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1. INTRODUCTION

One of the algebraic structures that has emerged recently in the study of the operator product
expansions of chiral fields in conformal field theory is that of aLie conformal algebra[K]. Recall
that this is a moduleL over the algebra of polynomialsC[∂] in the indeterminate∂, endowed
with aC-linear map

L⊗ L→ C[λ]⊗ L , a⊗ b 7→ [aλb] ,

satisfying axioms similar to those of a Lie algebra (see [DK, K]).
Choosing a set of generators{ai}i∈I of theC[∂]-moduleL, we can write:

[ai
λa

j] =
∑

k

Qij
k (λ, ∂)ak ,

whereQij
k are some polynomials inλ and∂. The commutators of the corresponding chiral fields

{ai(z)}i∈I then are:

[ai(z) , aj(w)] =
∑

k

Qij
k (∂z, ∂t)(a

k(t)δ(z − w))|t=w .

LettingP ij
k (x, y) = Qij

k (−x, x+ y), we can rewrite this in a more symmetric form

[ai(z), aj(w)] =
∑

k

P ij
k (∂z, ∂w)(ak(w)δ(z − w)) .

We thus obtain anH = C[∂]-bilinear map (i.e., a map ofH ⊗H-modules):

(1.1) L⊗ L→ (H ⊗H)⊗H L , a⊗ b 7→ [a ∗ b]
(whereH acts onH ⊗H via the comultiplication map∆(∂) = ∂ ⊗ 1 + 1⊗ ∂), defined by

[ai ∗ aj] =
∑

k

P ij
k (∂ ⊗ 1, 1⊗ ∂)⊗H ak .

Hence the notion of aλ-bracket[aλb] is equivalent to the notion of a∗-bracket[a ∗ b], as in-
troduced by Beilinson and Drinfeld [BD]. For example, the Virasoro conformal algebraVir =
C[∂]` with [`λ`] = (∂ + 2λ)` corresponds to the Virasoro∗-bracket

(1.2) [` ∗ `] = (1⊗ ∂ − ∂ ⊗ 1)⊗C[∂] ` .

A Lie pseudoalgebrais a generalization of the notion of a Lie conformal algebra for which
C[∂] is replaced by the Hopf algebraH = U(d), whered is a finite-dimensional Lie algebra and
U(d) is its universal enveloping algebra. It is defined as anH-moduleL endowed with anH-
bilinear map (1.1) subject to certain skew-symmetry and Jacobi identity axioms (see [BD, BDK]
and Section 2.2 below). The namepseudoalgebrais motivated by the fact that this is an algebra
in a pseudotensor category, as introduced in [L, BD]. Accordingly, the∗-bracket is also called a
pseudobracket.

In [BDK] we gave a complete classification of finite (i.e., finitely generated as anH-module)
simple Lie pseudoalgebras. In order to state the result, we introduce a generalization of the
Virasoro pseudoalgebra (1.2) defined forH = C[∂], to the caseH = U(d), whered is any finite-
dimensional Lie algebra. This is the Lie pseudoalgebraW (d) = H ⊗ d with the pseudobracket

[(1⊗ a) ∗ (1⊗ b)] = (1⊗ 1)⊗H (1⊗ [a, b]) + (b⊗ 1)⊗H (1⊗ a)− (1⊗ a)⊗H (1⊗ b) .

It is shown in [BDK] that all subalgebras of the Lie pseudoalgebraW (d) are simple and, along
with current Lie pseudoalgebrasCur g = H ⊗ g with pseudobracket

[(1⊗ a) ∗ (1⊗ b)] = (1⊗ 1)⊗H [a, b] ,

whereg is a simple finite-dimensional Lie superalgebra, they form a complete list of finite simple
Lie pseudoalgebras.

The notion of a Lie pseudoalgebra is intimately related to the more classical notion of a differ-
ential Lie algebra. LetL be a Lie pseudoalgebra, and letY be a commutative associative algebra



IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE PSEUDOALGEBRAS I 3

with compatible left and right actions of the Hopf algebraH. Then we define a Lie algebra
AYL = Y ⊗H L with the obvious leftH-module structure and the following Lie bracket:

[x⊗H a, y ⊗H b] =
∑

i

(xfi)(ygi)⊗H ci , if [a ∗ b] =
∑

i

(fi ⊗ gi)⊗H ci .

The main tool in the study of Lie pseudoalgebras and their representations is theannihilation
algebraAXL, whereX = H∗ is the commutative associative algebra dual to the coalgebraH.
In particular a module over a Lie pseudoalgebraL is the same as a “conformal” module over the
extended annihilation Lie algebrad nAXL (see [BDK] and Section 2.3 below).

The annihilation algebra of the Lie pseudoalgebraW (d) turns out to be isomorphic to the
linearly compact Lie algebra of all formal vectors fields on a Lie group whose Lie algebra isd.
This leads to a formalism of pseudoforms, similar to the usual formalism of differential forms,
which allows us to define three series of subalgebrasS(d, χ), H(d, χ, ω) andK(d, θ) of W (d).
The annihilation algebras of the simple Lie pseudoalgebrasW (d), S(d, χ, ω), H(d, χ, ω) and
K(d, θ) are isomorphic to the four series of Lie–Cartan linearly compact Lie algebrasWN , SN ,
PN (which is an extension ofHN by a1-dimensional center) andKN , whereN = dim d.

However, the Lie pseudoalgebrasS(d, χ), H(d, χ, ω) andK(d, θ) depend on certain parame-
tersχ, ω andθ due to inequivalent actions ofd on the annihilation algebra [BDK]. It is shown
in [BDK] that these series of subalgebras along with their current generalizations, associated to
subalgebras ofd, exhaust all subalgebras ofW (d).

The main goal of the present paper is to give a complete list and an explicit construction of all
irreducible finite modules over the Lie pseudoalgebrasW (d) andS(d, χ). Representation theory
of the seriesH(d, χ, ω) andK(d, θ) will be treated in sequel papers.

The simplest example of a nontrivialW (d)-module is the moduleΩ0(d) = H (of rank1 over
H) given by:

(f ⊗ a) ∗ g = −(f ⊗ ga)⊗H 1 , f, g ∈ H , a ∈ d .

The corresponding module over the annihilation Lie algebra is just the representation of the Lie
algebra of all formal vector fields in the space of formal power series. As in the latter case, the
W (d)-moduleΩ0(d) is the first member of the pseudo de Rham complex

0 → Ω0(d)
d−→ Ω1(d)

d−→ · · · d−→ ΩN(d) ,

whereΩn(d) = H ⊗ Ωn, Ωn =
∧n

d∗, andN = dim d (see Section 5.2).
TheW (d)-modulesΩn(d) of pseudodifferential forms are special cases oftensor modules

T (U) = H ⊗ U overW (d), associated to anygl d-moduleU , given by:

(1⊗ ∂i) ∗ (1⊗ u) = (1⊗ 1)⊗H (1⊗ (ad ∂i)u) +
N∑

j=1

(∂j ⊗ 1)⊗H (1⊗ ej
iu)

− (1⊗ ∂i)⊗H (1⊗ u) ,

(1.3)

where{∂i} is a basis ofd andej
i∂k = δj

k∂i (see Section 4.3). ThenΩn(d) = T (Ωn).
Furthermore, for a finite-dimensionald-moduleΠ we define thetwisting of T (U) by Π by

T (Π, U) = H ⊗ (Π⊗U) and by adding the term(1⊗ 1)⊗H (1⊗ ∂iu) in the right-hand side of
(1.3). Then we have theΠ-twisted pseudo de Rham complex ofW (d)-modules:

0 → T (Π,Ω0)
dΠ−→ T (Π,Ω1)

dΠ−→ · · · dΠ−→ T (Π,ΩN)

(see Section 5.3).
The first main result of the present paper (Theorem 6.6) states that:

(a) TheW (d)-moduleT (Π, U) is irreducible if and only ifΠ andU are irreducible andU
is not isomorphic to one of thegl d-modulesΩn =

∧n
d∗ for n ≥ 1;

(b) TheW (d)-submoduledΠT (Π,Ωn) of T (Π,Ωn+1) is irreducible, provided thatΠ is irre-
ducible, for all0 ≤ n ≤ N − 1;
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(c) The irreducibleW (d)-modules listed in (a) and (b) exhaust all irreducible finiteW (d)-
modules.

The corresponding result forS(d, χ) is Theorem 7.6. We also describe the structure of submod-
ules of theW (d)- andS(d, χ)-modulesT (Π,Ωn) (Lemmas 6.12 and 7.10).

As in the Lie algebra case, the main part of the problem is the computation of singular vectors.
However, in the Lie pseudoalgebra framework the calculations are much simpler. In particular,
we obtain simpler and more transparent proofs of the results of Rudakov [R1, R2].

In the case whend = k∂ is 1-dimensional, the Lie pseudoalgebraW (k∂) is isomorphic to the
Virasoro pseudoalgebraVir with the pseudobracket (1.2). Now Theorem 6.6 states that every
irreducibleW (k∂)-module is of the formT (Π,k), whereΠ is an irreduciblek∂-module andk
is the trivialgl1-module. The modulesΠ are1-dimensional overk and are uniquely determined
by the eigenvalueα ∈ k of ∂. Thus we recover the classification result of [CK].

Note that the category of representations of a Lie pseudoalgebra is not semisimple in general,
i.e., complete reducibility of modules does not hold. To study extensions of modules, as well as
central extensions and infinitesimal deformations of Lie pseudoalgebras, one definescohomology
of Lie pseudoalgebras (see [BKV, BDK]). The cohomology of the Virasoro conformal algebra
Vir was computed in [BKV]. The cohomology ofW (d) and its subalgebras will be computed in
a future publication.

2. BASIC DEFINITIONS

In this section, we review some facts and notation from [BDK], which will be used throughout
the paper. We will work over an algebraically closed fieldk of characteristic0. Unless otherwise
specified, all vector spaces, linear maps and tensor products will be considered overk. We will
denote byZ+ the set of non-negative integers.

2.1. Preliminaries on Hopf Algebras. LetH be a Hopf algebra with a coproduct∆, a counit
ε, and an antipodeS. We will use the following notation (cf. [Sw]):

∆(h) = h(1) ⊗ h(2), h ∈ H,(2.1)

(∆⊗ id)∆(h) = (id⊗∆)∆(h) = h(1) ⊗ h(2) ⊗ h(3),(2.2)

(S ⊗ id)∆(h) = h(−1) ⊗ h(2), etc.(2.3)

Note that notation (2.2) uses coassociativity of∆. The axioms of antipode and counit can be
written as follows:

h(−1)h(2) = h(1)h(−2) = ε(h),(2.4)

ε(h(1))h(2) = h(1)ε(h(2)) = h,(2.5)

while the fact that∆ is a homomorphism of algebras translates as:

(2.6) (fg)(1) ⊗ (fg)(2) = f(1)g(1) ⊗ f(2)g(2), f, g ∈ H.
Equations (2.4) and (2.5) imply the following useful relations:

(2.7) h(−1)h(2) ⊗ h(3) = 1⊗ h = h(1)h(−2) ⊗ h(3).

Let X = H∗ := Homk(H,k) be the dual ofH. Recall thatH acts onX by the formula
(h, f ∈ H, x, y ∈ X):

(2.8) 〈hx, f〉 = 〈x, S(h)f〉,
so that

(2.9) h(xy) = (h(1)x)(h(2)y).

Moreover,X is commutative whenH is cocommutative. Similarly, one can define a right action
of H onX by

(2.10) 〈xh, f〉 = 〈x, fS(h)〉,
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and then we have

(2.11) (xy)h = (xh(1))(yh(2)).

Associativity ofH implies thatX is anH-bimodule, i.e.,

(2.12) f(xg) = (fx)g, f, g ∈ H, x ∈ X.

Throughout the paper,H = U(d) will be the universal enveloping algebra of a finite-dimensional
Lie algebrad. In this case,

(2.13) ∆(a) = a⊗ 1 + 1⊗ a, S(a) = −a, a ∈ d ;

hence,∆ is cocommutative andS2 = id. SetN = dim d and fix a basis{∂i}i=1,...,N of d. Then

(2.14) ∂(I) = ∂i1
1 · · · ∂

iN
N /i1! · · · iN ! , I = (i1, . . . , iN) ∈ ZN

+ ,

is a basis ofH (similar to the Poincaŕe–Birkhoff–Witt basis). Moreover, it is easy to see that

(2.15) ∆(∂(I)) =
∑

J+K=I

∂(J) ⊗ ∂(K).

For a multi-indexI = (i1, . . . , iN), let |I| = i1 + · · · + iN . Recall that the canonical increasing
filtration ofH = U(d) is given by

(2.16) Fp U(d) = spank{∂(I) | |I| ≤ p} , p = 0, 1, 2, . . .

and does not depend on the choice of basis ofd. This filtration is compatible with the structure
of Hopf algebra (see, e.g., [BDK, Section 2.2] for more details). We have:F−1H = {0},
F0H = k, F1H = k⊕ d.

We define a filtration ofH ⊗H in the usual way:

(2.17) Fn(H ⊗H) =
∑

i+j=n

FiH ⊗ Fj H .

The following lemma, which is a reformulation of [BDK, Lemma 2.3], plays an important role
in the paper. (This lemma holds for any Hopf algebraH.)

Lemma 2.1. (i) The linear maps

H ⊗H → H ⊗H , f ⊗ g 7→ (f ⊗ 1)∆(g)

and
H ⊗H → H ⊗H , f ⊗ g 7→ (1⊗ f)∆(g)

are isomorphisms of vector spaces. These isomorphisms are compatible with the filtration(2.17).
(ii) For anyH-moduleV , the linear maps

H ⊗ V → (H ⊗H)⊗H V , h⊗ v 7→ (h⊗ 1)⊗H v

and
H ⊗ V → (H ⊗H)⊗H V , h⊗ v 7→ (1⊗ h)⊗H v

are isomorphisms of vector spaces. In addition, we have:

(FnH ⊗ k)⊗H V = Fn(H ⊗H)⊗H V = (k⊗ FnH)⊗H V .

Let us define elementsxI ∈ X by 〈xI , ∂
(J)〉 = δJ

I , where, as usual,δJ
I = 1 if I = J and

δJ
I = 0 if I 6= J . Then (2.15) impliesxJxK = xJ+K ; hence,

(2.18) xI = (x1)i1 · · · (xN)iN , I = (i1, . . . , iN) ∈ ZN
+ ,

where

(2.19) xi = xεi
, εi = (0, . . . , 0, 1

i
, 0, . . . , 0) , i = 1, . . . , N .
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Therefore,X can be identified with the ringON = k[[t1, . . . , tN ]] of formal power series inN
indeterminates. We have a ring isomorphism

(2.20) ϕ : X
∼−→ ON , ϕ(xi) = ti , ϕ(xI) = tI ,

wheretI is given by a formula similar to (2.18).
Let FpX = (FpH)⊥ be the set of elements fromX = H∗ that vanish onFpH. Then{FpX}

is a decreasing filtration ofX such thatF−1X = X, X/F0X ' k, F0X/F1X ' d∗. Under
the isomorphism (2.20), the filtration{FpX} becomes

(2.21) FpON = (t1, . . . , tN)p+1ON , p = −1, 0, 1, . . . .

This filtration has the following properties:

(2.22) (FnX)(FpX) ⊂ Fn+p+1X , d(FpX) ⊂ Fp−1X , (FpX)d ⊂ Fp−1X .

We can considerxi as elements ofd∗; then{xi} is a basis ofd∗ dual to the basis{∂i} of d, i.e.,
〈xi, ∂j〉 = δi

j.
We define a topology ofX by considering{FpX} as a fundamental system of neighborhoods

of 0. We will always considerX with this topology, whileH andd with the discrete topology.
ThenX is linearly compact (see [BDK, Chapter 6]), and the multiplication ofX and the (left
and right) actions ofd on it are continuous (see (2.22)).

Example 2.1. Whend is commutative, its left and right actions onON coincide and are given
by ∂i 7→ −∂/∂ti for i = 1, . . . , N .

The following lemma is well known (see also [Re, Section 6]).

Lemma 2.2. Let ckij be the structure constants ofd in the basis{∂i}, so that[∂i, ∂j] =
∑

ckij∂k.
Then we have the following formulas for the left and right actions ofd onX:

∂ix
j = −δj

i −
∑
k<i

cjikx
k mod F1X ,

xj∂i = −δj
i +

∑
k>i

cjikx
k mod F1X .

In particular,

∂ix
j − xj∂i = −

∑
k

cjikx
k mod F1X

is the coadjoint action ofd ond∗ ' F0X/F1X.

Proof. We will prove the first equality. The second one is proved in the same way, while the
third follows from the other two. If we express∂ix

j in the basis{xK} of X, we have

∂ix
j =

∑
K∈ZN

+

aKxK ⇐⇒ aK = 〈∂ix
j, ∂(K)〉 ,

where∂(K) are from (2.14). Since we are interested in∂ix
j mod F1X, we need to computeaK

only for |K| ≤ 1, i.e., only for∂(K) = 1 or ∂(K) = ∂k. Using (2.8), we obtain

〈∂ix
j, 1〉 = −〈xj, ∂i〉 = −δj

i ,

〈∂ix
j, ∂k〉 = −〈xj, ∂i∂k〉 = −〈xj, ∂k∂i〉 − 〈xj, [∂i, ∂k]〉 .

If i ≤ k, then∂i∂k is (up to a constant) an element of the basis (2.14) and∂i∂k 6= ∂j; hence,
〈xj, ∂i∂k〉 = 0. If i > k, then by the same argument〈xj, ∂k∂i〉 = 0, while 〈xj, [∂i, ∂k]〉 = cjik.
This completes the proof. �
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2.2. Pseudoalgebras and Their Representations.In this subsection, we recall the definition
of a pseudoalgebra from [BDK, Chapter 3]. LetA be a (left)H-module. ApseudoproductonA
is anH-bilinear map

(2.23) A⊗ A→ (H ⊗H)⊗H A , a⊗ b 7→ a ∗ b ,
where we use the comultiplication∆: H → H ⊗H to define(H ⊗H)⊗H A. A pseudoalgebra
is a (left)H-moduleA endowed with a pseudoproduct (2.23). The name is motivated by the
fact that this is an algebra in a pseudotensor category, as introduced in [L, BD] (see [BDK,
Chapter 3]).

In order to define associativity of a pseudoproduct, we extend it fromA⊗A→ H⊗2⊗H A to
(H⊗2 ⊗H A)⊗ A→ H⊗3 ⊗H A and toA⊗ (H⊗2 ⊗H A) → H⊗3 ⊗H A by letting:

(h⊗H a) ∗ b =
∑

(h⊗ 1) (∆⊗ id)(gi)⊗H ci ,(2.24)

a ∗ (h⊗H b) =
∑

(1⊗ h) (id⊗∆)(gi)⊗H ci ,(2.25)

whereh ∈ H⊗2, a, b ∈ A, and

a ∗ b =
∑

gi ⊗H ci with gi ∈ H⊗2, ci ∈ A.(2.26)

Then the associativity property is given by the usual equality (inH⊗3 ⊗H A):

(2.27) (a ∗ b) ∗ c = a ∗ (b ∗ c) .
The main objects of our study are Lie pseudoalgebras. The corresponding pseudoproduct is

conventionally calledpseudobracketand denoted by[a ∗ b]. A Lie pseudoalgebrais a (left)H-
module equipped with a pseudobracket satisfying the following skew-commutativity and Jacobi
identity axioms:

[b ∗ a] = −(σ ⊗H id) [a ∗ b] ,(2.28)

[[a ∗ b] ∗ c] = [a ∗ [b ∗ c]]− ((σ ⊗ id)⊗H id) [b ∗ [a ∗ c]] .(2.29)

Here,σ : H ⊗ H → H ⊗ H is the permutation of factors, and the compositions[[a ∗ b] ∗ c],
[a ∗ [b ∗ c]] are defined using (2.24), (2.25).

Remark2.1. LetA be an associative pseudoalgebra with a pseudoproducta∗b. Define a pseudo-
bracket onA as the commutator

(2.30) [a ∗ b] = a ∗ b− (σ ⊗H id) (b ∗ a) .
Then, with this pseudobracket,A is a Lie pseudoalgebra.

Example 2.2. For anyk-algebraA, let its associatedcurrentH-pseudoalgebra beCurA =
H ⊗ A with the pseudoproduct

(2.31) (f ⊗ a) ∗ (g ⊗ b) = (f ⊗ g)⊗H (1⊗ ab) .

Then theH-pseudoalgebraCurA is Lie (or associative) iff thek-algebraA is.

The definitions of modules over Lie (or associative) pseudoalgebras are obvious modifications
of the above. Amoduleover a Lie pseudoalgebraL is a leftH-moduleV together with an
H-bilinear map

(2.32) L⊗ V → (H ⊗H)⊗H V , a⊗ v 7→ a ∗ v
that satisfies (a, b ∈ L, v ∈ V )

(2.33) [a ∗ b] ∗ v = a ∗ (b ∗ v)− ((σ ⊗ id)⊗H id) (b ∗ (a ∗ v)) .
An L-moduleV will be calledfinite if it is finite (i.e., finitely generated) as anH-module. The
trivial L-module is the set{0}.

A subspaceW ⊂ V is anL-submoduleif it is anH-submodule andL∗W ⊂ (H⊗H)⊗HW .
(HereL ∗W is the linear span of all elementsa ∗ w, wherea ∈ L andw ∈ W .) A submodule
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W ⊂ V is calledproper if W 6= V . An L-moduleV is irreducible (or simple) if it does not
contain any nontrivial properL-submodules andL ∗ V 6= {0}.

Let U andV be twoL-modules. A mapβ : U → V is ahomomorphismof L-modules ifβ is
H-linear and it satisfies

(2.34)
(
(id⊗ id)⊗H β

)
(a ∗ u) = a ∗ β(u) , a ∈ L , u ∈ U .

Remark2.2. (i) Let V be a module over a Lie pseudoalgebraL and letW be anH-submodule
of V . By Lemma 2.1(ii), for eacha ∈ L, v ∈ V , we can write

a ∗ v =
∑
I∈ZN

+

(∂(I) ⊗ 1)⊗H v′I , v′I ∈ V ,

where the elementsv′I are uniquely determined bya andv. ThenW ⊂ V is anL-submodule iff
it has the property that allv′I ∈ W wheneverv ∈ W . This follows again from Lemma 2.1(ii).

(ii) Similarly, for eacha ∈ L, v ∈ V , we can write

a ∗ v =
∑
I∈ZN

+

(1⊗ ∂(I))⊗H v′′I , v′′I ∈ V ,

andW is anL-submodule iffv′′I ∈ W wheneverv ∈ W .

Example 2.3. Let L be a Lie pseudoalgebra, and letV be anL-module, which is finite di-
mensional(over k). Then the action ofL on V is trivial, i.e., L ∗ V = {0}. Indeed, since
dimH = ∞, every elementv ∈ V is torsion, i.e., such thathv = 0 for some nonzeroh ∈ H.
Then the statement follows from [BDK, Corollary 10.1].

2.3. Annihilation Algebras of Lie Pseudoalgebras.For a LieH-pseudoalgebraL, we set
A(L) = X ⊗H L, where as beforeX = H∗. We define a Lie bracket onL = A(L) by the
formula (cf. [BDK, Eq. (7.2)]):

(2.35) [x⊗H a, y ⊗H b] =
∑

(xfi)(ygi)⊗H ci , if [a ∗ b] =
∑

(fi ⊗ gi)⊗H ci .

ThenL is a Lie algebra, called theannihilation algebraof L (see [BDK, Section 7.1]). We define
a left action ofH onL in the obvious way:

(2.36) h(x⊗H a) = hx⊗H a.

In the caseH = U(d), the Lie algebrad acts onL by derivations. The semidirect sum̃L = dnL
is called theextended annihilation algebra.

Similarly, if V is a module over a Lie pseudoalgebraL, we letA(V ) = X ⊗H V , and define
an action ofL = A(L) onA(V ) by:

(2.37) (x⊗H a)(y ⊗H v) =
∑

(xfi)(ygi)⊗H vi , if a ∗ v =
∑

(fi ⊗ gi)⊗H vi .

We also define anH-action onA(V ) similarly to (2.36). ThenA(V ) is an L̃-module [BDK,
Proposition 7.1].

WhenL is a finiteH-module, we can define a filtration onL as follows (see [BDK, Sec-
tion 7.4] for more details). We fix a finite-dimensional vector subspaceL0 of L such that
L = HL0, and set

(2.38) Fp L = {x⊗H a ∈ L | x ∈ FpX , a ∈ L0} , p ≥ −1 .

The subspacesFp L constitute a decreasing filtration ofL, satisfying

(2.39) [Fn L,Fp L] ⊂ Fn+p−` L , d(Fp L) ⊂ Fp−1 L ,
where` is an integer depending only on the choice ofL0. Notice that the filtration just defined
depends on the choice ofL0, but the topology it induces does not [BDK, Lemma 7.2]. We set
Lp = Fp+` L, so that[Ln,Lp] ⊂ Ln+p. In particular,L0 is a Lie algebra.
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We also define a filtration of̃L by letting F−1 L̃ = L̃, Fp L̃ = Fp L for p ≥ 0, and we set
L̃p = Fp+` L̃. An L̃-moduleV is calledconformalif everyv ∈ V is killed by someLp; in other
words, ifV is a topologicalL̃-module when endowed with the discrete topology.

The next two results from [BDK] will play a crucial role in our study of representations (see
[BDK], Propositions 9.1 and 14.2, and Lemma 14.4).

Proposition 2.1. Any moduleV over the Lie pseudoalgebraL has a natural structure of a
conformalL̃-module, given by the action ofd onV and by

(2.40) (x⊗H a) · v =
∑

〈x, S(figi(−1))〉 gi(2)vi , if a ∗ v =
∑

(fi ⊗ gi)⊗H vi

for a ∈ L, x ∈ X, v ∈ V .
Conversely, any conformal̃L-moduleV has a natural structure of anL-module, given by

(2.41) a ∗ v =
∑
I∈ZN

+

(
S(∂(I))⊗ 1

)
⊗H

(
(xI ⊗H a) · v

)
.

Moreover,V is irreducible as anL-module iff it is irreducible as añL-module.

Lemma 2.3. LetL be a finite Lie pseudoalgebra andV be a finiteL-module. Forp ≥ −1 − `,
let

kerp V = {v ∈ V | Lp v = 0},
so that, for example,ker−1−` V = kerV andV =

⋃
kerp V . Then all vector spaceskerp V/ kerV

are finite dimensional. In particular, ifkerV = {0}, then every vectorv ∈ V is contained in a
finite-dimensional subspace invariant underL0.

3. PRIMITIVE L IE PSEUDOALGEBRAS OFTYPEW AND S

Here we introduce the main objects of our study: theprimitive Lie pseudoalgebrasW (d) and
S(d, χ) and their annihilation algebrasW andS (see [BDK, Chapter 8]).

3.1. Definition of W (d) and S(d, χ). We define the Lie pseudoalgebraW (d) as the freeH-
moduleH ⊗ d with the pseudobracket

[(f ⊗ a) ∗ (g ⊗ b)] = (f ⊗ g)⊗H (1⊗ [a, b])

− (f ⊗ ga)⊗H (1⊗ b) + (fb⊗ g)⊗H (1⊗ a) .
(3.1)

There is a structure of aW (d)-module onH given by:

(3.2) (f ⊗ a) ∗ g = −(f ⊗ ga)⊗H 1 .

Let χ be a trace form ond, i.e., a linear functional fromd to k that vanishes on[d, d]. Define
anH-linear mapdivχ : W (d) → H by the formula:

(3.3) divχ
(∑

hi ⊗ ∂i

)
=

∑
hi(∂i + χ(∂i)) .

Then

(3.4) S(d, χ) := {s ∈ W (d) | divχ s = 0}

is a subalgebra of the Lie pseudoalgebraW (d). It was shown in [BDK, Proposition 8.1] that
S(d, χ) is generated overH by the elements

(3.5) sab := (a+ χ(a))⊗ b− (b+ χ(b))⊗ a− 1⊗ [a, b] for a, b ∈ d .

Pseudobrackets of the elementssab are explicitly calculated in [BDK, Proposition 8.1]. Notice
that whendim d > 2, S(d, χ) is not free as anH-module, because the elementssab satisfy the
relations [BDK, Eq. (8.23)].
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Remark3.1. If dim d = 1, thenS(d, χ) = {0}. If dim d = 2, the Lie pseudoalgebraS(d, χ) is
free as anH-module and it is isomorphic to a primitive Lie pseudoalgebra of typeH (see [BDK],
Section 8.6 and Example 8.1).

Irreducible modules over primitive Lie pseudoalgebras of typeH will be studied in a sequel
paper. From now on, whenever we consider the Lie pseudoalgebraS(d, χ), we will assume that
dim d > 2.

3.2. Annihilation Algebra of W (d). LetW = A(W (d)) be the annihilation algebra of the Lie
pseudoalgebraW (d). SinceW (d) = H ⊗ d, we haveW = X ⊗H (H ⊗ d) ≡ X ⊗ d, so we can
identifyW with X ⊗ d. Then the Lie bracket (2.35) inW becomes (x, y ∈ X, a, b ∈ d):

(3.6) [x⊗ a, y ⊗ b] = xy ⊗ [a, b]− x(ya)⊗ b+ (xb)y ⊗ a ,

while the left action (2.36) ofH onW is given by:h(x ⊗ a) = hx ⊗ a. The Lie algebrad acts
onW by derivations. We denote bỹW the extended annihilation algebrad nW, where

(3.7) [∂, x⊗ a] = ∂x⊗ a , ∂, a ∈ d, x ∈ X .

We chooseL0 = k ⊗ d as a subspace ofW (d) such thatW (d) = HL0, and we obtain the
following filtration ofW:

(3.8) Wp = FpW = FpX ⊗H L0 ≡ FpX ⊗ d .

This is a decreasing filtration ofW, satisfyingW−1 = W and (2.39) for̀ = 0. Note that
W/W0 ' k⊗ d ' d andW0/W1 ' d∗ ⊗ d.

Let us fix a basis{∂i}i=1,...,N of d, and letxi ∈ X be given by (2.19). We can viewxi as
elements ofd∗; then{xi} is a basis ofd∗ dual to the basis{∂i} of d. Let ej

i ∈ gl d be given by
ej

i∂k = δj
k ∂i; in other words,ej

i corresponds to∂i ⊗ xj under the isomorphismgl d ' d⊗ d∗.

Lemma 3.1. In the Lie algebraW = X ⊗ d, we have the following:

[xj ⊗ ∂i, 1⊗ ∂k] = −δj
k 1⊗ ∂i mod W0 ,

[xj ⊗ ∂i, x
l ⊗ ∂k] = δl

i x
j ⊗ ∂k − δj

k x
l ⊗ ∂i mod W1 .

Proof. This follows from (3.6) and Lemma 2.2. �

Corollary 3.1. For x ∈ F0X, a ∈ d, the map

x⊗ a mod W1 7→ −a⊗ (x mod F1X)

is a Lie algebra isomorphism fromW0/W1 to d⊗d∗ ' gl d. Under this isomorphism, the adjoint
action ofW0/W1 onW/W0 coincides with the standard action ofgl d ond.

Proof. The above map takesxj ⊗ ∂i mod W1 to−ej
i ∈ gl d. �

The action ofW (d) onH induces a corresponding action of the annihilation algebraW =
A(W (d)) onA(H) ≡ X given by (2.37):

(3.9) (x⊗ a)y = −x(ya) , x, y ∈ X, a ∈ d .

Recall from Section 2.1 that we have a ring isomorphismϕ : X
∼−→ ON , which is compatible with

the corresponding filtrations and topologies (see (2.20), (2.21)). Sinced acts onX by continuous
derivations, the Lie algebraW acts onX by continuous derivations. Hence, (3.9) defines a Lie
algebra homomorphism

(3.10) ϕ : W → WN such that ϕ(Ay) = ϕ(A)ϕ(y) for A ∈ W , y ∈ X ,

whereWN is the Lie algebra of continuous derivations ofON .
There is a natural filtration ofWN given by

(3.11) FpWN = {D ∈ WN | D(FnON) ⊂ Fn+pON for all n}, p ≥ −1 .
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Explicitly, by (2.21), we have

(3.12) FpWN =

{
N∑

i=1

fi
∂

∂ti

∣∣∣ fi ∈ FpON

}
.

The filtration (3.11) has the following important property forD ∈ WN :

(3.13) [D,FpWN ] ⊂ Fp+nWN ⇐⇒ D ∈ FnWN .

Proposition 3.1. (i) We have:

ϕ(x⊗ a) = ϕ(x)ϕ(1⊗ a) , x ∈ X , a ∈ d ,

ϕ(1⊗ ∂i) = − ∂

∂ti
mod F0WN , i = 1, . . . , N .

(ii) The homomorphism(3.10)is an isomorphism andϕ(Wp) = FpWN for all p ≥ −1.

Proof. Part (i) follows from (3.10) and Lemma 2.2. Part (ii) follows from (i) and (3.8), (3.12).
�

The adjoint action of the Euler vector field

(3.14) E :=
N∑

i=1

ti
∂

∂ti
∈ F0WN

decomposesWN as a direct product of eigenspacesWN ;j (j ≥ −1), on which the action ofE is
multiplication byj. One clearly has:

(3.15) FpWN =
∏
j≥p

WN ;j , FpWN/Fp+1WN ' WN ;p .

Notice thatWN ;0 = ker(adE) is a Lie algebra isomorphic toglN and each spaceWN ;p is a
module overWN ;0.

Definition 3.1. The preimageE = ϕ−1(E) ∈ W0 of the Euler vector field (3.14) under the
isomorphism (3.10) will be called theEuler elementof W.

By Proposition 3.1 and Corollary 3.1, we have:

(3.16) E = −
N∑

i=1

xi ⊗ ∂i mod W1 , i.e., E mod W1 = Id ∈ gl d ' W0/W1 .

3.3. The Normalizer NW . In this subsection, we study the normalizer ofWp (p ≥ 0) in the
extended annihilation algebrãW. These results will be used later in our classification of finite
irreducibleW (d)-modules.

We denote byad the adjoint action ofd on itself (or onH = U(d)), and bycoad the coadjoint
action ofd onX = H∗. For∂ ∈ d, we will also considerad ∂ as an element ofgl d. Note that,
by (2.8), (2.10), we have

(3.17) (coad ∂)x = ∂x− x∂ , ∂ ∈ d , x ∈ X .

Sincead ∂ preserves the filtration (2.16) ofH, it follows that coad ∂ preserves the filtration
{FpX} of X.

Lemma 3.2. (i) For ∂, a ∈ d andx ∈ X, the following formula holds iñW :

[∂ + 1⊗ ∂, x⊗ a] = (coad ∂)x⊗ a+ x⊗ [∂, a] .

In particular, the adjoint action of∂ + 1⊗ ∂ ∈ W̃ onW ⊂ W̃ preserves the filtration{Wp}.
(ii) The adjoint action of∂+1⊗∂ onW/W0 coincides with the standard action ofad ∂ ∈ gl d

ond ' W/W0.
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Proof. Part (i) follows from (3.6)–(3.8), (3.17), and the above observation thatcoad ∂ preserves
the filtration{FpX} of X. Part (ii) is obvious from (i). �

It is well known that all derivations ofWN are inner. SinceW ' WN andd acts onW by
derivations (see (3.7)), there is an injective Lie algebra homomorphism

(3.18) γ : d ↪→W such that [∂,A] = [γ(∂), A] , ∂ ∈ d ⊂ W̃ , A ∈ W ⊂ W̃ .

Definition 3.2. For ∂ ∈ d, let ∂̃ = ∂ − γ(∂) ∈ W̃, whereγ is given by (3.18). Let̃d =

(id−γ)(d) ⊂ W̃ andNW = d̃ +W0 ⊂ W̃.

Proposition 3.2. (i) The spacẽd is a subalgebra of̃W centralizingW, i.e., [d̃,W ] = {0}. The
map∂ 7→ ∂̃ is a Lie algebra isomorphism fromd to d̃.

(ii) The spaceNW is a subalgebra of̃W, and it decomposes as a direct sum of Lie algebras,
NW = d̃⊕W0.

Proof. It follows from (3.18) that[∂̃, A] = 0 for all ∂ ∈ d, A ∈ W. Then for∂, ∂′ ∈ d, we have

[∂, ∂′] = [∂̃ + γ(∂), ∂̃′ + γ(∂′)] = [∂̃, ∂̃′] + [γ(∂), γ(∂′)] ,

which implies[∂̃, ∂̃′] = [̃∂, ∂′] sinceγ is a Lie algebra homomorphism. This proves (i). Part (ii)
follows from (i) and Definition 3.2. �

Lemma 3.3. For every∂ ∈ d, the element∂ + 1 ⊗ ∂ − ∂̃ ∈ W̃ belongs toW0. Its image in
W0/W1 coincides withad ∂ ∈ gl d ' W0/W1.

Proof. First note that∂+ 1⊗ ∂− ∂̃ = γ(∂) + 1⊗ ∂ belongs toW. By (3.18) and Lemma 3.2(i),
the adjoint action of this element onW preserves the filtration{Wp}. Therefore, by (3.13),
γ(∂) + 1⊗ ∂ belongs toW0. By (3.18) and Lemma 3.2(ii), its image inW0/W1 coincides with
ad ∂. �

Proposition 3.3. For everyp ≥ 0, the normalizer ofWp in the extended annihilation algebrãW
is equal toNW . In particular, it is independent ofp. There is a decomposition as a direct sum of
subspaces,̃W = d⊕NW .

Proof. First, to show that̃W = d ⊕ NW , we have to check that̃W = d ⊕ d̃ ⊕ W0 is a direct
sum of subspaces. This follows from Definition 3.2, Lemma 3.3 and the fact thatW̃ = d ⊕W,
W = (k⊗ d)⊕W0 as vector spaces.

Next, it is clear thatNW normalizesWp , because[d̃,Wp] = {0} and[W0,Wp] ⊂ Wp. Assume
that an element∂ ∈ d normalizesWp. By (3.7), we obtain that in this case∂(FpX) ⊂ FpX.
However, one can deduce from Lemma 2.2 that∂(FpX) = Fp−1X, which is strictly larger than
FpX. This contradiction shows that the normalizer ofWp is equal toNW . �

In order to understand the irreducible representations ofNW , we need the following lemma,
which appeared (in the more difficult super case) in [CK, Erratum].

Lemma 3.4. Let g be a finite-dimensional Lie algebra, and letg0 ⊂ g be either a simple Lie
algebra or a1-dimensional Lie algebra. LetI be a subspace of the radical ofg, stabilized by
ad g0 and having the property that[g0, a] = 0 for a ∈ I impliesa = 0. ThenI acts trivially on
any irreducible finite-dimensionalg-moduleV .

Proof. By Cartan–Jacobson’s Theorem (see, e.g., [Se, Theorem VI.5.1]), everya ∈ Rad g acts
by scalar multiplication onV . Let J = {a ∈ I | a(V ) = 0}. Then[g0, I] ⊂ J .

Now, if g0 is simple, thenJ is ag0-submodule ofI and, by complete reducibility,I = J ⊕ J⊥
asg0-modules for some complementJ⊥. Hence,[g0, J

⊥] = 0, soJ⊥ = 0 andI = J .
If insteadg0 = ke is 1-dimensional, then[e, I] ⊂ J . If J 6= I, thenad e : I → J is not

injective, which is a contradiction. We conclude thatJ = I. �
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AnNW-moduleV will be calledconformalif it is conformal as a module over the subalgebra
W0 ⊂ NW , i.e., if every vectorv ∈ V is killed by someWp.

Proposition 3.4. The subalgebraW1 ⊂ NW acts trivially on any irreducible finite-dimensional
conformalNW-module. Irreducible finite-dimensional conformalNW-modules are in one-to-
one correspondence with irreducible finite-dimensional modules over the Lie algebraNW/W1 '
d⊕ gl d.

Proof. A finite-dimensional vector spaceV is a conformalNW-module iff it is anNW-module
on whichWp acts trivially for somep ≥ 0, i.e., iff it is a module over the finite-dimensional Lie
algebrag = NW/Wp = d̃⊕ (W0/Wp).

We will apply Lemma 3.4 forI = W1/Wp and g0 = kE mod Wp ⊂ W0/Wp , where
E ∈ W0 is the Euler element (see Definition 3.1). Note thatI ⊂ Rad g and[E , I] ⊂ I, because
[Wi,Wj] ⊂ Wi+j for all i, j. The adjoint action ofE is injective onI, becauseadE is injective
on F1WN/FpWN =

∏p−1
j=1 WN ;j (see (3.15)). We conclude thatI acts trivially on any finite-

dimensional conformalNW-module. Hence, we can takep = 1. Theng = d̃ ⊕ (W0/W1) '
d⊕ gl d, sincẽd ' d andW0/W1 ' gl d. �

3.4. Annihilation Algebra of S(d, χ). Assume thatN = dim d > 2. In this subsection, we
study the annihilation algebraS = A(S(d, χ)) := X ⊗H S(d, χ) of the Lie pseudoalgebra
S(d, χ) defined in Section 3.1. Our treatment here is more detailed than in [BDK, Section 8.4].

We choose

(3.19) L0 = spank{sab | a, b ∈ d} ⊂ S(d, χ)

as a subspace such thatS(d, χ) = HL0, where the elementssab are given by (3.5). We obtain a
decreasing filtration ofS:

(3.20) Sp = Fp+1 S = Fp+1X ⊗H L0 , p ≥ −2 ,

satisfyingS−2 = S and (2.39) for̀ = 1. Then[Sn,Sp] ⊂ Sn+p for all n, p.
The canonical injection of the subalgebraS(d, χ) intoW (d) induces a Lie algebra homomor-

phismι : S → W. Explicitly, we have:

ι(x⊗H s) =
∑

xhi ⊗ ∂i ∈ W ≡ X ⊗ d

for x ∈ X , s =
∑

hi ⊗ ∂i ∈ S(d, χ) ⊂ W (d) = H ⊗ d .
(3.21)

Here, as before, we identifyW = X ⊗H W (d) with X ⊗ d.
We define a mapdivχ : W → X by the formula (cf. (3.3)):

(3.22) divχ
(∑

yi ⊗ ∂i

)
=

∑
yi(∂i + χ(∂i)) .

It is easy to see that

(3.23) divχ[A,B] = A(divχB)−B(divχA) , A,B ∈ W ,

where the action ofW onX is given by (3.9). This implies that

(3.24) S := {A ∈ W | divχA = 0}

is a Lie subalgebra ofW. It was shown in [BDK, Section 8.4] thatS is isomorphic to the Lie
algebra of divergence-zero vector fields

(3.25) SN :=

{
N∑

i=1

fi
∂

∂ti
∈ WN

∣∣∣ N∑
i=1

∂fi

∂ti
= 0

}
.

Lemma 3.5. If N = dim d > 2, the map(3.21)is an embedding of Lie algebrasι : S ↪→ S.
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Proof. It follows from (3.3), (3.21) and (3.22) that

x(divχ s) = divχ ι(x⊗H s) , x ∈ X , s ∈ W (d) .

Therefore,ι(S) is contained inS. Next, note that forN > 2, S is isomorphic toSN by [BDK,
Theorem 8.2(i)]. It is well known that the Lie algebraSN is simple; hence,S is simple. Sinceι
is a nonzero homomorphism, it must be injective. �

Remark3.2. WhenN = dim d = 2, the Lie algebraS is isomorphic toP2, which is an extension
of S2 = H2 by a1-dimensional center (cf. Remark 3.1). In this case, the homomorphism (3.21)
has a1-dimensional kernel.

We will prove in Proposition 3.5 below that, in fact,ι(S) = S. Recall that we have a Lie
algebra isomorphismϕ : W ∼−→ WN , given by (3.10). However, althoughS ' SN ⊂ WN , the
imageϕ(S) ⊂ WN is not equal toSN in general. Instead, we will show that the images ofϕ(S)
andSN coincide in the associated graded algebra ofWN (see Proposition 3.6 below).

Lemma 3.6. For everyp ≥ −1, we have

ϕ(S ∩ FpW) ⊂ (SN ∩ FpWN) + Fp+1WN .

Proof. Take an elementA =
∑

yi ⊗ ∂i ∈ FpW; then eachyi ∈ FpX. By Proposition 3.1,
we haveϕ(A) =

∑
fi ϕ(1 ⊗ ∂i), wherefi = ϕ(yi) ∈ FpON . Sinceϕ(1 ⊗ ∂i) = −∂/∂ti

mod F0WN , we haveϕ(A) = −
∑

fi ∂/∂t
i mod Fp+1WN . It follows from (3.22) and

Lemma 2.2 thatϕ(divχA) = −
∑

∂fi/∂t
i mod FpON . If A ∈ S ∩FpW, then

∑
∂fi/∂t

i =

0 mod FpON . Then there exist elementŝfi ∈ FpON such thatf̂i = fi mod Fp+1ON

and
∑

∂f̂i/∂t
i = 0. This means that̂A := −

∑
f̂i ∂/∂t

i ∈ SN ∩ FpWN andϕ(A) = Â
mod Fp+1WN . �

Consider the associated graded ofW,

(3.26) grW :=
∞⊕

p=−1

grpW , grpW := FpW/Fp+1W .

Note that, by (3.8), we havegrpW = (grpX)⊗d. Similarly, we havegrpWN =
∑N

i=1 (grpON) ∂/∂ti.
The mapsϕ : X → ON andϕ : W → WN (see (2.20), (3.10)) preserve the corresponding fil-
trations and induce mapsgrϕ : grX → grON andgrϕ : grW → grWN . Note also that the
mapdivχ : W → X takesFpW to Fp−1X, and hence induces a mapgr divχ : grW → grX
of degree−1. The same is true for the mapdiv : WN → ON given bydiv(

∑
fi ∂/∂t

i) :=∑
∂fi/∂t

i. From the proof of Lemma 3.6 we deduce:

Corollary 3.2. The above maps satisfy

(grϕ)
( N∑

i=1

ȳi ⊗ ∂i

)
= −

N∑
i=1

(grϕ)(ȳi)
∂

∂ti
, ȳi ∈ grX

and

grϕ ◦ gr divχ = gr div ◦ grϕ .

The Lie algebraS has a filtration (3.20), whileS ⊂ W has one obtained by restricting the
filtration (3.8) ofW. Using Lemma 3.6, we can prove thatι is compatible with the filtrations.

Proposition 3.5. Let S be the annihilation algebra ofS(d, χ), and letS ⊂ W be defined by
(3.24). Then fordim d > 2, the map(3.21) is an isomorphism of Lie algebrasι : S ∼−→ S such
that ι(Sp) = S ∩Wp for all p ≥ −1.
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Proof. It is clear from definitions that

ι(Sp) = Fp+1X ⊗H spank{sab} ⊂ FpX ⊗H (k⊗ d) ≡ FpX ⊗ d = Wp .

In addition,ι(S) ⊂ S by Lemma 3.5; hence,ι(Sp) ⊂ S ∩Wp.
Conversely, letA ∈ S∩Wp. By Lemma 3.6, we can find̂A ∈ SN∩FpWN such thatϕ(A) = Â

mod Fp+1WN . Any element ofSN ∩ FpWN can be written in the form

Â =
N∑

i,j=1

∂fij

∂ti
∂

∂tj
− ∂fij

∂tj
∂

∂ti
, fij ∈ Fp+1ON .

Now consider the following element ofSp:

Ã := −
N∑

i,j=1

yij ⊗H s∂i∂j
, yij := ϕ−1(fij) ∈ Fp+1X .

Then we havẽA ∈ Sp andι(Ã) = A mod Wp+1.
LetA1 = A − ι(Ã); thenA1 ∈ S ∩Wp+1 andA − A1 ∈ ι(Sp). By the above argument, we

can find an element̃A1 ∈ Sp+1 such thatι(Ã1) = A1 mod Wp+2. LetA2 = A1 − ι(Ã1); then
A2 ∈ S ∩Wp+2 andA1−A2 ∈ ι(Sp+1). Continuing this way, we obtain a sequence of elements
An ∈ S ∩Wp+n such thatAn − An+1 ∈ ι(Sp+n) for all n ≥ 0, whereA0 := A. The sequence
An converges to0 in W andA− An ∈ ι(Sp) for all n ≥ 0; therefore,A ∈ ι(Sp).

This proves thatι(Sp) = S ∩ Wp. Takingp = −1, we getι(S) ⊃ ι(S−1) = S, because
W−1 = W ⊃ S. Now Lemma 3.5 implies thatι is an isomorphism. �

Recall that any ring automorphismψ of ON induces a Lie algebra automorphismψ of WN =
DerON such thatψ(Ay) = ψ(A)ψ(y) for A ∈ WN , y ∈ ON . Any ψ ∈ AutON preserves
the filtration, becauseF0ON is the unique maximal ideal ofON andFpON = (F0ON)p+1 for
p ≥ 0 (see (2.21)). Then it follows from (3.11) thatψ preserves the filtration{FpWN}.

Proposition 3.6. There exists a ring automorphismψ of ON such that the induced Lie algebra
automorphismψ of WN satisfiesϕ(S) = ψ(SN) and

(3.27) (ψ − id)(FpWN) ⊂ Fp+1WN , p ≥ −1 .

Proof. In [BDK, Remark 8.2] the imageϕ(S) is described as the Lie algebra of all vector
fields annihilating a certain volume form. But any two volume forms are related by a change
of variables, i.e., by a ring automorphism ofON , and the subalgebraSN corresponds to the stan-
dard volume formdt1 ∧ · · · ∧ dtN . Hence, there exists an automorphismψ of ON such that
ϕ(S) = ψ(SN). Due to Corollary 3.2, we can chooseψ such that

ψ(ti) = ti mod F1ON , i = 1, . . . , N ,

i.e., such thatgrψ = id. Since the latter is equivalent to (3.27), this completes the proof.�

Corollary 3.3. The Lie algebra isomorphismψ−1ϕι : S ∼−→ SN mapsSp ontoSN ∩ FpWN for
all p ≥ −1. In particular,S−2 = S−1 = S.

Proof. By Proposition 3.5,ι(Sp) = S∩Wp. Then under the isomorphismϕ : W → WN , we have
ϕι(Sp) = ϕ(S) ∩ FpWN . But, by Proposition 3.6,ϕ(S) = ψ(SN) andψ(FpWN) = FpWN ;
hence,ϕι(Sp) = ψ(SN ∩ FpWN). �

Recall thatWN ;p is the subspace ofWN on which the adjoint action of the Euler vector field
(3.14) is multiplication byp. We letSN ;p = SN ∩WN ;p. SinceSN is preserved byadE, it admits
a decomposition similar to (3.15):

(3.28) SN ∩ FpWN =
∏
j≥p

SN ;j , (SN ∩ FpWN)/(SN ∩ Fp+1WN) ' SN ;p .

The following facts about the Lie algebraSN ⊂ WN are well known.
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Lemma 3.7. (i) The Lie algebraSN ;0 is isomorphic toslN .
(ii) For everyp ≥ −1, theSN ;0-moduleSN ;p is isomorphic to the highest component of the

slN -modulekN ⊗ (Sp+1 kN)∗. In particular,SN ;p has no trivial components in its decomposition
as a sum of irreducibleslN -modules.

(iii) The normalizer ofSN in WN is SN ⊕ kE.

Definition 3.3. We let Ê = ψ(E) ∈ WN andÊ = ϕ−1(Ê) ∈ W, whereE is the Euler vector
field (3.14),ϕ is from (3.10) andψ is from Proposition 3.6.

Combining the above results with (3.16), we obtain the following corollary.

Corollary 3.4. (i) The Lie algebraS0/S1 is isomorphic tosl d.
(ii) For everyp ≥ −1, the(S0/S1)-moduleSp/Sp+1 has no trivialsl d-components.
(iii) The normalizer ofS in W is S + kÊ .
(iv) Ê belongs toW0 and its image inW0/W1 coincides withId ∈ gl d ' W0/W1.

3.5. The Normalizer NS . In this subsection, we study the normalizer ofSp (p ≥ 0) in the
extended annihilation algebrãS = d n S. We will use extensively the results and notation of
Sections 3.3 and 3.4, and we will identifyS with the subalgebraS of W (see Proposition 3.5).

Recall that the filtration{Sp} of S has the properties:S−2 = S−1 = S and[Sn,Sp] ⊂ Sn+p

for all n, p. In addition, by Corollary 3.4, we have:W0 = S0 + kÊ + W1, where the element
Ê ∈ W0 is from Definition 3.3.

Lemma 3.8. For every∂ ∈ d, we have: 1⊗ ∂ − (χ(∂)/N) Ê ∈ S +W1.

Proof. As before, let{∂i}i=1,...,N be a basis ofd, and letxi ∈ X be given by (2.19). Denote by
ckij the structure constants ofd in the basis{∂i}, and letχi = χ(∂i) for short. Using (3.5), (3.21)
and Lemma 2.2, we compute fori < j:

ι(xi ⊗H s∂i,∂j
) = χix

i ⊗ ∂j − χjx
i ⊗ ∂i − xi ⊗ [∂i, ∂j] + xi∂i ⊗ ∂j − xi∂j ⊗ ∂i

= χix
i ⊗ ∂j − χjx

i ⊗ ∂i −
∑

k

ckijx
i ⊗ ∂k − 1⊗ ∂j

+
∑
k>i

ciikx
k ⊗ ∂j −

∑
k>j

cijkx
k ⊗ ∂i mod W1 .

From here, we see that the elementι(xi ⊗H s∂i,∂j
) + 1 ⊗ ∂j belongs toW0. Next, using Corol-

lary 3.1, we find that the image of this element inW0/W1 ' gl d has traceχj. Therefore, by
Corollary 3.4 (i), (iv),

ι(xi ⊗H s∂i,∂j
) + 1⊗ ∂j − (χj/N) Ê ∈ S0 +W1 ,

which implies1⊗ ∂j − (χj/N) Ê ∈ S +W1. �

Lemma 3.9. For every∂ ∈ d, we have: γ(∂) + 1⊗ ∂ − (tr ad(∂)/N) Ê ∈ S0 +W1, whereγ is
from (3.18).

Proof. By Lemma 3.3,γ(∂) + 1⊗ ∂ ∈ W0 and its image inW0/W1 coincides withad ∂ ∈ gl d.
Now the statement follows from Corollary 3.4 (i), (iv). �

Definition 3.4. For∂ ∈ d, let

γ̂(∂) = γ(∂) +
(
(χ− tr ad)(∂)/N

)
Ê ∈ W ,

whereγ is given by (3.18). Let̂∂ = ∂ − γ̂(∂), d̂ = (id−γ̂)(d) ⊂ W̃, andNS = d̂ + S0 ⊂ W̃.

Note that

(3.29) ∂̂ = ∂̃ −
(
(χ− tr ad)(∂)/N

)
Ê , ∂ ∈ d ,

where∂̃ is from Definition 3.2.
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Proposition 3.7. (i) We havêγ(d) ⊂ S and d̂ ⊂ S̃.
(ii) The map∂ 7→ ∂̂ is a Lie algebra isomorphism fromd to d̂.
(iii) The Lie algebrâd normalizesSp for all p ≥ −1.
(iv) The Lie algebrâd centralizesS0/S1.

Proof. (i) Combining Lemmas 3.8 and 3.9, we getγ̂(∂) ∈ S + W1 for all ∂ ∈ d. On the
other hand, we deduce from (3.18) and Corollary 3.4 thatγ̂(∂) normalizesS. Hence, again by
Corollary 3.4,γ̂(∂) ∈ S + kÊ . However, the intersection(S +W1) ∩ (S + kÊ) is equal toS.
This shows that̂γ(∂) ∈ S.

(ii) Recall from Section 3.3 that∂ 7→ ∂̃ is a Lie algebra isomorphism and̃d ⊂ W̃ centralizes
W. Then part (ii) follows from (3.29) and the fact thatχ− tr ad is a trace form ond.

(iii) and (iv) follow from (3.29), Corollary 3.4 and[d̃,W ] = 0. �

It follows from Proposition 3.7 thatNS is a Lie subalgebra of̃S, isomorphic to the semidirect
sumd̂ n S0.

Proposition 3.8. For everyp ≥ 0, the normalizer ofSp in the extended annihilation algebrãS
is equal toNS . In particular, it is independent ofp. There is a decomposition as a direct sum of
subspaces,̃S = d⊕NS .

Proof. The proof is similar to that of Proposition 3.3. �

An NS-moduleV is calledconformal if it is conformal as a module over the subalgebra
S0 ⊂ NS , i.e., if every vectorv ∈ V is killed by someSp.

Proposition 3.9. The subalgebraS1 ⊂ NS acts trivially on any irreducible finite-dimensional
conformalNS-module. Irreducible finite-dimensional conformalNS-modules are in one-to-one
correspondence with irreducible finite-dimensional modules over the Lie algebraNS/S1 ' d⊕
sl d.

Proof. As in Proposition 3.4, theNS-action factors via the finite-dimensional Lie algebrag :=
NS/Sp for somep ≥ 1. Recall that[Si,Sj] ⊂ Si+j for all i, j, so thatI := S1/Sp is contained in
the radical ofg = S0/Sp ⊂ g. Moreover, the quotientg/I = S0/S1 is isomorphic to the simple
Lie algebrasl d, so thatI coincides with the radical ofg and we can locate a subalgebrag0 of g
isomorphic to the semisimple quotientg/I ' sl d.

Similarly, the spaceI is contained in the radical ofg, and the adjoint action ofg0 on g pre-
serves it. Moreover, by Corollary 3.4(ii),I has no trivialg0-components. We can now apply
Lemma 3.4 to deduce thatI acts trivially on any irreducible finite-dimensional conformalNS-
module. Therefore, theNS-action factors viaNS/S1. By Proposition 3.7(iv),̂d centralizes
S0/S1. Hence,NS/S1 is isomorphic to a direct sum of Lie algebrasd̂⊕ (S0/S1) ' d⊕ sl d. �

4. PSEUDOL INEAR ALGEBRA

In this section, we generalize several linear algebra constructions to the pseudoalgebra context.
We introduce an important class ofW (d)-modules called tensor modules.

4.1. Pseudolinear Maps.The definition of a module over a pseudoalgebra motivates the fol-
lowing definition of a pseudolinear map.

Definition 4.1 ([BDK]) . Let V andW be twoH-modules. AnH-pseudolinear mapfrom V to
W is ak-linear mapφ : V → (H ⊗H)⊗H W such that

(4.1) φ(hv) = ((1⊗ h)⊗H 1)φ(v), h ∈ H, v ∈ V.
We denote the space of all suchφ by Chom(V,W ). We will also use the notationφ ∗ v ≡ φ(v)
for φ ∈ Chom(V,W ), v ∈ V . We define a left action ofH onChom(V,W ) by:

(4.2) (hφ)(v) = ((h⊗ 1)⊗H 1)φ(v).

WhenV = W , we setCendV = Chom(V, V ).
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Example 4.1. LetA be anH-pseudoalgebra, and letV be anA-module. Then for everya ∈ A
the mapma : V → (H ⊗ H) ⊗H V defined byma(v) = a ∗ v is anH-pseudolinear map.
Moreover, we havehma = mha for h ∈ H.

Remark4.1. Given two homomorphisms of leftH-modulesβ : V ′ → V andγ : W → W ′, we
define a homomorphism

(4.3) Chom(β, γ) : Chom(V,W ) → Chom(V ′,W ′)

by the formula

(4.4) φ 7→ ((id⊗ id)⊗H γ) ◦ φ ◦ β .
Then we can viewChom(−,−) as a bifunctor from the category of leftH-modules to itself,
contravariant in the first argument and covariant in the second one.

Recall from [BDK, Chapter 10] that whenV is a finiteH-module,CendV has a unique
structure of an associative pseudoalgebra such thatV is a module over it viaφ∗v = φ(v). Denote
by gcV the Lie pseudoalgebra obtained fromCendV by the construction of Remark 2.1. Then
V is also a module overgcV .

Proposition 4.1([BDK]) . LetL be a Lie pseudoalgebra, and letV be a finiteH-module. Then
giving a structure of anL-module onV is equivalent to giving a homomorphism of Lie pseudo-
algebras fromL to gcV .

Proof. If V is a finiteL-module, we define a mapρ : L → gcV by a 7→ ma, wherema is from
Example 4.1. Thenρ is a homomorphism of Lie pseudoalgebras (cf. [BDK, Proposition 10.1]).
Conversely, given a homomorphismρ : L → gcV , we define an action ofL on V by a ∗ v =
ρ(a) ∗ v. �

In the case whenV is a freeH-module of finite rank, one can give an explicit description of
CendV , and hence ofgcV , as follows (see [BDK, Proposition 10.3]). LetV = H ⊗ V0, where
H acts trivially onV0 anddimV0 < ∞. ThenCendV is isomorphic toH ⊗H ⊗ EndV0, with
H acting by left multiplication on the first factor, and with the following pseudoproduct:

(4.5) (f ⊗ a⊗ A) ∗ (g ⊗ b⊗B) = (f ⊗ ga(1))⊗H (1⊗ ba(2) ⊗ AB) .

The action ofCendV onV = H ⊗ V0 is given by:

(4.6) (f ⊗ a⊗ A) ∗ (h⊗ v) = (f ⊗ ha)⊗H (1⊗ Av) .

The pseudobracket ingcV is given by:

[(f ⊗ a⊗ A) ∗ (g ⊗ b⊗B)] = (f ⊗ ga(1))⊗H (1⊗ ba(2) ⊗ AB)

− (fb(1) ⊗ g)⊗H (1⊗ ab(2) ⊗BA) .
(4.7)

The action ofgcV onV is also given by (4.6).

Remark4.2. LetL be a Lie pseudoalgebra. LetV = H ⊗ V0 be a finiteL-module, which is free
as anH-module. For alla ∈ L, v ∈ V0 we can write

(4.8) a ∗ (1⊗ v) =
∑

(fi ⊗ gi)⊗H (1⊗ Aiv) ,

wherefi, gi ∈ H, Ai ∈ EndV0. Then the homomorphismL → gcV is given bya 7→
∑
fi ⊗

gi ⊗ Ai. This follows from (4.6) and the proof of Proposition 4.1.

Example 4.2. (i) The action (3.2) ofW (d) on H gives an embedding of Lie pseudoalgebras
W (d) ↪→ gcH = H ⊗H, f ⊗ a 7→ −f ⊗ a (f ∈ H, a ∈ d ⊂ H).

(ii) Consider the semidirect sumHoW (d), whereH is regarded as a commutative Lie pseudo-
algebra andW (d) acts onH via (3.2). Then we have an embeddingH o W (d) ↪→ gcH given
by g + f ⊗ a 7→ g ⊗ 1− f ⊗ a for f, g ∈ H, a ∈ d ⊂ H.



IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE PSEUDOALGEBRAS I 19

Remark4.3. For any Lie algebrag, we have a semidirect sumCur g o W (d), whereCur g is
defined in Example 2.2 andW (d) acts onCur g = H ⊗ g via

(f ⊗ a) ∗ (g ⊗B) = −(f ⊗ ga)⊗H (1⊗B) , f, g ∈ H , a ∈ d , B ∈ g .

Let V0 be a finite-dimensionalg-module, and letρ be the corresponding homomorphismg →
glV0. Then we have a homomorphism of Lie pseudoalgebrasCur g o W (d) → gc(H ⊗ V0),
given by

(4.9) g ⊗B + f ⊗ a 7→ g ⊗ 1⊗ ρ(B)− f ⊗ a⊗ Id .

4.2. Duals and Twistings of Representations.Let L be a LieH-pseudoalgebra, and letΠ be
any finite-dimensionald-module. We considerΠ as anL-module equipped with the trivial action
of L and with the action ofH = U(d) induced from the action ofd. In particular,k has the trivial
action of bothL andH.

Lemma 4.1([BDK]) . LetL be a Lie pseudoalgebra, and letV,W be finiteL-modules. Then the
formula(a ∈ L, v ∈ V , φ ∈ Chom(V,W ))

(4.10) (a ∗ φ) ∗ v = a ∗ (φ ∗ v)− ((σ ⊗ id)⊗H id) (φ ∗ (a ∗ v))
providesChom(V,W ) with the structure of anL-module.

Note that ifβ : V ′ → V andγ : W → W ′ are homomorphisms ofL-modules, the map (4.3)
is a homomorphism ofL-modules.

Definition 4.2. (i) For any finiteL-moduleV , theL-moduleD(V ) = Chom(V,k) is called
the dual of V . If β : V ′ → V is a homomorphism ofL-modules, we define a homomorphism
D(β) : D(V ) → D(V ′) asD(β) = Chom(β, id) (see Remark 4.1). ThenD is a contravariant
functor from the category of finiteL-modules to itself.

(ii) For any finiteL-moduleV and any finite-dimensionald-moduleΠ, theL-moduleTΠ(V ) =
Chom(D(V ),Π) is called thetwisting of V by Π. If β : V → V ′ is a homomorphism ofL-
modules, we define a homomorphismTΠ(β) : TΠ(V ) → TΠ(V ′) asTΠ(β) = Chom(D(β), id).
ThenTΠ is a covariant functor from the category of finiteL-modules to itself.

Now letV be a freeH-module of finite rank,V = H⊗V0, whereH acts by left multiplication
on the first factor anddimV0 < ∞. Then for anyH-moduleW we can identifyChom(V,W )
with H⊗ (W ⊗V ∗0 ), whereH acts on the first factor. Explicitly, by Lemma 2.1(ii), for any fixed
v ∈ V0, we can write

(4.11) φ(1⊗ v) =
∑

(hi ⊗ 1)⊗H wi ,

wherehi ∈ H,wi ∈ W . Thenφ corresponds to thek-linear mapV0 → H⊗W , v 7→
∑
hi⊗wi.

In particular, we have isomorphismsD(V ) ' H ⊗ V ∗0 andTΠ(V ) ' H ⊗ (Π ⊗ V0) as
H-modules. Now we will describe the action ofL on them.

Proposition 4.2. LetV = H ⊗ V0 be a finiteL-module, which is free as anH-module. Let{vi}
be ak-basis ofV0, and let{ψi} be the dual basis ofV ∗0 , so thatψi(vj) = δij. For a fixeda ∈ L,
write

(4.12) a ∗ (1⊗ vi) =
∑

j

(fij ⊗ gij)⊗H (1⊗ vj)

wherefij, gij ∈ H. Then the action ofL onD(V ) ' H ⊗ V ∗0 is given by

(4.13) a ∗ (1⊗ ψk) = −
∑

j

(
fjkgjk(−1) ⊗ gjk(−2)

)
⊗H

(
1⊗ ψj

)
.

The action ofL onTΠ(V ) ' H ⊗ (Π⊗ V0) is given by

(4.14) a ∗ (1⊗ u⊗ vi) =
∑

j

(
fij ⊗ gij(1)

)
⊗H

(
1⊗ gij(−2)u⊗ vj

)
.
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Both (4.13) and (4.14) can be easily derived from the following lemma.

Lemma 4.2. Under the assumptions of Proposition4.2, the action ofL on Chom(V,Π) '
H ⊗ (Π⊗ V ∗0 ) is given by

(4.15) a ∗ (1⊗ u⊗ ψk) = −
∑

j

(
fjkgjk(−1) ⊗ gjk(−2)

)
⊗H

(
1⊗ gjk(3)u⊗ ψj

)
.

Proof. First, note that by (4.11), we have

(4.16) (1⊗ u⊗ ψk) ∗ (1⊗ vi) = (1⊗ 1)⊗H δkiu .

We will compute(a∗ (1⊗u⊗ψk))∗ (1⊗vi) using (4.10). The first term in the right-hand side of
(4.10) vanishes because the action ofL on Π is trivial. By (2.25), (4.12) and (4.16), the second
term is equal to

−((σ ⊗ id)⊗H id)
(
(1⊗ u⊗ ψk) ∗ (a ∗ (1⊗ vi))

)
= −

∑
j

(σ ⊗ id) (1⊗ fij ⊗ gij)⊗H δkju

= −(fik ⊗ 1⊗ gik)⊗H u

= −(fikgik(−1) ⊗ gik(−2) ⊗ 1)⊗H gjk(3)u ,

where we used (2.7) in the last equality. We will obtain the same result if we apply the right-hand
side of (4.15) to1⊗ vi and use (2.24) and (4.16). �

Example 4.3.ConsiderH as aW (d)-module via (3.2). ThenTΠ(H) = H⊗Π with the following
action ofW (d):

(4.17) (1⊗ a) ∗ (1⊗ u) = (1⊗ 1)⊗H (1⊗ au)− (1⊗ a)⊗H (1⊗ u)

for a ∈ d, u ∈ Π.

Remark4.4. There is an embedding of Lie pseudoalgebras

(4.18) W (d) ↪→ Cur d oW (d) , 1⊗ a 7→ 1⊗ a+ 1⊗ a ,

where the first summand is inCur d = H ⊗ d, and the second one is inW (d) = H ⊗ d.
By Remark 4.3, the representation ofd on Π gives rise to a homomorphismCur d o W (d) →
gc(H ⊗ Π). Composing (4.9) with (4.18), we obtain a homomorphismW (d) → gc(H ⊗ Π),
which corresponds to theW (d)-moduleTΠ(H) from Example 4.3 (see Remark 4.2).

Next, we will describe explicitly the homomorphismsD(β) andTΠ(β) from Definition 4.2.

Proposition 4.3. Let V = H ⊗ V0 and V ′ = H ⊗ V ′0 be finite freeH-modules. Let{vi}
(respectively{v′i}) be ak-basis ofV0 (respectivelyV ′0), and let{ψi} (respectively{ψ′i}) be the
dual basis ofV ∗0 (respectively(V ′0)

∗). For a homomorphism ofH-modulesβ : V → V ′, write

β(1⊗ vi) =
∑

j

hij ⊗ v′j(4.19)

wherehij ∈ H. Then we have:

D(β)(1⊗ ψ′k) =
∑

j

S(hjk)⊗ ψj(4.20)

and

TΠ(β)(1⊗ u⊗ vi) =
∑

j

hij(1) ⊗ hij(−2)u⊗ v′j .(4.21)

By linearity, Proposition 4.3 follows from the following special case, which we formulate as
a lemma for future reference.
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Lemma 4.3. Let V = H ⊗ V0 andV ′ = H ⊗ V ′0 be finite freeH-modules. For fixedh ∈ H,
B ∈ Homk(V0, V

′
0), consider the homomorphism ofH-modulesβ : V → V ′ given by

β(1⊗ v) = h⊗Bv , v ∈ V0 .(4.22)

Then we have:

D(β)(1⊗ ψ′) = S(h)⊗ (ψ′ ◦B) , ψ′ ∈ (V ′0)
∗ = Homk(V

′
0 ,k)(4.23)

and

TΠ(β)(1⊗ u⊗ v) = h(1) ⊗ h(−2)u⊗Bv , u ∈ Π , v ∈ V0 .(4.24)

Proof. The proof is straightforward from definition, and it is left to the reader. �

4.3. Tensor Modules for W (d). The adjoint representation ofW (d) = H ⊗ d gives rise to
the following homomorphism of Lie pseudoalgebrasW (d) → gc(H ⊗ d) (see Eq. (3.1) and
Remark 4.2):

(4.25) 1⊗ a 7→ 1⊗ 1⊗ ad a− 1⊗ a⊗ Id +εa ,

where the pseudolinear mapεa is given by

(4.26) εa(g ⊗ b) = (b⊗ g)⊗H (1⊗ a) , g ∈ H , b ∈ d .

In (4.25) we have identifiedgc(H ⊗ d) with H ⊗H ⊗ End d ; in this identification

(4.27) ε∂i
=

N∑
j=1

∂j ⊗ 1⊗ ej
i ,

where{∂i}i=1,...,N is a basis ofd andej
i (∂k) = δj

k∂i.

Lemma 4.4. The map

(4.28) 1⊗ ∂i 7→
(
1⊗ ad ∂i +

N∑
j=1

∂j ⊗ ej
i

)
+ 1⊗ ∂i

is an embedding of Lie pseudoalgebrasW (d) ↪→ (Cur gl d) oW (d).

Proof. The image ofW (d) under the embedding (4.25) is contained in

H ⊗ k⊗ End d +H ⊗ d⊗ id ⊂ H ⊗H ⊗ End d ,

which is isomorphic to(Cur gl d) oW (d) by Remark 4.3. �

By Remark 4.3, for any finite-dimensionalgl d-moduleV0, we have a homomorphism of Lie
pseudoalgebras(Cur gl d) o W (d) → gcV , whereV = H ⊗ V0. After composing it with the
embedding from Lemma 4.4, we obtain a homomorphismW (d) → gcV , i.e., a representation
of W (d) onV . Explicitly, the action ofW (d) onV is given by:

(1⊗ ∂i) ∗ (1⊗ v) = (1⊗ 1)⊗H (1⊗ (ad ∂i)v) +
N∑

j=1

(∂j ⊗ 1)⊗H (1⊗ ej
iv)

− (1⊗ ∂i)⊗H (1⊗ v) .

(4.29)

Now letΠ be any finite-dimensionald-module. The twisting ofV by Π isTΠ(V ) = H⊗ (Π⊗
V0) with the following action ofW (d) (see Proposition 4.2):

(1⊗ ∂i) ∗ (1⊗ w) = (1⊗ 1)⊗H (1⊗ (ad ∂i)w) +
N∑

j=1

(∂j ⊗ 1)⊗H (1⊗ ej
iw)

− (1⊗ ∂i)⊗H (1⊗ w) + (1⊗ 1)⊗H (1⊗ ∂iw)

(4.30)

for w ∈ Π⊗ V0, whered acts on the factorΠ andgl d acts onV0.
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Definition 4.3. Let g1 andg2 be Lie algebras, and letUi be agi-module (i = 1, 2). Then we will
denote byU1 �U2 the(g1⊕ g2)-moduleU1⊗U2, whereg1 acts on the first factor andg2 acts on
the second one.

The above formulas (4.29), (4.30) motivate the introduction of an important class ofW (d)-
modules.

Definition 4.4. (i) LetW0 be a finite-dimensional(d⊕gl d)-module. TheW (d)-moduleH⊗W0,
with the action ofW (d) given by (4.30) forw ∈ W0, is called atensor moduleand is denoted as
T (W0).

(ii) Let W0 = Π�V0, whereΠ is a finite-dimensionald-module andV0 is a finite-dimensional
gl d-module. Then the tensor moduleT (W0) will also be denoted asT (Π, V0).

(iii) Occasionally, we will denoteT (Π, V0) also byT (Π, V0, c), whereV0 is viewed as a mod-
ule oversl d ⊂ gl d, andc ∈ k denotes the scalar action ofId ∈ gl d onV0.

Remark4.5. By definition, we haveT (Π, V0) = TΠ(T (k, V0)).

Remark4.6. Combining the embeddings (4.18) and (4.28), we get an embedding of Lie pseudo-
algebrasW (d) ↪→ Cur(d⊕ gl d) oW (d),

(4.31) 1⊗ ∂i 7→
(
1⊗ ∂i + 1⊗ ad ∂i +

N∑
j=1

∂j ⊗ ej
i

)
+ 1⊗ ∂i .

Given a(d⊕ gl d)-moduleW0, theW (d)-module obtained from it by Remark 4.3 is exactly the
tensor moduleT (W0) = H ⊗W0 corresponding toW0.

5. TENSORMODULES OF DERHAM TYPE

Throughout this section,d will be anN -dimensional Lie algebra. We fix a basis{∂i}i=1,...,N

of d with structure constantsckij: [∂i, ∂j] =
∑

ckij∂k. Define elementsei
j ∈ gl d by ei

j(∂k) = δi
k∂j.

5.1. Forms with Constant Coefficients. The material in this subsection is completely standard;
our purpose is just to fix the notation. For0 ≤ n ≤ N , let

(5.1) Ωn =
∧n

d∗ , Ω =
∧•

d∗ =
N⊕

n=0

Ωn .

SetΩn = {0} if n < 0 or n > N . We will think of the elements ofΩn as skew-symmetric
n-forms, i.e., linear maps from

∧n
d to k.

Consider the cohomology complex ofd with trivial coefficients,

(5.2) 0 → Ω0 d0−→ Ω1 d0−→ · · · d0−→ ΩN ,

where the differentiald0 is given by the formula (α ∈ Ωn, ai ∈ d):

(d0α)(a1 ∧ · · · ∧ an+1)

=
∑
i<j

(−1)i+jα([ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1)(5.3)

if n ≥ 1, andd0α = 0 for α ∈ Ω0 = k. Here a hat overai means that the termai is omitted in
the wedge product.

Fora ∈ d, define operatorsιa : Ωn → Ωn−1 by

(5.4) (ιaα)(a1 ∧ · · · ∧ an−1) = α(a ∧ a1 ∧ · · · ∧ an−1) , ai ∈ d .

ForA ∈ gl d, denote byA· its action onΩ ; explicitly,

(5.5) (A · α)(a1 ∧ · · · ∧ an) =
n∑

i=1

(−1)iα(Aai ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an) .
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Then we have the following Cartan formula for the coadjoint action ofd :

(5.6) (ad a)· = d0ιa + ιad0 .

This, together withd2
0 = 0, implies that(ad a)· commutes withd0.

5.2. Pseudo de Rham Complex.Following [BDK, Section 8.3], we define the spaces ofpseudo-
formsΩn(d) = H⊗Ωn andΩ(d) = H⊗Ω =

⊕N
n=0 Ωn(d). They are considered asH-modules,

whereH acts on the first factor by left multiplication. We can identifyΩn(d) with the space of
linear maps from

∧n
d toH, andH⊗2⊗H Ωn(d) with Hom(

∧n
d, H⊗2). Note thatΩn(d) = {0}

if n < 0 or n > N .
Let us considerH = U(d) as a leftd-module with respect to the actiona · h = −ha, where

ha is the product ofa ∈ d ⊂ H andh ∈ H in H. Consider the cohomology complex ofd with
coefficients inH:

(5.7) 0 → Ω0(d)
d−→ Ω1(d)

d−→ · · · d−→ ΩN(d) .

Explicitly, the differentiald is given by the formula (α ∈ Ωn(d), ai ∈ d):

(dα)(a1 ∧ · · · ∧ an+1)

=
∑
i<j

(−1)i+jα([ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1)

+
∑

i

(−1)iα(a1 ∧ · · · ∧ âi ∧ · · · ∧ an+1) ai if n ≥ 1,

(dα)(a1) = −αa1 if α ∈ Ω0(d) = H ,

(5.8)

where a hat overai means that the termai is omitted. Notice thatd isH-linear.

Proposition 5.1([BDK]) . Then-th cohomology of the complex(Ω(d), d) is trivial for n 6= N =
dim d and1-dimensional forn = N . In particular, the sequence(5.7) is exact.

Proof. By Poincaŕe dualityHn(d, U(d)) ' HN−n(d, U(d)∗). But Hn(d, U(d)∗) ' Hn(d, U(d))∗

is trivial for n > 0 and1-dimensional forn = 0; see, e.g., [F]. �

Definition 5.1. The sequence (5.7) is called thepseudo de Rham complex.

The following lemma provides another formula for the differential (5.8), which will be useful
later.

Lemma 5.1. For everyα ∈ Ωn, n ≥ 0, and i = 1, . . . , N , consider the element1 ⊗ ι∂i
α ∈

Ωn−1(d). Then we have:

(5.9) d(1⊗ ι∂i
α) =

N∑
k=1

∂k ⊗ ek
iα−

N∑
j,k,l=1

k<l

1⊗ cjkle
k
i e

l
jα−

N∑
k,l=1
k<l

1⊗ ckkle
l
iα ,

where the action ofgl d onΩn is given by(5.5).

Proof. Forn = 0, both sides of (5.9) are trivial; so we can assume thatn ≥ 1. Denote the three
terms in the right-hand side of (5.9) byβ1, β2, β3. Using (5.5), we compute for1 ≤ i1 < · · · <
in ≤ N :

β1(∂i1 ∧ · · · ∧ ∂in) =
N∑

k=1

n∑
r=1

∂k ⊗ (−1)rδk
ir α(∂i ∧ ∂i1 ∧ · · · ∧ ∂̂ir ∧ · · · ∧ ∂in)
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and

β2(∂i1 ∧ · · · ∧ ∂in) =
N∑

j,k,l=1
k<l

n∑
r,s=1
r<s

1⊗ (−1)r+s+1δk
irδ

l
isc

j
kl α(∂i ∧ ∂j ∧ ∂i1 ∧ · · ·

∧ ∂̂ir ∧ · · · ∧ ∂̂is ∧ · · · ∧ ∂in)

+
N∑

j,k,l=1
k<l

n∑
s=1

1⊗ (−1)s+1δk
j δ

l
isc

j
kl α(∂i ∧ ∂i1 ∧ · · · ∧ ∂̂is ∧ · · · ∧ ∂in) .

Similarly,

β3(∂i1 ∧ · · · ∧ ∂in) =
N∑

k,l=1
k<l

n∑
s=1

1⊗ (−1)sδl
isc

k
kl α(∂i ∧ ∂i1 ∧ · · · ∧ ∂̂is ∧ · · · ∧ ∂in) .

These formulas, together with (5.8), (5.4) and the equation
N∑

j,k,l=1
k<l

δk
irδ

l
isc

j
kl ∂j = [∂ir , ∂is ] , r < s , ir < is ,

imply thatd(1⊗ ι∂i
α) = β1 − β2 − β3. �

Next, we introduceH-bilinear maps

∗ι : W (d)⊗ Ωn(d) → H⊗2 ⊗H Ωn−1(d) ,(5.10)

∗ : W (d)⊗ Ωn(d) → H⊗2 ⊗H Ωn(d) ,(5.11)

by the formulas:

(5.12) (f ⊗ a) ∗ι (g ⊗ α) = (f ⊗ g)⊗H ιaα ,

(5.13) w ∗ γ = ((id⊗ id)⊗H d)(w ∗ι γ) + w ∗ι (dγ) ,

for w = f ⊗ a ∈ W (d), γ = g ⊗ α ∈ Ωn(d). Eq. (5.13) is an analog of Cartan’s formula (5.6).
Explicitly, we have (see [BDK, Eq. (8.7)]):

(w ∗ γ)(a1 ∧ · · · ∧ an) = −(f ⊗ ga)α(a1 ∧ · · · ∧ an)

+
n∑

i=1

(−1)i(fai ⊗ g)α(a ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an)

+
n∑

i=1

(−1)i(f ⊗ g)α([a, ai] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an) ∈ H⊗2

(5.14)

for n ≥ 1, andw ∗ γ = −f ⊗ ga for γ = g ∈ Ω0(d) = H. Note that the latter coincides with the
action (3.2) ofW (d) onH.

Theorem 5.1. The maps(5.11)provide eachΩn(d) with a structure of a tensorW (d)-module
corresponding to the(d ⊕ gl d)-modulek � Ωn, i.e., Ωn(d) = T (k,Ωn). The differential
d: Ωn(d) → Ωn+1(d) is a homomorphism ofW (d)-modules.

Proof. Comparing (5.14) with (5.5), we obtain forα ∈ Ωn:

(1⊗ ∂k) ∗ (1⊗ α) = −(1⊗ ∂k)⊗H (1⊗ α)

+
N∑

j=1

(∂j ⊗ 1)⊗H (1⊗ ej
kα) + (1⊗ 1)⊗H (1⊗ (ad ∂k)α) .
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But this is exactly (4.29); hence,Ωn(d) = T (k,Ωn).
To prove thatd is a homomorphism, we have to check that it satisfies (2.34). This follows

from (5.13) andd2 = 0. Indeed, replacingγ with dγ in (5.13), we get

w ∗ (dγ) = ((id⊗ id)⊗H d)(w ∗ι dγ) ,

while applying((id⊗ id)⊗H d) to both sides of (5.13) gives

((id⊗ id)⊗H d)(w ∗ γ) = ((id⊗ id)⊗H d)(w ∗ι dγ) .

This completes the proof. �

5.3. Twisting of the Pseudo de Rham Complex.As before, letΠ be a finite-dimensionald-
module, which we consider as anH-module. We will apply the twisting functorTΠ (see Defin-
ition 4.2(ii)) to the pseudo de Rham complex (5.7). Note that, by Theorem 5.1 and Remark 4.5,
we haveTΠ(Ωn(d)) = T (Π,Ωn). We obtain a complex ofW (d)-modules

(5.15) 0 → T (Π,Ω0)
dΠ−→ T (Π,Ω1)

dΠ−→ · · · dΠ−→ T (Π,ΩN) , dΠ ≡ TΠ(d) ,

which we call theΠ-twisted pseudo de Rham complex.
It follows from (5.8) and Proposition 4.3 that the complex (5.15) coincides with the cohomol-

ogy complex ofd with coefficients inH ⊗ Π considered with the action

(5.16) a · (h⊗ u) = −ha+ au , a ∈ d , h ∈ H , u ∈ Π .

Lemma 5.2. Thed-moduleH⊗Π, equipped with the action(5.16), is isomorphic toH⊗Π with
d acting only onH via

a(h⊗ u) = −ha⊗ u , a ∈ d , h ∈ H , u ∈ Π .

In other words,H ⊗ Π is isomorphic to a direct sum ofdim Π copies of thed-moduleH.

Proof. Consider the linear map

F : H ⊗ Π → H ⊗ Π , h⊗ u 7→ h(1) ⊗ h(−2)u .

From (2.7) it is easy to see thatF is a linear isomorphism and

F−1(h⊗ u) = h(1) ⊗ h(2)u

(see [BDK, Section 2.3] for a similar argument). Using (2.6) and (2.13), we compute

F (−ha⊗ u) = −(ha)(1) ⊗ (ha)(−2)u

= −h(1)a⊗ h(−2)u+ h(1) ⊗ ah(−2)u = a · F (h⊗ u) .

This shows thatF is an isomorphism of the correspondingd-modules. �

Now Proposition 5.1 and Lemma 5.2 immediately imply:

Proposition 5.2. The sequence(5.15) is exact. The image ofdΠ in T (Π,ΩN) has codimen-
siondim Π.

Finally, let us give a formula for the differentialdΠ, which is similar to (5.9).

Lemma 5.3. For everyα ∈ Ωn, n ≥ 0, u ∈ Π, andi = 1, . . . , N , we have:

dΠ(1⊗ u⊗ ι∂i
α) =

N∑
k=1

∂k ⊗ u⊗ ek
i α−

N∑
k=1

1⊗ ∂ku⊗ ek
i α

−
N∑

j,k,l=1
k<l

1⊗ u⊗ cjkle
k
i e

l
jα−

N∑
k,l=1
k<l

1⊗ u⊗ ckkle
l
iα ,

(5.17)

where the action ofgl d onΩn is given by(5.5).
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Proof. For a fixedi, extend byH-linearity the mapι∂i
to a map fromΩn(d) to Ωn−1(d). Note

that, by Proposition 4.3 (or Lemma 4.3), we have

(TΠ(ι∂i
))(1⊗ u⊗ α) = 1⊗ u⊗ ι∂i

α .

Consider theH-linear mapd◦ ι∂i
: Ωn(d) → Ωn(d). This map sends1⊗α to the right-hand side

of (5.9). Hence, by Proposition 4.3,(TΠ(d ◦ ι∂i
))(1 ⊗ u ⊗ α) is given by the right-hand side of

(5.17). On the other hand, we haveTΠ(d ◦ ι∂i
) = TΠ(d) ◦ TΠ(ι∂i

), which givesdΠ(1⊗ u⊗ ι∂i
α)

when applied to1⊗ u⊗ α. �

6. CLASSIFICATION OF IRREDUCIBLE FINITE W (d)-MODULES

In this section we provide a complete classification of all irreducible finiteW (d)-modules.
Our main result is Theorem 6.6.

6.1. Singular Vectors and Tensor Modules.Recall that the annihilation algebraW of W (d)
has a decreasing filtration{Wp}p≥−1 given by (3.8). For aW-moduleV , we denote bykerp V
the set of allv ∈ V that are killed byWp. Then aW-moduleV is conformal iffV =

⋃
kerp V .

Recall also that the extended annihilation algebra is defined asW̃ = d nW, whered acts onW
by (3.7). By Proposition 2.1, anyW (d)-module has a natural structure of a conformalW̃-module
and vice versa.

For everyp ≥ 0, the normalizer ofWp in W̃ is equal toNW (see Definition 3.2 and Proposi-
tion 3.3). Therefore, eachkerp V is anNW-module. In fact,kerp V is a module over the finite-
dimensional Lie algebraNW/Wp = d̃ ⊕ (W0/Wp). The Lie algebraNW/W1 is isomorphic to
the direct sum of Lie algebrasd⊕ gl d.

Definition 6.1. For aW (d)-moduleV , a singular vectoris an elementv ∈ V such thatW1 ·
v = 0. The space of singular vectors inV will be denoted bysing V . We will denote by
ρsing : d⊕gl d → gl(sing V ) the representation obtained from theNW-action onsing V ≡ ker1 V
via the isomorphismNW/W1 ' d⊕ gl d.

Recall thatkerV ≡ ker−1 V is the space of allv ∈ V such thatW · v = 0. Then, obviously,
kerV ⊂ sing V . Note also thatkerV = {0} whenV is irreducible.

Theorem 6.1. For any nontrivial finiteW (d)-moduleV , we havesing V 6= {0} and the space
sing V/ kerV is finite dimensional.

Proof. The second statement is a special case of Lemma 2.3. To show thatsing V 6= {0}, we
can assume without loss of generality thatkerV = {0}. SinceV is a conformalW-module,
kerp V 6= {0} for somep ≥ 1. By Lemma 2.3, the spacekerp V is finite dimensional. Let us
choose a minimalNW-submoduleR of kerp V . ThenR is an irreducibleNW-module; hence, by
Proposition 3.4,W1 acts trivially onR. This means thatR ⊂ sing V . �

Remark6.1. It follows from (3.8) and Proposition 2.1 that a vectorv ∈ V is singular if and only
if

(6.1) (1⊗ ∂) ∗ v ∈ (F1H ⊗ k)⊗H V , ∂ ∈ d ,

whereF1H = k⊕ d. Similarly, by Lemma 2.1(ii), a vectorv ∈ V is singular if and only if

(6.2) (1⊗ ∂) ∗ v ∈ (k⊗ F1H)⊗H V , ∂ ∈ d .

As before, let{∂i}i=1,...,N be a basis ofd, and letxi ∈ X be given by (2.19). We viewxi as
elements ofd∗; then{xi} is a basis ofd∗ dual to the basis{∂i} of d. Let ej

i ∈ gl d be given by
ej

i∂k = δj
k ∂i; in other words,ej

i corresponds to∂i ⊗ xj under the isomorphismgl d ' d⊗ d∗.
Note that, by Definition 3.2 and Corollary 3.1, we have

(6.3) ρsing(∂)v = ∂̃ · v , ρsing(e
j
i )v = −(xj ⊗ ∂i) · v , ∂ ∈ d , v ∈ sing V .
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Lemma 6.1. LetV be aW (d)-module. Then for every singular vectorv ∈ sing V , the action of
W (d) onv is given by

(1⊗ ∂i) ∗ v =
N∑

j=1

(∂j ⊗ 1)⊗H ρsing(e
j
i )v − (1⊗ 1)⊗H ∂iv

+ (1⊗ 1)⊗H ρsing(∂i + ad ∂i)v .

(6.4)

Proof. SinceW1 · v = 0, it follows from Proposition 2.1 that for∂ ∈ d

(1⊗ ∂) ∗ v = (1⊗ 1)⊗H (1⊗ ∂) · v −
∑

j

(∂j ⊗ 1)⊗H (xj ⊗ ∂) · v ,

while Lemma 3.3 implies

(∂ + 1⊗ ∂ − ∂̃) · v = ρsing(ad ∂)v .

Combining the above equations with (6.3) proves (6.4). �

Corollary 6.1. Let V be aW (d)-module and letR be a nontrivial(d ⊕ gl d)-submodule of
sing V . Denote byHR theH-submodule ofV generated byR. ThenHR is aW (d)-submodule
of V . In particular, if V is irreducible, thenV = HR.

Proof. It follows from (6.4) thatW (d) ∗ R ⊂ (H ⊗ H) ⊗H HR. Then, byH-bilinearity,
W (d) ∗HR ⊂ (H ⊗H)⊗H HR, which means thatHR is aW (d)-submodule ofV . �

LetR be a finite-dimensional(d⊕gl d)-module, with an action denoted asρR. LetV = H⊗R
be the freeH-module generated byR, whereH acts by left multiplication on the first factor. We
define a pseudoproduct

(1⊗ ∂i) ∗ (1⊗ u) =
N∑

j=1

(∂j ⊗ 1)⊗H (1⊗ ρR(ej
i )u)− (1⊗ 1)⊗H (∂i ⊗ u)

+ (1⊗ 1)⊗H (1⊗ ρR(∂i + ad ∂i)u) , u ∈ R ,

(6.5)

and then extend it byH-bilinearity to a map∗ : W (d)⊗ V → (H ⊗H)⊗H V .

Lemma 6.2. LetR be a finite-dimensional(d ⊕ gl d)-module with an actionρR. Then formula
(6.5)defines a structure of aW (d)-module onV = H ⊗R. We havek⊗R ⊂ sing V and

(6.6) ρsing(A)(1⊗ u) = 1⊗ ρR(A)u , A ∈ d⊕ gl d , u ∈ R .

Proof. The fact thatV is aW (d)-module can be proved by a straightforward computation, using
(2.33) and (3.1). Instead, we will show thatV is a tensor module (see Definition 4.4). Let us
compare (6.5) to (4.30), keeping in mind that, by definition,

(1⊗ 1)⊗H (∂i ⊗ u) = (∂i ⊗ 1)⊗H (1⊗ u) + (1⊗ ∂i)⊗H (1⊗ u) .

We see thatV = H ⊗ R coincides with the tensor moduleT (R), whereR is equipped with the
following modified action ofd⊕ gl d:

∂u =
(
ρR(∂) + tr(ad ∂)

)
u , ∂ ∈ d , u ∈ R ,(6.7)

Au =
(
ρR(A)− trA

)
u , A ∈ gl d , u ∈ R .(6.8)

The fact thatk⊗R ⊂ sing V follows from Remark 6.1, and (6.6) follows from comparing (6.4)
with (6.5). This completes the proof. �

Definition 6.2. (i) Let R be a finite-dimensional(d⊕ gl d)-module with an actionρR. Then the
W (d)-moduleH ⊗R, with the action ofW (d) given by (6.5), will be denoted asV(R).

(ii) Let R = Π � U , whereΠ is a finite-dimensionald-module andU is a finite-dimensional
gl d-module. Then the moduleV(R) will also be denoted asV(Π, U).
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Remark6.2. If R is a finite-dimensional(d ⊕ gl d)-module, we can define an action ofNW on
it by lettingW1 act as zero. Then as ãW-module,V(R) is isomorphic to the induced module

Ind
fW
NW R. This follows from the fact that̃W = d⊕NW as a vector space (see Proposition 3.3).

For a Lie algebrag and a trace formχ on g, we denote bykχ the 1-dimensionalg-module
such that eacha ∈ g acts as the scalarχ(a). Then (6.7) and (6.8) are equivalent to:

(6.9) V(R) = T (R⊗ (ktr ad � k−tr)) , T (R) = V(R⊗ (k−tr ad � ktr)) ,

This can also be written as follows (cf. Definition 4.4(ii)):

(6.10) V(Π, U) = T (Π⊗ ktr ad, U ⊗ k−tr) , T (Π, U) = V(Π⊗ k−tr ad, U ⊗ ktr) .

Theorem 6.2.LetV be an irreducible finiteW (d)-module, and letR be an irreducible(d⊕gl d)-
submodule ofsing V . ThenV is a homomorphic image ofV(R). In particular, every irreducible
finiteW (d)-module is a quotient of a tensor module.

Proof. By Corollary 6.1, we haveV = HR. Consider the natural projection

π : V(R) = H ⊗R→ HR = V , h⊗ u 7→ hu .

Note thatπ isH-linear. Comparing (6.4) with (6.5), we see that(
(id⊗ id)⊗H π

)(
(1⊗ ∂i) ∗ (1⊗ u)

)
= (1⊗ ∂i) ∗ u , i = 1, . . . , N , u ∈ R .

By H-bilinearity, this leads to(
(id⊗ id)⊗H π

)
(a ∗ v) = a ∗ π(v) , a ∈ W (d) , v ∈ V(R) ,

which means thatπ is a homomorphism ofW (d)-modules (cf. (2.34)). �

6.2. Filtration of Tensor Modules. Let V(R) be a tensorW (d)-module, as defined in Defini-
tion 6.2(i). Recall the canonical increasing filtration{FpH} of H given by (2.16). We introduce
an increasing filtration ofV(R) = H ⊗R as follows:

(6.11) Fp V(R) = FpH ⊗R , p = −1, 0, . . . .

Note thatF−1 V(R) = {0}, F0 V(R) = k⊗R.
The associated graded space ofV(R) is

(6.12) grV(R) =
⊕
p≥0

grp V(R) , grp V(R) = (FpH ⊗R)/(Fp−1H ⊗R) .

We have isomorphisms of vector spaces:

(6.13) grp V(R) ' grpH ⊗R ' Sp d⊗R ,

whereSp d is thep-th symmetric power of the vector spaced.
Next, we study the action of the extended annihilation algebraW̃ on the filtration (6.11).

Lemma 6.3. For everyp ≥ 0, we have:
(i) d · Fp V(R) ⊂ Fp+1 V(R),
(ii) NW · Fp V(R) ⊂ Fp V(R),
(iii) W1 · Fp V(R) ⊂ Fp−1 V(R).

Proof. Part (i) is obvious from definitions, since

∂ · (h⊗ u) = ∂h⊗ u , ∂ ∈ d , h ∈ H , u ∈ R .
We will prove parts (ii) and (iii) by induction onp. Forp = 0, we haveF0 V(R) = k ⊗ R ⊂

singV(R); hence, (ii) and (iii) hold by the definition of a singular vector.
Now assume that (ii) is satisfied for somep ≥ 0. Then it is enough to show that

A · (∂v) ∈ Fp+1 V(R) for all A ∈ NW , ∂ ∈ d , v ∈ Fp V(R) .
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Note that, sincẽW = d + NW (see Proposition 3.3), statements (i) and (ii) implỹW · v ⊂
Fp+1 V(R). Then we have

A · (∂v) = ∂ · (A · v) + [A, ∂] · v ∈ d · (NW · v) + W̃ · v ⊂ Fp+1 V(R) ,

by part (i) and the inductive assumption. This proves (ii).
Similarly, assume that (iii) holds for somep ≥ 0. Then we want to show that

B · (∂v) ∈ Fp V(R) for all B ∈ W1 , ∂ ∈ d , v ∈ Fp V(R) .

We have

B · (∂v) = ∂ · (B · v) + [B, ∂] · v ∈ d · (W1 · v) +NW · v ⊂ Fp V(R) ,

by (i), (ii) and the inductive assumption, because[B, ∂] ∈ W0 ⊂ NW . This completes the
proof. �

Lemma 6.3(ii) implies that the Lie algebraNW acts on the associated graded spacegrV(R).
By Lemma 6.3(iii), the same is true for the Lie algebraNW/W1 = d̃ ⊕ (W0/W1) ' d ⊕ gl d.
This action is described in the next two lemmas.

Lemma 6.4. For every∂ ∈ d, h ∈ FpH, u ∈ R, we have

∂̃ · (h⊗ u) = h⊗ ρR(∂)u mod Fp−1 V(R) .

Proof. The proof is by induction onp and is similar to that of Lemma 6.3(ii). First, forp = 0,
we haveF0H = k and1⊗ u ∈ singV(R). Hence,̃∂ · (1⊗ u) = 1⊗ ρR(∂)u by (6.3), (6.6).

Now assume the statement holds forh ∈ FpH, and consider̃∂ · (∂′h ⊗ u) for ∂′ ∈ d. Note
that, by Proposition 3.2(i), we have:[∂̃, ∂′] = [∂̃, ∂̃′ + γ(∂′)] = [∂̃, ∂̃′] ∈ d̃. From the inductive
assumption, we get[∂̃, ∂′] · (h⊗ u) ∈ Fp V(R). Therefore,

∂̃ · (∂′h⊗ u) = ∂′ · (∂̃ · (h⊗ u)) mod Fp V(R) = ∂′h⊗ ρR(∂)u mod Fp V(R)

by the inductive assumption. �

Lemma 6.5. The action ofgl d ' W0/W1 on the spacegrp V(R) ' Sp d⊗R is given by

A · (f ⊗ u) = Af ⊗ u+ f ⊗ ρR(A)u , A ∈ gl d , f ∈ Sp d , u ∈ R ,
whereAf is the standard action ofgl d onSp d.

Proof. The proof uses the same argument as in Lemmas 6.3(ii) and 6.4, and the fact that via the
isomorphismsW0/W1 ' gl d andW/W0 ' d the adjoint action[A, ∂] becomes the standard
action ofgl d ond (see Corollary 3.1). �

WhenR = Π � U , the above two lemmas can be summarized as follows.

Corollary 6.2. We havegrp V(Π, U) ' Π � (Sp d⊗ U) as(d⊕ gl d)-modules.

6.3. Submodules of Tensor Modules.Let T (R) = H ⊗ R be a tensor module (see Defini-
tion 4.4). We will assume thatR is an irreducible finite-dimensional(d ⊕ gl d)-module. Then
R = Π � U , whereΠ (respectivelyU ) is an irreducible finite-dimensional module overd (re-
spectivelygl d). In this case,T (R) = T (Π, U).

As usual, we fix a basis{∂i} of d. Recall that the action of1 ⊗ ∂i ∈ W (d) on an element
1 ⊗ u ∈ k ⊗ R ⊂ T (R) is given by (4.30). For us, it will be convenient to rewrite (4.30) as
follows (making use of (2.13)):

(1⊗ ∂i) ∗ (1⊗ u) = (1⊗ 1)⊗H (1⊗ (∂i + ad ∂i)u)

+
N∑

j=1

(1⊗ 1)⊗H (∂j ⊗ ej
iu)−

N∑
j=1

(1⊗ ∂j)⊗H (1⊗ (ej
i + δj

i )u) .
(6.14)
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Introduce the following notation:

(6.15) s(∂i, u) =
N∑

j=1

∂j ⊗ ej
iu , u ∈ R , i = 1, . . . , N .

By linearity, we defines(∂, u) for all ∂ ∈ d. Thens(∂, u) does not depend on the choice of basis
{∂i} of d (cf. (4.26), (4.27)).

SinceT (R) = H ⊗R, any elementv ∈ T (R) can be written uniquely in the form

(6.16) v =
∑
I∈ZN

+

∂(I) ⊗ vI , vI ∈ R ,

where∂(I) ∈ H are given by (2.14). Note that the above sum is finite, i.e.,vI 6= 0 only for
finitely manyI. From (6.14)–(6.16) andH-bilinearity, we find

(1⊗ ∂i) ∗ v =
∑

I

(1⊗ ∂(I))⊗H (1⊗ (∂i + ad ∂i)vI)

+
∑

I

(1⊗ ∂(I))⊗H s(∂i, vI)

−
∑

I

N∑
j=1

(1⊗ ∂(I)∂j)⊗H (1⊗ (ej
i + δj

i )vI) .

(6.17)

Definition 6.3. The nonzero elementsvI in the expression (6.16) are calledcoefficientsof v ∈
T (R). For a submoduleM ⊂ T (R), we denote bycoeffM the subspace ofR linearly generated
by all coefficients of elements ofM .

Recall thatT (R) has a filtration given byFp T (R) = FpH ⊗ R (cf. (6.11) and (6.9)). We
have:F−1 T (R) = {0}, F0 T (R) = k⊗R andF1 T (R) = (k + d)⊗R.

Lemma 6.6. For any nontrivial properW (d)-submoduleM of T (R), we haveM ∩F0 T (R) =
{0}.

Proof. Let M0 be the set of allu ∈ R such that1 ⊗ u ∈ M . By (6.14) and Remark 2.2(i), we
have:

(∂i + ad ∂i)u ∈M0 , (ej
i + δj

i )u ∈M0 for all i, j = 1, . . . , N , u ∈M0 .

This means thatM0 is a (d ⊕ gl d)-submodule ofR. SinceR is irreducible, eitherM0 = {0}
or M0 = R. In the latter case, we obtainM ⊃ H ⊗M0 = T (R), which is a contradiction.
Therefore,M ∩ (k⊗R) = {0}. �

Corollary 6.3. If sing T (R) = F0 T (R), then the tensorW (d)-moduleT (R) is irreducible.

Proof. If M ⊂ T (R) is a nontrivial proper submodule, then by Theorem 6.1 it contains a nonzero
singular vector. This contradicts Lemma 6.6. �

Corollary 6.3 will play a crucial role in our classification of irreducible finiteW (d)-modules.

Lemma 6.7. For any nontrivial properW (d)-submoduleM of T (R), we havecoeffM = R.

Proof. Pick a nonzero elementv ∈ M and write in the form (6.16). Then, for fixedI, the
coefficient multiplying1⊗ ∂(I) in the right-hand side of (6.17) equals

(6.18) s(∂i, vI) + 1⊗ ∂ivI + terms ink⊗ (gl d + k)(coeffM) .

By Remark 2.2(ii), this is an element ofM . Hence, for each coefficientvI of v, we haveej
ivI ∈

coeffM . Then from (6.18) we also get∂ivI ∈ coeffM . Therefore,coeffM is a nontrivial
(d⊕ gl d)-submodule ofR. ButR is irreducible; hence,coeffM = R. �
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Lemma 6.8. LetM be a nontrivial properW (d)-submodule ofT (R). Then for every∂ ∈ d
andu ∈ R, there is a unique elementsM(∂, u) ∈M such that

(6.19) sM(∂, u) = s(∂, u) mod F0 T (R) ,

wheres(∂, u) is given by(6.15). The elementsM(∂, u) depends linearly on both∂ andu.

Proof. Uniqueness follows from Lemma 6.6. From uniqueness we deduce thatsM(∂, u) depends
linearly on∂ andu. Then, to prove existence, it is enough to consider the case∂ = ∂i andu = vI

for somev ∈ M (becauseR = coeffM by Lemma 6.7). In this casesM(∂i, vI) is exactly the
element (6.18). �

ElementssM(∂, u) will be used in the next subsection to determine all singular vectors ofM .

6.4. Computation of Singular Vectors. In this subsection, we continue to use the notation of
Section 6.3. Our goal is to find all singular vectors ofT (R) = T (Π, U). Given a nontrivial
properW (d)-submoduleM of T (R), we also find all singular vectors ofM . These results will
be used in Section 6.5 to classify irreducible finiteW (d)-modules.

First, we consider the case when thegl d-action onR is trivial.

Proposition 6.1. For any irreducible finite-dimensionald-moduleΠ, we have:
(i) sing T (Π,k) = F0 T (Π,k);
(ii) T (Π,k) is an irreducibleW (d)-module.

Proof. Pick a singular vectorv ∈ T (Π,k), and write it in the form (6.16). Then, by (6.17),

(1⊗ ∂i) ∗ v =
∑

I

(1⊗ ∂(I))⊗H (1⊗ ∂ivI)−
∑

I

(1⊗ ∂(I)∂i)⊗H (1⊗ vI) .

Now Remark 6.1 implies thatvI = 0 whenever|I| ≥ 1. This proves (i).
(ii) follows from (i) and Corollary 6.3. �

Lemma 6.9. For any irreducible finite-dimensional(d ⊕ gl d)-moduleR, the tensorW (d)-
moduleT (R) satisfies

F0 T (R) ⊂ sing T (R) ⊂ F1 T (R) .

Proof. First of all, by Proposition 6.1(i), we can assume that thegl d-action onR is nontrivial.
SinceF0 T (R) = k ⊗ R, the first inclusion follows from (6.14) and Remark 6.1. To prove the
second one, pick a nonzero singular vectorv and write in the form (6.16). Then(1 ⊗ ∂i) ∗ v is
given by formula (6.17). The coefficient multiplying1 ⊗ ∂(I) in (6.17) is given by (6.18). By
Remark 6.1, this coefficient must vanish whenever|I| > 1. Hence,s(∂i, vI) = 0 for all i, which
implies(gl d)vI = 0. Therefore,vI = 0. This proves thatsing T (R) ⊂ F1 T (R). �

Lemma 6.10.An element

(6.20) v =
N∑

k=1

∂k ⊗ vk ∈ d⊗R ⊂ T (R)

is a singular vector iff it satisfies the equations

(6.21) (ej
i + δj

i )v
k + (ek

i + δk
i )vj = 0 for all i, j, k = 1, . . . , N .

In this case, for the actionρsing of gl d onv, we have(see(6.15)):

(6.22) ρsing(e
k
i )v = −s(∂i, v

k) mod F0 T (R) .

Proof. As a special case of (6.17), we have:

(1⊗ ∂i) ∗ v =
N∑

k=1

(1⊗ ∂k)⊗H (1⊗ (∂i + ad ∂i)v
k) +

N∑
k=1

(1⊗ ∂k)⊗H s(∂i, v
k)

−
N∑

k,j=1

(1⊗ ∂k∂j)⊗H (1⊗ (ej
i + δj

i )v
k) .
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Fork ≤ j, the coefficient multiplying1⊗ ∂k∂j is up to a sign equal to

(6.23) 1⊗ (ej
i + δj

i )v
k + 1⊗ (ek

i + δk
i )vj .

By Remark 6.1,v is a singular vector iff this coefficient vanishes for allj, k. This proves (6.21).
On the other hand, the coefficient multiplying1⊗∂k is equal tos(∂i, v

k) moduloF0 T (R). Then
(6.22) follows from (6.4). �

Our next result describes all singular vectors in a tensorW (d)-moduleT (R).

Theorem 6.3.For any irreducible finite-dimensional(d⊕ gl d)-moduleR, we have:

(6.24) sing T (R) = F0 T (R) + {s(∂, u) | ∂ ∈ d , u ∈ R0} ,
wheres(∂, u) is defined by(6.15)andR0 is the subspace of allu ∈ R satisfying the equations

(6.25) (ej
i + δj

i )e
k
l u+ (ek

i + δk
i )ej

lu = 0 , i, j, k, l = 1, . . . , N .

The subspaceR0 is either{0} or the wholeR.

Proof. WhenR = Π�k, (6.24) follows from Proposition 6.1(i), because in this case alls(∂, u) =
0. Let us assume that thegl d-action onR is nontrivial, and denote the space in the right-hand side
of (6.24) byS. Notice thats(∂, u) is a singular vector iffu ∈ R0, because forv = s(∂l, u) we
havevk = ek

l u and (6.21) becomes (6.25). Hence, Lemmas 6.9 and 6.10 implyS ⊂ sing T (R).
From these lemmas, we also deduce that the actionρsing of gl d on sing T (R) mapssing T (R)

into S. Consider the finite-dimensionalgl d-modulesing T (R)/F0 T (R). We claim that its
decomposition as a direct sum of irreducibles does not contain the trivialgl d-module. Indeed, let
v ∈ sing T (R) be such thatρsing(e

k
i )v ∈ F0 T (R) for all i, k. We want to show thatv ∈ F0 T (R).

Without loss of generality, we can assume thatv ∈ d ⊗ R. Then, by (6.22), alls(∂i, v
k) = 0,

and from (6.15),ej
iv

k = 0 for all i, j, k. This impliesvk = 0 for all k, andv = 0. Therefore, the
gl d-action onsing T (R)/F0 T (R) is surjective, andsing T (R) = S.

Clearly, ifR = Π � U , thenR0 = Π � U0, whereU0 is the subspace of allu ∈ U satisfying
(6.25). We claim thatU0 is agl d-submodule ofU . SinceU is an irreduciblegl d-module, this
would imply that eitherU0 = {0} or U0 = U . Now if u ∈ R0, thenv = s(∂l, u) is a singular
vector for alll. By (6.22), alls(∂i, v

k) are singular vectors too. Hence,vk = ek
l u belongs toR0

for all k, l. Therefore,(gl d)R0 ⊂ R0, which implies(gl d)U0 ⊂ U0. �

Corollary 6.4. If theW (d)-moduleT (R) is not irreducible, then equations(6.25)are satisfied
for all u ∈ R.

Proof. This follows from Corollary 6.3 and Theorem 6.3. �

Next, we find all singular vectors in a nontrivial properW (d)-submoduleM of T (R). Recall
the elementssM(∂, u) ∈M , constructed in Lemma 6.8.

Theorem 6.4.For any nontrivial properW (d)-submoduleM of T (R), we have:
(i) singM = M ∩ F1 T (R) = {sM(∂, u) | ∂ ∈ d , u ∈ R};
(ii) sing T (R) = F0 T (R)⊕ singM as(d⊕ gl d)-modules.

Proof. (i) Note thatsingM ⊂M∩F1 T (R) by Lemma 6.9. Conversely, pickv′ ∈M∩F1 T (R),
and writev′ = v + 1 ⊗ u with v ∈ d ⊗ R, u ∈ R. Since1 ⊗ u ∈ sing T (R), the vectorv′ is
singular if and only ifv is. In the proof of Lemma 6.10 we saw that the coefficient multiplying
1 ⊗ ∂k∂j in (1 ⊗ ∂i) ∗ v is up to a sign equal to (6.23). By Remark 6.1,(1 ⊗ ∂i) ∗ v′ has the
same coefficient. Now Remark 2.2(ii) implies that the elements (6.23) belong toM . Hence, they
vanish by Lemma 6.6. Then, by Lemma 6.10,v is a singular vector, andv′ ∈ singM .

This proves the first equality in (i). The second equality follows from the first one, Lemma 6.8
and Theorem 6.3.

(ii) The sum is direct because of Lemma 6.6. The equality follows from part (i), Lemma 6.8
and Theorem 6.3. �
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Corollary 6.5. LetR be an irreducible finite-dimensional(d ⊕ gl d)-module, and letM,M ′ be
two nontrivial properW (d)-submodules ofT (R). ThensingM = singM ′.

Proof. Consider the canonical projection of(d⊕ gl d)-modules

π : sing T (R) → sing T (R)/F0 T (R) ⊂ gr1 T (R) .

By Theorem 6.4(ii), the restriction ofπ to singM is an isomorphism. On the other hand, com-
bining (6.10) with Corollary 6.2, we obtain isomorphisms of(d⊕ gl d)-modules

F0 T (R) ' Π̃ � Ũ , gr1 T (R) ' Π̃ � (d⊗ Ũ) ,

where
R = Π � U , Π̃ = Π⊗ k−tr ad , Ũ = U ⊗ ktr .

Thegl d-moduleŨ is irreducible. Say thatId ∈ gl d acts as the scalarc on Ũ . Then it acts as
c+ 1 ond⊗ Ũ . It follows thatsingM is precisely the set of all vectorsv ∈ sing T (R) such that
Id ·v = (c+ 1)v. The same is true forM ′ instead ofM . �

6.5. Irreducible Finite W (d)-Modules. This subsection contains our main results about ir-
reducible finiteW (d)-modules. As before, letΠ (respectivelyU) be an irreducible finite-
dimensional representation ofd (respectivelygl d). First, we determine which tensorW (d)-
modules are irreducible.

Theorem 6.5. The tensorW (d)-moduleT (Π, U) is irreducible if and only if, as agl d-module,
U is not isomorphic to

∧n
d∗ for anyn ≥ 1.

Proof. Assume thatT (Π, U) is not irreducible. Then, by Corollary 6.4, equations (6.25) are
satisfied for allu ∈ R. In the special casei = j = k = l they give

(6.26) (ei
i + 1)ei

iu = 0 for all u ∈ R = Π � U .

We claim that thegl d-moduleU is isomorphic toΩn :=
∧n

d∗ for somen.
To prove this, first note that the matrixId ∈ gl d acts as a scalar onU , and the moduleU

remains irreducible when restricted tosl d. ThenU has a highest weight vectorv, and thegl d-
moduleU is uniquely determined by its highest weight, i.e., by the eigenvaluesλi of ei

i on v.
Furthermore, allλi− λi+1 are non-negative integers (see, e.g., [Se, Chapter VII]). But by (6.26),
all λi = 0 or −1; hence theN -tuple (λ1, . . . , λN) has the form(0, . . . , 0,−1, . . . ,−1). The
moduleΩn has such a highest weight, where the number of−1’s is n.

Therefore,U ' Ωn, and the casen = 0 is excluded by Proposition 6.1(ii). Next, recall the
Π-twisted pseudo de Rham complex (5.15), and introduce the shorthand notation

(6.27) T n := T (Π,Ωn) , In := dΠ(T n−1) ⊂ T n .

Since the differentialdΠ is a homomorphism ofW (d)-modules, the imageIn is a submodule
of T n for eachn = 1, . . . , N . It is easy to see from Proposition 5.2 and Lemma 5.3 thatIn is
nontrivial and proper. Therefore, the tensor modulesT n are not irreducible forn ≥ 1. �

Corollary 6.6. LetR be an irreducible finite-dimensional(d ⊕ gl d)-module. Then theW (d)-
moduleT (R) is irreducible if and only ifsing T (R) = F0 T (R).

Proof. In one direction, the statement is exactly Corollary 6.3. The opposite direction follows
from Theorem 6.3 and the proof of Theorem 6.5. �

Our next goal is to study the submodulesIn of T n (see (6.27)).

Lemma 6.11.For 1 ≤ n ≤ N , theW (d)-submoduleIn ⊂ T n has the following properties:
(i) In is nontrivial and proper;
(ii) sing In = dΠ(k⊗ Π⊗ Ωn−1);
(iii) In is generated bysing In as anH-module;
(iv) Any nontrivial proper submoduleM of T n containsIn;
(v) In is an irreducibleW (d)-module.
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Proof. (i) is easy to see from Proposition 5.2 and Lemma 5.3.
(ii) Formula (5.17) and Lemma 6.8 imply

sIn(∂i, u⊗ α) = dΠ(1⊗ u⊗ ι∂i
α) , u ∈ Π , α ∈ Ωn , i = 1, . . . , N .

Then (ii) follows from Theorem 6.4(i) and the fact thatΩn−1 is linearly spanned by allι∂i
α.

(iii) is obvious from (ii) and theH-linearity ofdΠ.
(iv) By Corollary 6.5, we havesingM = sing In. ThenM ⊃ H(singM) = H(sing In),

which is equal toIn by part (iii).
(v) is obvious from (iv). �

Note that, from the exactness of the complex (5.15), we haveI1 ' T 0 = T (Π,Ω0) =
T (Π,k).

Lemma 6.12.For 1 ≤ n ≤ N − 1, In is the unique nontrivial properW (d)-submodule ofT n.

Proof. If M is a nontrivial proper submodule ofT n, it containsIn. The imagedΠM is a sub-
module ofIn+1; hence,dΠM is either{0} or the wholeIn+1. But the kernel ofdΠ is equal to
In, by the exactness of the complex (5.15). We obtain that eitherM = In orM = T n. �

Now we can classify all irreducible finiteW (d)-modules.

Theorem 6.6.Any irreducible finiteW (d)-module is isomorphic to one of the following:
(i) Tensor modulesT (Π, U), whereΠ is an irreducible finite-dimensionald-module, andU is

an irreducible finite-dimensionalgl d-module not isomorphic to
∧n

d∗ for anyn ≥ 1;
(ii) ImagesdΠT (Π,Ωn), whereΠ is an irreducible finite-dimensionald-module, and1 ≤ n ≤

dim d− 1 (see(5.15)).

Proof. Let V be an irreducible finiteW (d)-module. Then, by Theorem 6.2 and (6.9),V is a
quotient of some tensor moduleT (R) = T (Π, U).

If U 6'
∧n

d∗(= Ωn) as agl d-module for anyn ≥ 1, thenT (R) is irreducible by Theorem 6.5.
In this case,V ' T (R).

Assume thatU ' Ωn for somen ≥ 1; thenT (R) ' T (Π,Ωn) = T n (see (6.27)). Now if
n ≤ N − 1, N = dim d, Lemma 6.12 implies thatV ' T n/In. By the exactness of (5.15), we
getV ' In+1 = dΠT (Π,Ωn).

Finally, it remains to consider the case whenV is a quotient ofTN . ThenV ' TN/M , where
M ⊃ IN due to Lemma 6.11(iv). Now Proposition 5.2 implies thatV is finite dimensional;
hence,W (d) acts trivially on it by Example 2.3. So in this caseV cannot be irreducible. �

Theorem 6.7.The irreducible finiteW (d)-modules listed in Theorem6.6satisfy:
(i) sing T (Π, U) ' (Π⊗ k−tr ad) � (U ⊗ ktr) as(d⊕ gl d)-modules;
(ii) sing(dΠT (Π,Ωn)) ' (Π⊗ k−tr ad) � (Ωn ⊗ ktr) as(d⊕ gl d)-modules.

In particular, no two of them are isomorphic to each other.

Proof. First, note that ifβ : V → V ′ is a homomorphism ofW (d)-modules, then its restriction
to sing V is a homomorphism of(d ⊕ gl d)-modulessing V → sing V ′. In particular, ifV and
V ′ are isomorphic, thensing V ' sing V ′.

(i) If T (R) = T (Π, U) is irreducible, then by Corollary 6.6,sing T (R) = F0 T (R) = k⊗R.
Now (i) follows from (6.6) and (6.10).

(ii) By Lemma 6.11(ii), we have:sing(dΠT (Π,Ωn)) = dΠ(F0 T (Π,Ωn)). ButF0 T (Π,Ωn) '
(Π⊗k−tr ad) � (Ωn⊗ktr) is an irreducible(d⊕ gl d)-module. Therefore,dΠ is an isomorphism
from F0 T (Π,Ωn) ontosing(dΠT (Π,Ωn)). �

Remark6.3. Let R andR′ be two non-isomorphic irreducible finite-dimensional(d ⊕ gl d)-
modules. Using Theorem 6.4(ii) and the same argument as in the proof of Theorem 6.7, one
can show that the only nonzero homomorphisms ofW (d)-modulesT (R) → T (R′) are, up to a
constant factor, the differentialsdΠ.
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7. CLASSIFICATION OF IRREDUCIBLE FINITE S(d, χ)-MODULES

In this section we adapt the classification results of Section 6 to the case of the Lie pseudoal-
gebraS(d, χ). Our main result is Theorem 7.6.

7.1. Singular Vectors. Recall that the annihilation algebraS of S(d, χ) possesses a decreasing
filtration {Sp}p≥−1 by subspaces of finite codimension, as given by (3.20). This filtration is
compatible with that ofW given by (3.8), (3.11), in the sense made clear by Lemma 3.6 and
Proposition 3.5. In particular, we know thatS ⊂ W ' WN is a graded Lie algebra isomorphic
to SN , the grading being given by the eigenspace decomposition with respect to the adjoint
action of the element̂E ∈ W described in Definition 3.3. We denote thei-eigenspace bysi;
hence,Sp =

∏
i≥p si. Note that we can do the same with the extended annihilation algebraS̃, as

Ê commutes with̃d. We denote the corresponding eigenspaces bys̃i; thend̃ ⊂ s̃0 ands̃i = si for
i 6= 0.

In analogy with the case ofW (d), for anS-moduleV , we denote bykerp V the space of all
elementsv ∈ V that are killed bySp. We denote bykerV the spaceker−1 V killed by S = S−1.
Then the moduleV is conformaliff V =

⋃
p kerp V . Any S(d, χ)-module has a natural structure

of a conformal module over the extended annihilation algebraS̃ = d nS (see Proposition 2.1).
The normalizer ofSp in S̃ was computed in Section 3.5. It is independent ofp ≥ 0, and is
denoted byNS . Note thatNS =

∏
i≥0 s̃i andS̃ = s̃−1 ⊕NS as a vector space.

Eachkerp V is a module over the finite-dimensional quotientNS/Sp; moreover, the Lie alge-
braNS/S1 = d̂⊕ (S0/S1) is isomorphic to the direct sumd⊕ sl d.

Definition 7.1. A singular vectorin anS(d, χ)-moduleV is an elementv ∈ V such thatS1 ·v =
0. The space of singular vectorsker1 V is also denoted bysing V .

Theorem 7.1.For any nontrivial finiteS(d, χ)-moduleV , we havesing V 6= {0}, and the space
sing V/ kerV is finite dimensional.

Proof. The proof is the same as that of Theorem 6.1, making use of Proposition 3.9 instead of
Proposition 3.4. �

Recall thatS(d, χ) is generated overH by the elementssab defined in (3.5). It will be conve-
nient to introduce the notation

(7.1) ∂̄ = ∂ + χ(∂) , ∂ ∈ d ,

and

(7.2) sij ≡ s∂i∂j
= ∂̄i ⊗ ∂j − ∂̄j ⊗ ∂i − 1⊗ [∂i, ∂j] ,

where, as before,{∂i} is a fixed basis ofd.

Remark7.1. By (3.20) and Proposition 2.1, a vectorv ∈ V is singular if and only if

sij ∗ v ∈ (F2H ⊗ k)⊗H V , i, j = 1, . . . , N ,

or, equivalently,
sij ∗ v ∈ (k⊗ F2H)⊗H V , i, j = 1, . . . , N .

7.2. Tensor Modules for S(d, χ). Let R be a finite-dimensional(d ⊕ sl d)-module, with an
action denoted bŷρR. Then the isomorphismNS/S1 ' d ⊕ sl d can be employed to makeR
anNS-module with a trivial action ofS1. For example, the action of the subalgebrad̂ ⊂ NS is
given by:

(7.3) ∂̂ · u = ρ̂R(∂)u , ∂ ∈ d , u ∈ R .

Consider the induced̃S-moduleV = Ind
eS
NS R. Since as a vector spacẽS = d ⊕ NS (see

Proposition 3.8), as anH-moduleV is isomorphic to the free moduleH ⊗R.
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Definition 7.2. TheS(d, χ)-moduleInd
eS
NS R constructed above will be denoted byVχ(R), and

will be called atensor modulefor the Lie pseudoalgebraS(d, χ). If R is an irreducible(d⊕sl d)-
module isomorphic toΠ � U , then we will also writeVχ(R) = Vχ(Π, U).

The name tensor module is justified by the fact that, as we will show in Theorem 7.3 below,
theS(d, χ)-moduleVχ(R) is the restriction toS(d, χ) ⊂ W (d) of a tensor module forW (d) (see
also Remark 6.2).

Theorem 7.2.LetV be anS(d, χ)-module, and letR be a(d⊕sl d)-submodule ofsing V . Then
HR is anS(d, χ)-submodule ofV , and there is a natural surjective homomorphismVχ(R) →
HR. In particular, every irreducible finiteS(d, χ)-module is a quotient of a tensor module.

Proof. SinceS̃ = d⊕NS as a vector space, andR ⊂ sing V , it follows thatHR is preserved by
the action ofS̃. Then by Proposition 2.1,HR is anS(d, χ)-submodule ofV . The existence of a
natural surjective homomorphismVχ(R) → HR follows from the definition ofVχ(R). Finally,
if V is irreducible and finite, then by Theorem 7.1,sing V 6= {0}, and we haveH(sing V ) =
V . �

Lemma 7.1. The unique injectionι : S(d, χ) → W (d) induces an injective Lie algebra homo-
morphismι∗ : NS/S1 → NW/W1. The homomorphismι∗ satisfiesι∗(d̂) ⊂ d̃ ⊕ k Id. More
precisely(see(3.29)),

(7.4) ι∗(∂̂) = ∂̃ +
1

N
(tr ad−χ)(∂) Id , ∂ ∈ d .

Furthermore,ι∗ embedsS0/S1 ' sl d as the Lie subalgebrasl d ⊂ gl d ' W0/W1.

Proof. By Proposition 3.5, the induced Lie algebra homomorphismι : S → W is injective and
satisfiesι(S1) ⊂ W1. Hence,ι∗ is injective. The rest of the lemma follows from (3.29) and
Corollary 3.4. �

Lemma 7.1 shows thatNW/W1 = ι∗(NS/S1) ⊕ k Id. Hence, everyNS/S1-module can be
extended to anNW/W1-module by imposing the elementId to act as multiplication by a scalar
c ∈ k. These are the only possible extensions if the action ofNS/S1 is irreducible.

Theorem 7.3. Every tensor module forS(d, χ) can be obtained as the restriction of a tensor
module forW (d). More precisely, for everyc ∈ k, Vχ(R) = Vχ(Π, U) is isomorphic to the
restriction ofV(Π⊗ kc(χ−tr ad)/N , U, c).

Proof. Note that, as anH-module,V = V(Π⊗kc(χ−tr ad)/N , U, c) can be identified withH ⊗R.
Moreover, sinceR ⊂ sing V , we haveW1 · R = {0}. ThenR becomes anNS/S1-module via
the embeddingι∗ from Lemma 7.1.

We identify each of the Lie algebras̃d and d̂ with d. It follows from (7.4) that ifd̃ acts on
Π ⊗ kc(χ−tr ad)/N andId acts asc, thend̂ acts onΠ. Similarly, sl d acts asU , so the action of
d⊕ sl d ' NS/S1 onR is isomorphic toΠ � U .

Then, by the definition ofVχ(R), there is a natural surjective homomorphism ofS(d, χ)-
modules

π : Vχ(R) = Vχ(Π, U) → HR = V .

The homomorphismπ takes an elementu ∈ R ⊂ Vχ(R) to the elementu ∈ R ⊂ V . But V is
free as anH-module; hence,π is injective andVχ(R) ' V . �

We will denote the restriction ofT (Π, U) toS(d, χ) byTχ(Π, U), and similarly forT (Π, U, c)
(cf. Definition 4.4). Note that by (6.10), we have

(7.5) T (Π⊗ kχ+c(χ−tr ad)/N , U, c) = V(Π⊗ k(N+c)(χ−tr ad)/N , U,N + c) .

Then Theorem 7.3 implies

(7.6) Vχ(Π, U) ' Tχ(Π⊗ kχ+c(χ−tr ad)/N , U, c) , c ∈ k .
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Observe thatχ = tr ad is the only case for which the restriction ofT (Π, U, c) to S(d, χ) is
independent ofc.

Example 7.1. Note thatT (Π,Ωn) = T (Π,Ωn,−n), because the elementId ∈ gl d acts on
Ωn =

∧n
d∗ as−n. Then it follows from (7.6) that

(7.7) Tχ(Π,Ωn) ' Vχ(Π⊗ k−χ+n(χ−tr ad)/N ,Ω
n) .

In particular, we have

(7.8) Vχ(Π,k) ' Tχ(Π⊗ kχ,Ω
0) ' Tχ(Π⊗ ktr ad,Ω

N) .

One can use (7.6) forc = 0 to write an explicit expression for the action ofS(d, χ) on its
tensor moduleVχ(Π, U). First, we note that if we identifyT (Π ⊗ kχ, U, 0) with H ⊗ R, then
∂ ∈ d acts onR as∂̄ (see (7.1)). Then we use (7.2) and (6.14) to computesij ∗ (1⊗u) for u ∈ R.
The full expression is too cumbersome to write here. Because of (7.2), it is a sum of three terms.
The third term is just a direct application of (6.14) for[∂i, ∂j]. The second term is obtained from
the first one by switching the roles ofi andj. Finally, usingH-bilinearity, (6.14), and (6.15), we
find that the first term is equal to:

(∂̄i ⊗ ∂j) ∗ (1⊗ u) = (∂̄i ⊗ 1)⊗H (1⊗ (∂̄j + ad ∂j)u)

+ (∂̄i ⊗ 1)⊗H s(∂j, u)−
N∑

k=1

(∂̄i ⊗ ∂k)⊗H (1⊗ (ek
j + δk

j )u) .
(7.9)

Recall that∆(∂) = ∂ ⊗ 1 + 1⊗ ∂ for ∂ ∈ d. This implies∆(∂̄) = ∂̄ ⊗ 1 + 1⊗ ∂ and

(∂̄ ⊗ g)⊗H (h⊗ u) = (1⊗ g)⊗H (∂̄h⊗ u)− (1⊗ g∂)⊗H (h⊗ u) ,

∂ ∈ d , g, h ∈ H , u ∈ R .
(7.10)

Applying (7.10), we rewrite (7.9) as follows:

(∂̄i ⊗ ∂j) ∗ (1⊗ u) = (1⊗ 1)⊗H (∂̄i ⊗ (∂̄j + ad ∂j)u)

− (1⊗ ∂i)⊗H (1⊗ (∂̄j + ad ∂j)u) + (1⊗ 1)⊗H ∂̄is(∂j, u)

− (1⊗ ∂i)⊗H s(∂j, u)−
N∑

k=1

(1⊗ ∂k)⊗H (∂̄i ⊗ (ek
j + δk

j )u)

+
N∑

k=1

(1⊗ ∂k∂i)⊗H (1⊗ (ek
j + δk

j )u) .

(7.11)

When the action ofgl d onR is trivial, things can be rearranged in a more elegant form as follows:

sij ∗ (1⊗ u) = (1⊗ 1)⊗H (∂i ⊗ ∂ju− ∂j ⊗ ∂iu− 1⊗ [∂i, ∂j]u)

+ (1⊗ ∂i)⊗H (∂j ⊗ u− 1⊗ ∂ju)

− (1⊗ ∂j)⊗H (∂i ⊗ u− 1⊗ ∂iu) .

(7.12)

Even though the expression (7.11) is not very inspiring, it will turn out to be useful. We state
as a lemma the properties that we are going to need later. Before that let us introduce the notation
(see (6.15)):

(7.13) aij(u) = ∂is(∂j, u)− ∂js(∂i, u) =
N∑

k=1

(
∂i∂k ⊗ ek

ju− ∂j∂k ⊗ ek
i u

)
.

Note thataii(u) = 0.
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Lemma 7.2. Consider the tensorS(d, χ)-moduleVχ(R). Then the action of the elementssij ∈
S(d, χ), defined in(7.2), on an element1⊗ u ∈ k⊗R ⊂ Vχ(R) has the form

sij ∗ (1⊗ u) = (1⊗ 1)⊗H Aij(u) +
N∑

k=1

(1⊗ ∂k)⊗H Ak
ij(u)

+
N∑

k,l=1
k≤l

(1⊗ ∂k∂l)⊗H Akl
ij (u) ,

(7.14)

where

Akl
ij (u) ∈ k⊗ (k + sl d)u ,

Ak
ij(u) ∈ d⊗ (k + sl d)u+ k⊗ (k + d̂ + sl d)u ,

and

Aij(u) ∈ aij(u) + ∂i ⊗ ∂̂ju− ∂j ⊗ ∂̂iu

+ d⊗ (k + sl d)u+ k⊗ (k + d̂ + sl d)u .

7.3. Filtration of Tensor Modules. In analogy with tensor modules forW (d), one can define
an increasing filtrationFp Vχ(R) of Vχ(R) = H ⊗R by

(7.15) Fp Vχ(R) = FpH ⊗R , p ≥ −1 .

Note thatF−1 Vχ(R) = {0} andF0 Vχ(R) = k⊗R. The associated graded space ofVχ(R) is

(7.16) grVχ(R) =
⊕
p≥−1

grp Vχ(R) , grp Vχ(R) = Fp Vχ(R)/Fp−1 Vχ(R) .

The proof of the following lemma is completely similar to that of Lemma 6.3, so we omit it.

Lemma 7.3. The action ofS̃ onVχ(R) satisfies:
(i) d · Fp Vχ(R) ⊂ Fp+1 Vχ(R),
(ii) NS · Fp Vχ(R) ⊂ Fp Vχ(R),
(iii) S1 · Fp Vχ(R) ⊂ Fp−1 Vχ(R).

Lemma 7.3 implies that eachgrp Vχ(R) is a module over the Lie algebraNS/S1 ' d ⊕ sl d.
This module is described in the next lemma.

Lemma 7.4. We have

grp Vχ(Π, U) ' (Π⊗ kp(tr ad−χ)/N) � (Sp d⊗ U)

as(d⊕ sl d)-modules.

Proof. Let us extend thesl d-action onU to an action ofgl d by letting Id act as0. Then,
by Theorem 7.3,Vχ(Π, U) is the restriction toS(d, χ) of the tensorW (d)-moduleV(Π, U, 0).
Moreover, the filtration (7.15) coincides with the one defined in Section 6.2. The structure of
a (d ⊕ gl d)-module ongrp V(Π, U, 0) is described in Corollary 6.2. Note that this describes
the action of̃d. Using (7.4), we find that̂d acts asΠ ⊗ kp(tr ad−χ)/N , becauseId acts asp on
Sp d⊗ U . �

The grading ofS̃ can be used to endowVχ(R) with a graded module structure as follows.

Recall thatVχ(R) = Ind
eS
NS R andS̃ = s−1⊕NS as a vector space. Therefore, as a vector space,

Vχ(R) = U(s−1)⊗R. However, the Lie algebras−1 is commutative, because the degree−1 part
in SN is commutative and because the isomorphismS ' SN is compatible with the grading (see
Corollary 3.3). ThenU(s−1) is the symmetric algebra generated bys−1, and we gradeVχ(R) by
letting s−1 have degree−1 andR have degree0.
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By definition, the above grading ofVχ(R) is compatible with the grading of̃S. It is also
compatible with the filtration (7.15).

7.4. Submodules of Tensor Modules.In what follows,Vχ(R) will be a tensor module for
S(d, χ). We will assume thatR = Π � U , whereΠ (respectivelyU ) is an irreducible finite-
dimensional representation ofd (respectivelysl d).

Recall that every elementv ∈ Vχ(R) can be expressed uniquely as a finite sum

(7.17) v =
∑
I∈ZN

+

∂(I) ⊗ vI , vI ∈ R .

As in Section 6.3, nonzero elementsvI are calledcoefficientsof v, and we denote bycoeffM the
subspace ofR linearly spanned by coefficients of elementsv ∈M .

Lemma 7.5.For any nontrivial properS(d, χ)-submoduleM ⊂ Vχ(R), we haveM∩F0 Vχ(R) =
{0}.

Proof. The action ofd⊕ sl d preserves bothk⊗R (by the definition ofVχ(R)) andM (because
it is anS(d, χ)-submodule). Thus, their intersectionM ∩ F0 Vχ(R) is a(d⊕ sl d)-submodule of
R. Irreducibility ofR implies that this intersection is trivial. �

Lemma 7.6. For any nontrivial properS(d, χ)-submoduleM ⊂ Vχ(R), we havecoeffM = R.

Proof. Take an elementv ∈ M and write it in the form (7.17). Fori 6= j, we computesij ∗ v
usingH-bilinearity and Lemma 7.2. Denote bym the coefficient of1 ⊗ ∂(I) in the expression
for sij ∗ v; then, by Remark 2.2(ii),m ∈M . By Lemma 7.2, we have

m = aij(vI) mod F1H ⊗R .

Note thatek
i vI for k 6= i, ek

jvI for k 6= j, and(ej
j − ei

i)vI are coefficients ofaij(vI) (see (7.13)).
Hence, they are coefficients ofm, and we conclude that(sl d)vI ⊂ coeffM .

In order to show that̂d · vI ⊂ coeffM , we look at the degree one part of the above elementm.
Again by Lemma 7.2, it is equal to

∂i ⊗ ∂̂jvI − ∂j ⊗ ∂̂ivI + d⊗ (k + sl d)(coeffM) .

Hence, the action of̂d preservescoeffM . ThencoeffM is a(d ⊕ sl d)-submodule ofR, which
is irreducible. This shows thatcoeffM = R, as it cannot be{0}. �

Lemma 7.7. LetM be a nontrivial properS(d, χ)-submodule ofV(R). Then for everyi 6= j
andu ∈ R, there exists an elementm ∈M ∩ F2 Vχ(R) such that

m = aij(u) mod F1 Vχ(R) ,

whereaij(u) is given by(7.13).

Proof. As coeffM = R, it is enough to prove the statement whenu is a coefficientvI of some
elementv ∈M . Thenm is the element considered in the proof of Lemma 7.6. �

Our next result describes which tensorS(d, χ)-modules are irreducible.

Theorem 7.4.LetΠ (respectivelyU) be an irreducible finite-dimensional module overd (respectively
sl d). Then theS(d, χ)-moduleVχ(Π, U) is irreducible if and only ifU is not isomorphic to
Ωn =

∧n
d∗ for anyn ≥ 0.

Proof. Recall from Theorem 6.5 that the tensorW (d)-moduleT (Π,Ωn) is not irreducible for
n ≥ 1. Then its restrictionTχ(Π,Ωn) is not irreducible either. It follows from (7.8) and Propo-
sition 5.2 thatVχ(Π,Ω0) is not irreducible as well.

Conversely, assume thatVχ(Π, U) is not irreducible, and letM be a nontrivial proper submod-
ule. Applysij on an elementm ∈M satisfying the conditions of Lemma 7.7 (for the samei, j).
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Then fori < j the coefficient multiplying1⊗ ∂2
i ∂

2
j in the expression forsij ∗m is equal to (see

Lemma 7.2):
1⊗

(
(ei

i − ej
j)

2 − (ej
ie

i
j + ei

je
j
i )

)
u .

By Remark 2.2(ii), this is an element ofM . Lemma 7.5 implies that this element vanishes for all
u ∈ R = Π � U .

Note thath = ei
i − ej

j, e = ej
i , andf = ei

j are standard generators of a subalgebra ofsl d

isomorphic tosl2. We know thath2 − (ef + fe) acts trivially onR. The elementh2 is a linear
combination ofh2 − (ef + fe) and of the Casimir element; hence, it acts on any irreducible
sl2-submoduleW ⊂ U as a scalar. This means thatdimW = 0 or 1; hence, fori < j the
eigenvalues ofei

i − ej
j on weight vectors can only be0 or 1.

Recall that every irreduciblesl d-moduleU has a highest weight vector, andU is uniquely
determined by its highest weight (see, e.g., [Se, Chapter VII]). Let us denote byλij the eigenvalue
of ei

i − ej
j on the highest weight vector ofU . Thenλij + λjk = λik but all λij = 0 or 1. This

implies thatλi,i+1 = δi,n for somen; in other words,U is then-th fundamental representation,
which is isomorphic toΩN−n. �

Corollary 7.1. LetV be a finiteS(d, χ)-module, and letR ⊂ sing V be an irreducible(d⊕sl d)-
submodule. Assume thatR ' Π � U with U 6' Ωn for anyn. Then as anH-module,HR '
H ⊗R.

Proof. By the definition ofVχ(R), there is a natural surjective homomorphism ofS(d, χ)-modules
Vχ(R) → HR ⊂ V . However, by Theorem 7.4, the tensor moduleVχ(R) is irreducible. There-
fore,HR ' Vχ(R) = H ⊗R is free as anH-module. �

7.5. Computation of Singular Vectors. In this section, we will compute singular vectors for
all tensorS(d, χ)-modules of the formVχ(Π,Ωn), whereΠ is an irreducible finite-dimensional
representation ofd andΩn =

∧n
d∗. This will be used in Section 7.6 for the classification of all

irreducible quotients of tensor modules.

Proposition 7.1. For V = Vχ(Π,Ωn), we haveF0 V ⊂ sing V ⊂ F2 V . Furthermore, ifV =
Vχ(Π,k), thensing V ⊂ F1 V .

Proof. Let us consider first the casen = 0, i.e.,V = Vχ(Π,k). Let v ∈ V be a singular vector
written in the form (7.17). Then using (7.12) andH-bilinearity, we get:

sij ∗ v =
∑

I

(1⊗ ∂(I))⊗H (∂i ⊗ ∂jvI − ∂j ⊗ ∂ivI − 1⊗ [∂i, ∂j]vI)

+
∑

I

(1⊗ ∂(I)∂i)⊗H (∂j ⊗ vI − 1⊗ ∂jvI)

−
∑

I

(1⊗ ∂(I)∂j)⊗H (∂i ⊗ vI − 1⊗ ∂ivI) .

Assume thatv 6∈ F1 V , and chooseI so that|I| is maximal among those for whichvI 6= 0. Then,
by Remark 7.1, the element multiplying1⊗ ∂(I)∂i in the above expression must vanish. Hence,
vI = 0, which is a contradiction.

Now let us assume thatn 6= 0, N , i.e., Ωn 6' k. We proceed as above: consider a singular
vectorv =

∑
∂(I)⊗vI and use (7.14) to computesij ∗v. Then the coefficient of1⊗∂(I) is equal

to aij(vI) modF1 V . If |I| > 2 andvI 6= 0, this contradicts Remark 7.1. �

Recall that the tensorS(d, χ)-moduleV = Vχ(R) has a filtration{Fp V }, given by (7.15). If
v ∈ V is a nonzero singular vector, we can find a uniquep ≥ 0 such thatv ∈ Fp V \ Fp−1 V .
Note that, by Lemma 7.3, bothFp V andgrp V are(d⊕ sl d)-modules, and the natural projection
πp : Fp V → grp V is a homomorphism. Therefore, the restriction

(7.18) πp : sing V ∩ Fp V → grp V
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is a homomorphism of(d ⊕ sl d)-modules. Sinceπp(v) 6= 0, we obtain that thesl d-modules
sing V andgrp V contain an isomorphic irreducible summand. We will utilize these remarks,
together with the next lemma, to study singular vectors.

Lemma 7.8. LetV = Vχ(Π, U), and letU ′ be an irreduciblesl d-submodule ofgrp V . Assume
thatU ′ 6' Ωm for anym, and thatdimU ′ > dimU . Then the submoduleπp(sing V ∩ Fp V ) ⊂
grp V does not intersectU ′.

Proof. Let
R = Π � U , R′ = (Π⊗ kp(tr ad−χ)/N) � U ′ .

By Lemma 7.4,R′ is an irreducible(d⊕sl d)-submodule ofgrp V . If we assume thatπp(sing V ∩
Fp V ) intersectsU ′, thensing V contains a(d⊕ sl d)-submodule isomorphic toR′. Now Corol-
lary 7.1 implies thatHR′ ⊂ V is free as anH-module. But

dimR′ = (dim Π)(dimU ′) > (dim Π)(dimU) = dimR .

Therefore, theH-submoduleHR′ ⊂ V has a larger rank thanV = H ⊗R, which is impossible.
�

Lemma 7.8 is a powerful tool for studying singular vectors, when combined with the explicit
knowledge of thesl d-modulesgrp V . It follows from Lemma 7.4 thatgrp V is a completely
reduciblesl d-module, all of whose irreduciblesl d-components are contained inSp d ⊗ U . In
addition, sincesing V ⊂ F2 V by Proposition 7.1, we can restrict our attention to the casesp = 1
or 2. Our next result shows a typical application of these ideas.

Proposition 7.2. If V = Vχ(Π,Ωn), n 6= 1, thensing V ⊂ F1 V .

Proof. Recall thatsing V ⊂ F2 V by Proposition 7.1. We want to show thatπ2(sing V ) = {0}
(see (7.18)). We know from Lemma 7.4 that

gr2 V ' (Π⊗ k2(tr ad−χ)/N) � (S2 d⊗ Ωn) .

Thus, any irreduciblesl d-submoduleU ′ ⊂ gr2 V is contained inS2 d ⊗ Ωn. One can check
(see Lemma 7.9(iii) below) that all suchU ′ satisfydimU ′ > dim Ωn andU ′ 6' Ωm for any
m. Hence, we can apply Lemma 7.8 to conclude thatπ2(sing V ) ∩ U ′ = {0}. Therefore,
sing V ⊂ F1 V . �

Note that the above proof does not hold in the casen = 1, as one of the irreduciblesl d-
summands inS2 d⊗Ω1 is isomorphic tod ' ΩN−1. To get a complete description of all singular
vectors, we need a detailed study of thesl d-modulesS2 d⊗ Ω1 andd⊗ Ωn.

Lemma 7.9. (i) For 1 ≤ n ≤ N−1, we have a direct sum ofsl d-modules: d⊗Ωn = Ωn−1⊕U ′,
whereU ′ is irreducible,dimU ′ > dim Ωn andU ′ 6' Ωm for anym.

(ii) We have a direct sum ofsl d-modules: S2 d ⊗ Ω1 = d ⊕ U ′′, whereU ′′ is irreducible,
dimU ′′ > dim Ω1 = N andU ′′ 6' Ωm for anym.

(iii) For 2 ≤ n ≤ N − 1, every irreduciblesl d-submoduleU ′ ⊂ S2 d⊗Ωn satisfiesdimU ′ >
dim Ωn andU ′ 6' Ωm for anym.

Proof. We will use Table 5 from the Reference Chapter of [OV]. Following [OV], we will denote
byR(Λ) the irreducible representation ofsl d ' slN with highest weightΛ. We will denote by
πn then-th fundamental weight ofslN , and we will setπ0 = πN = 0. Note thatR := R(π1) = d
is the vector representation ofsl d, andR(0) = k is the trivial one. Then we have:

Ωn =
∧n

d∗ '
(∧n

d
)∗
'

∧N−n
d =

∧N−n
R ' R(πN−n)

and
S2 d = S2R ' R(2π1) .
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Using [OV], we find:

R(π1)⊗R(πp) ' R(π1 + πp)⊕R(πp+1) ,

R(2π1)⊗R(πp) ' R(2π1 + πp)⊕R(π1 + πp+1) ,

and

dimR(πp) =

(
N

p

)
,

dimR(π1 + πp) =
p

p+ 1
(N + 1)

(
N

p

)
,

dimR(2π1 + πp) =
p

p+ 2

(
N + 2

2

)(
N

p

)
.

From here, it is easy to finish the proof. �

Let us introduce some notation. For ad-moduleΠ, we set

(7.19) Πn = Π⊗ k−χ+n(χ−tr ad)/N , Π′ = Π⊗ ktr ad−χ .

Then we can restate (7.7) as

(7.20) Tχ(Π,Ωn) ' Vχ(Πn,Ω
n) ,

while by (7.8) we have an isomorphism ofS(d, χ)-modules

(7.21) ψ : Tχ(Π′,ΩN)
∼−→ Tχ(Π,Ω0) .

Also, recall theΠ-twisted pseudo de Rham complex ofW (d)-modules (5.15). When we restrict
these modules toS(d, χ), we obtain a complex ofS(d, χ)-modules

(7.22) 0 → Tχ(Π,Ω0)
dΠ−→ Tχ(Π,Ω1)

dΠ−→ · · · dΠ−→ Tχ(Π,ΩN) .

Note that the isomorphismψ is compatible with the filtrations (i.e., it maps eachFp to Fp), while
dΠ has degree1 (i.e., it maps eachFp to Fp+1).

Theorem 7.5.LetΠ be an irreducible finite-dimensionald-module. Then we have the following
equalities and isomorphisms of(d⊕ sl d)-modules:

sing Tχ(Π,Ωn) = F0 Tχ(Π,Ωn) + dΠ F0 Tχ(Π,Ωn−1)(i)

' (Πn � Ωn)⊕ (Πn−1 � Ωn−1) , 2 ≤ n ≤ N ,

sing Tχ(Π,Ω1) = F0 T (Π,Ω1) + dΠ F0 Tχ(Π,Ω0) + dΠψdΠ′ F
0 Tχ(Π′,ΩN−1)(ii)

' (Π1 � Ω1)⊕ (Π0 � Ω0)⊕ (Π−1 � ΩN−1) ,

where we use the notation from(7.19)–(7.21).

Proof. Let V = Tχ(Π,Ωn). Then by (7.20),V ' Vχ(Πn,Ω
n), and by Lemma 7.4, we have an

isomorphisms of(d⊕ sl d)-modules

grp V ' Πn−p � (Sp d⊗ Ωn) .

In particular,F0 V = gr0 V ' Πn � Ωn. Note that the latter is an irreducible(d⊕ sl d)-module.
This implies the isomorphisms in (i) and (ii) above, becausedΠ andψ are homomorphisms and
because(Π′)N−1 ' Π−1 (see (7.19)).

Recall thatF0 V ⊂ sing V ⊂ F2 V , andsing V ⊂ F1 V for n 6= 1 (see Propositions 7.1
and 7.2). SincedΠ andψ are homomorphisms ofS(d, χ)-modules, they map singular vectors to
singular vectors. Then it is clear that the right-hand sides of (i) and (ii) are contained insing V .

Next, we describe the image ofsing V ∩F1 V in gr1 V under the natural projection (7.18). On
one hand, we have

π1(sing V ∩ F1 V ) ⊃ π1(dΠ F0 Tχ(Π,Ωn−1)) ' Πn−1 � Ωn−1 .
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On the other hand, every irreduciblesl d-submodule ofgr1 V is contained ind ⊗ Ωn. By
Lemma 7.9(i), we have a direct sum ofsl d-modules:d⊗Ωn = Ωn−1⊕U ′, whereU ′ is irreducible,
dimU ′ > dim Ωn andU ′ 6' Ωm for anym. Now, by Lemma 7.8, the imageπ1(sing V ∩ F1 V )
does not intersectΠn−1 � U ′. Therefore, the above inclusion is an equality. In particular, we get
statement (i).

To finish the proof of (ii), we note that

π2(sing V ) ⊃ π2(dΠψdΠ′ F
0 Tχ(Π′,ΩN−1)) ' Π−1 � ΩN−1 .

By the same argument as above, this is an equality, because of Lemma 7.9(ii). �

Remark7.2. It follows from Theorem 7.5 and the isomorphism (7.21) that

sing Tχ(Π,Ω0) = F0 Tχ(Π,Ω0) + ψdΠ′ F
0 Tχ(Π′,ΩN−1)

' (Π0 � Ω0)⊕ (Π−1 � ΩN−1) .

7.6. Irreducible Finite S(d, χ)-Modules. We can now complete the classification of irreducible
finite S(d, χ)-modules. Our fist result describes all submodules of the tensorS(d, χ)-module
Tχ(Π,Ωn).

Lemma 7.10.LetΠ be an irreducible finite-dimensionald-module, letT n = Tχ(Π,Ωn), and let
M ⊂ T n be a nontrivial properS(d, χ)-submodule. Then:

(i) singM = dΠ F0 T n−1, if 2 ≤ n ≤ N ;
(ii) M ⊃ dΠT

N−1, if n = N ;
(iii) M = dΠT

n−1, if 2 ≤ n ≤ N − 1;
(iv) dΠT

n−1 is irreducible for2 ≤ n ≤ N .

Proof. Let 2 ≤ n ≤ N , and letM ⊂ T n be a nontrivial properS(d, χ)-submodule. Then
singM ⊂ sing T n is a (d ⊕ sl d)-submodule, andM ∩ F0 T n = {0} by Lemma 7.5. Now
Theorem 7.5(i) and an argument similar to the one used in the proof of Corollary 6.5 imply part
(i). Then

M ⊃ H(singM) = dΠ(H(F0 T n−1)) = dΠT
n−1 .

The rest of the proof of (iii) is the same as that of Lemma 6.12, while (iv) follows from (ii) and
(iii). �

Remark7.3. Recall that theW (d)-moduleT (Π,Ω1) has a unique nontrivial properW (d)-
submodule, namelydΠT (Π,Ω0) (see Lemma 6.12). However, the restrictionTχ(Π,Ω1) of
T (Π,Ω1) to S(d, χ) has two nontrivial properS(d, χ)-submodules:

dΠψdΠ′Tχ(Π′,ΩN−1) ⊂ dΠTχ(Π,Ω0)

(cf. Theorem 7.5(ii)). Because of (7.21) and the exactness of (7.22), these twoS(d, χ)-modules
are isomorphic to the following ones:

dΠ′Tχ(Π′,ΩN−1) ⊂ Tχ(Π′,ΩN) .

Now we can state the main result of this section.

Theorem 7.6.Any irreducible finiteS(d, χ)-module is isomorphic to one of the following:
(i) Tensor modulesTχ(Π, U, 0), whereΠ is an irreducible finite-dimensionald-module, andU

is an irreducible finite-dimensionalsl d-module not isomorphic to
∧n

d∗ for anyn ≥ 0;
(ii) ImagesdΠTχ(Π,Ωn), whereΠ is an irreducible finite-dimensionald-module, and1 ≤ n ≤

dim d− 1 (see(7.22)).

Proof. The proof is similar to that of Theorem 6.6. LetV be an irreducible finiteS(d, χ)-module.
Then, by Theorem 7.2 and (7.6),V ' T/M , whereT = Tχ(Π, U) is a tensor module andM ⊂ T
is anS(d, χ)-submodule.

If U 6'
∧n

d∗ = Ωn as ansl d-module for anyn ≥ 0, thenT is irreducible by Theorem 7.4
and (7.6). In this case,V ' Tχ(Π, U).
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Assume thatU ' Ωn for somen ≥ 0; thenT ' Tχ(Π,Ωn) = T n is not irreducible. Because
of (7.8), we can assume without loss of generality that1 ≤ n ≤ N = dim d. Now if 2 ≤
n ≤ N − 1, Lemma 7.10(iii) implies thatM = dΠT

n−1. By the exactness of (7.22), we get
V ' T n/dΠT

n−1 ' dΠT
n.

Next, consider the case whenV is a quotient ofTN . Then, by Lemma 7.10(ii), we have
M ⊃ dΠT

N−1. Now Proposition 5.2 implies thatV is finite dimensional; hence,S(d, χ) acts
trivially on it by Example 2.3, andV is not irreducible.

Finally, it remains to consider the case whenV is a quotient ofT 1. Note thatdΠM is a
properS(d, χ)-submodule ofT 2; hence, by Lemma 7.10(iii), it must be either trivial or equal
to dΠT

1. First, if dΠM = {0}, thenM ⊂ dΠT
0 and we have a surjective homomorphism

T 1/M → T 1/dΠT
0. But T 1/M ' V is irreducible; therefore,V ' T 1/dΠT

0 ' dΠT
1.

Second, ifdΠM = dΠT
1, thenM + dΠT

0 = T 1 and we have isomorphismsV ' T 1/M '
(dΠT

0)/(dΠT
0∩M). Since the mapdΠ : T 0 → T 1 is injective, we get thatV ' T 0/K for some

S(d, χ)-submoduleK of T 0. This case was already considered above, because of (7.8).�

Finally, for each irreducible finiteS(d, χ)-moduleV , we will describe the spacesing V of
singular vectors ofV .

Lemma 7.11. LetR be an irreducible finite-dimensional(d ⊕ sl d)-module. ThenV = Vχ(R)
is an irreducibleS(d, χ)-module if and only ifsing V = F0 V .

Proof. It is clear from Lemma 7.5 thatV is irreducible whensing V = F0 V . Conversely,
assume thatV is irreducible. Consider the grading ofV = U(s−1) ⊗ R constructed at the end
of Section 7.3. All homogeneous components of a singular vector are still singular, so we have
to show that the only homogeneous singular vectors inV are of degree zero. Ifv ∈ sing V is
a singular vector of negative degree, then theS̃-submodule generated byv is contained in the
negatively graded part ofV , which contradicts the irreducibility ofV . Therefore,sing V = R =
F0 V . �

Theorem 7.7.The irreducible finiteS(d, χ)-modules listed in Theorem7.6satisfy(see(7.19)):
(i) sing Tχ(Π, U, 0) ' Π0 � U as(d⊕ sl d)-modules;
(ii) sing(dΠTχ(Π,Ωn)) ' Πn � Ωn as(d⊕ sl d)-modules.

In particular, no two of them are isomorphic to each other.

Proof. The proof is similar to that of Theorem 6.7, and it uses (7.20), Theorem 7.5(i), and Lem-
mas 7.10(i) and 7.11. �
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