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1. INTRODUCTION

In this paper we provide a constructive version of Tits alternative for a broad class of quater-
nions with algebraic coefficients. Our result is a generalization of that contained in the paper [1],
concerning groups of rational quaternions. Indeed, the tools developed in [1] can be extended
to arbitrary number fields by translating them in the corresponding Dedekind domain, as the
techniques involved are of a typical “factorization and divisibility” flavour.

Let K be afinite extension d). We will say that a quaterniom+ bi + ¢j + dk is K -rational
if its coefficientsa, b, ¢, d all lie in K. The main result in the paper is then the following.

Theorem 1. Let G be a group ofi-rational quaternions containing at least one element that is
2-good Then eithelG is solvable or it contains a free non commutative group.

The 2-goodness assumption will be explained later, and is a technical condition which guar-
antees, for instance, that coefficients are not algebraic integers. The free non commutative group
is explicitly located by choosing appropriate conjugate quaternicarsdq. Non triviality of a
certain class of words ipandgq is insured by measurirfglivisibility” of their coefficients with
respect to an opportune valuation. One can eventually locate a subgroupouch that all
of its elements satisfy the above non triviality assumptions, thus ensuring the group to be a free
group.

The explicit construction of free groups by means of quaternions has been thoroughly investi-
gated by several authors. Note that the gr0fg2) of unit quaternions is the universal covering
of the groupSO(3) of rotations of3-dimensional Euclidean space, so that algebraic properties
of quaternions translate in analogue statements for rotations. By a result of De Groot [4], two
rotations with orthogonal axes and rotation anglgenerate a free group ibs 6 is transcen-
dental (see also [3]). Later, Swierczkowski in [7] considered the rational case proving that two
rotations with orthogonal axes and rotation angkuch that is rational generate a free group
if and only if cos @ # 0, £1, £1/2. More recently, in [5] Gongalves, Mandel, and Shirvani have
considered the case when the cosine of the angle of the two rotations is an algebraic number. In
particular, they proved that two rotations with orthogonal axes and rotation arggaerate a
free group when the cosine 6fs algebraic but not an algebraic integer. In this paper, we extend
the techniques developed in [7] and [1], thus correcting some details in the proofs of the latter
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from Ministero dell'Istruzione, Universite Ricerca Scientifica (MIUR). The second author was partially supported
by PRIN "Spazi di Moduli e Teoria di Lie” fundings from MIUR.
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paper, and we give an explicit description of free groups generated by pairs of conjugate rotations
of arbitrarily oriented axes, whose coefficients belong to a broad class of algebraic numbers.
The plan of the paper is the following: in Section 2 we collect definitions and recall results
from [1] that will be of use to us. Furthermore we introduce the conce@gdodness for
guaternions, and show that any nonsolvable group of algebraic quaternions in which at least one
element i2-good needs to contain a pairq of noncommuting conjugate quaternions satisfying
some very special properties. In Section 3 we introduce a siladfetords inp andq, and show
how the above properties forandq lead to a nontriviality statement for elementsiof We
locate then a subgroup ¢, ¢) completely contained in the subdét This proves the existence
of an explicitly described noncommutative free subgrougppof).
In Section 4 we finally give the (lengthy) proof of a technical statement used in Section 3, by
exploiting the fact that the evaluation homomorphism maps elementsmtlgebraic quater-
nions for which at least one of the coefficient has negative valuation, that are therefore different
from the identity.
General introductions to algebraic properties of quaternions can be found in [2] and [6].

2. PRELIMINARIES

In this section, following [1], [2], and [6], we recall some definitions and elementary results.
By K we will denote a finite xtension d@ contained in R. ThenD is the ring of algebraic
integers ofK(, and an element € R is said to befi(-rational (resp.K-integral) iff « € K (resp.

a € D).

Lemma 1. Any pairp, ¢ of K-rational conjugate non commuting quaternions can be simultane-
ously conjugated to the form

2pz = o+ Bi, 2qz" ' = a + B(ai + bj),
wherez lies in a finite extension ok anda? + v = 1.

Definition 1. Let K be a finite extension d). An elementv € K is 2-goodif there exists a
valuationr on K such that/(w) < 0 = v(2). A pair («a, 3) is 2-good if botha and 5 are 2-good.

Remark 1. A rational number i2-good iff it is not of the formm /2", m,n € Z. Similarly, it
can be proved that an element of a finite extengioof Q is 2-good if and only if it cannot be
made into an algebraic integer via multiplication by an opportune power dhus the notion
of 2-goodness of an algebraic integer is independent of the particular chai€¢eof).

Definition 2. A K-rational quaterniorp = a + bi + c¢j + dk is 2-good if the pair(a, (b* + ¢* +
d?)'/?) is 2-good.

Remark 2. 2-goodness of a unit —i.e. norin- quaterniorp = a + bi + ¢j + dk can be checked
on its real part alone. Indeeddf + 3? = 1, then2-goodness of: is equivalent to that of, as
in this case/(a) < 0 immediately implies/(«) = v(3) wherev is as in Definition 1.

Lemma 2. No periodic quaternion i2-good.

Proof. A periodic quaternion is certainly a unit, i.e. it is of the forms 6 + sin6 - I, where
6 € R and/ is a purely imaginary unit quaternion. Then, iRigood if and only if so is the pair
(cosf,sinf). However2 cos = ¢ + e~ is an algebraic integer if is a rational multiple ofr,
Socos # is not2-good by Remark 1. O

Remark 3. Let I be a purely imaginary unit quaternion. #f = o + g1, wherea, 5 € R,

thenp? = (a? — %) + 2a81. If pis a2-good unit quaternion, choose a valuatiosuch that
v(ia) =v(B) = ¢ < 0,v(2) = 0. Thenv(2a83) = 2¢. As p cannot be torsion, computingon

the real part op*" we also obtair2"c.

This is unnecessary, but avoids invertibility problems.
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Remark 4. Let p andq be non commuting conjugat€-rational2-good unit quaternionds a
finite extension of). Up to conjugating and changirfg by a finite extension, we can uniquely

write
T u v (x .z )
p=—+—1, gq=—+—| -1+ -7
s s s S Y Y
whereu andv are algebraic integers, y € N* are minimal among naturals such that(resp.
yx) is K-integral, andr, z are nonzero numbers such that+ z? = 2. As p andq are2-good,
thens is not a power oR.

Notice also that-v(u/s) = v(s) — v(u) < v(s). This fact, and the argument of Remark 3,
show that up to replacingandq by suitable common powers, we can make the valug of as
large as desired, while leavingy, = unaffected. In particular we may assume that the following
conditions hold:

(1) v(u) =rv(v) < v(s), v(iz tvy), v(z), viz) <v(s) —v(u).

As we will see later, Condition (1) will be used in the proof of Lemma 3.

3. MAIN RESULT

We are now ready to state the main result of the paper. Its proof depends on a few technical
lemmas, the proof of which is quite involved, and will be postponed to the next section.

We will be concerned with those elements lying in the free gibigp¢) on the alphabefp, ¢}
whose particolar shape allows us to prove interesting divisibility properties. The words that are
relevant to us are reduced ones satisfying the following requirements:

e They begin with a non-trivial power gf;

¢ the only occurrences of powers @fn the word are with exponenit1;

e two occurrences of powers ¢fin the word are separated by powgfswith k| > 2.

o if p?¢°p° occurs as a subword, and > 0 then the sign ob is the same sign af andc.

We will denote the set of all such words byC F(p, ¢). It is worthwhile noting that” is not a
subgroup ofF(p, ¢). Also every non trivial prefix of a word ifi' also lies inI". The following
lemma will be proved in the next section.

Lemma 3. Letp and ¢ be noncommuting conjugafegood K -rational quaternions satisfying
the conditions defined at the end of the previous section. Then the kernel of the evaluation
homomorphismav : F(p, q) — (p, ¢) does not intesedt.

Injectivity of the evaluation homomorphism dhis important because of the following fact,
which was proved in [1].

Lemma 4. All non identical elements dp?qp?, plqp?) < F(p, q) lie in T.
We are now ready to prove the main result.

Theorem 2. Let p and ¢ be honcommuting conjugaegood K -rational quaternions. Then
(p, ¢) contains a free non commutative group.

Proof. By the well known theorem of Nielsen and Schreier, waptig* andp“qp? generate a
free subgroup off(p, ¢) and, by Lemma 4, all of its elements lie Ih By Remark 4, up to
replacingp and g with one of its powers, we can suppose thaind ¢ satisfy the conditions
defined at the end of the previous section. Then Lemma 3 shows that the subgrgup)of
generated by?qp* andp*qp? is an isomorphic image d, ~ F(p?qp*, piqp?). O

Remark 5. The above proof is constructive as soon as we are given a valuation measuring
goodness op andq. The valuation is needed in choosing the appropriate powersantlq so
that the condition om, z, = + y is satisfied.
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We end this section by showing an interesting consequence of Theorem 2: a Tits alternative
for groups of K-rational quaternions. For this purpose, let us recall the following fact that is
standard (see [1]).

Lemma 5. Let H be a non solvable subgroup of unit quaternions. &et H such thaty =
a + 31 wherel is a purely imaginary unit quaternion and 5 are nonzero real numbers. Then
there exists a conjugateof ¢ not commuting witly.

Corollary 1. Let G be a subgroup of{-rational quaternions of)* containing a2-good unit
element. Thel is solvable or contains a non commutative free groups.

Proof. AssumedG is not solvable. Let/ be the group of unit quaternions ¢f*. Then the
subgroupG N U is not solvable either: indeed the derived subgrélipf G is a subgroup of
G NU. Choose &-good elemenp of G N U and express it (uniquely) as= « + 31, where

a, € Rand[ is a purely imaginary unit quaternion. Therand are nonzero and, by Lemma
5, there exists a conjugateof p such thatp andq do not commute. Then, by Theorem 2, the
group generated by, ¢ contains a free group. O

4. PROOF OF TECHNICAL LEMMAS

This section is devoted to the proof of Lemma 3. For this purpose it is useful to set up some no-
tation. The groups we will be interested in are either subgrouf$0f;) or their homomorphic
image inside the group of quaternions.

The length of a wordv € F(p, ¢) is denoted byw|. The symbolw|, denotes the number of
occurrences of or ¢~ ! in the reduced expression for. We will write

W = WWsa... Wk

if the wordw is the product of the words, , ws, ..., w, and|w| = |wy| + |we| + ... + |wg|. This
means that the product of the words — that we always assume to be reduced — is a reduced
expression for the word. Moreover we will say that condition (*) holds far € T" — see
beginning of Section 3 — ifv = p* or

a, /b

w = p*w'p and ab > 0.

We will now define functionsl/?®, A< that will be needed later in order to give estimates for
the discrete valuations of certain elements of interest in a Dedekind domain of algebraic integers
overQ.

For any given choice of non-negative integets= h;,h_ = h_q, k andC such that: < C
andhy < C — k, we denote by\/® M : T — Q the maps defined as follows on elements of
small length:

Mab(pi) — Mcd(pi) =0,
foralli € Z \ {0}.

M®(p°q’) = hep, M (p°q’) = (hy +ho)/2,
M®(p°q°p°) = hy,  M“(p°qp®) = (hy +N_)/2,
M®(p°q'p™®) = hupin = minfhy, b}, M (pq’p~¢) = (hy + 1) /2,
for all choices of, f € {£1}, and recursively defined on longer words according to the follow-
ing prescriptions:

o If w=wp® = w'p*, then:

2) M®(w) = M (w'), M (w) = min{ M (w'), M“(w")}
if (*) holds for w, and
(3) M“(w) = M“(w'), M (w) = min{ M*(w’), M®(w")}



A NON COMMUTATIVITY STATEMENT FOR ALGEBRAIC QUATERNIONS 5

otherwise.
o If w=w'¢°, e € {£1} then
@) M(w) = M®®) + her, M w) = M) + (hs + h_)/2
if condition (*) holds forw’ and
(5) M w) = M) + hepy M (w) = M) + (hy +h_)/2

otherwise, wher@ andh € {41} are uniquely chosen so that = wp".
o If w = wq/p, with e, f € {£1}, and moreoveiw,h € {41} are chosen so that
w' = wp”, then:

M (w) = M®(w') + by,

6
©) M (w) = min {M“b(w) + %(m +ho), M (w') + h+} :
if (*) holds for bothw andw’;
1
M (w) = M (') + 5 (hy + ho),
()
M®(w) = min {M“b(w) + hip, M (w') + %(m + h_)} :
if (*) holds for w’ but not forw;
1
M®(w) = M (w') + = (hy +h_),
@) ’ X
M (w) = min {MCd(E) + hnp, M (w') + §(h+ + h_)} :
if (*) holds for w but not forw’; and
M (w) = M“(w') + hy,
9)

a : Ca (= 1 a !/
M (w) = min {M W) + §(h+ +h_), M®(w') + h+} ,

if (*) holds for neitherw norw’.
The following results give some useful properties\éf®, A7,

Lemma 6. Letg = ¢'p°, be an element ift ending byp*¢. Then
Mab(g) — Mab(g/), Mcd(g) — MCd(g/).

Proof. We prove the claim in case (*) holds fgr the other case being completely analogous.

", 3e

Write g = ¢"p* = ¢""p.
Then Equation 2 applied to = g implies bothM*(g) = M (¢') and

(10) M*(g) = min{M*(g"), M*(g")}.
Using the same equation with = ¢’ gives
(11) Mcd(g/) — min{MCd(g”), MCd(g/”)}.

Substituting (11) into (10) one gets
M (g) = min{ M“(g"), min{ M (g"), M (g")}} = M“(g'),
whence the second part of the claim. O
Lemma 7. Letg = ¢'p%, e € {£1} be an element ift ending byp*¢. Then
(12) M®(g) = M™(g),  M*(g) = M“(g).
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Proof. The case whep ends byp3¢ has already been treated in the previous lemma, so we can
assumey ends exactly by?¢. The claim holds trivially wherny is a power ofp. Also when
g = pq’p*, it can be directly verified using Equations 2 and 3, and the definitia &f 1/
on words of length< 3. In all other cases, write = ¢"p?¢, and findg, g € I such thay” = ¢/,
andg = gp".
Suppose that (*) holds for bothandg. Then applying (4) tav = ¢”, v’ = g yields
! ao (> 1

M®(g") = M™(G) + 5(hy + ho).

Moreover (6) applied tw = ¢, w’' = g, w = g gives
1 ~
M) = min {31(g) + (0 + 1), 30@) + 1 |

Notice now that (2) implied/?*(g) = M*(g), wheng # p*"; however, the same equality holds
trivially if g = p?"*. Similarly,

M(g) = min{M*(g"), M*(¢")},

henceM<“(g) = M“!(g') easily follows. The case when (*) holds for neithenor g is handled
in the same way, by inverting the role @f andcd.
Let us now treat the case when (*) holds fobbut not forg. Then using (4) gives

M®(g") = M®(g) + hny,
whereas (7) gives

M) = win {A2() + g M) + 5000 |

hence by (3) we conclude that®(g) = M (g’). The case when (*) holds fgrbut not forg is
then done by exchanging with cd. O

Lemma 8. Letg = ¢'p%, e € {£1} be an element i’ \ {p°}. ThenM®(g) = M®(g') if (*)
holds forg, and M“¥(g) = M*!(¢') if it does not.

Proof. We only address the case when (*) holds §oas the proof in the other case is obtained
by exchanging:b andcd. If g ends byp?® then the claim follows by (2). 1y = p¢/p°® or
p?q’p¢, e € {£1}, then the claim can be checked directly using the definition/6f and M/
ong andg'.

In all other cases, writg¢ = gp"q¢’, h, f € {&1}, for someg € T, and denote by the element
gp", so thaty’ = gg7. Now, if (*) holds for g, then (6) applied taw = ¢, w’ = § gives

M®(g) = M™(G) + hy,
whereas (4) applied to = ¢, w’ = g gives
M®(g") = M®(g) + hny.
However, as (*) holds for both andg, thene = f = h, hence
M®(g) = M®(g") = M®(g) — M™(9),
which vanishes by Lemma 7. If instead (*) does not holdfowe proceed as before by using
(8) and (5) to obtain
-1 ,
M™(g) = M(G) + 5 (hy +h-) = M*(g),
hence the claim. OJ
Lemma 9. If g € I ends withp®, e € {£1}, then

a C 1
|M*(g) — M“(g)] < §|h+ —h_|.



A NON COMMUTATIVITY STATEMENT FOR ALGEBRAIC QUATERNIONS 7

Proof. We proceed by induction on the length@fThe basis of induction is proved by directly
checking that the statement holds for all word$'iof length at most three.

Let us prove the inductive step. Suppose first that gp**,e € {+1}. By Lemma 7,
M (g) = M“(gp°) and M*(g) = M°"(gp") so that| M (g) — M (g)| = [M*(gp*) -
M<(gp®)|. Since the length afp* is less than that of, the claim follows by inductive assump-
tion.

Suppose now thaj ends byp®,e € {£1} but not byp?. Then we can writey = gq/p°.
Assuming that the length gfis greater or equal than four, we know tiyands byp?", h € {£1}.
Then using Lemma 7 together with the recursive definitiod4sf and M <? on gq/p°, one may
easily show that

1
[M%(g) = M (g)| < max{7|hy — b, [M*(g) = M*(g)]},
which equalsh, — h_|/2 by inductive assumption. O

Lemma 10. For eachg € I' one has:

|M(g)], [M(g)] < hmax|9lq,
whereh,,, = max{h,, h_}.

Proof. The statement of the lemma is easily proved by induction on the lengfhusing the
recursive definition of\/*®, A<, O

We now assume to be given a choice of non commuting2tgibod quaterniong, ¢ that we
write as

S S

according to the discussion at the end of Section 2. Moreover, we,set v(x + y), h- =
vz —y), C = v(s), k = v(u) = v(v), k < C. Also recall thatv(z) = 1(hy + h_) and
v(z),v(y) > min{h,, h_}. According to Remark 4, we may suppose that

k< C, hy <C —k.

We now establish some recursive relations for the coefficients of the quaternions represented
by elements of . Letg € F(p,q) and letev(g) be the image of under the evaluation homo-
morphismev : F(p, q) — (p, q). We agree to writev(g) as

(1/) (1/y)(alg) + blg)i + c(g9)j + d(g)k).
We also adopt the following notation: gfe F(p, ¢), thena, b, candd denoteu(g), b(g), c(g),d(g)
respectively, so that:

ev(g) = (1/8)19 (1)) (a0 + bi + cj + dF).

We do similarly for elementg’, g, g, ... denoting the coefficients ef/(¢'), ev(g), ev(g), ... by
a’,a,a and so on.

The coefficients 0év(g), g € I" can then be recursively computed according to the following
two rules.
First Composition Rule (R1). If g, ¢’ are words on{p*!, ¢*'} such thaty = ¢'p¢,e € {%1},
then

a=ua — evl
b=ub + evd
c=uc + evd
d=ud — evc.

Second Composition Rule (R2)If ¢, ¢’ are words of{p*!, ¢*'} such thaly = ¢/¢%, e € {£1},
then

a=(uy)a — e(vr)b — e(vz)c
b= (uy)t + e(vr)d — e(vz)d

/
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c= (uy)d + e(vz)d + e(vz)d
d = (uy)d — e(vz)d + e(vz)l.
The following Lemma follows immediately (see [7]).
Lemma 11. If g, ¢, g” are words on{p*?, ¢*'} such thaty = ¢"p**, ¢ = gp°. Then

a=2uad — §°

CL//7
b=2ul — s*,
c=2ud — 2,
d=2ud — s*d".

Proposition 1. Letg € T. If g ends by®, e € {£1}, one has
v(a) = v(b) = klg| + M®(g),
and
v(c),v(d) > klg| + M*(g) +2(C — k)
if () holds forg and
v(c) = v(d) = klg| + M“(g),
and
v(a),v(b) > klg| + M*(g) + 2(C — k),
otherwise.
If insteadg ends by©, e € {£1}, one has

v(a) = v(b) = klg| + M*(g)
and

v(c) = v(d) = klg| + M“(g).
Proof. The statement can be checked directly for words of lergth

For all other words, we prove the claim by induction on the lengtly,afhe proof of the
inductive step following easily from the following three lemmas. O

Lemma 12. Letg € T be a word of lenght at least three, ending 3§, e € {41}, and assume
Proposition 1 holds for all words df of length< |g|. Then

v(a) = v(b) = klg| + M®(g)
and
v(c), v(d) > k|g| + M“(g) 4+ 2(C — k)
if (*) holds for g, and
v(c) = v(d) = klg| + M“(g)
and
v(a), v(b) > klg| + M*(g) +2(C — k)
otherwise.

Proof. We only address the case when (*) holds §oas the proof in the other case is obtained
by exchangingib andcd. Letg' = ¢"p¢, g = ¢"p*. As|g| > 3, theng” € T'. First we compute
v(a). By Lemma 11,
a=2ud —s%d".
One has:
l/(a”) _ k:|g"| + Mab(g”),
hence

v(s2d") = k(|g"| +2) + 2(C — k) + M®(¢") = k|g| + M®(¢") + 2(C — k).
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Moreover, since (*) holds fog’, Proposition 1 applied tg’ yields
v(a') = klg'| + M™(g")
so that
v(2ua’) = k(|g'| + 1) + M®(g") = klg| + M*(g").
On the other hand, by Lemma 8,
M™(g') = M (g")
which yields

v(2ua') < v(s*a").

Therefore, using (2),
v(a) = v(2ud’) = klg| + M (g") = klg| + M*(g).

One computes(b) using the same argument.
Now we compute/(c). By Lemma 11,

¢ =2ud — 2.

First one has:
v(c") > klg"| + M“(g"),

hence

v(s2c") > k(|g"| +2) + 2(C — k) + M“(g") = k|g| + M (g") +2(C — k).
As (*) holds forg’, Proposition 1 applied tg’ yields

v(c) > klg |+ M (g) +2(C — k)

so that

v(2ud) > k(|g'| +1) + M(g") +2(C — k) = klg| + M“(g') + 2(C — k).
Thus, using (2),

v(c) > klg| +min{M(g"), M*(¢')} +2(C — k) = klg| + M**(g) +2(C — k).

Once again, one compute&d) using the same argument. O

Lemma 13. Letg € I" be a word of lenght at least four, ending by, ¢ € {+1} and assume
Proposition 1 holds for all words of df of length< |g|. Then

v(a) = v(b) = klg| + M®(g)
and

v(c) = v(d) = klg| + M“(g).
Proof. Since|g| > 4, we can find elementg g,7 € I' such thaly = g¢°, g = gp" = gp*" with
e,h € {£1}.

We only address the case when (*) holds §oras the proof in the other case is similar. Set
Popin = min{h,, h_} andhy,., = max{h,, h_}. First we compute/(c). Applying Rule (R2) to
g, we get

¢ = uyc + eved + evza.
Now, since (*) holds foiy, Proposition 1 applied tg gives
(13)  w(@) =v(b) = k[gl+ M™(G) and v(@),v(d) = k[gl + M“(g) +2(C — k).
Hence we obtain:
v(evza) = k(|[g] + 1) + M(@Q) + (hy + h_)/2
and B
v(uyc + evad) > k(|g] + 1) + MG) + 2(C = k) + huin.
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By Lemma 9,
M)~ MUG)| < lhs —h| <O~k
which yields
v(evza)—v(uyctevad) < M®(G)— M G)+|hy—h_|/2—=2(C—k) < |hy—h_|-2(C—k) < 0.
Using (4), one gets:
v(c) = v(evza) = k(|g] + 1) + M(9) + (hy +h-)/2 = k|g| + M*(g).
A similar computation applies to(d).
Let us compute/(a). By applying Rule (R2) tg, we get

a = uya — evab — evzc.

Now we show that/(a) = v(uya — evab) by performing the following steps: first we compute

v(evzc) andv(uya — evzb); then, we show that the former quantity is strictly greater than the
latter.

e Condition (13) yields:
v(ev2e) > k|(gl+1)+M (@) +2(C—k)+(hy+h_) /2 = k|g|+M(g)+(hy+h) /2+2(C—k).

e Let us now compute(uya — evrb). By Lemma 11, Rule (R1) and the equality =
u? + v?, the termuya — evzb may be rewritten as
X + 5%,
with
X =2u*(y + ehx)a
and B
Y = bevr — ua(y + 2ehx).
Let us now compute(X), »(Y). Since (*) holds forg,

which gives
v(X) = klgl + M™(G) + hen.
On the other hand,

v(@) = v(b) = k[g| + M)

and
v(z), v(y + 2ehx) > hyin
yield
v(bevz), v(ua(y + 2¢h)) > Klg| + M(G) + hain
whence

v(s?Y) > k|g| + M(G) + hmin + 2(C — k).
By Lemma 8,M“*(g) = M(g). Moreover, we have
her — Pin < hmax < C — k
which gives
v(X) < v(s*Y)
and, therefore,
v(uyd — evab) = v(X + s°Y) = v(X) = klg| + M) + hen.
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e Finally we compare/(uya — evab) andv(evzc). By Lemma 7 and Lemma 9,
— C ab(~ cd (=~ 1
[M(g) = M(G)| = [M*(g) = M“(§)| < Slhs —h-| < C = k.
Since moreover

1

hen = 5(he +ho) < C —k

one has

v(evze) > v(uya — evad)
and thus
v(a) = viuya — evad) = klg| + M*(9) + har,
hence the claim by the definition af .
One computes(b) using the same argument. O
Lemma 14. Letg € I be a word of length at least five, endingddy®, e, f € {#1}, and assume
Proposition 1 holds for all words df of length< |g|. Then
v(a) = v(b) = klg| + M™(g),
v(c),v(d) > k|g| + M (g) +2(C — k)
if (*) holds for g and
v(e) = v(d) = klg| + M“(g),
v(a),v(b) > klg| + M*(g) +2(C — k),
otherwise.

Proof. As|g| > 5, we can writey = g¢/p¢, g = gp" = gp** withe, f,h € {+1},andg,g,7 € T.
We split the proof into the following two cases.
e ¢ = h. In this case we have = f = h. Let us first compute(a). By applying Rules
(R1) and then (R2) tg, we have
a = a(u?y — v’z) — buvh(z + y) + hvz(hvd — uc).

SetX = hvz(hvd — ué) andY = a(u’y — v?z) — buvh(z + y). Sincev? = s* — u?, we
may rewriteY” as
Y = (z +y)(au — bvh)u — zs*a.
Now we notice that, ify = gp", thend’ = (au — gvh). Hence, Lemma 11 gives
a' = 2ua — s*a which yields
Y = 2u*(x 4 y)a — s*u(x +y)a — sza.
— First we consider the case wher) holds forg. Sincee = h, (x) holds forg as well
and thus the inductive assumption applied @ives
14)  v(@ =vd) =gk +MG), v@),v(d) > [glk+MAG) +2(C k).
Now we give estimate for the valuation &f andY . First condition (14) gives
V(X) > k(3] +2) + M) +2(C — k) + (hy + h_) /2.
Now
hy —v(z) <2(C —k)
gives
v(2u®*(z + y)a) < v(s®
On the other hand, since (*) holds fgr Equation (2) applied ta” = g,w’ =g
yields M (g) = M(g) which gives

v(2u®(z + y)a) < v(s*u(z + y)a),

xa).
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whence
v(Y) = v(2u®(z +y)a) = k(g] +2) + M*(g) + hs.

Finally, we show/(Y') < v(X). Sinceg = gp",by Lemma 9, we have

[M(G) = M@ < |hy = h-|/2<C —F,
from which

v(Y) < v(X).

Thus

v(a) = v(Y) = k(g + 2) + M*(g) + I,

hence the claim by the definition 8f*° and the equalityg| = |g| + 2.
— Now we consider the case whén) does not hold foy and thus nor folg. The
inductive assumption applied gogives

(15)  w(@),v(d) = [glk + M*(g) +2(C — k), v(&) = v(d) = [glk + M*(7).

Now we give estimate for the valuation &f andY".
Let us first notice that, iff = gp", thenc’ = (¢u + dvh). Hence, Lemma 11 gives
¢ = 2uc — s*¢ which yields

X = hvz(2uc — s%¢).
By condition (15) and the definition df/<*, one easily proves that
v(X),v(Y) > k(g +2) + M™(q) + 2(C — k).
and thus
v(a) > k(|g] +2) + M*(9) + 2(C — k).

The claim now follows from the definition af/<® and the equalityg| = [g| + 2.
e ¢ # h. Let us now proceed with(a). We recall that

a = a(uly — efv’z) — buv(fz + ey) + fvz(evd — ug).

As before sefX = fvz(evd — uc) andY = a(u?y — efv’z) — buv(fz + ey).
— Let us consider the case whés) holds forg. Sincee # h, (x) does not hold fog;.
Hence, by the inductive assumptiongocondition (15) holds and therefore

v(Y) > k(|g] +2) + M®(G) + 2(C — k) + hey.

Sincee # h, X = fvz(hvd + uc). Noticing that, if¢’ = gp", thend = uc + hud,
by applying the inductive assumption 4 we have

v(d) = k(g +1) + M*(g),

and thus

v(X) = k([g] +2) + M“G) + (hy +h_)/2.
Sinceg ends byp*, Lemma 9 gives

|M(g) = M“(g)] < |hy —h-|/2 < C —F,
from which

v(X) <v(Y).
Thus
v(a) = v(X) = k(g + 2) + M“(g) + (hy + h-)/2,

hence the claim by the definition af“? and the equalityg| = |g] + 2.
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— Finally let us consider the case whet) does not hold foy. Sincee # h, (x) holds
for g. Hence, by the inductive assumption appliedjtaondition (14) holds and
thus

v(X) 2 k([g]+2) + MUG) +2(C — k) + (hy + h_)/2.

Usingv? = s? — «? ande # h, Y may be rewritten as

Y = u(y + efz)(au + hvb) — s’efad.
Now, noticing thats2a = Gu + hub yields

Y = s*u(y + efr)a — sefza = s*(y — efr)ua + s*efr(2ua — a).
Lemma 11 gives now?a = 2ua — a SO that
Y = s*(y — efw)ua + s*efra.
Since(x) holds forg, by applying the inductive assumptiongpwe have
v(@) = k[g| + M*(g),
so that
v(s*(y — efr)ua) = k(|g| + 3) + M*(g) + 2(C — k) + he;.
Moreover we have
v(stefra) > 4(C — k) + k(|g| + 4) + M(g) + v(z).

Since, by Lemma 8)%(g) = M (g), and morevover(z) — h.y < C — k, we
have
v(s*(y — efz)ua) < v(s*efra)
and thus
v(Y) = k(|g| + 3) + M® (@) + 2(C — k) + hey.

Finally, by comparing/(X) andv(Y’) and by the equalityg| = |g| + 1, we have
v(a) > k(9] +2) +2(C — k) + min{M*(g) + hey, M) + (hy + h_)/2} +2(C — k),

hence the claim by the definition 8f*° and the equalityg| = |g| + 2.

By using the previous argument, one can obtain the computatiobpf
The computation of(c) andr(d) can be obtained by exchangingwith cd. O

We are finally able to give the following

Proof of Lemma 3By contradiction.
Say we can find # 1 in I such thakv(g) = 1. Set

1 1
g = mw(@"‘lﬂ +C] +dk’)

We know thathyax — Amin = |hy — h—| < C — k. Moreover|g|, < |g| for all words. Then
(hmax — hmin)|9]y < (C' — k)|g|, hencek|g| + hmax|gls < Clg| + hmin|g|, for all choices ofy.

Lemma 10 along with Proposition 1 show that the valuation at least two expressions among
a, b, candd if less or equal thak|g|+ humax|gl,. On the other hand,(sl9lyl9l) = C|g|+v(y)]gl,-

We know thatv(y) > hupin, SO thatk|g| + hmaxlgls < Clg| + v(v)|gl, < v(sl9lyldle). This
shows that at least two coefficientsesf(g) have a negative valutation ena contradiction with
ev(g) = 1. The lemma is thus proved. O
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