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ABSTRACT. I give a short proof of the following algebraic statement: ifV is a simple vertex
algebra, then the underlying Lie conformal algebra is either abelian, or it is an irreducible central
extension of a simple Lie conformal algebra. This provides many examples of non-finite simple
Lie conformal algebras, and should prove useful for classification purposes.
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1. INTRODUCTION

The notion ofvertex algebrawas introduced by Borcherds in [Bo] to axiomatize algebraic
properties of the Operator Product Expansion (= OPE) of quantum fields in a (chiral) Conformal
Field Theory in dimension two. Vertex algebras were defined as vector spaces endowed with
infinitely many bilinear operations satisfying involved axioms that are now known as Borcherds
identities.

The construction of non-trivial examples of vertex algebras is a complicated matter, because
interesting known examples are very large objects – typically graded vector spaces of superpoly-
nomial growth, calledVertex Operator Algebras– and finite-dimensional instances degenerate
into differential commutative algebra structures [Bo]. Examples of physical interest are usu-
ally described by giving generating quantum fields, after prescribing the singular part of their
OPE. This idea can be made precise by axiomatizing the singular part of the OPE into a(Lie)
conformal algebrastructure, introduced by Kac in [K]. Lie conformal algebras [DK], and their
generalizations [DsK], only determine commutation properties of quantum fields, and the whole
vertex algebra can then be recovered by taking a suitable quotient of a certain universal envelope
[P, R, L, K] of the Lie conformal algebra.

The Lie conformal algebra theory has proved simpler than the vertex algebra one. On the
one hand, it is easy to construct small non-trivial examples; on the other hand, Lie conformal
algebras possess a close resemblance to Lie algebras – they are indeed Lie algebras in a suitable
pseudo-tensor category, see [BKV, BDK] – and can be treated by means of similar techniques.

It is clear that every vertex algebra is also a Lie conformal algebra: the resulting forgetful
functor is adjoint to the above-mentioned universal enveloping vertex algebra functor. Both
vertex algebras and Lie conformal algebras have corresponding notions of ideal and simplicity;
however, it is easier for a subspace to be an ideal with respect to the Lie conformal algebra
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structure than with respect to the vertex one. The main result of the present paper is a short and
elementary proof of the quite surprising fact that the Lie conformal algebra structure underlying
a simple vertex algebra is as simple as it can be: its only ideals are central, and the whole Lie
conformal algebra is a central extension of a simple structure. Indeed the one-dimensional vector
space spanned by the vacuum element is always a central Lie conformal ideal.

The main tool employed in the paper is identity (2) whose constant (inz) part generalizes
a formula devised by Wick [W] to compute the singular OPE of normally ordered products of
fields in a free theory, which was independently mentioned in [D] and [BK], and whose algebraic
consequences range beyond the present result.

2. VERTEX ALGEBRAS

Let V be a complex vector space. Afield on V is a formal distributionφ ∈ (EndV )[[z, z−1]]
with the property thatφ(v) ∈ V ((z)) for everyv ∈ V . In other words, if

φ(z) =
∑
i∈Z

φi z
−i−1,

thenφn(v) = 0 for sufficiently largen.

Definition 2.1 ([K]) . A vertex algebra is a (complex) vector spaceV endowed with a linear
state-field correspondenceY : V → (EndV )[[z, z−1]], a vacuum element1 ∈ V and a linear
endomorphismT ∈ EndV satisfying the following properties:

• Field axiom: Y (v, z) is a field for allv ∈ V .
• Locality : For everya, b ∈ V one has

(z − w)N [Y (a, z), Y (b, w)] = 0

for sufficiently largeN .
• Vacuum axiom: The vacuum element1 is such that

Y (1, z) = idV , Y (a, z)1 ≡ a mod zV [[z]],

for all a ∈ V .
• Translation invariance: T satisfies

[T, Y (a, z)] = Y (Ta, z) =
d

dz
Y (a, z),

for all a ∈ V .

Notice that the vector spaceV carries a naturalC[T ]-module structure. FieldsY (a, z) are
calledvertex operators, or quantum fields. Vertex algebra axioms have strong algebraic conse-
quences, among which we recall the following:

• Skew-commutativity: Y (a, z)b = ezT Y (b,−z)a.

Coefficients of quantum fields

Y (a, z) =
∑
j∈Z

a(j)z
−j−1

in a vertex algebra span a Lie algebra under the commutator Lie bracket, and more explicitly
satisfy [K]

(1) [a(m), b(n)] =
∑
j∈N

(
m

j

)
(a(j)b)(m+n−j),

for all a, b ∈ V, m, n ∈ Z.
If A andB are subspaces ofV , then we may defineA · B as theC-linear span of all products

a(j)b, wherea ∈ A, b ∈ B, j ∈ Z. It follows that if A andB are C[T ]-submodules ofV ,
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thenA ·B is also aC[T ]-submodule ofV , as by translation invarianceT is a derivation of allj-
products. Notice that in this caseA·B = B ·A by skew-commutativity, and thatA ⊂ A·V by the
vacuum axiom. It is worth noting thatA · V is always aC[T ]-submodule ofV , asa(−2)1 = Ta.

An ideal of V is a C[T ]-submoduleI ⊂ V such thatV · I ⊂ I. We will say that a vertex
algebra issimpleif its only ideals are trivial.

3. CONFORMAL ALGEBRAS

Definition 3.1 ([DK]) . A Lie conformal algebrais aC[∂]-moduleR with a C-bilinear product
(a, b) 7→ [a λ b] ∈ V [λ] satisfying the following axioms:

(C1) [a λ b] ∈ R[λ],
(C2) [∂a λ b] = −λ[a λ b], [a λ ∂b] = (∂ + λ)[a λ b],
(C3) [a λ b] = −[b −∂−λ a],
(C4) [a λ [b µ c]]− [b µ [a λ c]] = [[a λ b] λ+µ c],

for everya, b, c ∈ V .

Any vertex algebraV can be given aC[∂]-module structure by setting∂ = T . Then defining

[a λ b] =
∑
n∈N

λn

n!
a(n)b

endowsV with a Lie conformal algebra structure. Indeed, (C1) follows from the field axiom,
(C2) from translation invariance, (C3) from skew-commutativity, and (C4) from (1).

If A andB are subspaces of a Lie conformal algebraR, then we may define[A, B] as the
C-linear span of allλ-coefficients in the products[a λb], wherea ∈ A, b ∈ B. It follows from
axiom (C2) that ifA andB areC[∂]-submodules ofR, then [A, B] is also aC[∂]-submodule
of R. Notice that in this case[A, B] = [B, A] by axiom (C3). A Lie conformal algebraR is
solvableif, after defining

R0 = R, Rn+1 = [Rn, Rn], n ≥ 0,

we find thatRN = 0 for sufficiently largeN . R is solvable iff it contains a solvable idealS
such thatR/S is again solvable. Solvability of a nonzero Lie conformal algebraR trivially
fails if R equals its derived subalgebraR′ = [R,R]. An ideal of a Lie conformal algebraR
is a C[∂]-submoduleI ⊂ R such that[R, I] ⊂ I. If I, J are ideals ofR, then [I, J ] is an
ideal as well. An idealI is said to becentral if [R, I] = 0, i.e., if it is contained in thecentre
Z = {r ∈ R|[r λs] = 0 for all s ∈ R} of R. A Lie conformal algebraR is simpleif its only
ideals are trivial, andR is notabelian, i.e., [R,R] 6= 0.

Notice that, whenV is a vertex algebra, we should distinguish between ideals of the vertex
algebra structure and ideals of the underlying Lie conformal algebra. Indeed, ideals of the vertex
algebra are also ideals of the Lie conformal algebra, but the converse is generally false, as it can
be seen by observing thatC1 is always a central ideal of the Lie conformal algebra structure, but
it is never an ideal of the vertex algebra.

In order to avoid confusion, we will denote byV Lie the Lie conformal algebra structure un-
derlying a vertex algebraV .

4. A POISSON-LIKE GENERALIZATION OF THE WICK FORMULA

The following formula relating the vertex and Lie conformal algebra structures is the key tool
in the present paper.

Proposition 4.1. If a, b, c are elements of the vertex algebraV , then:

(2) [a λ Y (b, z) c] = eλzY ([a λ b], z) c + Y (b, z) [a λ c].

Proof. Multiply both sides of (1) byλmz−n−1/m!, then add up over allm ∈ N, n ∈ Z. Applying
both sides toc ∈ V proves the statement. �
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Lemma 4.1. Let U ⊂ V be vector spaces, andp(λ), q(λ) be elements ofV ((z))[λ]. If all
coefficients of

eλzp(λ) + q(λ)

lie in U((z)), then the same is true for the coefficients ofp(λ).

Proof. If m andn are the degrees ofp andq as polynomials inλ, we write

p(λ) =
m∑

i=0

pi(z)λi, q(λ) =
n∑

j=0

qi(z)λj.

The expressioneλzp(λ) + q(λ) is a power series inλ, and the coefficient multiplyingλN is
independent ofq(λ) if N > n. If alsoN ≥ m, it equals

m∑
i=0

zN−i

(N − i)!
pi(z) = zN

m∑
i=0

1

(N − i)!
· pi(z)

zi
.

If all λ-coefficients ofeλzp(λ) + q(λ) lie in U((z)), then

m∑
i=0

1

(N − i)!
· pi(z)

zi
∈ U((z))

for all sufficiently largeN . However, the(m+1)× (m+1) matrix whose(i, j)-entry is1/(N +
j − i)! is non-singular, hence

pi(z)

zi
∈ U((z)),

thus showing thatp(λ) ∈ U((z))[λ]. �

5. A SIMPLICITY ARGUMENT

Theorem 5.1.LetV be a vertex algebra, andI ⊂ V a subspace. Then[I, V ] is an ideal ofV .

Proof. Choosea ∈ I, b, c ∈ V . The linear span of all coefficients of[aλY (b, z)c], when
a ∈ I, b, c ∈ V equals[I, V · V ] = [I, V ]. By Lemma 4.1 applied to (2), all coefficients of
Y ([aλb], z)c, a ∈ I, b, c ∈ V lie in [I, V ], thus[I, V ] · V ⊂ [I, V ]. This shows that[I, V ] is a
C[T ]-submodule ofV , and is moreover a right, hence two-sided, ideal ofV . �

Corollary 5.1. Let V be a simple vertex algebra. Then eitherV Lie is abelian, or it is an irre-
ducible central extension of a simple Lie conformal algebra.

Proof. Let I be a proper ideal ofV Lie. Then[I, V ] ⊂ I is a proper ideal ofV , forcing [I, V ] = 0
by simplicity. Thus all proper ideals ofV Lie lie in the centreZ of V Lie, hence eitherV Lie = Z,
or V Lie/Z has no non-trivial ideal; in the former caseV Lie is abelian.

In the latter,[V, V ] is a nonzero ideal ofV , henceV = [V, V ]. ThenV Lie is not solvable, as
it equals its derived subalgebra, soV Lie/Z cannot be abelian, and is therefore simple. AsV Lie

equals its derived algebra, it is an irreducible central extension. �

Remark 5.1. A consequence of Corollary 5.1 is that all simple vertex algebra structures on
a finitely generatedC[∂]-module areabelian, i.e. have a trivial underlying conformal algebra
structure. It easily follows that ifV is a finite vertex algebra, thenV Lie is solvable. A more
detailed investigation of finite vertex algebras can show thatV Lie is indeed nilpotent, as soon as
V contains no elementa such thatY (a, z)a = 0.1 This will be done in a forthcoming paper.

1This is analogous to demanding that a commutative algebra possess no nilpotent elements.
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Remark 5.2. LetV be a vertex algebra, and assume that whenever a subspaceU ⊂ V is invariant
under the action of coefficients of all quantum fields, thenU is aC[∂]-module, and therefore an
ideal. This happens, for instance, if∂ = T is a coefficient of some quantum field, e.g., in a
(conformal) Vertex Operator Algebra, whereT = L−1.

By a Schur Lemma argument, one may then show that if the vertex algebraV is simple and
countable-dimensional – as it is always the case whenV is aZ-graded vector space with finite
dimensional homogeneous components – then the only central elements in the underlying Lie
conformal algebra are scalar multiples of the vacuum element. ThenV Lie is an irreducible central
extension of a simple Lie conformal algebra by the one-dimensional idealC1.

Remark 5.3. If R is an irreducible central extension of a simple Lie conformal algebra by a one-
dimensional centreC1, and a grading is given onR which is compatible with its Lie conformal
algebra structure, then there exists at most one simple vertex algebra structure compatible with
the same grading, in which1 is the vacuum element. Indeed, the universal enveloping vertex
algebra ofR has a unique maximal graded ideal, which must intersectsR trivially because of the
vacuum axiom, and of the simplicity ofR/C1.

This provides a strategy for finding simple vertex algebras, by first looking for simple Lie
conformal algebra structures and their possible central extensionsR, and then checking whether
the unique simple quotient of the universal enveloping vertex algebra isR or a larger space. This
strategy might become effective for families of Lie conformal algebras for which a classification
of simple objects is likely to be achieved, e.g., under a polynomial growth or a finite Gelfand-
Kirillov dimension assumption [Z1, Z2], [X].
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