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1. INTRODUCTION

In this paper we provide a constructive version of Tits alternative for a broad class of quater-
nions with algebraic coefficients. Our result is a generalization of that contained in the paper [1],
concerning groups of rational quaternions. Indeed, the tools developed in [1] can be extended
to arbitrary number fields by translating them in the corresponding Dedekind domain, as the
techniques involved are of a typical “factorization and divisibility” flavour.

Let K be a finite extension ofQ. We will say that a quaterniona + bi + cj + dk is K-rational
if its coefficientsa, b, c, d all lie in K. The main result in the paper is then the following.

Theorem 1. LetG be a group ofK-rational quaternions containing at least one element that is
2-good. Then eitherG is solvable or it contains a free non commutative group.

The2-goodness assumption will be explained later, and is a technical condition which guar-
antees, for instance, that coefficients are not algebraic integers. The free non commutative group
is explicitly located by choosing appropriate conjugate quaternionsp andq. Non triviality of a
certain class of words inp andq is insured by measuring“divisibility” of their coefficients with
respect to an opportune valuation. One can eventually locate a subgroup of〈p, q〉 such that all
of its elements satisfy the above non triviality assumptions, thus ensuring the group to be a free
group.

The explicit construction of free groups by means of quaternions has been thoroughly investi-
gated by several authors. Note that the groupSU(2) of unit quaternions is the universal covering
of the groupSO(3) of rotations of3-dimensional Euclidean space, so that algebraic properties
of quaternions translate in analogue statements for rotations. By a result of De Groot [4], two
rotations with orthogonal axes and rotation angleθ generate a free group ifcos θ is transcen-
dental (see also [3]). Later, Swierczkowski in [7] considered the rational case proving that two
rotations with orthogonal axes and rotation angleθ such thatθ is rational generate a free group
if and only if cos θ 6= 0,±1,±1/2. More recently, in [5] Gonçalves, Mandel, and Shirvani have
considered the case when the cosine of the angle of the two rotations is an algebraic number. In
particular, they proved that two rotations with orthogonal axes and rotation angleθ generate a
free group when the cosine ofθ is algebraic but not an algebraic integer. In this paper, we extend
the techniques developed in [7] and [1], thus correcting some details in the proofs of the latter
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by PRIN ”Spazi di Moduli e Teoria di Lie” fundings from MIUR.
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paper, and we give an explicit description of free groups generated by pairs of conjugate rotations
of arbitrarily oriented axes, whose coefficients belong to a broad class of algebraic numbers.

The plan of the paper is the following: in Section 2 we collect definitions and recall results
from [1] that will be of use to us. Furthermore we introduce the concept of2-goodness for
quaternions, and show that any nonsolvable group of algebraic quaternions in which at least one
element is2-good needs to contain a pairp, q of noncommuting conjugate quaternions satisfying
some very special properties. In Section 3 we introduce a subsetΓ of words inp andq, and show
how the above properties forp andq lead to a nontriviality statement for elements ofΓ. We
locate then a subgroup of〈p, q〉 completely contained in the subsetΓ. This proves the existence
of an explicitly described noncommutative free subgroup of〈p, q〉.

In Section 4 we finally give the (lengthy) proof of a technical statement used in Section 3, by
exploiting the fact that the evaluation homomorphism maps elements ofΓ to algebraic quater-
nions for which at least one of the coefficient has negative valuation, that are therefore different
from the identity.

General introductions to algebraic properties of quaternions can be found in [2] and [6].

2. PRELIMINARIES

In this section, following [1], [2], and [6], we recall some definitions and elementary results.
By K we will denote a finite xtension ofQ contained1 in R. ThenD is the ring of algebraic
integers ofK, and an elementα ∈ R is said to beK-rational (resp.K-integral) iff α ∈ K (resp.
α ∈ D).

Lemma 1. Any pairp, q of K-rational conjugate non commuting quaternions can be simultane-
ously conjugated to the form

zpz−1 = α + βi, zqz−1 = α + β(ai + bj),

wherez lies in a finite extension ofK anda2 + b2 = 1.

Definition 1. Let K be a finite extension ofQ. An elementω ∈ K is 2-good if there exists a
valuationν onK such thatν(ω) < 0 = ν(2). A pair (α, β) is 2-good if bothα andβ are2-good.

Remark 1. A rational number is2-good iff it is not of the formm/2n, m,n ∈ Z. Similarly, it
can be proved that an element of a finite extensionK of Q is 2-good if and only if it cannot be
made into an algebraic integer via multiplication by an opportune power of2. Thus the notion
of 2-goodness of an algebraic integer is independent of the particular choice ofK ⊃ Q.

Definition 2. A K-rational quaternionp = a + bi + cj + dk is 2-good if the pair(a, (b2 + c2 +
d2)1/2) is 2-good.

Remark 2. 2-goodness of a unit – i.e. norm1 – quaternionp = a+ bi+ cj + dk can be checked
on its real part alone. Indeed ifα2 + β2 = 1, then2-goodness ofα is equivalent to that ofβ, as
in this caseν(α) < 0 immediately impliesν(α) = ν(β) whereν is as in Definition 1.

Lemma 2. No periodic quaternion is2-good.

Proof. A periodic quaternion is certainly a unit, i.e. it is of the formcos θ + sin θ · I, where
θ ∈ R andI is a purely imaginary unit quaternion. Then, it is2-good if and only if so is the pair
(cos θ, sin θ). However2 cos θ = eiθ + e−iθ is an algebraic integer ifθ is a rational multiple ofπ,
socos θ is not2-good by Remark 1. �

Remark 3. Let I be a purely imaginary unit quaternion. Ifp = α + βI, whereα, β ∈ R,
thenp2 = (α2 − β2) + 2αβI. If p is a2-good unit quaternion, choose a valuationν such that
ν(α) = ν(β) = c < 0, ν(2) = 0. Thenν(2αβ) = 2c. As p cannot be torsion, computingν on
the real part ofp2n

we also obtain2nc.

1This is unnecessary, but avoids invertibility problems.
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Remark 4. Let p andq be non commuting conjugateK-rational2-good unit quaternions,K a
finite extension ofQ. Up to conjugating and changingK by a finite extension, we can uniquely
write

p =
u

s
+

v

s
i, q =

u

s
+

v

s
·
(

x

y
i +

z

y
j

)
whereu andv are algebraic integers,s, y ∈ N∗ are minimal among naturals such thatsp (resp.
yx) is K-integral, andx, z are nonzero numbers such thatx2 + z2 = y2. As p andq are2-good,
thens is not a power of2.

Notice also that−ν(u/s) = ν(s) − ν(u) ≤ ν(s). This fact, and the argument of Remark 3,
show that up to replacingp andq by suitable common powers, we can make the value ofν(s) as
large as desired, while leavingx, y, z unaffected. In particular we may assume that the following
conditions hold:

(1) ν(u) = ν(v) < ν(s), ν(x± y), ν(z), ν(x) < ν(s)− ν(u).

As we will see later, Condition (1) will be used in the proof of Lemma 3.

3. MAIN RESULT

We are now ready to state the main result of the paper. Its proof depends on a few technical
lemmas, the proof of which is quite involved, and will be postponed to the next section.

We will be concerned with those elements lying in the free groupF(p, q) on the alphabet{p, q}
whose particolar shape allows us to prove interesting divisibility properties. The words that are
relevant to us are reduced ones satisfying the following requirements:

• They begin with a non-trivial power ofp;
• the only occurrences of powers ofq in the word are with exponent±1;
• two occurrences of powers ofq in the word are separated by powerspk with |k| ≥ 2.
• if paqbpc occurs as a subword, andac > 0 then the sign ofb is the same sign ofa andc.

We will denote the set of all such words byΓ ⊂ F(p, q). It is worthwhile noting thatΓ is not a
subgroup ofF(p, q). Also every non trivial prefix of a word inΓ also lies inΓ. The following
lemma will be proved in the next section.

Lemma 3. Let p and q be noncommuting conjugate2-goodK-rational quaternions satisfying
the conditions defined at the end of the previous section. Then the kernel of the evaluation
homomorphismev : F(p, q) → 〈p, q〉 does not intesectΓ.

Injectivity of the evaluation homomorphism onΓ is important because of the following fact,
which was proved in [1].

Lemma 4. All non identical elements of〈p2qp4, p4qp2〉 < F(p, q) lie in Γ.

We are now ready to prove the main result.

Theorem 2. Let p and q be noncommuting conjugate2-goodK-rational quaternions. Then
〈p, q〉 contains a free non commutative group.

Proof. By the well known theorem of Nielsen and Schreier, wordsp2qp4 andp4qp2 generate a
free subgroup ofF(p, q) and, by Lemma 4, all of its elements lie inΓ. By Remark 4, up to
replacingp and q with one of its powers, we can suppose thatp and q satisfy the conditions
defined at the end of the previous section. Then Lemma 3 shows that the subgroup of〈p, q〉
generated byp2qp4 andp4qp2 is an isomorphic image ofF2 ' F(p2qp4, p4qp2). �

Remark 5. The above proof is constructive as soon as we are given a valuation measuring2-
goodness ofp andq. The valuation is needed in choosing the appropriate powers ofp andq so
that the condition onx, z, x± y is satisfied.
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We end this section by showing an interesting consequence of Theorem 2: a Tits alternative
for groups ofK-rational quaternions. For this purpose, let us recall the following fact that is
standard (see [1]).

Lemma 5. Let H be a non solvable subgroup of unit quaternions. Letq ∈ H such thatq =
α + βI whereI is a purely imaginary unit quaternion andα, β are nonzero real numbers. Then
there exists a conjugatep of q not commuting withq.

Corollary 1. Let G be a subgroup ofK-rational quaternions ofQ∗ containing a2-good unit
element. ThenG is solvable or contains a non commutative free groups.

Proof. AssumeG is not solvable. LetU be the group of unit quaternions ofQ∗. Then the
subgroupG ∩ U is not solvable either: indeed the derived subgroupG′ of G is a subgroup of
G ∩ U . Choose a2-good elementp of G ∩ U and express it (uniquely) asp = α + βI, where
α, β ∈ R andI is a purely imaginary unit quaternion. Thenα andβ are nonzero and, by Lemma
5, there exists a conjugateq of p such thatp andq do not commute. Then, by Theorem 2, the
group generated byp, q contains a free group. �

4. PROOF OF TECHNICAL LEMMAS

This section is devoted to the proof of Lemma 3. For this purpose it is useful to set up some no-
tation. The groups we will be interested in are either subgroups ofF(p, q) or their homomorphic
image inside the group of quaternions.

The length of a wordw ∈ F(p, q) is denoted by|w|. The symbol|w|q denotes the number of
occurrences ofq or q−1 in the reduced expression forw. We will write

w ≡ w1w2...wk

if the wordw is the product of the wordsw1, w2, ..., wk and|w| = |w1|+ |w2|+ ... + |wk|. This
means that the product of the wordswi – that we always assume to be reduced – is a reduced
expression for the wordw. Moreover we will say that condition (*) holds forw ∈ Γ – see
beginning of Section 3 – ifw = pa or

w ≡ paw′pb and ab > 0.

We will now define functionsMab, M cd that will be needed later in order to give estimates for
the discrete valuations of certain elements of interest in a Dedekind domain of algebraic integers
overQ.

For any given choice of non-negative integersh+ = h1, h− = h−1, k andC such thatk < C
andh± < C − k, we denote byMab, M cd : Γ → Q the maps defined as follows on elements of
small length:

Mab(pi) = M cd(pi) = 0,

for all i ∈ Z \ {0}.

Mab(peqf ) = hef , M cd(peqf ) = (h+ + h−)/2,

Mab(peqepe) = h+, M cd(peqepe) = (h+ + h−)/2,

Mab(peqfp−e) = hmin = min{h+, h−}, M cd(peqfp−e) = (h+ + h−)/2,

for all choices ofe, f ∈ {±1}, and recursively defined on longer words according to the follow-
ing prescriptions:

• If w ≡ w′pe ≡ w′′p2e, then:

(2) Mab(w) = Mab(w′), M cd(w) = min{M cd(w′), M cd(w′′)}
if (*) holds for w, and

(3) M cd(w) = M cd(w′), Mab(w) = min{Mab(w′), Mab(w′′)}
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otherwise.
• If w ≡ w′qe, e ∈ {±1} then

(4) Mab(w) = Mab(w) + heh, M cd(w) = Mab(w′) + (h+ + h−)/2

if condition (*) holds forw′ and

(5) M cd(w) = M cd(w) + heh, Mab(w) = M cd(w′) + (h+ + h−)/2

otherwise, wherew andh ∈ {±1} are uniquely chosen so thatw′ ≡ wph.
• If w ≡ w′qfpe, with e, f ∈ {±1}, and moreoverw, h ∈ {±1} are chosen so that

w′ ≡ wph, then:

Mab(w) = Mab(w′) + h+,

M cd(w) = min

{
Mab(w) +

1

2
(h+ + h−), M cd(w′) + h+

}
,

(6)

if (*) holds for bothw andw′;

M cd(w) = Mab(w′) +
1

2
(h+ + h−),

Mab(w) = min

{
Mab(w) + hhf , M

cd(w′) +
1

2
(h+ + h−)

}
,

(7)

if (*) holds for w′ but not forw;

Mab(w) = M cd(w′) +
1

2
(h+ + h−),

M cd(w) = min

{
M cd(w) + hhf , M

ab(w′) +
1

2
(h+ + h−)

}
,

(8)

if (*) holds for w but not forw′; and

M cd(w) = M cd(w′) + h+,

Mab(w) = min

{
M cd(w) +

1

2
(h+ + h−), Mab(w′) + h+

}
,

(9)

if (*) holds for neitherw norw′.

The following results give some useful properties ofMab, M cd.

Lemma 6. Letg ≡ g′pe, be an element inΓ ending byp3e. Then

Mab(g) = Mab(g′), M cd(g) = M cd(g′).

Proof. We prove the claim in case (*) holds forg, the other case being completely analogous.
Write g ≡ g′′p2e ≡ g′′′p3e.

Then Equation 2 applied tow = g implies bothMab(g) = Mab(g′) and

(10) M cd(g) = min{M cd(g′), M cd(g′′)}.
Using the same equation withw = g′ gives

(11) M cd(g′) = min{M cd(g′′), M cd(g′′′)}.
Substituting (11) into (10) one gets

M cd(g) = min{M cd(g′′), min{M cd(g′′), M cd(g′′′)}} = M cd(g′),

whence the second part of the claim. �

Lemma 7. Letg ≡ g′pe, e ∈ {±1} be an element inΓ ending byp2e. Then

(12) Mab(g) = Mab(g′), M cd(g) = M cd(g′).
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Proof. The case wheng ends byp3e has already been treated in the previous lemma, so we can
assumeg ends exactly byp2e. The claim holds trivially wheng is a power ofp. Also when
g = phqfp2e, it can be directly verified using Equations 2 and 3, and the definition ofMab, M cd

on words of length≤ 3. In all other cases, writeg ≡ g′′p2e, and findg̃, g ∈ Γ such thatg′′ ≡ g̃qf ,
andg̃ ≡ gph.

Suppose that (*) holds for bothg andg̃. Then applying (4) tow = g′′, w′ = g̃ yields

M cd(g′′) = Mab(g̃) +
1

2
(h+ + h−).

Moreover (6) applied tow = g′, w′ = g̃, w = g gives

M cd(g′) = min

{
Mab(g) +

1

2
(h+ + h−), M cd(g̃) + h+

}
.

Notice now that (2) impliesMab(g) = Mab(g̃), wheng̃ 6= p2h; however, the same equality holds
trivially if g̃ = p2h. Similarly,

M cd(g) = min{M cd(g′), M cd(g′′)},
henceM cd(g) = M cd(g′) easily follows. The case when (*) holds for neitherg nor g̃ is handled
in the same way, by inverting the role ofab andcd.

Let us now treat the case when (*) holds forg̃ but not forg. Then using (4) gives

Mab(g′′) = Mab(g) + hhf ,

whereas (7) gives

Mab(g′) = min

{
Mab(g) + hhf , M

cd(g̃) +
1

2
(h+ + h−)

}
,

hence by (3) we conclude thatMab(g) = Mab(g′). The case when (*) holds forg but not forg̃ is
then done by exchangingab with cd. �

Lemma 8. Let g ≡ g′pe, e ∈ {±1} be an element inΓ \ {pe}. ThenMab(g) = Mab(g′) if (*)
holds forg, andM cd(g) = M cd(g′) if it does not.

Proof. We only address the case when (*) holds forg, as the proof in the other case is obtained
by exchangingab and cd. If g ends byp2e then the claim follows by (2). Ifg = phqfpe or
p2hqfpe, e ∈ {±1}, then the claim can be checked directly using the definition ofMab andM cd

ong andg′.
In all other cases, writeg′ ≡ gphqf , h, f ∈ {±1}, for someg ∈ Γ, and denote bỹg the element

gph, so thatg′ = g̃qf . Now, if (*) holds for g̃, then (6) applied tow = g, w′ = g̃ gives

Mab(g) = Mab(g̃) + h+,

whereas (4) applied tow = g′, w′ = g̃ gives

Mab(g′) = Mab(g) + hhf .

However, as (*) holds for bothg andg̃, thene = f = h, hence

Mab(g)−Mab(g′) = Mab(g̃)−Mab(g),

which vanishes by Lemma 7. If instead (*) does not hold forg̃, we proceed as before by using
(8) and (5) to obtain

Mab(g) = M cd(g̃) +
1

2
(h+ + h−) = Mab(g′),

hence the claim. �

Lemma 9. If g ∈ Γ ends withpe, e ∈ {±1}, then

|Mab(g)−M cd(g)| ≤ 1

2
|h+ − h−|.
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Proof. We proceed by induction on the length ofg. The basis of induction is proved by directly
checking that the statement holds for all words inΓ of length at most three.

Let us prove the inductive step. Suppose first thatg = gp2e, e ∈ {±1}. By Lemma 7,
M cd(g) = M cd(gpe) and Mab(g) = Mab(gpe) so that|Mab(g) − M cd(g)| = |Mab(gpe) −
M cd(gpe)|. Since the length ofgpe is less than that ofg, the claim follows by inductive assump-
tion.

Suppose now thatg ends bype, e ∈ {±1} but not byp2e. Then we can writeg ≡ gqfpe.
Assuming that the length ofg is greater or equal than four, we know thatg ends byp2h, h ∈ {±1}.
Then using Lemma 7 together with the recursive definition ofMab andM cd on gqfpe, one may
easily show that

|Mab(g)−M cd(g)| ≤ max{1

2
|h+ − h−|, |Mab(g)−M cd(g)|},

which equals|h+ − h−|/2 by inductive assumption. �

Lemma 10. For eachg ∈ Γ one has:

|Mab(g)|, |M cd(g)| ≤ hmax|g|q,
wherehmax = max{h+, h−}.

Proof. The statement of the lemma is easily proved by induction on the length ofg, using the
recursive definition ofMab, M cd. �

We now assume to be given a choice of non commuting unit2-good quaternionsp, q that we
write as

p =
u

s
+

v

s
i, q =

u

s
+

v

s

(
x

y
i +

z

y
j

)
,

according to the discussion at the end of Section 2. Moreover, we seth+ = ν(x + y), h− =
ν(x − y), C = ν(s), k = ν(u) = ν(v), k < C. Also recall thatν(z) = 1

2
(h+ + h−) and

ν(x), ν(y) ≥ min{h+, h−}. According to Remark 4, we may suppose that

k < C, h± < C − k.

We now establish some recursive relations for the coefficients of the quaternions represented
by elements ofΓ. Let g ∈ F(p, q) and letev(g) be the image ofg under the evaluation homo-
morphismev : F(p, q) → 〈p, q〉. We agree to writeev(g) as

(1/s)|g| (1/y)|g|q(a(g) + b(g)i + c(g)j + d(g)k).

We also adopt the following notation: ifg ∈ F(p, q), thena, b, c andd denotea(g), b(g), c(g), d(g)
respectively, so that:

ev(g) = (1/s)|g| (1/y)|g|q(a + bi + cj + dk).

We do similarly for elementsg′, g̃, ḡ, ... denoting the coefficients ofev(g′), ev(g̃), ev(ḡ), ... by
a′, ã, ā and so on.

The coefficients ofev(g), g ∈ Γ can then be recursively computed according to the following
two rules.
First Composition Rule (R1). If g, g′ are words on{p±1, q±1} such thatg ≡ g′pe, e ∈ {±1},
then
a = ua′ − evb′

b = ub′ + eva′

c = uc′ + evd′

d = ud′ − evc′.

Second Composition Rule (R2).If g, g′ are words on{p±1, q±1} such thatg ≡ g′qe, e ∈ {±1},
then
a = (uy)a′ − e(vx)b′ − e(vz)c′

b = (uy)b′ + e(vx)a′ − e(vz)d′
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c = (uy)c′ + e(vx)d′ + e(vz)a′

d = (uy)d′ − e(vx)c′ + e(vz)b′.

The following Lemma follows immediately (see [7]).

Lemma 11. If g, g′, g′′ are words on{p±1, q±1} such thatg ≡ g′′p2e, g′ ≡ gpe. Then

a = 2ua′ − s2a′′,

b = 2ub′ − s2b′′,

c = 2uc′ − s2c′′,

d = 2ud′ − s2d′′.

Proposition 1. Letg ∈ Γ. If g ends bype, e ∈ {±1}, one has

ν(a) = ν(b) = k|g|+ Mab(g),

and
ν(c), ν(d) ≥ k|g|+ M cd(g) + 2(C − k),

if (∗) holds forg and
ν(c) = ν(d) = k|g|+ M cd(g),

and
ν(a), ν(b) ≥ k|g|+ Mab(g) + 2(C − k),

otherwise.
If insteadg ends byqe, e ∈ {±1}, one has

ν(a) = ν(b) = k|g|+ Mab(g)

and
ν(c) = ν(d) = k|g|+ M cd(g).

Proof. The statement can be checked directly for words of length≤ 4.
For all other words, we prove the claim by induction on the length ofg, the proof of the

inductive step following easily from the following three lemmas. �

Lemma 12. Let g ∈ Γ be a word of lenght at least three, ending byp2e, e ∈ {±1}, and assume
Proposition 1 holds for all words ofΓ of length< |g|. Then

ν(a) = ν(b) = k|g|+ Mab(g)

and
ν(c), ν(d) ≥ k|g|+ M cd(g) + 2(C − k)

if (*) holds for g, and
ν(c) = ν(d) = k|g|+ M cd(g)

and
ν(a), ν(b) ≥ k|g|+ Mab(g) + 2(C − k)

otherwise.

Proof. We only address the case when (*) holds forg, as the proof in the other case is obtained
by exchangingab andcd. Let g′ = g′′pe, g = g′′p2e. As |g| ≥ 3, theng′′ ∈ Γ. First we compute
ν(a). By Lemma 11,

a = 2ua′ − s2a′′.

One has:
ν(a′′) = k|g′′|+ Mab(g′′),

hence

ν(s2a′′) = k(|g′′|+ 2) + 2(C − k) + Mab(g′′) = k|g|+ Mab(g′′) + 2(C − k).
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Moreover, since (*) holds forg′, Proposition 1 applied tog′ yields

ν(a′) = k|g′|+ Mab(g′)

so that
ν(2ua′) = k(|g′|+ 1) + Mab(g′) = k|g|+ Mab(g′).

On the other hand, by Lemma 8,
Mab(g′) = Mab(g′′)

which yields
ν(2ua′) < ν(s2a′′).

Therefore, using (2),

ν(a) = ν(2ua′) = k|g|+ Mab(g′) = k|g|+ Mab(g).

One computesν(b) using the same argument.
Now we computeν(c). By Lemma 11,

c = 2uc′ − s2c′′.

First one has:
ν(c′′) ≥ k|g′′|+ M cd(g′′),

hence

ν(s2c′′) ≥ k(|g′′|+ 2) + 2(C − k) + M cd(g′′) = k|g|+ M cd(g′′) + 2(C − k).

As (*) holds forg′, Proposition 1 applied tog′ yields

ν(c′) ≥ k|g′|+ M cd(g′) + 2(C − k)

so that

ν(2uc′) ≥ k(|g′|+ 1) + M cd(g′) + 2(C − k) = k|g|+ M cd(g′) + 2(C − k).

Thus, using (2),

ν(c) ≥ k|g|+ min{M cd(g′′), M cd(g′)}+ 2(C − k) = k|g|+ M cd(g) + 2(C − k).

Once again, one computesν(d) using the same argument. �

Lemma 13. Let g ∈ Γ be a word of lenght at least four, ending byqe, e ∈ {±1} and assume
Proposition 1 holds for all words of ofΓ of length< |g|. Then

ν(a) = ν(b) = k|g|+ Mab(g)

and
ν(c) = ν(d) = k|g|+ M cd(g).

Proof. Since|g| ≥ 4, we can find elements̃g, g, g ∈ Γ such thatg ≡ g̃qe, g̃ ≡ gph ≡ gp2h with
e, h ∈ {±1}.

We only address the case when (*) holds forg̃, as the proof in the other case is similar. Set
hmin = min{h+, h−} andhmax = max{h+, h−}. First we computeν(c). Applying Rule (R2) to
g, we get

c = uyc̃ + evxd̃ + evzã.

Now, since (*) holds for̃g, Proposition 1 applied tõg gives

(13) ν(ã) = ν (̃b) = k|g̃|+ Mab(g̃) and ν(c̃), ν(d̃) ≥ k|g̃|+ M cd(g̃) + 2(C − k).

Hence we obtain:
ν(evzã) = k(|g̃|+ 1) + Mab(g̃) + (h+ + h−)/2

and
ν(uyc̃ + evxd̃) ≥ k(|g̃|+ 1) + M cd(g̃) + 2(C − k) + hmin.
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By Lemma 9,

|Mab(g̃)−M cd(g̃)| ≤ 1

2
|h+ − h−| < C − k

which yields

ν(evzã)−ν(uyc̃+evxd̃) ≤ Mab(g̃)−M cd(g̃)+|h+−h−|/2−2(C−k) ≤ |h+−h−|−2(C−k) < 0.

Using (4), one gets:

ν(c) = ν(evzã) = k(|g̃|+ 1) + Mab(g̃) + (h+ + h−)/2 = k|g|+ M cd(g).

A similar computation applies toν(d).
Let us computeν(a). By applying Rule (R2) tog, we get

a = uyã− evxb̃− evzc̃.

Now we show thatν(a) = ν(uyã − evxb̃) by performing the following steps: first we compute
ν(evzc̃) andν(uyã − evxb̃); then, we show that the former quantity is strictly greater than the
latter.

• Condition (13) yields:

ν(evzc̃) ≥ k|(g̃|+1)+M cd(g̃)+2(C−k)+(h++h−)/2 = k|g|+M cd(g̃)+(h++h−)/2+2(C−k).

• Let us now computeν(uyã − evxb̃). By Lemma 11, Rule (R1) and the equalitys2 =

u2 + v2, the termuyã− evxb̃ may be rewritten as

X + s2Y,

with
X = 2u2(y + ehx)ā

and
Y = bevx− ua(y + 2ehx).

Let us now computeν(X), ν(Y ). Since (*) holds forg,

ν(a) = k|g|+ Mab(g)

which gives
ν(X) = k|g|+ Mab(g) + heh.

On the other hand,

ν(a) = ν(b) = k|g|+ Mab(g)

and
ν(x), ν(y + 2ehx) ≥ hmin

yield

ν(bevx), ν(ua(y + 2ehx)) ≥ k|g|+ Mab(g) + hmin

whence
ν(s2Y ) ≥ k|g|+ Mab(g) + hmin + 2(C − k).

By Lemma 8,Mab(g) = Mab(g). Moreover, we have

heh − hmin ≤ hmax < C − k

which gives
ν(X) < ν(s2Y )

and, therefore,

ν(uyã− evxb̃) = ν(X + s2Y ) = ν(X) = k|g|+ Mab(g) + heh.
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• Finally we compareν(uyã− evxb̃) andν(evzc̃). By Lemma 7 and Lemma 9,

|Mab(g)−M cd(g̃)| = |Mab(g̃)−M cd(g̃)| < 1

2
|h+ − h−| < C − k.

Since moreover

heh −
1

2
(h+ + h−) < C − k

one has
ν(evzc̃) > ν(uyã− evxb̃)

and thus
ν(a) = ν(uyã− evxb̃) = k|g|+ Mab(g) + heh,

hence the claim by the definition ofMab.

One computesν(b) using the same argument. �

Lemma 14. Letg ∈ Γ be a word of length at least five, ending byqfpe, e, f ∈ {±1}, and assume
Proposition 1 holds for all words ofΓ of length< |g|. Then

ν(a) = ν(b) = k|g|+ Mab(g),

ν(c), ν(d) ≥ k|g|+ M cd(g) + 2(C − k)

if (*) holds for g and
ν(c) = ν(d) = k|g|+ M cd(g),

ν(a), ν(b) ≥ k|g|+ M cd(g) + 2(C − k),

otherwise.

Proof. As |g| ≥ 5, we can writeg ≡ g̃qfpe, g̃ ≡ gph ≡ gp2h with e, f, h ∈ {±1}, andg̃, g, g ∈ Γ.
We split the proof into the following two cases.

• e = h. In this case we havee = f = h. Let us first computeν(a). By applying Rules
(R1) and then (R2) tog, we have

a = ã(u2y − v2x)− b̃uvh(x + y) + hvz(hvd̃− uc̃).

SetX = hvz(hvd̃− uc̃) andY = ã(u2y− v2x)− b̃uvh(x + y). Sincev2 = s2 − u2, we
may rewriteY as

Y = (x + y)(ãu− b̃vh)u− xs2ã.

Now we notice that, ifg′ ≡ g̃ph, then a′ = (ãu − b̃vh). Hence, Lemma 11 gives
a′ = 2uã− s2a which yields

Y = 2u2(x + y)ã− s2u(x + y)a− s2xã.

– First we consider the case when(∗) holds forg. Sincee = h, (∗) holds forg̃ as well
and thus the inductive assumption applied tog̃ gives

(14) ν(ã) = ν (̃b) = |g̃|k + Mab(g̃), ν(c̃), ν(d̃) ≥ |g̃|k + M cd(g̃) + 2(C − k).

Now we give estimate for the valuation ofX andY . First condition (14) gives

ν(X) ≥ k(|g̃|+ 2) + M cd(g̃) + 2(C − k) + (h+ + h−)/2.

Now
h+ − ν(x) < 2(C − k)

gives
ν(2u2(x + y)ã) < ν(s2xã).

On the other hand, since (*) holds forg̃, Equation (2) applied tow′′ = g̃, w′ = g
yieldsMab(g̃) = Mab(g) which gives

ν(2u2(x + y)ã) < ν(s2u(x + y)a),
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whence

ν(Y ) = ν(2u2(x + y)ã) = k(|g̃|+ 2) + Mab(g̃) + h+.

Finally, we showν(Y ) < ν(X). Sinceg̃ = gph,by Lemma 9, we have

|Mab(g̃)−M cd(g̃)| ≤ |h+ − h−|/2 < C − k,

from which
ν(Y ) < ν(X).

Thus
ν(a) = ν(Y ) = k(|g̃|+ 2) + Mab(g̃) + h+,

hence the claim by the definition ofMab and the equality|g| = |g̃|+ 2.
– Now we consider the case when(∗) does not hold forg and thus nor for̃g. The

inductive assumption applied tõg gives

(15) ν(ã), ν (̃b) ≥ |g̃|k + Mab(g̃) + 2(C − k), ν(c̃) = ν(d̃) = |g̃|k + M cd(g̃).

Now we give estimate for the valuation ofX andY .
Let us first notice that, ifg′ ≡ g̃ph, thenc′ = (c̃u + d̃vh). Hence, Lemma 11 gives
c′ = 2uc̃− s2c which yields

X = hvz(2uc̃− s2c).

By condition (15) and the definition ofMab, one easily proves that

ν(X), ν(Y ) ≥ k(|g̃|+ 2) + Mab(g̃) + 2(C − k).

and thus
ν(a) ≥ k(|g̃|+ 2) + Mab(g̃) + 2(C − k).

The claim now follows from the definition ofMab and the equality|g| = |g̃|+ 2.
• e 6= h. Let us now proceed withν(a). We recall that

a = ã(u2y − efv2x)− b̃uv(fx + ey) + fvz(evd̃− uc̃).

As before setX = fvz(evd̃− uc̃) andY = ã(u2y − efv2x)− b̃uv(fx + ey).
– Let us consider the case when(∗) holds forg. Sincee 6= h, (∗) does not hold for̃g.

Hence, by the inductive assumption tog̃, condition (15) holds and therefore

ν(Y ) ≥ k(|g̃|+ 2) + Mab(g̃) + 2(C − k) + hef .

Sincee 6= h, X = fvz(hvd̃ + uc̃). Noticing that, ifg′ ≡ g̃ph, thenc′ = uc̃ + hvd̃,
by applying the inductive assumption tog′, we have

ν(c′) = k(|g̃|+ 1) + M cd(g̃),

and thus

ν(X) = k(|g̃|+ 2) + M cd(g̃) + (h+ + h−)/2.

Sinceg̃ ends byp±, Lemma 9 gives

|Mab(g̃)−M cd(g̃)| ≤ |h+ − h−|/2 < C − k,

from which
ν(X) < ν(Y ).

Thus

ν(a) = ν(X) = k(|g̃|+ 2) + M cd(g̃) + (h+ + h−)/2,

hence the claim by the definition ofM cd and the equality|g| = |g̃|+ 2.
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– Finally let us consider the case when(∗) does not hold forg. Sincee 6= h, (∗) holds
for g̃. Hence, by the inductive assumption applied tog̃, condition (14) holds and
thus

ν(X) ≥ k(|g̃|+ 2) + M cd(g̃) + 2(C − k) + (h+ + h−)/2.

Usingv2 = s2 − u2 ande 6= h, Y may be rewritten as

Y = u(y + efx)(ãu + hvb̃)− s2efxã.

Now, noticing thats2a = ãu + hvb̃ yields

Y = s2u(y + efx)a− s2efxã = s2(y − efx)ua + s2efx(2ua− ã).

Lemma 11 gives nows2a = 2ua− ã so that

Y = s2(y − efx)ua + s4efxa.

Since(∗) holds forg, by applying the inductive assumption tog, we have

ν(a) = k|g|+ Mab(g),

so that

ν(s2(y − efx)ua) = k(|g|+ 3) + Mab(g) + 2(C − k) + hef .

Moreover we have

ν(s4efxa) ≥ 4(C − k) + k(|g|+ 4) + Mab(g) + ν(x).

Since, by Lemma 8,Mab(g) = Mab(g), and morevoverν(x) − hef < C − k, we
have

ν(s2(y − efx)ua) < ν(s4efxa)

and thus

ν(Y ) = k(|g|+ 3) + Mab(g) + 2(C − k) + hef .

Finally, by comparingν(X) andν(Y ) and by the equality|g̃| = |g|+ 1, we have

ν(a) ≥ k(|g̃|+ 2) + 2(C − k) + min{Mab(g) + hef , M
cd(g̃) + (h+ + h−)/2}+ 2(C − k),

hence the claim by the definition ofMab and the equality|g| = |g̃|+ 2.
By using the previous argument, one can obtain the computation ofν(b).

The computation ofν(c) andν(d) can be obtained by exchangingab with cd. �

We are finally able to give the following

Proof of Lemma 3.By contradiction.
Say we can findg 6= 1 in Γ such thatev(g) = 1. Set

g =
1

s|g|
1

y|g|q
(a + bi + cj + dk).

We know thathmax − hmin = |h+ − h−| < C − k. Moreover|g|q < |g| for all words. Then
(hmax − hmin)|g|q < (C − k)|g|, hencek|g|+ hmax|g|q < C|g|+ hmin|g|q for all choices ofg.

Lemma 10 along with Proposition 1 show that the valuation at least two expressions among
a, b, c andd if less or equal thank|g|+hmax|g|q. On the other hand,ν(s|g|y|g|q) = C|g|+ν(y)|g|q.

We know thatν(y) ≥ hmin, so thatk|g| + hmax|g|q < C|g| + ν(y)|g|q ≤ ν(s|g|y|g|q). This
shows that at least two coefficients ofev(g) have a negative valutation onν, a contradiction with
ev(g) = 1. The lemma is thus proved. �
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