, we see that the element @y sa;,0,) + 1 ® 0; belongs toW,. Next, using Corol-
lary 3.1, we find that the image of this element, /)V; ~ gld has tracey;. Therefore, by
Corollary 3.4 (i), (iv),

W2 @p s9.0,) +1®0; — (x;/N)E € Sy + Wi,
which implies1 ® 9; — (x,;/N) € € S + W. O

Lemma 3.9. For everyd € o, we have~(d) + 1 ® d — (trad(d)/N) € € S, + Wi, wherey is
from (3.18)

Proof. By Lemma 3.3;y(0) + 1 ® 0 € W, and its image inV, /W, coincides withad 0 € gl 0.
Now the statement follows from Corollary 3.4 (i), (iv). O

Definition 3.4. Foro € 0, let
7(0) =7(9) + ((x — trad)(9)/N)E € W,
where~ is given by (3.18). Led = 9 — 3(9), 2 = (id —3)(2) € W, andNs = 0 + Sy C W.
Note that
(3.29) d=0— ((x—trad)(d)/N)E, den,

whered is from Definition 3.2.
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Proposition 3.7. (i) We havej(d) c S andd C S.
(i) The map — dis aLie algebra isomorphism fromto 2.
(iii) The Lie algebra normalizesS, for all p > —1.
(iv) The Lie algebra centralizesS, /S, .

Proof. (i) Combining Lemmas 3.8 and 3.9, we ggid) € S + W, for all 9 € d. On the
other hand, we deduce from (3.18) and Corollary 3.4 #{&) normalizesS. Hence, again by
Corollary 3.45(9) € S + k&. However, the intersectiofS + W) N (S + k&) is equal taS.
This shows that/(0) € S.

(i) Recall from Section 3.3 that — dis a Lie algebra isomorphism andc W centralizes
W. Then part (ii) follows from (3.29) and the fact that- tr ad is a trace form on.

(iii) and (iv) follow from (3.29), Corollary 3.4 an¢b, W] = 0. O

It onllows from Proposition 3.7 thal/s is a Lie subalgebra o, isomorphic to the semidirect
sumo x S.

Proposition 3.8. For everyp > 0, the normalizer ofS, in the extended annihilation algebé
is equal ta/\[S. In particular, it is independent gf. There is a decomposition as a direct sum of

subspacesS = 0 & Ns.
Proof. The proof is similar to that of Proposition 3.3. O

An Ns-moduleV is calledconformalif it is conformal as a module over the subalgebra
So C N, i.e., if every vectow € V is killed by somesS,.

Proposition 3.9. The subalgebra; C N5 acts trivially on any irreducible finite-dimensional
conformalNs-module. Irreducible finite-dimensional conformé}-modules are in one-to-one
correspondence with irreducible finite-dimensional modules over the Lie algébf&; ~ o ®
s[D.

Proof. As in Proposition 3.4, thé/s-action factors via the finite-dimensional Lie algelgra=
Ns/S, for somep > 1. Recall thalS;, S;] C S, for all 7, j, so thatl := S, /S, is contained in
the radical ofy = S,/S, C g. Moreover, the quotierg/! = Sy/S; is isomorphic to the simple
Lie algebrasl 0, so that/ coincides with the radical gf and we can locate a subalgelgreof g
isomorphic to the semisimple quotiegnt/ ~ sl(d.

Similarly, the spacd is contained in the radical gf, and the adjoint action af, on g pre-
serves it. Moreover, by Corollary 3.4(iiJ, has no trivialg,-components. We can now apply
Lemma 3.4 to deduce thdtacts trivially on any irreducible finite-dimensional conformiét-
module. Therefore, tha/s-action factors via\s/S;. By Proposition 3.7(iv)d centralizes
So/S1. Hence Ns/S; is isomorphic to a direct sum of Lie algebr@as (S,/S;) ~ 2@ slo. O

4. PSEUDOLINEAR ALGEBRA

In this section, we generalize several linear algebra constructions to the pseudoalgebra context.
We introduce an important class df (0)-modules called tensor modules.

4.1. Pseudolinear Maps. The definition of a module over a pseudoalgebra motivates the fol-
lowing definition of a pseudolinear map.

Definition 4.1 ([BDK]). Let V andWW be two H-modules. AnH-pseudolinear mafrom V' to
W is ak-linear mapp: V — (H ® H) @y W such that

(4.1) ¢(hv) = (1®h) @ 1) ¢(v), heHuvelV.

We denote the space of all sugtby Chom(V, W). We will also use the notatiop x v = ¢(v)
for ¢ € Chom(V, W), v € V. We define a left action aff on Chom(V, W) by:

(4.2) (h¢)(v) = ((h @ 1) @n 1) ¢(v).
WhenV = W, we setCend V' = Chom(V, V).
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Example 4.1.Let A be anH-pseudoalgebra, and lét be anA-module. Then for every € A
the mapm,: V — (H ® H) ®y V defined bym,(v) = a % v is an H-pseudolinear map.
Moreover, we havé m, = m;, for h € H.

Remark4.1 Given two homomorphisms of leff-moduless: V! — V andy: W — W', we
define a homomorphism

(4.3) Chom(3,v): Chom(V, W) — Chom(V’', W")
by the formula
(4.4) ¢ ([d®id) @y y)opo 5.

Then we can viewChom(—, —) as a bifunctor from the category of leff-modules to itself,
contravariant in the first argument and covariant in the second one.

Recall from [BDK, Chapter 10] that whel is a finite H-module, Cend V' has a unique
structure of an associative pseudoalgebra suchtlimt module over it vid+xv = ¢(v). Denote
by gc V' the Lie pseudoalgebra obtained fr@and V' by the construction of Remark 2.1. Then
V' is also a module oveyc V.

Proposition 4.1([BDK]) . Let L be a Lie pseudoalgebra, and Ietbe a finite /-module. Then
giving a structure of arl.-module onV is equivalent to giving a homomorphism of Lie pseudo-
algebras from/ to gc V.

Proof. If V' is a finite L-module, we define a map. L — gcV by a — m,, wherem, is from
Example 4.1. Thep is a homomorphism of Lie pseudoalgebras (cf. [BDK, Proposition 10.1]).
Conversely, given a homomorphism L — gcV, we define an action of onV by a x v =
pla) xv. O

In the case whel is a free H-module of finite rank, one can give an explicit description of
Cend V, and hence ofc V/, as follows (see [BDK, Proposition 10.3]). Let= H ® V;, where
H acts trivially onl; anddim V; < oo. ThenCend V' is isomorphic toH ® H ® End Vj, with
H acting by left multiplication on the first factor, and with the following pseudoproduct:

(4.5) (f®a®A)x(g@b® B) = (f ®gaq)) @u (1 ® bap) @ AB).
The action ofCend V onV = H ® V; is given by:
(4.6) (f®a® A)x (h®@v)=(f®ha) @y (1® Av).

The pseudobracket igr V' is given by:

(f®a®A)+(g@b® B) = (f ® gaw) O (1 ® baw) ® AB)
— (fba) ® 9) @ (1® abp) ® BA).

The action ofgc V onV is also given by (4.6).

(4.7)

Remarkd.2 Let L be a Lie pseudoalgebra. LEt= H ® V} be a finiteL-module, which is free
as anH-module. For alk € L, v € V; we can write

(4.8) ax(1®v)= Z(fi®gi) @ (1® Aw),

wheref;, g; € H, A; € EndV;. Then the homomorphisth — gc V' is given bya — > fi ®
g; ® A;. This follows from (4.6) and the proof of Proposition 4.1.

Example 4.2. (i) The action (3.2) ofi¥’(d) on H gives an embedding of Lie pseudoalgebras
WO)—gcH=H®H, fa— —fRa(f € H,acdC H).

(if) Consider the semidirect sufd x 1V (2), whereH is regarded as a commutative Lie pseudo-
algebra and¥ (v) acts onH via (3.2). Then we have an embeddiAgx W () — gc H given
byg+f®a—g®1—-f®aforfge HacdCH.
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Remark4.3. For any Lie algebrg, we have a semidirect suftur g x W (d), whereCur g is
defined in Example 2.2 and' () acts onCurg = H ® g via

(f@a)x(g@B)=—-(foga) @y (1©B),  f,geH, acd, Beg.
Let V4 be a finite-dimensiongi-module, and lep be the corresponding homomorphigm—

glVy. Then we have a homomorphism of Lie pseudoalgebhasg x W (d) — gc(H ® Vp),
given by

(4.9) @B+ fRa—g21®@pB)— fRax1d .

4.2. Duals and Twistings of RepresentationsLet L be a Lie H-pseudoalgebra, and I8t be
any finite-dimensional-module. We considdl as anZ-module equipped with the trivial action
of L and with the action off = U () induced from the action af. In particulark has the trivial
action of bothZ andH.

Lemma 4.1([BDK]) . Let L be a Lie pseudoalgebra, and [t/ be finiteL-modules. Then the
formula(a € L,v € V, ¢ € Chom(V,W))

(4.10) (axp)xv=ax(p*xv) — ((0 ®id) ®py id) (¢ * (a * v))
providesChom(V, W) with the structure of arL-module.

Note that if3: V! — V and~: W — W' are homomorphisms af-modules, the map (4.3)
is @ homomorphism of-modules.

Definition 4.2. (i) For any finite L-moduleV, the L-module D(V) = Chom(V, k) is called
thedualof V. If 3: V' — V is a homomorphism of.-modules, we define a homomorphism
D(B): D(V) — D(V') asD() = Chom(f3,id) (see Remark 4.1). Theb is a contravariant
functor from the category of finité-modules to itself.

(i) For any finite L.-moduleV” and any finite-dimensionatmodulell, the L-moduleT (V') =
Chom(D(V),1I) is called thetwistingof V by II. If 5: V — V' is a homomorphism of.-
modules, we define a homomorphigia(5): Tu(V) — Tu(V') asTu(8) = Chom(D(f),id).
ThenTy; is a covariant functor from the category of finitemodules to itself.

Now letV be a freeH{-module of finite rank})” = H ® Vj, whereH acts by left multiplication
on the first factor andim V, < co. Then for anyH-modulelW we can identifyChom(V, W)
with H @ (W ® V;"), whereH acts on the first factor. Explicitly, by Lemma 2.1(ii), for any fixed
v € Vp, we can write

(4.11) d1@v) =Y (h®1) @ w;,

whereh; € H, w; € W. Theng corresponds to thk-linear maply, — HQW,v — > h; Q w;.
In particular, we have isomorphismi3(V) ~ H ® V; andTp(V) ~ H ® (Il ® V) as
H-modules. Now we will describe the action bfon them.

Proposition 4.2. LetV = H ® V}, be a finiteL-module, which is free as ali-module. Let{v; }
be ak-basis of;, and let{v;} be the dual basis oV, so thaty,(v;) = ¢;;. For afixeda € L,
write

(4.12) ax(1ov) =Y (fi ®gy)@n (1@
wheref;;, g;; € H. Then the action of orle(V) ~ H ® Vj is given by
(4.13) a*(1®@y) = — Z (fjkgjk(_l) ® gjk(_g)) n (1 ® %’) :
The action ofLonTy (V) ~ H ® (H]® Vo) is given by

(4.14) ax(1@u®uv)= Z (fz’j ® gij(1)> Rp (1 ® Gij_gyU ® Uj) )

J
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Both (4.13) and (4.14) can be easily derived from the following lemma.

Lemma 4.2. Under the assumptions of Propositidn2, the action of L on Chom(V,II) =~
H ® (Il ® Vy) is given by

(4.15) ax(l@u®iy) =— Z (fjkgjk(_l) @ gjk(_g)) Qn (1 @ Gjk(gyu @ 1/13)
j
Proof. First, note that by (4.11), we have

We will compute(a* (1 ®@u®vy)) * (1 ®v;) using (4.10). The first term in the right-hand side of
(4.10) vanishes because the actionLadn I1 is trivial. By (2.25), (4.12) and (4.16), the second
term is equal to

—((c ®id) ®p id) ((1 ®u® Py) * (ax* (1 ®vi)))
= —Z ®id) (1 ® fi; ® gij) @u Oxju

_(fik: ®1® gix) ®m u
= _<fikgik(—1) ® Gik(—2) @ 1) @u ik 3yt

where we used (2.7) in the last equality. We will obtain the same result if we apply the right-hand
side of (4.15) tal ® v; and use (2.24) and (4.16). O

Example 4.3.ConsiderH as alV (v)-module via (3.2). Thefiy (H) = H®II with the following
action of W ():

(4.17) lIa*x(1u)=(101)0%y (1®au) — (1®a) @y (1 Q@ u)
fora €0, u € 1L

Remark4.4. There is an embedding of Lie pseudoalgebras

(4.18) WO)—=Curox WD), 1®a—1Qa+1®a,

where the first summand is i@urdo = H ® 0, and the second one is IV (?) = H ® 0.
By Remark 4.3, the representationbn II gives rise to a homomorphisfiuro x W (2) —
ge(H ® II). Composing (4.9) with (4.18), we obtain a homomorphigni) — ge(H ® II),
which corresponds to thé’(0)-moduleTt;(H) from Example 4.3 (see Remark 4.2).

Next, we will describe explicitly the homomorphism¥ 3) and7;(5) from Definition 4.2.

Proposition 4.3. LetV = H ® V, and V' = H ® V] be finite freeH-modules. Lef{v;}
(respectively{v;}) be ak-basis ofV; (respectivelyVj)), and let{v;} (respectively{v;}) be the
dual basis ofVj;* (respectively(V{))*). For a homomorphism of/-modules3: V' — V’, write

(4.19) B(1 ® v;) Z hij @ V)

whereh;; € H. Then we have

(4.20) D(B)(L®y) = Z S(hir) ® ¥;
and
(4.21) Tn(B)(1®u® v;) Z hU(1 U u®v

By linearity, Proposition 4.3 follows from the following special case, which we formulate as
a lemma for future reference.
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Lemma 4.3.LetV = H® V, andV’ = H ® Vj be finite freel{-modules. For fixed € H,
B € Homy(Vp, V), consider the homomorphism éf-modules3: V' — V' given by

(4.22) B(1®v)=h® Bo, vel.

Then we have

(4.23) DB)(1@d)=S(h) @@ oB), ' e (Vy)" =Homy(Vy k)

and

(4.24) Th(B)(1®u®v) = haq) @ h_yu® By, uell, vely.

Proof. The proof is straightforward from definition, and it is left to the reader. O

4.3. Tensor Modules for W (o). The adjoint representation ¥ (?) = H ® 0 gives rise to
the following homomorphism of Lie pseudoalgebf&so) — gc(H ® 0) (see Eqg. (3.1) and
Remark 4.2):

(4.25) I®a—1®1®ada—1®a®Id+e,,
where the pseudolinear mapis given by
(4.26) g(g®b)=0b®g) @y (1®a), geEH, ben.

In (4.25) we have identifiede(H ® 9) with H ® H ® End 2 ; in this identification

N
(4.27) co,=» 0;®1@e,

J=1

7777

Lemma 4.4. The map

N
(4.28) 1®aiH<1®adai+20j®eg’)+1®ai

j=1
is an embedding of Lie pseudoalgebi&go) — (Cur glo) x W (d).
Proof. The image of¥/(?) under the embedding (4.25) is contained in
Hok®@Enddo+ H®o®id C H® H ®Endo,
which is isomorphic tdCur gl ) x W (?) by Remark 4.3. O

By Remark 4.3, for any finite-dimensiongilo-moduleV;, we have a homomorphism of Lie
pseudoalgebragur glo) x W(0) — gcV, whereV = H ® V;. After composing it with the
embedding from Lemma 4.4, we obtain a homomorphi&itv) — gcV, i.e., a representation
of W (v) on V. Explicitly, the action ofi¥’(v) onV is given by:

1®0)*(1ev)=>101) ey (1 @dd))+Y (1) o (1 )

M-

(4.29)

1

<
Il

- (1®0)or (1®wv).

Now letII be any finite-dimensionalmodule. The twisting ot/ by ITis T (V) = H® (II®
Vo) with the following action ofit/(d) (see Proposition 4.2):

(0; 1) @5 (1 ® elw)

NE

(4.30) (I®0)*(1ew)=11)ey (1 (add)w) +

1
Qu (1 ® Jw)

~— .

—(1l®d)eg(1w)+ (1®1
for w € II ® V;, whereo acts on the factoll andgl 0 acts onVj,.
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Definition 4.3. Let g; andg, be Lie algebras, and I&f; be ag;-module ¢ = 1,2). Then we will
denote by/; X U, the(g; @ go)-modulelU; ® U,, whereg; acts on the first factor ang acts on
the second one.

The above formulas (4.29), (4.30) motivate the introduction of an important clddg f-
modules.

Definition 4.4. (i) Let IV, be a finite-dimensiondb & gl 9)-module. ThéV (v)-moduled ® W,
with the action ofi¥’ () given by (4.30) forv € W, is called a@ensor modul@nd is denoted as
T(Wo).

(i) Let Wy = [IX V, wherell is a finite-dimensional-module and/ is a finite-dimensional
gl9-module. Then the tensor modul€1V,) will also be denoted & (I1, V).

(iii) Occasionally, we will denot& (11, V) also by7 (I1, Vy, ¢), wherelj, is viewed as a mod-
ule overslo C glo, andc € k denotes the scalar actionlf € gl 0 on V5.

Remark4.5. By definition, we havey (11, V;) = T (7 (k, Vp)).

Remarkd.6. Combining the embeddings (4.18) and (4.28), we get an embedding of Lie pseudo-
algebrag¥ (v) — Cur(d @ glo) x W(d),

N
(4.31) 1®@H(1®ai+1®adai+z(9j®e{)+1®ai.

j=1

Given a(d @ glo)-modulelV,, theW (v)-module obtained from it by Remark 4.3 is exactly the
tensor modul€ (W) = H ® W, corresponding té.

5. TENSORMODULES OF DERHAM TYPE

Throughout this sectiord, will be an N-dimensional Lie algebra. We fix a badig; };—1. .~
of o with structure constants;: [9;, ;] = > ¢};0,. Define elements; € gld by €/ (;) = 6;.0;.

5.1. Forms with Constant Coefficients. The material in this subsection is completely standard;
our purpose is just to fix the notation. FoK n < N, let

N
(5.1) Q"= A", Q=A" =P
n=0

SetQ" = {0} if n < 0orn > N. We will think of the elements of2” as skew-symmetric
n-forms i.e., linear maps from\" o to k.

Consider the cohomology complex®fwvith trivial coefficients,
(5.2) 0 Q0 %, o, do, N
where the differentiad, is given by the formulad € Q", a; € 0):

(doO&) ((Zl VANRIERIVAN &n+1)
(5.3) =N (~D)™Ma(la,a) Aar A NG A AT A A dng)
1<J

if n > 1, anddyga = 0 for a € Q° = k. Here a hat oveti; means that the terma, is omitted in
the wedge product.

Fora € 0, define operators,: Q" — Q" ! by
(5.4) (ta)(ar AN+ Nay_1) =alaNag A+ Nap_1), a; €0.
For A € gl0, denote byA- its action o2 ; explicitly,

(5.5) (A-oz)(al/\-n/\an):zn:(—l)ioz(Aai/\al/\---/\ai/\---/\an).

i=1
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Then we have the following Cartan formula for the coadjoint action:of
(5.6) (ada)- = dotg + tado -

This, together withl = 0, implies that(ad a)- commutes withl,.

5.2. Pseudo de Rham ComplexFollowing [BDK, Section 8.3], we define the spacepséudo-
formsQ"(d) = H® Q" andQ(?) = H2Q = @Y, Q"(d). They are considered d@-modules,
whereH acts on the first factor by left multiplication. We can identi§(o) with the space of
linear maps from\" o to H, andH®? @z Q"(0) with Hom(A" 0, H*2). Note that?"(d) = {0}
ifn<0orn> N.

Let us considefd = U(0) as a lefto-module with respect to the actien h = —ha, where
ha is the product of: € o C H andh € H in H. Consider the cohomology complexivith
coefficients inH:

(5.7) 000 L0 S L aNw).

Explicitly, the differentiald is given by the formulad € Q"(0), a; € ?):
(da)(ag A+ Aapir)

~

=> (=D)a([a, ] Aay A AT A AT A Adpg)
1<j

(5.8)
+Z alay Ao NG A Nanpr)a;  if n>1,

(da)(ar) = —aay if acQ’(0)=4H,
where a hat oved; means that the term is omitted. Notice thad is -linear.

Proposition 5.1([BDK]) . Then-th cohomology of the complé®(2), d) is trivial for n # N =
dim 0 and 1-dimensional fom = N. In particular, the sequend®.7)is exact.

Proof. By Poincaé dualityH" (2, U (d)) ~ HY (2, U(2)*). ButH" (0, U(d)*) ~ H,(0,U(?))*
is trivial for n > 0 and1-dimensional fom = 0; see, e.g., [F]. OJ

Definition 5.1. The sequence (5.7) is called theeudo de Rham complex

The following lemma provides another formula for the differential (5.8), which will be useful
later.

Lemma 5.1. For everya € ", n > 0, and: = 1,..., N, consider the elemeit® ¢y, €
Q"~1(d). Then we have

(5.9) d(1 ® 1g,a) = g O @ efa — g 1® kleke g 1®cyela,
ok d=1 kl=1
k<l k<l

where the action ofjl 0 on 2" is given by(5.5).

Proof. Forn = 0, both sides of (5.9) are trivial; so we can assume that 1. Denote the three
terms in the right-hand side of (5.9) by, 3., 33. Using (5.5), we compute far < i; < --- <
iy < N:

N n
Bi(On Ao N =D 0@ (—1)08 a0 ANy A ADy Ao ND;)

k=1 r=1
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and
Ba(0y A+ N D) Z Zl® 1) tNSE 65 ey a(0i A Oy A Dy A+
j,k,l=17r5=1
k<l 7<s
NOj Ao NOy, A ND;)
+221® 11688t el (@ N Dy A NO A+ N D)
7,k,l=1 s=1
k<l
Similarly,
N n N
Bs (O Ao ND) =D 1@ (=1)°0L cfy (O ADy A+ NDi, A--- ND;,).
k=1 s=1
k<l

These formulas, together with (5.8), (5.4) and the equation

Z 55555 = [0;.,0:.], r<s, i <ig,
g
imply thatd(1 ® g,«) = 81 — B2 — 5. O
Next, we introducdd-bilinear maps
(5.10) £, W) @Q0) — H? @4 Q")
(5.11) w: W)@ Q"0) — H*? @5 Q"(0),
by the formulas:
(5.12) (f®a)x (g©®a) = (f ©9) ®n ta
(5.13) wkxy = ((d®id) @y d)(w *, 7) + w *, (dv),

forw=f®acW(®),y=9g®acQ"0). Eq. (5.13) is an analog of Cartan’s formula (5.6).
Explicitly, we have (see [BDK, Eq. (8.7)]):

(wxy)(ar A== Nay) = =(f @ ga) alar A -+ Nay)

n

—1)(fa alaNay N~ Na; N+ Nay,
514 +;( Ji(fai@g)a(ahar A A A Nay)

"‘Z Y(f@g)alla,al Nay A ANa; A+ Nay) € H??

forn > 1,andw v = —f ® ga fory = g € Q°) = H. Note that the latter coincides with the
action (3.2) ofi¥’(v) on H.

Theorem 5.1. The mapg5.11) provide each2"(d) with a structure of a tenso¥l’(d)-module
corresponding to thé€o & glo)-modulek X Q" i.e., Q"(d) = 7(k,Q"). The differential
d: Q"(0) — Q""1(d) is a homomorphism ofi’ (2)-modules.

Proof. Comparing (5.14) with (5.5), we obtain fare Q":
1) *(1®a)=—(1®0) ®u (1 a)

+) (0,0 1) @y (1eda)+(181) @y (1® (addy)a).

=1
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But this is exactly (4.29); hence(d) = 7 (k, Q").
To prove thatd is a homomorphism, we have to check that it satisfies (2.34). This follows
from (5.13) andi? = 0. Indeed, replacing with dv in (5.13), we get

w (dy) = (([d®id) @y d)(w *, dv),
while applying((id ® id) ® 5 d) to both sides of (5.13) gives

(id®id) @y d)(wxv) = ((d®id) @y d)(w *, dv) .
This completes the proof. O

5.3. Twisting of the Pseudo de Rham ComplexAs before, letll be a finite-dimensionai-
module, which we consider as &rmodule. We will apply the twisting functdf}; (see Defin-

ition 4.2(ii)) to the pseudo de Rham complex (5.7). Note that, by Theorem 5.1 and Remark 4.5,
we havelr (Q"(0)) = 7 (I1, Q™). We obtain a complex dfi’ (2)-modules

(5.15) 0— T(ILQY) L T(ILQY < S5 T(ILQY),  dg =Tn(d),

which we call thdI-twisted pseudo de Rham complex
It follows from (5.8) and Proposition 4.3 that the complex (5.15) coincides with the cohomol-
ogy complex ofo with coefficients inH ® II considered with the action

(5.16) a-(h®u)=—ha+au, a€d, he H, uell.

Lemma 5.2. Thed-moduleH ® 11, equipped with the actiofb.16), is isomorphic taH & IT with
0 acting only onH via

alh®@u) =—-ha®u, ac€d, he H, uell.
In other words,H ® IT is isomorphic to a direct sum afim II copies of th@-moduleH .
Proof. Consider the linear map

F:-HQII —- H®II, h®u— hay ® h_au.
From (2.7) it is easy to see thatis a linear isomorphism and

Flheu)= h1y ® heyu
(see [BDK, Section 2.3] for a similar argument). Using (2.6) and (2.13), we compute
F(=ha®u) = —(ha)w) ® (ha)-2u
= —haya® hyu+hay @ah—pu=a-F(h®@u).
This shows thaf’ is an isomorphism of the correspondimgnodules. O
Now Proposition 5.1 and Lemma 5.2 immediately imply:

Proposition 5.2. The sequencés.15)is exact. The image of; in 7 (11, Q") has codimen-
siondim II.

Finally, let us give a formula for the differentidl;, which is similar to (5.9).

Lemma 5.3. For everya € Q",n > 0,u € I, andi = 1,..., N, we have

N
dn(1 ® u ® ty,a) = 8k®u®efa—21®3ku®efa

- I[1]=

k=1
(5.17) N
— Z 1®u® el — Z 1@u® e,
Gkei=1 kl=1
k<l k<l

where the action ofjl 0 on 2" is given by(5.5).
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Proof. For a fixed:, extend byH-linearity the map,, to a map fromQ2"(d) to Q" '(d). Note
that, by Proposition 4.3 (or Lemma 4.3), we have

(Th(ey,))(l@u®a) =10 u® 1y,a.

Consider thed-linear mapd o s, : Q™ () — Q™(9). This map sends® « to the right-hand side
of (5.9). Hence, by Proposition 4.8[T1(d o ts,))(1 ® u ® «) is given by the right-hand side of
(5.17). On the other hand, we haig(d o ts,) = Tri(d) o T1i(es, ), Which givesdy (1 ® u ® 1y, )
when applied td ® u ® a. O

6. CLASSIFICATION OF IRREDUCIBLE FINITE W (0)-MODULES

In this section we provide a complete classification of all irreducible fiiite®)-modules.
Our main result is Theorem 6.6.

6.1. Singular Vectors and Tensor Modules.Recall that the annihilation algeb¥& of W ()
has a decreasing filtratiofV, } ,~_; given by (3.8). For &V-moduleV’, we denote byer, V
the set of alb € V that are killed by»V,. Then aV-moduleV is conformal iffV = | J ker,, V.
Recall also that the extended annihilation algebra is definét! aso x WV, whereo acts on/y
by (3.7). By Proposition 2.1, ariy’ (v)-module has a natural structure of a conforinaimodule
and vice versa. .

For everyp > 0, the normalizer o#V, in W is equal ta\,y, (see Definition 3.2 and Proposi-
tion 3.3). Therefore, eacdker, V' is an\,y-module. In factker, V' is a module over the finite-
dimensional Lie algebra/,y /W, = 2 @ (Wy/W,). The Lie algebraVy,/ W, is isomorphic to
the direct sum of Lie algebras® gl 0.

Definition 6.1. For al/(d)-moduleV, asingular vectoris an elementv € V such that, -
v = 0. The space of singular vectors In will be denoted bysing V. We will denote by
psing: 0P gl — gl(sing V') the representation obtained from th§,-action orsing V' = ker; V
via the isomorphisriVyy, /W, ~ 0 & gld.

Recall thatker V' = ker_; V' is the space of alb € V' such thadV - v = 0. Then, obviously,
ker V' C sing V. Note also thaker V= {0} whenV is irreducible.

Theorem 6.1. For any nontrivial finitelV/ (d)-moduleV, we havesing V' # {0} and the space
sing V/ ker V' is finite dimensional.

Proof. The second statement is a special case of Lemma 2.3. To showithdt # {0}, we
can assume without loss of generality that 1" = {0}. SinceV is a conformal/’V-module,
ker, V' # {0} for somep > 1. By Lemma 2.3, the spader, V' is finite dimensional. Let us
choose a minimal,y-submoduler of ker, V. ThenR is an irreducible\y,-module; hence, by
Proposition 3.4)V; acts trivially onR. This means thaR C sing V. O

Remarks.1 It follows from (3.8) and Proposition 2.1 that a vectoe V is singular if and only
if

(6.1) 1®d)xve(FFHRkK) ®yV, de,
whereF! H = k @ 0. Similarly, by Lemma 2.1(ii), a vectar € V' is singular if and only if
(6.2) (1®d)*xve (koF' HyoyV, Jen.

As before, let{d;};—1.. n be a basis 0b, and letz’ € X be given by (2.19). We view' as
elements ob*; then{z'} is a basis ob* dual to the basi§d;} of 0. Lete! € gld be given by
el0p = &) 0y, in other words¢! corresponds t0; © 27 under the isomorphismid ~ 0 ® v*.

Note that, by Definition 3.2 and Corollary 3.1, we have

(6.3) Psing (0)v = d-v, peing (€N = —(27 © 0;) - v, Jd€v, vesingV.
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Lemma 6.1. LetV be al¥/(9)-module. Then for every singular vectok sing V, the action of
W (d) onw is given by

N

1®a Za®1 ®Hpblng( )U_(]-®1)®Hazv

(6.4) =
+(1®1)®y psing(& +ado;)v.

Proof. SinceW; - v = 0, it follows from Proposition 2.1 that fay € d

1@d)rv=0101)ey(120d) v-Y (0;01) @y (' ®d) v

j
while Lemma 3.3 implies
(04190 —0)-v=peng(add)v.

Combining the above equations with (6.3) proves (6.4). OJ

Corollary 6.1. Let V' be al¥/(d)-module and let? be a nontrivial (0 & gld)-submodule of
sing V. Denote byH R the H-submodule o generated by:. ThenH R is aWW (?)-submodule
of V. In particular, if V' is irreducible, then/ = HR.

Proof. It follows from (6.4) thatWW'(d) x R C (H ® H) ®y HR. Then, by H-bilinearity,
W)+ HR C (H® H) ®y HR, which means thall R is al¥/(d)-submodule ol/. O

Let R be a finite-dimensiondb & gl 2)-module, with an action denoted ag. LetV = H® R
be the freel{-module generated bi, whereH acts by left multiplication on the first factor. We
define a pseudoproduct

(1®0;) * Z @1) @y (1@ pre))u) — (1® 1) ®y (0; @ u)

+(1®1)®H(1®pR(3¢+ad0i)u), u € R,
and then extend it by/-bilinearity toamap«: W)@V — (H ® H) @y V.

(6.5)

Lemma 6.2. Let R be a finite-dimensionélo @ glv)-module with an actiop. Then formula
(6.5) defines a structure of B/ (2)-module on/ = H ® R. We havék ® R C sing V' and

(6.6) psing(A) (1 @ u) =1® pr(A)u, Acopgld, ue R.

Proof. The fact that/ is al¥/(9)-module can be proved by a straightforward computation, using
(2.33) and (3.1). Instead, we will show thitis a tensor module (see Definition 4.4). Let us
compare (6.5) to (4.30), keeping in mind that, by definition,

1®1)@y(0;0u)=(0:®1)®y (10u)+(1®0) @y (1®u).

We see that’ = H ® R coincides with the tensor modulg( R), whereR is equipped with the
following modified action ob & glo:

(6.7) Ou = (pr(9d) + tr(ad 9))u, Jdev, ueR,

(6.8) Au = (pr(A) — tr A)u, Aegld, ueR.

The fact thak ® R C sing V' follows from Remark 6.1, and (6.6) follows from comparing (6.4)
with (6.5). This completes the proof. OJ

Definition 6.2. (i) Let R be a finite-dimensiondb & gl?)-module with an actiopg. Then the
W (d)-moduleH ® R, with the action ofi¥/(0) given by (6.5), will be denoted ag(R).

(i) Let R = II X U, wherell is a finite-dimensionat-module andJ is a finite-dimensional
gldo-module. Then the modulg(R) will also be denoted ag(1I, U).
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Remark6.2 If R is a finite-dimensionald ¢ glv)-module, we can define an action.bf, on
it by letting W, act as zero. Then as)&-module,V(R) is isomorphic to the induced module
IndX}’W R. This follows from the fact tha¥V = o & N,y as a vector space (see Proposition 3.3).

For a Lie algebrg and a trace formy on g, we denote byk, the 1-dimensionalg-module
such that each € g acts as the scalaf(a). Then (6.7) and (6.8) are equivalent to:

(6.9) VR)=T(R® (kppaa ¥k ), T(R)=V(R® (K_traa Xk¢)),
This can also be written as follows (cf. Definition 4.4(ii)):
(610) V(H> U) = T(H ® ktrada U® kftr) ’ T(Ha U) = V(H ® kftrady U® ktr) .

Theorem 6.2.LetV be an irreducible finité? (v)-module, and lefz be an irreduciblgo © gl 0)-
submodule ofing V. ThenV is a homomorphic image af(R). In particular, every irreducible
finite W (0)-module is a quotient of a tensor module.

Proof. By Corollary 6.1, we hav® = H R. Consider the natural projection
mVR)=H®R—HR=V, h®uw— hu.
Note thatr is H-linear. Comparing (6.4) with (6.5), we see that
([d®id) @y ) (1®9) * (1®u)) = (1® ;) *u, i=1,....,N,u€R.
By H-bilinearity, this leads to
((d®id) @y 7)(axv) = ax7(v), acW@),veV(R),
which means that is a homomorphism ofl’ (2)-modules (cf. (2.34)). O
6.2. Filtration of Tensor Modules. Let V(R) be a tenso#¥ (v)-module, as defined in Defini-

tion 6.2(i). Recall the canonical increasing filtratipi’ 7'} of H given by (2.16). We introduce
an increasing filtration o¥(R) = H ® R as follows:

(6.11) FPV(R)=FPH® R, p=-—1,0,....
Note thatF ' V(R) = {0}, F°V(R) =k ® R.

The associated graded spac8¢R) is
(6.12) gV(R)=Pa’V(R), @’V(R)=(F'HoR)/(F"'HRR).

p>0

We have isomorphisms of vector spaces:
(6.13) g’ V(R) ~gr?P HO R~SP0® R,
whereS” v is thep-th symmetric power of the vector spaze

Next, we study the action of the extended annihilation algébran the filtration (6.11).

Lemma 6.3. For everyp > 0, we have
() 0-F?V(R) C FP*' V(R),
(i) My - FPV(R) C FPV(R),
(i) Wy - FPV(R) C Fr-1 V(R).
Proof. Part (i) is obvious from definitions, since
0-(h®u)=0h®u, 0€ed, heH, ueR.

We will prove parts (ii) and (iii) by induction op. Forp = 0, we haveF’ V(R) =k ® R C
sing V(R); hence, (ii) and (iii) hold by the definition of a singular vector.
Now assume that (ii) is satisfied for some> 0. Then it is enough to show that

A-(Ov) e FPTYY(R)  forall Ae Ny, 0€d, veFPV(R).
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Note that, sinceV = v + Ny (see Proposition 3.3), statements (i) and (ii) imparij/- v C
FP*'VY(R). Then we have

A-(00)=0-(A-v)+[A,0]-ved- (Ny-v)+W-vCFFVY(R),

by part (i) and the inductive assumption. This proves (ii).
Similarly, assume that (iii) holds for sompe> 0. Then we want to show that

B - (0v) € FPV(R) forall BeW,, 0e€o, ve FPV(R).
We have
B-(0v)=0-(B-v)+[B,d]-ved- Wy -v)+ Ny -v CFV(R),

by (i), (ii) and the inductive assumption, becaus2d] € W, C Ny. This completes the
proof. O

Lemma 6.3(ii) implies that the Lie algebrd,, acts on the associated graded space(R).
By Lemma 6.3(iii), the same is true for the Lie algetva,/\W, = 0 & Wy /W;) ~ 0 & glo.
This action is described in the next two lemmas.

Lemma 6.4. For everyd € 0, h € F H, u € R, we have
d-(h®u)=h®pr(du mod FF1V(R).

Proof. The proof is by induction op and is similar to that of Lemma 6.3(ii). First, fpr= 0
we haveF’ H = k and1 ® u € sing V(R). Hence - (1 @ u) = 1 ® pr(d)u by (6.3), (6.6).

Now assume the statement holds foe F* H, and consided - (0'h ® u) for &' € d. Note
that, by Proposition 3.2(i), we havéd, '] = [0,9" + ~(9')] = [0,0'] € 9. From the inductive
assumption, we ged, J'| - (h @ u) € F? V(R). Therefore,

- (@h@u)=08-(0-(h®u)) mod FPV(R)=0h® pr(d)u mod F’V(R)
by the inductive assumption. O
Lemma 6.5. The action ofglo ~ W, /W, on the spacer” V(R) ~ SPd ® R is given by
A (feou) =Afu+ f®pr(A)u, Aegly, feSPd, ueR,

whereAf is the standard action ofl 0 on S” 0.
Proof. The proof uses the same argument as in Lemmas 6.3(ii) and 6.4, and the fact that via the

isomorphismaN, /W, ~ glo andW /W, ~ 0 the adjoint actior{A, 9] becomes the standard
action ofglo ond (see Corollary 3.1). O

WhenR = II X U, the above two lemmas can be summarized as follows.
Corollary 6.2. We havegr? V(I1,U) ~ 11X (SP o ® U) as(0 & gl0)-modules.

6.3. Submodules of Tensor Modules.Let 7(R) = H ® R be a tensor module (see Defini-
tion 4.4). We will assume thak is an irreducible finite-dimension& @ gl?)-module. Then
R = 11 X U, wherell (respectivelylU) is an irreducible finite-dimensional module owe(re-
spectivelygl(d). In this case? (R) = 7 (IL, U).

As usual, we fix a basi$o;} of 0. Recall that the action of ® 9, € W (d) on an element
l1®u € k® R C T(R) is given by (4.30). For us, it will be convenient to rewrite (4.30) as
follows (making use of (2.13)):

(1® ;) * (1®u):(1®1)®H(1®(8-+ad8-) )

6.14 al
(6.14) +§ 0; ® elu) E (1®0;) @n (1® (e +6)u).
J=1

Jj=1
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Introduce the following notation:
N .

(6.15) s(ai,u):Z@@egu, ueR,1=1,...,N.
j=1

By linearity, we defines(0, u) for all 0 € v. Thens(9, ) does not depend on the choice of basis
{0;} of o (cf. (4.26), (4.27)).
Since7 (R) = H ® R, any element € 7 (R) can be written uniquely in the form

(6.16) v = Z oD @ vy, vr € R,

N
rezy

whered) ¢ H are given by (2.14). Note that the above sum is finite, i:g. 0 only for
finitely many/. From (6.14)—(6.16) and/-bilinearity, we find

1@d)xv=> (100") @y (1& (8 +add;)v)

I
() w
(6.17) +;<1®8 ) © (05, v1)

=Y > (10N @y (1@ (el +6)vr) .

I j=1

Definition 6.3. The nonzero elements in the expression (6.16) are calledefficientof v €
7 (R). For asubmodulé/ C 7(R), we denote byoeff M the subspace at linearly generated
by all coefficients of elements @il .

Recall that7 (R) has a filtration given by” 7 (R) = FP H ® R (cf. (6.11) and (6.9)). We
have:F ' T(R) = {0}, F°T(R) =k® RandF' T(R) = (k +0) ® R.

Lemma 6.6. For any nontrivial propei/ (d)-submodulé\/ of 7 (R), we haveM NF° T (R) =
{0}.

Proof. Let M, be the set of all. € R such thatl ® v € M. By (6.14) and Remark 2.2(i), we
have:

(0;+add)u € My, (& 4+ )ueM, forall i,j=1,....N, ue M,.

This means thad/, is a (o & gl0)-submodule ofR. SinceR is irreducible, eithet\/, = {0}
or My = R. In the latter case, we obtail > H ® M, = 7 (R), which is a contradiction.
Therefore M N (k ® R) = {0}. O

Corollary 6.3. If sing 7 (R) = F° 7 (R), then the tensolV (v)-module7 (R) is irreducible.

Proof. If M C 7 (R)is anontrivial proper submodule, then by Theorem 6.1 it contains a nonzero
singular vector. This contradicts Lemma 6.6. O

Corollary 6.3 will play a crucial role in our classification of irreducible filit§2)-modules.
Lemma 6.7. For any nontrivial proper?/ (d)-submoduléV/ of 7 (R), we haveoeff M = R.

Proof. Pick a nonzero element € M and write in the form (6.16). Then, for fixef the
coefficient multiplyingl ® 0% in the right-hand side of (6.17) equals

(6.18) s(0i,vr) + 1 ® Oyvr + terms ink @ (gl + k) (coeff M) .

By Remark 2.2(ii), this is an element 8f. Hence, for each coefficient of v, we have:’v; €
coeff M. Then from (6.18) we also gétv; € coeff M. Therefore,coeff M is a nontrivial
(0 @ gld)-submodule of?. But R is irreducible; hencesoeff M = R. O
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Lemma 6.8. Let M be a nontrivial properi¥V (9)-submodule of7 (R). Then for every) € 0
andu € R, there is a unique elemen},; (0, u) € M such that

(6.19) sy(0,u) = s(0,u) mod F*T(R),

wheres(0, u) is given by(6.15) The element,,; (0, u) depends linearly on both andw.

Proof. Uniqueness follows from Lemma 6.6. From uniqueness we deduce, @t «) depends
linearly ong andu. Then, to prove existence, it is enough to consider the@asé, andu = v,

for somev € M (becauseR = coeff M by Lemma 6.7). In this case,(0;, v;) is exactly the
element (6.18). O

Elementss,, (0, u) will be used in the next subsection to determine all singular vectakg.of

6.4. Computation of Singular Vectors. In this subsection, we continue to use the notation of
Section 6.3. Our goal is to find all singular vectors@ofR) = 7 (II,U). Given a nontrivial
properiW (v)-submodulelM of 7 (R), we also find all singular vectors @ff. These results will
be used in Section 6.5 to classify irreducible firditgd)-modules.

First, we consider the case when gli@-action onR is trivial.

Proposition 6.1. For any irreducible finite-dimensionalmodulell, we have
(i) sing 7 (I, k) = FO 7 (I, k);
(i) 7 (I1, k) is an irreduciblel?/ (v)-module.

Proof. Pick a singular vectos € 7 (I, k), and write it in the form (6.16). Then, by (6.17),
1@d)xv=> (10dD)oy1ledv)-Y (100D0) e (1auv).

I I
Now Remark 6.1 implies that, = 0 whenevel 7| > 1. This proves (i).
(i) follows from (i) and Corollary 6.3. O

Lemma 6.9. For any irreducible finite-dimensionglo ¢ gl?)-module R, the tensoriV (v)-
module7 (R) satisfies

FOT(R) C singT(R) Cc F* T(R).
Proof. First of all, by Proposition 6.1(i), we can assume thatgh@&action onR is nontrivial.
SinceF° 7 (R) = k ® R, the first inclusion follows from (6.14) and Remark 6.1. To prove the
second one, pick a nonzero singular veat@nd write in the form (6.16). Thefl ® 0;) x v is
given by formula (6.17). The coefficient multiplyinige 0) in (6.17) is given by (6.18). By
Remark 6.1, this coefficient must vanish whengvér- 1. Hences(9;, v;) = 0 for all 4, which
implies (glo)v; = 0. Thereforep; = 0. This proves thating 7 (R) C F* T (R). O

Lemma 6.10. An element

N
(6.20) v=> " €18 RCT(R)
k=1
is a singular vector iff it satisfies the equations
(6.21) (el +6NWF + (eF + 68w’ =0 forall i,j,k=1,... N.
In this case, for the actiops,, of gld onv, we havesee(6.15)):
(6.22) peing(€X)v = —5(0;,v")  mod F*T(R).
Proof. As a special case of (6.17), we have:
N N
1@d)rv=> (100 @y (1 (0 +add)")+> (18 &) @ s(0;, ")
k=1 k=1

(1© 00;) @u (10 (e + 6)0") .

WE

1

>
<.
Il
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Fork < j, the coefficient multiplying  0,0; is up to a sign equal to
(6.23) 1@ (el + )" +1@ (e + %) .

By Remark 6.1y is a singular vector iff this coefficient vanishes for alk. This proves (6.21).
On the other hand, the coefficient multiplyig 0, is equal tas(d;, v*) moduloF° T (R). Then
(6.22) follows from (6.4). O

Our next result describes all singular vectors in a teWBod)-module7 (R).

Theorem 6.3. For any irreducible finite-dimensionab @ gl 0)-moduleR, we have

(6.24) sing7(R) = F*T(R) + {s(0,u) |0 €0, u € Ry},
wheres(0, u) is defined by6.15)and R, is the subspace of all € R satisfying the equations
(6.25) (el +0)efu+ (ef + 6F)elu =0, i,j,k,l=1,...,N.

The subspacg& is either{0} or the wholeR.

Proof. WhenR = I1Xk, (6.24) follows from Proposition 6.1(i), because in this case(@ll ) =
0. Letus assume that thi¢d-action onR is nontrivial, and denote the space in the right-hand side
of (6.24) byS. Notice thats(0, u) is a singular vector ift. € R, because fov = s(0;, u) we
havev* = eFu and (6.21) becomes (6.25). Hence, Lemmas 6.9 and 6.10 ishplying 7 (R).

From these lemmas, we also deduce that the aptjgnof gl d onsing 7 (R) mapssing 7 (R)
into S. Consider the finite-dimensiongl o-modulesing 7(R)/ F° T(R). We claim that its
decomposition as a direct sum of irreducibles does not contain the griwiahodule. Indeed, let
v € sing 7 (R) be such thap,. (e¥)v € F* T (R) for all i, k. We want to show that € F° T'(R).
Without loss of generality, we can assume that » ® R. Then, by (6.22), alk(d;,v*) = 0,
and from (6.15)¢/v* = 0 for all i, j, k. This impliesv* = 0 for all k£, andv = 0. Therefore, the
glo-action onsing 7 (R)/ F° T (R) is surjective, anding 7 (R) = S.

Clearly, if R = IIX U, thenR, = II X U,, whereU, is the subspace of all € U satisfying
(6.25). We claim that/, is aglo-submodule of/. SinceU is an irreduciblegl 9-module, this
would imply that eithe/y = {0} or Uy = U. Now if u € Ry, thenv = s(9,,u) is a singular
vector for alll. By (6.22), alls(9;, v*) are singular vectors too. Heneé, = eFu belongs toR,
for all k,[. Therefore(gld)Ry, C Ry, which implies(gl0)U, C U,. O

Corollary 6.4. If the W (d)-module7 (R) is not irreducible, then equatior(§.25)are satisfied
forall u € R.

Proof. This follows from Corollary 6.3 and Theorem 6.3. O

Next, we find all singular vectors in a nontrivial progét(v)-submodulel of 7 (R). Recall
the elements,, (0, u) € M, constructed in Lemma 6.8.

Theorem 6.4. For any nontrivial properiV (d)-submoduleV/ of 7 (R), we have
(i) sing M = M NF' T(R) = {sy(0,u) | 0 €0, u € R};
(i) sing T (R) = F* T(R) @ sing M as (v @ glv)-modules.

Proof. (i) Note thatsing M ¢ MNF' 7 (R) by Lemma 6.9. Conversely, pick € MNF' 7 (R),
and writev' = v+ 1®@uwithv € 9® R, u € R. Sincel ® u € sing 7 (R), the vector' is
singular if and only ifv is. In the proof of Lemma 6.10 we saw that the coefficient multiplying
1 ® 0,0; in (1 ® 0;) v is up to a sign equal to (6.23). By Remark 6(1,® 9;) = v' has the
same coefficient. Now Remark 2.2(ii) implies that the elements (6.23) belahg téence, they
vanish by Lemma 6.6. Then, by Lemma 6.20s a singular vector, and € sing M.

This proves the first equality in (i). The second equality follows from the first one, Lemma 6.8
and Theorem 6.3.

(i) The sum is direct because of Lemma 6.6. The equality follows from part (i), Lemma 6.8
and Theorem 6.3. O
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Corollary 6.5. Let R be an irreducible finite-dimensioné& @ gl 0)-module, and lef\/, M’ be
two nontrivial properlV (v)-submodules of (R). Thensing M = sing M.

Proof. Consider the canonical projection @f © gl 0)-modules
7: sing7(R) — singT(R)/F°T(R) C gr' T(R).

By Theorem 6.4¢(ii), the restriction of to sing M is an isomorphism. On the other hand, com-
bining (6.10) with Corollary 6.2, we obtain isomorphismg @b gl 0)-modules

FOT(R)~IIRU, g'T(R)~IKX®OU),

where ~ -
RZH&U? H:H®kftrad7 U=U®Kky.
Theg[b-moduleﬁ is irreducible. Say thalid € gl acts as the scalaron U. Then it acts as

c+1ono®U. It follows thatsing M is precisely the set of all vectotse sing 7 (R) such that
Id -v = (¢ + 1)v. The same is true fak¥/’ instead ofM . O

6.5. Irreducible Finite W (9)-Modules. This subsection contains our main results about ir-
reducible finitelV(9)-modules. As before, lell (respectivelyl) be an irreducible finite-
dimensional representation of(respectivelygld). First, we determine which tensdv’ (0)-
modules are irreducible.

Theorem 6.5. The tensoiV (0)-module7 (I1, U) is irreducible if and only if, as gl2-module,
U is not isomorphic to\" o* for anyn > 1.

Proof. Assume thatZ (11, U) is not irreducible. Then, by Corollary 6.4, equations (6.25) are
satisfied for al: € R. In the special case= j = k = [ they give

(6.26) (el +Delu=0 forall ue R=TIXU.

We claim that theyl 0-moduleU is isomorphic td2" := A" o* for somen.

To prove this, first note that the matrid € gl0 acts as a scalar o, and the modulé/
remains irreducible when restrictedd¢. ThenU has a highest weight vector and thegl 0-
moduleU is uniquely determined by its highest weight, i.e., by the eigenvalyes ¢! on v.
Furthermore, all\; — A\, ; are non-negative integers (see, e.g., [Se, Chapter VII]). But by (6.26),
all A\; = 0 or —1; hence theN-tuple (A4, ..., \y) has the form(0,...,0,—1,...,—1). The
moduleQ)™ has such a highest weight, where the number 0§ is n.

Therefore,U ~ Q", and the case = 0 is excluded by Proposition 6.1(ii). Next, recall the
[I-twisted pseudo de Rham complex (5.15), and introduce the shorthand notation

(6.27) T = T(IL,Q"), I":=dy(T" ") cT".

Since the differentiadl;; is a homomorphism of’(9)-modules, the imagé” is a submodule
of T" for eachn = 1,..., N. Itis easy to see from Proposition 5.2 and Lemma 5.3 fhas
nontrivial and proper. Therefore, the tensor moddlésare not irreducible fon > 1. O

Corollary 6.6. Let R be an irreducible finite-dimensioné&b @ gl0)-module. Then th&/ (v)-
module7 (R) is irreducible if and only ifsing 7 (R) = F* 7 (R).

Proof. In one direction, the statement is exactly Corollary 6.3. The opposite direction follows
from Theorem 6.3 and the proof of Theorem 6.5. O

Our next goal is to study the submodulgsof T (see (6.27)).

Lemma 6.11.For 1 <n < N, theWW (v)-submodulg™ C T™ has the following properties
(i) I™ is nontrivial and proper
(i) sing I" = dp(k @ TT @ Q" 1);
(iii) I™ is generated bying /"™ as anH-module
(iv) Any nontrivial proper submodul&/ of 7" contains/”;
(v) I is an irreduciblelV (0)-module.
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Proof. (i) is easy to see from Proposition 5.2 and Lemma 5.3.
(i) Formula (5.17) and Lemma 6.8 imply

s (0 u®a) =dn(l ® u® ya), well, aeQ", i=1,...,N.

Then (ii) follows from Theorem 6.4(i) and the fact tat ! is linearly spanned by alp, .

(iif) is obvious from (ii) and thef -linearity of dy;.

(iv) By Corollary 6.5, we haveing M = sing [". ThenM D H(sing M) = H(singI"),
which is equal ta™ by part (iii).

(v) is obvious from (iv). O

Note that, from the exactness of the complex (5.15), we Have- T° = T(I1,Q°) =
7 (1L k).

Lemma 6.12.For 1 <n < N — 1, I" is the unique nontrivial prope¥’ (v)-submodule off™.

Proof. If M is a nontrivial proper submodule @f", it contains/™. The imaged M is a sub-
module of/"; hence dy M is either{0} or the wholel/"*!. But the kernel ofly is equal to
I™, by the exactness of the complex (5.15). We obtain that eithet /™ or M = T™. O

Now we can classify all irreducible finité’(9)-modules.

Theorem 6.6. Any irreducible finiteél¥’ (9)-module is isomorphic to one of the following

(i) Tensor moduleg (11, U), wherell is an irreducible finite-dimensionatmodule, and’ is
an irreducible finite-dimensionail 9-module not isomorphic t@," o* for anyn > 1;

(i) Imagesdy 7 (I1, Q™), wherell is an irreducible finite-dimensionatmodule, and < n <
dimd — 1 (see(5.15)).

Proof. Let V' be an irreducible finité? (v)-module. Then, by Theorem 6.2 and (6.9),is a
quotient of some tensor modulg R) = 7 (I, U).

If U #£ A" 0*(= Q") as agl o-module for any: > 1, then7 (R) is irreducible by Theorem 6.5.
In this case}) ~ T (R).

Assume that/ ~ Q" for somen > 1; then7 (R) ~ 7 (I, Q") = T" (see (6.27)). Now if
n <N -1, N =dim0o, Lemma 6.12 implies that ~ 7" /I". By the exactness of (5.15), we
getV ~ "1 = dpT (11, Q").

Finally, it remains to consider the case wHéis a quotient of . ThenV ~ TV /M, where
M > IV due to Lemma 6.11(iv). Now Proposition 5.2 implies thais finite dimensional;
hence W () acts trivially on it by Example 2.3. So in this cagBecannot be irreducible. [

Theorem 6.7. The irreducible finitd}’ (v)-modules listed in Theoref6 satisfy
(i) sing7 (IL,U) ~ (1T ® k_;.q) X (U ® ki, ) @s(0 @ glo)-modules
(i) sing(dp7 (I1, Q")) ~ (I @ k_42a) X (Q" @ ky,) @s(0 & gld)-modules.
In particular, no two of them are isomorphic to each other.

Proof. First, note that if3: V' — V"’ is a homomorphism ofl’ (v)-modules, then its restriction
to sing V' is a homomorphism ofo & gl0)-modulessing V' — sing V. In particular, ifV and
V' are isomorphic, thesing V' ~ sing V/".

() If T(R) = 7T (I1,U) is irreducible, then by Corollary 6.6ing 7 (R) = F° T(R) =k ® R.
Now (i) follows from (6.6) and (6.10).

(i) By Lemma 6.11(ii), we havesing(dp 7 (11, 2")) = dp(F° 7 (I1, Q")). ButF® 7 (I1, Q") ~
(MR k_traq) X (2" @ ky,) is an irreducibled @ gl 0)-module. Therefore]y; is an isomorphism
from F° 7 (I1, Q") ontosing(d 7 (11, 7). O

Remark6.3. Let R and R’ be two non-isomorphic irreducible finite-dimensiorial® gl )-
modules. Using Theorem 6.4(ii) and the same argument as in the proof of Theorem 6.7, one
can show that the only nonzero homomorphismg/b)-modules? (R) — 7 (R’) are, up to a
constant factor, the differentiads;.
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7. CLASSIFICATION OF IRREDUCIBLE FINITE S(0, ¥)-MODULES

In this section we adapt the classification results of Section 6 to the case of the Lie pseudoal-
gebraS(0, x). Our main result is Theorem 7.6.

7.1. Singular Vectors. Recall that the annihilation algeb&of S(2, x) possesses a decreasing
filtration {S,},>_1 by subspaces of finite codimension, as given by (3.20). This filtration is
compatible with that oV given by (3.8), (3.11), in the sense made clear by Lemma 3.6 and
Proposition 3.5. In particular, we know th&tC W ~ Wy is a graded Lie algebra isomorphic

to Sy, the grading being given by the eigenspace decomposition with respect to the adjoint
action of the elemenf € W described in Definition 3.3. We denote theigenspace by;;
henceS, = [[,.,5:. Note that we can do the same with the extended annihilation algetam

& commutes withd. We denote the corresponding eigenspaces:iiend C 5, ands; = s; for
i # 0.

In analogy with the case d#/(v), for anS-modulel’, we denote byer, V' the space of all
elements € V that are killed byS,. We denote byker I the spacéer_; V killed by S = S_;.
Then the modulé” is conformaliff V' = Up ker, V. Any S(0, x)-module has a natural structure
of a conformal module over the extended annihilation algéb@a X S (see Proposition 2.1).
The normalizer ofS, in S was computed in Section 3.5. It is independenpof 0, and is
denoted byVs. Note that\s = Hizo%} andS =s_; & Ns as a vector space.

Eachker, V' is a module over the finite-dimensional quotié¥/S,; moreover, the Lie alge-
braNs/S; =0 @ (Sy/S) is isomorphic to the direct sumna sl 0.

Definition 7.1. A singular vectorin anS(d, x)-modulel is an element € V' such thatS; - v =
0. The space of singular vectatsr; V' is also denoted bying V.

Theorem 7.1.For any nontrivial finiteS(d, x)-moduleV, we havesing V' # {0}, and the space
sing V// ker V' is finite dimensional.

Proof. The proof is the same as that of Theorem 6.1, making use of Proposition 3.9 instead of
Proposition 3.4. O

Recall thatS (v, x) is generated ovel by the elements,, defined in (3.5). It will be conve-
nient to introduce the notation

(7.1) d=0+x(d), e,
and
(7.2) Sij = S0,0, = 0, ®0; —0; @0, —1®[0;,05],

where, as beford,0;} is a fixed basis 0.

Remark7.1 By (3.20) and Proposition 2.1, a vectore V' is singular if and only if
sijxveE(FPHRk) @V, i,j=1,...,N,

or, equivalently,
sijxv€ (k@FH)®@yV, i,j=1,...,N.

7.2. Tensor Modules for S(9, x). Let R be a finite-dimensionalo & s[9)-module, with an
action denoted byz. Then the isomorphismVs/S; ~ 2 & sld can be employed to make
anNs-module with a trivial action of5;. For example, the action of the subalgebra N is
given by:

(7.3) d-u=pr(du, O, uER.

Consider the induced-moduleV = Indffs R. Since as a vector spa&e = 0® Ns (see
Proposition 3.8), as aA-moduleV is isomorphic to the free modulE ® R.
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Definition 7.2. The S(d, X)-moduIeIndf/S R constructed above will be denoted By(R), and
will be called atensor moduléor the Lie pseudoalgebr&(o, x). If Ris an irreduciblgd @ sl0)-
module isomorphic téI X U, then we will also writeV, (R) = V, (I, U).

The name tensor module is justified by the fact that, as we will show in Theorem 7.3 below,
the S(0, x)-moduleV, (R) is the restriction t& (2, x) C W () of a tensor module fol’(2) (see
also Remark 6.2).

Theorem 7.2.LetV be anS (9, x)-module, and le be a(d @ s(d)-submodule ofing V. Then
HRis anS(d, x)-submodule ofi, and there is a natural surjective homomorphisf(R) —
HR. In particular, every irreducible finit&'(d, x)-module is a quotient of a tensor module.

Proof. SinceS = ® Ns as a vector space, aftiC sing V, it follows that H R is preserved by
the action ofS. Then by Proposition 2.1 R is anS(, x)-submodule of/. The existence of a
natural surjective homomorphisiy, (R) — H R follows from the definition of), (R). Finally,
if V' is irreducible and finite, then by Theorem 7siyg V' # {0}, and we haved (sing V') =
V. O

Lemma 7.1. The unique injection: S(2, x) — W (0) induces an injective Lie algebra homo-
morphisme,: Ns/S1 — Nw/Wi. The homomorphism,. satisfies..(d) € o @ kId. More
precisely(see(3.29)),

(7.4) @) =D+ %(tr ad—)(O)1d,  ded.
Furthermore,, embedsS,;/S; ~ 5[0 as the Lie subalgebrald C glo ~ W,/ W;.

Proof. By Proposition 3.5, the induced Lie algebra homomorphisi — W is injective and
satisfiesi(S;) € W;. Hence,., is injective. The rest of the lemma follows from (3.29) and
Corollary 3.4. O

Lemma 7.1 shows that), /W, = 1.(Ns/S1) @ k1d. Hence, everyVs/S;-module can be
extended to anV,y, /V;-module by imposing the elemeht to act as multiplication by a scalar
¢ € k. These are the only possible extensions if the actioNgfS; is irreducible.

Theorem 7.3. Every tensor module fof (9, x) can be obtained as the restriction of a tensor
module fori¥ (). More precisely, for every € k, V,(R) = V,(II,U) is isomorphic to the
restriction of V(IT ® K.(y—traay/n, U, ©).

Proof. Note that, as ai/-module,V = V(II ® k.(—wad)/n, U, ¢) can be identified with @ R.
Moreover, sinceR C singV, we haveW, - R = {0}. ThenR becomes aVs/S;-module via
the embedding, from Lemma 7.1.

We identify each of the Lie algebrasandd with . It follows from (7.4) that ifo acts on
II ® ke(y—trad)/v @andId acts as, thend acts onll. Similarly, sl 0 acts ad/, so the action of
2 @ sl0 ~ Ns/S; on R is isomorphic tdl X U.

Then, by the definition ol, (R), there is a natural surjective homomorphismsgb, x)-
modules

T W (R)=V,(ILU) - HR=V .
The homomorphisnt takes an element € R C V,(R) to the elementt € R C V. ButV'is
free as arf{-module; hencery is injective andV, (R) ~ V. O

We will denote the restriction ¢f (I1, U) to S (0, x) by 7, (11, U), and similarly for7 (I1, U, ¢)
(cf. Definition 4.4). Note that by (6.10), we have

(75) T(H X kx+c(x—trad)/Na U, C) = V(H &® k(N+c)(x—trad)/N7 U, N + C) .
Then Theorem 7.3 implies
(76) VX(Ha U) = Q;(H ® kx-i-c(x—trad)/N; Ua C) ) cek.
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Observe thafy = trad is the only case for which the restriction @¥(II, U, c) to S(0, x) is
independent of.

Example 7.1. Note that7 (I1, Q") = 7 (II,Q2", —n), because the elemeit € gld acts on
Q" = \"0* as—n. Then it follows from (7.6) that

(77) 7;((1_[’ Qn) = VX(H ® k*ern(Xftrad)/Na Qn) :
In particular, we have
(7.8) V(L k) ~ T, (M @ ky, 2°) ~ T, (0 @ Ky g, 2V) .

One can use (7.6) far = 0 to write an explicit expression for the action 8fo, y) on its
tensor modulé/, (IL, U). First, we note that if we identify (Il ® k,, U, 0) with H ® R, then
0 € v acts onR asd (see (7.1)). Then we use (7.2) and (6.14) to compyte(1 @ u) for u € R.
The full expression is too cumbersome to write here. Because of (7.2), itis a sum of three terms.
The third term is just a direct application of (6.14) for, 9;]. The second term is obtained from
the first one by switching the roles o&nd;. Finally, usingH-bilinearity, (6.14), and (6.15), we
find that the first term is equal to:

(0;®0;)*x(1®u)=(0;®1) @y (1® (9; +ad d;)u)

N

k:l
Recall thatA(9) = 0 ® 1+ 1 ® d for 0 € 0. This impliesA(d) =9 ® 1 +1® d and

(0@g)or (hou)=(1®g) @y (Oh®u) — (1® gd) @y (h@u),

7.10
( ) 0€d, gghe H, ue R.

Applying (7.10), we rewrite (7.9) as follows:

(0 ®0)x(1@u)=(1®1)®y (0; ® (0; + ad d;)u)
N
(7.11) —(1®8) @u s(0;,u) — Y (1®0) @u (0; @ (e + 65)u)
k=1

N
+ Z (1® 0k0;) ®n (1® (65 + 5Jk)u) :
k=1

When the action ofl 0 on R is trivial, things can be rearranged in a more elegant form as follows:

Even though the expression (7.11) is not very inspiring, it will turn out to be useful. We state
as a lemma the properties that we are going to need later. Before that let us introduce the notation
(see (6.15)):

N
(7.13) a;j(u) = 0;s(0j,u) — 0;5(0;, u) = Z (aiak ® efu — 00, ® efu) )
k=1

Note thata,;(u) = 0.
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Lemma 7.2. Consider the tensaof (9, x)-moduleV, (R). Then the action of the elements
S(0, x), defined in(7.2), on an element ® u € k ® R C V,(R) has the form

sip*(Lou) =1 1) g Ayu) + > (1® ) @ Al (u)

k=1
(7.14) N
+ Y (1®0kdh) @ Afl(u),
k=1
k<l
where

Al (u) e k® (k + sl0)u,

ij
Ak (u) e @ (k+sl0)u+ k® (k+0+sld)u,

j
and
Aij(u) € ag(u) + 8 @ Jju — 0; @ dyu
1@ (k+s)ut+k® (k+0+sldu.
7.3. Filtration of Tensor Modules. In analogy with tensor modules fo¥ (2), one can define
an increasing filtratiod” V, (R) of V,(R) = H ® R by
(7.15) FPV (R =FPH® R, p>—1.
Note thatF ' V, (R) = {0} andF" V,(R) = k ® R. The associated graded spac&ofR) is
(7.16) eV (R) = P ea?W(R), @V (R) = F'V(R)/F' VY (R).
p=>—1

The proof of the following lemma is completely similar to that of Lemma 6.3, so we omit it.

Lemma 7.3. The action ofS on V), (R) satisfies
(i) - FPV (R) C FP* Y (R),
(i) Ns - FPV(R) C FPV(R),
(i) S; - FPV(R) C FP 'V, (R).

Lemma 7.3 implies that eagh? V, (R) is a module over the Lie algebyés/S; ~ 2 & s[2.
This module is described in the next lemma.

Lemma 7.4. We have
g’ Vi (ILU) =~ (1T ® Kp(irad —x)/n) X (ST @ U)
as (0 @ slv)-modules.

Proof. Let us extend thel0-action onU to an action ofgld by letting Id act as0. Then,

by Theorem 7.3)), (IL, U) is the restriction toS(d, x) of the tensodV (9)-moduleV(I1, U, 0).
Moreover, the filtration (7.15) coincides with the one defined in Section 6.2. The structure of
a (0 @ glo)-module ongr? V(I1, U, 0) is described in Corollary 6.2. Note that this describes
the action ofo. Using (7.4), we find thad acts adl @ Ky trad—y)/N, DECAUSEd acts agp on
SPo®U. ]

The grading ofS can be used to endoWw, (R) with a graded module structure as follows.

Recall thatV, (R) = Indf/S RandS = s_; ® Ns as a vector space. Therefore, as a vector space,
Vi(R) = U(s_1) ® R. However, the Lie algebra_; is commutative, because the degrekepart

in Sy is commutative and because the isomorphism Sy is compatible with the grading (see
Corollary 3.3). Ther/(s_;) is the symmetric algebra generatedshy, and we grad®’, (R) by
lettings_; have degree-1 and R have degreé.
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By definition, the above grading af, (R) is compatible with the grading af. It is also
compatible with the filtration (7.15).

7.4. Submodules of Tensor Modules.In what follows, V, (R) will be a tensor module for
S(0,x). We will assume tha? = II X U, wherell (respectivelyU) is an irreducible finite-
dimensional representation @{respectively!( ).

Recall that every elemente V), (R) can be expressed uniquely as a finite sum

(7.17) v=> d"®v, v ER.
Iez¥

As in Section 6.3, nonzero elementsare calleccoefficient®f v, and we denote byoeff M the
subspace oR linearly spanned by coefficients of elements M.

Lemma 7.5. For any nontrivial properS(, x)-submodulé/ C V, (R), we haveV NF° V), (R) =
{0}.
Proof. The action of & s(d preserves botk ® R (by the definition ofV, (R)) and)/ (because

itis an.S (v, x)-submodule). Thus, their intersection N F° V, (R) is a( @ sl d)-submodule of
R. Irreducibility of R implies that this intersection is trivial. O

Lemma 7.6. For any nontrivial properS (9, x)-submodulé\/ C V, (R), we haveoeff M = R.

Proof. Take an element € A and write it in the form (7.17). For # j, we computes;; * v
using H-bilinearity and Lemma 7.2. Denote by the coefficient ofl ® 0 in the expression
for s;; x v; then, by Remark 2.2(iiy» € M. By Lemma 7.2, we have

m = a;j(vy) mod F'H® R.

Note thatefv; for k +# i, efv; for k # j, and(e’ — el)o; are coefficients of;;(v;) (see (7.13)).
Hence, they are coefficients of, and we conclude thas[0)v; C coeff M.

In order to show thad - v; C coeff M, we look at the degree one part of the above element
Again by Lemma 7.2, it is equal to

& ®5j1)[ —Gj ®5¢’01+0® (k—l—s[D)(coeffM)

Hence, the action af preservesoeff M. Thencoeff M is a(v & sld)-submodule ofR?, which
is irreducible. This shows thabeff M = R, as it cannot bg0}. O

Lemma 7.7. Let M be a nontrivial properS (0, x)-submodule ofY(R). Then for every # j
andu € R, there exists an element € M N F?V,(R) such that

m = a;j(u) mod F'V,(R),
wherea;;(u) is given by(7.13)

Proof. As coeff M = R, it is enough to prove the statement whers a coefficienty; of some
elementw € M. Thenm is the element considered in the proof of Lemma 7.6. O

Our next result describes which tenstip, x)-modules are irreducible.

Theorem 7.4.LetlI (respectively/) be an irreducible finite-dimensional module overespectively
s[0). Then theS(d, x)-moduleV, (11, U) is irreducible if and only ifU is not isomorphic to
Q"= A\"0o* foranyn > 0.

Proof. Recall from Theorem 6.5 that the tenddi(v)-module7 (II, Q") is not irreducible for
n > 1. Then its restrictior?, (I, ") is not irreducible either. It follows from (7.8) and Propo-
sition 5.2 that’, (11, °) is not irreducible as well.

Conversely, assume theg (11, U) is not irreducible, and let/ be a nontrivial proper submod-
ule. Applys;; on an element: € M satisfying the conditions of Lemma 7.7 (for the saimg.
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Then for:i < j the coefficient multiplyingl ® 83(‘)? in the expression fos;; * m is equal to (see
Lemma 7.2):

1® ((ef — e§)2 — (efeé + eéef))u.
By Remark 2.2(ii), this is an element 8f. Lemma 7.5 implies that this element vanishes for all
ue R=IIXU. } }

Note thath = e! — e, e =¢,andf = e§. are standard generators of a subalgebrsl of
isomorphic tosl,. We know thath? — (ef + fe) acts trivially onR. The element.? is a linear
combination of,? — (ef + fe) and of the Casimir element; hence, it acts on any irreducible
sly-submoduleV’ C U as a scalar. This means thétn W = 0 or 1; hence, for; < j the
eigenvalues of! — e; on weight vectors can only kgor 1.

Recall that every irreduciblel 0-moduleU has a highest weight vector, abdis uniquely
determined by its highest weight (see, e.g., [Se, Chapter VII]). Let us denatethye eigenvalue
of el — e? on the highest weight vector éf. Then\;; + A\;x = A\, but all \;; = 0 or 1. This
implies that\; ;. = J;,, for somen; in other words[J is then-th fundamental representation,
which is isomorphic t&2V ", O

Corollary 7.1. LetV be afiniteS(d, x)-module, and leR? C sing I be an irreduciblgo & s10)-
submodule. Assume that ~ IT X U with U # Q" for anyn. Then as and-module,H R ~
H ® R.

Proof. By the definition ofV, (R), there is a natural surjective homomorphisny@d, x )-modules
Vi (R) — HR C V. However, by Theorem 7.4, the tensor modul|¢R) is irreducible. There-
fore, HR ~ V,(R) = H ® R s free as arf{-module. O

7.5. Computation of Singular Vectors. In this section, we will compute singular vectors for
all tensorS (v, x)-modules of the formV, (I, Q™), wherell is an irreducible finite-dimensional
representation of and2™ = A" o*. This will be used in Section 7.6 for the classification of all
irreducible quotients of tensor modules.

Proposition 7.1. For V = V, (I, Q"), we haveF° V' C singV C F*V. Furthermore, ifV =
V, (I, k), thensing V C F' V.

Proof. Let us consider first the case= 0, i.e.,V =V, (I, k). Letv € V be a singular vector
written in the form (7.17). Then using (7.12) ah@bilinearity, we get:

Sij U = Z(l & 6(1)) Rm (0, X @-vl - 8j X &vl -1 X [8“ 8j]v1)
I
+) (1®0Y0) @y (9; @ v — 1© djv;)
I
=) (1®0Y0)) @ (0@ v — 1@ dy).
I

Assume that ¢ F' V, and choosé so that /| is maximal among those for whiah # 0. Then,
by Remark 7.1, the element multiplyirigs 019, in the above expression must vanish. Hence,
vy = 0, which is a contradiction.

Now let us assume that # 0, N, i.e., " 2 k. We proceed as above: consider a singular
vectorv = Y 0¥ @ v; and use (7.14) to computg + v. Then the coefficient of @ ) is equal
to a;;(v;) modF' V. If |I| > 2 andv; # 0, this contradicts Remark 7.1. O

Recall that the tensd¥ (0, x)-moduleV = V, (R) has a filtration{ F” V'}, given by (7.15). If
v € V is a nonzero singular vector, we can find a unigue 0 such thaty € F?V \ F*~' V.
Note that, by Lemma 7.3, bolff V andgr? V' are(d @ sl 0)-modules, and the natural projection
. FPV — gr? V is a homomorphism. Therefore, the restriction

(7.18) P’ singVNFPV — g V
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is @ homomorphism ofo & sl0)-modules. Sincer”(v) # 0, we obtain that thelo-modules
sing V andgr? V' contain an isomorphic irreducible summand. We will utilize these remarks,
together with the next lemma, to study singular vectors.

Lemma 7.8.LetV =V, (II,U), and letU’ be an irreduciblesl d-submodule ogr” V. Assume
that U’ £ Q™ for anym, and thatdim U’ > dim U. Then the submodule’(singV N FP V') C
gr? V' does not intersedt/’.

Proof. Let
R=IIXU, R/:(H®kp(trad—x)/N>®U/-

By Lemma 7.4 R’ is an irreduciblegd @ s[9)-submodule ofr? V. If we assume that?(sing V' N
F? V) intersectd/’, thensing V' contains g0 @ s[9)-submodule isomorphic t&'. Now Corol-
lary 7.1 implies that{ R’ C V' is free as anf{-module. But

dim R = (dimIT)(dim U’) > (dim IT)(dim U) = dim R.

Therefore, the/-submodule R' C V has a larger rank than = H ® R, which is impossible.
[

Lemma 7.8 is a powerful tool for studying singular vectors, when combined with the explicit
knowledge of thesld-modulesgr? V. It follows from Lemma 7.4 thagr? V' is a completely
reduciblesl o-module, all of whose irreduciblegl 9-components are contained %o @ U. In
addition, sinceing V' c F? V by Proposition 7.1, we can restrict our attention to the cased
or 2. Our next result shows a typical application of these ideas.

Proposition 7.2. If V =V, (I, Q"), n # 1, thensingV C F' V.

Proof. Recall thatsing V'  F? V' by Proposition 7.1. We want to show that(sing V') = {0}
(see (7.18)). We know from Lemma 7.4 that

g1“2 V ~ (H X kz(trad —X)/N> X (82 0® Qn) .

Thus, any irreducibleld-submodulel/’ C gr?V is contained i5?? ® Q". One can check
(see Lemma 7.9(iii) below) that all sudlf satisfydim U’ > dim Q™ andU’ % Q™ for any
m. Hence, we can apply Lemma 7.8 to conclude thgting V) N U’ = {0}. Therefore,
singV C F' V. O

Note that the above proof does not hold in the case 1, as one of the irreduciblel 0-
summands i3 0 ® Q' is isomorphic td ~ QV~!. To get a complete description of all singular
vectors, we need a detailed study of #he-modulesS? o ® Q' ando ® Q™.

Lemma 7.9.(i) For 1 < n < N —1, we have a direct sum &f d-modulesd Q" = Q" 1 U,
wherel’ is irreducible,dim U’ > dim Q"™ and U’ % Q™ for anym.

(i) We have a direct sum off 0-modules S*? ® Q' = o @ U”, whereU” is irreducible,
dimU” > dim Q! = N andU” % Q™ for anym.

(iii) For2 <n < N — 1, every irreducibles[ o-submoduld/’ ¢ S* v ® Q" satisfieslim U’ >
dim Q™ and U’ % Q™ for anym.

Proof. We will use Table 5 from the Reference Chapter of [OV]. Following [OV], we will denote
by R(A) the irreducible representation efo ~ sl with highest weight\. We will denote by

7, then-th fundamental weight ofl;, and we will setry = 7 = 0. Note thatR := R(m;) =

is the vector representation gifo, and R(0) = k is the trivial one. Then we have:

Q= /\n 0" ~ (/\n 0)* ~ /\N_na = /\N_nR ~ R(mn_n)

S’ =S*R~ R(2m).

and
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Using [OV], we find:

R(m) @ R(mp) = R(m + mp) © R(7p41) ,
R(2m) ® R(m,) ~ R(2m +7,) & R(m1 + mpi1)

and
) N
dim R(m,) = (p) :
: p N
=~ (N+1
dim R(my + m,) " 1( + )(p) ,
. P N+2\ /N
dlmR(Qﬂ'l—'—ﬂ'p):m( 9 )(p)
From here, it is easy to finish the proof. O
Let us introduce some notation. Fov-amodulell, we set

(719) Hn =1I® k—x+n(x—tr ad)/N » II'=1I & ktr ad —x -
Then we can restate (7.7) as
(7.20) T (I, Q") ~ V,(I1,,, 2"),
while by (7.8) we have an isomorphism 82, y)-modules
(7.21) Y T, Q) 5 T (11, Q°) .

Also, recall thelI-twisted pseudo de Rham complexiéf(0)-modules (5.15). When we restrict
these modules t§(0, x), we obtain a complex of (v, x)-modules
(7.22) 0 — T,(I1,Q%) 4% 7. (I, ') 2% . 2% 7 (11, QM)
Note that the isomorphism is compatible with the filtrations (i.e., it maps ed¢hto F”), while
dp has degree (i.e., it maps each?” to F7*1).
Theorem 7.5. LetII be an irreducible finite-dimensionatmodule. Then we have the following
equalities and isomorphisms ¢ & sl 0)-modules
(I) SlngY;((HuQn) = FO?;((Hin) +dH FO?;((Hinil)

~ (I, Q") @ (II,,_; Q") 2<n<N,

(ii) sing 7, (T, Q') = FO 7(I1, Q") + dy F 7, (11, Q%) + dpepdpy FO T, (11, Q1)
~ (XY e I,XQ") o (TI_, QY1) ,
where we use the notation frofn.19)}(7.21)

Proof. Let V' = 7,(I1, 2"). Then by (7.20)}) ~ V, (IL,,, 2"), and by Lemma 7.4, we have an
isomorphisms ofo & sl0)-modules

g’V e 11, , K (SPo @ Q7).

In particular,F° V = gr® V ~ II,, X Q". Note that the latter is an irreducib(e & sl 0)-module.
This implies the isomorphisms in (i) and (ii) above, becalis@nd are homomorphisms and
becaus€ll’)y_; ~ I1_; (see (7.19)).

Recall thatF’ V' C singV c F?V, andsingV C F'V for n # 1 (see Propositions 7.1
and 7.2). Sincey; andy are homomorphisms & (9, y)-modules, they map singular vectors to
singular vectors. Then it is clear that the right-hand sides of (i) and (ii) are containig iVi.

Next, we describe the image siig V N F! V in gr' V under the natural projection (7.18). On
one hand, we have

m(singVNF'V) D o' (dp F* 7,(IL Q" 1)) ~ 11, Q" 1.
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On the other hand, every irreducibdéd-submodule ofgr! V' is contained in0 @ Q". By
Lemma 7.9(i), we have a direct sumsdb-moduleso®Q" = Q" 1gU’, wherel is irreducible,
dim U’ > dim Q" andU’ % Q™ for anym. Now, by Lemma 7.8, the imagé (singV N F' V)
does not intersedt,,_; X U’. Therefore, the above inclusion is an equality. In particular, we get
statement (i).

To finish the proof of (ii), we note that

7 (sing V) D 7 (dpabdy FO 7, (I, QY1) ~ 11, M OQN L.
By the same argument as above, this is an equality, because of Lemma 7.9(ii). O

Remark7.2 It follows from Theorem 7.5 and the isomorphism (7.21) that
sing T, (I1, Q°) = FO 7(I1, Q%) + vdp FO 7, (I, QN 1)
~ (MR @ (M, "N,

7.6. Irreducible Finite S(0, x)-Modules. We can now complete the classification of irreducible
finite S(d, x)-modules. Our fist result describes all submodules of the teti&@ory)-module
(I Q").

Lemma 7.10. LetII be an irreducible finite-dimensionatmodule, let’™ = 7, (II, "), and let
M C T™ be a nontrivial properS(?, x)-submodule. Then

(i) sing M = dg F° 771, if 2 <n < N;

(i) M > dyTVN-Lif n = N;

(i) M =dpgT™ L, if2<n<N-—1;

(iv) dg7tis irreducible for2 < n < N.

Proof. Let2 < n < N, and letM C T™ be a nontrivial propeiS(d, x)-submodule. Then
sing M C singT™ is a (0 @ s[d)-submodule, and/ N F°T™ = {0} by Lemma 7.5. Now
Theorem 7.5(i) and an argument similar to the one used in the proof of Corollary 6.5 imply part
(). Then

M D H(sing M) = dg(H(F° T 1)) = dgT" .
The rest of the proof of (iii) is the same as that of Lemma 6.12, while (iv) follows from (ii) and
(iii). O
Remark7.3 Recall that thelV/(v)-module 7 (II, Q') has a unique nontrivial propd#’ (0)-
submodule, namelyl; 7 (I, 2°) (see Lemma 6.12). However, the restrictip(Il, ') of
7 (11, 2% to S(0, x) has two nontrivial propef (9, x)-submodules:

dppdp T, (I, QN 1) € dp T (11, Q°)

(cf. Theorem 7.5(ii)). Because of (7.21) and the exactness of (7.22), thesgawg)-modules
are isomorphic to the following ones:

AT (I, Q¥ 1) € (1T, Q).
Now we can state the main result of this section.

Theorem 7.6. Any irreducible finiteS(, y)-module is isomorphic to one of the following
(i) Tensor module$, (11, U, 0), wherell is an irreducible finite-dimensionatmodule, and/
is an irreducible finite-dimensional 9-module not isomorphic t@\" o* for anyn > 0;
(i) Imagesiy 7, (I1, ™), wherell is an irreducible finite-dimensionatmodule, and < n <
dimd — 1 (see(7.22)).

Proof. The proof is similar to that of Theorem 6.6. Létbe an irreducible finit&' (2, y )-module.
Then, by Theorem 7.2 and (7.6),~ T'/M, wherel’ = 7, (1, U) is atensor module and C T’
is anS(v, x)-submodule.

If U 2 \"0o* = Q" as ansl0-module for anyn > 0, thenT is irreducible by Theorem 7.4
and (7.6). In this casé; ~ 7 (II,U).
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Assume that/ ~ Q" for somen > 0; thenT" ~ 7, (II, ") = T™ is not irreducible. Because
of (7.8), we can assume without loss of generality that n < N = dimd. Now if 2 <
n < N — 1, Lemma 7.10(iii) implies thaf\/ = d;7"~!. By the exactness of (7.22), we get
VT /dpT™ 1 ~ dpT™.

Next, consider the case whén is a quotient of'”. Then, by Lemma 7.10(ii), we have
M > dgTMN~!. Now Proposition 5.2 implies thdt is finite dimensional; hence§ (o, x) acts
trivially on it by Example 2.3, and is not irreducible.

Finally, it remains to consider the case whenis a quotient of7'. Note thatdg M is a
properS(0, y)-submodule ofl'?; hence, by Lemma 7.10(iii), it must be either trivial or equal
to dg7!. First, if duM = {0}, thenM C dpT° and we have a surjective homomorphism
T'/M — T'/dgT°. ButT'/M ~ V is irreducible; therefore}y ~ T'/dpT° ~ dpT".
Second, ifdpM = dpT*, thenM + dgT° = T' and we have isomorphisnis ~ T /M ~
(dpT°)/(dnT° N M). Since the magy: 7° — T is injective, we get thal ~ 7°/K for some
S(v, x)-submodulek of T°. This case was already considered above, because of (7.8)[]

Finally, for each irreducible finite& (0, x)-moduleV’, we will describe the spacéng V' of
singular vectors of’.

Lemma 7.11. Let R be an irreducible finite-dimensioné ¢ s(d)-module. The” = V, (R)
is an irreducibleS(?, x)-module if and only iking V = F° V/,

Proof. It is clear from Lemma 7.5 that’ is irreducible whemsingV = F°V. Conversely,
assume thav is irreducible. Consider the grading 6f = U(s_;) ® R constructed at the end

of Section 7.3. All homogeneous components of a singular vector are still singular, so we have
to show that the only homogeneous singular vectors iare of degree zero. Iif € sing V' is

a singular vector of negative degree, then Sheubmodule generated hyis contained in the
negatively graded part 6f, which contradicts the irreducibility df . ThereforegsingV = R =

FOV, O

Theorem 7.7. The irreducible finiteS(0, x)-modules listed in Theoreih6 satisfy(see(7.19)):
(i) sing 7, (I, U, 0) ~ I, X U as(d & s[d)-modules
(i) sing(dn7,(I1, Q")) ~ II,, X Q" as (d @ s[d)-modules.

In particular, no two of them are isomorphic to each other.

Proof. The proof is similar to that of Theorem 6.7, and it uses (7.20), Theorem 7.5(i), and Lem-
mas 7.10(i) and 7.11. O
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