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ABSTRACT. I define products on subspaces of a vertex algebra that behave in a better way than
residual products of elements. In particular, they satisfy commutativity and associativity proper-
ties, and make it possible to easily prove many vertex algebra generalizations of standard facts in
commutative algebra theory.
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1. INTRODUCTION

My aim in these notes is to present a vertex algebra identity – similar to the Leibniz rule
in a Poisson algebra, and generalizing the method introduced by Wick [7] for computing the
OPE of normally ordered products of quantum fields – which has immediate and deep algebraic
consequences. It allows one (Propositions 3.1 and 4.2) to produce a wealth of vertex ideals
out of ideals of both the vertex algebraV and the Lie conformal algebraV Lie underlying it.
Among its consequences, one can produce an unexpected characterization (Theorem 3.1) of
ideals ofV Lie in terms of those ofV . Using Proposition 3.1, I easily deduce (Proposition 4.1)
the associativity property of a suitably defined product betweenC[T ]-submodules in a vertex
algebra. This result is not new, as it has already been observed in a more general form in [1], but
the present proof seems somewhat more natural and straightforward. Using the above-mentioned
associativity, together with standard skew-symmetry in a vertex algebra, I show vertex analogues
of well-known facts in commutative algebra theory: existence of a nilradical, the fact that the
annihilator of any given set of elements is an ideal, a no zero-divisor statement for simple vertex
algebra structures. I finally list a few applications towards the study of vertex algebra structures
over finitely generatedC[T ]-modules, that are proved in [4]. My overall point of view is that
the Poisson-Wick formula (3) is strong enough to make it possible to deduce many interesting
algebraic properties of vertex algebras without much effort.
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2 A. D’ANDREA

2. BASIC DEFINITIONS

2.1. Vertex algebras. Let V be a complex vector space. Afield on V is a formal distribution
φ ∈ (EndV )[[z, z−1]] with the property thatφ(v) ∈ V ((z)) for everyv ∈ V . In other words, if

φ(z) =
∑
i∈Z

φi z
−i−1

thenφn(v) = 0, for n � 0.

Definition 2.1 ([6]). A vertex algebra is a (complex) vector spaceV endowed with a linear
state-field correspondenceY : V → (EndV )[[z, z−1]], a vacuum element1 ∈ V and a linear
endomorphismT ∈ EndV satisfying the following properties:

• Field axiom: Y (v, z) is a field for allv ∈ V .
• Locality : For everya, b ∈ V there existsN such that:

(z − w)N [Y (a, z), Y (b, w)] = 0.

• Vacuum axiom: Y (1, z) = idV , Y (a, z)1 ≡ a mod zV [[z]],
for all a ∈ V .

• Translation invariance: [T, Y (a, z)] = Y (Ta, z) = dY (a, z)/dz,
for all a ∈ V .

Every vertex algebra carries a naturalC[T ]-module structure. CoefficientsY (a, z) =
∑

j∈Z a(j)z
−j−1

of quantum fields in a vertex algebra span a Lie algebra under the commutator Lie bracket, and
more explicitly satisfy [6]

(1) [a(m), b(n)] =
∑
j∈N

(
m

j

)
(a(j)b)(m+n−j),

for all a, b ∈ V, m, n ∈ Z. In particular, applying both sides of (1) toc ∈ V gives

(2) a(m)(b(n)c) = b(n)(a(m)c) +
∑
j∈N

(
m

j

)
(a(j)b)(m+n−j)c.

If A andB are subsets ofV , then we may defineA · B as theC-linear span of all products
a(j)b, wherea ∈ A, b ∈ B, j ∈ Z; clearlyA ·B does not change if we replaceA, B by the linear
subspaces they generate. Translation invariance implies

[T, a(n)] = (Ta)(n) = −na(n−1),

henceA · B = (C[T ]A) · B. It follows that if B is aC[T ]-submodule ofV , then the same holds
for A · B, as by translation invarianceT is a derivation of allj-products; in particular,A · V is
always aC[T ]-submodule ofV . Note that in general(C[T ]A) · (C[T ]B) = C[T ](A · B). The
C[T ]-submodules generated byA · B andB · A always coincide by skew-commutativity, and
A ⊂ A ·V by the vacuum axiom. Anidealof V is aC[T ]-submoduleI ⊂ V such thatV · I ⊂ I.
A vertex algebra issimpleif its only ideals are trivial.

2.2. Lie conformal algebras.

Definition 2.2 ([5]). A Lie conformal algebrais a C[∂]-moduleR with a C-bilinear product
(a, b) 7→ [a λ b] ∈ R[λ] satisfying the following axioms:

(C1) [a λ b] ∈ R[λ],
(C2) [∂a λ b] = −λ[a λ b], [a λ ∂b] = (∂ + λ)[a λ b],
(C3) [a λ b] = −[b −∂−λ a],
(C4) [a λ [b µ c]]− [b µ [a λ c]] = [[a λ b] λ+µ c],

for everya, b, c ∈ R.
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Any vertex algebraV can be given aC[∂]-module structure by setting∂ = T . Then defining

[a λ b] =
∑
n∈N

λn

n!
a(n)b

endowsV with a Lie conformal algebra structure, denoted byV Lie. Indeed (C1) follows from
the field axiom, (C2) from translation invariance, (C3) from skew-commutativity, and (C4) from
(1). If A andB are subsets of a Lie conformal algebraR, then we may define[A, B] to be the
C-linear span of allλ-coefficients in the products[a λb], wherea ∈ A, b ∈ B; as above,[A, B]
does not change if we replaceA andB by the linear subspaces they generate. It follows from
axiom (C2) that ifB is aC[∂]-submodule ofR, then[A, B] is also aC[∂]-submodule, and that
[C[∂]A, C[∂]B] = C[∂][A, B]. Notice that by axiom (C3)[A, B] and[B, A] generate overC[∂]
the same submodule ofV , hence they are equal as soon as they are bothC[∂]-submodules. An
ideal of a Lie conformal algebraR is a C[∂]-submoduleI ⊂ R such that[R, I] ⊂ I. If I, J
are ideals ofR, then[I, J ] is an ideal too. An idealI is said to becentral if [R, I] = 0, i.e.,
if it is contained in thecentreZ(R) = {r ∈ R|[r λs] = 0 for all s ∈ R} of R; R is abelian
if it coincides with its centre. A Lie conformal algebraR is simpleif it is not abelian, and has
no nontrivial ideals; it isstrongly simpleif [a, R] = R for every nonzeroa ∈ R. A strongly
simple (nontrivial) Lie conformal algebra is clearly simple. Notice that, whenA, B are subsets
of a vertex algebraV , then[A, B] is the subspace ofV linearly generated by elementsa(j)b, for
all choices ofa ∈ A, b ∈ B, j ∈ N. As a consequence,[A, B] ⊂ A · B holds for all choices
of A, B ⊂ V . Ideals of a vertex algebra structure and ideals of the underlying Lie conformal
algebra are not equivalent notions. Indeed, ideals of the vertex algebra are also ideals of the Lie
conformal algebra, but the converse is generally false, as it can be seen by noticing thatC1 is
always a central ideal of the Lie conformal algebra structure, but it never is a proper ideal of the
vertex algebra. The following example will be mentioned later on.

Example 2.1(Virasoro conformal algebra). Let R = C[∂]L ⊕ C1, where∂1 = 0. Then the
λ-brackets

[LλL] = (∂ + 2λ)L + λ31, [Lλ1] = 0, [1λ1] = 0,

uniquely extend to a Lie conformal algebra structure, calledVirasoro conformal algebra. The
quotientVir = R/C1 is calledcentreless Virasoro conformal algebraand is the unique finite
strongly simple Lie conformal algebra up to isomorphism [5].R is its only nontrivial irreducible
central extension [4].

3. THE POISSON-WICK FORMULA AND IDEALS OF V Lie

3.1. The Poisson-Wick formula. After multiplying both sides in (2) byλmz−n−1/m! and adding
up over allm ∈ N, n ∈ Z, one obtains the followingPoisson-Wick formula:

(3) [a λ Y (b, z) c] = eλzY ([a λ b], z) c + Y (b, z) [a λ c].

Observe the similarity of the above equation with Leibniz identity in a Poisson algebra. Indeed,
the most evident difference lies in the termeλz in front of the first summand on the right-hand
side. The unusual presence of such a multiplying factor is indeed useful and allows us to prove
the following mixed associativity between the bracket product and the dot product of subsets.

Lemma 3.1. LetA, B, C be subsets of a vertex algebraV . Then[A, B] · C ⊂ [A, B · C].

Proof. Follows easily by applying [3, Lemma 4.1] to (3). �

Proposition 3.1. Let U, I be subspaces of a vertex algebraV . Then[U, I] is an ideal ofV
provided thatI is an ideal ofV . In particular, [U, V ] is always an ideal ofV .

Proof. SinceI is an ideal, we haveI · V = I. Then Lemma 3.1 gives[U, I] · V ⊂ [U, I · V ] =
[U, I]. �

Corollary 3.1. If I is an ideal ofV Lie, then[I, V ] is an ideal ofV contained inI.
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In principle, there are many more ideals ofV Lie than there are ofV . The following theorem
shows that ideals ofV Lie are always“commutatively commensurable”with those ofV .

Theorem 3.1. A C[T ]-submoduleI ⊂ V is an ideal ofV Lie if and only if it contains an idealJ
of V such thatI/J lies in the centre ofV/J .

Proof. If I is an ideal ofV Lie, thenI/[I, V ] is central inV/[I, V ]. Conversely, ifI/J is central
in V/J , then[I/J, V/J ] = 0, whence[I, V ] ⊂ J ⊂ I. �

3.2. Lie structure of simple vertex algebras. Theorem 3.1 has interesting consequences when
applied to a simple vertex algebra.

Proposition 3.2. A properC[T ]-submodule of a simple vertex algebraV is an ideal ofV Lie if
and only if it lies in the centre ofV .

Proof. The only proper ideal ofV is 0. Next use Theorem 3.1. �

The most striking consequence of Proposition 3.1 is the following characterization of the Lie
conformal algebra underlying a simple vertex algebra structure.

Theorem 3.2. Let V be a simple vertex algebra. Then eitherV is commutative, orV Lie is an
irreducible central extension of a strongly simple Lie conformal algebra.

Proof. AssumeV is not commutative. Then0 6= [V, V ] is an ideal ofV , hence it equalsV . In
particular,V Lie cannot be solvable. Ifa ∈ V , then[a, V ] is an ideal ofV . Then eithera ∈ Z(V )
or [a, V ] = V . This shows that the Lie conformal algebraR = V Lie/Z(V ) satisfies[a, R] = R
for all a 6= 0. ThusR is strongly simple, and sinceV = [V, V ] we conclude thatV is an
irreducible central extension ofR by Z(V ). �

The above result allows one to construct many new examples of simple Lie conformal algebras
by taking the centreless quotient ofV Lie wheneverV is a simple Lie algebra. WhenV is a vertex
operator algebra one obtains instances of simple Lie conformal algebra structures on graded
vector spaces of superpolynomial growth.

4. ASSOCIATIVITY IN VERTEX ALGEBRAS

4.1. Associativity and commutativity of products of subspaces.

Lemma 4.1. LetA, B, C be subsets of a vertex algebraV . ThenA · (B · C) = B · (A · C).

Proof. Observe that the second summand in (2) only contains productsa(j)b with non-negative
j. Then choosinga ∈ A, b ∈ B, c ∈ C givesA · (B · C) ⊂ B · (A · C) + [A, B] · C. However

[A, B] · C = (C[∂][A, B]) · C = (C[∂][B, A]) · C
= [B, A] · C ⊂ [B, A · C] ⊂ B · (A · C),

henceA · (B · C) ⊂ B · (A · C). Reversing the roles ofA andB proves equality. �

Proposition 4.1. Let A, B, C beC[∂]-submodules of a vertex algebraV . Then(A · B) · C =
A · (B · C).

Proof. Repeated application of skew-commutativity and Lemma 4.1 gives

(A ·B) · C = C · (A ·B) = A · (C ·B) = A · (B · C).

�

Corollary 4.1. The productU1 ·U2 · . . . ·Un of C[∂]-modules in a vertex algebra depends neither
on the order of the factors nor on the parenthesization of the product.

Proof. Follows easily from Proposition 4.1 and skew-commutativity. �
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Proposition 4.2. LetU be a subset andI an ideal of the vertex algebraV . ThenU · I is an ideal
of V .

Proof. As I is aC[∂]-submodule ofV , U · I is aC[∂]-submodule ofV . Proposition 4.1 gives
(U · I) · V = U · (I · V ) = U · I showing thatU · I is an ideal. �

4.2. The nilradical of a vertex algebra.

Corollary 4.2. Let V be a vertex algebra,a ∈ V . Thena · V is the ideal ofV generated bya.
Similarly, if U ⊂ V is any subset, thenU · V is the ideal ofV generated byU .

Proof. Let (a) denote the minimal ideal ofV containinga. By Proposition 4.2,a · V is an ideal
of V , which must containa asa(−1)1 = a, hence(a) ⊂ a · V , the opposite inclusion being
obvious. The remaining claim is similarly proved. �

Proposition 4.3. Leta ∈ V be such thatY (a, z)a = 0. Thena generates an abelian ideal ofV .

Proof. First of all, notice that(C[∂]a) · (C[∂]a) = C[∂](a · a) = 0. Now, (a) = a · V is a
C[∂]-submodule ofV , so it equals(C[∂]a) ·V . Using associativity and commutativity we obtain

(a) · (a) = ((C[∂]a) · V ) · ((C[∂]a) · V ) = (C[∂]a) · (C[∂]a) · V · V = 0.

�

An elementa ∈ V is nilpotentif

Y (a, z1)Y (a, z2) . . . Y (a, zk)a = 0,

for sufficiently large values ofk.
If N ⊂ V is any subset, defineN1 = N , Nk+1 = N ·Nk for k > 1. Then an idealN of V is

anil-ideal if Nk = 0 for sufficiently large values ofk. Abelian ideals are always nil-ideals, as in
this caseN2 = N ·N = 0.

Lemma 4.2. LetV be a vertex algebra,a ∈ V . Then the following are equivalent:

(1) a is a nilpotent element;
(2) a generates a nil-ideal;
(3) a is contained in a nil-ideal.

Proof. (2) ⇒ (3) ⇒ (1) are obvious, so it suffices to show (1)⇒ (2). If a is nilpotent, then
ak = 0 for somek, hence(C[∂]a)k = C[∂](Ca)k = 0. ThenI = (a) = (C[∂]a) · V satisfies
Ik = (C[∂]a)k · V k = 0. �

Theorem 4.1.The setNil V of all nilpotent elements in a vertex algebraV is an ideal ofV .

Proof. Let a ∈ Nil V . ThenTa ∈ (a) shows NilV is T -stable. Moreover,a · V ⊂ (a) shows
(Nil V ) · V ⊂ Nil V . We are left with showing that NilV is a subspace ofV . Indeed, if
a, b ∈ Nil V , thena + b lies in (a) + (b). Using associativity and commutativity, it is easy to
show that, for all choices of idealsI, J ⊂ V , one has

(I + J)n ⊂
∑

i+j=n

I i · J j.

Now, if (a)h = (b)k = 0 andn ≥ h + k − 1, we obtain((a) + (b))n = 0, showing that any
C-linear combination ofa andb lies in Nil V . �

Nil V is thenil-radical of the vertex algebraV . It is a nil-ideal as soon asV is Noetherian.
The quotient vertex algebraV/Nil V contains no nonzero nilpotent elements.
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4.3. Other consequences of associativity.The annihilator of an elementu ∈ V is the subspace

Ann(u) = {v ∈ V |Y (u, z)v = 0}
of all elements killed by all coefficients ofu. Clearly, it is also aC[∂]-submodule, asv ∈ Ann(u)
implies

Y (u, z)(Tv) = T (Y (u, z)v) +
d

dz
(Y (u, z)v) = 0.

Theorem 4.2.Ann(u) is an ideal ofV for all u ∈ V .

Proof. We know thatu · Ann(u) = 0. Thenu · (Ann(u) · V ) = (u · Ann(u)) · V = 0, hence
Ann(u) · V ⊂ Ann(u). �

The following is an analogue of the integral domain property of a field.

Corollary 4.3. LetV be a simple vertex algebra. ThenY (a, z)b = 0 impliesa = 0 or b = 0.

Proof. Let b 6= 0. Then Ann(a) containsb, hence it is a non-zero ideal ofV . By simplicity,
Ann(a) = V . ThenY (a, z)1 = 0, whencea = 0. �

5. APPLICATIONS

An interesting application of Theorem 3.2 is the following characterization of simple vertex
algebra structures over finitely generatedC[∂]-modules.

Theorem 5.1.Every finite simple vertex algebra is commutative.

Proof. Let V be a finite simple vertex algebra. ThenV Lie is an irreducible central extension of
a strongly simple Lie conformal algebra, hence it is isomorphic to the Virasoro Lie conformal
algebra (see Example 2.1). An easy computation then shows that it cannot support a compatible
vertex algebra structure, see [4]. �

Recall [2] that the structure of a commutative vertex algebra degenerates to that of a dif-
ferential commutative associative unital algebra. Indeed the producta ◦ b = a(−1)b is both
commutative and associative,1 is its identity andT a derivation. It can then be shown that
Y (a, z)b = (ezT a) ◦ b for all a, b. The following are examples of finite simple vertex algebras.

Example 5.1.The trivial vertex algebraV = C1, T = 0 is a finite simple vertex algebra.

Example 5.2.The commutative algebraA = C[x, y]/(y2−4x3−1) possesses a unique derivation
∂ such that∂x = y, ∂y = 6x2. ThenA is a finitely generatedC[∂]-module, and has no nontrivial
∂-stable ideals. Therefore, it is a (differentiably) simple differential commutative unital algebra.

Using commutativity of finite simple vertex algebras, it is easy to show that every finite vertex
algebraV has a solvable underlying Lie conformal algebraV Lie. A more detailed investigation
[4] shows that(V/Nil V )Lie is always nilpotent; in other words, a finite vertex algebra must either
possess nontrivial nilpotent elements, or have a nilpotent underlying Lie conformal algebra.
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