
FINITE VERTEX ALGEBRAS AND NILPOTENCE

ALESSANDRO D’ANDREA

CONTENTS

1. Introduction 1
2. Generalities on vertex and Lie conformal algebras 3
2.1. Vertex algebras 3
2.2. A non-commutative finite vertex algebra 5
2.3. The nilradical 6
2.4. Lie conformal algebras 7
2.5. Finite simple Lie conformal algebras 8
2.6. Centre and torsion 8
2.7. Irreducible central extensions of the Virasoro conformal algebra 9
3. Finite vertex algebras 11
3.1. Commutativity of finite simple vertex algebras 11
3.2. Solvability of finite vertex algebras 13
4. Conformal adjoint decomposition 14
4.1. Finite modules over finite solvable Lie conformal algebras 14
4.2. Matrix form 15
4.3. Adjoint action on a vertex algebra of a Lie conformal subalgebra 16
5. Nilpotence of finite reduced vertex algebras 18
References 20

1. INTRODUCTION

In this paper I investigate the effect of a finiteness assumption on the singular part of the Op-
erator Product Expansion of quantum fields belonging to a vertex algebra. The vertex algebra
structure encodes algebraic properties of chiral fields in a 2-dimensional Conformal Field The-
ory. Its axiomatic definition was given by Borcherds in [B1], and amounts to associating with
each elementv of a vector spaceV avertex operator, or quantum field,

Y (v, z) ∈ (EndV )[[z, z−1]],

satisfying singular generalisations of the commutativity and unit axioms for the left multipli-
cation operators in an associative algebra. This structure captures all algebraic properties of
families of mutually local fields, containing the identity field, acting on some vector space of
physical statesV .

The products encoding the algebraic properties of a vertex algebra structure are typically writ-
ten in terms of a formal expansion

(1.1) Y (a, z)Y (b, w) =
∞∑
j=0

Y (a(j)b, w)

(z − w)j+1
+ : Y (a, z)Y (b, w) :
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of the composition of quantum fields, called the Operator Product Expansion (OPE for short).
The singular part

∞∑
j=0

Y (a(j)b, w)

(z − w)j+1

of the OPE (1.1) only depends on the commutation properties of fieldsY (·, z), and is in many
ways remindful of a Lie algebra; the regular part: Y (a, z)Y (b, w) : is callednormally ordered
productor Wick product, and essentially depends on the action of quantum fields onV . It is to
some extent similar to an associative commutative product.

One can disregard the latter part of the structure, and axiomatize the singular part of the OPE
only. The thus obtained algebraic structure is called “(Lie) conformal algebra”, but it is also
known in the literature as vertex Lie algebra [P, DLM], or Lie pseudoalgebra [BDK] overC[∂].
Lie conformal algebras were introduced by Kac [K] to characterize algebraic properties of pair-
wise local formal distributions (inz andz−1) with values in a Lie algebra. Hence, every vertex
algebra is thus also a Lie conformal algebra, and the latter structure measures the failure of the
normally ordered product from being associative and commutative.

Indeed, if the Lie conformal algebra underlying a vertex algebra is trivial, then the product
defined asa ◦ b = Y (a, z)b|z=0 gives [B1] a commutative associative algebra structure onV
from which it is possible to recover the vertex algebra product. In fact, in this caseY (a, z)b =
(ezTa) ◦ b – whereT is the (infinitesimal) translation operatorY (Ta, z) = dY (a, z)/dz – and is
therefore completely determined by◦.

The main interest in the role of Lie conformal algebras in vertex algebra theory is due to the
existence [L, R, P, K] of auniversal enveloping vertex algebrafunctor, which is adjoint to the
forgetful functor from vertex to Lie conformal algebras. Many interesting vertex algebras are
in fact obtained as simple quotients of the universal enveloping vertex algebra associated with
a suitably chosen (and typically much smaller) Lie conformal algebra. However, a different
strategy is possible: one could, in principle, analyse possible vertex algebra structures by first
studying the singular OPE (i.e., the underlying Lie conformal algebra), and then inserting the
normally ordered product on top of this. My aim in this note is to show that this strategy gives
interesting results whenV is a finitely generatedC[T ]-module.

The physically interesting vertex algebras which are usually considered are called Vertex Op-
erator Algebras (=VOAs). They are graded vector fields that are often endowed with some
additional structure (e.g., a Virasoro field inducing the grading); however, all known examples
are very large objects – typically of super-polynomial growth. A first explanation for this is
Borcherds’ observation [B2] that in a finite-dimensional vertex algebra all productsY (a, z)b are
necessarily regular inz, as the underlying Lie conformal algebra must be trivial (because all
elements are torsion, see [K, DK]). The vertex algebra structure reduces, as mentioned above, to
that of a unital finite-dimensional commutative associative algebra with a derivationT . Also, in
the presence of a grading induced by a Virasoro field the dimension of the homogeneous com-
ponent of degreen is at least the number of partitions ofn, which grows super-polynomially.
However, no interesting (e.g., simple) examples are known of a vertex algebra structure on a
graded vector space of polynomial growth, even in the absence of the additional requirements
for a VOA.

After finite-dimensional vector spaces, the next to easiest case is that of finitely generated
modules overC[T ]: they are vector spaces of linear growth when a grading is given, and this is
the case I handle in this note. There seems to be no previously known description of algebraic
properties of suchfinite vertex algebrasthat are not finite-dimensional.

Section 2 contains a list of definitions and basic results in the theory of Lie conformal algebras
and vertex algebras. I also exhibit the motivating Example 2.2, showing that there exist finite
vertex algebras that do not reduce to associative commutative algebras. However, the vertex
algebra provided in this example is constructed by means of nilpotent elements: as in the case of
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commutative algebras, such elements form an ideal of the vertex algebra which I callnilradical.
The quotient ofV by its nilradical has no non-zero (strongly) nilpotent elements.

Sections 3.1 and 3.2 apply results from [D] to the case of finite vertex algebras in order to show
that finite simple vertex algebras are commutative (Theorem 3.2), hence that the Lie conformal
algebra structure underlying a finite vertex algebra is always solvable (Theorem 3.3).

In Section 4, I study how a finite vertex algebra decomposes under the adjoint action of a Lie
conformal subalgebra. After describing the representation theory of finite solvable Lie conformal
algebras I show, in Theorem 4.4, that the generalized weight submodule with respect to any non-
zero weight is an abelian ideal of the vertex algebra structure. The presence of abelian ideals
witnesses the existence of nilpotent elements, therefore there can be no non-zero weights in the
absence of nilpotent elements. This strong algebraic fact is the basis for the results presented in
Section 5, and is proved by means of the identity (3.2) introduced in Section 3.1.

The main result from last section is Theorem 5.2 stating that any elements lying in a finite
vertex algebraV with trivial nilradical has a nilpotent adjoint conformal action onV . By a Lie
conformal algebra analogue of Engel’s theorem, developed in [DK], the Lie conformal algebra
underlyingV must indeed (Theorem 5.1) be nilpotent. This statement essentially depends on
both the finiteness assumption and the presence of a vertex algebra structure: it basically means
that every finite vertex algebra may be described as an extension of a nilpotent (as a Lie confor-
mal algebra) vertex algebra by an ideal only containing nilpotent elements (i.e., contained in the
nilradical).

The representation theory of the Virasoro Lie algebra or of affine Kac-Moody algebras is never
used. The spirit of this paper is that the interplay between the Operator Product Expansion and
theλ-bracket, in the case of a vertex algebra linearly generated by a finite number of quantum
fields together with their derivatives, is strong enough to allow one to prove a number of results
in a totally elementary way, even in the absence of a grading.

Some of the ideas contained in this work originate from an old manuscript written between
1998 and 1999 while I was visiting Université de Paris VI “Pierre et Marie Curie” and Université
de Strasbourg “Louis Pasteur” as a European Union TMR post-doc. I would like to thank both
institutions for hospitality.

2. GENERALITIES ON VERTEX AND L IE CONFORMAL ALGEBRAS

2.1. Vertex algebras. In what follows I quote some well-known facts about vertex algebras:
precise statements and proofs can be found in [K]. LetV be a complex vector space. Afield on
V is an elementφ(z) ∈ (EndV )[[z, z−1]] with the property thatφ(v) ∈ V ((z)) = V [[z]][z−1] for
everyv ∈ V . In other words, if

φ(z) =
∑
i∈Z

φiz
−i−1

thenφn(v) = 0 for sufficiently largen.

Definition 2.1. A vertex algebra is a (complex) vector spaceV endowed with a linearstate-field
correspondenceY : V → (EndV )[[z, z−1]], a vacuum element1 and a linear endomorphism
T ∈ EndV satisfying the following properties:

• Field axiom: Y (v, z) is a field for allv ∈ V
• Locality axiom: For everya, b ∈ V one has

(z − w)N [Y (a, z), Y (b, w)] = 0

for sufficiently largeN .
• Vacuum axiom: The vacuum element1 is such that

Y (1, z) = idV , Y (a, z)1 ≡ a mod zV [[z]],

for all a ∈ V .
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• Translation invariance: T satisfies

[T, Y (a, z)] = Y (Ta, z) =
d

dz
Y (a, z),

for all a ∈ V .

Note that the vector spaceV carries a naturalC[T ]-module structure. FieldsY (a, z) are called
vertex operators, or quantum fields.

A vertex algebra is a family of pairwise local fields acting onV containing the identity (con-
stant) field. Indeed every family of pairwise local fields containing the identity field can be real-
ized as a vertex algebra up to changing the vector spaceV of physical states (see [K]). The vertex
algebra structure therefore captures all algebraic aspects of families of pairwise local fields. A
vertex algebraV is finite if V is a finitely generatedC[T ]-module.

There are two basic constructions of new vertex operators from two given ones. The first one is
given by rephrasing what we earlier called “singular OPE”: since(z−w)N kills the commutator
[Y (a, z), Y (b, w)], the latter may be expanded into a linear combination:

(2.1)
N−1∑
j=0

cj(w)
δ(j)(z − w)

j!
,

where
δ(z − w) =

∑
j∈Z

wjz−j−1

is the Dirac delta formal distribution andδ(j) its j.th derivative with respect tow. The uniquely
determined fieldscj(w) are then vertex operatorsY (cj, w) corresponding to elementscj =
a(j)b = a(j)(b) where thea(j) ∈ EndV are the coefficients of

Y (a, z) =
∑
j∈Z

a(j)z
−j−1.

It is customary to view theC-bilinear mapsa ⊗ b 7→ a(j)b, j ∈ Z, as products describing
the vertex algebra structure. Locality can be rephrased by stating that commutators between
coefficients of quantum fields satisfy:

(2.2) [a(m), b(n)] =
∑
j≥0

(
m

j

)
(a(j)b)(m+n−j),

for all a, b ∈ V .
Another way to put together quantum fields to produce new ones is given by the normally

ordered product (or Wick product) defined as:

(2.3) : Y (a, z)Y (b, z) : = Y (a, z)+Y (b, z) + Y (b, z)Y (a, z)−,

where

(2.4) Y (a, z)− =
∑
j∈N

a(j)z
−j−1, Y (a, z)+ = Y (a, z)− Y (a, z)−.

Then: Y (a, z)Y (b, z) : is also a vertex operator, and it equalsY (a(−1)b, z).

Example 2.1. Let V be a unital associative commutative algebra,T a derivation ofV . Then
settingY (a, z)b = (ezTa)b and choosing the unit1 ∈ V to be the vacuum element makesV into
a vertex algebra.

Such a vertex algebra is calledholomorphic1 in [K], and is the “uninteresting” case of a vertex
algebra structure. It occurs whenever all vertex operators are regular inz: in this case one can

1Notation and terminology are often contrasting and misleading in the vertex algebra world, and this is no ex-
ception. Notice that in most of the literature vertex operator algebras are known to be holomorphic if they have a
semi-simple representation theory, and the adjoint representation is the unique irreducible module, see [DM].



FINITE VERTEX ALGEBRAS AND NILPOTENCE 5

always construct an associative commutative algebra, together with a derivation, inducing the
vertex algebra structure as in Example 2.1. This is always the case whenV is finite-dimensional
[B1, B2]. One of the consequences of the vertex algebra axioms is the following:

• Skew-commutativity: Y (a, z)b = ezTY (b,−z)a
for all choices ofa, b.

If A andB are subsets ofV , then we may defineA·B as theC-linear span of all productsa(j)b,
wherea ∈ A, b ∈ B, j ∈ Z. If B is aC[T ]-submodule ofV , thenA ·B is also aC[T ]-submodule
of V , as by translation invarianceT is a derivation of allj-products, and(Ta)(j) = −ja(j−1).

Notice that by skew-commutativity,A · B is contained in theC[T ]-submodule generated by
B ·A; equalityA ·B = B ·A then holds wheneverA ·B andB ·A are bothC[T ]-submodules of
V . Also, observe thatA ⊂ A·V by the vacuum axiom and thatA·V is always aC[T ]-submodule
of V , asa(−2)1 = Ta. In particular,a · V = Ca · V is aC[T ]-module ofV containinga.

Before proceeding, recall that asubalgebraof a vertex algebraV is a C[T ]-submoduleU
containing1 such thatU · U = U . In other words, all coefficients ofY (a, z)b belong toU
whenevera and b do. Similarly, aC[T ]-submoduleI of V is an ideal if I · V ⊂ I; skew-
commutativity then shows thatV · I = I · V . A proper ideal can never contain the vacuum1,
and ifM is an ideal ofV , thenM + C1 is a subalgebra, whose rank as aC[T ]-module equals
that ofM .

The quotientV/I of a vertex algebraV by an idealI has a unique vertex algebra structure
making the canonical projectionπ : V → V/I a vertex algebra homomorphism, i.e., aC[T ]-
homomorphism such thatπ(a(n)b) = π(a)(n)π(b) for everya, b ∈ V , n ∈ Z.

A vertex algebraV is commutativeif all quantum fieldsY (a, z), a ∈ V commute with one
another; equivalently, ifa(n)b = 0 for all a, b ∈ V, n ≥ 0. Commutative vertex algebras are all as
in Example 2.1. Thecentreof V is the subspace of all elementsc ∈ V such thata(n)c = 0 = c(n)a
for all a ∈ V, n ≥ 0. Then, by (2.2), coefficients ofY (c, z) commute with coefficients of all
quantum fields.

Lemma 2.1. Assume thatc lies in the centre of a vertex algebraV . Then the subspaceker c(−1)

is stable under the action of coefficients of all quantum fieldsY (a, z), a ∈ V . In particular,
ker c(−1) is an ideal ofV as soon as it is aC[T ]-submodule, e.g., whenTc = 0.

Proof. By (2.2) we have

a(m)(c(−1)x)− c(−1)(a(m)x) =
∑
j≥0

(
m

j

)
(a(j)c)(m−j−1)x,

for all a ∈ V,m ∈ Z. Sincec lies in the centre ofV , the right hand side vanishes; hence if
x ∈ ker c(−1), it follows thata(m)x ∈ ker c(−1) as well. The last claim follows from the fact that
c−1(Tx) = T (c(−1)x)− (Tc)(−1)x. �

2.2. A non-commutative finite vertex algebra. The following is an example of a vertex alge-
bra structure on a finitely generatedC[T ]-module for which some positive productsu(j)v, j ≥ 0
are non-zero.

Example 2.2.Let V = C[T ]a⊕ C[T ]b⊕ C1. Define1 to be the vacuum element ofV and set

Y (a, z)b = Y (b, z)a = Y (b, z)b = 0,

Y (1, z) = idV
Y (a, z)1 = ezTa Y (b, z)1 = ezT b

Y (a, z)a = ezT/2ψ(z)b,

whereψ(z) = ψ(−z) is any Laurent series inz. Extend byC-linearity the state-field correspon-
denceY to all of V after setting:

Y (Tu, z)v =
d

dz
Y (u, z)v
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and

Y (u, z)(Tv) = (T − d

dz
)(Y (u, z)v),

so that translation invariance is satisfied. The only vertex algebra axiom still to check is locality,
and the only non-trivial statement to prove is

(z − w)n[Y (a, z), Y (a, w)]1 = 0,

for somen. However we have

[Y (a, z), Y (a, w)]1 = Y (a, z)ewTa− Y (a, w)ezTa

= e(z+w)T/2 (ιz,wψ(z − w)− ιw,zψ(w − z)) b,

whereιz,w (resp.ιw,z) is a prescription to consider the expansion in the domain|z| > |w| (resp.
in the domain|w| > |z|), see [K]. If we choosen so thatznψ(z) is regular inz, multiplication by
(z−w)n makes the above expression zero, due to the fact thatψ(z) = ψ(−z): it is anexpansion
of zeroin the sense of [FHL]. Notice that if we choose a non-regularψ(z), then at least one of
the productsa(j)a, j ≥ 0, is non-zero, so thatV is non-commutative.

In the example above, elementsa andb arenilpotent, in a sense that we are about to clarify.

2.3. The nilradical. An idealI of a vertex algebraV is abelianif I2 = I · I = 0. An element
a ∈ V is strongly nilpotentof degreen if every product of elements inV containinga at leastn
times, under allj-products and any parenthesization, gives0.

Let x ∈ V be a strongly nilpotent element of degreen > 2, anda be a non-zero product of
[(n+ 1)/2] copies ofx. Thena is strongly nilpotent of degree two.

Lemma 2.2. Let a ∈ V be a strongly nilpotent element of degree two. Thena generates an
abelian ideal ofV .

Proof. Clear. �

Remark 2.1. An elementa ∈ V is (non-strongly) nilpotent of degreen if every product of at
leastn copies ofa, under any product and parenthesization gives0. If V is either commutative
or graded, then it is easy to show that every nilpotent element is strongly nilpotent. In particular,
Y (a, z)a = 0 guarantees thata · V is an abelian ideal ofV .

Corollary 2.1. A vertex algebraV possesses non-zero strongly nilpotent elements if and only if
it contains a non-zero abelian ideal.

Proof. Every non-zero element in an abelian ideal is strongly nilpotent of degree2. The converse
is Lemma 2.2. �

Let us now denote
I1 = I, In+1 = In · In, n > 0.

ThenI is anil-ideal if In = 0 for sufficiently large values ofn.

Lemma 2.3.LetV be a vertex algebra,N ⊂ V a nil-ideal,π : V → V/N the natural projection.
ThenI ⊂ V is a nil-ideal if and only ifπ(I) is a nil-ideal ofV/N .

Proof. We haveπ(In) = π(I)n, hence ifI is a nil-ideal,π(I) is too. On the other hand, if
π(I)n = π(In) = 0, thenIn ⊂ N . ThusIn+k ⊂ Nk which is0 for sufficiently largek. �

Corollary 2.2. The sum of nil-ideals is a nil-ideal.

Proof. Let I, J be nil-ideals ofV , and letπ : V → V/I be the natural projection. Thenπ(I+J)
equalsπ(J) which is a nil-ideal. �

Corollary 2.3. LetV be a finite vertex algebra. ThenV has a unique maximal nil-ideal.

Proof. Existence of some maximal nil-ideal follows from finiteness of theC[T ]-moduleV ,
which is therefore Noetherian; uniqueness from Corollary 2.2. �
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The unique maximal nil-ideal of a finite vertex algebraV is called thenilradical N(V ) of
V . It is clear that every strongly nilpotent element ofV lies inN(V ). Furthermore, the quotient
V/N(V ) has no strongly nilpotent elements, hence it has a trivial nilradical. We will call a vertex
algebra with a trivial nilradical, or equivalently with no non-trivial abelian ideal, areducedvertex
algebra.

Remark 2.2. Both in the case of commutative and graded vertex algebras, an element lies in the
nilradicalN(V ) if and only if it is nilpotent, hence strongly nilpotent; however, we will not need
this fact.

2.4. Lie conformal algebras. Algebraic properties of commutators of quantum fields are en-
coded in the notion of Lie conformal algebra.

Definition 2.2 ([DK]) . A Lie conformal algebrais aC[∂]-moduleR with a C-bilinear product
(a, b) 7→ [a λ b] ∈ V [λ] satisfying the following axioms:

(C1) [a λ b] ∈ R[λ],
(C2) [∂a λ b] = −λ[a λ b], [a λ ∂b] = (∂ + λ)[a λ b],
(C3) [a λ b] = −[b −∂−λ a],
(C4) [a λ [b µ c]]− [b µ [a λ c]] = [[a λ b] λ+µ c],

for everya, b, c ∈ V .

Any vertex algebraV can be given aC[∂]-module structure by setting∂ = T . Then defining

[a λ b] =
∑
n∈N

λn

n!
a(n)b

endowsV with a Lie conformal algebra structure. Indeed (C1) follows from the field axiom,
(C2) from translation invariance, (C3) from skew-commutativity, and (C4) from (2.2). In all that
follows we will denote the infinitesimal translation operatorT in a vertex algebra by∂.

If A andB are subspaces of a Lie conformal algebraR, then we may define[A,B] as theC-
linear span of allλ-coefficients in the products[a λb], wherea ∈ A, b ∈ B. It follows from axiom
(C2) that ifB is aC[∂]-submodule ofR, then[A,B] is also aC[∂]-submodule ofR. Notice that
if A andB are bothC[∂]-submodules, then[A,B] = [B,A] by axiom (C3). Asubalgebraof a
Lie conformal algebraR is aC[∂]-submoduleS ⊂ R such that[S, S] ⊂ S.

A Lie conformal algebraR is solvableif, after defining

R(0) = R, R(n+1) = [R(n), R(n)], n ≥ 0,

we find thatR(N) = 0 for sufficiently largeN . R is solvable if and only if it contains a solvable
ideal S such thatR/S is again solvable. Solvability of a nonzero Lie conformal algebraR
trivially fails if R equals itsderived subalgebraR′ = [R,R]. Similarly,R is nilpotent if, after
defining

(2.5) R[0] = R, R[n+1] = [R,R[n]], n ≥ 0,

we find thatR[N ] = 0 for sufficiently largeN .
An ideal of a Lie conformal algebraR is aC[∂]-submoduleI ⊂ R such that[R, I] ⊂ I. If

I, J are ideals ofR, then[I, J ] is an ideal as well. An idealI is said to becentral if [R, I] = 0,
i.e., if it is contained in thecentreZ = {r ∈ R|[r λs] = 0 for all s ∈ R} of R. R is abelianif it
coincides with its centre, i.e., if[R,R] = 0.

A Lie conformal algebraR is simpleif its only ideals are trivial, andR is not abelian. An
interesting such example occurs when, for each choice of0 6= r ∈ R, it occurs that[r, R] =
[Cr, R] = R. In this caseR is astrongly simpleLie conformal algebra.

Notice that, whenV is a vertex algebra, we should distinguish between ideals of the vertex
algebra structure and ideals of the underlying Lie conformal algebra. Indeed, ideals of the vertex
algebra are also ideals of the Lie conformal algebra, but the converse is generally false, as it can
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be seen by noticing thatC1 is always a central ideal of the Lie conformal algebra structure, but
it is never an ideal of the vertex algebra.

In order to avoid confusion, we will denote byV Lie the Lie conformal algebra structure under-
lying a vertex algebraV ; similarly, if S ⊂ V is aC[∂]-submodule closed under all nonnegative
products(n), n ∈ N, we will denote bySLie the corresponding Lie conformal algebra structure.
The reader should pay special attention to the fact that a vertex algebraV is commutative if and
only if the Lie conformal algebraV Lie is abelian, and that claiming thatI is an abelian ideal of
V is a stronger statement than saying thatI is an abelian ideal inV Lie. We will say thatV is
solvable (resp. nilpotent), wheneverV Lie is.

2.5. Finite simple Lie conformal algebras. Every Lie conformal algebraR has a maximal
solvable ideal, calledradical of R and denoted byRadR. A Lie conformal algebra is called
semi-simple if it has no solvable ideal; the quotientR/RadR is always semi-simple.

An investigation of Lie conformal algebra structures on finitely generatedC[∂]-modules was
undertaken in [DK], where a classification of simple and semi-simple ones, together with gener-
alizations of standard theorems in Lie representation theory, are presented.

It turns out that the only (up to isomorphism) simple Lie conformal algebra structures over
finitely generatedC[∂]-modules are the Virasoro conformal algebra and current conformal al-
gebras over a finite-dimensional simple Lie algebra, which are described below. Semi-simple
instances are direct sums of Lie conformal algebras that are either simple or non-trivial semi-
direct sums of a Virasoro conformal algebra with a simple current one (see [DK]).

Example 2.3.LetR be a freeC[∂]-module of rank one, generated by an elementL. Then

(2.6) [LλL] = (∂ + 2λ)L

uniquely extends to a Lie conformal algebra structure onR, which is easily seen to be strongly
simple.R = Vir is calledVirasoro conformal algebra.

Example 2.4. Let g be a finite-dimensional complex Lie algebra, and letR = C[∂] ⊗ g. There
exists a uniqueλ-bracket onR extending

(2.7) [gλh] = [g, h],

for g, h ∈ g ' 1 ⊗ g ⊂ R, and satisfying all axioms for a Lie conformal algebra.R is called
current conformal algebraand is denote byCur g. It is a simple Lie conformal algebra whenever
g is a simple Lie algebra. However,Cur g is never strongly simple, as for no choice ofg ∈ g
does adg ∈ Endg satisfy surjectivity.

2.6. Centre and torsion. We now need a statement on subalgebras of a finite Lie conformal
algebraR which have the same rank asR.

Definition 2.3. Let U, V beC[∂]-modules. Aconformal linear mapfrom U to V is aC-linear
mapfλ : U → V [λ] such thatfλ(∂u) = (∂ + λ)fλu for all u ∈ U .

The space of all conformal linear maps fromU to V is denoted byChom(U, V ). It can be
turned into aC[∂]-module via

(∂f)λu = −λfλu.

Remark 2.3. Let U, V,W be C[∂]-modules. AC[∂]-linear homomorphismφ : V → W in-
duces a correspondingC[∂]-homomorphismφ∗ : V [λ] → W [λ]. Then iff ∈ Chom(U, V ), the
compositionφ∗ ◦ f lies inChom(U,W ).

Lemma 2.4. Let U, V be C[∂]-modules,f ∈ Chom(U, V ). If U0 ⊂ U, V0 ⊂ V are C[∂]-
submodules such thatfλ(u0) ∈ V0[λ] for all u0 ∈ U0, thenf induces a uniquef ∈ Chom(U/U0, V/V0).

Proof. Let π : V → V/V0 be the natural projection. Thenπ∗ ◦ f is a conformal linear map from
U to V/V0 which kills all elements fromU0. �
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The most typical example of a conformal linear map comes from the adjoint action in Lie
conformal algebras. Indeed, ifR is a Lie conformal algebra, andr ∈ R, then

(adr)λx = [r λx]

defines a conformal linear map fromR into itself, due to axiom (C2).

Lemma 2.5([DK]) . If f ∈ Chom(U, V ) andu ∈ TorU , thenfλu = 0.

Corollary 2.4. The torsion of a Lie conformal algebra is contained in its centre.

Proof. LetR be a Lie conformal algebra,r ∈ R, t ∈ TorR. The adjoint action ofr is a conformal
linear map fromR into itself, hence it maps the torsion elementt to [rλt] = 0 by Lemma 2.5. �

Lemma 2.6. Let S ⊂ R be finite Lie conformal algebras, such thatR/S is a torsionC[∂]-
module. ThenS is an ideal ofR containingR′, i.e.,R/S is abelian.

Proof. SinceS is a subalgebra ofR, the adjoint action ofS onR stabilizes theC[∂]-submodule
S. By Lemma 2.4,S acts on the quotientR/S, which is torsion. By Lemma 2.5, the action ofS
onR/S is trivial, or in other words[S,R] ⊂ S, which amounts to saying thatS is an ideal ofR.

Thus, the adjoint action ofR on itself stabilizesS, and we may repeat the above argument to
conclude thatR′ = [R,R] ⊂ S. It immediately follows thatR/S is abelian. �

2.7. Irreducible central extensions of the Virasoro conformal algebra. In this section we
compute all finite irreducible central extensions of the Virasoro conformal algebra. Finite central
extensions ofVir are described, up to equivalence, by cohomology classes [BKV] ofH2(Vir, Z),
whereZ is the finitely generatedC[∂]-module describing the centre2.

The centreZ being a finitely generatedC[∂]-module, we can decompose it (non-canonically)
into a direct sum of its torsion with a freeC[∂]-module. This leads to a corresponding direct sum
decomposition of the related cohomology. In order to understand finite central extensions ofVir,
it is thus sufficient to computeH2(Vir, Z) whenZ is either a freeC[∂]-module of rank one, or
an indecomposable torsionC[∂]-module. The following facts were proved in [DK] and [BKV]
respectively:

Proposition 2.1. All central extensions of Vir by a freeC[∂]-module of rank one are trivial.

Proposition 2.2. Let Cα, α ∈ C, be the1-dimensionalC[∂]-module on which the action of∂ is
given via scalar multiplication byα. Then:

• if α 6= 0 all central extensions of Vir byCα are trivial;
• if α = 0 then there is a unique (up to isomorphism and scalar multiplication) non-trivial

central extension of Vir byC = C0 given by

(2.8) [LλL] = (∂ + 2λ)L+ λ3.

Remark 2.4. A computation of2-cocycles ofVir with values in the trivialVir-moduleC0 shows
that they are of the formp(λ) = c1λ+ c3λ

3, whereas trivial2-cocycles (i.e.,2-coboundaries) are
of the formp(λ) = c1λ.

Recall that a central extension is calledirreducible if it equals its derived algebra. Clearly, no
non-zero trivial central extension is irreducible. My aim is to show that the non-trivial central
extension (2.8) is the unique (non-zero) irreducible finite central extension ofVir.

Proposition 2.3. LetC be a finitely generated torsionC[∂]-module on which∂ acts invertibly.
Then every central extension of Vir byC is trivial.

2It is fairly easy to show that every finite central extension ofVir splits as an extension ofC[∂]-modules.
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Proof. Let the central extension be given by

[LλL] = (∂ + 2λ)L+ p(λ),

for somep(λ) ∈ C[λ]. By a computation similar to that in [DK, Lemma 8.11], one obtains
∂p(λ) = (∂ + 2λ)p(0), whencep(λ) = (∂ + 2λ)∂−1p(0). ThenL + ∂−1p(0) is a standard
generator of a Virasoro conformal algebra, hence it splits the central extension. �

Lemma 2.7. Solutionsp(∂, x) ∈ C[∂, x]/(∂N+1) of

(2.9) (λ− µ)p(∂, λ+ µ) = (∂ + λ+ 2µ)p(∂, λ)− (∂ + 2λ+ µ)p(∂, µ) mod ∂N+1

are all of the formp(∂, λ) = (∂ + 2λ)q(∂) + cλ3∂N mod ∂N+1, c ∈ C.

Proof. By induction onN ≥ 0. The basis of induction follows from Remark 2.4. Assume
nextN > 0. Then (2.9) also holds modulo∂N , and inductive assumption givesp(∂, λ) =
(∂ + 2λ)q(∂) + c0λ

3∂N−1 mod ∂N . As a consequence:

p(∂, λ) = (∂ + 2λ)q(∂) + c0λ
3∂N−1 + α(λ)∂N mod ∂N+1.

We can substitute this into (2.9) and get

(λ− µ)α(λ+ µ)− (λ+ 2µ)α(λ) + (2λ+ µ)α(µ) = c0(λ
3 − µ3).

The left-hand side is linear inα and homogeneous with respect to the joint degree inλ andµ.
Hence we can solve it degree by degree, looking for solutions of the formα(x) = axn. It is then
easy to check that solutions only exist whenc0 = 0, and are of the formα(x) = qNλ+ cλ3. We
conclude that

p(∂, λ) = (∂ + 2λ)q(∂) + (qNλ+ cλ3)∂N

= (∂ + 2λ)
(
q(∂) +

qN
2
∂N

)
+ cλ3∂N mod ∂N+1.

�

Proposition 2.4.LetCN denote a finitely generated torsionC[∂]-module isomorphic toC[∂]/(∂N+1),
N ≥ 1. Then there is a unique (up to isomorphism and scalar multiplication) non-trivial central
extension of Vir byCN given by[LλL] = (∂ + 2λ)L+ λ3∂N .

Proof. The2-cocycle property forp(∂, λ) as in

[LλL] = (∂ + 2λ)L+ p(∂, λ),

leads to solving (2.9), hence Lemma 2.7 givesp(∂, λ) = (∂ + 2λ)q(∂) + cλ3∂N . However, a
2-cocycle is trivial if and only if it is of the form(∂ + 2λ)q(∂), whence the claim. �

Remark 2.5. All of the above non-trivial central extensions ofVir are equivalent to one of the
form [LλL] = (∂ + 2λ)L+ λ3c, where∂c = 0.

Theorem 2.1. A finite non-zero irreducible central extension of Vir is isomorphic to that given
in (2.8).

Proof. We already know that a central extension ofVir by theC[∂]-moduleC is only possible if
C is torsion. A torsion finitely generatedC[∂]-module is a finite-dimensional vector space, on
which∂ acts as aC-linear endomorphism. ThenC decomposes into a direct sum of a submodule
on which∂ acts invertibly, and of summands as in Proposition 2.4.

Irreducibility and Proposition 2.3 prove that the summand on which∂ acts invertibly is trivial.
On the other hand, Proposition 2.4 shows that we may choose a liftingL of the standard Virasoro
generator so that:

[LλL] = (∂ + 2λ)L+ λ3c,

for somec ∈ C such that∂c = 0. Using again irreducibility once more givesC = Cc. �
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3. FINITE VERTEX ALGEBRAS

3.1. Commutativity of finite simple vertex algebras. We have seen that coefficients of vertex
operators in a vertex algebra:

(3.1) Y (a, z) =
∑
j∈Z

a(j) z
−j−1

satisfy the Lie bracket (2.2):

[a(m), b(n)] =
∑
j∈N

(
m

j

)
(a(j)b)(m+n−j)

for everya, b ∈ V ,m,n ∈ Z. Multiplying both sides of (2.2) byλmzn+1/m! and adding up over
all m ∈ N, n ∈ Z, after applying both sides toc ∈ V , gives

(3.2) [aλY (b, z)c] = eλzY ([aλb], z)c+ Y (b, z)[aλc],

for all a, b, c ∈ V .
This allows one to explicitly write down theλ-bracket of a vertex operator with the normally

ordered product of two others – it suffices to take the constant term inz in both sides – but the
formula is definitely more useful in the above form. Equation (3.2) can be used in order to prove
the following statement:

Lemma 3.1([D]) . LetV be a vertex algebra,U ⊂ V a subspace. Then[U, V ] is a (vertex) ideal
of V .

Remark 3.1. It is important to realize that, by Lemma 3.1, elements of the descending sequence
(2.5) are indeed ideals of the vertex algebraV and not only of the Lie conformal algebraV Lie.

The lemma above has the following immediate and striking consequence.

Theorem 3.1([D]) . Let V be a non-commutative simple vertex algebra. ThenV Lie is an irre-
ducible central extension of a strongly simple Lie conformal algebra.

Remark 3.2. The strong simplicity property is clearly expressed in the proof but not explicitly
stated in [D].

We will use Theorem 3.1, and our knowledge of finite simple Lie conformal algebras, in
order to show that all simple vertex algebra structures over finitely generatedC[∂]-modules are
commutative.

Proposition 3.1. There is no vertex algebraV such thatV = C[∂]L + C1, whereL /∈ Tor V
and [LλL] = (∂ + 2λ)L+ cλ31, for somec ∈ C.

Proof. We proceed by contradiction. We know that

[LλL] = (∂ + 2λ)L+ cλ31, [Lλ1] = 0, [1λ1] = 0,

and that
Y (1, z)1 = 1, Y (1, z)L = L, Y (L, z)1 = ez∂L.

All that we need to determine isY (L, z)L. Let us write

(3.3) Y (L, z)L = a(∂, z)L+ b(z)1.

Then (3.2) gives

[LλY (L, z)L] = eλzY ([LλL], z)L+ Y (L, z)[LλL],(3.4)

which, after expanding and comparing coefficients ofL, yields(
eλz − 1

) da(∂, z)
dz

+
(
2λ(eλz + 1) + ∂

)
a(∂, z) =

−c λ3
(
eλz + ez∂

)
+ (∂ + 2λ)a(∂ + λ, z).

(3.5)
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Using (3.3) and substitutingλ = −∂/2, this becomes

(3.6)
(
e−z∂/2 − 1

) da(∂, z)
dz

− ∂e−z∂/2a(∂, z) =
c∂3

8

(
ez∂ + e−z∂/2

)
,

i.e., a linear differential equation ina(∂, z) whose solutions are of the form

a(∂, z) =
K(∂)ez∂

(ez∂/2 − 1)2
− c∂2

8
(1 + ez∂).

In order fora(∂, z) to be compatible with[L λL] = (∂ + 2λ)L, one needs

a(∂, z) = 2/z2 + ∂/z + (regular inz).

This forcesK(∂) = ∂2/2, hence the only solution of (3.6) satisfying this additional condition is

(3.7) a(∂, z) =
∂2ez∂

2(ez∂/2 − 1)2
− c∂2

8
(1 + ez∂).

Checking that this value ofa(∂, z) is not a solution of (3.5) is a rather lengthy but straightforward
computation3. �

Theorem 3.2.Every simple finite vertex algebra is commutative

Proof. Let V be a finite simple vertex algebra. By Theorem 3.1, eitherV is commutative orV Lie

is an irreducible central extension of a strongly simple Lie conformal algebra. It is then enough
to address the latter case, showing it leads to a contradiction.

We have seen that every finite strongly simple Lie conformal algebra is isomorphic toVir.
Moreover, Theorem 2.1 gives a description of all finite non-zero irreducible central extensions
of Vir. Thus we know thatV = C[∂]L + C1, with [LλL] = (∂ + 2λ)L + cλ31, for some
0 6= c ∈ C. Then Proposition 3.1 leads to a contradiction. �

The following claim is a technical statement that we will use later on.

Lemma 3.2.LetV be a vertex algebra, andM ⊂ V a minimal ideal such thatM = C[∂]L+Ck,
whereL is a non-torsion element,∂k = 0 and

[LλL] = (∂ + 2λ)L+ λ3k.

ThenM can be endowed with a vertex algebra structure by choosing the vacuum element1M to
be a suitable scalar multiple ofk.

Proof. The vacuum element1 of V lies outside ofM , so the only thing we need to prove is that
we may choose an element insideM whose quantum field act as the identity onM . As ∂k = 0,
thenY (k, z) does not depend onz. MoreoverY (k, z)k ∈M is a torsion element as

∂(Y (k, z)k) = Y (∂k, z)k + Y (k, z)(∂k) = 0.

ThenY (k, z)k = αk for someα ∈ C, henceY (k − α1, z)k = 0. The elementc = k − α1
satisfies∂c = 0, hence is a torsion element, contained in the centre ofV . By Lemma 2.1,
ker c(−1) is an ideal ofV containingk, therefore it must contain all ofM by the minimality
assumption. ThusY (k − α1, z) has zero restriction on all ofM , andY (k, z)|M = αidM . If
α 6= 0, then we are done by setting1M = α−1k.

The caseα = 0 can be ruled out as follows: we know thatk(−1)V ⊂ M asM is an ideal
containingk. Moreover, we just showed thatk(−1)M = 0. Now, by (2.2), for every choice of
a, b ∈ V , one has:

(k(−1)a)(m)(k(−1)b) = k(−1)((k(−1)a)(m)b) +
∑
j≥0

(
m

j

)
((k(−1)a)(j)k)(m+j−1)b,(3.8)

3One may also observe that substituting (3.7) into the right-hand side of (3.5) gives a denominator of the form
(ez(∂+λ)/2 − 1)2 which cannot be obtained from the left-hand side.
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where both summands on the right hand side vanish. This shows thatk(−1)V is a subalgebra
contained inM in which all products vanish, thereforek(−1)V ⊂ Ck. In other words,Ck is an
ideal ofV , which contradicts the minimality ofM .

�

3.2. Solvability of finite vertex algebras.

Lemma 3.3. LetV be a finite vertex algebra, andS be the intersection of all vertex subalgebras
U ⊂ V such that rkU = rkV . ThenV is solvable if and only ifS is.

Proof. Let U be a vertex subalgebra ofV such that rkU = rkV . U is clearly a subalgebra of
V Lie; hence, by Lemma 2.6, an ideal containing the derived subalgebra ofV Lie.

The intersectionS of all such vertex subalgebras is then itself an ideal ofV Lie containing its
derived subalgebra, henceV Lie/S is abelian. ThereforeV is solvable if and only ifS is. �

Remark 3.3. Observe that if the vertex subalgebraS in the above lemma is such that rkS =
rkV , then it is the minimal vertex subalgebra ofV of rank equal to rkV . In particular,S
possesses no proper vertex subalgebras of equal rank.

Lemma 3.4.LetV be a finite vertex algebra, andN be the sum of all vertex ideals ofV contained
in Tor V . ThenV/N has no nonzero torsion ideal andV is solvable if and only ifV/N is.
Moreover,V contains proper vertex subalgebras of rank rkV if and only ifV/N does.

Proof. The sum of ideals in a vertex algebra is again an ideal. Also, the sum of torsion elements
again lies inTor V . Hence, the sumN of all vertex ideals ofV contained inTor V is the maximal
such ideal ofV . As Tor V lies in the centre ofV Lie,NLie is abelian, soV is solvable if and only
if V/N is.

The other claims follow from the correspondence between ideals (resp. subalgebras) ofV/N
and ideals (resp. subalgebras) ofV containingN , and the fact that torsion modules are of zero
rank. �

Theorem 3.3.Every finite vertex algebra is solvable.

Proof. Assume by contradiction thatV is a counter-example of minimal rank. By Lemmas 3.3
and 3.4 and Remark 3.3, we may assume thatV has no proper vertex subalgebra of equal rank,
and no non-zero torsion ideal.

Now, observe that ifI ⊂ V is a non-zero ideal with rkI < rkV , then rkV/I < rkV asI
cannot lie inTor V . Then the vertex algebrasV/I andI+C1 are both solvable by the minimality
assumption, henceILie ⊂ (I + C1)Lie is solvable andV Lie is an extension of solvable Lie
conformal algebras, a contradiction. Therefore, all non-zero vertex ideals ofV are of the same
rank asV .

As a consequence, eitherV is simple, or has a unique non-zero proper idealM which is a
complement toC1. Indeed, ifM is a non-zero ideal, then rkM = rkV , andM + C1 is a vertex
subalgebra ofV , henceM + C1 = V .

We already know that finite simple vertex algebras are commutative, hence solvable, so it is
enough to address the non-simple case. LetV be a non-solvable finite vertex algebra whose only
non-zero vertex idealM 6= V is such thatV = M + C1. Then[V, V ] = [M,M ] is a vertex ideal
of V , hence it equalsM . If U ⊂ M is a subspace, so Lemma 3.1 shows that[U, V ] is a (vertex)
ideal ofV , hence it equals either0 or M . As a consequence, ifu ∈ M then eitheru is central
in V or [u,M ] = [u, V ] = [Cu, V ] = M . This shows thatMLie is either strongly simple or a
central extension of a strongly simple conformal algebra. As[M,M ] = M , the central extension
must be irreducible.

If MLie is strongly simple, then we conclude thatV is as in Proposition 3.1, withc = 0,
hence a contradiction. If, on the other hand,MLie is a central extension of a strongly simple Lie
conformal algebra, then Lemma 3.2 shows thatM can be given a vertex algebra structure which
contradicts Proposition 3.1. �
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4. CONFORMAL ADJOINT DECOMPOSITION

4.1. Finite modules over finite solvable Lie conformal algebras.In this paper, we will need
some basic results from representation theory of solvable and nilpotent Lie conformal algebras.
A representation of a Lie conformal algebraR is aC[∂]-moduleV along with aλ-actionR⊗V 3
r ⊗ v → rλv ∈ V [λ] such that

(∂r)λv = −λrλv, rλ(∂v) = (∂ + λ)rλv,(4.1)

rλ(sµv)−sµ(rλv) = [rλs]λ+µv,(4.2)

for all r, s ∈ R, v ∈ V . The action ofr ∈ R onV is nilpotent if

rλ1(rλ2(. . . (rλnv) . . . )) = 0

for sufficiently largen. The following conformal versions of Engel’s and Lie’s Theorems were
proved in [DK].

Theorem 4.1. Let R be a finite Lie conformal algebra for which every elementr ∈ R has a
nilpotent adjoint action. ThenR is a nilpotent Lie conformal algebra.

Theorem 4.2. LetR be a finite Lie solvable conformal algebra,V its finite module. Then there
exists0 6= v ∈ V andφ : R 3 r → φr(λ) ∈ C[λ] such that

(4.3) rλv = φr(λ)v,

for all r ∈ R.

An elementv such as that in Theorem 4.2 is aweight vector. Thenφ is theweightof v, and it
necessarily satisfiesφ∂r(λ) = −λφr(λ). The set of all weight vectors of a given weightφ, along
with zero, is theweight subspaceVφ.

Remark 4.1. The statement in [DK] only deals withR-modules that are free asC[∂]-modules,
but clearly extends to non-free modules, sinceTor V is a submodule ofV which is killed byR.

Lemma 4.1. Let V be a representation of the Lie conformal algebraR. ThenVφ is always a
vector subspace ofV . Also, it is aC[∂]-submodule wheneverφ ≡ 0.

Set now:

V φ
0 = 0, V φ

i+1 =
{
v ∈ V | rλv − φ(r)v ∈ V φ

i for all r ∈ R
}
, i ≥ 0.

ThenV φ
1 = Vφ, andV φ

1 ⊂ V φ
2 ⊂ ... is an ascending chain of subspaces ofV . The subspace⋃

V φ
i = V φ is thegeneralized weight subspaceof weightφ. Clearly,r acts nilpotently onV ex-

actly whenV coincides with the generalized0-weight space for the action of (the Lie conformal
algebra generated by)r.

Proposition 4.1([DK, BDK]) . LetV be a representation of the Lie conformal algebraR. Then:

• V φ is aC[∂]-submodule ofV ;
• V/V 0 has no0-weight vectors: in particular, it is torsion-free;
• if V is torsion-free, thenV/V φ is too;
• if φ 6= ψ, thenV φ ∩ V ψ = 0;
• the sum of all generalized weight spaces for the action ofR onV is direct.

The sum of all generalized weight spaces may fail to coincide with theR-moduleV . However,
the following Fitting decomposition, proved in the context of Lie pseudoalgebras, holds for
nilpotent Lie conformal algebras.

Theorem 4.3([BDK]) . LetR be a finite nilpotent Lie conformal algebra,V its finite module.
ThenV decomposes into a direct sum of generalized weight subspaces for the action ofR.
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In practice, we will often consider weight spaces and generalized weight spaces with respect
to the action of a single elements ∈ R. If S is the subalgebra generated bys, we will say a
weight for the action ofS on some moduleV is aweightof s. This abuse of notation is justified
by the fact that in the caseS = 〈s〉 = C[∂]s + S ′, any weightφ for the action ofS on some
moduleV satisfiesφ(S ′) = 0.

4.2. Matrix form. Let R be a Lie conformal algebra, andV be anR-module. Then the map
V 3 v → rλv ∈ V [λ] is conformal linear for allr ∈ R. TheC[∂]-module structure built on
Chom(V, V ) is such that the mapr 7→ {v 7→ rλv} is C[∂]-linear.

One may indeed build up a Lie conformal algebra structure onChom(V, V ) in such a way that
the above map is always a homomorphism of Lie conformal algebras. It suffices to define:

(4.4) [fλg]µv = fλ(gµ−λv)− gµ−λ(fλv),

wheneverf, g ∈ Chom(V, V ). This Lie conformal algebra structure is usually denoted bygc(V ),
or simplygcn whenV is a freeC[∂]-module of rankn. The standard way to represent elements
of gc1 is by identifying it withC[∂, x], with theC[∂]-module structure given via multiplication
by ∂, and the conformal linear action onC[∂] given on its free generator1 by:

xnλ1 = (∂ + λ)n.

Then theλ-bracket[p(∂, x)λq(∂, x)] equals

(4.5) p(−λ, x+ ∂ + λ)q(∂ + λ, x)− q(∂ + λ, x− λ)p(−λ, x).

However, in this paper I will employ a different choice, and denote elements ofgc1 by the
effect they have on the free generator. This identifiesgc1 with C[∂, λ], and has two major ineffi-
ciencies: first of all, theC[∂]-module structure is obtained via multiplication by−λ; moreover,
as we are already employingλ to denote elements, we will have to computeα- rather thanλ-
bracket of elements. However, this choice is by far more readable than the standard one. The
bracket expressed in (4.5) then becomes:

(4.6) [a(∂, λ)αb(∂, λ)] = a(∂, α)b(∂ + α, λ− α)− b(∂, λ− α)a(∂ + λ− α, α).

Now letV,W beC[∂]-modules. A conformal linear mapf ∈ Chom(V,W ) is determined by
its values on a set ofC[∂]-generators ofV . If V andW are free, then, for any given choice of
C[∂]-bases(v1, ..., vm), (w1, ..., wn) of V andW respectively, we can establish a correspondence
betweenChom(V,W ) andn × m matrices with coefficients inC[∂, λ], similarly to what done
above in the case ofgc1.

In general,C[∂]-modules fail to be free. IfM is a finitely generatedC[∂]-module,M can be
(non-canonically) decomposed as the direct sum of a free module and of its torsion submodule
TorM . By Lemma 2.5,f ∈ Chom(M,N) always mapsTorM to zero.

Since we need to employ a matrix representation for any conformal linear mapf ∈ Chom(M,N)
between finitely generated modules that may (and typically will) fail to be free, we can proceed
as follows. DecomposeM andN as a direct sum of a free module and their torsion submodule.
If we pick a freeC[∂]-basis of the free part, and aC-basis of the torsion part, we can use this
set of generators to represent conformal linear maps through matrices: we will call such a set
of generators abase. As a conformal linear map inChom(M,N) always factors viaM/TorM ,
which is free, special care is only needed for the treatment of torsion in the range module.

Note that if we agree that theC[∂]-linear combination expressing elements ofN in terms of
a given base is such that coefficients multiplying torsion elements lie inC (rather than inC[∂])
then all coefficients are uniquely determined. This unique expression enables us to write down a
well-behaved matrix representing the conformal linear map. Matrix coefficients corresponding
to torsion elements then lie inC[λ] rather than inC[∂, λ].

Note that, iff, g ∈ gc(M,M) and the matrices representing them are given by

F = (fij(∂, λ)), G = (gij(∂, λ)),
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respectively, then by (4.4), the matrix representing[f α g] is given by

(4.7) F (∂, α)G(∂ + α, λ− α)−G(∂, λ− α)F (∂ + λ− α, α),

where multiplication of matrices is the usual row-by-column product. Notice that, according to
such a matrix representation of conformal linear maps, Theorem 4.2 guarantees the existence
of a base in which matrices representing the action of the solvable Lie conformal algebraR are
simultaneously upper triangular. Similarly Theorem 4.3 means that matrices can be put in block
diagonal form, where each block represents the action on a single generalized weight submodule.

Later, we will call the diagonal entries of a triangular matrix representing the action of some
s ∈ S, S solvable,eigenvaluesof the elements.

4.3. Adjoint action on a vertex algebra of a Lie conformal subalgebra. In what followsV
will be a finite vertex algebra, unless otherwise stated. IfS is a Lie conformal subalgebra ofV ,
thenS is solvable by Theorem 3.3. Using formula (3.2) I want to show that

Theorem 4.4. If ψ is a non-zero weight for the adjoint action of a Lie conformal subalgebraS
on the finite vertex algebraV , then the generalized weight spaceV ψ is an vertex ideal ofV , and
it satisfiesV ψ · V ψ = 0.

I will divide the proof of Theorem 4.4 in a few easy steps. Letα be a weight for the action of
S onV , β for its action onV/V α. Denote byV α,β the pre-image of(V/V α)β via the canonical
projectionπ : V → V/V α. Then we have:

Lemma 4.2. LetU ⊂ V be a properS-submodule ofV with the property thatU · V ψ ⊂ V ψ,
and choose an elementw ∈ V such thatw = [w] ∈ V/U is a weight vector of weightφ. Then
w · V ψ ⊂ V ψ,ψ+φ.

Proof. As [sλw] = φs(λ)w mod U , then we haves(h)w = φhsw + uhs , for someuhs ∈ U , where
theφhs are such that

φs(λ) =
∑
h

φhs
λh

h!
.

I will prove that
w · V ψ

n ⊂ V ψ,ψ+φ

by induction onn – the basis of inductionn = 0 being trivial, asV ψ
0 = 0.

Let b ∈ V ψ
n+1, and sets(h)b = ψhs b+v

h
s with vhs ∈ V ψ

n . We know thatw(N)b = 0 for sufficiently
largeN . So if Y (w, z)b /∈ V ψ,ψ+φ[[z, z−1]] we choosek maximal with respect to the property
thatw(k)b /∈ V ψ,ψ+φ. Let us compute by means of (2.2):

s(m)(w(k)b)−w(k)(s(m)b) =
m∑
j=0

(
m

j

)
(s(j)w)(m+k−j)b

= (s(m)w)(k)b+
m−1∑
j=0

(
m

j

)
(s(j)w)(m+k−j)b,

(4.8)

hence
s(m)(w(k)b)− (ψms + φms )w(k)b = w(k)v

m
s + (ums )(k)b

+
m−1∑
j=0

(
m

j

) (
φjs(w(m+k−j)b) + (ujs)(m+k−j)b

)
.

(4.9)

Now,vhs ∈ V ψ
n , soY (w, z)vhs ∈ V ψ,ψ+φ[[z, z−1]]. Also,uhs ∈ U , henceY (uhs , z)b ∈ V ψ[[z, z−1]].

Moreover, eachw(m+k−j)b in the summation lies inV ψ,ψ+φ by the maximality ofk. Therefore,
(s(m) − (ψ + φ)ms )(w(k)b) ∈ V ψ,ψ+φ, showingw(k)b ∈ V ψ,ψ+φ, a contradiction. �

Lemma 4.3. Under the same hypotheses as in Lemma 4.2,w · V ψ ⊂ V ψ.
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Proof. The statement is clear ifφ = 0, asV ψ,ψ = V ψ. Otherwise, choose a base{ri} of
V ψ,ψ+φ/V ψ on which the action ofS is triangular, and lift it toV ψ,ψ+φ. Then, if b ∈ V ψ,
we can expressY (w, z)b as some (depending onz) element fromV ψ plus aC[∂]((z))-linear
combination of elements from this base:

(4.10) Y (w, z)b = v(z) +
∑
i

Ai(∂, z)ri.

My aim is to show that allAi are zero. I will prove that it is so forb ∈ V ψ
k by induction onk. If

not all of theAi are zero, chooseN maximal such thatAN is non-zero. Then (3.2) gives

[sλY (w, z)b] = eλzY ([sλw], z)b+ Y (w, z)[sλb],

and using triangularity of the action ofs on the chosen base, along with the induction assumption,
shows that

(4.11) (φs(λ) + ψs(λ))AN(∂ + λ, z) = (eλzφs(λ) + ψs(λ))AN(∂, z),

as[sλb]− ψs(λ)b lies insideV ψ
k−1.

Now, since neitherφ norψ is identically zero, there must be somes such thatφs andψs are
both non-zero. If for such ans we getφs+ψs = 0, thenAN must be zero, giving a contradiction.
If insteadφs + ψs 6= 0, then

(4.12) Γ(λ, z) =
eλzφs(λ) + ψs(λ)

φs(λ) + ψs(λ)

is a non-zero element ofC(λ)[[z]] satisfying

(4.13) Γ(λ+ µ, z) = Γ(λ, z)Γ(µ, z).

It is then easy to show thatΓ’s constant term as a power series inz must be one.Γ(λ, z) is indeed
of the formeλγ(z) for some power seriesγ(z) = γ1z + γ2z

2 + ...
By comparing coefficients ofz andz2 in (4.13) one concludes thatφs(λ)/(φs(λ)+ψs(λ)) = 0

or 1. But this is only possible if eitherφs or ψs is zero, contrary to the assumption that they are
both non-zero. We obtain a contradiction, which proves that allAi vanish. �

Lemma 4.4. V ψ is an ideal of the vertex algebraV .

Proof. Let U be maximal among allS-submodules ofV such thatU · V ψ ⊂ V ψ. If U 6= V ,
choose a weight vectorw in V/U . Then(U + C[∂]w) · V ψ ⊂ V ψ by Lemma 4.3, against the
maximality ofU . Hence,U must equalV , andV ψ is an ideal. �

Lemma 4.5. Let V be a (not necessarily finite) vertex algebra,V φ andV ψ generalized weight
subspaces for the adjoint action of the conformal subalgebraS of V . ThenV φ · V ψ ⊂ V φ+ψ.

Proof. I will show thatV φ
i · V ψ

j ⊂ V φ+ψ by induction onn = i+ j.

Sayv ∈ V φ
i , w ∈ V ψ

j , i + j = n + 1. Sets(h)v = φhsv + vhs , s(h)w = ψhsw + whs . Then

vhs ∈ V
φ
i−1, w

h
s ∈ V

ψ
j−1. If Y (v, z)w /∈ V φ+ψ[[z, z−1]], then choose a maximalk with the property

thatv(k)w /∈ V φ+ψ. Then

s(m)(v(k)w) = v(k)(s(m)w) + (s(m)v)(k)w +
m−1∑
j=0

(
m

j

)
(s(j)v)(m+k−j)w,

whence
s(m)(v(k)w)− (φms +ψms )(v(k)w) = v(k)w

m
s + (vms )(k)w+

m−1∑
j=0

(
m

j

) (
φjs(v(m+n−j)w) + (vjs)(m+n−j)w

)
.

(4.14)

The right hand side of (4.14) lies inV φ+ψ, hencev(k)w does too, giving a contradiction. �
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Proof of Theorem 4.4.V ψ is an ideal by Lemma 4.4. On the other hand, Lemma 4.5 shows
V ψ · V ψ ⊂ V 2ψ. As ψ is a non-zero weight, Proposition 4.1 givesV ψ ∩ V 2ψ = 0, hence
V ψ · V ψ = 0. �

Recall that an idealI of a vertex algebraV is abelianif I · I = 0, and thatV is reduced if it
has no abelian ideals or equivalently if its nilradical is trivial.

Corollary 4.1. Let V be a finite reduced vertex algebra,N be a nilpotent Lie conformal sub-
algebra ofV . Then the adjoint action ofN on V is achieved via nilpotent conformal linear
maps.

Proof. By Theorem 4.4, any non-zero weightφ for the adjoint action ofN onV would give an
abelian vertex idealV φ. Since this is not possible, the only weight is0. But N is a nilpotent
Lie conformal algebra so, by Theorem 4.3, everyN -module decomposes as a direct sum of
generalized weight spaces, showingV = V 0. This means that the action ofN onV is nilpotent.

�

Corollary 4.1 has the following immediate consequence:

Corollary 4.2. If V is a finite reduced vertex algebra, then Curg can arise as a subalgebra of
V Lie only wheng is a nilpotent Lie algebra.

Proof. Every elementg ∈ 1 ⊗ g ⊂ Cur g spans an abelian (hence nilpotent) Lie conformal
subalgebra ofV . By Corollary 4.1,g must act nilpotently on all ofV , and in particular onCur g
itself. Theng is a finite-dimensional Lie algebra on which every element is ad -nilpotent, andg
is nilpotent by the usual Engel theorem for Lie algebras. �

Remark 4.2. We observed in Theorem 3.3 that every finite vertex algebra is solvable, hence we
knew already thatCur g arises as a subalgebra ofV Lie only wheng is solvable.

5. NILPOTENCE OF FINITE REDUCED VERTEX ALGEBRAS

The main result of this section is the following

Theorem 5.1.Any finite reduced vertex algebra is nilpotent.

Before we prove this, we show a stronger result characterizing the conformal adjoint action of
elements fromV .

Lemma 5.1. Let V be a finite vertex algebra,s ∈ V . If the (conformal) adjoint action ofs is
not nilpotent onV , then there exists a non-zeros whose adjoint action has a weight vectorw of
non-zero weight.

Proof. In what follows, by “action ofs”, I will always mean the conformal adjoint action of
s ∈ V Lie onV . Notice that the finite vertex algebraV is solvable, hence all subalgebras ofV Lie

are solvable Lie conformal algebras, for which the adjoint action onV satisfies the conditions
of Theorem 4.2. In particular, the subalgebra〈s〉 ⊂ V Lie generated bys is solvable, ands acts
triangularly in a suitably chosen base ofV .

If s has a weight vector of non-zero weight then the statement holds withs = s. We can thus
assume, without loss of generality, that the only weight of the adjoint action ofs on V is zero.
Sinces does not act nilpotently,V 0 cannot equal the wholeV and Proposition 4.1 shows that the
action ofs onV/V 0 only has non-zero weights.

Therefore, let us consider a weight vectorw in V/V 0 of non-zero weightφ(λ). Without loss
of generality, we may assume that the degree ofφ in λ be odd. In fact, we can always replace
s by ∂s, which must be non-zero, otherwises would be a torsion element, with a trivial adjoint
action. Eigenvalues of∂s are then obtained by multiplying those ofs by−λ, and eitherφ(λ) or
−λφ(λ) is of odd degree. Moreover, the adjoint action ofs is nilpotent if and only if that of∂s
is.
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So, lets be an element ofV for which there exists an elementw ∈ V/V 0 of non-zero weight
φ(λ) having odd degreen in λ. My plan is to find an elements = s + s′, s′ ∈ 〈s〉′, and a lifting
w ∈ V of w in such a way thatw will be a (non-zero) weight vector inV of weightφ for s.

Choose any liftingw of w. The C[∂]-submoduleW spanned byV 0 together withw is
preserved by the action ofS. Let us fix a base ofW consisting of someS-triangular base
(v1, v2, ..., vh) for V 0 along with the liftingw. According to the matrix representation introduced
in Section 4.2, the action ofs onW will be represented by the following matrix:

(5.1)


0 ∗ . . ∗ X1(λ)
0 0 ∗ ∗ X2(λ)
...

...
...

0 . . . . 0 Xn(λ)
0 . . . . 0 φ(λ)

 ,

whereφ(λ) is the weight ofw. Notice that coefficientsX i may depend on∂ if they refer to an
element of theC[∂]-basis of the free part ofV 0, but only depend onλ when they refer to basis
elements ofTor V 0.

If all of the X i are zero, thenw is a weight vector, and we are done. If instead some of the
X i are non-zero, let us choosei to be maximal with the property thatX i is non-zero. I will
show that I can find an elements = s + s′, s′ ∈ S ′ and a liftingw′ of w such that, in the matrix
representation ofs + s′ with respect to the base(v1, ..., vh, w

′) of W , all Xj, j ≥ i vanish. An
easy induction will then prove the statement.

If all Xj, j > i are zero andX i 6= 0, then we can compute the corresponding matrix coefficient
in the commutator[sαs]. By (4.7), it is given by

X i(∂, α)φ(λ− α)−X i(∂, λ− α)φ(α).

Let us write

φ(λ) =
n∑
i=0

φiλ
i X i(∂, λ) =

m∑
j=0

Xj(∂)λj.

Saym is even, and recall that we chosen to be odd. Then thei.th entry in the last column
of the matrix representing theαm+n coefficient (call itt1) in [s α s] equals−2Xm(∂)φn. Hence
the matrix representing the elements1 = (−∂)mt1/2φn is upper triangular with zero eigenvalues
and thei.th entry in the last column is precisely−Xm(∂)λm, opposite to the highest degree inλ
of X i(∂, λ). Thus, the matrix representings + s1 has the same eigenvalues ass, all Xj, j > i
vanish, and the degree inλ of X i is lower. Notice thats1 ∈ S ′.

If m is on the other hand odd, assumem 6= n. Then thei.th entry in the last column of the
matrix representing the coefficient (call itt2) multiplying αm+n−1 in [sαs] is given by

2Xm(∂)φn−1 − 2Xm−1(∂)φn + (n−m)λXm(∂)φn.

Then the matrix representing the elements2 = (−∂)m−1t2/(m − n)φn is upper triangular with
zero eigenvalues. Moreover, thei.th entry in the last column has the same top degree term inλ as
X i, with opposite sign. As before, the elements+s2 has the same eigenvalues ass, allXj, j > i
vanish, and the degree ofX i is lower. Notice thats2 ∈ S ′ as well. Finally, whenm = n, it is
enough to replacew with w + Xm(∂)vi/φm in order to kill the term of top degree ofX i in the
matrix representation ofs.

By induction, we can then find ans = s + s′, s′ ∈ S ′ and a liftingw of w in such a way that
the corresponding matrix is upper triangular with the same eigenvalues ass, and allXj, j ≥ i
vanish. �

Theorem 5.2. LetV be a finite reduced vertex algebra,s ∈ V . Then the adjoint action ofs on
V is nilpotent.
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Proof. If there is somes ∈ S for which the adjoint conformal action onV is not nilpotent, then
Lemma 5.1 finds an elements ∈ 〈s〉 possessing a weight vector of non-zero weightφ. Then
Theorem 4.4 shows that the generalized weight spaceV φ with respect to the conformal subalge-
bra generated bys is a non-zero abelian ideal of the vertex algebraV , which is a contradiction,
asV is reduced. �

Proof of Theorem 5.1.Every elementv ∈ V Lie has a nilpotent adjoint conformal action. By
Theorem 4.1,V Lie is then a nilpotent Lie conformal algebra. �

Corollary 5.1. LetV be a finite vertex algebra, and define

V [0] = V, V [n+1] = [V, V [n]], n ≥ 0.

Then allV [n] are ideals ofV , and the descending sequence

V = V [0] ⊃ . . . ⊃ V [n] ⊃ . . .

stabilizes on an ideal contained in the nilradical ofV .

Proof. The quotient ofV by its nilradicalN is nilpotent, hence the above sequence forV/N
stabilizes to zero. By lifting it back toV , this only happens if the claim holds. �

In other words, every finite vertex algebra can be expressed as an extension of a nilpotent
vertex algebra by a nil-ideal.
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