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1. INTRODUCTION

In this paper | investigate the effect of a finiteness assumption on the singular part of the Op-
erator Product Expansion of quantum fields belonging to a vertex algebra. The vertex algebra
structure encodes algebraic properties of chiral fields in a 2-dimensional Conformal Field The-
ory. Its axiomatic definition was given by Borcherds in [B1], and amounts to associating with
each element of a vector spac&” avertex operatoror quantum field,

Y(v,2) € (EndV)[[z, 27 1],

satisfying singular generalisations of the commutativity and unit axioms for the left multipli-
cation operators in an associative algebra. This structure captures all algebraic properties of
families of mutually local fields, containing the identity field, acting on some vector space of
physical stated’.

The products encoding the algebraic properties of a vertex algebra structure are typically writ-
ten in terms of a formal expansion
(1.1) Y(a,2)Y (bw) = Yiaghw) Y (a,2)Y (b,w) :
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of the composition of quantum fields, called the Operator Product Expansion (OPE for short).
The singular part

of the OPE (1.1) only depends on the commutation properties of fié{ds), and is in many
ways remindful of a Lie algebra; the regular palt(a, 2)Y (b, w) : is callednormally ordered
productor Wick product, and essentially depends on the action of quantum fieltls énis to
some extent similar to an associative commutative product.

One can disregard the latter part of the structure, and axiomatize the singular part of the OPE
only. The thus obtained algebraic structure is called “(Lie) conformal algebra”, but it is also
known in the literature as vertex Lie algebra [P, DLM], or Lie pseudoalgebra [BDK] GY&}.

Lie conformal algebras were introduced by Kac [K] to characterize algebraic properties of pair-
wise local formal distributions (in andz~!) with values in a Lie algebra. Hence, every vertex
algebra is thus also a Lie conformal algebra, and the latter structure measures the failure of the
normally ordered product from being associative and commutative.

Indeed, if the Lie conformal algebra underlying a vertex algebra is trivial, then the product
defined as1 o b = Y(a, 2)b|.—o gives [B1] a commutative associative algebra structuré’on
from which it is possible to recover the vertex algebra product. In fact, in thisXase )b =
(e*Ta) o b—whereT is the (infinitesimal) translation operaté(T'a, z) = dY (a, z)/dz —and is
therefore completely determined by

The main interest in the role of Lie conformal algebras in vertex algebra theory is due to the
existence [L, R, P, K] of ainiversal enveloping vertex algebfanctor, which is adjoint to the
forgetful functor from vertex to Lie conformal algebras. Many interesting vertex algebras are
in fact obtained as simple quotients of the universal enveloping vertex algebra associated with
a suitably chosen (and typically much smaller) Lie conformal algebra. However, a different
strategy is possible: one could, in principle, analyse possible vertex algebra structures by first
studying the singular OPE (i.e., the underlying Lie conformal algebra), and then inserting the
normally ordered product on top of this. My aim in this note is to show that this strategy gives
interesting results wheVi is a finitely generate@[7']-module.

The physically interesting vertex algebras which are usually considered are called Vertex Op-
erator Algebras (=VOAs). They are graded vector fields that are often endowed with some
additional structure (e.g., a Virasoro field inducing the grading); however, all known examples
are very large objects — typically of super-polynomial growth. A first explanation for this is
Borcherds’ observation [B2] that in a finite-dimensional vertex algebra all prodi(ets: )b are
necessarily regular in, as the underlying Lie conformal algebra must be trivial (because all
elements are torsion, see [K, DK]). The vertex algebra structure reduces, as mentioned above, to
that of a unital finite-dimensional commutative associative algebra with a deriv&tiéiso, in
the presence of a grading induced by a Virasoro field the dimension of the homogeneous com-
ponent of degree is at least the number of partitions of which grows super-polynomially.
However, no interesting (e.g., simple) examples are known of a vertex algebra structure on a
graded vector space of polynomial growth, even in the absence of the additional requirements
for a VOA.

After finite-dimensional vector spaces, the next to easiest case is that of finitely generated
modules ove(C[T]: they are vector spaces of linear growth when a grading is given, and this is
the case | handle in this note. There seems to be no previously known description of algebraic
properties of sucfinite vertex algebraghat are not finite-dimensional.

Section 2 contains a list of definitions and basic results in the theory of Lie conformal algebras
and vertex algebras. | also exhibit the motivating Example 2.2, showing that there exist finite
vertex algebras that do not reduce to associative commutative algebras. However, the vertex
algebra provided in this example is constructed by means of nilpotent elements: as in the case of
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commutative algebras, such elements form an ideal of the vertex algebra whichilredilcal.
The quotient oft” by its nilradical has no non-zero (strongly) nilpotent elements.

Sections 3.1 and 3.2 apply results from [D] to the case of finite vertex algebras in order to show
that finite simple vertex algebras are commutative (Theorem 3.2), hence that the Lie conformal
algebra structure underlying a finite vertex algebra is always solvable (Theorem 3.3).

In Section 4, | study how a finite vertex algebra decomposes under the adjoint action of a Lie
conformal subalgebra. After describing the representation theory of finite solvable Lie conformal
algebras | show, in Theorem 4.4, that the generalized weight submodule with respect to any non-
zero weight is an abelian ideal of the vertex algebra structure. The presence of abelian ideals
witnesses the existence of nilpotent elements, therefore there can be no non-zero weights in the
absence of nilpotent elements. This strong algebraic fact is the basis for the results presented in
Section 5, and is proved by means of the identity (3.2) introduced in Section 3.1.

The main result from last section is Theorem 5.2 stating that any elesriginty in a finite
vertex algebrd” with trivial nilradical has a nilpotent adjoint conformal action Bn By a Lie
conformal algebra analogue of Engel's theorem, developed in [DK], the Lie conformal algebra
underlyingV” must indeed (Theorem 5.1) be nilpotent. This statement essentially depends on
both the finiteness assumption and the presence of a vertex algebra structure: it basically means
that every finite vertex algebra may be described as an extension of a nilpotent (as a Lie confor-
mal algebra) vertex algebra by an ideal only containing nilpotent elements (i.e., contained in the
nilradical).

The representation theory of the Virasoro Lie algebra or of affine Kac-Moody algebras is never
used. The spirit of this paper is that the interplay between the Operator Product Expansion and
the A\-bracket, in the case of a vertex algebra linearly generated by a finite number of quantum
fields together with their derivatives, is strong enough to allow one to prove a number of results
in a totally elementary way, even in the absence of a grading.

Some of the ideas contained in this work originate from an old manuscript written between
1998 and 1999 while | was visiting Universitle Paris VI “Pierre et Marie Curie” and Univessit
de Strasbourg “Louis Pasteur” as a European Union TMR post-doc. | would like to thank both
institutions for hospitality.

2. GENERALITIES ON VERTEX ANDLIE CONFORMAL ALGEBRAS

2.1. Vertex algebras. In what follows | quote some well-known facts about vertex algebras:
precise statements and proofs can be found in [K].\Léte a complex vector space.fild on
V is an elemend(z) € (EndV)][[z, z~!]] with the property thap(v) € V((z)) = V[[z]][z"}] for
everyv € V. In other words, if

P(z) = Z gz

1EZ
theng,, (v) = 0 for sufficiently largen.
Definition 2.1. A vertex algebra is a (complex) vector spacendowed with a lineastate-field

correspondenc&” : V' — (EndV)][[z, 27']], avacuum element and a linear endomorphism
T € EndV satisfying the following properties:

e Field axiom: Y (v, 2) is a field for allv € V'
e Locality axiom: For everya,b € V one has

(z —w)N[Y(a,2),Y(bw)] =0

for sufficiently large/N.
e Vacuum axiom: The vacuum elemeritis such that

Y (1,z) =idy, Y(a,2)1 =a mod 2V[[z]],

foralla € V.
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e Translation invariance: T satisfies
[T,Y(a,2)] =Y (Ta,z) = C%Y(a, z),
foralla € V.

Note that the vector spadécarries a natural[7]-module structure. Fields(a, z) are called
vertex operatorsor quantum fields

A vertex algebra is a family of pairwise local fields actingldrcontaining the identity (con-
stant) field. Indeed every family of pairwise local fields containing the identity field can be real-
ized as a vertex algebra up to changing the vector spaufgohysical states (see [K]). The vertex
algebra structure therefore captures all algebraic aspects of families of pairwise local fields. A
vertex algebrd/ isfiniteif V' is a finitely generate@|7']-module.

There are two basic constructions of new vertex operators from two given ones. The first one is
given by rephrasing what we earlier called “singular OPE”: siface w)™ kills the commutator
[Y(a, 2),Y (b, w)], the latter may be expanded into a linear combination:

V-1 () (5 —
(2.) > q(w)W,
=0 '

where
iz —w)= ijz*jfl
JEZ
is the Dirac delta formal distribution ars@’ its j.th derivative with respect t@. The uniquely
determined fields:;(w) are then vertex operatodS(c;, w) corresponding to elements =
ac)b = a;)(b) where the(;) € EndV are the coefficients of

Y(a,z) = Za(j)z_j_l.
JEZ
It is customary to view theéC-bilinear mapsa ® b — a(;b,j € Z, as products describing
the vertex algebra structure. Locality can be rephrased by stating that commutators between
coefficients of quantum fields satisfy:

m
(2.2) (@) b)) =D ( ~)(a(j)b>(m+n—j)>
>0 \J
foralla,b e V.
Another way to put together quantum fields to produce new ones is given by the normally
ordered product (or Wick product) defined as:

(2.3) :Y(a,2)Y(b,2): =Y(a,2):Y(b,z) + Y(b,2)Y(a,z)_,

where

(2.4) Y(a,z)- = Za(j)z_j_l, Y(a,z)y =Y(a,z) —Y(a,z)_.
jeN

Then: Y (a, 2)Y (b, 2) : is also a vertex operator, and it equalf_1)b, z).

Example 2.1. Let V' be a unital associative commutative algelifaa derivation ofl’. Then
settingY (a, 2)b = (e*Ta)b and choosing the unit € V' to be the vacuum element makeésnto
a vertex algebra.

Such a vertex algebra is calladlomorphic in [K], and is the “uninteresting” case of a vertex
algebra structure. It occurs whenever all vertex operators are regulainrthis case one can

INotation and terminology are often contrasting and misleading in the vertex algebra world, and this is no ex-
ception. Notice that in most of the literature vertex operator algebras are known to be holomorphic if they have a
semi-simple representation theory, and the adjoint representation is the unique irreducible module, see [DM].



FINITE VERTEX ALGEBRAS AND NILPOTENCE 5

always construct an associative commutative algebra, together with a derivation, inducing the
vertex algebra structure as in Example 2.1. This is always the caseWvisdmite-dimensional
[B1, B2]. One of the consequences of the vertex algebra axioms is the following:
e Skew-commutativity: Y(a,2)b=e1Y(b,—2)a
for all choices ofu, b.

If AandB are subsets df, then we may defind - B as theC-linear span of all products;b,
wherea € A, b € B, j € Z. If BisaC|T]-submodule of/, thenA- B is also aC[T’|-submodule
of V/, as by translation invariancgis a derivation of allj-products, andT'a) ;) = —ja(;_1).

Notice that by skew-commutativityl - B is contained in theC[T']-submodule generated by
B- A; equalityA- B = B - Athen holds whenevet - B andB - A are bothC|7T']-submodules of
V. Also, observe thatt C A-V by the vacuum axiom and thdt V' is always aC[7]-submodule
of V, asa(_s1 = Ta. In particulara - V= Ca - V is aC[T']-module ofl” containinga.

Before proceeding, recall thatsubalgebraof a vertex algebrd’ is a C[T]-submodulel/
containingl such thatU - U = U. In other words, all coefficients df (a, z)b belong toU
whenevera andb do. Similarly, aC[T]-submodulel of V' is anideal if I - V' C I; skew-
commutativity then shows that - I = 7 - V. A proper ideal can never contain the vaculim
and if M is an ideal of/, thenM + C1 is a subalgebra, whose rank a€@’|-module equals
that of M.

The quotientl//] of a vertex algebrd” by an ideal/ has a unique vertex algebra structure
making the canonical projection : V' — V/I a vertex algebra homomorphism, i.e.C&8'-
homomorphism such that(a,\b) = 7(a),m(b) for everya,b € V,n € Z.

A vertex algebrd/ is commutativef all quantum fieldsY (a, z),a € V commute with one
another; equivalently, ié,,b = 0 forall a,b € V,n > 0. Commutative vertex algebras are all as
in Example 2.1. Theentreof V' is the subspace of all elements V' suchthat,,,)c = 0 = ¢(,ya
foralla € V,n > 0. Then, by (2.2), coefficients df (¢, z) commute with coefficients of all
guantum fields.

Lemma 2.1. Assume that lies in the centre of a vertex algebka Then the subspader c_)
is stable under the action of coefficients of all quantum fiélds, z),a € V. In particular,
ker ¢(_) is an ideal ofV” as soon as it is &[7]-submodule, e.g., whér = 0.

Proof. By (2.2) we have
am) (c(-1)7) = ¢y (aema) = Y (

>0

m

1 (ae) m-j-1),
j) (4 ¢)(m—j-1)

foralla € V,m € Z. Sincec lies in the centre ol/, the right hand side vanishes; hence if
r € ker ¢(_y), it follows thata,,)x € ker ¢y as well. The last claim follows from the fact that
c.1(Tx) =T(c—nz) — (Te)—nz. O

2.2. A non-commutative finite vertex algebra. The following is an example of a vertex alge-
bra structure on a finitely generat€dl’]-module for which some positive produatgv, j > 0
are non-zero.

Example 2.2.LetV = C[T]a ® C[T]b @ C1. Definel to be the vacuum element bf and set
Y(a,2)b=Y(b,z)a =Y (b,2)b =0,
Y(1,z) =idy
Y(a,2)1 = ea Y(b,2)1 = e*Th
Y(a,z)a = e*T/2(2)b,

wherey(z) = ¢)(—z) is any Laurent series i, Extend byC-linearity the state-field correspon-
denceY to all of V' after setting:

d
Y(Tu, z)v = %Y(u, 2)v
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and

d
Y(U, Z) (TU) - (T - d_)(Y(uv Z)’U),
z
so that translation invariance is satisfied. The only vertex algebra axiom still to check is locality,

and the only non-trivial statement to prove is
(z —w)"[Y(a,z2),Y(a,w)]1 =0,
for somen. However we have
[Y(a,2),Y(a,w)]1=Y(a,2)e"Ta—Y(a,w)e a
= T2 (| h(2 — w) — ty.th(w — 2)) b,

where.. ,, (resp..,_.) is a prescription to consider the expansion in the domdin- |w| (resp.
in the domainw| > |z|), see [K]. If we choose so that:"1(z) is regular inz, multiplication by
(z —w)™ makes the above expression zero, due to the fact/that= ¢(—=z): it is anexpansion

of zeroin the sense of [FHL]. Notice that if we choose a non-regulér), then at least one of
the products.(;ya, j > 0, is non-zero, so that’ is non-commutative.

In the example above, elementandb arenilpotent in a sense that we are about to clarify.

2.3. The nilradical. Anideal of a vertex algebrd’ is abelianif 1> = I - I = 0. An element
a € V is strongly nilpotenbf degreen if every product of elements il containinga at least:
times, under all-products and any parenthesization, gives

Letx € V be a strongly nilpotent element of degree> 2, anda be a non-zero product of
[(n + 1)/2] copies ofz. Thena is strongly nilpotent of degree two.

Lemma 2.2. Leta € V be a strongly nilpotent element of degree two. Thagenerates an
abelian ideal of//.

Proof. Clear. O

Remark 2.1. An elementa € V is (non-strongly) nilpotent of degreeif every product of at
leastn copies ofa, under any product and parenthesization givel V' is either commutative

or graded, then it is easy to show that every nilpotent element is strongly nilpotent. In particular,
Y (a, z)a = 0 guarantees that- V' is an abelian ideal of'.

Corollary 2.1. A vertex algebrd” possesses non-zero strongly nilpotent elements if and only if
it contains a non-zero abelian ideal.

Proof. Every non-zero element in an abelian ideal is strongly nilpotent of d@grElee converse
is Lemma 2.2. O

Let us now denote
I'=1, "t =71".1" n>0.
Then/ is anil-ideal if I™ = 0 for sufficiently large values af.

Lemma2.3.LetV be avertex algebray C V anil-ideal, = : V' — V/N the natural projection.
Then! C V' is anil-ideal if and only ifr (/) is a nil-ideal of V/N.

Proof. We haver(I™) = =(I)", hence if] is a nil-ideal, () is too. On the other hand, if
(1) = x(I") = 0, thenI™ C N. ThusI"** ¢ N* which is0 for sufficiently largek. O

Corollary 2.2. The sum of nil-ideals is a nil-ideal.

Proof. Let I, J be nil-ideals of/, and letr : V' — V//I be the natural projection. Ther{/ + .J)
equalsr(J) which is a nil-ideal. O

Corollary 2.3. LetV be a finite vertex algebra. Thénhas a unique maximal nil-ideal.

Proof. Existence of some maximal nil-ideal follows from finiteness of (@]-moduleV,
which is therefore Noetherian; uniqueness from Corollary 2.2. O
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The unique maximal nil-ideal of a finite vertex algeBrais called thenilradical N (V') of
V. Itis clear that every strongly nilpotent elementiofies in N (V). Furthermore, the quotient
V/N (V') has no strongly nilpotent elements, hence it has a trivial nilradical. We will call a vertex
algebra with a trivial nilradical, or equivalently with no non-trivial abelian idea¢ducedvertex
algebra.

Remark 2.2. Both in the case of commutative and graded vertex algebras, an element lies in the
nilradical N (V) if and only if it is nilpotent, hence strongly nilpotent; however, we will not need
this fact.

2.4. Lie conformal algebras. Algebraic properties of commutators of quantum fields are en-
coded in the notion of Lie conformal algebra.

Definition 2.2 ([DK]). A Lie conformal algebras aC[0]-module R with a C-bilinear product
(a,b) — [a ] € V][] satisfying the following axioms:

(C1) [axb] € R[A],

(CZ) [aa)\ b] == —)\[(I)\ b}, [a)\ 8b] == (8 + )\)[GA b],

(C3) [a,\b} = —[b_a_)\ CL],

(C4) [ax buc] = [bylarcl] = [larb xencl,
for everya,b,c € V.

Any vertex algebrd” can be given &[0]-module structure by settingg= 7'. Then defining

[a A b] = Z %a(n)b
neN
endowsV with a Lie conformal algebra structure. Indeed (C1) follows from the field axiom,
(C2) from translation invariance, (C3) from skew-commutativity, and (C4) from (2.2). In all that
follows we will denote the infinitesimal translation operafoin a vertex algebra by.

If A andB are subspaces of a Lie conformal algelrahen we may defingA, B] as theC-
linear span of alh-coefficients in the products ,b], wherea € A, b € B. Itfollows from axiom
(C2) that if B is aC|0]-submodule of?, then[A, B] is also aC[0]-submodule of?. Notice that
if A andB are bothC[0]-submodules, thef4, B] = [B, A] by axiom (C3). Asubalgebraof a
Lie conformal algebrak is aC[d]-submoduleS C R such thafs, S| C S.

A Lie conformal algebra? is solvableif, after defining

RO = R, R — [R(”), R(")},n > (),

we find thatRN) = 0 for sufficiently largeN. R is solvable if and only if it contains a solvable
ideal S such thatR/S is again solvable. Solvability of a nonzero Lie conformal algeBra
trivially fails if R equals itderived subalgebrd&?’ = R, R|. Similarly, R is nilpotentif, after
defining

(2.5) RO = R, R = [R, R n >0,

we find thatRN! = 0 for sufficiently largeN .

An ideal of a Lie conformal algebr& is a C[0]-submodulel C R such thafR,I] C I. If
I, J are ideals of?, then[I, J] is an ideal as well. An idedl is said to becentralif [R, I| = 0,
i.e., if it is contained in theentreZ = {r € R|[r ys] = 0 for all s € R} of R. R is abelianif it
coincides with its centre, i.e., R, R] = 0.

A Lie conformal algebrar is simpleif its only ideals are trivial, andz is notabelian An
interesting such example occurs when, for each choide #fr € R, it occurs thafr, R] =
[Cr, R] = R. In this caseR is astrongly simple_.ie conformal algebra.

Notice that, wherl/ is a vertex algebra, we should distinguish between ideals of the vertex
algebra structure and ideals of the underlying Lie conformal algebra. Indeed, ideals of the vertex
algebra are also ideals of the Lie conformal algebra, but the converse is generally false, as it can
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be seen by noticing th&i1 is always a central ideal of the Lie conformal algebra structure, but
it is never an ideal of the vertex algebra. _

In order to avoid confusion, we will denote B3+ the Lie conformal algebra structure under-
lying a vertex algebrd’; similarly, if S C V' is aC[d]-submodule closed under all nonnegative
products,y,n € N, we will denote bys-'® the corresponding Lie conformal algebra structure.
The reader should pay special attention to the fact that a vertex algebreommutative if and
only if the Lie conformal algebr& ' is abelian, and that claiming thatis an abelian ideal of
V' is a stronger statement than saying thas an abelian ideal in’e. We will say thatV is
solvable (resp. nilpotent), wheneviét' is.

2.5. Finite simple Lie conformal algebras. Every Lie conformal algebr& has a maximal
solvable ideal, calledadical of R and denoted byradR. A Lie conformal algebra is called
semi-simple if it has no solvable ideal; the quoti&RadR is always semi-simple.

An investigation of Lie conformal algebra structures on finitely gener@{é{tmodules was
undertaken in [DK], where a classification of simple and semi-simple ones, together with gener-
alizations of standard theorems in Lie representation theory, are presented.

It turns out that the only (up to isomorphism) simple Lie conformal algebra structures over
finitely generatedC[0]-modules are the Virasoro conformal algebra and current conformal al-
gebras over a finite-dimensional simple Lie algebra, which are described below. Semi-simple
instances are direct sums of Lie conformal algebras that are either simple or non-trivial semi-
direct sums of a Virasoro conformal algebra with a simple current one (see [DK]).

Example 2.3. Let R be a freeC[0]-module of rank one, generated by an elementhen
(2.6) [LyL] = (0+2\)L

uniquely extends to a Lie conformal algebra structureRpmvhich is easily seen to be strongly
simple. R = Vir is calledVirasoro conformal algebra

Example 2.4.Let g be a finite-dimensional complex Lie algebra, anditet C[0] ® g. There
exists a unique-bracket onk extending

(2.7) lgah] = [g, 1],

forg,h € g ~ 1 ® g C R, and satisfying all axioms for a Lie conformal algebra.is called
current conformal algebrand is denote bZur g. Itis a simple Lie conformal algebra whenever
g is a simple Lie algebra. HoweveCur g is never strongly simple, as for no choicepk g
does ad) € Endg satisfy surjectivity.

2.6. Centre and torsion. We now need a statement on subalgebras of a finite Lie conformal
algebraR which have the same rank &5

Definition 2.3. Let U,V be C[0]-modules. Aconformal linear magrom U to V' is aC-linear
mapf, : U — V[A] such thatf\(0u) = (0 + \) fauforallu € U.

The space of all conformal linear maps frdimto V' is denoted byChom(U, V). It can be
turned into aC[0]-module via

(Of )au = —=Afyu.
Remark 2.3. Let U, V, W be C[0]-modules. AC|[0]-linear homomorphisng : V' — W in-

duces a correspondirfg0]-homomorphismy, : V[A\] — W[A]. Then if f € Chom{U, V), the
compositiong, o f lies in Chom(U, W).

Lemma 2.4. Let U,V be C[9]-modules,f € ChomU,V). If Uy C UV, C V are C[d]-
submodules such théf (ug) € Vo[A] forall ug € Uy, thenf induces a uniqu¢ € ChomU /Uy, V/Vj).

Proof. Letr : V' — V/V} be the natural projection. Then o f is a conformal linear map from
U to V/V; which Kills all elements frond/,,. O
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The most typical example of a conformal linear map comes from the adjoint action in Lie
conformal algebras. Indeed, i is a Lie conformal algebra, ande R, then

(adr) xz = [r ]
defines a conformal linear map froRinto itself, due to axiom (C2).
Lemma 2.5([DK]). If f € Chom{U, V) andu € Tor U, thenfyu = 0.
Corollary 2.4. The torsion of a Lie conformal algebra is contained in its centre.

Proof. Let R be a Lie conformal algebra,c R,t € Tor R. The adjoint action of is a conformal
linear map fromR into itself, hence it maps the torsion elemett [r,t] = 0 by Lemma2.5. [

Lemma 2.6. Let S C R be finite Lie conformal algebras, such th&{ S is a torsionC|0)-
module. Ther$ is an ideal ofR containingR?’, i.e., R/S is abelian.

Proof. SincesS is a subalgebra aR, the adjoint action of on R stabilizes theC[0]-submodule

S. By Lemma 2.4 S acts on the quotien®/.S, which is torsion. By Lemma 2.5, the action f

on R/S is trivial, or in other wordsS, R| C .S, which amounts to saying thatis an ideal ofR.
Thus, the adjoint action ak on itself stabilizesS, and we may repeat the above argument to

conclude thaf?’ = [R, R| C S. Itimmediately follows that?/S is abelian. O

2.7. Irreducible central extensions of the Virasoro conformal algebra.In this section we
compute all finite irreducible central extensions of the Virasoro conformal algebra. Finite central
extensions o¥ir are described, up to equivalence, by cohomology classes [BK¥F¢¥ir, Z),
whereZ is the finitely generate@[0]-module describing the centre

The centreZ being a finitely generate@[0]-module, we can decompose it (non-canonically)
into a direct sum of its torsion with a fré&o]-module. This leads to a corresponding direct sum
decomposition of the related cohomology. In order to understand finite central extensiéns of
it is thus sufficient to comput&/?(Vir, Z) when Z is either a freeC[d]-module of rank one, or
an indecomposable torsidt0]-module. The following facts were proved in [DK] and [BKV]
respectively:

Proposition 2.1. All central extensions of Vir by a fre@[0]-module of rank one are trivial.
Proposition 2.2. LetC,, a € C, be thel-dimensionalC[0]-module on which the action éfis
given via scalar multiplication by. Then:

e if a # 0 all central extensions of Vir b{, are trivial;
e if « = 0 then there is a unique (up to isomorphism and scalar multiplication) non-trivial
central extension of Vir b{f. = C, given by

(2.8) [LAL] = (04 2\)L + N°.

Remark 2.4. A computation o2-cocycles ofVvir with values in the triviaVir-moduleC, shows
that they are of the form()\) = ¢; X + c3A3, whereas trivia-cocycles (i.e.2-coboundaries) are
of the formp(\) = 1 A.

Recall that a central extension is calle@ducibleif it equals its derived algebra. Clearly, no
non-zero trivial central extension is irreducible. My aim is to show that the non-trivial central
extension (2.8) is the unique (non-zero) irreducible finite central extensidgin.of

Proposition 2.3. Let C be a finitely generated torsiofi[0]-module on whictd acts invertibly.
Then every central extension of Vir byis trivial.

2Itis fairly easy to show that every finite central extensioifsplits as an extension &f[0]-modules.
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Proof. Let the central extension be given by
[LyL] = (0 +2X)L + p(N),

for somep(\) € C[\. By a computation similar to that in [DK, Lemma 8.11], one obtains
Ip(A) = (0 + 2\)p(0), whencep(A\) = (9 + 2X)0'p(0). ThenL + 9~'p(0) is a standard
generator of a Virasoro conformal algebra, hence it splits the central extension. O

Lemma 2.7. Solutionsp(9, x) € C[0, z] /(0N *!) of
29 (A= pp@, A+ p) = (0 + A+ 20)p(9, \) — (9 + 2X + p)p(d, ) mod OV
are all of the formp(9, \) = (0 + 2X\)q(9) + cA30Y mod N+t c € C.

Proof. By induction onN > 0. The basis of induction follows from Remark 2.4. Assume
next N > 0. Then (2.9) also holds modul@", and inductive assumption givego, \) =
(04 2X\)q(d) 4+ ceA30N 1 mod 9V. As a consequence:

p(0,\) = (0 +2X)q(9) + coA*0™ ' + a(N)dY  mod OV T,
We can substitute this into (2.9) and get
(A = ma\+ ) = (A +2p)a(X) + A+ pla(p) = co(X — 1)

The left-hand side is linear in and homogeneous with respect to the joint degree amd ..
Hence we can solve it degree by degree, looking for solutions of thed¢gn= az". Itis then
easy to check that solutions only exist whgn= 0, and are of the form(z) = gy + cA\3. We
conclude that

p(9, ) = (0 +2X\)q(9) + (gn A + cA*)ON
= (0 + 2\) (q(@) + q%@N) + AN mod 9N
OJ

Proposition 2.4. LetCy denote a finitely generated torsi@hod]-module isomorphic t&[9] /(0N 1),
N > 1. Then there is a unigue (up to isomorphism and scalar multiplication) non-trivial central
extension of Vir by’ given by[LyL] = (0 + 2\)L + A39N.

Proof. The2-cocycle property fop(d, A) as in
[LAL] = (0 + 2\)L + p(0, \),

leads to solving (2.9), hence Lemma 2.7 giyg8, \) = (9 + 2))q(d) + cA*9". However, a
2-cocycle is trivial if and only if it is of the forn{d + 2))¢(0), whence the claim. O

Remark 2.5. All of the above non-trivial central extensions\éf are equivalent to one of the
form [LyL] = (0 + 2)\)L + A3c, wheredc = 0.

Theorem 2.1. A finite non-zero irreducible central extension of Vir is isomorphic to that given
in (2.8).

Proof. We already know that a central extensiorMaf by theC[0]-moduleC is only possible if
C'is torsion. A torsion finitely generated|0]-module is a finite-dimensional vector space, on
which 0 acts as &-linear endomorphism. Theti decomposes into a direct sum of a submodule
on whichg acts invertibly, and of summands as in Proposition 2.4.

Irreducibility and Proposition 2.3 prove that the summand on wéiabts invertibly is trivial.
On the other hand, Proposition 2.4 shows that we may choose a lifirighe standard Virasoro
generator so that:

[LAL] = (0 + 2\) L + X,

for somec € C such thabtc = 0. Using again irreducibility once more givés= Cc. OJ
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3. FINITE VERTEX ALGEBRAS

3.1. Commutativity of finite simple vertex algebras. We have seen that coefficients of vertex
operators in a vertex algebra:

(3.1) Y(a,z) = Z agyz 7!
JEZ
satisfy the Lie bracket (2.2):

m
[agmy, bo] = ) (j ) (a)b) (m-tn—s)

JEN
for everya,b € V, m,n € Z. Multiplying both sides of (2.2) by™2"*!/m! and adding up over
allm € N, n € Z, after applying both sides toc V, gives
(3.2) [a\Y (b, 2)c] = e*Y ([axd], z)c + Y (b, 2)[axc],

foralla,b,c € V.

This allows one to explicitly write down the-bracket of a vertex operator with the normally
ordered product of two others — it suffices to take the constant teeninimoth sides — but the
formula is definitely more useful in the above form. Equation (3.2) can be used in order to prove
the following statement:

Lemma 3.1([D]). LetV be a vertex algebrd/ C V a subspace. Thel@/, V] is a (vertex) ideal
of V.

Remark 3.1. Itis important to realize that, by Lemma 3.1, elements of the descending sequence
(2.5) are indeed ideals of the vertex algebrand not only of the Lie conformal algebra'e.

The lemma above has the following immediate and striking consequence.

Theorem 3.1([D]). Let V be a non-commutative simple vertex algebra. Th&l§ is an irre-
ducible central extension of a strongly simple Lie conformal algebra.

Remark 3.2. The strong simplicity property is clearly expressed in the proof but not explicitly
stated in [D].

We will use Theorem 3.1, and our knowledge of finite simple Lie conformal algebras, in
order to show that all simple vertex algebra structures over finitely genefatéanodules are
commutative.

Proposition 3.1. There is no vertex algebr® such thatl” = C[0]L + C1, whereL ¢ TorV
and[LyL] = (0 + 2\)L + ¢A*1, for somec € C.

Proof. We proceed by contradiction. We know that
[LAL] = (0 + 2\)L + cA*1, [L)1] =0, [1,1] =0,

and that
Y(1,2)1=1, Y(1,2)L=L, Y(L,2)1=¢" L.

All that we need to determine (L, z) L. Let us write

(3.3) Y(L,2)L = a(0,z)L + b(z)1.

Then (3.2) gives

(3.4) [L\Y (L, 2)L] = e¥Y ([LyL], 2)L + Y (L, 2)[L\L],
which, after expanding and comparing coefficientg.pfields

(3.5) (e —1) % + (2A(eM + 1) +9) a(0,2) =

—e X (eM 4+ €*) + (04 20)a(d + A, 2).
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Using (3.3) and substituting = —9/2, this becomes
da(0, z)
dz
i.e., a linear differential equation (0, z) whose solutions are of the form

K(9)e cd? 8
—(628/2—1)2 —?(1“‘6 )
In order fora(0, z) to be compatible withZ \L] = (0 + 2\) L, one needs

a(0,z) =2/2* 4+ d/z + (regular inz).

3
B0 () O g = P (o0 o),

a(0, z) =

This forcesK (9) = 9% /2, hence the only solution of (3.6) satisfying this additional condition is
82628 082 (
2(ex0/2 —1)2 8
Checking that this value af(0, z) is not a solution of (3.5) is a rather lengthy but straightforward
computation. O

(3.7) a(0, z) = 1+ e%).

Theorem 3.2. Every simple finite vertex algebra is commutative

Proof. Let V' be a finite simple vertex algebra. By Theorem 3.1, eiifiés commutative of/-€
is an irreducible central extension of a strongly simple Lie conformal algebra. It is then enough
to address the latter case, showing it leads to a contradiction.

We have seen that every finite strongly simple Lie conformal algebra is isomorpkic.to
Moreover, Theorem 2.1 gives a description of all finite non-zero irreducible central extensions
of Vir. Thus we know that” = C[J]L + C1, with [Ly\L] = (9 + 2\)L + cA\*1, for some
0 # ¢ € C. Then Proposition 3.1 leads to a contradiction. OJ

The following claim is a technical statement that we will use later on.

Lemma 3.2.LetV be a vertex algebra, antif C V. a minimalideal such that/ = C[0]L+Ck,
whereL is a non-torsion elemendk = 0 and

[LAL] = (04 2\) L + k.

ThenM can be endowed with a vertex algebra structure by choosing the vacuum eleyjnamnt
be a suitable scalar multiple @f.

Proof. The vacuum elemerit of V' lies outside ofM/, so the only thing we need to prove is that
we may choose an element insidiewhose quantum field act as the identity bh As 0k = 0,
thenY (k, z) does not depend on MoreoverY (k, z)k € M is a torsion element as

O(Y (k, 2)k) = Y (0k, 2)k + Y (k, 2) (9k) = 0.

ThenY (k,2)k = ak for somea € C, henceY (k — al,2)k = 0. The element = k£ — al
satisfiesoc = 0, hence is a torsion element, contained in the centr&.ofBy Lemma 2.1,
ker c(_;) is an ideal ofV containingk, therefore it must contain all af/ by the minimality
assumption. Thu¥ (k — a1, 2) has zero restriction on all af/, andY (k, 2)|y = aidy,. If
a # 0, then we are done by setting, = o 'k.

The casex = 0 can be ruled out as follows: we know that ;)1 C M asM is an ideal
containingk. Moreover, we just showed that_)A/ = 0. Now, by (2.2), for every choice of
a,b € V, one has:

(3.8) (k1)@ (k-1)b) = k- (kena)emb) + Y (T) ((k1y@) ) F) mtj—1)bs

J=0

30ne may also observe that substituting (3.7) into the right-hand side of (3.5) gives a denominator of the form
(e#(9+2)/2 _ 1)2 which cannot be obtained from the left-hand side.
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where both summands on the right hand side vanish. This showsthat” is a subalgebra
contained inM in which all products vanish, therefotg_)V C Ck. In other wordsCk is an
ideal of V', which contradicts the minimality of/.

O

3.2. Solvability of finite vertex algebras.

Lemma 3.3. LetV be a finite vertex algebra, antl be the intersection of all vertex subalgebras
U c V suchthatrkJ =rkV. ThenV is solvable if and only if is.

Proof. Let U be a vertex subalgebra &f such that rtkJ = rk V. U is clearly a subalgebra of
VLe: hence, by Lemma 2.6, an ideal containing the derived subalgeMH%f_

The intersectiort' of all such vertex subalgebras is then itself an idedl'Bf containing its
derived subalgebra, hentg'®/S is abelian. Therefor& is solvable if and only ifS is. OJ

Remark 3.3. Observe that if the vertex subalgelffan the above lemma is such that$k=
rkV, then it is the minimal vertex subalgebra of of rank equal to rk’. In particular, S
possesses no proper vertex subalgebras of equal rank.

Lemma 3.4.LetV be afinite vertex algebra, andl be the sum of all vertex ideals Bfcontained
in TorV. ThenV/N has no nonzero torsion ideal arid is solvable if and only if’/N is.
Moreover,V contains proper vertex subalgebras of ranKfkf and only ifVV/N does.

Proof. The sum of ideals in a vertex algebra is again an ideal. Also, the sum of torsion elements
again lies inTor V. Hence, the sunV of all vertex ideals o¥” contained irifor V' is the maximal
such ideal of’. As Tor V lies in the centre of/-¢, N€ js abelian, sd’ is solvable if and only
if V/N is.

The other claims follow from the correspondence between ideals (resp. subalgebirad) of
and ideals (resp. subalgebras)iotontaining/N, and the fact that torsion modules are of zero
rank. O

Theorem 3.3. Every finite vertex algebra is solvable.

Proof. Assume by contradiction thaf is a counter-example of minimal rank. By Lemmas 3.3
and 3.4 and Remark 3.3, we may assume thags no proper vertex subalgebra of equal rank,
and no non-zero torsion ideal.

Now, observe that if C V is a non-zero ideal with rk < rkV, then rkV/I < rkV asI
cannot lie inTor V. Then the vertex algebrds/ I and/ +C1 are both solvable by the minimality
assumption, hencé-® c (I + C1)“¢ is solvable and/"® is an extension of solvable Lie
conformal algebras, a contradiction. Therefore, all non-zero vertex ide&lsaoé of the same
rank asl’.

As a consequence, eithér is simple, or has a unique non-zero proper ideawhich is a
complement t«C1. Indeed, ifM is a non-zero ideal, then il = rk V', andM + C1 is a vertex
subalgebra o/, henceM + C1 = V.

We already know that finite simple vertex algebras are commutative, hence solvable, so it is
enough to address the non-simple case.lLbe a non-solvable finite vertex algebra whose only
non-zero vertex ideal/ # V' is such thal’ = M + C1. Then[V, V] = [M, M] is a vertex ideal
of V, hence it equald/. If U C M is a subspace, so Lemma 3.1 shows {hat’] is a (vertex)
ideal of /, hence it equals eithéror M. As a consequence, if ¢ )M then either is central
inV or [u, M] = [u,V] = [Cu, V] = M. This shows thafi/"® is either strongly simple or a
central extension of a strongly simple conformal algebral s\ | = M, the central extension
must be irreducible.

If ArYe s strongly simple, then we conclude thidtis as in Proposition 3.1, with = 0,
hence a contradiction. If, on the other hand-'® is a central extension of a strongly simple Lie
conformal algebra, then Lemma 3.2 shows thatan be given a vertex algebra structure which
contradicts Proposition 3.1. O
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4. CONFORMAL ADJOINT DECOMPOSITION

4.1. Finite modules over finite solvable Lie conformal algebras.In this paper, we will need
some basic results from representation theory of solvable and nilpotent Lie conformal algebras.
A representation of a Lie conformal algebias aC|0]-moduleV along with aX-actionR®V >

r®uv — ryv € V]\ such that

(4.1) (Or) v = —Aryv, ra(0v) = (0 + Ny,
(4.2) TA(SuU>_5u(TAU) = [rAS]A+uU7
forallr,s € R,v € V. The action ofr € R onV is nilpotent if

73\1(74)\2(' - (TAnU) e )) =0

for sufficiently largen. The following conformal versions of Engel’'s and Lie’s Theorems were
proved in [DK].

Theorem 4.1. Let R be a finite Lie conformal algebra for which every element R has a
nilpotent adjoint action. The® is a nilpotent Lie conformal algebra.

Theorem 4.2. Let R be a finite Lie solvable conformal algebrd, its finite module. Then there
exists) # v € Vand¢ : R 3 r — ¢,(\) € C[)\] such that

(4.3) AU = ¢p(A)v,
forall r € R.

An element such as that in Theorem 4.2 iss@ight vector Theng is theweightof v, and it
necessarily satisfiesy, (A) = —A\¢,.(\). The set of all weight vectors of a given weightalong
with zero, is thewveight subspac.

Remark 4.1. The statement in [DK] only deals witR-modules that are free &§0]-modules,
but clearly extends to non-free modules, siiioeV is a submodule oV which is killed by .

Lemma 4.1. Let V' be a representation of the Lie conformal algeldta ThenV, is always a
vector subspace df. Also, it is aC[0]-submodule whenever= 0.

Set now:
vP=0, VS = {v e V|rw — ¢(r)v e VP forallr R},z’ > 0.

ThenVy = Vj, andVy’ ¢ Vy’ C ... is an ascending chain of subspaced/of The subspace
U Vﬂ’ = V¢ is thegeneralized weight subspaoéweight¢. Clearly,r acts nilpotently o/ ex-
actly whenV” coincides with the generalizédweight space for the action of (the Lie conformal
algebra generated by)

Proposition 4.1([DK, BDK]) . LetV be a representation of the Lie conformal algelitaThen:

e V?is aC[d]-submodule of’;

e V/VY has no0-weight vectors: in particular, it is torsion-free;

o if V is torsion-free, theV/V¢ is too;

o if » #£ 1, thenV? N VY = 0;

¢ the sum of all generalized weight spaces for the actioR oh V' is direct.

The sum of all generalized weight spaces may fail to coincide wittktn@odulel”. However,
the following Fitting decomposition, proved in the context of Lie pseudoalgebras, holds for
nilpotent Lie conformal algebras.

Theorem 4.3([BDK]). Let R be a finite nilpotent Lie conformal algebr#; its finite module.
ThenV decomposes into a direct sum of generalized weight subspaces for the adtion of
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In practice, we will often consider weight spaces and generalized weight spaces with respect
to the action of a single elemente R. If S is the subalgebra generated hywe will say a
weight for the action ob' on some modul®” is aweightof s. This abuse of notation is justified
by the fact that in the casg = (s) = C[J]s + S’, any weighto for the action ofS on some
moduleV satisfiesp(S’) = 0.

4.2. Matrix form. Let R be a Lie conformal algebra, aiid be anR-module. Then the map
V 5 v — ryv € V])\ is conformal linear for alr € R. The C[0]-module structure built on
Chom(V, V) is such that the map+— {v — ryv} is C[0]-linear.

One may indeed build up a Lie conformal algebra structur€loon{V, V') in such a way that
the above map is always a homomorphism of Lie conformal algebras. It suffices to define:

(4.4) (13910 = fa(gu-2v) = gu-r(fiav),

wheneverf, g € Chom(V, V). This Lie conformal algebra structure is usually denoteddy’),

or simplygc, whenV is a freeC[0]-module of rank:. The standard way to represent elements
of gc, is by identifying it with C[0, x|, with the C[0]-module structure given via multiplication
by 0, and the conformal linear action @j0] given on its free generatarby:

ol = (0+N)".
Then the\-bracket]p(9, x)q(0, x)] equals
(4.5) p(=A\,z+ 0+ N)q0+ N x)—q(0+ N,z — N)p(—=A\, x).

However, in this paper | will employ a different choice, and denote elemengs, dby the
effect they have on the free generator. This identdigswith C[0, ], and has two major ineffi-
ciencies: first of all, th&C[0]-module structure is obtained via multiplication by\; moreover,
as we are already employingto denote elements, we will have to computerather than\-
bracket of elements. However, this choice is by far more readable than the standard one. The
bracket expressed in (4.5) then becomes:

(4.6) [a(0, N)ab(0,N)] = a(0,a)b(0 + a, A — @) — b(O, A — @)a(d + A — a, ).

Now letV, W be C[0]-modules. A conformal linear map € Chom(V, 1) is determined by
its values on a set df[0]-generators of/. If VV andWW are free, then, for any given choice of
C[0]-basegv?, ...,v™), (w', ...,w™) of V andV respectively, we can establish a correspondence
betweenChom(V, W) andn x m matrices with coefficients ifC[0, A], similarly to what done
above in the case afc,.

In general C[0]-modules fail to be free. 11/ is a finitely generate@[0]-module,M can be
(non-canonically) decomposed as the direct sum of a free module and of its torsion submodule
Tor M. By Lemma 2.5f € Chom(M, N) always mapgor M to zero.

Since we need to employ a matrix representation for any conformal lineaf raaphom( M, N)
between finitely generated modules that may (and typically will) fail to be free, we can proceed
as follows. Decomposg/ and N as a direct sum of a free module and their torsion submodule.

If we pick a freeC[d]-basis of the free part, and@&basis of the torsion part, we can use this

set of generators to represent conformal linear maps through matrices: we will call such a set
of generators &ase As a conformal linear map i@hom( M, N) always factors vial//Tor M,

which is free, special care is only needed for the treatment of torsion in the range module.

Note that if we agree that the[0]-linear combination expressing elements\oiin terms of
a given base is such that coefficients multiplying torsion elements lie(mrather than inC[0])
then all coefficients are uniquely determined. This unique expression enables us to write down a
well-behaved matrix representing the conformal linear map. Matrix coefficients corresponding
to torsion elements then lie i@[A] rather than irC[0, A].

Note that, iff, g € gc(M, M) and the matrices representing them are given by

F = (fzg(av /\))7G = (gij(aw )‘))a
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respectively, then by (4.4), the matrix representifig ¢| is given by
4.7) F0,0)G(O+ a, A —a) — G(O,\—a)F(0+ X — a,a),

where multiplication of matrices is the usual row-by-column product. Notice that, according to

such a matrix representation of conformal linear maps, Theorem 4.2 guarantees the existence

of a base in which matrices representing the action of the solvable Lie conformal algelbea

simultaneously upper triangular. Similarly Theorem 4.3 means that matrices can be put in block

diagonal form, where each block represents the action on a single generalized weight submodule.
Later, we will call the diagonal entries of a triangular matrix representing the action of some

s € S, S solvable eigenvalue®sf the element.

4.3. Adjoint action on a vertex algebra of a Lie conformal subalgebra.In what followsV
will be a finite vertex algebra, unless otherwise stated. if a Lie conformal subalgebra &f,
thensS is solvable by Theorem 3.3. Using formula (3.2) | want to show that

Theorem 4.4.1f ¢ is a non-zero weight for the adjoint action of a Lie conformal subalgebra
on the finite vertex algebrd, then the generalized weight spdcé is an vertex ideal of/, and
it satisfiesl’¥ - V¥ = 0.

I will divide the proof of Theorem 4.4 in a few easy steps. bdie a weight for the action of
S onV, 3 forits action onV//V*. Denote byl’*# the pre-image ofV//V*)? via the canonical
projectiont : V' — V/V“. Then we have:

Lemma 4.2. LetU C V be a properS-submodule of” with the property that/ - V¥ c V¥,
and choose an element € V such thatw = [w] € V/U is a weight vector of weight. Then
w - Vw C V¢,¢+¢_

Proof. As [syw] = ¢s(A\)w mod U, then we have,w = ¢"w + u”, for someu” € U, where
the ¢" are such that

w - Vnw C yvvte
by induction onn — the basis of induction = 0 being trivial, asl;” = 0.
Leth € V¥, ,, and sek b = ¢b+o" with v € V¥, We know thato b = 0 for sufficiently

large N. So if Y (w, 2)b gZ V¥¥te|[z, 2~ 1]] we choosek maximal Wlth respect to the property
thatw,b ¢ V¥, Let us compute by means of (2.2):

i m
$m) (WD) —W (k) (SGmyb) = Y ( .)(S<j>w)(m+k—j)b

| will prove that

— \ j
7=0
(4.8) o
= (samw) b+ Y ( j ) ($(HW) m+k-1)bs
7=0
hence
Sm) (Wyb) — (V" + o ) w Wy + (ul") (k)b
(4.9)

+Z( ) I (Wntk—i)b) + (W) mar—i)b) -

Now, v € V¥, soY (w, 2)vt € V¥¥+9[z, z71]]. Also,u” € U, henceY (u”, 2)b € V¥[[z, 271]].
Moreover, eachu(,, ;b in the summation lies ifv***¢ by the maximality oft.. Therefore,
(Semy — (W + )7 )(w(k b) € V¥¥*%, showinguw )b € V¥¥*+¢, a contradiction. O

Lemma 4.3. Under the same hypotheses as in Lemmaw#.2y¥ C VY.
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Proof. The statement is clear if = 0, asV¥¥ = V¥. Otherwise, choose a bage’} of
Vvwte /7% on which the action ofS is triangular, and lift it toV¥¥*¢. Then, ifb € V¥,
we can expres¥ (w, )b as some (depending or) element fromV¥ plus aC|[d]((z))-linear
combination of elements from this base:

(4.10) Y(w,2)b=v(z +ZA28 2)r

My aim is to show that all? are zero. | will prove that it is so fdr € V,ﬁ’ by induction onk. If
not all of the A’ are zero, choos®& maximal such that”V is non-zero. Then (3.2) gives
[s2Y (w, 2)b] = Y ([syw], 2)b + Y (w, 2)[s:b],

and using triangularity of the action ebn the chosen base, along with the induction assumption,
shows that

(4.11) (65 (A) + Us(N)AY(D + A, 2) = (e¥ds(A) + 15(1)AY(9, 2),

as[s\b] — ¥,(\)b lies insideV;” ,.

Now, since neithet nor ¢ is identically zero, there must be somesuch thatp, and, are
both non-zero. If for such anwe getgy, + 1, = 0, thenA must be zero, giving a contradiction.
If insteado + ¥ # 0, then

MR (N) + U,(N)
(@12 T = N )
is a non-zero element @f(\)[[z]] satisfying
(4.13) T(A+ p,2) =T\, 2)T(u, 2).

It is then easy to show th&ts constant term as a power seriesimust be onel’(}, z) is indeed
of the forme*(*) for some power serieg(z) = v,z + 7222 + ...
By comparing coefficients of andz? in (4.13) one concludes that()\) /(¢s(\) +15(N)) = 0
or 1. But this is only possible if eithep, or ¢, is zero, contrary to the assumption that they are
both non-zero. We obtain a contradiction, which proves thatallanish. O

Lemma 4.4. V¥ is an ideal of the vertex algebrd.

Proof. Let U be maximal among alf-submodules of” such that/ - V¥ c VY. If U # V,
choose a weight vectar in V/U. Then(U + C[o]w) - V¥ C V¥ by Lemma 4.3, against the
maximality of U. Hence,U must equal/, andV¥ is an ideal. OJ

Lemma 4.5. LetV be a (not necessarily finite) vertex algebi& and V¥ generalized weight
subspaces for the adjoint action of the conformal subalgebod V. ThenV? - V¥ C Vo,

Proof. | will show thatV;* - Vf" C V¢*¥ by induction onn = i + j.
Sayv € V;‘z’,w € Vﬁ,i—i—j =n+1. Setspv = = ¢Mw + vl Smw = Yrhw + wh. Then

e Vel e VL IFY (v, 2)w ¢ VO], 2- ]], then choose a maximalwith the property
thatv(k)w ¢ Ve+tY Then

S(m) (VW) = V() (Smyw) + (Smy0) myw + Z ( ) -

whence
8(m) (V) w) — (GF+HYT) (Vyw) = vaywl" + (V5 wyw+
4.14 m-] | |
( ) Z (T) (%(U(mﬂzﬂ')w) + (Ug)(m+n—j)w) ~
j=0

The right hand side of (4.14) lies in¢*¥, hencey,,w does too, giving a contradiction. [
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Proof of Theorem 4.4V¥ is an ideal by Lemma 4.4. On the other hand, Lemma 4.5 shows
VY. V¥ c V¥, As is a non-zero weight, Proposition 4.1 give¥ N V?¥ = 0, hence
VY. VY =0. O

Recall that an ideal of a vertex algebrd” is abelianif 7 - I = 0, and thatl” is reduced if it
has no abelian ideals or equivalently if its nilradical is trivial.

Corollary 4.1. LetV be a finite reduced vertex algebrd] be a nilpotent Lie conformal sub-
algebra of V. Then the adjoint action oV on V' is achieved via nilpotent conformal linear
maps.

Proof. By Theorem 4.4, any non-zero weighffor the adjoint action ofV on VV would give an
abelian vertex ideal’?. Since this is not possible, the only weightlis But NV is a nilpotent
Lie conformal algebra so, by Theorem 4.3, evéfymodule decomposes as a direct sum of
generalized weight spaces, showirig= V°. This means that the action 8f onV' is nilpotent.

O

Corollary 4.1 has the following immediate consequence:

Corollary 4.2. If V' is a finite reduced vertex algebra, then Gucan arise as a subalgebra of
V1€ only wheng is a nilpotent Lie algebra.

Proof. Every elemeny € 1 ® g C Curg spans an abelian (hence nilpotent) Lie conformal
subalgebra of/. By Corollary 4.1, must act nilpotently on all of’, and in particular ofCur g
itself. Theng is a finite-dimensional Lie algebra on which every element is ad -nilpotentg and
is nilpotent by the usual Engel theorem for Lie algebras. O

Remark 4.2. We observed in Theorem 3.3 that every finite vertex algebra is solvable, hence we
knew already tha€ur g arises as a subalgebraléf'® only wheng is solvable.

5. NILPOTENCE OF FINITE REDUCED VERTEX ALGEBRAS
The main result of this section is the following
Theorem 5.1. Any finite reduced vertex algebra is nilpotent.

Before we prove this, we show a stronger result characterizing the conformal adjoint action of
elements froni/.

Lemma 5.1. Let V' be a finite vertex algebra; € V. If the (conformal) adjoint action of is
not nilpotent onl/, then there exists a non-zesavhose adjoint action has a weight vectorof
non-zero weight.

Proof. In what follows, by “action ofs”, | will always mean the conformal adjoint action of
s € Ve on V. Notice that the finite vertex algebtais solvable, hence all subalgebrasiéfe
are solvable Lie conformal algebras, for which the adjoint actiorv csatisfies the conditions
of Theorem 4.2. In particular, the subalgelisa c VH'® generated by is solvable, and acts
triangularly in a suitably chosen baselof

If s has a weight vector of non-zero weight then the statement holdswitk. We can thus
assume, without loss of generality, that the only weight of the adjoint actieroafl” is zero.
Sinces does not act nilpotently;® cannot equal the wholg and Proposition 4.1 shows that the
action ofs on V/V? only has non-zero weights.

Therefore, let us consider a weight vectoin V/V° of non-zero weighty(\). Without loss
of generality, we may assume that the degree of A be odd. In fact, we can always replace
s by 0s, which must be non-zero, otherwisavould be a torsion element, with a trivial adjoint
action. Eigenvalues als are then obtained by multiplying those ©by —\, and eithers(\) or
—A¢()) is of odd degree. Moreover, the adjoint actionsa$ nilpotent if and only if that obs
is.
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So, lets be an element of” for which there exists an elememtc V/V° of non-zero weight
¢»(\) having odd degree in A\. My plan is to find an element= s + ', s’ € (s)’, and a lifting
w € V of w in such a way that will be a (non-zero) weight vector il of weight¢ for s.
Choose any liftingw of w. The C[9]-submodulelV spanned byl’® together withw is
preserved by the action df. Let us fix a base of/ consisting of somes-triangular base
(v1, 09, ..., v3) for V9 along with the liftingw. According to the matrix representation introduced
in Section 4.2, the action afon W will be represented by the following matrix:

0 * . . * X'\
00 = * X2(N)
0. ... 0 X"\

0 . ... 0 o)
whereg()) is the weight ofw. Notice that coefficients(? may depend o if they refer to an
element of theC[d]-basis of the free part df°, but only depend on when they refer to basis
elements offor V°.

If all of the X' are zero, themw is a weight vector, and we are done. If instead some of the
X* are non-zero, let us chooséo be maximal with the property tha’ is non-zero. | will
show that | can find an elemeht= s + ¢/, s’ € S’ and a liftingw’ of w such that, in the matrix
representation of + s’ with respect to the base, ..., vy, w’) of W, all X7, > i vanish. An
easy induction will then prove the statement.

Ifall X7, 5 > iarezeroand® # 0, then we can compute the corresponding matrix coefficient
in the commutatofs,s|. By (4.7), itis given by

XY0,0)p(\ — a) — X9, — a)o(a).

Let us write
SN =D N X0, =D X;(0N.
i=0 =0

Saym is even, and recall that we chosdo be odd. Then théth entry in the last column
of the matrix representing the” " coefficient (call itt;) in [s , s] equals—2X,,(9)¢,. Hence
the matrix representing the element= (—0)"t, /2¢,, is upper triangular with zero eigenvalues
and thei.th entry in the last column is preciselyX,,(0)\™, opposite to the highest degreein
of X*(9,\). Thus, the matrix representing+ s; has the same eigenvaluessagll X7, > i
vanish, and the degree inof X? is lower. Notice that, € S’

If m is on the other hand odd, assume# n. Then thei.th entry in the last column of the
matrix representing the coefficient (calki) multiplying o™ *"~! in [s,s] is given by

2 X (8) b1 — 2Xom1(9)n + (1 — M)AX ().

Then the matrix representing the element= (—9)™ 't,/(m — n)¢, is upper triangular with
zero eigenvalues. Moreover, théh entry in the last column has the same top degree tepnas
X, with opposite sign. As before, the element s, has the same eigenvaluessaall X7, j > i
vanish, and the degree &f’ is lower. Notice that, € S’ as well. Finally, whenn = n, it is
enough to replace with w + X,,(9)v;/¢,, in order to kill the term of top degree df* in the
matrix representation of.

By induction, we can then find ah= s + ', s’ € S" and a liftingw of w in such a way that
the corresponding matrix is upper triangular with the same eigenvaluesaas all.X’,j > i
vanish. OJ

Theorem 5.2. Let V' be a finite reduced vertex algebragc V. Then the adjoint action of on
V' is nilpotent.
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Proof. If there is somes € S for which the adjoint conformal action dr is not nilpotent, then
Lemma 5.1 finds an elemeRtc (s) possessing a weight vector of non-zero weightThen
Theorem 4.4 shows that the generalized weight sp#ceith respect to the conformal subalge-
bra generated by is a non-zero abelian ideal of the vertex algelravhich is a contradiction,
asV is reduced. O

Proof of Theorem 5.1Every element ¢ VHe has a nilpotent adjoint conformal action. By
Theorem 4.1} is then a nilpotent Lie conformal algebra. OJ

Corollary 5.1. LetV be a finite vertex algebra, and define
vl =y, Vil — v, v p > 0.
Then allV" are ideals ofl/, and the descending sequence
v=vls oSyl
stabilizes on an ideal contained in the nilradicall6f

Proof. The quotient of/” by its nilradical NV is nilpotent, hence the above sequencelfgiv
stabilizes to zero. By lifting it back t¥, this only happens if the claim holds. OJ

In other words, every finite vertex algebra can be expressed as an extension of a nilpotent
vertex algebra by a nil-ideal.
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